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Abstract

This paper examines the role that negative returns and their associated volatility play
in determining future volatility. Measures of quadratic variation are decomposed into signed
components which are further decomposed into signed-jump and continuous components
using a simple transformation. Using data for both the S&P 500 SPDR and the individual
components of the S&P 100, we find that jumps play an important role in future volatility.
Moveover, we document that the effect of jumps is highly asymmetric where negative jumps
lead to long lasting – almost permanent – increases in volatility while positive jumps lead to
long term lower volatility.

∗Contact author. Code used in this paper for computing realized quantities is available at

www.kevinsheppard.com.
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1 Introduction

The introduction of Realized Variance has revitalized interest in measuring and modeling con-
ditional variance (Andersen & Bollerslev 1998, Andersen, Bollerslev, Diebold & Labys 2001,
Barndorff-Nielsen & Shephard 2002a, Barndorff-Nielsen & Shephard 2002b). These papers all
highlight how frequently sampled asset prices can be used to estimate important quantities of
interest – namely the integrated variance and quadratic variation – for measuring the variability
to asset prices. Substantial progress has been made developing estimators that are robust to
market microstructure noise1, capable of estimating the variation due to the continuous part of
asset prices 2, and testing for jumps3.

Realized Variance, and related estimators, are also particularly compelling for modeling
the time-series dynamics of return variation. Beginning with Andersen, Bollerslev, Diebold &
Labys (1999) and Andersen, Bollerslev, Diebold & Labys (2003), the forecasting potential of
high-frequency based measures has been apparent. An incomplete list of forecasting methods
and applications includes Fleming, Kirby & Ostdiek (2003), Corsi (2004), Liu & Maheu (2005),
Lanne (2006b), Lanne (2006a), Chiriac & Voev (2007), Andersen et al. (2007), Chen & Ghysels
(2008) and Visser (2008). Among these Andersen et al. (2007) stands out as a paper that uses
the insights only available though the development of non-parametric estimators of quadratic
variation and integrated variance to provide a refined view into the dynamics of total variation
by decomposing quadratic variation into its continuous sample path and jump components, and
exploring persistence of each and the interaction between the two components. High frequency
measures have also been used for evaluating variance forecasts as in Andersen & Bollerslev
(1998), Andersen, Bollerslev & Meddahi (2005) and Patton (2008).

The forecasting literature utilizing Realized Variance and related estimators has diverged
from the previous two decades of literature which were dominated by ARCH-family models.
Beginning with Engle’s (1982) ARCH model and Bollerslev’s (1986) generalization, the ARCH
world has developed a virtual alphabet soup of related acronyms. Among the many specification
developed for modeling the conditional variance using daily or lower frequency return series, one
feature stands out as broadly empirically supported: the leverage effect – where the volatility
subsequent to a negative return is higher than that subsequent to a positive return of the
same size. Well know ARCH-family models capable of capturing the leverage effect include
GJR-GARCH (Glosten, Jagannathan & Runkle 1993), TARCH (Zakoian 1994), and EGARCH
(Nelson 1991).

The leverage effect has been mostly ignored in the Realized Variance-based forecasting liter-
1See Zhang, Mykland & Aı̈t-Sahalia (2004), Barndorff-Nielsen, Hansen, Lunde & Shephard (2008a), Bandi &

Russell (2008), inter alia.
2See Barndorff-Nielsen & Shephard (2004), Christensen, Oomen & Podolskij (2008), Andersen, Dobrev &

Schaumburg (2008), inter alia.
3See Huang & Tauchen (2005) Andersen, Bollerslev & Diebold (2007), Bollerslev, Law & Tauchen (2008), Lee

& Mykland (2008) inter alia.
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ature, with the recent exceptions of Chen & Ghysels (2008) and Visser (2008). Chen & Ghysels
(2008) construct an semi-parametric ARCH-like news impact curve to assess the relative con-
tribution of returns of different signs and magnitudes. This is an ambitious undertaking but
faced the difficulty of needing an estimate of the spot volatility, or a similar quantity, in-order
construct devolatized residuals. Visser (2008) uses signed power variation to explore the its
impact in forecasting S&P 500 return variation.

This paper uses a recently introduced estimator of Barndorff-Nielsen, Kinnebrock & Shep-
hard (2008), Realized Semivariance, to provide insight into the components of conditional vari-
ance with a focus on the role of signed jumps. Like Realized Variance before it, Realized
Semivariance estimates an integrated function of the variance process. If prices can be sampled
frequently, Realized Semivariance converges to half the integrated variance plus the signed jump
variation (can be either positive or negative, depending on the configuration of the estimators).
We use a simple transformation to construct a new measure which we call signed jump variation
that captures the variation due to jumps without requiring the estimation of the variation of
the continuous component to asset prices.

Semivariance, and the broader class of downside risk measures, are not new concepts. Appli-
cation of semivariance in finance include Hogan & Warren (1974) who study semivariance in a
general equilibrium framework, Lewis (1990) who examined its role in option performance, and
Ang, Chen & Xing (2006) who examined the role of semivariance and covariance in asset pric-
ing. In many regards semivariance – or the variance of downside returns – is a more important
measure of the relevant variability of asset prices than total variance. For more on semivariance
and related measures, see Sortino & Satchell (2001).

We find that the information content of negative Realized Semivariance – that is the high
frequency variation that corresponds to negative returns – is extremely informative for future
variance using data on S&P 500 SPDRs and 105 firms that were in the S&P 100 between 1997
and 2008. Using models which extend up to 66 days in the future, we find that decomposing
the usual Realized Variance into its signed components allows for more explanatory power at
longer horizons than a measure which does not distinguish based on sign. We introduce a new
measure which captures the variation due to either positive or negative signed jumps and find
that jumps play a crucial role in future volatility, even at long horizons, and that the role of
jumps is asymmetric – positive jump or “good volatility” lower long term variance while negative
jumps or “bad volatility” raise long term variance.

The remainder of the paper is organized as follows. Section two described the stochastic
environment and introduces the quantities that will be studied. Section three describes the
data and section four explores the gains to decomposing Realized Variance into its two Realized
Semivariances. Section five focuses on the role jumps play in future variance. Section six
described the time-series properties of the new measure of variability and section seven concludes.
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2 Stochastic Environment

Consider a continuous-time stochastic process for log-prices, pt, which consists of a continuous
component and a pure jump component

pt =
∫ 1

0
µsds+

∫ t

0
σsdWs + Jt. (1)

where µ is a locally bounded predictable drift process, σ is a strictly positive cádlág process, J
is a pure jump process and where the time interval has been normalized to 1. The quadratic
variation of this process is defined

[p, p] =
∫ 1

0
σ2

sds+
∑

0<s≤1

(∆ps)
2 (2)

where ∆ps = ps − ps− captures a jump if present.
The natural estimator for the quadratic variation of a process is the sum of frequently

sampled squared returns which is commonly known as realized variance (Andersen et al. 2001).
For simplicity suppose that prices are observed n+ 1 times uniformly in time and denote these
prices as p0, . . . , pn.4 Define the ith return on day t as ri,t = pi,t − pi−1,t, i = 1, 2, . . . , n. Using
these returns, the n-sample realized variance is the defined as

RV =
n∑

i=1

r2
i . (3)

As the time interval between observations becomes small, this estimator converges to the
quadratic variation (Andersen et al. 2003),

lim
n→∞

RV
p→ [p, p] . (4)

Barndorff-Nielsen & Shephard (2006) extended the study of estimating volatility functionals
from simple estimators of the quadratic variation to a broader class which includes Bipower
Variation,

BV = µ−2
1

n∑
i=2

|ri||ri−1, (5)

µ1 = E [|z|] =
√

2/π and where z is a standard normal. Unlike realized variance, Bipower
Variation’s limit only includes the component of the quadratic variation due to the continuous
part of the price process, the integrated variance,

lim
n→∞

BV
p→
∫ 1

0
σ2

sds (6)

4Uniform sampling in time is not needed for any results used in this paper.
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and so the difference between Realized Variance and Bipower Variation can be used to consis-
tently estimate the variation due to jumps (if any) of quadratic variation,

lim
n→∞

RV −BV p→
∑

0≤s≤t

∆ps. (7)

Barndorff-Nielsen, Kinnebrock & Shephard (2008) have recently introduced a new estimator
which can capture the jump variation only due to negative or positive jumps using an estimator
named Realized Semivariance. Negative Realized Semivariance, defined as,

RS− =
n∑

i=1

r2
i I[ri<0] (8)

and positive Realized Semivariance,

RS+ =
n∑

i=1

r2
i I[ri>0] (9)

provide a complete decompositions of the non-signed RV so that RV = RS+ + RS−. Like
Realized Variance, their limits includes variation due to both the continuous part of the price
process a well as the jump component (if any), but the imposition of the indicator function
allows the sign of the jump to be extracted, and so

lim
n→∞

RS+ p→ 1
2

∫ 1

0
σ2

sds+
∑

0≤s≤1

∆psI[∆ps>0] (10)

lim
n→∞

RS−
p→ 1

2

∫ 1

0
σ2

sds+
∑

0≤s≤1

∆psI[∆ps<0] (11)

by Corollary 1 of Barndorff-Nielsen, Kinnebrock & Shephard (2008). An interesting consequence
of the limit of Realized Semivariances is that the variation due to the continuous component
can be removed by simple polarization, and we define the signed jump variation as

∆J2 ≡ RS+ −RS−, (12)

and it follows directly from Corollary 1 of BNKS that

lim
n→∞

∆J2 p→
∑

0≤s≤1

∆psI[∆ps>0] −
∑

0≤s≤1

∆psI[∆ps<0]. (13)

The results of Proposition 2 of BNKS can be similarly extended to provide the asymptotic
distribution of the signed jump variation estimator when there are no jumps, and so a new signed

5



jump test could be constructed. The asymptotic theory of BNKS is, unfortunately, infeasible
except if both the drift and the leverage between the price process and the volatility are 0. The
first of these, that the drift is 0, is unlikely to cause significant problems. The second, however,
is implausible for many equity series and so we will not further pursue a test based on ∆J2.

3 Data

The data used in this paper consist of high-frequency prices on the members of the S&P 100
plus the S&P 500 tracker ETF (SPDR) between June 23, 1997 and July 31, 2008. June 23,
1997 was selected as the start date since it corresponded to the first day that U.S. equities could
trade with a spread less than 1

8 , and a commensurate increase trading volume and a large drop
in the magnitude of microstructure noise that affects realized-type estimators is seen after this
date (Aı̈t-Sahalia & Yu 2009). The ending date was determined by data availability.

Many of the constituents of the S&P 100 have changed over this period. Since the focus of
this paper is on the time-series behavior of semi-variance and jumps, equities which were not
continuously available for 4 years were excluded. This reduced the initial pool of 154 members
to 105. The majority of the dropped assets were either dropped from the index early in the
sample or added within 4 years of the sample ending date. Only a small number of firms were
added to the index and spent less than 4 years in the index before being removed.

All prices used were transactions taken from NYSE TAQ. Trades were filtered to include
only those occurring between 9:30:00 and 16:00:00 (inclusive) and were cleaned according to the
rules detailed in Appendix A. Prices were not adjusted for splits or dividends since overnight
returns are not used.

3.1 Estimator Implementation

All estimators were computed using returns sampled in business time so that prices were sampled
approximately every 5-minutes. In the usual case where data is available from 9:30:00 to 16:00:00,
this corresponds to sampling prices 79 times on a tick-time grid with the first sample is the first
price and the final sample is the last price of the day. The remaining samples are constructed
so that the number of time-stamps between each is the same. Business-time sampling is more
natural than calendar time sampling and under certain conditions produces realized measures
with superior statistical properties (Oomen 2005). To our knowledge this type of sampling,
which we describe as uniform sampling in business time, has only been used in Barndorff-Nielsen,
Hansen, Lunde & Shephard (2008b).

The choice to sample prices using an approximate 5-minute window was motivated by the
desire to avoid bid-ask bounce type microstructure noise. Since the window is large relative to
the tick frequency, sub-sampling can be used to improve the estimators and so all were computed
by averaging the estimator over 5 uniformly spaced (in tick time) sub-samples. This procedure
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should produce a mild decrease in variance, and has been shown to be a reasonable choice for
modeling the time-series properties of volatility in Andersen, Bollerslev & Meddahi (2006).

Denote the observed log-prices as p0, p2, . . . , pm where m+ 1 is the number of unique time-
stamps between 9:30:00 and 16:00:00 that have prices. Setting the number of price samples to
79, non-sub-sampled RV is computed uniformly in business time as

RV =
n∑

i=1

(
pbikc − pb(i−1)kc

)2 (14)

where k = m/79 and b·c rounds down to the next integer. The sub-sampled version is computed
by averaging over 5 uniformly spaced approximate 5-minute windows,

RV =
1
5

4∑
j=0

n∑
i=1

(
pbik+j∆c − pb(i−1)k+j∆c

)2 (15)

where prices outside of the trading day are set to the close price.
Realized semi-variances, RS+ and RS+ were constructed in an analogous manner, only

summing over the appropriately signed returns,

RS− =
1
5

4∑
j=0

n∑
i=1

(
pbik+j∆c − pb(i−1)k+j∆c

)2
I[pbik+j∆c−pb(i−1)k+j∆c<0] (16)

In addition to sub-sampling, the estimator for bi-power variation was computed by averag-
ing multiple “skip” versions. Skip versions of other estimators, namely tri-power quarticity and
quad-power quarticity were found to possess superior statistical properties than returns com-
puted using adjacent returns in Andersen et al. (2007). The standard bipower estimator, when
computed using uniformly sampled prices in business time, is computed as

BV = µ−2
1

n∑
i=2

(
pbikc − pb(i−1)kc

) (
pb(i−1)kc − pb(i−2)kc

)
. (17)

The “skip-q ” bipower variation estimator is defined as

BVq = µ−2
1

n∑
i=q+2

(
pbikc − pb(i−1)kc

) (
pb(i−1−q)kc − pb(i−2−q)kc

)
. (18)

and so BV0 ≡ BV is the usual estimator. We construct our estimator of bipower variation
by averaging the skip-0 through skip-4 estimators, which represents a tradeoff between locality
(skip-0) and robustness to both market microstructure noise and jumps that are not contained
in a single sample (skip-4).5 Using a skip estimator was advocated in Huang & Tauchen (2005)

5Events which are often identified in jumps in US equity data correspond to periods of rapid price movement
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as an important correction to bipower which may be substantially biased in small samples,
although to our knowledge the use of an average over multiple skip-q estimators is novel. The
combination can be formally justified as an asymptotic minimum-variance combination of K
skip Bipower estimators.

Proposition 3.1
Let the skip bipower variation estimator be defined as in eq. (18) and assume there are no

jumps. Then the joint asymptotic distribution of K such estimators is
BV0

...

BVK

− ∫ 1

0
σ2

sds
d→MN (0, 2.69R)

where R is an equicorrelation matrix,

R =


1 ρ . . . ρ

ρ 1 . . . ρ
...

...
...

...

ρ . . . ρ 1


where ρ = .878.

The an average is the minimum variance combination follows from directly from that struc-
ture of the correlation matrix. It is also obvious that the maximal gain for a combination would
be to reduce the variance by a factor of ρ, which is fairly modest. It should also be noted that
this result is only valid for finite K so that asymptotically the time-lag between the return used
to compute the longest skip estimator and the contemporaneous return is negligible. If K were
allowed to grow at some rate it would be expected that an asymptotic bias term would arise
since some of the returns were not local to the contemporaneous return.

Noting that BV may be biased in an important way in the presence of jumps, we also include
a new jump robust measure of IV developed by Andersen et al. (2008) known as median RV or
MedRV, which is defined as

MedRV =
n

n− 2

n∑
i=3

π

6− 4
√

3 + π
med

(
r2
i−2, r

2
i−1, r

2
i

)
where the term π/(6− 4

√
3 + π) is a normalization constant which is the expected value of the

median square of three standard normal random variables. Because MedRV will exclude the
largest of a series of 3 consecutive returns it may be less affected by jumps than BV.

although they are usually characterized by multiple trades during the movement due to continuity of price rules
on market makers.
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Levels
RVi,t+h = µi + φ1RVi,t + φ5RV 5,i,t + φ22RV 22,i,t + εi,t

SPDR Panel
h φ1 φ5 φ22 φ1 φ5 φ22

1 0.404
(.000)

0.226
(.006)

0.247
(.000)

0.392
(.000)

0.294
(.002)

0.185
(.006)

5 0.062
(.302)

0.370
(.003)

0.323
(.003)

0.273
(.000)

0.203
(.221)

0.308
(.007)

22 −0.008
(.851)

0.297
(.067)

0.229
(.049)

0.123
(.000)

0.120
(.343)

0.400
(.000)

66 0.008
(.629)

0.061
(.183)

0.197
(.025)

0.069
(.000)

0.054
(.298)

0.425
(.000)

Logs
lnRVi,t+h = µi + φ1 lnRVi,t + φ5 lnRV 5,i,t + φ22 lnRV 22,i,t + εi,t

SPDR Panel
h φ1 φ5 φ22 φ1 φ5 φ22

1 0.435
(.000)

0.347
(.000)

0.167
(.000)

0.359
(.000)

0.333
(.000)

0.257
(.000)

5 0.239
(.000)

0.352
(.000)

0.292
(.000)

0.235
(.000)

0.338
(.000)

0.346
(.000)

22 0.132
(.000)

0.169
(.079)

0.446
(.000)

0.159
(.000)

0.259
(.000)

0.437
(.000)

66 0.067
(.044)

0.086
(.261)

0.477
(.000)

0.112
(.000)

0.161
(.000)

0.512
(.000)

Table 1: Reference model parameter estimates and p-values (in parentheses). The top panel
contains results form the model in levels and the bottom contains estimates from the log spec-
ification. In all cases the h-step ahead realized variance or log realized variance was regressed
on time-t measurable variables. These results broadly agree with those of Andersen, Bollerslev
and Diebold (2007), although ABD regressed the h-step cumulative realized variance on time-t
regressors.

4 The Persistence of Volatility

Before moving into models which decompose volatility into signed components, it is instructive
to establish a set of reference results. We fit a reference specification in both levels,

RVt+h = µ+ φ1RVt + φ5RV 5,t + φ22RV 22,t + εt (19)

where RV 5,t is the average of the past 5 RVs and RV 22,t is the average of the past 22 days of
RV, and in logs,

lnRVt+h = µ+ φ1 lnRVt + φ5 lnRV 5,t + φ22 lnRV 22,t + εt. (20)
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which is similar to the specifications studied in Andersen et al. (2007), both of which are Hetero-
geneous Autoregressions (HAR) introduced to the realized volatility literature by Corsi (2004)
as an adaptation of Müller, Dacorogna, Dav, Olsen, Pictet & von Weizsacker (1997). We differ
from ABD in two ways: first we model the direct effect on the volatility h-days ahead, rather
than the h-day cumulative realized variance, and second we include leads up to 66 days (1
quarter).

We also extend the standard HAR specification to an unbalanced, pooled panel HAR with
fixed effects in both levels,

RVi,t+h = µi + φ1RVi,t + φ5RV 5,i,t + φ22RV 22,i,t + εt (21)

and in logs,

lnRVi,t+h = µi + φ1 lnRVi,t + φ5 lnRV 5,i,t + φ22 lnRV 22,i,t + εt (22)

which facilitates performing inference on the average effect among the 105 S&P 100 constituents
included in this study. Inference on these regressions is standard although in models where the
dependant variable is more than 1-step ahead require an autocorrelation robust estimator. To
implement the HAC estimator, we use a Newey & West (1987) estimator with 2(h−1) lags. This
choice guarantees that at least half of the relevant covariance will be included at the most distant
lag. Implementation details of the imbalanced panel regression and inference are presented in
Appendix A.

Results of these reference models are presented in table 1. The left column correspond to
the model fit on the S&P 500 SPDR and the right columns correspond to the model fit on the
panel. Both sets of results show that there is substantial short term predictability of RV using
recent RV , and that both the economic and statistical significance of recent RV on predicting
medium to long-term RV diminishes substantially. For both models the log-specification is able
to find stronger relationships and even very long horizon log RV has some predictability. The
differences between these two are primarily driven by the strong heteroskedasticity present in
the residuals of the levels model which is mostly eliminated by the log transformation. While
we do not pursue the idea further, there may be large gains to estimating the levels specification
using FGLS or as a multiplicative error model (Engle 2002).

These results are also closely in-line with the findings of ABD despite using a different
dependant variable. The most notable difference is in the lack of significance of the weekly effect
in the panel where only the long-run average – picking up the highly persistent level shifts in
conditional variance – and the most recent RV are significant, at least in the levels model, as well
as the lack of significance of short-term effect at longer horizons is apparent. These differences
are likely due to different dependant variable since the ABD specification would tend to pick
up the average effect across the next h days while our direct estimation strategy pins down the
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unique effect.

Levels
RVi,t+h = µi + φ+

1 RS
+
i,t + φ−1 RS

−
i,t + φ5RV 5,i,t + φ22RV 22,i,t + εi,t

SPDR Panel
h φ+

1 φ−1 φ5 φ22 φ+
1 φ−1 φ5 φ22

1 −0.426
(.006)

1.600
(.000)

0.153
(.039)

0.204
(.000)

0.039
(.801)

0.717
(.000)

0.332
(.000)

0.167
(.007)

5 −0.167
(.007)

0.391
(.001)

0.350
(.005)

0.311
(.003)

−0.005
(.966)

0.529
(.001)

0.233
(.120)

0.294
(.003)

22 −0.199
(.004)

0.266
(.005)

0.280
(.085)

0.219
(.055)

−0.060
(.391)

0.292
(.001)

0.140
(.228)

0.391
(.000)

66 −0.076
(.078)

0.130
(.028)

0.054
(.236)

0.193
(.027)

−0.047
(.281)

0.175
(.002)

0.066
(.164)

0.419
(.000)

Logs
lnRVi,t+h = µi + φ+

1 lnRS+
i,t + φ−1 lnRS−i,t + φ5 lnRV 5,i,t + φ22 lnRV 22,i,t + εi,t

SPDR Panel
h φ+

1 φ−1 φ5 φ22 φ+
1 φ−1 φ5 φ22

1 −0.008
(.752)

0.401
(.000)

0.389
(.000)

0.164
(.000)

0.098
(.000)

0.257
(.000)

0.338
(.000)

0.255
(.000)

5 −0.006
(.829)

0.225
(.000)

0.372
(.000)

0.290
(.000)

0.042
(.000)

0.193
(.000)

0.339
(.000)

0.345
(.000)

22 −0.056
(.088)

0.174
(.000)

0.183
(.055)

0.445
(.000)

0.018
(.083)

0.141
(.000)

0.259
(.000)

0.437
(.000)

66 −0.020
(.563)

0.080
(.041)

0.093
(.238)

0.477
(.000)

0.005
(.669)

0.106
(.000)

0.162
(.000)

0.512
(.000)

Table 2: Base model parameter estimates and p-values. The top panel contains results form the
model in levels and the bottom contains estimates from the log specification. The coefficients
on the positive semi-variance and negative semi-variance are substantially different. In the
case of the market the effect of positive semi-variance is either insignificant or significantly
negative, while the negative semi-variance has uniformly large, statistically significant effects at
any horizon. The volatilities of individual equities exhibit a similar patters although there is
some evidence that positive semi-variance has a small positive but statistically significant effect
on future volatility, although this effect is small relative to the magnitude of the coefficients on
negative semi-variance.

4.1 Decomposing Recent Quadratic Variation

Given the exact decomposition of RV into RS+ and RS+, extending eqs. () – () is leads to a
direct test of whether signed information has further information than RV for future volatility.
Applying this decomposition produces a base specification model in levels
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RVt+h = µ+ φ+
1 RS

+
t + φ−1 RS

−
t + φ5RV 5,t + φ22RV 22,t + εt (23)

and in logs

lnRVt+h = µ+ φ+
1 lnRS+

t + φ−1 lnRS−t + φ5 lnRV 5,t + φ22 lnRV 22,t + εt. (24)

The pooled panel models are virtually identical, only modified to permit fixed effects, and are
omitted for brevity.

Results from these models for both the S&P 500 SPDR as well as the pooled panel of
individual firms are reported in table 2. Both the large number of negative coefficients, as
well as the large differences in the magnitude of the coefficients on the positive and negative
Realized Semivariance, differ from the reference results in table 1. The effect of the RV can be
constructed by adding φ1 ≈ φ+

1 + φ−1 where the approximation would be exact if the coefficient
on the weekly and monthly RV were restricted to be identical in the two tables. In contrast
to the predictive power of RV , both Realized Semivariances appear to have significant effects
over many horizons. This is especially true for the S&P 500 SPDR results where the daily RV
was insignificant at all leads except 1 day. Using the decomposed results shows that so called
“good volatility” – positive Realized Semivariance – has a long lasting effect on future volatility
by lowering it. In contrast, “bad volatility” – negative Realized Semivariance – leads to long
lasting increases in future variance.

The results for the panel of individual firms are similar with the important caveat that good
volatility does not generally lead to lower future volatility. In the log specification of the panel,
positive Realized Semivariance leads to larger future variance out to a month, although the
magnitude of the change is small relative to the effect of negative Realized Semivariance.

Figures 2 and 3 present the complete set of 66 estimated parameters on the S&P 500 SPDR
and the panel of individual firms, respectively, where both represent the levels version of the
model. The S&P 500 shows a very large effect over short horizons for negative Realized Semi-
variance which degrades into a persistent and generally statistically significantly different from
zero effect out to the maximum horizon. The positive Realized Semivariance has uniformly
negative coefficients although these are both lower in absolute magnitude than those on the
negative RS and only significantly different from zero for the first half of the leads. It appears
likely that all of the coefficients on the negative Semivariance could be parsimoniously fit using
an exponentially decaying function, possibly with two scales (one would be needed to generate
the fast decay over a short horizon, while the other would be needed to fit the longer horizons).

The coefficients on RS+ and RS− for the panel has a slightly different patters with some
evidence of a short term increase subsequent to positive Realized Semivariance, although all
coefficients on RS+ are not statistically different from zero. The coefficient on negative Realized
Semivariance, on the other hand, are large in magnitude and uniformly statistically significant.
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The smoothness indicated in both curves is a feature of the estimated parameters and additional
smoothing was used to produce these figures.

4.2 Completely Decomposing Quadratic Variance

The specification in eq. (23) restricts the coefficients on the weekly and monthly realized semi-
variances to be identical by parameterizing the weekly and monthly terms using Realized Vari-
ances. This restriction can be relaxed by decomposing the RV terms at all lags. With this
modification, the levels model is

RVt+h = µ+ φ+
1 RS

+
t + φ−1 RS

−
t + φ+

5 RS
5+
t + φ−5 RS

5−t + φ+
22RS

22+
t + φ−22RS

22−
t + εt (25)

where RSj− is the j-day average of negative semivariance and RSj+ is the j-day average of
positive semivariance, and the log specification is

lnRVt+h = µ+φ+
1 lnRS+

t +φ−1 lnRS−t +φ+
5 lnRS5+

t +φ−5 lnRS5−t+φ+
22 lnRS22+

t +φ−22 lnRS22−
t +εt

(26)
where the convention that the weekly and monthly terms in the log specification are logs of
averages and not averages of logs was continued. The panel version of these two models is
identical except for the fixed effect allowed to capture the different long-run level of each asset’s
variance.

Results of these extended specifications where all terms are decomposed are presented in
table 3. It is not surprising that many of the coefficients are now insignificant. Two features
are present in the models estimated in levels (top row). First, the terms based on the positive
Realized Semivariance are generally insignificant and in the three cases where a positive RS is
significant, it has a negative sign. The three occurrences are all for the SPDR in the 1-day
lead model for both daily and monthly positive Realized Semivariance and monthly positive
RS for the 5-day lead model. All other statistically significant coefficients in the levels models
have are for negative RS and have positive signs. Interestingly the weekly negative Realized
Semivariance for the SPDR is significant and large in magnitude at all leads except 66-days
ahead which contrasts to the results using the non-decomposed RV in table 2 where only the
1-day and 5-day leads had significant coefficients and the values were much smaller.

More parameters in the log specification were statistically significant although the signs were
not as clearly aligned between the positive and negative Realized Semivariances. For the SPDR
the positive RS are only significant for the weekly term in the 1-day lead models. The remainder
are insignificant with mixed signs. Negative RS is generally significant with large in magnitude
coefficients. A similar pattern is evidenced in the panel although the coefficient on the daily
positive RS for the 1-day lead model is both statistically significant and large in magnitude
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relative to the coefficient on the negative RS.

5 Signed Jump Information

All of the models estimated thus far are examined the role that decomposing Realized Variances
into positive and negative Realized Semivariance can play in explaining future volatility. These
results consistently demonstrated that the information content of negative Realized Semivariance
was substantially larger than that of positive Realized Semivariance. While the theory of BNKS
shows that the difference in these two can be attributed to differences in jump variation, the
direct effect of jumps is diluted since both Realized Semivariances contain half of the integrated
variance.

We use the previously introduced signed jump variation, ∆Jt ≡ RS+
t − RS

−
t , as a method

to isolate the jumps. This difference should eliminate the common integrated variance term in
each and produce a measure that is positive when a day is dominated by an upward jump and
negative when a day is dominated by a downward jump. This difference has the added advantage
that it isn’t necessary to introduce a jump robust estimator such as Bipower Variation or MedRV
when computing this signed measure. If jumps are rare as is often advocated in the stochastic
volatility literature, then this measure should broadly correspond to the jump variation when
there a jump occurs and be mean zero noise otherwise.

The directly explore the role that signed jumps play in future variance we formulate a
model which contains signed jump variation as well as an estimator of the variation due to the
continuous part using Bipower Variance. In levels this specification is

RVt+h = µ+ φJ∆Jt + φCBV −t + φ5RV 5,t + φ22RV 22,t + εt. (27)

Since signed jump variation is often negative, the log specification requires a slight modification.
Since log-log specifications given rise to a natural elasticity interpretation, a modified signed
jump variation which measures the signed percentage of the total variation due to jumps is
constructed by

%∆J2 =
(

1 +
∆Jt

RVt

)
Using this measure the log specification can be specified where the other terms are as before,

lnRVt+h = µ+ φJ ln
(

1 +
∆Jt

RVt

)
+ φC lnBV −t + φ5 lnRV 5,t + φ22 lnRV 22,t + εt. (28)

The panel specification are sufficiently similar to not warrant separate presentation. It is also
worth noting that while this specification is very similar to the baseline model (eq. 23) that it
is not nested, even if the estimators on the RHS are replaced by their population values since it
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is not possibly to construct a measure of the variation due to the continuous part from the two
Realized Semivariance alone.

Results of the signed jump specification are presented in table 4 for both the SPDR and
the panel of individual firm variances. These results are remarkably consistent, although there
are important differences in magnitude between the SPDR and the individual firms. In the top
row – the models estimated in levels – signed jump variation has a uniformly negative sign and
is significant at all leads. Variation due to the diffusive part of volatility is has a large effect
over short horizons but becomes less relevant for monthly and quarterly leads. Moreover, in the
SPDR series, there is no evidence of persistence of diffusive volatility at the longer horizons.

The log models confirm the findings in the level specifications where the sign on percentage
signed jump variation is also uniformly negative, although more evidence is present for the
persistence of the variation due to the diffusive component of asset prices. The other coefficients,
as well as their significance, are virtually unchanged from the baseline models reported in table
2. Figures 3 and 4 contain the entire series of values for the signed jump variation component
and the diffusive volatility component for the SPDR and Panel, respectively. Figure 3 shows
that the SPDR has nearly equal and opposite signs on the diffusive part of volatility and signed
jump variation. Figure 4 documents a similar effect but shows that individual firms have a more
pronounced diffusive component of volatility and that the effect of signed jump variation is less
precise at the shortest horizon. This may be due to heterogeneity in the panel where the short
term reaction of some assets differs from others.

Adding in signed information paints a very different picture that what was found by ABD
who documented in their HAR-RV-J model that jumps leads to a slight decrease in future
variance in the S&P 500, although some caution is warranted. Our model does not pretest for
jumps while ABD does, and so on days where there no jump component is detected ABD’s jump
measure is zero. Since we do not pretest, we may have a noisier jump measure, although it is
consistent for the object of interest.

The final specification used will allow for the coefficient on positive excess jump variation
to differ from that of negative jump variation, and so it allows the restriction which is imposed
in eqs. (27) and (28) to be tested to see if the effect is uniform across the sign, or is being
driven more by positive or negative jump variation. Since the sign is no longer restricted it is
not possible to eliminate the variation due to the continuous part of the price process simply by
differencing the Realized Semivariances. One option would be to subtract a consistent estimator
of the IV, for example to use RS+

t − 1
2BVt. We opted for a simpler specification which inserts

a 0 for the signed jump variation depending on which Realized Semivariance was larger, which
avoids the introduction of a noisy IV estimator. With these changes the linear specification is

RVt+h = µ+φJ+
(
RS+

t −RS
−
t

)
It+φJ− (RS+

t −RS
−
t

)
(1− It)+φCBV −t +φ5RV 5,t+φ22RV 22,t+εt.

(29)
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where It ≡ (RS+
t −RS

−
t ) > 0 is an indicator variable for whether the positive Realized Semivari-

ance was larger than the negative Realized Semivariance. The log specification requires further
modification since one or both of the jump measures may be negative. We used a similar change
to compute the percentage jump variation, and so the log specification is

lnRVt+h =µ+ φJ+ ln
(

1 + It
RS+

t −RS
−
t

RVt

)
+ φJ− ln

(
1 + (1− It)

RS+
t −RS

−
t

RVt

)
(30)

+ φC lnBV −t + φ5 lnRV 5,t + φ22 lnRV 22,t + εt.

Table 5 contains estimates and p-values for the extended jump specification. These estimates
confirm that the findings in the restricted model are robust to the imposition of the shared
coefficient. With the exception of an insignificant coefficient at the longest lead for the SPDR,
all coefficients on the signed jump variation measures were uniformly negative. Moreover, the
coefficients on the negative signed jump variation were more larger in magnitude than on the
positive and were consistently statistically significant.

Figure 5 contains a plot of the coefficients for all 66 leads in the panel model estimated in
levels. Aside from some mixed evidence for very short term effects, both sets of coefficients are
negative although the coefficients on the positive jump variation are not significantly different
from zero.

5.1 Individual Significance

While the pooled panel results were highly significant and supportive of the idea that jump
variation – sign included – is an important determinant of future volatility, some caution is
needed. It may be the case that all of these series have some exposure to a market effect and
in pooling this common effect is highlighted where it wouldn’t be if the models were estimated
separately. To test whether the findings were robust to running individual models the three
main models, the baseline specifications (eqs. (23) and (24)), the jump specifications (eqs. (27)
and (28)), and the extended jump specification were all fit to the 105 individual firm variances.

To facilitate presentation of these results, only the percent significant for the main effect,
along with the sign, are reported in table 6 using a test with a 5% size. In the baseline specifica-
tions in levels, negative Realized Semivariance was significantly negative for many of the series
and shad a significantly negative coefficient only once. Similarly positive Realized Semivariance
was only significantly positive (above size) for the shortest horizon, where 16% of series rejected
the null. These results are inline with the panel and provide some insight into the mixed re-
sults for positive Realized Semivariance over very short horizons: a minority appear to have a
positive loading on positive Realized Semivariance and virtually none exhibit a decrease in the
short-term. The results for the baseline log specification are similar only with more evidence of
significance for long horizon positive effects of negative Realized Semivariance.
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The jump and the extended jump specifications both confirm that the findings in the pooled
panel model are pervasive in the individual variance series. At most two series have significantly
positive coefficients on signed jump variation in the jump specification – either levels or logs
– which corresponds to a rejection rate well below size. On the other hand 30% and up have
a significantly negative sign on signed jump variation indicating that negative jumps have a
significant and long lasting affect on future variance. Finally the extended jump specification
confirms that the sign restriction in the jump specification is not overly restrictive where the re-
jection rates that are above size are in favor of negative loadings on the decomposed components
of signed jump variation.

Figure 6 contains a plot of the estimated coefficients on the 105 individual firms from the
jump specification. The y-value indicated the magnitude of the coefficient where solid bars are
statistically significant. The most striking feature of this plot is the pervasiveness of the negative
sign on signed jump variation – even in cases where it is insignificant – coupled with the presence
on only 1 significantly positive coefficient in both plots.

6 Signed Jump Variation

Finally the times series of signed jump variation, ∆J2
t = RS+

t −RS
−
t , is also of direct interest.

If jumps are rare – one or none a day – then this series contains either jumps or noise. Figure 8
contains the time series plot of the SPDR signed jump variation series. This series is consistent
with a heteroskedastic white noise process. The first 5 autocorrelations are -0.111, -0.022, -0.037,
0.015 and 0.0212 and each is individually insignificantly different from zero using heteroskedas-
ticity robust inference. Signed jump variation comprises 15% of total variance, although the
percentage due is a persistent time series.

While it is tempting to interpret the heteroskedasticity as evidence of increased jump activ-
ity, it cannot be directly interpreted since the asymptotic variance of signed jump variation is
proportional to the integrated quarticity which will be high in periods of high volatility. Figure
8 also highlights two days. The first has a large positive signed jump variation and the second
has large negative jump variation. These price path of the SPDR on these two is plotted in
figure 8. The positive jump on January 3, 2001 and the negative jump on December 11, 2007.
Both of these jumps correspond to unexpected cuts by the Fed. On January 3, 2001 the Fed
announced a surprise 50 basis point cut which triggered a rally. The December 11 drop also
corresponded to an unexpected cut by the Fed – 25 basis points – which was interpreted as an
ominous sign of an impending recession.
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7 Conclusion

This paper has studied the role that signed information – especially the role of signed jumps –
plays in determining future variance. This decomposition was facilitated using Realized Semi-
variance estimators of Barndorff-Nielsen, Kinnebrock & Shephard (2008) in a framework concep-
tually similar to Andersen et al. (2007). Beginning with a simple decomposition of the Realized
Variance into positive and negative Realized Semivariance, we documented that signed informa-
tion is important, and that a negative Realized Semivariance captures a modern version of the
familiar leverage effect.

This paper has documented that jumps play an important role in determining future price
variability although sign matters. When signed jump information was introduced into the model
it is often found that jump variation has a linear relationship, and so aggregate unsigned jump
variation will have a small role in future volatility. However once signed information is incor-
porated with jumps a very different picture emerges – positive jumps or “good volatility” lead
to lower future variance while negative jumps or “bad volatility” lead to higher volatility, often
over long horizons.

The most important extension of this work is to reconsider common stochastic volatility
models. While many stochastic volatility models contain leverage and/or jumps, to our knowl-
edge only the BNS Lévy driven stochastic volatility model contains leverage between the jump
process and the volatility (Barndorff-Nielsen & Shepard 2001). Moreover, whether the volatil-
ity of market returns contains a diffusive component at all is an open question (Todorov &
Tauchen 2008). It is also within the realm of possibility that differing degrees of persistence of
positive jump induced volatility, negative jump induced volatility, and continuous part volatility
may play a role in the long-memory often documented in volatility.

It would further be interesting to extend this to asset classes outside of equities, and to other
markets. The S&P 500 is well known to have a strong leverage effect and it would be interesting
to document which assets also exhibit a similarly strong leverage effect. The precision of realized
measures allows for easier identification which may allow previously undocumented leverage to
be detected. Finally, it is not clear whether the Realized Variance is even required to produce
accurate forecasts if Realized Semivariance can be constructed.

A Inference on the Unbalanced Panel

The models will be fit both individually to the S&P 500 SDPR and the individual firms. Separate
estimation on the models on the individual firms does not provide a direct method to assess
the significance of the average effect, and so a pooled unbalanced panel HAR with a fixed effect
for each series will be fit which will allow inference on the average values of the predictive
parameters. In the simplest specification,
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RVi,t+h = µi + φ1RVi,t + φ5RV 5,i,t + φ22RV 22,i,t + εi,t, i = 1, . . . , nt, t = 1, . . . , T

which can be generically expressed as

yi,t+h = µi + φ′Yi,t + εi,t, i = 1, . . . , nt, t = 1, . . . , T.

Define ỹi,t+h = yi,t+h − ȳi and Ỹi,t = Yi,t − Ȳi as the demeaned regressand and regressors,
respectively. The pooled parameters can be estimated by

φ̂ =

(
T−1

T∑
t=1

(
n−1

t

nt∑
i=1

Ỹi,tỸ
′
i,t

))−1(
T−1

T∑
t=1

(
n−1

t

nt∑
i=1

Ỹi,tỹi,t

))
. (31)

Inference can be similarly made using the asymptotic distribution

√
T
(
φ̂− φ0

)
d→ N

(
0,Σ−1ΩΣ−1

)
where

Σ−1 = plim T→∞T
−1

T∑
t=1

(
n−1

t

nt∑
i=1

Ỹi,tỸ
′
i,t

)
and

Ω−1 = avar

(
T−1/2

T∑
t=1

zt

)
where

zt = n−1
t

nt∑
i=1

Ỹi,tεi,t

It should be noted that the cross-section size, even if very large, does not appear in the asymptotic
distribution since it should be expected that plim nt→∞nt

−1
∑nt

i=1 Ỹi,tεi,t → τ2 > 0 due to the
factor structure of returns, and so this inference strategy would be valid under with a fixed
cross-section size, or an expanding one. A similar result was found in the context of composite
likelihood estimation, and this asymptotic distribution can be seem as a special case of Engle,
Shephard & Sheppard (2008).
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B Data Cleaning

Only transaction data were taken from the NYSE TAQ. All series were automatically cleaned
according to a set of 6 rules:

1. Transactions outside of 9:30:00 AM and 16:00:00 were discarded

2. Transactions with a 0 price or volume were discarded

3. Each day the most active exchange was determined. Only transactions from this exchange
were retained.

4. Only trades with conditions E, F or blank were retained.

5. Transaction prices outside of the CRSP high or low were discarded.

6. Trade with immediate reversals more than 5 times a 50-sample moving window - excluding
the transaction being tested - were discarded.

These rules are similar to those of Barndorff-Nielsen, Hansen, Lunde & Shephard (2008b),
and prices were not manually cleaned for problems not addressed by these rules.
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Figure 1: Fit coefficients from the levels model that decomposed realized variance into its signed
components, RVt+h = µ+φ+

1 RS
+
t +φ−1 RS

−
t +φ5RV 5,t +φ22RV 22,t +εt, and the S&P 500 SPDR.

The coefficients on positive semi-variance are uniformly negative, and significant over relatively
long horizons. The coefficients on negative semi-variance are significant at almost all leads and
large in magnitude.
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Figure 2: Fit coefficients from the levels model that decomposed realized variance into its signed
components, RVi,t+h = µi + φ+

1 RS
+
i,t + φ−1 RS

−
i,t + φ5RV 5,i,t + φ22RV 22,i,t + εi,t, and the panel

of individual firm volatilities. The coefficients on positive semi-variance are uniformly negative,
and significant over all horizons except the shortest. The coefficients on negative semi-variance
are significant at all leads and large in magnitude.
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Levels
RVi,t+h = µi + φJ∆J2

i,t + φCBVi,t + φ5RV 5,i,t + φ22RV 22,i,t + εi,t

SPDR Panel
h φJ φC φ5 φ22 φJ φC φ5 φ22

1 −0.817
(.000)

0.622
(.000)

0.129
(.067)

0.208
(.000)

−0.319
(.011)

0.520
(.000)

0.296
(.001)

0.160
(.008)

5 −0.249
(.000)

0.139
(.078)

0.328
(.012)

0.312
(.003)

−0.256
(.012)

0.347
(.000)

0.219
(.125)

0.288
(.004)

22 −0.227
(.000)

0.051
(.388)

0.265
(.113)

0.219
(.054)

−0.170
(.005)

0.156
(.000)

0.132
(.224)

0.388
(.000)

66 −0.092
(.053)

0.023
(.304)

0.057
(.222)

0.193
(.027)

−0.108
(.010)

0.087
(.000)

0.062
(.178)

0.418
(.000)

Logs
lnRVi,t+h = µi + φJ %∆J2

i,t + φC lnBVi,t + φ−1 lnRS−i,t + φ5 lnRV 5,i,t + φ22 lnRV 22,i,t + εi,t

SPDR Panel
h φJ φC φ5 φ22 φJ φC φ5 φ22

1 −0.418
(.000)

0.400
(.000)

0.376
(.000)

0.167
(.000)

−0.176
(.000)

0.336
(.000)

0.351
(.000)

0.264
(.000)

5 −0.224
(.000)

0.225
(.000)

0.363
(.000)

0.292
(.000)

−0.155
(.000)

0.215
(.000)

0.355
(.000)

0.351
(.000)

22 −0.206
(.000)

0.124
(.001)

0.175
(.067)

0.447
(.000)

−0.125
(.000)

0.134
(.000)

0.281
(.000)

0.441
(.000)

66 −0.092
(.200)

0.059
(.072)

0.093
(.241)

0.477
(.000)

−0.104
(.000)

0.079
(.000)

0.191
(.000)

0.514
(.000)

Table 4: Model which includes signed jump information where the asymptotic relationship where
quadratic variation has been decomposed into signed jump variation, ∆J2, and its continuous
component using Bipower Variation, BV . In the log specification the percentage jump variation
is defined as %∆J2

i,t = ln
(

1 + (∆J2
i,t)/RVi,t

)
. P-values are reported below parameter estimated

in parentheses. The top panel contains results form the model in levels and the bottom contains
estimates from the log specification. The negative coefficients on ∆J2 at all horizons indicate
that variation due to positive jumps lowers future variance since ∆J2 = RS+ − RS− > 0
while variation due to negative jumps raises future variance. There are also notable differences
between the coefficients on Bipower Variation in the S&P 500 SPDR and the individual firms.
The continuous component does not persist out to the monthly horizon for the index while the
signed jump component does – for the individual firms, both components are significant and
most horizons.
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Figure 3: Fit coefficients from the levels model that included both signed jump variation and
bipower variation, RVt+h = µ + φJ∆Jt + φCBV −t + φ5RV 5,t + φ22RV 22,t + εt, along with 95%
confidence intervals for the S&P 500 SPDR.
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Figure 4: Fit coefficients from the levels model that included both signed jump variation and
bipower variation, RVi,t+h = µi + φJ∆Ji,t + φCBV −i,t + φ5RV 5,i,t + φ22RV 22,i,t + εi,t, along with
95% confidence intervals for the panel of individual volatilities.
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Levels
RVi,t+h = µi + φJ+∆J2+

i,t + φJ−∆J2−
i,t + φCBVi,t + φ5RV 5,i,t + φ22RV 22,i,t + εi,t

SPDR Panel
h φJ+ φJ− φC φ5 φ22 φJ+ φJ− φC φ5 φ22

1 −0.151
(.333)

−0.517
(.000)

0.763
(.000)

0.148
(.037)

0.203
(.000)

−0.150
(.264)

−0.224
(.005)

0.623
(.000)

0.304
(.000)

0.158
(.008)

5 −0.221
(.055)

−0.144
(.003)

0.242
(.017)

0.319
(.017)

0.314
(.003)

−0.084
(.481)

−0.173
(.002)

0.413
(.000)

0.224
(.119)

0.289
(.004)

22 −0.189
(.014)

−0.134
(.004)

0.142
(.051)

0.258
(.127)

0.220
(.052)

−0.068
(.169)

−0.115
(.000)

0.205
(.000)

0.136
(.216)

0.388
(.000)

66 0.030
(.544)

−0.064
(.030)

0.024
(.535)

0.063
(.209)

0.191
(.028)

−0.025
(.352)

−0.075
(.001)

0.111
(.000)

0.064
(.164)

0.418
(.000)

Logs
lnRVi,t+h = µi + φJ+ %∆J2+

i,t + φJ− %∆J2−
i,t + φC lnBVi,t + φ−1 lnRS−i,t + φ5 lnRV 5,i,t + φ22 lnRV 22,i,t + εi,t

SPDR Panel
h φJ+ φJ− φC φ5 φ22 φJ+ φJ− φC φ5 φ22

1 −0.246
(.004)

−0.527
(.000)

0.399
(.000)

0.377
(.000)

0.168
(.000)

−0.000
(.979)

−0.284
(.000)

0.334
(.000)

0.351
(.000)

0.266
(.000)

5 −0.281
(.009)

−0.187
(.014)

0.226
(.000)

0.362
(.000)

0.291
(.000)

−0.149
(.000)

−0.159
(.000)

0.215
(.000)

0.355
(.000)

0.351
(.000)

22 −0.437
(.000)

−0.057
(.593)

0.126
(.001)

0.173
(.070)

0.444
(.000)

−0.135
(.000)

−0.119
(.000)

0.134
(.000)

0.281
(.000)

0.441
(.000)

66 −0.161
(.317)

−0.048
(.768)

0.059
(.068)

0.093
(.248)

0.476
(.000)

−0.097
(.010)

−0.108
(.001)

0.079
(.000)

0.191
(.000)

0.514
(.000)

Table 5: Model which includes further decomposes signed jump information into positive
and negative jump variation where ∆J2+ = (RS+ − RS−)I[RS+>RS−], ∆J2+ = (RS+ −
RS−)I[RS+<RS−], and its continuous component using Bipower Variation, BV . In the log speci-

fication the signed percentage jump variation is defined as %∆J2+
i,t = ln

(
1 + (∆J2

i,t)/RVi,t

)
and

%∆J2−
i,t = ln

(
1 + (∆J2

i,t)/RVi,t

)
. P-values are reported below parameter estimated in parenthe-

ses. The top panel contains results form the model in levels and the bottom contains estimates
from the log specification. The parameter estimates on the decomposed sign variation are simi-
lar to the restricted version reported in table 4 with the exception of the lack of significance in
the levels model for the S&P 500 SPDR.
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Figure 5: Fit coefficients from the levels model that included both signed jump variation and
bipower variation, RVi,t+h = µi + φJ+

(
RS+

i,t −RS
−
i,t

)
Ii,t + φJ−

(
RS+

i,t −RS
−
i,t

)
(1− Ii,t) +

φCBV −i,t + φ5RV 5,i,t + φ22RV 22,i,t + εi,t., along with 95% confidence intervals for the panel
of individual volatilities.
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Individual Regressions in Levels (Percentage Rejection)

Baseline Jumps Extended Jumps
RS+ RS− J+ J−

h Sig. + Sig - Sig + Sig - Sig + Sig - Sig + Sig - Sig + Sig -
1 0.162 0.010 0.857 0.010 0.010 0.486 0.010 0.067 0.019 0.429
5 0.019 0.086 0.571 0.010 0.010 0.390 0.010 0.095 0.010 0.324

22 0.019 0.181 0.467 0.010 0.010 0.352 0.048 0.114 0.010 0.305
66 0.048 0.229 0.324 0.019 0.019 0.267 0.076 0.048 0.029 0.238

Individual Regressions in Logs (Percentage Rejection)

Baseline Jumps Extended Jumps
RS+ RS− J+ J−

h Sig. + Sig - Sig + Sig - Sig + Sig - Sig + Sig - Sig + Sig -
1 0.924 0.000 1.000 0.000 0.000 0.914 0.057 0.048 0.000 0.876
5 0.200 0.010 0.990 0.000 0.000 0.648 0.000 0.238 0.000 0.267

22 0.029 0.067 0.829 0.000 0.000 0.476 0.000 0.219 0.000 0.219
66 0.038 0.048 0.429 0.000 0.010 0.171 0.057 0.048 0.029 0.143

Table 6: This table contains percentage rejects for the Baseline, Jump, and Extended Jump
model for individually fit models for the 105 S&P 100 constituents. Two columns are presented
for each term, the left of which indicates the percentage of parameters that are significantly
positive, the other indicating the percentage significantly negative. For example, in the baseline
specification (equation 23) the positive Realized Semivariance was significantly positive in 16.2%
of the series while the negative Realized Semivariance was significantly positive 85.7% of the
time. These results confirm that the findings on the S&P 500 SPDR and the pooled panel are
broadly reproducible in the cross-section of conditional variances.
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Figure 6: Sorted effects of the signed jump variation in the individual firm volatilities. The
magnitude of the coefficient on ∆J2 is indicated as distance from the horizontal axis, and solid
bars indicate significance at the 5% level. The majority of the parameter estimates are negative
and significant.
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Figure 7: Time series of the signed jump variation (∆J2 = RS+−RS−) for the S&P 500 SPDR.
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Figure 8: Intradaily prices for the S&P 500 SPDR on the two dates identified in figure 8.
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