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Abstract

This paper proposes new methodologies for evaluating out-of-sample forecasting

performance that are robust to the choice of the estimation window size. The method-

ologies involve evaluating the predictive ability of forecasting models over a wide range

of window sizes. We show that the tests proposed in the literature may lack power

to detect predictive ability, and might be subject to data snooping across di¤erent

window sizes if used repeatedly. An empirical application shows the usefulness of the

methodologies for evaluating exchange rate models�forecasting ability.
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1 Introduction

This paper proposes new methodologies for evaluating the out-of-sample forecasting perfor-

mance of economic models. The novelty of the methodologies that we propose is that they

are robust to the choice of the estimation and evaluation window size. The choice of the

estimation window size has always been a concern for practitioners, since the use of di¤er-

ent window sizes may lead to di¤erent empirical results in practice. In addition, arbitrary

choices of window sizes have consequences about how the sample is split into in-sample and

out-of-sample portions.1 Notwithstanding the importance of the problem, no satisfactory

solution has been proposed so far,2 and in the forecasting literature it is common to only

report empirical results for one window size.3 This common practice raises two concerns.

A �rst concern is that the �ad hoc� window size used by the researcher may not detect

signi�cant predictive ability even if there would be signi�cant predictive ability for some

other window size choices. A second concern is the possibility that satisfactory results were

obtained simply by chance, after data snooping over window sizes. That is, the successful

evidence in favor of predictive ability might have been found after trying many window sizes,

although only the results for the successful window size were reported and the search process

was not taken into account when evaluating their statistical signi�cance.4 Ultimately, how-

ever, the size of the estimation window is not a parameter of interest for the researcher:

the objective is rather to test predictive ability and, ideally, researchers would like to reach

empirical conclusions that are robust to the choice of the estimation window size.

This paper views the estimation window as a "nuisance parameter": we are not interested

in selecting the "best" window; rather we would like to propose predictive ability tests

1The problem we address a¤ects not only rolling window forecasting schemes, which we focus on, but

also recursive window forecasting schemes, which we discuss in the Appendix.
2As discussed in Pesaran and Timmermann (2005), the choice of the window size depends on the nature

of the possible model instability and the timing of the possible breaks. In particular, a large window is

preferable if the data generating process is stationary, but comes at the cost of lower power since there are

fewer observations in the evaluation window. Similarly, a shorter window may be more robust to structural

breaks although may not provide as precise estimation as larger windows if the data are stationary. The

empirical evidence shows that instabilities are widespread; e.g. Stock and Watson (2003a) for macroeconomic

data, Paye and Timmermann (2006) for asset returns and Rossi (2006) for exchange rate models.
3For example, see Meese and Rogo¤ (1983a), Chinn (1991), Qi and Wu (2003), Cheung et al. (2005), van

Dijk and Frances (2005), Clark and West (2006, 2007), Gourinchas and Rey (2007), and Molodtsova and

Papell (2009).
4Only rarely do researchers check the robustness of the empirical results to the choice of the window size

by reporting results for a selected choice of window sizes.
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that are "robust" to the choice of the estimation window size. The procedures that we

propose ensure that this is the case by evaluating the models�forecasting performance for

a variety of estimation window sizes, and then taking summary statistics of this sequence.

Our methodology can be applied to most tests of predictive ability that have been proposed

in the literature, such as Diebold and Mariano (1995), West (1996), Clark and McCracken

(2001) and Clark and West (2007).5 We also propose methodologies that can be applied to

Mincer and Zarnowitz�s (1969) tests of forecast e¢ ciency, as well as more general tests of

forecast optimality. Although the paper focuses on rolling window forecast, similar results

are developed for recursive window forecasts, and are provided in the Appendix.

This paper is closely related to the works by Pesaran and Timmermann (2007) and Clark

and McCracken (2009), and more distantly related to Pesaran, Pettenuzzo and Timmermann

(2006) and Giacomini and Rossi (2010). Pesaran and Timmermann (2007) propose cross val-

idation and forecast combination methods that identify the "ideal" window size using sample

information. In other words, Pesaran and Timmermann (2007) extend forecast averaging

procedures to deal with the uncertainty over the size of the estimation window, for example,

by averaging forecasts computed from the same model but over various estimation window

sizes. Their objective is to improve the model�s forecast. Similarly, Clark and McCracken

(2009) combine rolling and recursive forecasts in the attempt of improving the forecasting

model. Our paper instead proposes to take a summary statistics of tests of predictive ability

computed over several estimation window sizes. Our objective is not to improve the fore-

casting model nor to estimate the ideal window size. Rather, our objective is to assess the

robustness of conclusions of predictive ability tests to the choice of the estimation window

size. Pesaran, Pettenuzzo and Timmermann (2006) have exploited the existence of multiple

breaks to improve forecasting ability; in order to do so, they need to estimate the process

driving the instability in the data. An attractive feature of the procedure we propose is that

it does not need to know nor determine when the structural breaks have happened. Giaco-

mini and Rossi (2010) propose techniques to evaluate the relative performance of competing

forecasting models in unstable environments, assuming a "given" estimation window size. In

this paper, our goal is instead to ensure that forecasting ability tests be robust to the choice

of the estimation window size. Finally, this paper is linked to the literature on data snoop-

ing: if researchers report empirical results for just one window size (or a couple of them)

when they actually considered many possible window sizes prior to reporting their results,

their inference will be incorrect. This paper provides a way to account for data snooping

5The only assumption we make is that the window size be large relative to the sample size.
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over several window sizes, and removes the arbitrary decision of the choice of the window

length.6

We show the usefulness of our methods in an empirical analysis. The analysis re-evaluates

the predictive ability of models of exchange rate determination by verifying the robustness

of the recent empirical evidence in favor of models of exchange rate determination (e.g.

Molodtsova and Papell, 2009, and Engel, Mark and West, 2007) to the choice of the window

size. Our results reveal that the forecast improvements found in the literature are much

stronger when allowing for a search over several window sizes.

The paper is organized as follows. Section 2 presents the econometric methodology.

Section 3 shows some Monte Carlo evidence on the performance of our procedures in small

samples, and Section 4 presents the empirical results. Section 5 concludes.

2 Econometric methodology

Let h � 1 denote the (�nite) forecast horizon. We assume that the researcher is interested in
evaluating the performance of h�steps ahead direct forecasts for the scalar variable yt+h using
a vector of predictors xt using a rolling window forecast scheme. The case of the recursive

window forecast scheme will be considered in Appendix B. We assume that the researcher

has P out-of-sample predictions available, where the �rst prediction is made based on an

estimate from a sample 1; 2; :::; R, such that the last out-of-sample prediction is made based

on an estimate from a sample of T �R+1; :::; R+P �1 = T where R+P +h�1 = T +h is

the size of the available sample. The methods proposed in this paper can be applied to out of

sample tests of equal predictive ability, forecast rationality and unbiasedness. Let researchers

bee interested in evaluating the forecasting performance of two competing models: Model

1, involving parameters �, and Model 2, involving parameters 
. In the rolling window

forecast method, the true but unknown model�s parameters �� and 
� are estimated by b�t;R
and b
t;R, which are calculated using samples of R observations dated t � R + 1; :::; t, for

t = R; R+ 1; :::; T . Let
n
L
(1)
t+h

�b�t;R�oT
t=R

and
n
L
(2)
t+h

�b
t;R�oT
t=R

denote the sequence of loss

functions of models 1 and 2 evaluating h�steps ahead relative out-of-sample forecast errors,
and let

n
�Lt+h

�b�t;R; b
t;R�oT
t=R

denote their di¤erence.7

6See White (2000) or Clark and McCracken (2010) for techniques robust to data snooping in a very

di¤erent context, namely multiple model comparisons.
7The rolling scheme case involves in principle the choice of two nuisance parameters: the size of the

estimation window, and the �rst estimation window, which could in principle be di¤erent. In practice,
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We start by discussing results pertaining to widely used measures of relative forecasting

performance, where the loss function is the di¤erence of the forecast error losses of two

competing models. We consider two separate cases, depending on whether the models are

nested or non-nested. Subsequently we present results for regression-based tests of predictive

ability, such as Mincer and Zarnowitz�(1969) regressions, among others.

2.1 Non-Nested Model Comparisons

Let the researcher evaluate the two models using the sample average of the sequence of

standardized out-of-sample loss di¤erences:

�LT (R) �
1b�RT�1=2

TX
t=R

�Lt+h(b�t;R; b
t;R);
where b�2R is a consistent estimate of the long run variance matrix of the out-of-sample loss
di¤erences. For example, this is the strategy adopted by Diebold and Mariano (1995), West

(1996) and McCracken (2000).8 The test statistics that each of these papers propose di¤er

in the estimate of the variance. Since our approach is valid no matter which test statistic is

considered, we will defer details on how the variance estimate is constructed.

We make the following high level assumption.9

Assumption 1:

(a) The partial sum �̂�1R T�1=2
P[�T ]

t=[�T ]f�Lt+h(�̂t;R; 
̂t;R)�E[�Lt+h(�
�; 
�)]g obeys a func-

tional central limit theorem:

�̂�1R T�1=2
[�T ]X

t=[�T ]

n
�Lt+h(�̂t;R; 
̂t;R)� E[�Lt+h(�

�; 
�)]
o
) B(�)� B(�); (1)

where [x] denotes the integer part of x, ) denotes weak convergence on the space of cadlag

functions on (0; 1), D(0; 1) equipped with the Skorohod topology, and B(�) denotes the stan-
dard Brownian motion (see Billingsley (1968) for the de�nitions of weak convergence, space

D and the Skorohod topology);

however, researchers choose the �rst estimation window to be the same as the size of the rolling window, the

case we focus on. Appendix B shows that our proposed tests can be extended to the recursive scheme in a

straightforward manner. We focus on the rolling scheme in the main text because it is the leading case in

which the value of R is manipulated in practice.
8Note that

�
T
P

�1=2
�LT (R) would be exactly the test statistic proposed by Diebold and Mariano (1995),

West (1996) and McCracken (2000).
9See Rossi and Sekhposyan (2010) for more primitive assumptions.
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(b) limT;R!1R=T = � 2 (0; 1).

Assumption 1 implies b��1R P�1=2
PT

t=R�Lt+h(
b�t;R; b
t;R) is asymptotically normally dis-

tributed for a given estimation window R, and it is therefore satis�ed for the Diebold and

Mariano (1995), West (1996) and McCracken (2000) tests, under their assumptions.

Proposition 1 describes our proposed procedure for non-nested models. We consider two

appealing and intuitive types of weighting schemes over the window sizes. The �rst scheme

is to choose the largest value of the �LT (R) test sequence, and corresponds to the test

labeled RT . This mimics to the case of a researcher experimenting with a variety of window

sizes, and reporting only the empirical results corresponding to the best evidence in favor

of predictive ability. The second scheme is to take a weighted average of the �LT (R) tests,

giving equal weight to each test. This would correspond to the test labeled AT .

Proposition 1 (Out-of-sample Robust test for Non-nested Models) Suppose Assump-

tion 1 holds. Let

RT = sup
R
j�LT (R) j; R = R; :::R; (2)

and

AT =
1

R�R + 1

RX
R=R

j�LT (R)j ; (3)

where

�LT (R) �
1b�RT�1=2

TX
t=R

�LT (b�t;R; b
t;R);
R = [�T ] ; R = [�T ]; R = [�T ]; and �̂2R is a consistent estimator of �

2.

Under the null hypothesis H0 : limT!1E [�L
�
T (R)] = 0 for all R;

RT =) sup
�2[�;�]

jB (1)� B (�) j; (4)

and

AT =)
Z �

�

jB (1)� B (�)j d�; (5)

where B (�) is a standard univariate Brownian motion. The null hypothesis for the RT test is

rejected at the signi�cance level � when RT > kR� whereas the null hypothesis for the AT test
is rejected when AT > kA� ; where the critical values

�
�; kR�

�
and

�
�; kA�

�
for various values

of � and � = 1� � are reported in Table 1.
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The proof of Proposition 1 is provided in Appendix A. Note that the critical values for

signi�cance level � are, respectively, kR� and k
A
� , where k

R
� and k

A
� solve

P

(
sup
�2[�;�]

jB (1)� B (�) j > kR�

)
= � (6)

P

(Z �

�

jB (1)� B (�)j d� > kA�

)
= �; (7)

and are computed using Monte Carlo simulation methods.

Note also that the practical implementation of (2) and (3) requires researchers to choose

R and R. To avoid data snooping over the choices of R and R, we recommend researchers

to �x R = T �R, and to use R = [0:15T ] in practice.

A consistent estimate of �2 for non nested model comparisons in rolling windows is

provided by McCracken (2000, p. 203, eqs. 5 and 6). For example, a consistent estimator

when parameter estimation error is negligible is:

�̂2R =

q(P )�1X
i=�q(P )+1

(1� ji=q(P )j)P�1
TX
t=R

�Ldt+h

�b�t;R; b
t;R��Ldt+h�i �b�t�i;R; b
t�i;R� ; (8)

where �Ldt+h
�b�t;R; b
t;R� � �Lt+h �b�t;R; b
t;R� � P�1

PT
t=R�Lt+h

�b�t;R; b
t;R� and q(P ) is a
bandwidth that grows with P (e.g., Newey and West, 1987). In particular, a leading case

where (8) can be used is when the same loss function is used for estimation and evaluation.

INSERT TABLE 1 HERE

2.2 Nested Models Comparison

For the case of nested models comparison, we follow Clark and McCracken (2001) and Clark

and West (2007), and focus on the empirically leading case of a quadratic loss function,

which implies that the predictive ability is evaluated according to the Mean Squared Forecast

Error.10 Let Model 1 be the parsimonious model, and Model 2 be the larger model that nests

Model 1. Let yt+h the period t forecasts of yt+h from the two models be denoted by by1t;t+h
and by2t;t+h. We consider two separate test statistics, proposed by Clark and McCracken
(2001) and Clark and West (2007), respectively.

10The reason we focus on quadratic loss functions is that this is a crucial assumption in Clark and West

(2007), which allows them to obtain asymptotically normal test statistics. Since the methods proposed in

this paper rely on the asymptotic normality result, we maintain their assumption.
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For the latter, de�ne the adjusted mean square prediction error as:

�Ladjt+h(
b�t;R; b
t;R) = (yt+h � by1t;t+h)2 � �(yt+h � by2t;t+h)2 � (by1t;t+h � by2t;t+h)2� ;

so that the rescaled Clark and West (2007) test statistic is:11

�LadjT (R) � 1b�RT�1=2
TX
t=R

�Ladjt+h(
b�t;R; b
t;R); (9)

where b�2R is a consistent estimate of the long run variance matrix of the adjusted out-of-
sample loss di¤erences, �Ladjt+h(b�t;R; b
t;R). Note that, since the models are nested, the Clark
and West�s (2007) is one sided; as a consequence, our test procedure will be one sided

too. Clark and West (2007) show that the test statistic (9) is "approximately normal"; if

we extend the Clark and West�s (2007) argument of "approximate normality" to partial

sums of rescaled adjusted out-of-sample loss di¤erences, under their assumptions a logical

approximation can be obtained as follows.

We make the following high level assumption.

Assumption 2:

(a) The partial sum �̂�1R T�1=2
P[�T ]

t=[�T ]

n
�Ladjt+h(�̂t;R; 
̂t;R)� E[�Ladjt+h(�

�; 
�)]
o
obeys a func-

tional central limit theorem:

�̂�1T�1=2
[�T ]X

t=[�T ]

n
�Ladjt+h(�̂t;R; 
̂t;R)� E[�Ladjt+h(�

�; 
�)]
o
) B(�)� B(�); (10)

(b) limT;R!1R=T = � 2 (0; 1).

Assumption 2 implies b��1R P�1=2
PT

t=R�L
adj
t+h(

b�t;R; b
t;R) is approximately asymptotically
normally distributed for a given estimation window R, as in Clark and West (2007).12

Proposition 2 presents our robust test for the case of nested models comparisons.

11The original Clark and West�s (2007) statistic is 1b�RP�1=2PT
t=R�L

adj
t+h(

b�t;R; b
t;R):
12More precisely, Clark and West (2007) numerically show that the tail of the asymptotic distribution

of their test statistic can be bounded by that of the standard normal distribution. Because normal ap-

proximations to the distribution of their test statistic yields a conservative test for given R, our test is

also conservative which is con�rmed by the Monte Carlo experiment. Note that Clark and McCracken�s

(2001) ENCNEW test would not satisfy this assumption, since it does not have an asymptotically Normal

distribution.
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Proposition 2 (Out-of-sample Robust test for Nested Models) Suppose Assumption

2 holds. Let

RT = sup
R
�LadjT (R) ; R = R; :::R; (11)

and

AT =
1

R�R + 1

RX
R=R

�LadjT (R) ; (12)

where

�LadjT (R) � 1b�RT�1=2
TX
t=R

�Ladjt+h(
b�t;R; b
t;R)

and �̂2R is a consistent estimator of �
2. Under the null hypothesisH0 : limT!1E[�L

adj
T (R)] =

0 for all R;

RT =) sup
�2[�;�]

[B (1)� B (�)] ; (13)

and

AT =)
Z �

�

[B (1)� B (�)] d�; (14)

where R = [�T ] ; R = [�T ]; R = [�T ] ; and B (�) is a standard univariate Brownian motion.
The null hypothesis for the RT test is rejected at the signi�cance level � when RT > kR�

whereas the null hypothesis for the AT test is rejected when AT > kA� ; where the critical

values
�
�; kR�

�
and

�
�; kA�

�
for various values of � and � = 1�� are reported in Table 2(a).

The proof of Proposition 2 is provided in Appendix A. Note that the critical values for

a signi�cance level � are, respectively, kR� and k
A
� , where k

R
� and k

A
� solve

P

(
sup
�2[�;�]

[B (1)� B (�)] > kR�

)
= � (15)

P

(Z �

�

[B (1)� B (�)] d� > kA�

)
= �: (16)

The critical values are obtained via Monte Carlo simulation methods.

A consistent estimator of �2 when parameter estimation error is negligible is

�̂2R =

q(P )�1X
i=�q(P )+1

(1� ji=q(P )j)P�1
TX
t=R

�Ladj;dt+h

�b�t;R; b
t;R��Ladj;dt+h�i

�b�t�i;R; b
t�i;R� ; (17)

where �Ladj;dt+h

�b�t;R; b
t;R� � �Ladjt+h �b�t;R; b
t;R�� P�1
PT

t=R�L
adj
t+h

�b�t;R; b
t;R� and q(P ) is a
bandwidth that grows with P (e.g., Newey and West, 1987)

9



INSERT TABLE 2a HERE

Clark and West�s (2007) test is only approximately asymptotically normal, and it may be

conservative. Thus, we also consider statistics based on the Clark and McCracken�s (2001)

ENCNEW test, which may have better small sample properties. De�ne the ENCNEW

statistic as:

�LET (R) � P
P�1

PT
t=R

�
(yt+h � by1t;t+h)2 � (yt+h � by1t;t+h) (yt+h � by2t;t+h)�

P�1
PT

t=R (yt+h � by2t;t+h)2 ; (18)

where P is the number of out-of-sample predictions available, and by1t;t+h; by2t;t+h depend on
the parameter estimates �̂t;R; 
̂t;R.

As in Clark and McCracken (2001), we make the following assumptions..13

Assumption 3:

(a) The parameter estimates �̂t;R satis�es �̂t;R � �� = B1 (t)	1 (t) where B1 (t)	1 (t) =�
R�1

Pt
j=t�R+1 q1;j

��1 �
R�1

Pt
j=t�R+1  1;j

�
, and similarly for 
̂t;R � 
� = B2 (t)	2 (t) :

(b) Let Ut =
h
ut; x

0
2;t � Ex02;t;  

0
2;t; vec

�
 2;t 

0
2;t � E 2;t 

0
2;t

�0
; vec (q2;t � Eq2;t)

0
i0
: Then

EUt = 0; Eq2;t < 1 is p.d.; for some r > 4, Ut is uniformly Lr bounded; for all t, Eu2t =

�2 <1; for some r > d > 2, Ut is strong mixing with coe¢ cients of size �rd= (r � d) ; lettingeUt denote the vector of non-redundant elements of Ut; limT!1T
�1E

�PT
t=1
eUt��PT

t=1
eUt�0 =


 <1 is p.d.

(c) E
�
 2;t 

0
2;t

�
= �2Eq2;t and E

�
 2;tj 2;t�j; q2;t�j;j = 1; 2; :::

�
= 0:

(d) limT;R!1R=T = � 2 (0; 1) and the forecast horizon is one.

Note that Assumption 3 imposes conditional homoskedasticity and one-step ahead fore-

cast horizons; for situations where conditional heteroskedasticity and multi-step predictions

are important, see Clark and McCracken (2005b). Proposition 3 presents our robust test for

the case of nested models comparisons. The proof of Proposition 3 is provided in Appendix

A.

Proposition 3 (Out-of-sample Robust test for Nested Models II) Suppose Assump-

tion 3 holds. Let

RE
T = sup

R
�LET (R) ; R = R; :::R; (19)

13See Clark and McCracken (2001) for a discussion of these assumptions.
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and

AET =
1

R�R + 1

RX
R=R

�LET (R) ; (20)

where �LET (R) is de�ned in (18). Under the null hypothesis H0 : limT!1E[�L
E
T (R)] = 0

for all R;

RE
T =) sup

�2[�;�]
��1

Z 1

�

[Bk (s)� Bk (s� �)]0 dBk (s) ; (21)

and

AET =)
Z �

�

�
��1

Z 1

�

[Bk (s)� Bk (s� �)]0 dBk (s)
�
; (22)

where R = [�T ]; R = [�T ] ; and Bk (�) is a standard k-variate Brownian motion and k is the
number of parameters in the larger model in excess of the parameters in the smaller model.

The null hypothesis for the RE
T test is rejected at the signi�cance level � when RE

T > kR�

whereas the null hypothesis for the AET test is rejected when AET > kA� ; where the critical

values
�
�; kR�

�
and

�
�; kA�

�
for various values of � and � = 1 � � are reported in Table

2(b).14

INSERT TABLE 2(b) HERE

2.3 Regression-Based Tests of Predictive Ability

Under the widely used Mean Squared Forecast Error loss, optimal forecasts have a variety

of properties. They should be unbiased, one step ahead forecast errors should be serially

uncorrelated, h-steps ahead forecast errors should be correlated at most of order h� 1 (see
Granger and Newbold, 1996, and Diebold and Lopez, 1996). It is therefore interesting to test

such properties. We do so in the same framework of West and McCracken (1998). We assume

one is interested in the relationship between the prediction error and a vector of variables.

Let the forecast error be vt+h (�
�) � vt+h, and its estimated value be vt+h

�b�t;R� � bvt+h.
The properties of interest involve the linear relationship between vt+h and a (p� 1) vector
function of data at time t.
14Note that the critical values for a signi�cance level � are, respectively, kR� and kA� ,

where kR� and kA� solve P
n
sup�2[�;�] �

�1 R 1
�
[Bk (s)� Bk (s� �)]0 dBk (s) > kR�

o
= � and

P
nR �

�

n
��1

R 1
�
[Bk (s)� Bk (s� �)]0 dBk (s)

o
> kA�

o
= �, respectively. The critical values are obtained

via Monte Carlo simulation methods.
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For the purposes of this section, let us de�ne the loss function of interest to be Lt+h,
whose estimated counterpart is Lt+h(b�t;R) � bLt+h. To be more speci�c:
(i) Forecast Unbiasedness Tests: bLt+h = bvt+h:
(ii) Mincer-Zarnowitz�s (1969) Tests (or E¢ ciency Tests): bLt+h = bvt+hXt, where Xt is a

vector of predictors known at time t (see also Chao, Corradi and Swanson, 2001).

(iii) Forecast Encompassing Tests (Clements and Hendry, 1993, Harvey, Leybourne and

Newbold, 1998): bLt+h = bvt+hft; where ft is the forecast of the encompassed model.
(iv) Serial Uncorrelation Tests: bLt+h = bvt+hbvt:
More generally, let the loss function of interest to be the (p� 1) vector Lt+h = vt+hgt,

whose estimated counterpart is bLt+h = bvt+hbgt, where gt (��) � gt denotes the function

describing the linear relationship between vt+h and a (p� 1) vector function of data at time
t, with gt(b�t) � bgt.15 The null hypothesis of interest is:

E (Lt+h(��)) = 0: (23)

In order to test (23), one simply tests whether bLt+h has zero mean by a standard Wald test
in a regression of bLt+h onto a constant (i.e. testing whether the constant is zero). That is,

WT (R) = P�1
TX
t=R

bLt+h(b�t;R)0b
�1R TX
t=R

bLt+h(b�t;R);
where b
R is a consistent estimate of the long run variance matrix of the adjusted out-of-
sample losses discussed in details below.

We make the following high level assumption.

Assumption 4: (a) The partial sum 
̂�
1
2T�1=2

P[�T ]
t=[�T ]

n
Lt+h(�̂t;R)� E[Lt+h(��)]

o
obeys

a functional central limit theorem:


̂
� 1
2

R T�1=2
[�T ]X

t=[�T ]

n
Lt+h(�̂t;R)� E[Lt+h(��)]

o
) Bp(�)� Bp(�) (24)

where Bp(�) denotes the p-dimensional standard Brownian motion; (b) limT;R!1R=T = � 2
(0; 1).

We have the following proposition. The proof of Proposition 4 is provided in Appendix

A.16

15In the examples above, we have: (i) gt = 1; (ii) gt = Xt; (iii) gt = ft; (iv) gt = vt.
16Note that the statistics proposed in this paper build upon: T�1

PT
t=R

bLt+h(b�t;R)0b
�1R PT
t=R

bLt+h(b�t;R);
whereas the traditional Wald tests is: WT (R) = P

�1PT
t=R

bLt+h(b�t;R)0b
�1R PT
t=R

bLt+h(b�t;R):
12



Proposition 4 (Robust Regression-Based Tests) Suppose Assumption 4 holds. Let

RW
T = sup

R
[LT (R)0 b
�1R LT (R)]; R = R; :::R; (25)

and

AWT =
1

R�R + 1

RX
R=R

[LT (R)0 b
�1R LT (R)]; (26)

where

LT (R) � T�1=2
TX
t=R

bLt+h(b�t;R);
and b
R is a consistent estimator of 
. Under the null hypothesis H0 : limT!1E (Lt+h(��)) =
0 for all R;

RW
T =) sup

�2[�;�]
[Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] ; (27)

and

AWT =)
Z �

�

[Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] d�; (28)

where R = [�T ] ; R = [�T ]; R = [�T ] ; and Bp (�) is a standard p-dimensional Brownian
motion. The null hypothesis for the RW

T test is rejected at the signi�cance level � when

RW
T > kR� whereas the null hypothesis for the AWT test is rejected when AWT > kA;W�;p ; where

the critical values
�
�; kR;W�;p

�
and

�
�; kA;W�;p

�
for various values of � and � = 1�� are reported

in Table 3.17

INSERT TABLE 3 HERE

A simple, consistent estimator for b
 that ignores parameter estimation uncertainty is:
b
R = q(P )�1X

i=�q(P )+1

(1� ji=q(P )j)P�1
TX
t=R

bL(d)t+h(b�t;R) bL(d)t+h�i(b�t�i;R)0;
where bL(d)t+h(b�t;R) � bLt+h(b�t;R) � P�1

PT
t=R

bLt+h(b�t;R) and q(P ) is a bandwidth that grows
with P (e.g., Newey and West, 1987). West and McCracken (1998) have instead proposed

a general variance estimator that takes into account estimation uncertainty. See West and

McCracken (1998) for conditions under which parameter estimation uncertainty is irrelevant.

17Again, the critical values for a signi�cance level � are, respectively, kR;W� and kA;W� ,

where kR;W� and kA;W� solve P
n
sup�2[�;�] [Bp (1)� Bp (�)]

0
[Bp (1)� Bp (�)] > kR;W�

o
= �,

P
nR �

�
[Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] d� > kA;W�

o
= �:
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Historically, researchers have estimated the alternative regression: bvt+h = bg0t �b� (R)+b�t+h,
where b� (R) = �

P�1
PT

t=R bgtbg0t��1 �P�1PT
t=R bgtbvt+h� and b�t+h is the �tted error of the

regression, and tested whether the coe¢ cients equal zero. It is clear that under the additional

assumption that E (gtg0t) is full rank, a maintained assumption in that literature, then the

two procedures share the same null hypothesis and are therefore equivalent. However, in

this case it is convenient to de�ne the following re-scaled Wald test:18

W(r)
T (R) =

P

T
b� (R)0 bV �1

� (R)b� (R) ;
where bV�(R) is a consistent estimate of the asymptotic variance of b� (R) ; V�: Proposition 5
presents results for this statistic. The proof of Proposition 5 is provided in Appendix A.

Proposition 5 (Robust Regression-Based Tests II) Suppose Assumption 4 holds and

E (gtg
0
t) is full rank. Let

RW
T = sup

R

P

T
b� (R)0 bV �1

� (R)b� (R) ; R = R; :::R; (29)

and

AWT =
1

R�R + 1

RX
R=R

P

T
b� (R)0 bV �1

� (R)b� (R) ; (30)

where

b� (R) =  P�1 TX
t=R

bgtbg0t
!�1 

P�1
TX
t=R

bgtbvt+h! ;
and bV�(R) is a consistent estimator of V�. Under the null hypothesis H0 : limT!1E [b� (R)] =
0 for all R;

RW
T =) sup

�2[�;�]
[Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] ; (31)

and

AWT =)
Z �

�

[Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] d�; (32)

where R = [�T ] ; R = [�T ]; R = [�T ] ; and Bp (�) is a standard p-dimensional Brownian
motion. The null hypothesis for the RW

T test is rejected when R�
T > kR;W�;p whereas the null

hypothesis for the AWT test is rejected when A�T > kA;W�;p : Simulated values of
�
�; kR;W�;p

�
and�

�; kA;W�;p

�
for various values of �; � = 1� � and p are reported in Table 3.19

18The traditional Wald test would be: b� (R)0 bV �1� (R)b� (R) :
19The critical values for a signi�cance level � are, respectively, kR;W� and kA;W� ,

where kR;W� and kA;W� solve P
n
sup�2[�;�] [Bp (1)� Bp (�)]

0
[Bp (1)� Bp (�)] > kR;W�

o
= �,

P
nR �

�
[Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] d� > kA;W�

o
= �:
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A consistent estimate of the asymptotic variance of b�(R) , when parameter estimation
error is not relevant, is: bV�(R) = P�1S�1gg (R)b
RS�1gg (R), where S�1gg = �P�1PT

t=R bgtbg0t��1
and b
R = Pq(P )�1

i=�q(P )+1(1 � ji=q(P )j)P�1
PT

t=R bgtbg0t�ibvt+hbvt+h�i. See West and McCracken
(1998) for alternative and more general variance estimators.

Under more general speci�cations for the loss function, these properties may not hold. In

those situations, Patton and Timmermann (2007) show that a "generalized forecast error"

does satisfy the same properties. In such situations, the procedures that we propose can be

applied to the generalized forecast error.

2.4 Robust Point Forecasts

The techniques discussed in this paper can also be used to construct robust con�dence

intervals for point forecasts. Let byt;t+h (R) denote the forecast of variable yt+h made at time
t with a direct forecast method, using data estimated over a window of sizeR. It is practically

convenient to assume that the data are stationary, the forecast model is correctly speci�ed,

and the forecast errors are optimal and normally distributed with zero mean and variance

�2 conditional on the regressors (cfr. Stock and Watson, 2003b, p. 451). In such cases, a

(1��)100% forecast interval is given by byt;t+h (R)�z� �b�yt+h�byt;t+h (R) where z� is the critical
value for the standard normal distribution at the 100�% signi�cance level (e.g. 1.96 for a

5% signi�cance level), and b�yt+h�byt;t+h (R) is an estimator of the root mean squared forecast
error; for example, one could use the square root of a HAC robust estimator of the variance

of the pseudo-out of sample forecasts or the standard error of the regression. However, again

such forecasts are obtained conditional upon the choice of the rolling window size.

We propose a robust point forecast obtained by averaging the forecasts obtained over all

possible window sizes, that is:

byAt;t+h = 1

R�R + 1

RX
R=R

byt;t+h (R)
Assuming that parameter estimation error is asymptotically negligible, the estimate of the

root mean squared forecast error will be consistent no matter which window size it is con-

structed with. We propose the researcher to use the estimate of the root mean squared fore-

cast error based on the largest window size, b�yt+h�byt;t+h �R�. Then, our proposed � � 100%
forecast interval is: byAt;t+h � z� � b�yt+h�byt;t+h �R�.
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3 Monte Carlo evidence

In this section, we evaluate the small sample properties of the methods that we propose,

and compare them with the methods existing in the literature. We consider both nested and

non-nested models�forecast comparisons. For the nested models comparison, we consider

two Data Generating Processes (DGPs). Let the �rst (labeled "DGP1") be:

yt+1 = �txt + 
tzt + "t+1; t = 1; :::; T ,

where xt; "t+1 and zt are all i.i.d. standard normals and independent of each other. We

compare the following two nested models�forecasts for yt:

Model 1 forecast : b�txt (33)

Model 2 forecast : b�0twt;
where wt = [xt; zt]

0 ; and both models�parameters are estimated by OLS in rolling windows of

sizeR: b�t (R) = ��t�1j=t�Rxjyj+1
� �
�t�1j=t�Rx

2
j

��1
and b�t (R) = ��t�1j=t�Rwjw

0
j

��1 �
�t�1j=t�Rwjyj+1

�
for t = R; :::; T:

We also consider a second and more realistic DGP (labeled "DGP2") that follows Clark

and McCracken (2005a) and Pesaran and Timmermann (2007). Let 
yt+1

xt+1

!
=

 
0:3 0:5dt

0 0:5

! 
yt

xt

!
+

 
uy;t

ux;t

!
; t = 1; :::; T � 1,

where y0 = x0 = 0, and uy;t and ux;t are both i.i.d. standard normal and independent of

each other. d = 1 if t � � and 0 otherwise. By varying � , we evaluate cases ranging from

when there is no break (� = 0) to cases when there is a break (0 < � < T ).

We compare the following two nested models�forecasts for yt+1:

Model 1 forecast : b
0 + b
1yt (34)

Model 2 forecast : b
0 + b
1yt + b
2xt;
and both models�s parameters are estimated by OLS in rolling windows of size R:

For the non-nested models�comparison, we consider a third DGP (labeled "DGP3"):

yt+1 = �txt + �tzt + "t; t = 1; :::; T ,

where xt and zt are standard normals independent of each other. We compare the following

two non-nested models�forecasts for yt:

Model 1 forecast : b�txt (35)

Model 2 forecast : b�tzt;
16



and both models�s parameters are estimated by OLS in rolling windows of size R.

3.1 Size properties

The size properties of our test procedures in small samples are evaluated in a series of Monte

Carlo experiments. The null hypothesis discussed in Propositions (2) and (3) holds in DGP1

if �t = 1; 
t = 0 for t = 1; 2; :::T; and the same null hypothesis is satis�ed in DGP2 if dt = 0

for t = 1; 2; :::T:20 The null hypothesis discussed in Proposition (1) holds in DGP3 holds if

�t = �t = 1 for t = 1; 2; :::T: We investigate sample sizes where T = 50; 100; 200 and 500:

In all experiments, we set � = 0:15. The number of Monte Carlo replications is 5,000.

We report empirical rejection probabilities of the tests RT and AT at the 10%, 5%, and
1% nominal levels. Table 4(a) reports results for the nested models�comparison for DGP1;

results for DGP2 are reported in Table 4(b) whereas Table 4(c) reports results for the non-

nested models�comparison (DGP3). All tables show that each test has good size properties,

although they may slightly under/over-reject for small sample sizes.

INSERT TABLES 4(a,b,c)

3.2 Power properties

The scope of this sub-section is three-fold. First, we evaluate the power properties of our

proposed procedure to departures from the null hypothesis in small samples. Second, we

show that the existing methods, which rely on an �ad-hoc�window size choice, may have

no power at all to detect predictive ability. Third, we demonstrate that existing methods

are subject to data mining if they are applied to many window sizes without correcting the

appropriate critical values.

For the nested models comparison, in DGP1 we let �t = 1; 
t = 1 �1 (t � �)+0 �1 (t > �) ;

for � as in Table 5(a). For DGP2, we let dt = 1 � 1 (t � �) + 0 � 1 (t > �) ; for � as in

Table 5(b). For the non-nested models�comparison, we let the DGP3 be such that �t = 1;

�t = 0 � 1 (t � �) + 1 � 1 (t > �) ; for � as in Table 5(c).

The column labeled "RT test" reports empirical rejection rates for (2) and the column

labeled "AT test" reports empirical rejection rates for (3). In addition, in Tables 5(a,b) the
columns labeled "Fixed R" report empirical rejection rates for the Clark and West�s (2007)

test implemented with a speci�c value of R, for which the one-sided critical value is 1.645 for

20Note that this corresponds to setting � = 0.
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a 5% nominal level test. The "Fixed R" results would correspond to the case of a researcher

who has chosen one "ad-hoc" window size R, has not experimented with other choices, and

thus might have missed predictive ability associated with alternative values of R. Similarly,

in Table 5(c), the columns labeled "Fixed R" report rejection rates for the Diebold and

Mariano�s (1995), West�s (1996) and McCracken�s (2001) test implemented with a speci�c

value of R, for which the two-sided critical value is 1.96 for a 5% nominal level test.21 Finally,

the columns labeled "Data Mining" report empirical rejection rates incurred by a researcher

who is searching across all values of R 2 [0:15T; 0:85T ] but using the Clark and West (2007)
test�s critical value in Tables 5(a,b) and the Diebold and Mariano (1995), West (1996) and

McCracken (2001) test�s critical value in Table 5(c) (that is, without taking into account the

search procedure). The latter columns show how data snooping distorts inference when it is

not properly taken into account. The empirical rejection rates are shown for various values

of the break point, � . The �rst row in each table reports results for size.

Table 5(a) shows that all tests have approximately the correct size except the "Data

mining" procedure, which has size distortions, and leads to too many rejections. This implies

that the empirical evidence in favor of the superior predictive ability of a model can be

spurious if evaluated with the incorrect critical values. The remaining rows show the power

of the tests. They demonstrate that, in general, in the presence of a structural break our

proposed tests have better power than the tests based on a speci�c rolling window. The

latter may have negligible power for some combinations of the location of the break (�) and

the size of the estimation window (R). Similar results hold for Tables 5(b) and 5(c).

INSERT TABLES 5(a,b,c)

4 Empirical evidence

The poor forecasting ability of economic models of exchange rate determination has been

recognized since the works by Meese and Rogo¤ (1983a,b), who established that a random

walk forecasts exchange rates better than any economic models in the short run. The Meese

21The three tests di¤er because a di¤erent estimate of the variance is suggested. Diebold and Mariano

(1995) suggest no parameter estimation correction, and West (1996) proposed an estimate that includes

parameter estimation correction. McCracken (2001) extended West�s (1996) results to rolling windows

and more general loss functions. In our simulations, these tests are the same since parameter estimation

uncertainty is asymptotically irrelevant.
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and Rogo¤�s (1983a,b) �nding has been con�rmed by several researchers and the random

walk is now the yardstick of comparison for the evaluation of exchange rate models.

Recently, Engel, Mark and West (2007) and Molodtsova and Papell (2009) documented

empirical evidence in favor of the out-of-sample predictability of some economic models,

especially those based on the Taylor rule. However, the out-of-sample predictability that

they report depends on certain parameters, among which the choice of the in-sample and

out-of-sample periods, and the size of the rolling window used for estimation. The choice of

such parameters may a¤ect the outcome of out-of-sample tests of forecasting ability in the

presence of structural breaks. Rossi (2006) found empirical evidence of instabilities in models

of exchange rate determination; Giacomini and Rossi (2009) evaluated the consequences

of instabilities in the forecasting performance of the models over time; and Rogo¤ and

Stavrakeva (2008) also question the robustness of these results to the choice of the starting

out-of-sample period. In this section, we test the robustness of these results to the choice of

the rolling window size.

It is important to notice that it is not clear a-priori whether our test would �nd more or

less empirical evidence in favor of predictive ability. In fact, there are two opposite forces

at play. By considering a wide variety of window sizes, our tests might be more likely to

�nd empirical evidence in favor of predictive ability, as our Monte Carlo results have shown.

However, by correcting statistical inference to take into account the search process across

multiple window sizes, our tests might at the same time be less likely to �nd empirical

evidence in favor of predictive ability.

Let st denote the logarithm of the bilateral nominal exchange rate.22 The rate of growth

of the exchange rate depends on its deviation from the current level of a macroeconomic

fundamental. Let ft denote the long-run equilibrium level of the nominal exchange rate as

determined by the macroeconomic fundamental, and zt = ft � st. Then,

st+1 � st = �+ �zt + "t+1 (36)

where "t+1 is an unforecastable error term.

The �rst model we consider is the Uncovered Interest Rate Parity (UIRP). In the UIRP

model,

fUIRPt = (it � i�t ) + st; (37)

where (it � i�t ) is the short-term interest di¤erential between the home and the foreign coun-

tries.
22The exchange rate is de�ned as the domestic price of foreign currency.
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The second model we consider is a model with Taylor rule fundamentals, as in Molodtsova

and Papell (2007) and Engel, Mark and West (2007). Let �t denote the in�ation rate in the

home country, ��t denote the in�ation rate in the foreign country, � denote the target level

of in�ation in each country, ygapt denote the output gap in the home country,23 ygap�t denote

the output gap in the foreign country. Since the di¤erence in the Taylor rule of the home

and foreign countries implies it � i�t = � (�t � ��t ) + 
 (ygapt � ygap�t ), we have that the latter

determines the long run equilibrium level of the nominal exchange rate:

fTAY LORt = � (�t � ��t ) + 
 (ygapt � ygap�t ) + st: (38)

The benchmark model, against which the forecasts of both models (37 and 38) are eval-

uated, is the random walk, according to which the exchange rate changes are forecasted to

be zero.24

We use monthly data from the International Financial Statistics database (IMF) and

from the Federal Reserve Bank of St. Louis from 1973:3 to 2008:1 for Japan, Switzerland,

Canada, Great Britain, Sweden, Germany, France, Italy, the Netherlands, and Portugal.25

The former database provides the seasonally adjusted industrial production index for output,

and the 12-month di¤erence of the CPI for the annual in�ation rate, and the interest rates.

The latter provides the exchange rate series. The two models�rolling forecasts (based on

rolling windows calculated over an out-of-sample portion of the data starting in 1983:2) are

compared to the forecasts of the random walk, as in Meese and Rogo¤ (1983a,b). We focus

on the methodologies in Proposition 2 for comparability with Molodtsova and Papell (2009),

who use the Clark and West�s (2007) test. In our exercise, � = 0:15, which implies R = �T

and R= (1� �)T ; the total sample size T depends on the country, and the values of R and

R are shown in Figures 1 and 2, o¤ering a relatively large range of window sizes, all of which

are su¢ ciently large for asymptotic theory to provide a good approximation.

Empirical results are shown in Table 6, and Figures 1 and 2. The column labeled "Fixed

R Test" in Table 6 reports the empirical results in the literature based on a window size R

equal to 120, the same window size used in Molodtsova and Papell (2007). According to the

"Fixed R test", the Taylor model is signi�cantly outperforming a random walk for Canada

23The output gap is the percentage di¤erence between actual and potential output at time t, where the

potential output is the linear time trend in output.
24We chose the random walk without drift to be the benchmark model because it is the toughest benchmark

to beat (see Meese and Rogo¤, 1983a,b).
25Data on interest rates were incomplete for Portugal and the Netherlands, so we do not report UIRP

results for these countries.
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at 5% and for Japan at 10%, whereas the UIRP model outperforms the random walk for

Canada at 5% and both Japan and the U.K. at the 10% signi�cance level. According to our

tests, instead, the empirical evidence in favor of predictive ability is much more favorable.

Figures 1 and 2 report the estimated Clark and West�s (2007) test statistic for the window

sizes that we consider. In particular, the predictive ability of the economic models tend to

show up at smaller window sizes, as the �gures show.

INSERT TABLE 6 AND FIGURES 1 AND 2

5 Conclusions

This paper proposes new methodologies for evaluating economic models�forecasting perfor-

mance that are robust to the choice of the estimation window size. These methodologies are

noteworthy since they allow researchers to reach empirical conclusions that do not depend on

a speci�c estimation window size. We show that tests traditionally used by forecasters su¤er

from size distortions if researchers report, in reality, the best empirical result over various

window sizes, but without taking into account the search procedure when doing inference

in practice. Finally, our empirical results demonstrate that the recent empirical evidence

in favor of exchange rate predictability is even stronger when allowing a wider search over

window sizes.
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6 Appendix A. Proofs

Proof of Proposition 1. For the RT test, note that from Assumption 1:

��1T�1=2
TX
t=R

�Lt+h(b�t;R; b
t;R)) B (�) :

Under H0, b� is a consistent HAC estimator of � (Newey and West, 1987). Since the ab-
solute value and the Sup(.) function are continuous functions, the Theorem follows from the

Continuous Mapping Theorem. The proof is similar for the AT test.
Proof of Proposition 2. The proof is similar to that of Proposition 1, and it is

therefore omitted.

Proof of Proposition 3. From Assumption 3 and Lemma A6 in Clark and McCracken

(2000), under H0 we have

�LET (R)!
d
��1

Z 1

�

[Bk (s)� Bk (s� �)]0 dBk (s) :

The result follows from the Continuous Mapping Theorem.

Proof of Proposition 4. For the RW
T test, note that under Assumption 4:

T�1=2
�1=2
TX
t=R

bLt+h(b�t;R)) Bp (�)

Then, LT (R)0 LT (R) =
h
T�1=2

PT
t=R

bLt+h(b�t;R)i0
�1 hT�1=2PT
t=R

bLt+h(b�t;R)i) Bp (�)0 Bp (�) :
Under H0, b
 is a consistent HAC estimator of 
 (Newey and West, 1987). The Sup(.)

function is a continuous function and the Theorem follows from the Continuous Mapping

Theorem. The proof is similar for the AWT test.

Proof of Proposition 5. The proof is similar to that of Proposition 4, and it is

therefore omitted.
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7 Appendix B: The Recursive Case

We consider the recursive scheme in which the researcher estimates forecasting models using

�rst t observations and make h-steps ahead forecasts for t = R;R + 1; :::; T . Let �̂t and


̂t denote the recursive estimates of �
� and 
� based on the �rst t observations, and let

f�Lt+h(�̂t; 
̂t)gTt=R denote a sequence of loss di¤erences of forecasting models 1 and 2. Below
AT , AET , �LT (R), �L

adj
T (R), �L

E
T (R),RT ,RE

T ,WT (R) andW(r)
T (R) are the same as those in

those in Section 2 except that rolling estimates �̂t;R and 
̂t;R replaced by recursive estimates

�̂t and 
̂t, respectively.

7.1 Non-Nested Model Comparisons

Assumption 1�: (a) The partial sum T�1=2
P[�T ]

t=[�T ]f�Lt+h(�̂t; 
̂t)�E[�Lt+h(�
�; 
�)]g obeys

a functional central limit theorem:

��1R T�1=2
[�T ]X

t=[�T ]

n
�Lt+h(�̂t; 
̂t)� E[�Lt+h(�

�; 
�)]
o
) B(�)� B(�); (39)

where �2 is the long-run variance of loss di¤erences; and (b) limT;R!1R=T = � 2 (0; 1).

Proposition 6 (Out-of-sample robust test for non-nested models) Suppose Assump-

tion 1�holds. Under the null hypothesis H0 : limT!1E [�L
�
T (R)] = 0 for all R;

RT =) sup
�2[�;�]

jB (1)� B (�) j; (40)

and

AT =)
Z �

�

jB (1)� B (�)j d�; (41)

where B (�) is a standard univariate Brownian motion.

7.2 Nested Model Comparison

Assumption 2�: (a) The partial sum T�1=2
P[�T ]

t=[�T ]

n
�Ladjt+h(�̂t; 
̂t)� E[�Ladjt+h(�

�; 
�)]
o
obeys

a functional central limit theorem:

��1T�1=2
[�T ]X

t=[�T ]

n
�Ladjt+h(�̂t; 
̂t)� E[�Ladjt+h(�

�; 
�)]
o
) B(�)� B(�); (42)

where �2 is the long-run variance of loss di¤erences; and (b)limT;R!1R=T = � 2 (0; 1)
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Proposition 7 (Out-of-sample robust test for nested models) Suppose Assumption 2�

holds. Under the null hypothesis H0 : limT!1E[�L
adj
T (R)] = 0 for all R;

RT =) sup
�2[�;�]

[B (1)� B (�)] ; (43)

and

AT =)
Z �

�

[B (1)� B (�)] d�; (44)

where R = [�T ] ; R = [�T ]; R = [�T ] ; and B (�) is a standard univariate Brownian motion.

Assumption 3�: (a) The parameter estimates �̂t satis�es �̂t � �� = B1 (t)H1 (t) where

B1 (t)H1 (t) =
�
R�1

Pt
j=1 q1;j

��1 �
R�1

Pt
j=1 h1;j

�
, and similarly for 
̂t�
� = B2 (t)H2 (t);

(b) Let Ut =
h
ut; x

0
2;t � Ex02;t; h

0
2;t; vec

�
h2;th

0
2;t � Eh2;th

0
2;t

�0
; vec (q2;t � Eq2;t)

0
i0
: Then EUt =

0; Eq2;t <1 is p.d.; for some r > 4, Ut is uniformly Lr bounded; for all t, Eu2t = �2 <1;
for some r > d > 2, Ut is strong mixing with coe¢ cients of size �rd= (r � d) ; letting eUt
denote the vector of non-redundant elements of Ut; limT!1T

�1E
�PT

t=1
eUt��PT

t=1
eUt�0 =


 < 1 is p.d.; (c) E
�
h2;th

0
2;t

�
= �2Eq2;t and E (h2;tjh2;t�j; q2;t�j;j = 1; 2; :::) = 0 ; and (d)

limT;R!1R=T = � 2 (0; 1).

Proposition 8 (Out-of-sample robust test for nested models II) Suppose Assumption

3�holds. Under the null hypothesis H0 : limT!1E[�L
E
T (R)] = 0 for all R;

RE
T =) sup

�2[�;�]

Z 1

�

s�1Bk (s)0 dBk (s) ; (45)

and

AET =)
Z �

�

�Z 1

�

s�1Bk (s)0 dBk (s)
�
d�; (46)

where R = [�T ]; R = [�T ] ; and Bk (�) is a standard k-variate Brownian motion and k is the
number of parameters in the larger model in excess of the parameters in the smaller model.

Table A.1 provides the critical values for the RE
T and AET tests.

7.3 Regression-based tests of predictive ability

Assumption 4�: (a) The partial sum T�1=2
P[�T ]

t=[�T ]

n
Lt+h(�̂t;R)� E[Lt+h(��)]

o
obeys a func-

tional central limit theorem:


�
1
2T�1=2

[�T ]X
t=[�T ]

n
Lt+h(�̂t;R)� E[Lt+h(��)]

o
) Bp(�)� Bp(�) (47)
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where Bp(�) denotes the p-dimensional standard Brownian motion; (b) limT;R!1R=T = � 2
(0; 1).

Proposition 9 (Robust Regression-Based Tests) Suppose Assumption 4� holds. Un-

der the null hypothesis H0 : limT!1E (Lt+h(��)) = 0 for all R;

RW
T =) sup

�2[�;�]
[Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] ; (48)

and

AWT =)
Z �

�

[Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] d�; (49)

where R = [�T ] ; R = [�T ]; R = [�T ] ; and Bp (�) is a standard p-dimensional Brownian
motion.

Proposition 10 (Robust Regression-Based Tests II) Suppose Assumption 4�holds and

E (gtg
0
t) is full rank. Under the null hypothesis H0 : E [b� (R)] = 0 for all R

RW
T =) sup

�2[�;�]
[Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] ; (50)

and

AWT =)
Z �

�

[Bp (1)� Bp (�)]0 [Bp (1)� Bp (�)] d�; (51)

where R = [�T ] ; R = [�T ]; R = [�T ] ; and Bp (�) is a standard p-dimensional Brownian
motion.
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8 Tables and Figures

Table 1. Critical Values for Non-Nested Model Comparisons

RT test AT test
� 10% 5% 1% 10% 5% 1%

0:15 1.7843 2.0456 2.5539 1.0194 1.2132 1.5888

0:20 1.7260 1.9663 2.4670 1.0392 1.2331 1.6221

0:25 1.6713 1.9158 2.4042 1.0639 1.2668 1.6545

0:30 1.6173 1.8521 2.3418 1.0865 1.2911 1.7024

0:35 1.5489 1.7703 2.2368 1.1041 1.3161 1.7201

Notes to Table 1. The Critical Values are obtained by Monte Carlo simulation using

50,000 Monte Carlo replications.

Table 2(a). Critical Values for Nested Model Comparisons

Using Clark and West (2007)

RT test AT test
� 10% 5% 1% 10% 5% 1%

0:15 1.4929 1.7849 2.3444 0.7969 1.0147 1.4374

0:20 1.4449 1.7226 2.2583 0.8112 1.0363 1.4606

0:25 1.3955 1.6731 2.2190 0.8244 1.0651 1.5005

0:30 1.3487 1.6169 2.1386 0.8476 1.0831 1.5385

0:35 1.2939 1.5494 2.0436 0.8619 1.1043 1.5588

Notes to Table 2(a). The Critical Values are obtained by Monte Carlo simulation using

50,000 Monte Carlo replications.
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Table 2(b). Critical Values for Nested Model Comparisons Using ENCNEW

Panel A. 10% Nominal Signi�cance Level

RE
T test AET test

k �= 0:15 0:20 0:25 0:30 0:35 0:15 0:20 0:25 0:30 0:35

1 3.8443 3.2051 2.7401 2.3870 2.0917 1.0913 1.0621 1.0825 1.0898 1.0994

2 5.5136 4.5857 3.9968 3.4806 3.0744 1.6350 1.6290 1.6461 1.6685 1.6562

3 6.6595 5.6350 4.8969 4.2868 3.8388 2.0266 2.0149 2.0544 2.0848 2.1326

4 7.6973 6.5229 5.6131 4.9877 4.4630 2.3621 2.3665 2.3424 2.3971 2.4885

5 8.6283 7.2211 6.3395 5.6046 5.0276 2.6276 2.6094 2.6975 2.6700 2.7890

6 9.3927 8.0222 6.9461 6.1068 5.4293 2.8703 2.9229 2.8961 2.9423 2.9936

7 10.2100 8.6033 7.4511 6.5518 5.8925 3.1087 3.0821 3.1732 3.1663 3.2575

8 10.9141 9.1959 8.0006 7.0794 6.2935 3.3849 3.3038 3.3747 3.4183 3.4947

9 11.5085 9.7622 8.4207 7.4859 6.6801 3.5824 3.5587 3.6026 3.6250 3.6966

10 12.1040 10.2965 8.9722 7.9025 7.0086 3.7444 3.7548 3.8395 3.8266 3.8641

11 12.6332 10.8432 9.3603 8.2559 7.3431 3.8839 3.9848 3.9521 4.0226 4.0849

12 13.2473 11.2027 9.8130 8.6287 7.6146 4.0391 4.0675 4.1412 4.1952 4.1868

13 13.8136 11.6817 10.1103 8.9722 8.0089 4.2627 4.2586 4.2692 4.3033 4.3963

14 14.1817 12.1014 10.5226 9.3049 8.3163 4.3900 4.4456 4.4273 4.5474 4.5813
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Table 2(b). Critical Values for Nested Model Comparisons Using ENCNEW

Panel A. 5% Nominal Signi�cance Level

RE
T test AET test

k �= 0:15 0:20 0:25 0:30 0:35 0:15 0:20 0:25 0:30 0:35

1 5.1436 4.2982 3.7649 3.3010 2.9402 1.7635 1.7335 1.7737 1.7964 1.7998

2 7.1284 5.9983 5.2541 4.6326 4.1224 2.4879 2.4475 2.4953 2.5174 2.5074

3 8.4892 7.1863 6.3640 5.6474 5.0395 2.9559 2.9653 3.0244 3.0510 3.1128

4 9.7745 8.3132 7.1991 6.4048 5.7775 3.3900 3.4071 3.3971 3.4840 3.5546

5 10.8235 9.1526 8.0207 7.1808 6.4377 3.7427 3.7055 3.8169 3.8627 3.9389

6 11.6763 10.0692 8.7422 7.7794 6.9733 4.0485 4.0943 4.0928 4.1238 4.2508

7 12.7226 10.7869 9.4653 8.2669 7.4864 4.3890 4.3478 4.4171 4.4408 4.5547

8 13.4939 11.5170 9.9787 8.9054 7.9574 4.6356 4.6621 4.6983 4.7957 4.8064

9 14.3192 12.1188 10.5791 9.4202 8.4937 4.9058 4.9153 4.9987 5.0139 5.1388

10 14.9491 12.7733 11.2190 9.9213 8.8382 5.1336 5.1859 5.2762 5.2946 5.3531

11 15.6930 13.4913 11.6504 10.3327 9.2877 5.3506 5.4240 5.4829 5.4919 5.5748

12 16.2954 13.8349 12.2591 10.7844 9.5457 5.5861 5.5867 5.6622 5.7151 5.7248

13 17.0991 14.5326 12.5030 11.1212 10.0114 5.7750 5.8441 5.8337 5.9103 6.0124

14 17.4946 14.9149 13.0349 11.5651 10.3584 5.9958 6.0267 6.0220 6.1882 6.2575
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Table 2(b). Critical Values for Nested Model Comparisons Using ENCNEW

Panel A. 1% Nominal Signi�cance Level

RE
T test AET test

k �= 0:15 0:20 0:25 0:30 0:35 0:15 0:20 0:25 0:30 0:35

1 7.9243 6.8435 6.2532 5.7046 5.1323 3.3873 3.3839 3.4538 3.5434 3.5885

2 10.6078 9.1073 8.1681 7.2456 6.6399 4.5099 4.4008 4.4883 4.4810 4.5776

3 12.3911 10.7002 9.6115 8.6454 7.7958 5.0938 5.0960 5.3018 5.3210 5.2876

4 13.9680 12.1513 10.5579 9.5567 8.7154 5.6628 5.8212 5.6318 5.8305 5.8822

5 15.5409 13.3539 11.7835 10.5474 9.5755 6.1676 6.1541 6.2896 6.3981 6.4738

6 16.7209 14.5039 12.6194 11.3325 10.3700 6.7097 6.6566 6.7122 6.7471 6.9580

7 18.0511 15.3139 13.6682 12.1613 10.9275 7.0585 6.9986 7.1478 7.1808 7.2750

8 18.8899 16.3693 14.2198 12.9446 11.4624 7.3854 7.5575 7.4173 7.6441 7.6924

9 20.1286 17.1119 15.0996 13.6190 12.3904 7.8039 7.8023 7.8329 8.0351 8.2174

10 21.0123 17.9317 15.9820 14.1687 13.0504 8.0456 8.1048 8.3548 8.3590 8.5415

11 22.1865 18.7922 16.5889 14.8316 13.3213 8.4460 8.4763 8.5434 8.8163 8.7738

12 22.6814 19.3941 17.3299 15.3705 13.7038 8.7419 8.8274 8.9273 8.8940 8.9904

13 23.7040 20.2035 17.6548 15.7804 14.0921 9.2106 9.2550 9.0222 9.2913 9.3220

14 24.1862 20.9349 18.2787 16.2610 14.5866 9.2207 9.2680 9.4063 9.6465 9.6627

Notes to Table 2(b). The Critical Values are obtained by Monte Carlo simulation using

50,000 Monte Carlo replications.
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Table 3. Critical Values for Regression-Based Forecast Tests

Panel A. 10% Nominal Signi�cance Level

RW
T test AWT test

p �= 0:15 0:20 0:25 0:30 0:35 0:15 0:20 0:25 0:30 0:35

1 0.925 0.873 0.820 0.768 0.716 0.550 0.552 0.553 0.554 0.555

2 1.806 1.703 1.600 1.496 1.393 1.071 1.073 1.074 1.075 1.077

3 2.680 2.526 2.372 2.217 2.062 1.587 1.588 1.592 1.593 1.594

4 3.549 3.345 3.142 2.936 2.730 2.100 2.103 2.106 2.107 2.108

5 4.418 4.162 3.908 3.653 3.396 2.612 2.615 2.617 2.619 2.622

6 5.283 4.977 4.674 4.365 4.059 3.123 3.126 3.128 3.129 3.133

7 6.147 5.791 5.435 5.079 4.723 3.632 3.635 3.638 3.640 3.644

8 7.014 6.605 6.198 5.791 5.385 4.144 4.145 4.148 4.1511 4.153

9 7.874 7.419 6.960 6.504 6.049 4.652 4.654 4.657 4.660 4.664

10 8.738 8.232 7.724 7.218 6.706 5.159 5.163 5.167 5.170 5.172

11 9.598 9.045 8.483 7.925 7.368 5.666 5.671 5.674 5.678 5.681

12 10.458 9.853 9.242 8.636 8.028 6.176 6.178 6.180 6.186 6.188

13 11.319 10.664 10.003 9.345 8.686 6.682 6.686 6.689 6.694 6.696

14 12.182 11.472 10.762 10.054 9.344 7.189 7.194 7.195 7.201 7.204

15 13.037 12.279 11.525 10.766 9.999 7.691 7.698 7.703 7.707 7.708
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Table 3. Critical Values for Regression-Based Forecast Tests

Panel B. 5% Nominal Signi�cance Level

RW
T test AWT test

p � = 0:15 0:20 0:25 0:30 0:35 0:15 0:20 0:25 0:30 0:35

1 0.947 0.895 0.842 0.790 0.736 0.565 0.568 0.569 0.570 0.571

2 1.836 1.734 1.629 1.524 1.421 1.092 1.095 1.096 1.097 1.101

3 2.718 2.563 2.407 2.252 2.095 1.613 1.614 1.618 1.620 1.622

4 3.594 3.388 3.183 2.976 2.768 2.131 2.132 2.137 2.138 2.140

5 4.465 4.208 3.952 3.697 3.439 2.646 2.648 2.652 2.655 2.656

6 5.336 5.028 4.722 4.415 4.104 3.159 3.162 3.165 3.167 3.171

7 6.204 5.845 5.491 5.132 4.772 3.671 3.674 3.678 3.682 3.686

8 7.076 6.664 6.255 5.846 5.440 4.186 4.188 4.191 4.194 4.199

9 7.939 7.482 7.022 6.563 6.103 4.696 4.697 4.702 4.706 4.712

10 8.805 8.299 7.789 7.280 6.764 5.204 5.209 5.216 5.220 5.221

11 9.668 9.112 8.549 7.988 7.429 5.713 5.720 5.724 5.729 5.733

12 10.535 9.924 9.313 8.702 8.095 6.227 6.230 6.232 6.242 6.243

13 11.397 10.740 10.076 9.418 8.756 6.734 6.740 6.744 6.749 6.755

14 12.262 11.552 10.838 10.128 9.414 7.242 7.249 7.250 7.260 7.261

15 13.119 12.358 11.604 10.839 10.071 7.748 7.755 7.763 7.766 7.769
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Table 3. Critical Values for Regression-Based Forecast Tests

Panel C. 1% Nominal Signi�cance Level

RW
T test AWT test

p � = 0:15 0:20 0:25 0:30 0:35 0:15 0:20 0:25 0:30 0:35

1 0.991 0.938 0.882 0.830 0.775 0.596 0.598 0.600 0.603 0.604

2 1.896 1.791 1.685 1.579 1.473 1.133 1.138 1.139 1.143 1.145

3 2.788 2.631 2.475 2.316 2.159 1.661 1.665 1.671 1.672 1.674

4 3.675 3.468 3.261 3.051 2.842 2.185 2.192 2.195 2.198 2.201

5 4.558 4.299 4.039 3.782 3.521 2.707 2.712 2.715 2.721 2.726

6 5.436 5.128 4.817 4.504 4.188 3.227 3.231 3.237 3.240 3.243

7 6.311 5.951 5.597 5.234 4.869 3.744 3.746 3.759 3.762 3.768

8 7.191 6.778 6.365 5.953 5.545 4.265 4.265 4.272 4.278 4.286

9 8.060 7.605 7.140 6.673 6.211 4.777 4.786 4.789 4.792 4.800

10 8.934 8.419 7.906 7.394 6.879 5.290 5.300 5.308 5.310 5.317

11 9.802 9.236 8.673 8.113 7.548 5.800 5.811 5.818 5.823 5.827

12 10.677 10.057 9.442 8.833 8.213 6.322 6.324 6.327 6.342 6.348

13 11.542 10.879 10.212 9.544 8.886 6.833 6.845 6.848 6.855 6.864

14 12.412 11.703 10.981 10.269 9.551 7.344 7.356 7.361 7.367 7.378

15 13.273 12.511 11.752 10.981 10.210 7.848 7.863 7.878 7.881 7.884

Notes to Table 3. The Critical Values are obtained by Monte Carlo simulation using

50,000 Monte Carlo replications.
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Table 4(a). Size properties �DGP1

T � = 0.10 0.05 0.01 0.10 0.05 0.01

RT test AT test
50 0.125 0.059 0.012 0.060 0.031 0.005

100 0.103 0.049 0.008 0.060 0.032 0.005

200 0.088 0.038 0.008 0.055 0.028 0.006

500 0.084 0.040 0.010 0.055 0.029 0.005

RE
T test AET test

50 0.129 0.071 0.018 0.095 0.038 0.007

100 0.097 0.052 0.009 0.084 0.035 0.004

200 0.087 0.044 0.007 0.080 0.031 0.005

500 0.090 0.050 0.010 0.068 0.036 0.006

Table 4(b). Size properties �DGP2

T � = 0.10 0.05 0.01 0.10 0.05 0.01

RT test AT test
50 0.170 0.089 0.018 0.057 0.030 0.005

100 0.120 0.065 0.012 0.054 0.030 0.006

200 0.101 0.045 0.008 0.049 0.025 0.005

500 0.085 0.045 0.007 0.056 0.025 0.006

RE
T test AET test

50 0.213 0.131 0.045 0.102 0.045 0.007

100 0.135 0.073 0.019 0.086 0.035 0.006

200 0.105 0.049 0.012 0.071 0.032 0.004

500 0.086 0.048 0.008 0.074 0.031 0.003
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Table 4(c). Size properties �DGP3

RT test AT test
T � = 0.10 0.05 0.01 0.10 0.05 0.01

50 0.175 0.095 0.026 0.135 0.075 0.018

100 0.132 0.068 0.017 0.117 0.065 0.014

200 0.129 0.064 0.016 0.124 0.064 0.012

500 0.110 0.052 0.013 0.109 0.058 0.012
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Table 5(a). Power Properties �DGP 1

� RT test AT test RE
T test AET test Fixed R Data Mining

R = 20 R = 40 R = 60 R = 70 R = 80

0 0.05 0.03 0.05 0.03 0.04 0.03 0.03 0.04 0.04 0.20

10 0.06 0.02 0.07 0.04 0.04 0.03 0.04 0.04 0.04 0.26

30 0.52 0.03 0.87 0.35 0.42 0.04 0.05 0.05 0.06 0.77

50 0.97 0.30 0.99 0.97 0.97 0.38 0.05 0.05 0.06 0.99

70 1 0.92 1 1 1 0.97 0.39 0.06 0.06 1

90 1 1 1 1 1 1 0.98 0.87 0.50 1

100 1 1 1 1 1 1 1 1 0.96 1

Note: The table refers to nested models comparisons. T = 100, � = 0:05; � denotes the

time of the structural break (� = 0 corresponds to the no break case, and �t = �t = 1).

Table 5(b). Power Properties �DGP 2

� RT test AT test RE
T test AET test Fixed R Data Mining

R = 40 R = 80 R = 120 R = 160

200 0.05 0.03 0.05 0.03 0.03 0.03 0.03 0.04 0.17

175 0.29 0.23 0.28 0.20 0.23 0.21 0.26 0.37 0.65

150 0.78 0.71 0.78 0.69 0.73 0.65 0.66 0.74 0.94

125 0.96 0.94 0.96 0.83 0.94 0.92 0.87 0.89 0.99

Note: The table refers to nested models comparisons. T = 200, � = 0:05; � denotes the

time of the structural break (� = 200 corresponds to the no break case).

Table 5(c). Power Properties �DGP3

� RT Test AT Test Fixed R Test Data Mining

R = 20 R = 40 R = 60 R = 70

0 0.07 0.06 0.06 0.06 0.05 0.06 0.28

20 0.07 0.06 0.06 0.06 0.05 0.06 0.28

40 0.18 0.13 0.12 0.09 0.07 0.07 0.39

60 0.47 0.37 0.39 0.24 0.12 0.10 0.65

80 0.87 0.80 0.82 0.62 0.31 0.18 0.94

100 1 0.99 0.99 0.89 0.61 0.39 1

Note: The table refers to non-nested models comparisons. T = 100, � = 0:05; � denotes the

time of the structural break (� = 0 indicates that there is no break).
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Table 6. Empirical Results

RT Test AT Test Fixed R Test

UIRP Taylor UIRP Taylor UIRP Taylor

Japan 2.03** 1.35 0.96* 0.38 1.55* 1.47

Canada 2.09** 2.19** 0.53 1.19** 2.04** 2.43**

Switzerland 2.33** - - 0.81* - - 0.96 - -

U.K. 2.77** 0.68 0.36 -0.10 1.38* 0.54

France 0.74 2.49** -0.51 0.17 -0.96 0.42

Germany 2.22** 1.40 0.56 0.10 0.85 -0.14

Italy 2.03** 2.95** 0.04 0.16 0.49 1.08

Sweden 2.42** 2.35** -0.42 0.76 -1.59 0.99

The Netherlands - - 1.88** - - -0.27 - - -0.37

Portugal - - 4.14** - - 1.14** - - -0.04

Note. Two asterisks denote signi�cance at the 5% level, and one asterisk denotes sig-

ni�cance at the 10% level. For the RT and AT tests we used �= 0:15 (the value of R will

depend on the sample size, which is di¤erent for each country, and it is shown in Figures 1

and 2). For the Fixed R Test, we implemented a Clark and West (2007) test using R = 120;

one-sided critical values at 5% and 10% signi�cance values are 1.645 and 1.282.
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Table A.1. Critical Values for Nested Model Comparisons Using ENCNEW

in Recursive regressions. Panel A. 10% Nominal Signi�cance Level

RE
T test AET test

k �= 0:15 0:20 0:25 0:30 0:35 0:15 0:20 0:25 0:30 0:35

1 2.1827 1.9264 1.7879 1.4260 1.5916 0.8948 1.0787 0.9592 0.8253 1.0099

2 3.1801 2.9478 2.6594 2.3078 2.1908 1.3649 1.4239 1.5652 1.3065 1.2920

3 3.9146 3.6633 3.4011 3.0615 2.6588 1.7754 1.7590 1.7001 1.8438 1.6944

4 4.7417 4.2915 3.8623 3.8250 3.3252 2.0285 2.1314 2.0289 2.1751 1.9485

5 5.0480 4.6996 4.1217 4.2087 3.7308 2.0493 2.4242 2.1420 2.4664 2.3779

6 5.6378 5.0717 4.6734 4.4714 3.9274 2.3393 2.2415 2.4451 2.5173 2.4447

7 5.8468 5.8820 4.7711 5.0149 4.3855 2.4662 2.8280 2.5254 2.9126 2.6096

8 6.2322 6.1828 5.1969 4.6258 4.4351 2.8001 3.1090 2.6810 2.5876 2.8219

9 6.8219 6.4243 5.7112 5.5296 5.1766 3.1421 2.8892 2.8348 3.0700 3.1410

10 6.7028 6.2789 6.2257 5.6198 5.3043 2.7940 3.0528 3.1299 3.2162 3.2613

11 7.3123 6.6593 6.6319 6.0154 5.7181 3.0127 2.9701 3.3804 3.2990 3.6762

12 7.8022 7.4812 6.6942 6.1125 5.6641 3.5317 3.3753 3.3873 3.4190 3.6107

13 8.0998 7.3365 6.6997 6.5756 5.7137 3.5906 3.3773 3.5418 3.5555 3.5109

14 8.2287 7.3384 7.2055 6.4391 6.6329 3.2382 3.5441 3.6074 3.6762 4.3744
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Table A.1. Critical Values for Nested Model Comparisons Using ENCNEW

in Recursive regressions. Panel B. 5% Nominal Signi�cance Level

RE
T test AET test

k �= 0:15 0:20 0:25 0:30 0:35 0:15 0:20 0:25 0:30 0:35

1 3.0078 2.7519 2.5599 1.9907 2.2563 1.4955 1.5039 1.6247 1.2337 1.5222

2 4.2555 4.0880 3.5536 3.4613 3.1296 2.1339 1.9985 2.1779 2.0319 2.0155

3 5.0577 5.0933 4.8163 3.9635 3.5828 2.3919 2.5030 2.5470 2.5376 2.2816

4 6.1064 5.6270 4.9304 4.8950 4.0866 2.9668 3.0964 2.9057 2.9622 2.9778

5 6.3340 6.1398 5.3206 5.3653 4.7878 2.9717 3.0795 3.0435 3.1488 3.2085

6 7.4112 6.8839 6.2701 6.0270 4.8252 3.4424 3.2665 3.6043 3.2818 3.4061

7 7.7526 7.1460 6.0374 6.6942 5.5520 3.3073 3.7196 3.4741 4.0366 3.7042

8 7.9398 7.9244 6.6278 5.9797 5.8828 3.6604 4.0539 3.9295 3.6180 3.8040

9 9.0941 8.2817 7.3482 7.2577 7.0083 4.4619 4.1143 4.1880 4.3008 4.4988

10 8.7240 8.3543 8.1949 7.1712 6.9438 4.0097 4.2171 4.1991 4.4541 4.7212

11 9.4989 8.2225 8.5984 7.5053 7.3425 4.2346 3.9172 4.8147 4.6562 4.8656

12 9.6488 9.0317 9.1087 7.7116 7.4956 4.8887 4.5745 4.7542 4.5030 4.6967

13 10.8272 9.3142 8.4367 8.2197 7.1382 4.6932 4.5081 4.8684 4.8802 4.6407

14 10.3130 9.3451 9.2183 8.1447 8.5050 4.6401 4.6586 5.0358 5.1234 6.0534
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Table A.1. Critical Values for Nested Model Comparisons Using ENCNEW

in Recursive regressions. Panel C. 1% Nominal Signi�cance Level

RE
T test AET test

k �= 0:15 0:20 0:25 0:30 0:35 0:15 0:20 0:25 0:30 0:35

1 5.5973 5.0777 4.3923 4.0048 4.5139 2.5440 2.6105 2.7804 2.4437 3.3912

2 7.1022 6.9403 5.4295 5.6837 4.9538 3.3233 3.7358 3.7911 3.6601 3.8047

3 7.8179 7.6104 7.2280 6.0766 5.6546 4.2006 4.1387 4.6700 3.8176 4.0667

4 8.8335 8.9030 8.2817 7.0014 5.9816 4.4027 5.1975 5.1425 4.1977 4.4922

5 9.8080 9.1919 8.4201 7.9682 7.2644 5.0634 5.1639 4.8035 5.5495 5.5627

6 12.3480 9.2838 9.6795 8.8177 7.6413 6.0545 5.1822 6.1263 5.7053 5.6554

7 10.7734 11.1139 9.5343 9.7030 9.3939 5.4592 5.6224 5.5001 6.7492 7.3288

8 11.2209 10.9357 10.3834 9.0716 7.9839 5.8005 6.5001 6.0242 5.6473 5.7731

9 13.3989 12.1643 9.9795 10.4110 9.1066 7.4167 6.4201 6.3731 6.4547 7.1052

10 13.0978 12.7918 11.3914 10.9843 10.3273 6.6536 7.2401 7.1739 7.3257 7.2169

11 13.3882 11.2289 12.5175 12.5353 9.8387 6.6060 6.7115 6.9667 8.0051 6.7951

12 15.1617 13.4001 12.3095 11.2742 10.5560 6.9564 6.5237 7.4666 8.0105 7.5797

13 17.1781 12.4525 11.8663 12.4799 11.0325 7.9928 7.4223 7.3339 7.5196 7.5275

14 16.0103 13.3144 12.2509 11.6300 11.6842 7.4660 8.2465 7.4890 7.6319 9.0704

Notes to Table A.1. The Critical Values are obtained by Monte Carlo simulation using

50,000 Monte Carlo replications.
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Figure 1 Panel A
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Figure 1 Panel B
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Figure 1 plots the estimated Clark and West�s (2007) test statistic for the window sizes

that we consider (reported on the x-axis), together with 5% and 10% critical values. Coun-

tries are: Canada (CAN), France (FRA), United Kingdom (GBP), Germany (GER), Italy

(ITA), Japan (JAP), Sweden (SWE) and Switzerland (SWI).
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Figure 2 Panel A
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Figure 2 Panel B
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Figure 1 plots the estimated Clark and West�s (2007) test statistic for the window sizes

that we consider (reported on the x-axis), together with 5% and 10% critical values. Coun-

tries are: Canada (CAN), France (FRA), United Kingdom (GBP), Germany (GER), Italy

(ITA), Japan (JAP), Sweden (SWE) and Switzerland (SWI), The Netherlands (NET) and

Portugal (POR).
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