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Abstract. This paper presents a novel way to conduct inference using dependent data in time
series, spatial, and panel data applications. Our method involves constructing t and Wald statistics
utilizing a cluster covariance matrix estimator (CCE). We then use an approximation that takes the
number of clusters/groups as fixed and the number of observations per group to be large and calcu-
late limiting distributions of the t and Wald statistics. This approximation is analogous to ‘fixed-b’
asymptotics of Kiefer and Vogelsang (2002, 2005) (KV) for heteroskedasticity and autocorrelation
consistent inference, but in our case yields standard t and F distributions where the number of
groups essentially plays the role of sample size. We provide simulation evidence that demonstrates
our procedure outperforms conventional inference procedures and performs comparably to KV.
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1. Introduction

Many economic applications involve data that cannot be modeled as independent. The study

of serial dependence is fundamental in the analysis of time series, and cross-sectional or spatial

dependence is an important feature in many types of cross-sectional and panel data. While it is

true that the dependence structure in a given data set is often not the object of chief interest in most

economic applications, it is well understood that inference about parameters of interest, such as

regression coefficients, may be severely distorted when one does not account for dependence in the
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data. This paper presents a simple method for conducting inference about estimated parameters

with dependent data within a time series, cross-sectional, or panel context.

There are two main methods for conducting inference with dependent data. By far the most

common is to utilize a limiting normal approximation that depends on an unknown variance-

covariance matrix. This approximation is then used by simply ‘plugging-in’ a covariance matrix

estimator that is consistent under heteroskedasticity and autocorrelation of unknown form (com-

monly called a HAC estimator) in place of this unknown matrix.2 For time series econometrics, this

plug-in HAC covariance matrix approach has been popular since at least Newey and West (1987)

and for spatial econometrics it dates to Conley (1996, 1999).

Kiefer and Vogelsang (2002, 2005) (KV) propose an alternative approximation to that em-

ployed in the conventional plug-in approach. KV consider the limiting properties of conventional

time-series HAC estimators under an asymptotic sequence in which the HAC smoothing or cutoff

parameter is proportional to the sample size, as opposed to the conventional sequence where the

smoothing parameter grows more slowly than the sample size. Under the KV sequence, the HAC

estimator converges in distribution to a non-degenerate random variable. KV calculate an approx-

imate distribution for commonly-used test statistics accounting for this random limit of the HAC

covariance estimator. Taking a t-statistic as an example, the conventional approach described in

the previous paragraph views the denominator as consistent and its variability is not accounted for.

In contrast, the KV approach treats the t-statistic denominator as a random variable in the limit

and thus uses a ratio of limiting random variables as a reference distribution, where the numerator

has the usual asymptotic normal limit for a regression parameter estimator. The resulting limit

distribution for the t-statistic is pivotal but nonstandard, so critical values are obtained by simula-

tion. For many time series applications, KV provide convincing evidence that their approximation

2This HAC estimator is most often a smoothed periodogram estimator but could of course be a series

estimator, e.g. a flexible vector autoregression.
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outperforms the plug-in approach. Its principal drawback is the computational cost of working

with nonstandard distributions.

In this paper, we present a method for conducting inference in the spirit of KV with less

computational burden, especially for spatial settings.3 We also calculate limiting distributions for

common test statistics viewing covariance estimators as random variables in the limit. We differ

from KV in the type of covariance estimator we employ. Our methods use what is commonly called

a cluster covariance matrix estimator (CCE). The main contribution of this paper is to derive the

behavior of test statistics formed using a CCE under asymptotics that treat the number of groups

as fixed and the number of observations within a group as large. We also present consistency results

for the CCE when both the number of groups and their size are allowed to grow at certain rates.

Cluster covariance estimators are routinely used with data that has a group structure with

independence across groups.4 Typically, inference is conducted in such settings under the assump-

tion that there are a large number of these independent groups. With time series or spatial data,

groups of observations are not generally independent. However, with enough weakly dependent

data, groups can be chosen by the researcher to be large enough so they are approximately inde-

pendent. Intuitively, if groups are large enough and well-shaped (e.g. contiguous points on the line),

the overwhelming majority of points in a group will be far from other groups, and hence approx-

imately independent of other groups provided the data are weakly dependent. This approximate

independence across groups is the key insight underlying our results.

3The results of Kiefer and Vogelsang (2002, 2005) apply only to time series HAC though the results could

be extended to a spatial context. We note that the computational complexity will increase rapidly with the

spatial dimension.
4See Wooldridge (2003) for a concise review of this literature. See also Liang and Zeger (1986), Arellano

(1987), Bertrand, Duflo, and Mullainathan (2004), and Hansen (2007).
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Our main results concern the behavior of the usual t-statistics and Wald tests formed using

the CCE as a covariance matrix, under limits corresponding to a fixed number of large groups. We

show that Wald statistics follow F-distributions and t-statistics follow t-distributions in the limit

up to simple and known scale factors that depend only on the number of groups used in forming

the CCE and the number of restrictions being tested. Our regularity conditions involve moment

and mixing rate restrictions and weak homogeneity assumptions on second moments of regressors

and unobservables across groups. These moment and mixing conditions are implied by routine

assumptions necessary for use of central limit approximations and the required homogeneity is less

restrictive than covariance stationarity. Thus our assumptions are no stronger than those routinely

made with the plug-in HAC approach. Using arguments in Ibragimov and Müller (2006), we also

show that standard t-statistics are conservative for hypotheses tests with size less than about 8%

when the homogeneity restrictions involving unobservables are removed.

We also demonstrate that the CCE is consistent under asymptotics in which the number of

groups and number of observations per group go to infinity at appropriate rates. The conditions we

use are analogous to the conditions used for establishing consistency of conventional time series or

spatial HAC estimators with minor additional restrictions relating to group structure. Under this

sequence the usual limiting normal and χ2 approximations provide valid inference. We note that

using distributional approximations based on a fixed number of groups will remain valid under this

sequence since they approach the same normal and χ2 limits with a large number of groups. Also,

as illustrated in our simulation results, one will often wish to use relatively few groups to produce

tests with approximately correct size. These arguments strongly suggest using the fixed-number-

of-groups approximations in all cases.

Finally, we present simulation evidence on the performance of our estimator in time series,

spatial, and panel data contexts. We provide results from time series and spatial contexts using

simulated treatments and outcomes and results in a panel context using actual unemployment rate
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outcomes regressed on simulated treatments. In time series and spatial settings, the simulation

evidence clearly demonstrates that plug-in HAC inference procedures, which rely on asymptotic

normal and χ2 approximations, may suffer from substantial size distortions. In all cases, the

simulations clearly illustrate that inference procedures that ignore either cross-sectional or temporal

dependence, such as clustering based on only state or month in our unemployment simulations, are

severely size distorted: Even modest serial or spatial dependence needs to be accounted for in order

to produce reliable inference. The simulations show that, provided the number of groups is small

and correspondingly the number of observations per group is large, our proposed test procedure

has actual size close to nominal size and good power properties.

The remainder of the paper is organized as follows. Section 2 presents estimators and notation

for the linear regression model. Section 3 discusses the large sample properties of t and Wald

statistics formed using the CCE, large-sample properties of the CCE itself, and the extension

of our method to nonlinear models. Section 4 presents simulation evidence regarding the tests’

performance. Section 5 concludes. Proofs are relegated to the Appendix.

2. Notation and Problem

For ease of exposition, we first present our method in the context of ordinary least squares (OLS)

esimation of the linear model.

We use two sets of notation, corresponding to the model at the individual and group level. For

simplicity we take individual observation i to be indexed by a point si on an m-dimensional integer

lattice, Zm. The regression model is

ysi = x′siβ + εsi .

The variables ysi and εsi are a scalar outcome and regression error, and xsi is a k × 1 vector of

regressors that are assumed orthogonal to εsi . We use N to refer to the total number of observations.
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We characterize the nature of dependence between observations via their indexed locations

s1, ..., sN . This is routine for time series data where these indices reflect the timing of the obser-

vations. In addition, following Conley’s (1996, 1999) treatment of spatial dependence we explicitly

consider vector indices that allow for the complicated dependence structures found in spatially de-

pendent data or space-time dependence in panel data. Locations provide a structure for describing

dependence patterns.5 The key assumption we make regarding dependence between observations

is that they are weakly dependent, meaning that random variables approach independence as the

distance between their locations grows. Observations at close locations are allowed to be highly

related/correlated and correlation patterns within sets of observations can be quite complicated

with multidimensional indices.

Our methods involve partitioning the data into groups defined by the researcher. We define GN

to be the total number of groups and index them by g = 1, ..., GN . For simplicity, our presentation

ignores integer problems and takes the groups to be of common size LN . It will often be convenient

to use group-level notation for the regression model. Let yg be an LN ×1 vector defined by stacking

each of the individual ys within a group g, and likewise let εg be a stacked set of error terms and

xg be an LN × k matrix with generic row x′s. This yields a group level regresion equation:

yg = xgβ + εg.

5The economics of the application often provides considerable guidance regarding the index space/metric.

For example, when local spillovers or competition are the central economic features, obvious candidate

metrics are measures of transaction/travel costs limiting the range of the spillovers or competition. Index

spaces are not limited to the physical space or times inhabited by the agents and can be as abstract as

required by the economics of the application.
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The econometric goal is to conduct tests of hypotheses regarding β and/or construct confidence

intervals for β. We will examine the OLS estimator of β using the whole sample, which of course

can be written as

β̂N =

(
N∑
i=1

xsix
′
si

)−1( N∑
i=1

xsiysi

)
=

 G∑
g=1

x′gxg

−1 G∑
g=1

x′gyg


using individual-level and group-level notation respectively.

The most common approach to inference with weakly dependent data is to use a ‘plug-in’

estimator, call it ṼN , of the variance matrix of partial sums of xsiεsi , along with the usual large-

sample approximation for the distribution of β̂N . Specifically, the large-sample distribution of β̂N

is

√
N
(
β̂N − β

)
d−→ N(0, Q−1V Q−1)

V = lim
N→∞

V ar(
1√
N

N∑
i=1

xsiεsi)

where Q is the limit of the second moment matrix for x. The typical method uses the sample

average of xsix
′
si to estimate Q and plugs in a consistent estimator, ṼN , of V to arrive at the

approximation:

(2.1) β̂N
Approx∼ N

β, 1
N

[
1
N

N∑
i=1

xsix
′
si

]−1

ṼN

[
1
N

N∑
i=1

xsix
′
si

]−1


Conventionally, one would use an estimator for ṼN that is consistent for V under general forms of

conditional heteroskedasticity and autocorrelation. Such estimators are commonly referred to as

HAC variance estimators; see for example Newey and West (1987), Andrews (1991), Conley (1999).

In the remainder, we refer to HAC estimators as V̂HAC .

When the data is located at integers on the line, say s1 = 1, ..., sN = N, spatial and dis-

crete time series estimators for V coincide and typically are written as a weighted sum of sample
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autocovariances with weights depending on the lag/gap between observations:

V̂HAC =
N−1∑

h=−(N−1)

WN (h)
1
N

∑
j

xsjesjx
′
sj+h

esj+h

where esj in this expression is an OLS residual. This estimator will be consistent under regularity

conditions that include an assumption that WN (h)→ 1 for all h slowly enough for the variance of

V̂HAC to vanish as N →∞; see, e.g., Andrews (1991). Perhaps the most popular choice for weight

function WN (h) is the Bartlett kernel: an isoceles triangle that is one at h = 0 with a base of width

2HN : WN (h) = (1− |h|
HN

)+. The smoothing parameter HN is assumed to grow slowly enough with

the sample size for the variance of V̂HAC to vanish.

To see the link between V̂HAC above and HAC estimators in other metric spaces, it is useful

to rewrite V̂HAC using “row and column” notation to enumerate all pairs of cross products rather

than organizing them by lag/gap. The above expression for V̂HAC can be written as

V̂HAC =
1
N

N∑
i=1

N∑
j=1

WN (si − sj)xsiesix
′
sjesj .

Thus V̂HAC is a weighted sum of all possible cross products of xsiesi and x
′
sjesj . The weights depend

on the lag/gap between the observations, i.e. their distance. This idea generalizes immediately to

higher dimensions (and other metric spaces) yielding a HAC estimator:

V̂HAC =
1
N

N∑
i=1

N∑
j=1

WN (dist(si, sj))xsiesix
′
sjesj

where dist(si, sj) gives the distance between observations located at si and sj . Regularity conditions

for this estimator are analogous to those for locations on the line. Key among these conditions is

that WN (d)→ 1 for all d slowly enough for the variance of V̂HAC to vanish as N →∞; see Conley

(1999). The typical empirical approach is to choose a weight function WN (·) and compute V̂HAC

to plug into expression (2.1). The resulting distributional approximation is then used to conduct

hypothesis testing and construct confidence regions.
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In a time series setting, Kiefer and Vogelsang (2002, 2005) (KV) provide an alternative and

arguably better way to conduct inference using HAC estimators. They focus on V̂HAC defined

with an HN sequence that violates the conditions for consistency. In particular, HN grows at

the same rate as the sample size, and thus V̂HAC converges to a non-degenerate random variable.

They then calculate the large-sample distribution for usual test statistics formed with this random-

variable-limit V̂HAC matrix. The resulting limit distributions for test statistics are non-standard.

However, they turn out to not depend on parameters of the data generating process and critical

values can be calculated via simulation. KV provide convincing evidence that inference based on

this approximation outperforms the plug-in approach in many contexts.

Our main approach in this paper is in the spirit of KV. We use an asymptotic sequence in which

the estimator of V , the CCE, is not consistent but converges in distribution to a limiting random

variable. The main advantage of using the CCE is computational tractability. The inference

procedure we propose is easy to implement even when the data are indexed in high-dimensional

spaces. The CCE may be defined as follows:

V̂N ≡
1
GN

GN∑
g=1

1
LN

x′gege
′
gxg

using group notation. The same estimator can of course also be written using individual observation

notation as

V̂N =
1
N

N∑
i=1

N∑
j=1

1(i, j ∈ same group)xsiesix
′
sjesj .

Thus V̂N can be thought of as a HAC estimator with a nonstandard weighting kernel. Instead of

weights that depend on distances between observations, it has a uniform weight function that indi-

cates common group membership: It is a (spatial) HAC estimator with a discrete group-membership

metric.
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The CCE is commonly employed along with an assumption of independence across groups;

see, e.g., Liang and Zeger (1986), Arellano (1987), Wooldridge (2003), Bertrand, Duflo, and Mul-

lainathan (2004), and Hansen (2007). It is important to note that we are not assuming such

independence but rather that our data are weakly dependent with dependence structure described

by observations’ indices in Zm. In Section 3.2 we demonstrate that V̂N can still be a consistent

estimator of V if GN and LN grow at the proper rates. However, the main results in our paper

focus on cases where GN = G is taken as fixed, so that V̂N is not a consistent estimator of V .

We use V̂N to form an estimator of the asymptotic variance of β̂,

(2.2)
1
N

[
1
N

N∑
i=1

xsix
′
si

]−1

V̂N

[
1
N

N∑
i=1

xsix
′
si

]−1

,

and then use this estimate of the asymptotic variance to form usual t and Wald statistics. We

calculate limiting distributions for these t and Wald statistics under a sequence that holds G fixed

as LN → ∞. Under a general set of assumptions, the limiting distribution of the t-statistic is√
G
G−1 times a Student-t distribution with G − 1 degrees of freedom, and a Wald statistic with q

restrictions has a limiting distribution that is Gq
G−q times an Fq,G−q distribution. Confidence sets

can obviously be obtained in the usual fashion given these limiting results. The CCE is also trivial

to estimate with most standard econometrics packages. For example, the t-statistics created via

the cluster command in STATA 10 can be directly used to implement our inference method if they

are used with critical values of a Student-t with G-1 degrees of freedom.6

6The exact scaling in STATA 10 is slightly different than ours due to the presence of a small-sample

degrees of freedom correction. Specifically, V̂STATA = N−1
N−k

G
G−1 V̂N ; see Stata User’s Guide Release 10 p.

275. Thus, scaling the STATA t-statistic by multiplying it by
√

N−1
N−k would be equivalent to our recommended

procedure. Obviously, there there is unlikely to be any appreciable difference between using this reweighting

and directly using the reported cluster t-statistics since N−1
N−k will be close to one in many applications. Also,

since N−1
N−k will always be greater than one, using the statistic from STATA without modification will in a

sense be conservative.
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Throughout the paper we will refer to a partitioning of the data into groups of contiguous ob-

servations defined by the researcher. The idea is to construct large groups that are shaped properly

for within-group averages/sums to be approximately independent. We consider equal-sized groups

corresponding to contiguous locations. In m-dimensions, we impose two additional restrictions:

the size of group boundaries relative to their volume is the same order as for m-dimensional cubes

and there is a constraint on maximum group diameter. The contiguity and boundary conditions

imply that, in large groups, most of the observations will be interior and far from points in other

groups.7 Under weak dependence, these interior points will then be approximately independent

across groups. Therefore, the set of near-boundary points will be sufficiently limited for their

influence upon correlations across groups to be vanishingly small.

3. Asymptotic Properties

In this section, we develop the asymptotic properties of the CCE with weakly dependent data.8

We first state results under an asymptotic sequence, which we refer to as “fixed-G”, that takes the

number of groups as fixed and lets the number of observations in each group become arbitrarily

large. Under this sequence, we show that the CCE is not consistent but converges in distribution

to a limiting random variable. This result corresponds to asymptotic results for HAC estimators

with smoothing parameter proportional to sample size, or “fixed-b” asymptotics, found in recent

work by Kiefer and Vogelsang (2002, 2005), Phillips, Sun, and Jin (2003), and Vogelsang (2002).

In our result, the number of observations per group roughly plays the role of the HAC smoothing

7For example, these assumptions would rule out a grouping scheme for a time-series MA(1) in which the

groups were constructed by taking every second observation so that the first group consists of observations

(1,3,5,...) and the second group consists of observations (2,4,6,...) as the groups are clearly not asymptotically

independent.

8Results for the CCE with independent groups given in Hansen (2007).
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parameter. We show that under sensible sampling conditions, inference using the CCE may still

be conducted using standard t and Wald statistics even though the CCE is not consistent since

these statistics follow limiting t and F distributions. For completeness, we also show that the

CCE is consistent under asymptotics where the number of groups and the number of observations

per group both go to infinity. This result parallels results for time series HAC as in, for example,

Andrews (1991) and for spatial HAC as in, for example, Conley (1999). For reasons outlined below,

we advocate the use of the fixed-G results in practice.

3.1. Fixed-G Asymptotics

We state the fixed-G results under conventional high-level assumptions. The conditions we impose

require that groups can be defined such that a central limit theorem will apply within each group

and such that the groups are asymptotically uncorrelated. We now state the key assumptions and

the main result.

For simplicity we will index observations on an m-dimensional integer lattice, Zm, and use the

maximum coordinatewise metric dist(si, sj).9 Throughout, let Gg1 , Gg2 be two disjoint sampling

regions (index sets) corresponding to groups {g1, g2} ⊆ {1, . . . , G} with g1 6= g2. Use |G| to refer

to the number of elements in the region. Our first assumption is a simple sufficient condition that

will be used in establishing the main result.

Assumption 1 (Sampling properties of {x, ε}). As LN →∞,

(i)
1
LN


x′1x1

...

x′GxG

 p−→


Q1

...

QG

 and

9The maximum coordinatewise distance metric is defined as dist(si, sj) = maxl∈{1,...,m} |si(l) − sj(l)|

where si(l) is the lth element of vector si.
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(ii)
1√
LN


x′1ε1

...

x′GεG

 d−→ N

0,


Ω1 0

. . .

0 ΩG




for Qg and Ωg positive definite for all g = 1, ..., G.

Assumption 1 states that a suitable law of large numbers applies to L−1x′gxg and that L−
1
2x′gεg

obeys a central limit theorem.10 We also assume that the asymptotic covariance across groups

is zero. In many cases, this asymptotic lack of correlation can be verified under the same set of

sufficient conditions one would use to verify that a CLT applies to L−
1
2x′gεg plus a mild condition on

group structure outlined below in Assumption 2. We give one simple set of sufficient conditions that

imply Assumption 1 in Appendix 6.3 and simply note here that there are a wide variety of primitive

assumptions that could be used. Note that, as usual with clustering estimators, no assumptions are

made about the structure of Qg or Ωg beyond their being positive definite. Neither Assumption 1

nor the primitive conditions provided in the appendix require that groups are independent for any

finite group size LN .

Assumption 1 implicitly imposes restrictions on the nature of the groups used in forming the

CCE. Assumption 2 below provides an example of a set of explicit restrictions on the group

structure and boundaries that, when coupled with mixing and moment conditions or other no-

tions of weak dependence, will imply Assumption 1. The boundary of a region is defined as

∂G = {i ∈ G : ∃j /∈ G s.t. dist(i, j) = 1}.

Assumption 2 (Restrictions on groups).

(i) Groups are mutually exclusive and exhaustive.

10The existence of constant limits in Assumption 1 could be relaxed at the cost of complicating notation.
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(ii) For all g, |Gg| = LN .

(iii) Groups are contiguous in the metric dist(·).

(iv) For all g, |∂G| < CL
m−1
m

N .

Part (ii) of Assumption 2 assumes a common group size.11 Assumption 2.(iii)-(iv) imply that

asymptotically, groups correspond to regions of the sampling space that resemble a collection of

regular polyhedra growing to cover the space.

When G is fixed and LN → ∞, Assumption 1 is sufficient to characterize the behavior of

the CCE. In this case, V̂N is not consistent, but converges to a limiting random variable. In

general, the reference distributions for test statistics based on the CCE are not pivotal and are

nonstandard under this sequence, so critical values must be determined by simulation. However,

we also consider two mild forms of homogeneity under which reference distributions for the usual t

and Wald statistics simplify to the usual t- and F-distributions with degrees of freedom determined

by the number of groups.

Assumption 3 (Homogeneity of x′gxg). For all g, Qg ≡ Q.

Assumption 4 (Homogeneity of x′gεg). For all g, Ωg ≡ Ω.

Assumptions 3 and 4 respectively assume that the matrices of cross-products of x converge to the

same limit within each group and that the asymptotic variance of the score within each group is

constant. These conditions are implied by covariance stationarity of the individual observations

but may also be satisfied even if covariance stationarity is violated.

11We ignore integer problems for notational convenience and simplicity. If we allowed different group

sizes, say Lg, all results would carry through immediately as long as Lg1/Lg2 → 1 for all g1 and g2. See also

the discussion about weighting following the statement of Theorem 1.
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We are now ready to state our main results. Let Q̂ = 1
N

∑
g x
′
gxg. In the following, consider

testing H0 : Rβ = r against H1 : Rβ 6= r where R is q×k and r is a q-vector using the test statistics

F̂ = N
(
Rβ̂ − r

)′ [
RQ̂−1V̂N Q̂

−1R′
]−1 (

Rβ̂ − r
)
,

or, when q = 1,

t̂ =

√
N
(
Rβ̂ − r

)
√
RQ̂−1V̂N Q̂−1R′

.

Properties of t̂ and F̂ are given in the following proposition.

Proposition 1. Suppose {Gg} is defined such that LN → ∞ and G is fixed as N → ∞ and that

Assumption 1 holds. Let Bg ∼ N(0, Ik) denote a random k-vector and Ωg = ΛgΛ′g. Define matrices

Q and S such that Q =
∑

g Qg and S =
∑

g ΛgBg. Then,

i. V̂N
d−→ VA = 1

G

∑
g

[
ΛgBgB′gΛ

′
g −QgQ−1SB′gΛ

′
g − ΛgBgSQ−1Qg +QgQ−1SS′Q−1Qg

]
,

and under H0,

t̂
d−→

√
GRQ−1S√

R(Q/G)−1VA(Q/G)−1R′
and

F̂
d−→ GS′Q−1R′

[
R(Q/G)−1VA(Q/G)−1R′

]−1
RQ−1S.

ii. if Assumption 3 is also satisfied, t̂ d−→
√

G
G−1 t

∗
G−1 under H0 where t∗G−1 satisfies

P
(
|t∗G−1| > cG−1(α)

)
≤ α

for cG−1(α) the usual critical value for an α−level two-sided t-test based on a t-distribution

with G− 1 degrees of freedom for any α ≤ 2Φ(−
√

3) and for any α ≤ 0.1 if 2 ≤ G ≤ 14.

iii. if Assumptions 3 and 4 are also satisfied, t̂ d−→
√

G
G−1 tG−1 and F̂ d−→ Gq

G−qFq,G−q under H0

where tG−1 and Fq,G−q are respectively random variables that follow a t distribution with

G − 1 degrees of freedom and an F distribution with q numerator and G − q denominator

degrees of freedom.
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The results of Proposition 1 are stated under increasingly more restrictive homogeneity as-

sumptions. The benefit of additional homogeneity is that the limiting behavior of test statistics

is determined by standard t- and F- distributions. Using these standard reference distributions

makes performing hypothesis tests and constructing confidence intervals as easy as under the nor-

mal asymptotic approximations, and we show in simulation examples that these approximations

perform well in finite samples. The results also clearly illustrate the intuition that the behavior

of test statistics under weak dependence is essentially governed by the number of ‘approximately

uncorrelated observations’ in the sample, which in this case corresponds to the number of groups.

The reference distributions under homogeneity are simpler to work with than the KV reference

distributions which also rely on homogeneity. Moreover, our results apply immediately to spatial

processes.

Proposition 1, part (i) imposes essentially no homogeneity and implicitly allows for group sizes

that are not asymptotically equivalent. Without further restrictions, we see that the CCE converges

to a limiting random variable and that usual test statistics formed using this covariance matrix

estimator take the form of ratios of random variables. The limiting distributions of the test statistics

are neither standard nor pivotal though in principle one could attempt to estimate the nuisance

parameters involved in the distributions and simulate from them to conduct inference.

With additional technical conditions, it can be shown that Proposition 1 part (i) implies that

the usual normal and χ2 reference distributions will be valid under a sequential asymptotics where

first LN → ∞ and then GN → ∞. We do not pursue this since this sequence is not immediately

useful when G is fixed and provides a similar result to that obtained in the following section under

asymptotics where {LN , GN} → ∞ jointly. We note that, under sequences where GN → ∞,

the reference distributions obtained in Parts (ii) and (iii) of Proposition 1 are still valid in the

sense that they converge to the usual normal and χ2 reference distributions as GN → ∞. That

the approximate distributions obtained in Parts (ii) and (iii) of Proposition 1 will remain valid in
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either asymptotic sequence while the usual normal and χ2 approximations will only be valid under

sequences when GN is arbitrarily large strongly suggests that one should always simply use the

fixed-G limits. Simulation results reported in Section 4 reinforce this conclusion.

The result in Part (ii) of Proposition 1 shows that under a homogeneity assumption on the

limiting behavior of the design matrix across groups, the usual t-statistic converges to
√
G/(G− 1)

times a random variable with tail behavior similar to a tG−1 random variable, where by similar we

mean that the test will reject with probability less than or equal to the nominal size of a test as

long as the test is at a small enough level of significance (less than around .08 in general). This

result suggests that valid inference may be conducted by simply rescaling the usual t-statistic by√
(G− 1)/G which is equivalent to using G

G−1 V̂N as the covariance matrix estimator. This result

uses Theorem 1 of Ibragimov and Müller (2006); see also Bakirov and Székely (2005). To our

knowledge, there is no currently available similar result for F̂ .

The final results in part (iii) show that under a homogeneity assumption on the limiting behavior

of the design matrices and on the within-group asymptotic variance, the usual t- and Wald statistics

converge to scaled t- and F-distributions. The scale on the t-statistic is again
√
G/(G− 1) which

suggests using G
G−1 V̂N as the covariance matrix estimator if one is interested in inference about

scalar parameters or rank one tests. On the other hand, the scale of the F-distribution depends on

the number of parameters being tested, though rescaling the F-statistic appropriately is trivial.

It is worth noting that the assumption of common group sizes is purely for simplicity in Part (i)

of Proposition 1, as we have placed no structure on Qg or Ωg across groups. This is not the case for

Parts (ii) and (iii) of Proposition 1, in particular because Assumption 3 is probably not reasonable

for heterogeneous group sizes. It could be shown that a version of Part (ii) of Proposition 1 holds

for weighted least squares with heterogeneous group sizes if Assumption 2.(ii) and Assumption 3

are replaced with the following:
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Assumption 5. For all g, |Gg| = Lg,N , and Lg,N/L̄N → ρg where L̄N = 1
G

∑
g Lg,N .

Assumption 6. For all g, Qg = ρgQ.

Define β̂w, Q̂w, and V̂w as the respective weighted least squares estimates where the observations

in group g are weighted by
√
L̄N/Lg,N . Defining t̂w as above using the WLS estimates in place

of β̂N , Q̂, and V̂N , Proposition 1 Part (ii) obtains immediately for t̂w under the Assumptions 1, 5,

and 6.

Overall, the conclusions of Proposition 1 seem quite useful from a number of standpoints. The

asymptotic distributions provided in Parts (ii) and (iii) of Proposition 1 are easier to work with than

KV distributions on the line, and this difference becomes more pronounced in higher dimensions.

Our approximations should also more accurately account for the uncertainty introduced due to

estimating the covariance matrix than plug-in approaches. This improvement is evidenced in a

simulation study reported below where we find that using the reference distributions implied by

the fixed-G asymptotic results eliminates a substantial portion of the size distortion that occurs

when using HAC estimators plugged into a limiting normal approximation.

3.2. G→∞ Asymptotics

We believe that the results from the previous section suggest that appropriately normalized t- and

F-statistics should always be used for conducting inference when using the CCE in practice. In this

section, we provide a standard consistency result for the CCE estimator under weak dependence

when {GN , LN} → ∞ jointly. As in the fixed-G case, LN plays the role of the usual smoothing

parameter or lag truncation parameter for a HAC estimator, and we obtain consistency under

conditions on the rate of growth of LN that correspond to the usual rate conditions on the smoothing

parameter for a conventional HAC estimator. This analysis serves to unify the CCE and HAC

estimators and technically complete the analysis. We present the results for time series and spatial
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processes separately as the rates obtained under the two cases are substantially different. Finally, we

present the formal results in this section assuming more primitive mixing12 and moment conditions

as we feel that the high-level assumptions here are not sufficiently intuitive to add much value

relative to the mixing and moment conditions, but we do note that the results would hold under

other sets of primitive stochastic assumptions.

In stating the result, we will make use of the following assumptions. We use Assumption 7 to

establish the consistency of the CCE in the time series context or when space is indexed on a line,

and we use Assumption 8 to establish consistency under general spatial dependence.

Assumption 7 (Time Series/Locations on Line).

(i) As N →∞, LN →∞ such that LN
N → 0.

(ii) {xs, εs} is an α-mixing sequence that satisfies
∑∞

j=1 j
2α(j)δ/(4+δ) <∞ for some δ > 0, and

sups E|εs|8+2δ < ∞ and sups E|xsh|8+2δ < ∞ where xsh is the hth element of vector xs.

E[ 1
N

∑
s xsx

′
s] is uniformly positive definite with constant limit Q.

(iii) E[xsεs] = 0. VN = var[ 1√
N

∑
s xsεs] is uniformly positive definite with constant limit V .

These conditions are quite standard in the HAC literature; see, for example, Andrews (1991).

Under these conditions, consistency and asymptotic normality of the least squares estimator are

easily established, as is consistency of the infeasible HAC estimator which uses smoothing parameter

LN and the actual εs’s. Condition (i) imposes a condition on the rate of growth of the number of

12We use the standard notion of an α- or strong mixing process from time series. See, for example, White

(2001) Definition 3.42. For spatial processes, we use a mixing coefficient for a random field defined as follows.

Let FΛ be the σ-algebra generate by a given random field ψsm
, sm ∈ Λ with Λ compact, and let |Λ| be the

number of sm ∈ Λ. Let Υ(Λ1,Λ2) denote the minimum distance from an element of Λ1 to an element of

Λ2. For our results, we use the maximum coordinate-wise distance metric. The mixing coefficient is then

αk,l(j) ≡ sup{|P (A
⋂
B)− P (A)P (B)|}, A ∈ FΛ1 , B ∈ FΛ2 , and |Λ1| ≤ k, |Λ2| ≤ l, Υ(Λ1,Λ2) ≥ j. Mixing

requires that αk,l(j) convereges to zero as j →∞.
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observations per group and thus implicitly defines a rate of growth on the number of groups, GN .

We note that this condition is quite mild and will be satisfied as long as GN grows at any rate since

all that is required is that LN
N = 1

GN
→ 0.

Assumption 8 (Locations in m Dimensions).

(i) The sample region grows uniformly in m non-opposing directions as N →∞.

(ii) Diam(Gg) ≤ CL1/m for all g where Diam(G) = max{dist(si, sj)|i, j ∈ G}, and the maximum

number of groups within distance CL1/m of any particular group g is bounded for all g.

(iii) As N →∞, LN →∞ such that L3
N
N → 0.

(iv) {xs, εs} is a α-mixing and satisfies α∞,∞(j)δ/(2+δ) = O(j−2m−η) for some δ > 0 and some

η > 0, and sups E|εs|8+2δ < ∞ and sups E|xsh|8+2δ < ∞ where xsh is the hth element of

vector xs. E[ 1
N

∑
s xsx

′
s] is uniformly positive definite with constant limit Q.

(v) E[xsεs] = 0. VN = var[ 1√
N

∑
s xsεs] is uniformly positive definite with constant limit V .

Conditions (i) and (iii)-(v) of Assumption 8 are the same as those used in Conley (1999) and

are sufficient to guarantee the consistency and asymptotic normality of the OLS estimator and

to guarantee the consistency of HAC estimators including the infeasible spatial HAC estimator

that uses the true values of the εs’s. Condition (i) gives content to the notion of sampling in m

dimensional space, since the problem would effectively be of lower than m dimensions if the sample

region increased in less than m non-opposing dimensions. One might wish to relax the condition

that the rate of increase is uniform, but we leave this to future work. Condition (ii) imposes a

restriction on the choice of groups in constructing the CCE. This condition will be satisfied, for

example, when the groups are constructed as regular polyhedra. It rules out cases where one

constructs groups with very long, skinny parts where there can be arbitrarily many groups within

a particular smoothing parameter. Condition (iii) then gives the rate of growth on the smoothing

parameter relative to the sample size. Again this condition imposes a rate condition on the number
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of groups, implying that L2
N

GN
→ 0. That is, we see that consistency will obtain only when the

number of groups is growing quite quickly relative to the number of observations per group. Since

reasonable levels of dependence imply groups need to be large, this condition on the number of

groups indicates this approximation will only be useful when N is extremely large. We also note

that these rate conditions are substantially different than those obtained in the time series case. It

may be interesting to see if the rate conditions could be relaxed, but doing so is beyond the scope

of the present paper.

Under Assumption 7 or 8, we can state the following result.

Proposition 2. If Assumption 7 is satisfied and data are indexed on a line (e.g. a time series) or

Assumption 8 is satisfied, V̂N
p−→ V where

√
N(β̂ − β) d−→ Q−1N(0, V ).

Proposition 2 verifies that the CCE, V̂N , is consistent under an asymptotic sequence where the

number of groups GN goes to infinity with the sample size. This result, along with asymptotic

normality of the OLS estimator, provides an obvious approach to inference using the CCE when

data are weakly dependent using the usual asymptotic normal and χ2 approximations. As discussed

in the previous section, this seems unlikely to perform as well as the fixed-G results. It is interesting

that the result is obtained under the same conditions as would be used to show the consistency of

conventional HAC or spatial HAC estimators, again illustrating that the CCE may be thought of

as a HAC estimator with a particular kernel.

3.3. Nonlinear Models

The results from the previous sections will hold for nonlinear models under appropriate modification

of regularity conditions. In this section, we provide a sketch of the requisite modifications for m-

estimators for our fixed-G result. Similar modifications could be made for the case where GN →∞.
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Suppose that

θ̂ = arg max
θ

1
N

∑
i

f(zsi ; θ)

where limN→∞
1
N

∑
iE[f(z; θ)] is maximized at some parameter value θ0. For simplicity, assume

also that f(z; θ) is twice-continuously differentiable in θ. We will have that θ̂
p−→ θ0 and

√
N(θ̂ −

θ0) d−→ Γ−1N(0, V ) where V = limN→∞Var
[

1√
N

∑
i
∂
∂θf(zsi ; θ0)

]
and Γ = limN→∞ E

[
1
N

∑
i

∂2

∂θ∂θ′ f(zsi ; θ0)
]

under standard regularity conditions; see, for example, Wooldridge (1994) in the time series case

and Jenish and Prucha (2007) in the spatial case.13

Let D(zsi ; θ) = ∂
∂θf(zsi ; θ) be a k × 1 vector and let Dg(θ) =

∑
i∈Gg D(zsi ; θ) be the k × 1

vector defined by summing the first derivatives within group g for g = 1, ..., G. Also, define

Γg(θ) =
∑

i∈Gg
∂2

∂θ∂θ′ f(zsi ; θ). Then the clustered estimator of V would be given by

V̂ =
1
N

G∑
g=1

Dg(θ̂)Dg(θ̂)′.

We can then follow the usual procedure in the HAC literature and linearize Dfg(θ̂) around the true

parameter θ0. This gives

V̂N =
1
N

G∑
g=1

[
Dg(θ0)Dg(θ0)′ + Γg(θ̄)(θ̂ − θ0)Dg(θ0)′ +Dg(θ0)(θ̂ − θ0)′Γg(θ̄)

+ Γg(θ̄)(θ̂ − θ0)(θ̂ − θ0)′Γg(θ̄)
]

where θ̄ is an intermediate value. By standard arguments, we can also write that

θ̂ − θ0 = −

 G∑
g=1

Γg(θ̄)

−1∑
g

Dg(θ0)

13Jenish and Prucha (2007) provides conditions for uniform laws of large numbers and central limit

theorems. To show consistency and asymptotic normality, these results would need to be combined with

standard consistency and asymptotic normality results for m-estimators as in Newey and McFadden (1994).
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with θ̄ an intermediate value. Substituting this expression into V̂N , we have

V̂N =
1
N

G∑
g=1

[
Dg(θ0)Dg(θ0)′

− Γg(θ̄)

[ G∑
r=1

Γr(θ̄)

]−1 G∑
r=1

Dr(θ0)

Dg(θ0)′

−Dg(θ0)

[ G∑
r=1

Γr(θ̄)

]−1 G∑
r=1

Dr(θ0)

′ Γg(θ̄)
+ Γg(θ̄)

[ G∑
r=1

Γr(θ̄)

]−1 G∑
r=1

Dr(θ0)

[ G∑
r=1

Γr(θ̄)

]−1 G∑
r=1

Dr(θ0)

′ Γg(θ̄)
 .

Looking at this expression, we see that Dg(θ0) is playing the same role as x′gεg in Section 3.1 and

Γg(θ̄) is playing the same role as x′gxg. It will follow immediately that the appropriate sufficient

condition analogous to Assumption 1 above will have that

1√
LN

(D1(θ0), ..., DGN (θ0))′ d−→ N(0,W )

where W is block diagonal with off-diagonal blocks equal to matrices of zeros and diagonal blocks

equal to Ωg where Ωg = limLN→∞Var
[

1√
LN
Dg(θ0)

]
and that supθ∈Θ ‖ 1

LN
Γg(θ) − Γ∗g(θ)‖

p−→ 0

where Γ∗g(θ0) is nonsingular for all g = 1, ..., GN . Primitive conditions for the first condition can

be found in any standard reference for central limit theorems; see, for example, Jenish and Prucha

(2007) for spatial processes and White (2001) for time series processes.14 The second condition is

a uniform convergence condition for the Hessian matrix for which a variety of primitive conditions

can be found, e.g. Jenish and Prucha (2007) or Wooldridge (1994).

14Additional conditions regarding the group structure such as those in Assumption 2 would also have to

be added to verify the block diagonality. This could be demonstrated as in Appendix 6.3.
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4. Simulation Examples

The main contribution of the previous section is in providing a limiting result under an asymptotic

sequence when the number of groups remains fixed which corresponds to “fixed-b”’ asymptotic

approximations for conventional HAC estimators. Under this asymptotics, we show that standard

test-statistics follow asymptotic t- or F− distributions which are extremely easy to use and should

work better in finite samples than the usual asymptotic approximations. In this section, we provide

evidence on the inference properties of tests based on the CCE using simulation experiments in

entirely simulated data and experiments in which we regress actual unemployment rates on simu-

lated treatments. In all of our simulations, we consider inference about a slope coefficient from a

linear regression model.

4.1. Results using Simulated Treatments and Outcomes

This subsection presents simulations from data generating processes (DGPs) that we fully specify.

In the sequel, we augment these with simulations combining real unemployment rate data and

generated treatments.

We consider two basic types of DGP: an autoregressive time series model and a low-order

moving average spatial model. For both models, we set

ys = α+ xsβ + εs,

where xs is a scalar, α = 0, and β = 1. For the time series specification, we generate xs and εs as

xs = 1 + ρxs−1 + vs, vs ∼ N(0, 1) and

εs = ρεs−1 + us, us ∼ N(0, 1)

with initial observation generated from the stationary distribution of the process. We consider

three different values of ρ, ρ ∈ {0, .5, .8} and set N = 100.
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In the spatial case, we consider data generated on a K ×K integer lattice. We generate xs and

εs as

xs =
∑
‖h‖≤2

γ‖h‖vs+h,

εs =
∑
‖h‖≤2

γ‖h‖us+h

with ‖h‖ = dist(0, h) in this expression, us ∼ N(0, 1), and vs ∼ N(0, 1) for all i and j. We consider

three different values of γ, γ ∈ {0, .3, .6} and set K = 36 for a total sample size of N = 1296.15

Table 1 reports rejection rates for 5% level tests from a Monte Carlo simulation experiment. The

time series simulations are based on 30,000 simulation replications and the spatial simulations are

based on 500 simulation replications. Row labels indicate which covariance matrix estimator is used.

Column 2 indicates which reference distribution is used with KV corresponding to the Kiefer and

Vogelsang (2005) approximation. Rows labeled IID and Heteroskedasticity use conventional OLS

standard error and heteroskedasticity robust standard errors respectively. Rows labeled Bartlett

use HAC estimators with a Bartlett kernel. Rows labeled CCE use the CCE estimator. For tests

based on IID and Heteroskedasticity a N(0,1) distribution is used as the reference distribution.

For the CCE estimator, a t(G-1) distribution is used as the reference distribution. For the HAC

estimator, we consider two different reference distributions: a N(0,1) and the Kiefer and Vogelsang

(2005) approximation. For time series models, Small, Medium, and Large respectively denote lag

truncation at 4, 8, and 12 for HAC and denote numbers of groups of 4, 8, and 12 for CCE . For

spatial models, Small, Medium, and Large denote lag truncation at 4, 8, and 16 for HAC and

denote numbers of groups of 4, 16, and 144 for CCE.16

15We draw us and vs on a 40× 40 lattice to generate the 36× 36 lattice of xs and εs.
16We chose these truncation parameters for the Bartlett kernels by taking the sample size and dividing by

two times the number of groups used in constructing the CCE for the time series simulation and by taking
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Looking first at the time series results, we see that tests based on the CCE with a small number

of groups performs quite well across all of the ρ parameters considered. As expected, the tests based

on the CCE overreject with ρ of .8 when a moderate or large number of groups is used, though

size distortions are modest with ρ of .5 for all numbers of groups. Comparing across HAC and

the CCE, we see that tests based on the HAC estimator using the usual asymptotic approximation

have large size distortions. Looking at the HAC rejection frequencies closest to the nominal level

of 5%, we see that the HAC tests reject 10.5% of the time with ρ = .5 and 18.4% of the time with

ρ = .8 compared to 5.9% of the time and 8.2% of the time for the CCE-based tests. Tests based

on the Kiefer and Vogelsang (2005) approximation behave similarly to tests based on the CCE,

highlighting the similarity between the fixed-G approach for the CCE and the “fixed-b” approach

for HAC estimators. The results also demonstrate the well-known result that conducting inference

without accounting for serial correlation leads to tests with large size distortions.

The spatial results follow roughly the same pattern as the time series results. Tests based on

the CCE with a small number of groups perform uniformly quite well regardless of the strength

of the correlation. In the moderate and no correlation cases, we also see that the CCE-based

tests do reasonably well when more groups are used. The analog of KV for the spatial case is

not yet available, though we suspect that using such an approximation would result in rejection

performance similar to that of the CCE under fixed-G asymptotics. Pursuing this extension of

Kiefer and Vogelsang (2005) seems like an interesting avenue for future research.

Power curves comparing tests using HAC with the KV reference distribution to CCE are fairly

similar across the designs considered. We report the case with the largest discrepancy between

power curves in Figure 1.17 Figure 1 provides power curves for the test based on the CCE with four

approximately the square root of the total sample size divided by the number of groups used in constructing

the CCE in the spatial simulation.

17We choose to focus on power for procedures with approximately correct and comparable size.
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groups (the solid curve) and the HAC estimator (the curve with x’s) with a smoothing parameter

of 16 using the Kiefer and Vogelsang (2005) reference distribution for the time series case with

ρ = 0.8. We can see that there is a modest power loss due to using tests based on the CCE relative

to HAC with Bartlett kernel and “comparable” smoothing parameter in this figure. We note that

the power loss is much smaller across the remaining designs. The gain is the ease in computing the

CCE as well as in obtaining a simple reference distribution.

4.2. Results using Unemployment Rate Outcomes

In our second set of simulations, we use the log of monthly state-level unemployment rates as our

dependent variable.18 The data we consider have monthly unemployment rates for each state from

1976 to 2007 giving a total of 384 months in the sample. We discard Alaska and Hawaii but include

Washington D.C. giving us 49 cross-sectional observations. We regress these unemployment rates

on a randomly generated treatment. These simulations allow us to examine the properties of CCE-

based inference using our fixed-G approximations for data with a strong spatial and inter-temporal

correlation structure determined by actual unemployment outcomes.

In this section, we consider inference on the slope coefficient from the model

log(yst) = βxst + αs + αt + εst

where yst is the unemployment rate in state s at time t, αs and αt are respectively unobserved

state and time effects, εst is the error term, and xst is a simualated treatment whose generation we

discuss below. In all of the simulations, we set β = 0 and treat αs and αt as fixed effects. Thus,

to estimate β, we regress log(yst) on xst and a full set of state and time dummies. We note that

this is a simple but fairly standard specification in applied research and that, with unemployment

rates on the left hand side, it is similar to models considered in Shimer (2001) and Foote (2007).

18We use seasonally unadjusted monthly state-level unemployment rates from the BLS available at

ftp://ftp.bls.gov/pub/time.series/la/.
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We use two different processes to generate xst, one which generates a continuous treatment

and one which generates a binary treatment. The continuous treatment is meant to represent a

treatment such as the log of the youth employment share as considered in Shimer (2001) and Foote

(2007) while the binary treatment is meant to represent policy, such as the presence or absence of a

law. In both cases, we generate the treatment to be both spatially and intertemporally correlated.19

For the continuous treatment, we generate xst as

xst = σ1

ust + γ
∑

d(s,r)=1

urt

 where

ust = µ+ ρus(t−1) + vst,

vst ∼ N(0, σ2
2),

d(s, r) is one for adjacent states s and r and zero otherwise, and ρ and γ respectively control the

strength of the intertemporal and spatial correlation and are varied in the simulations. We choose

µ, σ1, and σ2 to make the mean and variance of xst similar to the mean and variance of log(yst);20

When xst is binary, we generate a random time, τs, for each state to adopt the treatment:

τs =

us + γ
∑

d(s,r)=1

ur

 /

1 +
∑

d(s,r)=1

γ


where us is a discrete uniform distribution with support {1, ..., 384} and d(s, r) is defined above.

We then define xst = 1(t > τs) where 1(·) is equal to one if the event in the parentheses is true

and zero otherwise. In this case, the treatment is highly serially dependent and γ again controls

the degree of spatial correlation.

19If the treatment were spatially (intertemporally) uncorrelated, xstεst would also be spatially (intertem-

porally) uncorrelated regardless of the correlation structure of εst. We note that there is a high degree of

both spatial and intertemporal correlation in the log of the unemployment rate even after controlling for

state and time effects.

20We used σ1 = σ2 = .2 and µ = .4.
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We report simulation results for the continuous treatment design in Table 2 and the binary

treatment design in Table 3. In all cases, we report rejection frequencies for 5% level tests of the

hypothesis that β = 0. For the continuous treatment, we report results with γ of 0.2 or 0.8 and

ρ of 0.4 or 0.8. For the binary treatment, we report results for γ ∈ {0, 0.2, 0.4, 0.8}. Rows labeled

IID and Heteroskedasticity use conventional OLS and heteroskedasticity consistent standard errors

respectively. The remaining rows use the CCE with different grouping schemes. “State” and

“Month” use states and months as groups, respectively. “State/Month” treats observations as

belonging to the same group if they belong to the same state or the same month; the variance

matrix for this metric can be estimated by summing the CCE with groups defined by states and

the CCE for groups defined by months and then subtracting the usual heteroskedasticity consistent

variance matrix. For the remaining groups, G2 and G4 respectively indicate partioning the data

into two and four geographic regions.21 T3, T6, and T32 divide the time series into three 128-month

periods, six 64-month periods, or thirty-two 12-month periods. “G4 x T3” then indicates a group

structure where observations in region one in time period one belong to the same group, observations

in region two in time period one belong to the same group, etc. Based on the simulation results from

the previous section, we did not compute HAC standard errors as they are computationally more

burdensome than the CCE and had substantial size distortions when the KV reference distribution

was not used. For all simulations, we use the full sample with 49 states and 384 time periods, and

all results are based on 1000 simulation replications.22

21For G4, we use the four census regions; Northeast, Midwest, South, and West; but modify them slightly

by taking Delaware, Maryland, and Washington D.C. from the south and adding them to the Northeast.

For G2, we essentially split the country into East and West at the Mississippi river but include Wisconsin

and Illinois in the West.
22We have run simulations using various subsamples which produce qualitatively similar results to those

reported here with the caveat that as the time series dimension decreases it becomes increasingly obvious,

as intuition would suggest, that there is no sense in entertaining groups splitting on the time dimension. We
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Looking first at Table 2 which has results for the continuous treatment, we see that tests

based on standard errors which ignore any of the sources of correlation (IID, Heteroskedasticity,

clustering with either state or month as a grouping variable) perform uniformly poorly across the

designs considered. With a moderate value of either γ or ρ, we see that the grouping strategies

that use a large number of groups fare quite poorly. On the other hand, the conservative grouping

strategies; T3, T6, G2, and G4; appear to perform well across all the values of γ and ρ. We also see

that when γ and ρ are moderate, a variety of grouping strategies produce tests with size reasonably

close to the nominal level.

In practice, one might prefer tests with moderate size distortions if they are sufficiently more

powerful than tests with size closer to the nominal level. We note that power should increase

with degrees of freedom of the fixed-G asymptotic t distribution as increases in degrees of freedom

decrease the appropriate critical values. Since relevant critical values of a t-distribution are highly

convex in the degrees of freedom, there will be rapidly diminishing returns to increasing the degrees

of freedom. Figure 2 plots power curves for T3, G4, and G4×T3. In the figure, the solid curve plots

power for G4×T3, the crossed line plots power for G4, and the line with circles plots power for

T3. The figure clearly illustrates the power gain from moving to configurations with more groups.

Moving from T3 to G4, sizes are similar, but the power from G4 is substantially higher than that

of T3. We also see that G4×T3 is substantially more powerful than either T3 or G4, rejecting a

hypothesis that the coefficient is -0.2 over 80% of the time compared to approximately 40% of the

time for T3, at the cost of a slight size distortion.

For the binary treatment case, the only strategies which reliably produce reasonably accurate

testing results are G2 and G4. This result is unsurprising since both log state-level unemployment

rates and the randomly generated binary treatment are strongly persistent even after taking out

also considered values of γ equal to .4 and 0 in the continuous treatment case. The results for γ = .4 are

intermediate to those reported, and unsurprising, simply clustering by state works very well when γ = 0.
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an arbitrary national time trend. Because of this, one is better off, in terms of size of hypothesis

tests, by treating the problem as a large vector cross-sectional problem and allowing essentially

arbitrary inter-temporal correlation. This example strongly illustrates that one needs to carefully

consider both cross-sectional and inter-temporal correlation when conducting inference. Despite

the 18,816 state-month observations, our results suggest one is faced with drawing inference from

about four “independent observations” to get test size and confidence interval coverage close to the

nominal level due to the strong persistence in the time series and the moderate dependence in the

cross-section.

These simulation results illustrate the potential for inference procedures that fail to account for

both spatial and inter-temporal correlation in panel data to produce extremely misleading results.

Probably the most common current inference approaches in panel data are based on using standard

errors clustered at the cross-sectional unit of observation, state in our simulation example, which

allows general inter-temporal correlation but essentially ignores cross-sectional correlation. Our

simulations based on actual unemployment data suggest that this has the potential to produce

substantial size distortions in tests of hypotheses. Another approach which many people advocate

is to treat observations as if they belong to the same group if they are from the same cross-

sectional unit or the same time series unit, which corresponds to our “state/month” results. The

simulation results also suggest that inference based on this group structure may have substantial

size distortions in the presence of inter-temporal and cross-sectional correlation. While we have

not dealt with optimal group selection, the results suggest that one needs to be very conservative

when defining groups to produce inference statements that have approximately correct coverage or

size. The fact that in all cases we find that one should use a quite a small number of groups to

produce inference that is not highly misleading suggests that one might wish to consider estimation

methods that more efficiently use the available information and that there may be gains to more

carefully considering group construction. We leave exploring these issues to future research.
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Overall, the simulations show that tests and confidence intervals based on the CCE and the

fixed-G approximations have size and coverage close to the nominal level under sensible designs

with intertemporal correlation, spatial correlation, and a panel with a combination of the two. In

all of our simulation results, correctly-sized tests are only produced when one uses a relatively

small number of groups when there is non-negligible correlation in the data. The desirability of a

small number of groups further demonstrates the usefulness of the fixed-G results. Finally, it bears

repeating that inference based on the CCE is extremely tractable computationally and that the

fixed-G reference distributions are standard, making implementing the procedure straightforward

in practice.

5. Conclusion

In this paper, we have considered the use of the clustered covariance matrix estimator (CCE) for

performing inference about regression parameters when data are weakly dependent. We allow for

general forms of dependence and our results apply immediately to time series, spatial, and panel

data. We show that inference based on the CCE is valid in these contexts despite the fact that

data do not follow a grouped structure under weak dependence.

In our main results, we consider an asymptotic sequence in which the number of groups is fixed

and the number of observations per group goes to infinity. Under this sequence, we show that

the CCE is not consistent but converges in distribution to a nondegenerate random variable. We

then consider testing hypotheses using standard t and Wald tests based on the CCE. In this case,

these test statistics do not converge to the usual normal and χ2 limits, but converge in distribution

to ratios of random variables that reflect the estimation uncertainty for the covariance matrix.

This result is similar to that obtained in Kiefer and Vogelsang (2002, 2005) (KV) who consider

inference using a usual HAC estimator in a time series context under “fixed-b” asymptotics where

the HAC smoothing parameter is allowed to be proportional to the total sample size. KV obtain
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asymptotic reference distributions that are nonstandard ratios of random variables, so critical values

must be simulated. Under mild homogeneity conditions, we show that the limiting distributions

of our t and Wald statistics are proportional to standard t and F distributions, which results in

extremely simple-to-implement testing procedures. Simulation results show that our asymptotic

approximations perform quite well relative to using HAC with the usual asymptotic approximation

and are on par with results obtained using the KV approximation. In a recent paper, Sun, Phillips,

and Jin (2008) have shown that the KV “fixed-b” approach provides an asymptotic refinement

relative to the usual asymptotic approach for time series HAC in a Gaussian location model. We

conjecture that our results also provide such a refinement.

In a secondary result, we consider a sequence where the number of groups used to form the

CCE and the number of observations per group both increase with the total sample size. Under this

sequence, we show that the CCE is consistent for the underlying covariance matrix of an estimator.

This result is analogous to usual asymptotic results for HAC estimators that rely on a smoothing

parameter parameter that increases slowly with the sample size.

An important question that deserves more attention is smoothing parameter selection. Our

current results are helpful for smoothing parameter choice only to the extent that our simulation

design matches the dependence structure researchers believe is present in their data. In principle,

we could consider smoothing parameter selection for the CCE based on minimizing mean squared

error (MSE) for estimating the asymptotic variance; see, e.g. Andrews (1991). However, in much

of applied research, the chief reason that one wishes to estimate a covariance matrix is in order

to perform inference about estimated model parameters. Minimizing MSE will not necessarily

translate to good inference properties. Our simulation results suggest that one needs to use quite

a large smoothing parameter (resulting in a covariance estimate with small degrees of freedom) to

control the size of a test when using a HAC or CCE. It appears that having an estimator with

smaller bias than would be MSE optimal for estimating the covariance matrix itself is important for
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tests to have approximately correct size. This is consistent with Sun, Phillips, and Jin (2008), who

consider this problem in the context of Gaussian location model in a time series and show that the

rate of increase for the optimal smoothing parameter chosen by trading off size and power under

‘fixed-b’ asymptotics is much faster than the rate for minimizing MSE of the variance estimator.

An interesting direction for future research would be to adapt the arguments of Sun, Phillips, and

Jin (2008) to the present context.

6. Appendix A. Proofs of Propositions

Throughout the appendix, we suppress the dependence of smoothing parameters and estimators

on N , writing, for example, V̂N as V̂ and the number of groups and the number of elements per

group simply as G and L. We use CMT to denote the continuous mapping theorem, CS to denote

the Cauchy-Schwarz inequality, and T to denote the Triangle inequality. We use C as a generic

constant whose value may change depending on the context.

6.1. Proof of Proposition 1

The proof of the proposition is based on the following expression for V̂ :

V̂ =
1
G

G∑
g=1

{
x′gεg√
L

ε′gxg√
L

−
x′gxg

L

(
G∑
h=1

x′hxh
L

)−1( G∑
h=1

x′hεh√
L

)
ε′gxg√
L
−
x′gεg√
L

(
G∑
h=1

x′hεh√
L

)′( G∑
h=1

x′hxh
L

)−1
x′gxg
L

+
x′gxg
L

(
G∑
h=1

x′hxh
L

)−1( G∑
h=1

x′hεh√
L

)(
G∑
h=1

x′hεh√
L

)′( G∑
h=1

x′hxh
L

)−1
x
′
gxg

L

}
.

Let Bg ∼ N(0, Ik) denote a random k-vector and Ωg = ΛgΛ′g. Define matrices Q and S such

that Q =
∑

g Qg and S =
∑

g ΛgBg. Note that Assumption 3 implies Q = GQ while Assumption

4 implies Λg = Λ, and therefore S = Λ
∑

g Bg. The following three random variables will be limits
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of V̂ under Assumptions 1-2, 1-3, and 1-4 respectively:

VA =
1
G

∑
g

[
ΛgBgB′gΛ

′
g −QgQ−1SB′gΛ

′
g − ΛgBgSQ−1Qg +QgQ−1SS′Q−1Qg

]
VB =

1
G

∑
g

[
ΛgBgB′gΛ

′
g −

1
G

SB′gΛ
′
g −

1
G
BgΛgS +

1
G2

SS′
]

VC =
1
G

Λ

[∑
g

BgB
′
g −

1
G

(∑
g

Bg

)(∑
g

B′g

)]
Λ′.

Note that VB is equivalent to VA under Qg = Q, and that VC is equivalent to VB under Λg = Λ.

(i) V̂ d−→ VA is immediate from Assumption 1 and the CMT. It is also immediate from As-

sumption 1 and the CMT that
√
L(β̂ − β) d−→ Q−1S. The result is then obvious from the CMT.

(ii) V̂ d−→ VA is again immediate under Assumption 1 and the CMT, and VA = VB is immediate

under Assumption 3 plugging in Q = GQ. Under Assumptions 1-3 and H0, we have that

√
N
(
Rβ̂ − r

)
d−→
√
GRQ−1 1

G

∑
g

ΛgBg

RQ̂−1V̂ Q̂−1R′
d−→ RQ−1VBQ

−1R′

We can write the RHS of the second line as

RQ−1

(
1
G

∑
g

[
ΛgBgB′gΛg −

1
G

SB′gΛ
′
g −

1
G
BgΛgS +

1
G2

SS′
])

Q−1R′

=
1
G

∑
g

[
RQ−1ΛgBgB′gΛ

′−1
g Q−1R′ − 1

G
S̃B′gΛ

′−1
g Q−1R′ − 1

G
RQ−1BgΛgS̃ +

1
G2

S̃S̃′
]
,

where S̃ =
∑

g RQ
−1ΛgBg. Letting B1,g ∼ N(0, 1) and supposing R is 1× k, we therefore have

t̂
d−→
√
G

1
G

∑
g λgB1,g√

1
G

∑
g

[
λgB1,g −

(
1
G

∑
g λgB1,g

)]2

=

√
G

G− 1

√G 1
G

∑
g λgB1,g√

1
G−1

∑
g

[
λgB1,g −

(
1
G

∑
g λgB1,g

)]2

 ,
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where λ2
g = RQ−1ΛgΛ′gQ

−1R′. The result then follows immediately from Theorem 1 of Ibragimov

and Müller (2006); see also Bakirov and Székely (2005).

(iii) V̂ d−→ VA is again immediate under Assumption 1 and the CMT, and VA = VC is immediate

under Assumptions 3 and 4 plugging in Q = GQ and Λg = Λ. Under Assumptions 1-4 and under

H0, we also immediately have

√
N
(
Rβ̂ − r

)
d−→
√
GRQ−1Λ

(
1
G

∑
g

Bg

)

RQ̂−1V̂ Q̂−1R′
d−→ RQ−1VCQ

−1R′

Let R be 1 × k and r be a scalar. In this case, λ2 = RQ−1ΛΛ′Q−1R′ is a scalar, and letting B1,g

be a scalar standard normal r.v., we have

t̂
d−→

λG−1/2
∑

g B1,g√
λ2G−1

[∑
g B

2
1,g − 1

G

(∑
g B1,g

)2
] =

√
G

G− 1
B1,G√

(
∑

g B
2
1,g −B2

1,G)/(G− 1)
,

where B1,G ≡ G−1/2
∑

g B1,g ∼ N(0, 1) and
∑

g B
2
1,g −B2

1,G ∼ χ2
G−1 are independent.

It follows that t̂ d−→
√

G
G−1 tG−1. The result for F̂ is similar using Rao (2002) Chapter 8b.23 �

6.2. Proof of Proposition 2

Let ṼHAC,L denote the infeasible HAC estimator that uses the true εs’s, a uniform kernel, and

smoothing parameter large enough to span any of the groups. In the time series case, this corre-

sponds to a smoothing parameter of L, and under Assumption 8.(i), it corresponds to a smoothing

parameter of CL1/m in each spatial dimension for some constant C. Under Assumption 7, we also

have ṼHAC,L
p−→ V from Andrews (1991) in the time series case, and under Assumption 8, we have

ṼHAC,L
p−→ V from Conley (1999).24 The proof then proceeds by showing that V̂ − ṼHAC,L = op(1)

23We thank Jim Stock and Mark Watson for pointing this out.
24The results in Conley (1999) assume stationarity and are worked out only for m = 2. These results

could easily be modified under our assumptions without requiring stationarity using the central limit results
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from which V̂ −V p−→ 0 follows immediately. We demonstrate the result for the spatial case below.

The time series case is similar but simpler and so is omitted.

First note that V̂ − ṼHAC,L can be written as

V̂ − ṼHAC,L =

 1
N

G∑
g=1

x′gεgε
′
gxg − ṼHAC,L

−R1 −R′1 +R2

where

R1 =
1
N

G∑
g=1

x′gxg(β̂ − β)ε′gxg and R2 =
1
N

G∑
g=1

x′gxg(β̂ − β)(β̂ − β)′x′gxg.

We start by considering the first term 1
N

∑G
g=1 x

′
gεgε

′
gxg − ṼHAC,L. Let G(s) denote the index

set for the group to which the observation with index s belongs. 1
N

∑G
g=1 x

′
gεgε

′
gxg can be written

as

1
N

G∑
g=1

x′gεgε
′
gxg =

1
N

N∑
i=1

N∑
j=1

1[G(si) = G(sj)](xsiεsix
′
sjεsj )

and ṼHAC,L can be written as

ṼHAC,L =
1
N

N∑
i=1

N∑
j=1

1[dist(si, sj) < CL1/m](xsiεsix
′
sjεsj )

It follows that the first term is given by

1
N

G∑
g=1

x′gεgε
′
gxg − ṼHAC,L = − 1

N

N∑
i=1

N∑
j=1

1[dist(si, sj) < CL1/m,G(si) 6= G(sj)](xsiεsix
′
sjεsj )

We now consider a generic element of the first term,

B∗N =
1
N

N∑
i=1

N∑
j=1

1[dist(si, sj) < CL1/m,G(si) 6= G(sj)](x∗siεsix
∗
sjεsj − E[x∗siεsix

∗
sjεsj ])(6.1)

+
1
N

N∑
i=1

N∑
j=1

1[dist(si, sj) < CL1/m,G(si) 6= G(sj)]E[x∗siεsix
∗
sjεsj ](6.2)

of Jenish and Prucha (2007) and are also straightforward to modify under our assumptions to m-dimensional

indexing.
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where the stars refer to an arbitrary element of each vector. The same argument used in Appendix

6.3 below can be used to show that we can bound the maximum number of dth order neighbors

from any given point within any given group, say g, that lie within some other group, say h, by

C(m)L(m−1)/md where m is the dimension of the index set. Under the condition on the number of

neighboring groups given in Assumption 8.(ii), we can use a standard mixing inequality, for example

Lemma 1 of Jenish and Prucha (2007) or Bolthausen (1982), to bound the second term in B∗N given

in (6.2) using an argument similar to that in Appendix 6.3 by C
N

∑∞
d=1 dGL

(m−1)/mα1,1(d)δ/(2+δ) =

O(L−1/m) under the mixing and moment conditions of Assumption 8. It follows that

B∗N =
1
N

N∑
i=1

N∑
j=1

1[dist(si, sj) < CL1/m,G(si) 6= G(sj)](x∗siεsix
∗
sjεsj − E[x∗siεsix

∗
sjεsj ])

+O(L−1/m).

Using coordinate indexing and defining the lattice as (1, ...,M1)× ...× (1, ...,Mm), we can write

the first term in B∗N as

B̃N =
1
N

M1∑
i1

· · ·
Mm∑
im

Zi1,...,im

where

Zi1,...,im =
∑

j1:|j1−i1|<CL1/m

· · ·
∑

jm:|jm−im|<CL1/m

1i1,...,im1j1,...,jm1G(i1,...,im) 6=G(j1,...,jm)zi1,...,im,j1,...,jm ,

1i1,...,im is an indicator which is one if the coordinate si = (i1, ..., im) occurs in the sample,

1G(i1,...,im)6=G(j1,...,jm) is an indicator which is one if observations with indices si = (i1, ..., im) and

sj = (j1, ..., jm) do not belong to the same group, and zi1,...,im,j1,...,jm = x∗siεsix
∗
sjεsj−E[x∗siεsix

∗
sjεsj ].

We then have

E|B̃N |2 ≤
1
N2

M1∑
i1

· · ·
Mm∑
im

M1∑
k1

· · ·
Mm∑
km

|E[Zi1,...,imZk1,...,km ]|

=
1
N2

M1∑
i1

· · ·
Mm∑
im

M1∑
k1:|k1−i1|≤2CL1/m

· · ·
Mm∑

km:|km−im|≤2CL1/m

|E[Zi1,...,imZk1,...,km ]|(6.3)
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+
1
N2

M1∑
i1

· · ·
Mm∑
im

∑
|k1−i1|>2CL1/m or ... or |km−im|>2CL1/m

|E[Zi1,...,imZk1,...,km ]|.(6.4)

Considering (6.3) first, we have that there are at most (4CL1/m + 1)m points within 2CL1/m of

any given point. Under the conditions in Assumption 8.(iv), we also have that |E[Zi1,...,imZk1,...,km ]| ≤

CL2 for some finite positive constant C. Therefore, we have

1
N2

M1∑
i1

· · ·
Mm∑
im

M1∑
k1:|k1−i1|≤2CL1/m

· · ·
Mm∑

km:|km−im|≤2CL1/m

|E[Zi1,...,imZk1,...,km ]|

≤ 1
N2

C(
m∏
r=1

Mr)L2(4CL1/m + 1)m = O(
L3

N
).

For the remaining term, we use the following inequality which is similar to Bolthausen (1982)

Lemma 1.

Inequality 1. If Xs is a mixing random field with finite (2+δ)th moments satisfying (i)
∑∞

m=1mαk,l(m) <

∞ for k + l ≤ 4, (ii) α1,∞(m) = o(m−2), and (iii) For some δ > 0,
∑∞

m=1mα1,1(m)δ/(2+δ) < ∞,

then

|cov(Xs, X
′
s)| ≤ Cα∞,∞(dist(s, s′))δ/(2+δ)‖Xs‖2+δ‖Xs′‖2+δ.

Applying Inequality 1 to the expectation term in (6.4), we get that

|E[Zi1,...,imZk1,...,km ]| ≤ Cα∞,∞(kL1/m)δ/(2+δ)L(2m)/m

where we have used that ‖Zi1,...,im‖22+δ ≤ CL2 which follows under Assumption 8.(iv). There are

at most CN points which lie far enough from any given point to fall within the sum in the second

term, so we can bound the second term as

1
N2

M1∑
i1

· · ·
Mm∑
im

∑
|k1−i1|>2CL1/m or ... or |km−im|>2CL1/m

|E[Zi1,...,imZk1,...,km ]|

≤ 1
N2

(
m∏
r=1

Mr)(CN)α∞,∞(kL1/m)δ/(2+δ)L(2m)/m = Cα∞,∞(kL1/m)δ/(2+δ)L(2m)/m
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= o(1)

where the last equality follows from the mixing condition in Assumption 8.(iv).25

It now follows immediately that
(

1
N

∑G
g=1 x

′
gεgε

′
gxg − ṼHAC,L

)
p−→ 0.

We now show that R1
p−→ 0. The proof that R2

p−→ 0 is similar and is omitted.

vec(R1) =
1
N

 G∑
g=1

(
x′gεg ⊗ x′gxg

) vec(β̂ − β)

=
1

N3/2

 G∑
g=1

(
x′gεg ⊗ x′gxg

)Op(1)

=
1√
G

1
G

 G∑
g=1

(
x′gεg/

√
L⊗ x′gxg/L

)
where the second equality follows since the conditions of Assumption 8 give β̂ − β = Op(N−1/2)

from Jenish and Prucha (2007) Theorems 1 and 3.

Now consider a typical element of 1
G

[∑G
g=1

(
x′gεg/

√
L⊗ x′gxg/L

)]
given by

R̃1 =
1
G

 G∑
g=1

 1√
L

∑
s∈Gg

x∗sεs
1
L

∑
s∈Gg

x∗sx
∗
s


where the stars refer to an arbitrary element of each vector. We then have

R̃1 =
1
G

 G∑
g=1

 1√
L

∑
s∈Gg

x∗sεs
1
L

∑
s∈Gg

(x∗sx
∗
s − E[x∗sx

∗
s])

+
1
G

 G∑
g=1

 1√
L

∑
s∈Gg

x∗sεs
1
L

∑
s∈Gg

E[x∗sx
∗
s]


≤ 1
G

 G∑
g=1

 1√
L

∑
s∈Gg

x∗sεs
1
L

∑
s∈Gg

(x∗sx
∗
s − E[x∗sx

∗
s])

+
C√
G

1√
N

∑
x∗sεs

25Note that the argument here shows that ṼHAC,L−EṼHAC,L
p−→ 0. We would then have ṼHAC,L

p−→ V

by showing that V − EṼHAC,L = o(1) which would follow from an argument similar to that used to bound

the second term in B∗N .
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=
1
G

 G∑
g=1

 1√
L

∑
s∈Gg

x∗sεs
1
L

∑
s∈Gg

(x∗sx
∗
s − E[x∗sx

∗
s])

+
C√
G
Op(1)

(6.5)

where the first inequality follows under the moment condition in Assumption 8.(iv) and the second

equality follows from Jenish and Prucha (2007) Theorem 1 as above.

We then have

E

∣∣∣∣∣∣ 1
G

 G∑
g=1

 1√
L

∑
s∈Gg

x∗sεs
1
L

∑
s∈Gg

(x∗sx
∗
s − E[x∗sx

∗
s])

∣∣∣∣∣∣
≤ 1√

L

1
G

G∑
g=1

E

∣∣∣∣∣∣ 1√
L

∑
s∈Gg

x∗sεs

∣∣∣∣∣∣
2

E

∣∣∣∣∣∣ 1√
L

∑
s∈Gg

(x∗sx
∗
s − E[x∗sx

∗
s])

∣∣∣∣∣∣
21/2

≤ 1√
L

1
G

G∑
g=1

C =
1√
L

(6.6)

where the first inequality follows from T and CS and the second inequality from bounding E
∣∣∣ 1√

L

∑
s∈Gg x

∗
sεs

∣∣∣2 ≤
C and E

∣∣∣ 1√
L

∑
s∈Gg(x

∗
sx
∗
s − E[x∗sx

∗
s])
∣∣∣2 ≤ C using standard mixing inequalities, e.g. Jenish and

Prucha (2007) Lemma 1 or Bolthausen (1982) Lemma 1.

We illustrate E
∣∣∣ 1√

L

∑
s∈Gg x

∗
sεs

∣∣∣2 ≤ C in the following; E
∣∣∣ 1√

L

∑
s∈Gg(x

∗
sx
∗
s − E[x∗sx

∗
s])
∣∣∣2 ≤ C

is similar. First note that there are at most C(m)d neighbors within distance d of any given

point where C(m) is a constant that depends on the dimension of the index set. Also, from

Bolthausen (1982) Lemma 1 and using the moment conditions in Assumption 8.(iv), we have

|E[x∗s1εs1x
∗
s2εs2 ]| ≤ Cα1,1(d)

δ
2+δ where d = dist(s1, s2).

E

∣∣∣∣∣∣ 1√
L

∑
s∈Gg

x∗sεs

∣∣∣∣∣∣
2

=
1
L

∑
s1∈Gg

∑
s2∈Gg

E[x∗s1εs1x
∗
s2εs2 ]

≤ 1
L

∑
s1∈Gg

∑
s2∈Gg

|E[x∗s1εs1x
∗
s2εs2 ]|

≤ 1
L

∑
s1∈Gg

∞∑
d=1

Cdα1,1(d)
δ

2+δ ≤ C
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where the last inequality follows from the mixing condition in Assumption 8.(iv).

Combining (6.5) and (6.6) gives that R̃1 = Op(1/
√
L + 1/

√
G) and it follows that R1 =

Op(1/
√
N + 1/G). By a similar argument, it also follows that R2 = Op(1/N + 1/G + 1/

√
GN).

Combining these results with
(

1
N

∑G
g=1 x

′
gεgε

′
gxg − ṼHAC,L

)
p−→ 0 and ṼHAC,L

p−→ V then yields

the result. �

6.3. Sufficient Conditions for Assumption 1 with Spatial Dependence

We provide a set of conditions that, when coupled with Assumption 2, are sufficient for Assumption

1 under spatial dependence. The time series case is similar but simpler and so omitted.

Assumption 9.

(i) The sample region grows uniformly in m non-opposing directions as N →∞.

(ii) As N →∞, L→∞ and G is fixed.

(iii) {xs, εs} is a α-mixing and satisfies (a)
∑∞

j=1 j
m−1α1,1(j)δ/(2+δ) <∞, (b)

∑∞
j=1 j

m−1αk,l(j) <

∞ for k + l ≤ 4, and (c) α1,∞(j) = O(j−m−η) for some δ > 0 and some η > 0.

sups E|εs|2r <∞ and sups E|xsh|2r <∞ for r > 2+δ where xsh is the hth element of vector

xs. E[ 1
Lx
′
gxg] is uniformly positive definite with constant limit Qg for all g = 1, ..., G.

(iv) E[xsεs] = 0. VNg = var[ 1√
L
x′gεg] is uniformly positive definite with constant limit Ωg for

all g = 1, ..., G.

Note that Assumption 9.(iii)-(iv) immediately imply 1
Lx
′
gxg

p−→ Qg which follows from Jenish

and Prucha (2007) Theorem 3 for all g = 1, ..., G from which Assumption 1.(i) follows. Next,

Assumptions 9.(iii)-(iv) imply the conditions of Jenish and Prucha (2007) Theorem 1 for 1√
L
x′gεg

for g = 1, ..., G from which it follows that the array
(

1√
L
x′1ε1, ...,

1√
L
x′GεG

)′ d−→ Z = N(0,W )

where Z follows a multivariate normal distribution with variance matrix W . It now remains to
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be shown that W is block diagonal when grouped with blocks corresponding to covariances across

groups.

Let generic groups be denoted g and h. An off-diagonal block of W corresponds to the limit as

L→∞ of

1
L
E

[(∑
s∈g

xsεs

)(∑
r∈h

xrεr

)]
≤ 1
L

∑
s∈g

∑
r∈h
|Exsεsxrεr|.

which needs to be shown to go to 0. Let us call the object that needs to be shown to vanish RL:

RL =
1
L

∑
s∈g

∑
r∈h
|Exsεsxrεr|

We first note that the largest number of dth order neighbors for any set of k points is C(m)kd

where C(m) is a constant that depends on the dimension of the index set. Under the boundary

condition in Assumption 2.(iv), there are at most CL(m−1)/m observations on the boundary of any

set g. In addition, the boundary points are contiguous under Assumption 2.(iii). In counting the

number of neighbors, it is useful to think of each group as a collection of ‘contour sets.’ First, the

boundary, then the set of interior points that are one unit from the boundary, then the interior

points two units from the boundary and so on. For dth order neighbors, there are d different pairs

of contour sets that the neighbors can reside in. For example, a pair of second-order neighbors must

contain one point on the boundary of either g or h and another point in the first contour off the

boundary of the other set. In addition, the largest any contour set can be is the maximum size of

the boundary. This allows us to bound the maximum number of pairs with any given contour set

memberships by the maximum number of first-order neighbors, C(m)L(m−1)/m. Combining these

two observations, we can bound the maximum number of dth order neighbors by C(m)L(m−1)/md.

Using this bound, we can write

RL =
1
L

∑
s∈g

∑
r∈h
|Exsεsxrεr| ≤

1
L

∆C(m)L(m−1)/m
∞∑
d=1

dα1,1(d)
δ

2+δ = O(L−1/m)
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using the moment conditions in Assumption 9.(iii) and a standard mixing inequality, e.g. Jenish

and Prucha (2007) or Bolthausen (1982) Lemma 1, to obtain the inequality and the mixing rate

assumptions in Assumption 9.(iii) to show that
∞∑
d=1

dα1,1(d)
δ

2+δ converges. It follows immediately

that Assumptions 2 and 9 imply Assumption 1. �
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Ref. Dist. ρ=0.0 ρ=0.5 ρ=0.8 γ=0.0 γ=0.3 γ=0.6
IID N(0,1) 0.049 0.127 0.341 0.042 0.376 0.538

Heteroskedasticity N(0,1) 0.056 0.137 0.364 0.044 0.378 0.550

Bartlett‐Large H N(0,1) 0.086 0.114 0.184 0.084 0.114 0.136

Bartlett‐Large H KV 0.023 0.038 0.082

Bartlett‐Med. H N(0,1) 0.074 0.105 0.191 0.066 0.098 0.116

Bartlett‐Med. H KV 0.044 0.071 0.142

Bartlett‐Small H N(0,1) 0.063 0.111 0.253 0.044 0.116 0.152

Bartlett‐Small H KV 0.050 0.092 0.227

CCE‐Large L t(G‐1) 0.053 0.059 0.082 0.046 0.032 0.058

CCE‐Med. L t(G‐1) 0.056 0.072 0.118 0.054 0.062 0.088

CCE‐Small L t(G‐1) 0.058 0.081 0.157 0.040 0.140 0.178

Time Series Spatial

Table 1.  Simulation Results.  T‐test Rejection Rates for 5% Level Tests

Note:  The table reports rejection rates for 5% level tests from a Monte Carlo simulation experiment.  The time series simulations are 
based on 30,000 simulation replications and the spatial simulations are based on 500 simulation replications.  Row labels indicate 
which covariance matrix estimator is used.  Column 2 indicates which reference distribution is used with KV corresponding to the 
Kiefer and Vogelsang (2005) approximation.  IID and Heteroskedasticity use conventional OLS standard error and heteroskedasticity 
robust standard errors respectively.  Rows labeled Bartlett use HAC estimators with a Bartlett kernel.  Rows labeled CCE use the CCE 
estimator.  Small, Medium, and Large denote lag truncation parameters for HAC or number of observations per group for CCE.  For 
time series models, Small, Medium, and Large respectively denote bandwidths of 4, 8, and 12 for HAC and denote numbers of groups 
(G) of 4, 8, and 12 for CCE.  For spatial models, Small, Medium, and Large denote bandwidths of 4, 8, and 16 for HAC and denote 
numbers of groups (G) of 4, 16, and 144 for CCE.
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Ref. Dist. ρ=.8 ρ=.4 ρ=.8 ρ=.4
IID N(0,1) 0.683 0.412 0.601 0.336
Heteroskedasticity N(0,1) 0.685 0.418 0.604 0.337
Cluster:
    State t(48) 0.253 0.245 0.162 0.144
    Month t(383) 0.489 0.188 0.499 0.199
    State/Month t(48) 0.190 0.117 0.143 0.083
    G4 x T3 t(11) 0.103 0.096 0.084 0.081
    G4 x T6 t(23) 0.121 0.115 0.108 0.091
    G4 x T32 t(127) 0.166 0.113 0.163 0.091
    G2 x T3 t(5) 0.083 0.074 0.084 0.063
    G2 x T6 t(11) 0.101 0.087 0.099 0.083
    G2 x T32 t(63) 0.154 0.103 0.146 0.084
    T3 t(2) 0.052 0.059 0.059 0.051
    T6 t(5) 0.066 0.051 0.070 0.062
    T32 t(31) 0.109 0.065 0.114 0.062
    G4 t(3) 0.066 0.063 0.061 0.066
    G2 t(1) 0.068 0.050 0.063 0.062
    State x T3 t(146) 0.271 0.254 0.180 0.160
    State x T6 t(493) 0.284 0.261 0.196 0.175
    State x T32 t(1567) 0.344 0.259 0.248 0.174

Table 2.  Simulation Results from Unemployment Data.   Continuous Treatment.
T‐test Rejection Rates for 5% Level Tests

Note:  The table reports rejection rates for 5% level tests from a Monte Carlo simulation experiment with BLS unemployment data 
regressed on state and month dummies and a randomly generated continuous treatment.  All results are based on 1000 simulation 
replications.  The parameters ρ and γ respectively control the strength of the time series and cross-sectional correlation; 
see text for details.  Rows labeled IID and Heteroskedasticity use conventional OLS and heteroskedasticity consistent 
standard errors respectively.  The remaining rows used the CCE with different grouping schemes.  "State" and "Month" 
use states and months as groups, respectively.  "State/Month" treats observations as belonging to the same group if 
they belong to the same state or the same month.  For the remaining groups, G2 and G4 respectively indicate partioning 
groups into two and four geographic regions.  T3, T6, and T32 divide the time series into three 128-month periods, six 64-
month periods, or 32 twelve-month periods.  "G4 x T3" then indicates a group structure where observations in region one 
in time period one belong to the same group, observations in region two in time period one belong to the same group, 
etc.  The sample size is N=49 and T=384.

γ=.8 γ=.2
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Ref. Dist. γ=.8 γ=.4 γ=.2 γ=0
IID N(0,1) 0.805 0.815 0.806 0.755
Heteroskedasticity N(0,1) 0.801 0.817 0.802 0.754
Cluster:
    State t(48) 0.176 0.15 0.111 0.058
    Month t(383) 0.757 0.793 0.807 0.773
    State/Month t(48) 0.171 0.146 0.11 0.059
    G4 x T3 t(11) 0.183 0.162 0.164 0.121
    G4 x T6 t(23) 0.186 0.17 0.179 0.155
    G4 x T32 t(127) 0.393 0.427 0.429 0.402
    G2 x T3 t(5) 0.193 0.177 0.156 0.127
    G2 x T6 t(11) 0.195 0.165 0.178 0.145
    G2 x T32 t(63) 0.405 0.423 0.422 0.405
    T3 t(2) 0.112 0.113 0.089 0.106
    T6 t(5) 0.133 0.135 0.125 0.132
    T32 t(31) 0.365 0.382 0.41 0.403
    G4 t(3) 0.082 0.068 0.074 0.059
    G2 t(1) 0.071 0.062 0.055 0.05
    State x T3 t(146) 0.234 0.234 0.183 0.119
    State x T6 t(493) 0.268 0.261 0.208 0.145
    State x T32 t(1567) 0.469 0.48 0.449 0.376

Note:  The table reports rejection rates for 5% level tests from a Monte Carlo simulation experiment with BLS unemployment data 
regressed on state and month dummies and a randomly generated binary treatment.  All results are based on 1000 simulation 
replications.  The parameter γ controls the strength of the time series and cross-sectional correlation; see text for details.  
Rows labeled IID and Heteroskedasticity use conventional OLS and heteroskedasticity consistent standard errors 
respectively.  The remaining rows used the CCE with different grouping schemes.  "State" and "Month" use states and 
months as groups, respectively.  "State/Month" treats observations as belonging to the same group if they belong to the 
same state or the same month.  For the remaining groups, G2 and G4 respectively indicate partioning groups into two 
and four geographic regions.  T3, T6, and T32 divide the time series into three 128-month periods, six 64-month periods, 
or 32 twelve-month periods.  "G4 x T3" then indicates a group structure where observations in region one in time period 
one belong to the same group, observations in region two in time period one belong to the same group, etc.  The sample 
size is N=49 and T=384.

Table 3.  Simulation Results from Unemployment Data.   Discrete Treatment.
T‐test Rejection Rates for 5% Level Tests
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Figure 1:Power Curve for Test Using CCE with 4 Groups and HAC with Bandwidth 16 and 
Kiefer-Vogelsang (2005) Reference Distribution for Time Series Simulation with ρ = 0.8
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Figure 2:  Power Curve for Test Using CCE with G4xT3, G4, and T3 for Unemployment Rate Simulation
with Continuous Treatment with ρ = .8 and γ = .2
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