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Abstract

In this paper, we consider nonparametric identification and estimation of first-price

auction models when N∗, the number of potential bidders, is unknown to the researcher,

but observed by bidders. Exploiting results from the recent econometric literature on

models with misclassification error, we develop a nonparametric procedure for recovering

the distribution of bids conditional on the unknown N ∗. Monte Carlo results illustrate

that the procedure works well in practice. We present illustrative evidence from a

dataset of procurement auctions, which shows that accounting for the unobservability

of N∗ can lead to economically meaningful differences in the estimates of bidders’ profit

margins.

In many auction applications, researchers do not observe N ∗, the number of bidders in

the auction. (In the parlance of the literature, N ∗ is the “number of potential bidders”, a

terminology we adopt in the remainder of the paper.) The most common scenario obtains

under binding reserve prices. When reserve prices bind, the number of potential bidders

N∗, which is observed by auction participants and influences their bidding behavior, differs

from the observed number of bidders A (≤ N ∗), which is the number of auction participants

whose bids exceed the reserve price. Other scenarios which would cause N ∗ to be unknown

to the researcher include bidding or participation costs. In other cases, the number of

auction participants may simply not be recorded in the researcher’s dataset.
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Brown, Caltech, FTC, UC-Irvine, Iowa, NC State, Toronto, Yale, and SITE (Stanford) for helpful comments.
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In this paper, we consider nonparametric identification and estimation of first-price auction

models when N ∗ is observed by bidders, but not by the researcher. Using recent results

from the literature on misclassified regressors, we show how the equilibrium distribution of

bids, given the unobserved N ∗, can be identified and estimated. In the case of first-price

auctions, these bid distributions estimated using our procedure can be used as inputs into

established nonparametric procedures (Guerre, Perrigne, and Vuong (2000), Li, Perrigne,

and Vuong (2002)) to obtain estimates of bidders’ valuations.

Accommodating the possibility that the researcher does not know N ∗ is important for

drawing valid policy implications from auction model estimates. Because N ∗ is the level

of competition in an auction, not knowing N ∗ (or using a mismeasured value for N ∗) can

lead to wrong implications about the degree of competitiveness in the auction, and also the

extent of bidders’ markups and profit margins. Indeed, a näıve approach where the number

of observed bids is used as a proxy for N ∗ will tend to overstate competition, because the

unknown N ∗ is always (weakly) larger than the number of observed bids. This bias will be

shown in the empirical illustration below.

Not knowing the potential number of bidders N ∗ has been an issue since the earliest pa-

pers in the structural empirical auction literature. In the parametric estimation of auction

models, the functional relationship between the bids b and number of potential bidders N ∗

is explicitly parameterized, so that not knowing N ∗ need not be a problem. For instance,

Laffont, Ossard, and Vuong (1995) used a goodness-of-fit statistic to select the most plau-

sible value of N ∗ for French eggplant auctions. Paarsch (1997) treated N ∗ essentially as a

random effect and integrates it out over the assumed distribution in his analysis of timber

auctions.

In a nonparametric approach to auctions, however, the relationship between the bids b

and N∗ must be inferred directly from the data, and not knowing N ∗ (or observing N ∗

with error) raises difficulties. Within the independent private-values (IPV) framework, and

under the additional assumption that the unknown N ∗ is fixed across all auctions (or fixed

across a known subset of the auctions), Guerre, Perrigne, and Vuong (2000) showed how to

identify N ∗ and the equilibrium bid distribution in the range of bids exceeding the reserve

price. Hendricks, Pinkse, and Porter (2003) allowed N ∗ to vary across auctions, and assume

that N∗ = L, where L is a measure of the number of potential bidders which they construct.

The main contribution of this paper is to present a solution for the nonparametric iden-

tification and estimation of first-price auction models in which the number of bidders N ∗
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is observed by bidders, but unknown to the researcher. We develop a nonparametric pro-

cedure for recovering the distribution of bids conditional on unknown N ∗ which requires

neither N ∗ to be fixed across auctions, nor for an (assumed) perfect measure of N ∗ to be

available. Our procedure applies results from the recent econometric literature on models

with misclassification error, such as e.g. Mahajan (2006), Hu (2007).

For first-price auctions, allowing the unknown N ∗ to vary across auctions is not innocu-

ous. Because N ∗ is observed by the bidders, it affects their equilibrium bidding strategies.

Hence, when N ∗ is not known by the researcher, and varies across auctions, the observed

bids are drawn from a mixture distribution, where the “mixing densities” g(b|N ∗) and the

“mixing weights” Pr(A|N ∗) are both unknown. This motivates the application of econo-

metric methods developed for models with a misclassified regressor, where (likewise) the

observed outcomes are drawn from a mixture distribution.

Most closely related to our work is a paper by Song (2004). She solved the problem of

the nonparametric estimation of ascending auction models in the IPV framework, when the

number of potential bidders N ∗ is unknown by the researcher (and varies in the sample).

She showed that the distribution of valuations can be recovered from observation of any

two valuations of which rankings from the top is known.1 However, her approach cannot

be applied to first-price auctions, which are the focus of this paper. The reason for this is

that, in IPV first-price auctions (but not in ascending- or second-price auctions), even if

the distribution of bidders’ valuations do not vary across the unknown N ∗, the equilibrium

distribution of bids still vary across N ∗. Hence, because the researcher does not know

N∗, the observed bids are drawn from a mixture distribution, and estimating the model

requires deconvolution methods which have been developed in the econometric literature

on measurement error.2

In a different context, Li, Perrigne, and Vuong (2000) applied deconvolution results from the

(continuous) measurement error literature to identify and estimate conditionally indepen-

dent auction models in which bidders’ valuations have common and private (idiosyncratic)

components. Krasnokutskaya (2005) also used deconvolution results to estimate auction

models with unobserved heterogeneity. To our knowledge, however, our paper is the first

1Adams (2007) also considers estimation of ascending auctions when the distribution of potential bidders

is unknown.
2Song (2006) showed that the top two bids are also enough to identify first-price auctions where the

number of active bidders is not observed by bidders. Under her assumptions, however, the observed bids are

i.i.d. samples from a homogeneous distribution, so that her estimation methodology would not work for the

model considered in this paper.
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application of (discrete) measurement error results to estimate an auction model where the

number of potential bidders is unknown.

The issues considered in this paper are close to those considered in the literature on entry

in auctions: eg. Li (2005), Li and Zheng (2006), Athey, Levin, and Seira (2005), Krasnokut-

skaya and Seim (2005), Haile, Hong, and Shum (2003). While the entry models considered

in these papers differ, their one commonality is to model more explicitly bidders’ participa-

tion decisions in auctions, which can cause the number of observed bidders A to differ from

the number of potential bidders N ∗. For instance, Haile, Hong, and Shum (2003) consider

an endogenous participation model in which the number of potential bidders is observed

by the researcher, and equal to the observed number of bidders (i.e., N ∗ = A), so that

non-observability of N ∗ is not a problem. However, A is potentially endogenous, because

it may be determined in part by auction-specific unobservables which also affect the bids.

By contrast, in this paper we assume that N ∗ is unobserved, and that N ∗ 6= A, but we do

not consider the possible endogeneity of N ∗.3

In section 2, we describe our auction framework. In section 3, we present the main identifi-

cation results, and describe our estimation procedure. In section 4, we provide Monte Carlo

evidence of our estimation procedure, and discuss some practical implementation issues. In

section 5, we present an empirical illustration, using data from procurement auctions in

New Jersey. In section 6, we consider extensions of the approach to scenarios where only

the winning bid is observed. Section 7 concludes. Proofs of the asymptotic properties of

our estimator are presented in the Appendix.

1 Model

In this paper, we consider the case of first-price auctions under the symmetric independent

private values (IPV) paradigm, for which identification and estimation are most transparent.

For a thorough discussion of identification and estimation of these models when the number

of potential bidders N ∗ is known, see Paarsch and Hong (2006, Chap. 4). For concreteness,

we focus on the case where a binding reserve price is the reason why the number of potential

bidders N ∗ differs from the observed number of bidders, and is not known by the researcher.

3In principle, we recover the distribution of bids (and hence the distribution of valuations) separately

for each value of N∗, which accommodates endogeneity in a general sense. However, because we do not

model the entry process explicitly (as in the papers cited above), we do not deal with endogeneity in a direct

manner.
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There are N ∗ bidders in the auction, with each bidder drawing a private valuation from

the distribution F (x) which has support [x, x̄]. N ∗ can vary freely across the auctions, and

while it is observed by the bidders, it is not known by the researcher. There is a reserve

price r, assumed to be fixed across all auctions, where r > x.4 The equilibrium bidding

function for bidder i with valuation xi is

b(xi;N
∗)





= xi −
R xi

r
F (s)N∗−1ds

F (xi)N∗−1 for xi ≥ r

0 for xi < r.
(1)

Hence, the number of bidders observed by the researcher is A ≡ ∑N∗

i=1 1(xi > r), the number

of bidders whose valuations exceed the reserve price.

For this case, the equilibrium bids are i.i.d. and, using the change-of-variables formula, the

density of interest g(b|N ∗, b > r) is equal to

g(b|N∗, b > r) =
1

b′(ξ(b;N ∗);N∗))

f(ξ(b;N ∗))

1 − F (r)
, for b > r (2)

where ξ(b;N ∗) denotes the inverse of the equilibrium bid function b(·;N ∗) evaluated at b.

In equilibrium, each observed bid from an N ∗-bidder auction is an i.i.d. draw from the

distribution given in Eq. (2), which does not depend on A, the observed number of bidders.

We propose a two-step estimation procedure. In the first step, the goal is to recover the

density g(b|N ∗; b > r) of the equilibrium bids, for the truncated support (r,+∞). (For

convenience, in what follows, we suppress the conditioning truncation event b > r.) To

identify and estimate g(b|N ∗), we use the results from Hu (2007).

In second step, we use the methodology of Guerre, Perrigne, and Vuong (2000) to recover

the valuations x from the joint density g(b|N ∗). For each b in the marginal support of

g(b|N∗), the corresponding valuation x is obtained by

ξ (b,N∗) = b+
1

N∗ − 1

[
G (b|N∗)

g (b|N∗)
+

F (r)

1 − F (r)
· 1

g (b|N∗)

]
. (3)

For most of this paper, we focus on the first step of this procedure, because the second step

is a straightforward application of standard techniques.

4Our estimation methodology can potentially also be used to handle the case where N ∗is fixed across all

auctions, but r varies freely across auctions.
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2 Nonparametric identification

In this section, we apply the results from Hu (2007) to show the identification of the first-

price auction model with unknown N ∗. The procedure requires two auxiliary variables:

1. a proxy N , which is a mismeasured version of N ∗

2. an instrument Z, which could be a second corrupted measurement of N ∗.

The auxiliary variables (N,Z) must satisfy three conditions. The first two conditions are

given here:

Condition 1 g(b|N ∗, N, Z) = g(b|N ∗).

This assumption implies that N or Z affects the equilibrium density of bids only through

the unknown number of potential bidders N ∗. In the econometric literature, this is known

as the “nondifferential” measurement error assumption.

In what follows, we only consider values of b such that g(b|N ∗) > 0, for N ∗ = 2, . . . ,K.

This requires, implicitly, knowledge of the support of g(b|N ∗), which is typically unknown

to the researcher. Below, when we discuss estimation, we present a two-step procedure for

g(b|N∗) which circumvents this problem.

Condition 2 g(N |N ∗, Z) = g(N |N ∗).

This assumption implies that the instrument Z affects the mismeasured N only through the

number of potential bidders. Roughly, because N is a noisy measure of N ∗, this condition

requires that the noise is independent of the instrument Z, conditional on N ∗.

Examples of N and Z Here we consider several examples of variables which could fulfill

the roles of the auxiliary variables N and Z.

1. One advantage to focusing on the IPV model is that A, the observed number of bidders,

can be used in the role of N . Particularly, for a given N ∗, the sampling density of any

equilibrium bid exceeding the reserve price — as given in Eq. (2) above — does not depend
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on A, so that Condition 1 is satisfied.5 A good candidate for the instrument Z could be a

noisy estimate of N ∗:

Z = h(N∗, η).

In order to satisfy conditions 1 and 2, we would require b ⊥ η|N ∗, and also A ⊥ η|N ∗.

Because we are focused on the symmetric IPV model in this paper, we will consider this

example in the remainder of this section, and also in our Monte Carlo experiments and in

the empirical illustration.

2. More generally, N and Z could be two noisy measures of N ∗:

N = f(N∗, υ)

Z = h(N∗, η).
(4)

In order to satisfy conditions 1 and 2, we would require b ⊥ (υ, η)|N ∗, as well as η ⊥ υ|N ∗.6

3. Another possibility is that N is a noisy measure of N ∗, as in example 2, but Z is an

exogenous variable which directly determines participation:

N = f(N∗, υ)

N∗ = k(Z, ν).
(5)

In order to satisfy conditions 1 and 2, we would require b ⊥ (υ, Z)|N ∗, as well as υ ⊥ Z|N ∗.

This implies that Z is excluded from the bidding strategy, and affects bids only through its

effect on N ∗.

Furthermore, in this example, in order for the second step of the estimation procedure (in

which we recover bidders’ valuations) to be valid, we also need to assume that b ⊥ ν|N ∗.

Importantly, this rules out the case that the participation shock ν is a source of unobserved

auction-specific heterogeneity.7 Note that ν will generally be (unconditionally) correlated

with the bids b, which our assumptions allow for. �

We observe a random sample of
{
~bt, Nt, Zt

}
, where ~bt denotes the vector of observed bids

{b1t, b2t, . . . , bAtt}. (Note that we only observe At bids for each auction t.) We assume the

5This is no longer true in affiliated value models.
6This allows ν and η to be correlated through N∗ and, indeed, allows both ν and η to depend on N∗.
7In the case when N∗ is observed, correlation between bids and the participation shock ν can be accom-

modated, given additional restriction on the k(· · · ) function. See Guerre, Perrigne, and Vuong (2005) and

Haile, Hong, and Shum (2003) for details. However, when N∗ is unobserved, as is the case here, it is not

clear how to generalize these results.
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variables N , Z, and N ∗ share the same support N = {2...,K} . Here K can be interpreted

as the maximum number of bidders, which is fixed across all auctions.8

By the law of total probability, the relationship between the observed distribution g(b,N,Z)

and the latent densities is as follows:

g(b,N,Z) =
K∑

N∗=2

g(b|N∗, N, Z)g(N |N ∗, Z)g(N ∗, Z). (6)

Under conditions 1 and 2, Eq. (6) becomes

g(b,N,Z) =
K∑

N∗=2

g(b|N∗)g(N |N ∗)g(N∗, Z). (7)

We define the matrices

Gb,N,Z ≡ [g(b,N = i, Z = j)]i,j ,

GN |N∗ ≡ [g (N = i|N ∗ = k)]i,k ,

GN∗,Z ≡ [g (N∗ = k, Z = j)]k,j ,

GN,Z ≡ [g (N = i, Z = j)]i,j ,

and

Gb|N∗ ≡




g(b|N∗ = 2) 0 0

0 ... 0

0 0 g(b|N ∗ = K)


 . (8)

All of these are (K − 1)-dimensional square matrices. With this notation, Eq. (7) can be

written as

Gb,N,Z = GN |N∗Gb|N∗GN∗,Z . (9)

Condition 2 implies that

g(N,Z) =
K∑

N∗=2

g(N |N∗)g(N∗, Z), (10)

which, using the matrix notation above, is equivalent to

GN,Z = GN |N∗GN∗,Z . (11)

8Our identification results still hold if Z has more possible values than N and N ∗.
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Equations (9) and (11) summarize the unknowns in the model, and the information in the

data. The matrices on the left-hand sides of these equations are quantities which can be

recovered from the data, whereas the matrices on the right-hand side are the unknown

quantities of interest. As a counting exercise, we see that the matrices Gb,N,Z and GN,Z

contain 2(K − 1)2 − (K − 1) known elements, while the unknown matrices GN |N∗ , GN∗,Z

and Gb|N∗ contain at most a total of also 2(K− 1)2 − (K− 1) unknown elements. Hence, in

principle, there is enough information in the data to identify the unknown matrices. The

key part of the proof below is to characterize the solution and give conditions for uniqueness.

Moreover, the proof is constructive in that it immediately suggests a way for estimation.

The third condition which the auxiliary variables N and Z must satisfy is a rank condition:

Condition 3 Rank (GN,Z) = K − 1.

Note that this condition is directly testable from the sample. It essentially ensures that

the instrument Z affects the distribution of the proxy variable N (resembling the standard

instrumental relevance assumption in usual IV models).

Because Eq. (11) implies that

Rank (GN,Z) ≤ min
{
Rank

(
GN |N∗

)
, Rank (GN∗,Z)

}
, (12)

it follows from Condition 3 that Rank
(
GN |N∗

)
= K−1 and Rank (GN∗,Z) = K−1. In other

words, the matrices GN,Z , GN |N∗ , and GN∗,Z are all invertible. Therefore, postmultiplying

both sides of Eq. (9) by G−1
N,Z = G−1

N∗,ZG
−1
N |N∗ , we obtain the key equation

Gb,N,ZG
−1
N,Z = GN |N∗Gb|N∗G−1

N |N∗ . (13)

The matrix on the left-hand side can be formed from the data. For the expression on the

right-hand side, note that becauseGb|N∗ is diagonal (cf. Eq. (8)), the RHS matrix represents

an eigenvalue-eigenvector decomposition of the LHS matrix, with Gb|N∗ being the diagonal

matrix of eigenvalues, and GN |N∗ being the corresponding matrix of eigenvectors. This is

the key representation which will identify and facilitate estimation of the unknown matrices

GN |N∗ and b|N∗ .

In order to make the eigenvalue-eigenvector decomposition in Eq. (13) unique, we assume:

Condition 4 For any i, j ∈ N , the set {(b) : g(b|N ∗ = i) 6= g(b|N ∗ = j)} has nonzero

Lebesgue measure whenever i 6= j.
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This assumption (which is actually implied by equilibrium bidding) guarantees that the

eigenvalues in Gb|N∗ are distinctive for some bid b, which ensures that the eigenvalue de-

composition in Eq. (13) exists and is unique, for some bid b. This assumption guarantees

that all the linearly independent eigenvectors are identified from the decomposition in Eq.

(13). Suppose that for some value b̃, g(̃b|N∗ = i) = g(̃b|N∗ = j), which implies that the

two eigenvalues corresponding to N ∗ = i and N ∗ = j are the same. In this case, the two

corresponding eigenvectors cannot be uniquely identified, because any linear combination

of the two eigenvectors is still an eigenvector. Assumption 4 guarantees that there exists

another value b such that g(b|N ∗ = i) 6= g(b|N ∗ = j). Eq. (13) holds for every b, implying

that g(̃b|N∗ = i) and g(b|N ∗ = i) correspond to the same eigenvector, as do g(b̃|N∗ = j) and

g(b|N∗ = j). Therefore, although we cannot use b̃ to uniquely identify the two eigenvectors

corresponding to N ∗ = i and N ∗ = j, we can use the value b to identify them.

Given Condition 4, Eq. (13) shows that an eigenvalue decomposition of the observed

Gb,N,ZG
−1
N,Z matrix identifies Gb|N∗ and GN |N∗ up to a normalization and ordering of the

columns of the eigenvector matrix GN |N∗ .

There is a clear appropriate choice for the normalization constant of the eigenvectors; be-

cause each column of GN |N∗ should add up to one, we can multiply each element GN |N∗(i, j)

by the reciprocal of the column sum
∑

iGN |N∗(i, j), as long as GN |N∗(i, j) is non-negative.

The appropriate ordering of the columns of GN |N∗ is less clear, and in order to complete

the identification, we need an additional assumption which pins down the ordering of these

columns. One such assumption is:

Condition 5 N ≤ N ∗.

The condition N ≤ N ∗ is natural, and automatically satisfied, when N = A, the observed

number of bidders. This condition implies that for any i, j ∈ N

g (N = j|N ∗ = i) = 0 for j > i. (14)

In other words, GN |N∗ is an upper-triangular matrix. Since the triangular matrix GN |N∗

must be invertible (by Eq. (12), its diagonal entries are all nonzero, i.e.,

g (N = i|N ∗ = i) > 0 for all i ∈ N . (15)
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In other words, Condition 5 implies that, once we have the columns of GN |N∗ obtained as

the eigenvectors from the matrix decomposition (13), the right ordering can be obtained by

re-arranging these columns so that they form an upper-triangular matrix.

Hence, under Conditions 1-5, Gb|N∗ , GN |N∗ and also GN∗,Z are identified (the former point-

wise in b).

3 Nonparametric Estimation: two-step procedure

In this section, we give details on the estimation of (b|N ∗) given observations of (b,N,Z),

for the symmetric independent private values model. In the key equation (13), the matrix

GN |N∗ is identical for all b.9 This suggests a convenient two-step procedure for estimating

the unknown matrices GN |N∗ and G(b|N ∗).

Step One In Step 1, we estimate the eigenvector matrix GN |N∗ . To maximize the con-

vergence rate in estimating GN |N∗ , we average across values of the bid b. Specifically, from

Eq. (7), we have

E(b|N,Z)g(N,Z) =

K∑

N∗=2

E(b|N∗)g(N |N ∗)g(N∗, Z). (16)

Define the matrices

GEb,N,Z ≡ [E (b|N = i, Z = j) g(N = i, Z = j)]i,j , (17)

and

GEb|N∗ ≡




E [b|N∗ = 2] 0 0

0 ... 0

0 0 E [b|N ∗ = K]


 .

Then

GEb,N,Z = GN |N∗GEb|N∗GN∗,Z

9This also implies that there is a large degree of overidentification in this model, and suggests the

possibility of achieving identification with weaker assumptions. In particular, it may be possible to relax the

non-differentiability condition 1 so that we require g(b|N∗, N, Z) = g(b|N∗) only at one particular value of

b. We are exploring the usefulness of such possibilities in ongoing work.

11



and, as before, postmultiplying both sides of this equation by G−1
N,Z = G−1

N∗,ZG
−1
N |N∗ , we

obtain an integrated version of the key equation:

GEb,N,ZG
−1
N,Z = GN |N∗GEb|N∗G−1

N |N∗ . (18)

This implies

GN |N∗ = ψ
(
GEb,N,ZG

−1
N,Z

)
,

where ψ (·) denotes the mapping from a square matrix to its eigenvector matrix following

the identification procedure in the previous section.10 As mentioned in Hu (2007), the

function ψ (·) is a nonstochastic analytic function. Therefore,we may estimate GN |N∗ as

follows:

ĜN |N∗ := ψ
(
ĜEb,N,ZĜ

−1
N,Z

)
, (19)

where ĜEb,N,Z and ĜN,Z may be constructed directly from the sample. In our empirical

example, we estimate ĜEb,N,Z using a sample average:

ĜEb,N,Z =


 1

T

∑

t

1

Nj

Nj∑

i=1

bit1(Nt = Nj, Zt = Zk)




j,k

. (20)

Step Two In Step 2, we estimate g(b|N ∗). With GN |N∗ estimated by ĜN |N∗ in step 1,

we may proceed to estimate g(b|N ∗), pointwise in b. From Eq. (13), we have for any b

G−1
N |N∗

(
Gb,N,ZG

−1
N,Z

)
GN |N∗ = Gb|N∗ . (21)

Define eN∗ = (0, ...0, 1, 0, ..., 0)T , where 1 is at the N ∗-th position in the vector. We have

g(b|N∗) = eTN∗

[
G−1

N |N∗

(
Gb,N,ZG

−1
N,Z

)
GN |N∗

]
eN∗ . (22)

which holds for all b ∈ (−∞,∞). Hence, we may estimate g(b|N ∗) as follows:

ĝ(b|N ∗) := eTN∗

[
Ĝ−1

N |N∗

(
Ĝb,N,ZĜ

−1
N,Z

)
ĜN |N∗

]
eN∗ , (23)

10In order for GN|N∗ to be recovered from this eigenvector decomposition, Condition 4 from the previous

section must be strengthened so that the conditional means E[b|N ∗], which are the eigenvalues from this

decomposition, are distinct for every N∗.
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where ĜN |N∗ is estimated in step 1 and Ĝb,N,Z may be constructed directly from the sample.

In our empirical work, we use a kernel estimate for ĝb,N,Z (b,Nj , Zk):

ĝb,N,Z (b,Nj, Zk) =

[
1

Th

∑

t

1

Nt

Nt∑

i=1

K

(
b− bit
h

)
1(Nt = Nj , Zt = Zk)

]
. (24)

The bid b may have a different unknown support for different N ∗. That is,

g(b|N∗) =

{
> 0 for b ∈ [r, uN∗ ]

= 0 otherwise
,

where uN∗ , the upper bound of the support of g(b|N ∗), may not be known by the researcher.

In practice, we may estimate the upper bound uN∗ as follows:

ûN∗ = sup {b : ĝ(b|N ∗) > 0} .

We analyze the asymptotic properties of our estimator in detail in the appendix. Here we

provide a brief summary. Given the discreteness of N , Z, and the use of a sample average

to construct ĜEb,N,Z (via. Eq. (20)), the estimates of ĜN |N∗ (obtained using Eq. (19)) and

ĜN,Z should converge at a
√
T -rate (where T denotes the total number of auctions).

Hence, pointwise in b, the convergence properties of ĝ(b|N ∗) to g(b|N ∗), where ĝ(b|N ∗) is

estimated using Eq. (23), will be determined by the convergence properties of the kernel

estimate of g(b,N,Z) in Eq. (24), which converges at a rate slower than
√
T . In the

Appendix, we show that, pointwise in b, (Th)1/2 [ĝ(b|N ∗) − g(b|N ∗)] converges to a normal

distribution. We also present a uniform convergence rate for ĝ(b|N ∗).

The matrix GN |N∗ , which is a by-product of the estimation procedure, can be useful for

specification testing, when N = A, the observed number of bidders. Under the assumption

that the difference between the observed number of bidders A and the number of potential

bidders N ∗ arises from a binding reserve price, and that the reserve price r is fixed across

all the auctions with the same N ∗ in the dataset, it is well-known (cf. Paarsch (1997)) that

A|N∗ ∼ Binomial(N ∗, 1 − Fv(r)) (25)

where Fv(r) denotes the CDF of bidders’ valuations, evaluated at the reserve price. This

suggests that the recovered matrix GA|N∗ can be useful in two respects. First, using Eq.

(25), the truncation probability Fv(r) could be estimated. This is useful when we use the

first-order condition (3) to recover bidders’ valuations. Alternatively, we could also test

whether the columns of GA|N∗ , which correspond to the probabilities Pr(A|N ∗) for a fixed

N∗, are consistent with the binomial distribution in Eq. (25).
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4 Monte Carlo Evidence

In this section, we present some Monte Carlo evidence for the IPV model. Using simulated

bids, we estimate the bid densities and bidder valuations using the procedure presented in

section 3.

We consider first price auctions where bidders’ valuations xi ∼ U [0, 1], independently across

bidders i. With a reserve price r > 0, the equilibrium bidding strategy with N ∗ bidders is:

b∗(x;N∗) =

{ (
N∗−1

N∗

)
x+ 1

N∗

(
r
x

)N∗−1
r if x ≥ r

0 if x < r.
(26)

For each auction t, we need to generate the equilibrium bids bjt, for j = 1, . . . N ∗
t , as well

as (N∗
t , Nt, Zt). In this exercise, Nt is taken to be the number of observed bidders At, and

Zt is a corrupted measure of N ∗
t .

For each auction t, the number of potential biddersN ∗
t is generated uniformly on {2, 3, . . . ,K},

where K is the maximum number of bidders. Subsequently, we generate Zt as a corrupted

measure of N ∗
t :

Zt =

{
N∗

t with probability q

unif. {2, 3, . . . ,K} with probability 1 − q.
(27)

For each auction t, and each bidder j = 1, . . . , N ∗
t , we draw valuations xj ∼ U [0, 1],

and construct the corresponding equilibrium bids using Eq. (26). Finally, the number of

observed bidders is determined as the number of bidders whose valuations exceed the reserve

price:

At =
∑

j∈N ∗
t

1(xj ≥ r) (28)

The estimation procedure in section 3 above requires the matrix GA|N∗ to be square, but

in generating the variables here, the support of A is {1, 2, ..,K} while the support of N ∗ is

{2, ..,K}. To accommodate this, we define

N =

{
A if A ≥ 3

2 if A ≤ 2
.

Therefore, N has the same support as N ∗. This redefinition does not affect any of the

identification arguments given above.
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4.1 Results

We present results from S = 200 replications of a simulation experiment. First, we consider

the case where K (the maximum number of bidders) is equal to 4. The performance of our

estimation procedure is illustrated in Figure 1. The estimator perform well for all values of

N∗ = 2, 3, 4, and for a modest-sized dataset of T = 302 auctions. Across the Monte Carlo

replications, the estimated density functions track the actual densities quite closely. In

these graphs, we also plot g(b|A = n), the bid density conditioned on the observed number

of bidders, for n = 2, 3, 4, which we consider a “näıve” estimator for g(b|N ∗ = n). For

N∗ = 2, 3, our estimator outperforms the näıve estimator, especially for the case of N ∗ = 2.

In Figure 2, we present estimates of bidders’ valuations. In each graph on the left-hand-side

of the figure, we graph the bids against three measures of the corresponding valuation: (i)

the actual valuation, computed from Eq. (3) using the actual bid densities g(b|N ∗), and

labeled “True values”; (ii) the estimated valuations using our estimates of g(b|N ∗), labeled

“Estimated value”11; and (iii) näıve estimates of the values, computed using g(b|A), the

observed bid densities conditional on the observed number of bidders.12

The graphs show that there are sizeable differences between the value estimates, across all

values of the bids. For all values of N ∗ (=2,3,4), we see that our estimator tracks the true

values quite closely. In contrast, the näıve approach underestimates the valuations. This is

to be expected – because N ∗ ≥ A, the set of auctions with a given value of A actually have

a true level of competition larger than A. Hence, the näıve approach overstates the true

level of competition, which leads to underestimation of bidders’ markdowns (v− b)/v. The

markdowns implied by our valuation estimates are shown in the right-hand-side graphs in

Figure 2.

In a second set of experiments, we consider the case where the maximum number of bidders

is K = 6. In these experiments, we increased the number of auctions to be T = 1000.

Graphs summarizing these simulations are presented in Figure 3. Clearly, our estimator

continues to perform well. In both the N ∗ = 4 as well as the N ∗ = 6 case, we see that

the differences between our estimator and the näıve estimator diminish. This may not

be surprising, because as N ∗ increases, the bidding strategies are less distinguishable for

11In computing these valuations, the truncation probability F (r) in Eq. (3) is obtained from the first-step

estimates of the misclassification probability matrix GN|N∗ as F̂ (r) = 1 −
h

Ĝ(N∗|N∗)
i1/N∗

.
12In computing the values for the näıve approach, we use the first-order condition ξ(b; A) = b+ G(b|A)

(A−1)·g(b|A)
,

which ignores the possibility of a binding reserve price.
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Figure 1: Monte Carlo Evidence: K = 4
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Figure 2: Estimates of bid functions and implied markdowns, K = 4 experiments
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different values for N ∗ and, in the limit, as N ∗ → ∞, the equilibrium bid density will

approach the distribution of the valuations x. Hence, the error in using g(b|A = n) as the

estimator for g(b|N ∗ = n) for larger n will be less severe.

The valuations implied by our estimates of the bid densities, for the K = 6 case, are

presented in Figure 4. Qualitatively, the results are very similar to the K = 4 results

presented earlier.

5 Empirical illustration

In this section, we illustrate our methodology using a dataset of low-bid construction pro-

curement auctions held by the New Jersey Department of Transportation (NJDOT) in the

years 1989–1997. This dataset was previously analyzed in Hong and Shum (2002), and a

full description of it is given there.

Among all the auctions in our dataset, we focus on highway work construction projects,

for which the number of auctions is the largest. In Table 1, we present some summary

statistics on the auctions used in the analysis. Note that there were six auctions with just

one bidder, in which non-infinite bids were submitted. If the observed number of bidders

A is equal to N ∗, the number of potential bidders observed by bidders when they bid, then

the non-infinite bids observed in these one-bidder auctions is difficult to explain from a

competitive bidding point of view.13 However, occurrences of one-bidder auctions is a sign

that the observed number of bidders is less than the potential number of bidders, and the

methodology developed in this paper allows for this possibility.

For the two auxiliary variables, we used A, the number of observed bidders, in the role

of the noisy measure N . In the role of the instrument Z, we constructed a measure of

the average number of observed bidders in the five previous auctions of the same project

category which took place before a given auction.14

13Indeed, Li and Zheng (2006, pg. 9) point out that even when bidders are uncertain about the number

of competitors they are facing, finite bids cannot be explained when bidders face a non-zero probability that

they could be the only bidder.
14The validity of using A−1 (values of A in previous auctions) to construct the instrument Z can be shown

as follows: Let N∗ and N∗
−1 denote the potential number of bidders in the current and the previous auctions.

With a binding reserve price, A−1 =
PN∗

−1

i=1 1(xi > r). Conditions 1 and 2 require that g (b|N∗, N∗
−1, N) =

g (b|N∗) and g (N |N∗, N∗
−1) = g (N |N∗). Moreover, for condition 3, we require the matrix GN|N

−1
, elements

of which are the conditional probabilities of N |N−1, to be invertible. With these conditions, lagged values
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Figure 3: Monte Carlo Evidence: K = 6
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Figure 4: Estimates of bid functions, K = 6 experiments
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Table 1: Summary statistics of procurement auction data
Highway work auctions

Observed # bidders (A) # aucs. Freq. avg bida

1 6 1.42 0.575
2 12 2.84 5.894
3 31 7.33 1.692
4 46 10.87 1.843

5+ 338 77.54 7.920
a: in millions of 1989$
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In order to satisfy condition 3, which requires that the matrix GN |Z be full rank, we divided

the values of A and Z into three categories: {(1, 2, 3), 4, 5+}, and correspondingly consider

only three distinct values for N ∗ ∈ {3, 4, 5}. Furthermore, the ordering assumption that we

make is that A ≤ N ∗, which is consistent with the story that bidders decide not to submit

a bid due to an (implicit) reserve price.15

Because we model these auctions in a simplified setting, we do not attempt a full analysis

of these auctions. Rather, this exercise highlights some practical issues in implementing

the estimation methodology. There are two important issues. First, the assumption that

A ≤ N∗ implies that the matrix on the right-hand side of the key equation (18) should be

upper triangular, and hence that the matrix on the left-hand side, GEb,N,ZG
−1
N |Z , which is

observed from the data, should also be upper-triangular. However, in practice, this matrix

may not be upper-triangular. For our empirical results, we impose upper-triangularity on

GEb,N,ZG
−1
N |Z by setting all lower-triangular elements of the matrix to zero.16

Second, even after imposing upper-triangularity, it is still possible that the eigenvectors and

eigenvalues could have negative elements, which is inconsistent with the interpretation of

them as densities and probabilities.17 When our estimate of the densities g(b|N ∗) took on

negative values, our remedy was to set the density equal to zero, but normalize our density

estimate so that the resulting density integrated to one.18

Results: Highway work auctions Figure 5 contains the graphs of the estimated den-

sities g(b|N ∗) for N∗ = 3, 4, 5, for the highway work auctions. In each column of this table,

we present three estimates of each g(b|N ∗): (i) the normalized estimate with the nega-

tive portions removed, labeled “trunc est”; (ii) the un-normalized estimate, which includes

the negative values for the density, labeled “Orig est”; and (iii) the näıve estimate, given

by g(b|A). In each plot, we also include the 5% and 95% pointwise confidence intervals,

A−1 can be used in the role of Z.
15See Hong and Shum (2002, Appendix B.1) for more discussion of a model with implicit reserve prices,

for this dataset.
16Indeed, in the Monte Carlo simulations, we sometimes also had to impose this on the simulated data,

as the GEb,N,ZG−1
N|Z

matrix could be non-upper triangular due to small sample noise. In a previous version

of the paper, we also reported estimation results without imposing upper-triangularity, which required an

alternative ordering condition (instead of Condition 5) to identify the column order of the eigenvector matrix

GN|N∗ . The results were clearly inferior to those reported here, and so are omitted from this version.
17This issue also arose in our Monte Carlo studies, but went away when we increased the sample size.
18Here we follow the recommendation of Efromovich (1999, pg. 63).
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calculated using bootstrap resampling.19

Figure 5 shows that the näıve bid density estimates, using A in place of N ∗, overweights

small bids, which is reminiscent of the Monte Carlo results. As above, the reason for

this seems to be that the number of potential bidders N ∗ exceeds the observed number

of bidders A. In the IPV framework, more competition drives down bids, implying that

using A to proxy for the unobserved level of competition N ∗ may overstate the effects

of competition. Because in this empirical application we do not know and control the

data-generating process, these economically sensible differences between the näıve estimates

(using g(b|A)) and our estimates (using g(b|N ∗)) serve as a confirmatory reality check on

the assumptions underlying our estimator.

For these estimates, the estimated GA|N∗ matrix was

N∗ = 3 N∗ = 4 N∗ = 5

A = (1, 2, 3) 1.0000 0.1490 0.2138

A = 4 0 0.8510 0.4237

A ≥ 5 0 0 0.3625

Furthermore, for the normalized estimates of the bid densities with the negative portions

removed, the implied values for E[b|N ∗], the average equilibrium bids conditional on N ∗,

were 7.984, 7.694, 4.162 for, respectively, N ∗ = 3, 4, 5 (in millions of dollars).

The corresponding valuation estimates, obtained by solving Eq. (3) pointwise in b using

our bid density estimates, are graphed in Figure 6. We present the valuations estimated

using our approach, as well as a näıve approach using g(b|A) as the estimate for the bid

densities. Note that the valuation estimates become negative within a low range of bids, and

then at the upper range of bids, the valuations are decreasing in the bids, which violates a

necessary condition of equilibrium bidding. These may be due to unreliability in estimating

the bid densities g(b|A) and g(b|N ∗) close to the bounds of the observed support of bids.

Furthermore, in the estimated values for N ∗ = 3 and N ∗ = 4 in Figure (6), we see that the

valuations rise steeply for low bids. This arises from the truncation procedure, which leads

to a kink in the bid density at the point when the density changes from zero to a positive

value.

19The asymptotic variance is derived analytically in Appendix A.2. However, it is tedious to compute in

practice, which is why we use the bootstrap to approximate the pointwise variance of the density estimates.

Note that in the normalized density estimates, the lower bound of the confidence interval is always zero,

uniformly across all values of b.
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Figure 5: Highway work projects
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Figure 6: Highway work projects, estimated values
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Comparing the estimates of valuations using g(b|N ∗), and those obtained using g(b|A), we

see that the valuations using g(b|N ∗) are smaller than those using g(b|A), for N ∗ = 3, 4 (but

virtually indistinguishable for N ∗ = 5). As in the Monte Carlo results, this implies that

the markups (b− c)/b are larger using our estimates of g(b|N ∗). The differences in implied

markups between these two approaches is economically meaningful, as illustrated in the

right-hand-side graphs in Figure (6). For example, for N ∗ = 4, at a bid of $5 million, the

corresponding markup using g(b|A = 4) is around 15%, or $750,000, but using g(b|N ∗ = 4)

is around 40%, or $2 million. This suggests that failing to account for unobservability of

N∗ can lead the researcher to understate bidders’ profit margins.

One shortcoming of these results is that we do not allow for auction-specific heterogeneity.

To address this issue, we collected, for a subset of these auctions, some covariates measuring

cost and locational factors associated with the contracts. Using an approach used previ-

ously in Haile, Hong, and Shum (2003) and Bajari, Houghton, and Tadelis (2006), among

others, we control for the auction-specific heterogeneity by running a first-stage log-linear

regression of bids on covariates. Under the assumption that equilibrium bids in an auction

are multiplicatively separable into a common auction-specific component (which is a func-

tion of the covariates), and an idiosyncratic component which varies across bidders in an

auction:

bit = exp(X ′
tβ) exp(b̃it), b̃it ⊥ Xt,

the residuals from this regression can be interpreted as “normalized” bids, which are com-

parable across auctions, and hence used in our estimation procedure. In Table 2, we present

results from the first-stage bid regression. Bids are increasing in the cost components COST

INDEX and TRAFFIC, as is expected.

In Figure 7, we present the bid density estimates obtained using the (exponentiated) resid-

uals from the bid regression, and in Figure 8, we present the corresponding estimates of

valuations and markups. The results are qualitatively quite similar to the earlier results,

which were obtained assuming without controlling for auction-specific heterogeneity. One

notable difference, evident in Figure 8, is that the näıve estimator leads to higher markups

for the N ∗ = 4 case. This is evidence that the distributions of valuations x|N ∗ are different

across N ∗, because if the distributions were identical across N ∗, the näıve approach would

tend to underestimate markups for all values of N ∗ < K (as shown in the Monte Carlo

results present earlier).
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Table 2: Results from first-stage log-linear regression

Dependent variable: log bit
Cost components:
COST INDEX 1.073 (2.91)**
TRAFFIC 0.135 (10.63)**

Regions:
GATEWAY 0.178 (3.25)**
SKYLANDS 0.213 (3.90)**
SHORE -0.307 (5.41)**
DELAWARE -0.038 (0.68)
SOUTH 0.185 (3.00)**
Constant -0.304 (1.13)

Observations 3283
R-squared 0.09

Robust standard errors in parentheses.
Cost-related covariates: COST is a construction cost index obtained from the trade publication Engineering

News-Record; TRAFFIC measures weekday traffic volume (in both directions) of the road being repaired.
Regional covariates are dummy variables for geographic regions of New Jersey (with the excluded region being the

Atlantic City region).
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Figure 7: Estimated Bid Densities for Highway Work Projects, Controlling for Auction-Specific Heterogeneity

0 1 2 3 4 5 6 7
0

0.5

1

1.5

bids

g
(
b

|.
..

)
/C

I

Bootstrap 90% CI of the adjusted estimator,N*=3,Worktype=4

 

 

0 1 2 3 4 5 6 7
−40

−20

0

20

40

bids

g
(
b

|.
..

)
/C

I

Bootstrap 90% CI of the original estimator,N*=3,Worktype=4

 

 

0 1 2 3 4 5 6 7
0

0.5

1

bids

g
(
b

|.
..

)
/C

I

Bootstrap 90% CI of g(b|A),A=3,Worktype=4

 

 

trunc est
CI,5_95% prctile

Orig est
CI,5_95% prctile

g(b|A)
CI,5_95% prctile

0 1 2 3 4 5 6 7
0

0.5

1

1.5

bids

g
(
b

|.
..

)
/C

I

Bootstrap 90% CI of the adjusted estimator,N*=4,Worktype=4

 

 

0 1 2 3 4 5 6 7
−10

−5

0

5

10

bids
g

(
b

|.
..

)
/C

I

Bootstrap 90% CI of the original estimator,N*=4,Worktype=4

 

 

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

bids

g
(
b

|.
..

)
/C

I

Bootstrap 90% CI of g(b|A),A=4,Worktype=4

 

 

trunc est
CI,5_95% prctile

Orig est
CI,5_95% prctile

g(b|A)
CI,5_95% prctile

0 1 2 3 4 5 6 7
0

1

2

3

bids

g
(
b

|.
..

)
/C

I

Bootstrap 90% CI of the adjusted estimator,N*=5,Worktype=4

 

 

0 1 2 3 4 5 6 7
−20

−10

0

10

20

bids

g
(
b

|.
..

)
/C

I

Bootstrap 90% CI of the original estimator,N*=5,Worktype=4

 

 

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

bids

g
(
b

|.
..

)
/C

I

Bootstrap 90% CI of g(b|A),A=5,Worktype=4

 

 

trunc est
CI,5_95% prctile

Orig est
CI,5_95% prctile

g(b|A)
CI,5_95% prctile

27



Figure 8: Estimated Valuations and Markups from Highway work projects, controlling for

Auction-Specific Heterogeneity
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6 Extension: Only Winning Bids are Recorded

In some first-price auction settings, only the winning bid is observed by the researcher. This

is particularly likely for the case of descending price, or Dutch auctions, which end once a

bidder signals his willingness to pay a given price. For instance, Laffont, Ossard, and Vuong

(1995) consider descending auctions for eggplants where only the winning bid is observed,

and van den Berg and van der Klaauw (2007) estimate Dutch flower auctions where only

a subset of bids close to the winning bid are observed. Within the symmetric IPV setting

considered here, Guerre, Perrigne, and Vuong (2000) and Athey and Haile (2002) argue

that observing the winning bid is sufficient to identify the distribution of bidder valuations,

provided that N ∗ is known. Our estimation methodology can be applied to this problem

even when the researcher does not know N ∗, under two scenarios.

First Scenario: Non-Binding Reserve Price In the first scenario, we assume that

there is no binding reserve price, but the researcher does not know N ∗. (Many Dutch auc-

tions take place too quickly for the researcher to collect data on the number of participants.)

Because there is no binding reserve price, the winning bid is the largest out of the N ∗ bids

in an auction. In this case, bidders’ valuations can be estimated in a two-step procedure.

In the first step, we estimate gWB(·|N∗), the equilibrium density of winning bids, conditional

on N∗, using the methodology above. In the second step, we exploit the fact that in this

scenario, the equilibrium CDF of winning bids is related to the equilibrium CDF of the bids

by the relation:

GWB(b|N∗) = G(b|N ∗)N
∗
.

This implies that the equilibrium bid CDF can be estimated as Ĝ(b|N∗) = ĜWB(b|N∗)1/N∗
,

where ĜWB(b|N∗) denotes the CDF implied by our estimates of ĝWB(b|N∗). Subsequently,

upon obtaining an estimate of Ĝ(b|N∗) and the corresponding density ĝ(b|N ∗), we can

evaluate Eq. (3) at each b to obtain the corresponding value.

Second Scenario: Binding Reserve Price, but A Observed In the second scenario,

we assume that the reserve price binds, but that A, the number of bidders who are willing

to submit a bid above the reserve price, is observed. The reason we require A to be

observed is that when reserve prices bind, the winning bid is not equal to bN∗:N∗
, the

highest order statistic out of N ∗ i.i.d. draws from g(b|N ∗, b > r), the equilibrium bid

distribution truncated to [r,+∞). Rather, for a given N ∗, it is equal to bA:A, the largest
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out of A i.i.d. draws from g(b|N ∗, b > r). Hence, because the density of the winning bid

depends on A, even after conditioning on N ∗, we must use A as a conditioning covariate in

our estimation.

For this scenario, we estimate g(b|N ∗, b > r) in two steps. First, treating A as a conditioning

covariate, we estimate gWB(·|A,N ∗), the conditional density of the winning bids conditional

on both the observed A and the unobserved N ∗. Second, for a fixed N ∗, we can recover the

conditional CDF G(b|N ∗, b > r) via

Ĝ(b|N∗, b > r) = ĜWB(b|A,N ∗)1/A, ∀A.

(That is, for each N ∗, we can recover an estimate of G(b|N ∗, b > r) for each distinct value

of A. Since the model implies that these distributions should be identical for all A, we can,

in principle, use this as a specification check of the model.)

In both scenarios, we need to find good candidates for the auxiliary variables N and Z.

Since typically many Dutch auctions are held in a given session, one possibility for N could

be the total number of attendees at the auction hall for a given session, while Z could be

an instrument (such as the time of day) which affects bidders’ participation for a specific

auction during the course of the day.20

7 Conclusions

In this paper, we have explored the application of methodologies developed in the economet-

ric measurement error literature to the estimation of structural auction models, when the

number of potential bidders is not observed. We have developed a nonparametric approach

for estimating first-price auctions when N ∗, the number of potential bidders, is unknown

to the researcher, and varies in an unknown way among the auctions in the dataset. To

our knowledge, our approach is the first solution to estimating such a model. Accommo-

dating unknown N ∗ is also important for the policy implications of auction estimates, and

the Monte Carlo and empirical results illustrate that ignoring the problem can lead to

economically meaningful in differences the estimates of bidders’ markups.

One maintained assumption in this paper that N ∗ is observed and deterministic from bid-

ders’ point of view, but not known by the researcher. The empirical literature has also

20This corresponds to the scenario considered in the flower auctions in van den Berg and van der Klaauw

(2007).
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considered models where the number of bidders N ∗ is stochastic and unobserved from the

bidders’ perspective: e.g., Athey and Haile (2002); Hendricks, Pinkse, and Porter (2003);

Bajari and Hortacsu (2003); Li and Zheng (2006); and Song (2006). It will be interesting

to explore whether the methods used here can be useful for estimating these models.

More broadly, these methodologies developed in this paper may also be applicable to other

structural models in industrial organization, where the number of participants is not ob-

served by the researcher. These could include search models, or entry models. We are

considering these possibilities in future work.
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A Appendix: asymptotic properties of the two step estima-

tor

A.1 Uniform consistency

In the first step, we estimate ĜN |N∗ from

ĜN |N∗ := ψ
(
ĜEb,N,ZĜ

−1
N,Z

)
, (29)

where ψ (·) is an analytic function as mentioned in Hu (2007) and

ĜEb,N,Z =


 1

T

∑

t

1

Nj

Nj∑

i=1

bit1(Nt = Nj , Zt = Zk)




j,k

,

ĜN,Z =

[
1

T

∑

t

1(Nt = Nj, Zt = Zk)

]

j,k

.

We summarize the uniform convergence of ĜN |N∗ as follows:

Lemma 6 Suppose that V ar(b|N,Z) <∞. Then,

ĜN |N∗ −GN |N∗ = Op

(
T−1/2

)
.

Proof. It is straightforward to show that ĜEb,N,Z − GEb,N,Z = Op

(
T−1/2

)
and ĜN,Z −

GN,Z = Op

(
T−1/2

)
. As mentioned in Hu (2007), the function ψ (·) is an analytic function.

Therefore, the result holds.
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In the second step, we have

ĝ(b|N ∗) := eTN∗

[
Ĝ−1

N |N∗

(
Ĝb,N,Z (b) Ĝ−1

N,Z

)
ĜN |N∗

]
eN∗ ,

where

Ĝb,N,Z (b) = [ĝb,N,Z (b,Nj , Zk)]j,k ,

ĝb,N,Z (b,Nj , Zk) =
1

Th

∑

t

1

Nj

Nj∑

i=1

K

(
b− bit
h

)
1(Nt = Nj , Zt = Zk).

Let ω := (b,N,Z). Define the norm ‖·‖∞ as

‖ĝ(·|N ∗) − g(·|N ∗)‖∞ = sup
b

∣∣ĝb|N∗ (b|N∗) − gb|N∗ (b|N∗)
∣∣ .

The uniform convergence of ĝ(·|N ∗) is established as follows:

Lemma 7 Suppose:

(7.1) ω ∈ W and W is a compact set.

(7.2) gb,N,Z (·, Nj , Zk) is continuously differentiable to order R with bounded derivatives on

an open set containing W.

(7.3) K(u) is differentiable of order R, and the derivatives of order R are bounded. K(u)

is zero outside a bounded set.
∫ ∞
−∞K(u)du = 1 , and there is a positive integer m such that

for all j < m,
∫ ∞
−∞K(u)ujdu = 0. The characteristic function of K is absolutely integrable.

(7.4) h→ 0 and nh→ ∞, as n→ ∞.

Then, for all j,

‖ĝ(·|N ∗) − g(·|N ∗)‖∞ = Op

[(
T

lnT
h1+2R

)−1/2

+ hm

]
. (30)

The most important assumption for Lemma 7 is (7.2), which places smoothness restrictions

on the joint density g(b,N,Z). Via Eq. (7), this distribution is a mixture of conditional

distributions g(b|N ∗), which possibly have a different support for different N ∗. When the

supports of g(b|N ∗) are known, condition (7.2) only requires the smoothness of g(b|N ∗) on

its own support [r, uN∗ ] because the distribution g(b|N,Z) can be estimated piecewise on

[r, u2] , [u2, u3] , ..., [uK−1, uK ]. When the supports of g(b|N ∗) are unknown, condition (7.2)
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would require that the density g(b|N ∗) for each value of N ∗ to be smooth at the upper

boundary.21

Proof. By Lemma 6, it is straightforward to show that

ĝ(b|N ∗) = eTN∗

[
G−1

N |N∗

(
Ĝb,N,Z (b)G−1

N,Z

)
GN |N∗

]
eN∗ +Op

(
T−1/2

)
.

In order to show the consistency of our estimator ĝ(b|N ∗), we need the uniform convergence

of ĝb,N,Z (·, Nj , Zk). The kernel density estimator has been studied extensively. Following

results from Lemma 8.10 in Newey and McFadden (1994), we have for all j and k

sup
b

|ĝb,N,Z (·, Nj , Zk) − gb,N,Z (·, Nj , Zk)| = Op

[(
T

lnT
h1+2R

)−1/2

+ hm

]
. (31)

The uniform convergence of ĝb|N∗ then follows.

Remark: Another technical issue pointed out in Guerre, Perrigne, and Vuong (2000) is

that the density g(b|N ∗) may not be bounded at the lower bound of its support, which is the

reserve price r. They suggest using the transformed bids b† ≡
√
b− r. Our identification

and estimation procedures remain the same if b replaced by b†, where an estimate of the

reserve price r could be the lowest observed bid in the dataset (given our assumption that

the reserve price is fixed in the dataset).

A.2 Asymptotic Normality

In this section, we show the asymptotic normality of ĝ(b|N ∗) for a given value of b. De-

fine γ0 (b) = vec {Gb,N,Z (b)} , a column vector containing all the elements in the matrix

Gb,N,Z (b). Similarly, we define γ̂ (b) = vec
{
Ĝb,N,Z (b)

}
. The proof of Lemma 7 suggests

that

ĝ(b|N ∗) = ϕ (γ̂ (b)) +Op

(
T−1/2

)

where

ϕ (γ̂ (b)) ≡ eT
N∗

[
G−1

N |N∗

(
Ĝb,N,Z (b)G−1

N,Z

)
GN |N∗

]
eN∗ .

21In ongoing work, we are exploring alternative methods, based on wavelet methods (eg. Hall, McKay,

and Turlach (1996)), to estimate the joint density g(b, N, Z) when there are unknown points of discontinuity,

which can be due to the non-smoothness of the individual densities g(b|N ∗) at the upper boundary of their

supports.
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Notice that the function ϕ (·) is linear in each entry of the vector γ̂ (b). Therefore, we have

ĝ(b|N ∗) − g(b|N ∗) =

(
dϕ

dγ

)T

(γ̂ (b) − γ0 (b)) + op

(
1/
√
Th

)
,

where dϕ
dγ is nonstochastic because it is a function of GN |N∗ and GN,Z only. The asymptotic

distribution of ĝ(b|N ∗) then follows that of γ̂ (b). We summarize the results as follows:

Lemma 8 Suppose that assumptions in Lemma 7 hold with R = 2 and that

1. there exists some δ such that
∫
|K(u)|2+δ du <∞,

2. (Th)1/2 h2 → 0, as T → ∞.

Then, for a given b and N ∗,

(Th)1/2 [ĝ(b|N ∗) − g(b|N ∗)]
d→ N(0,Ω),

where

Ω =

(
dϕ

dγ

)T

V (γ̂)

(
dϕ

dγ

)
,

V (γ̂) = lim
T→∞

(Th)E
[
(γ̂ −E (γ̂)) (γ̂ −E (γ̂))T

]
.

Proof. As discussed before Lemma 8, the asymptotic distribution of ĝ(b|N ∗) is derived

from that of γ̂ (b). In order to prove that the asymptotic distribution of the vector γ̂ (b)

is multivariate normal N (0, V (γ̂)), we show that the scalar λT γ̂ (b) for any vector λ has a

normal distribution N
(
0, λTV (γ̂)λ

)
. For a given value of b, it is easy to follow the proof

of Theorems 2.9 and 2.10 in Pagan and Ullah (1999) to show that

(Th)1/2 [
λT γ̂ (b) − λTγ0 (b)

] d→ N
(
0, V ar

(
λT γ̂ (b)

))
,

where V ar
(
λT γ̂ (b)

)
= λTV (γ̂ (b))λ is the variance of the scalar λT γ̂ (b). The asymptotic

distribution of ĝ(b|N ∗) then follows.
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