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Abstract

This paper examines model selection and combination in the context of multi-step linear fore-

casting. We start by investigating multi-step mean squared forecast error (MSFE). We derive

the bias of the in-sample sum of squared residuals as an estimator of the MSFE. We find that

the bias is not generically a scale of the number of parameters, in contrast to the one-step-ahead

forecasting case. Instead, the bias depends on the long-run variance of the forecast model in anal-

ogy to the covariance matrix of multi-step forecast regressions, as found by Hansen and Hodrick

(1980). In consequence, standard information criterion (Akaike, FPE, Mallows and leave-one-out

cross-validation) are biased estimators of the MSFE in multi-step forecast models. These criteria

are generally under-penalizing for over-parameterization and this discrepancy is increasing in the

forecast horizon. In contrast, we show that the leave-h-out cross validation criterion is an ap-

proximately unbiased estimator of the MSFE and is thus a suitable criterion for model selection.

Leave-h-out is also suitable for selection of model weights for forecast combination.

JEL Classification: C52, C53

Keywords: Mallows, AIC, information criterion, cross-validation, forecast combination, model se-

lection



1 Introduction

Model selection has a long history in statistics and econometrics, and the methods are routinely

applied for forecast selection. The most important theoretical contributions are those of Shibata

(1980) and Ing and Wei (2005). Shibata (1980) studied an infinite-order autoregression with ho-

moskedastic errors, and showed that models selected by the final prediction criterion (FPE) or

the Akaike information criterion (AIC) are asymptotically effi cient in the sense of asymptoticaly

minimizing the mean-squared forecast error, when independent samples are used for estimation and

for forecasting. Ing and Wei (2005) extended Shibata’s analysis to the case where the same data

is used for estimation and forecasting. These papers provide the foundation for the recommenda-

tion of the use of FPE, AIC or their asymptotic equivalents (including Mallows and leave-one-out

cross-valdation) for forecast model selection.

In this paper we investigate the appropriateness of these information criterion in multi-step

forecasting. We adopt multi-step mean squared forecast error (MSFE) as our measure of risk, and

set our goal to develop an approximately unbiased estimator of the MSFE. Using conventional

methods, we show that the MSFE is approximately the expected sample sum of squared residuals

plus a penalty which is a function of the long-run covariance matrix.

In the case of one-step forecasting with homoskedastic errors, this penalty simplifies to twice

the number of parameters multiplied by the error variance. This is the classic justification for why

classic information criteria (AIC and its asymptotic equivalents) are approximately unbiased for

the MSFE.

In the case of multi-step forecasting, however, the fact that the errors have overlapping depen-

dence means that the correct penalty does not simplify to a scale of the number of parameters.

This implies that the penalties used by classic information criteria are incorrect. The situation is

identical to that faced in inference in forecasting regressions with overlapping error dependence,

as pointed out by Hansen and Hodrick (1980). The overlapping dependence of multi-step fore-

cast errors invalidates the information matrix equality. This affects information criteria as well as

covariance matrices.

Our finding and proposed adjustment are reminiscent to the work of Takeuchi (1976), who

investigated model selection in the context of likelihood estimation with possibly misspecified mod-

els. Takeuchi showed that the violation of the information matrix equality due to misspecification

renders the Akaike information criterion inappropriate, and that the correct parameterization pe-

nality depends on the matrices appearing in the robust covariance matrix estimator. Unfortunately,

Takeuchi’s precient work has had little impact on empirical model selection practice.

We investigate the magnitude of this discrepancy in a simple model and show that the distortion

depends on the degree of serial dependence, and in the extreme case of high dependence the correct

penalty is h times the classic penalty, where h is the forecast horizon.

Once the correct penalty is understood, it possible to construct information criteria which are

approximately unbiased for the MSFE. Our preferred criterion is the leave-h-out cross-validation

criterion. We show that it is an approximately unbiased estimator of the MSFE. It works well in
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practice, and is conceptually convenient as it does not require penalization or HAC estimation.

Interestingly, our results may not be in conflict with the classic optimality theory of Shibata

(1980) and Ing and Wei (2005). As these authors investigated asymptotic optimality in an infinite-

order autogression, in large samples the information criterion are comparing estimated AR(k) and

AR(k+1) models where k is tending to infinity. As the coeffi cient on the k+1’st autoregressive lag

is small (and tends to zero as k tends to infinity), this is a context where the correct information

penalty is classical and proportionate to the number of parameters. As the asymptotic optimality

theory focuses on the selection of models with a large and increasing number of parameters, the

distortion in the penalty discussed above may be irrelevant.

While many information criteria for model selection have been introduced, the most important

are those of Akaike (1969, 1973), Mallows (1973), Takeuchi (1976), Schwarz (1978) and Rissanen

(1986). The asymptotic optimality of the Mallows criterion in infinite-order homoskedastic linear

regression models was demonstrated by Li (1987). The optimality of the Akaike criterion for optimal

forecasting in infinite-order homoskedastic autoregressive models was shown by Shibata (1980), and

extended by Banasali (1996), Lee and Karagrigoriou (2001), Ing (2003, 2004, 2007), and Ing and

Wei (2003, 2005).

In addition to forecast selection we consider weight selection for forecast combination. The

idea of forecast combination was introduced by Bates and Granger (1969), extended by Granger

and Ramanathan (1984), and spawned a large literature. Some excellent reviews include Granger

(1989), Clemen (1989), Diebold and Lopez (1996), Hendry and Clements (2002), Timmermann

(2006) and Stock and Watson (2006). Stock and Watson (1999, 2004, 2005) have provided detailed

empirical evidence demonstrating the gains in forecast accuracy through forecast combination.

Hansen (2007) developed the Mallows criterion for weight selection in linear regression, and was

shown to apply to one-step-ahead forecast combination by Hansen (2008). Hansen and Racine

(2009) developed weight selection for model averaging using a leave-one-out criterion. In this paper

we recommend the leave-h-out criterion for selection of weights for multi-step forecasting.

2 Model

Consider the h-step-ahead forecasting model

yt = x
′
t−hβ + et (1)

E (xt−het) = 0

σ2 = Ee2t

where xt−h is k × 1 and contains variables dated h periods before yt. The variables (yt, xt−h) are
observed for t = 1, ..., n, and the goal is to forecast yn+h given xn.

In general, the error et is a MA(h-1) process. For example, if yt is an AR(1)

yt = αyt−1 + ut (2)
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Figure 1: Optimal Weight by Forecast Horizon

with ut iid and Eut = 0, then the optimal h-step-ahead forecast takes the form (1) with xt−h = yt−h,

β = αh and

et = ut + αut−1 + · · ·+ αh−1ut−h+1

which is an MA(h-1) process

The forecast horizon affects the optimal choice of forecasting model. For example, suppose

again that yt is generated by (2). Let β̂LS be the least-squares estimate1 of β in (1) and consider

the class of model average forecasts

ŷn+h|n(w) = wxnβ̂LS (3)

where w ∈ [0, 1]. This is a weighted average of the unconstrained least-squares forecast ŷn+h|n =
xnβ̂LS and the constrained forecast ỹn+h|n = 0. The mean-square forecast error of (3) is

MSFE(w) = E
(
yn+h − ŷn+h|n(w)

)2
.

The optimal weight w minimizes this expression, and varies with h, α and n. Using 100,000 simu-

lation replications, the MSFE was calculated for n = 50. The optimal weight is displayed in Figure

1 as a function of of h for several values of α. We can see that the optimal weight w declines with

forecast horizon, and for any horizon h the optimal weight w is increasing in the autoregressive

parameter α. For the one-step-ahead forecast (h = 1), the optimal weight on the least-squares

estimate is close to 1.0 for all values of α shown, but for the 12-step-ahead forecast, the optimal

weight is close to zero for all but the largest values of α.

1Qualitatively similar results are obtained if we replace β̂LS with α̂h where α̂ is the least-squares estimate of α
from the AR(1) (2).
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3 Forecast Selection

Using observations t = 1, ..., n, the forecasting equation (1) is estimated by least-squares, which

we can write

yt = x
′
t−hβ̂ + êt

σ̂2 =
1

n

n∑
t=1

ê2t (4)

and is used to construct the out-of-sample forecast

ŷn+h|n = x
′
nβ̂. (5)

The MSFE of the forecast is

MSFE = E
(
yn+h − ŷn+h|n

)2
. (6)

The goal is to select a forecasting model with low MSFE.

A common information criterion for model selection is the Akaike information criterion (AIC)

AIC = ln σ̂2 +
2k

n
.

A similar criterion (but robust to heteroskedasticity) is leave—one-out cross-validation

CV1 =
1

n

n∑
t=1

ẽ2t,1

where ẽt,1(m) is the residual obtained by least-squares estimation with the observation t omitted.

It turns out that these criteria are generally inappropriate for multi-step forecasting due to the

moving average structure of the forecast error et. Instead, we recommend forecast selection based

on the leave-h-out cross-validation criterion

CVh =
1

n

n∑
t=1

ẽ2t,h (7)

where ẽt,h is the residual obtained by least-squares estimation with the 2h + 1 observations {t −
h+ 1, ..., t+ h− 1} omitted.

4 Forecast Combination

Suppose that there are M forecasting models indexed by m, where the m’th model has k(m)

regressors, residuals êt(m), variance estimate σ̂2(m) and forecast ŷn+h|n(m). We want to select a
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set of weights w(m) to make a forecast combination

ŷn+h|n =
M∑
m=1

w(m)ŷn+h|n(m).

To minimize the MSFE of one-step-ahead forecasts, Hansen (2008) proposed forecast model aver-

aging (FMA). This selects the weights w(m) to minimize the Mallows criterion

FMA(w) =
1

n

n∑
t=1

(
M∑
m=1

w(m)êt(m)

)2
+ 2σ̂2

M∑
m=1

w(m)k(m)

where σ̂2 is a preliminary estimate of σ2. Hansen and Racine (2009) proposed Jackknife model

averaging (JMA) which selects weights w(m) to minimize the leave-one-out cross-validation criterion

CV1MA(w) =
1

n

n∑
t=1

(
M∑
m=1

w(m)ẽt,1(m)

)2

where ẽt,1(m) is the residual obtained by least-squares estimation with observations t omitted.

This is similar to FMA but is robust to heteroskedasticity. These criteria are appropriate for

one-step-ahead forecast combination as they are approximately unbiased estimates of the MSFE.

In the case of multiple-step forecasting these criterion are not appropriate. Instead, we recom-

mend selecting the weights w(m) to minimize the leave-h-out cross-validation criterion

CVhMA(w) =
1

n

n∑
t=1

(
M∑
m=1

w(m)ẽt,h(m)

)2
.

5 Illustrations

To illustrate the difference, Figure 2 displays the MSFE of five estimators in the context of

model (1) for n = 50 and h = 4: The unconstrained least-squares estimator, the selection estimators

based on CV1 and CVh, and the combination estimates based on CV1MA and CVhMA. The data

are generated by the equation (1) with k = 8, the first regressor an intercept and the remaining

regressors normal AR(1)’s with coeffi cients 0.9, and setting β = (µ, 0, ..., 0). The regression error et
is a normal MA(h-1) with equal coeffi cients and normalized to have unit variance. The selection

and combination estimators are constructed from two base model estimators: (i) unconstrained

least-squares estimation, and (ii) β = (0, 0, ..., 0). The MSFE of the five estimators are displayed

as a function of µ, and are normalized by the MSFE of the unconstrained least-squares estimator.

We can see a large difference in performance of the estimators. The estimator with the uniformly

lowest MSFE (across µ) is the leave-h-out combination estimator CVhMA, and the difference in

MSFE is substantial.

Figures 3, 4, and 5 display the MSFE of the same estimators when the data are generated
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Figure 2: MSFE of 4-step-ahead forecast as a function of the coeffi cient µ

by an AR(1) (2) with coeffi cient α, for different forecast horizons h. The forecasting equation is a

regression of yt on an intercept and three lags of yt : yt−h, yt−h−1, ..., yt−h−3 (k = 4 regressors). The

two base model estimators are: (i) unconstrained least-squares estimation, and (ii) β = (0, 0, 0, 0).

The sample size again is n = 50. Figure 3 displays the MSFE for h = 4, Figure 4 for h = 8 and

Figure 5 for h = 12, and the MSFE is displayed as a function of the autoregressive coeffi cient α and

is normalized by the MSFE of the unconstrained least-squares estimator. In nearly all cases the

leave-h-out combination estimator CVhMA has the lowest MSFE, with the only exception h = 4

for large α. For h = 4 the difference between the estimators is less pronounced, but for large h

and α the difference between the MSFE of the h-step criteria estimators CVhMA and CVh and the

1-step estimators CV1MA and CV1 is quite large.

6



Figure 3: 4-step-ahead MSFE for AR(1) process

Figure 4: 8-step-ahead MSFE for AR(1) process
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Figure 5: 12-step-ahead MSFE for AR(1) process

6 MSFE

We now develop a theory to justify the recommendations of the previous sections.

A common measure of forecast accuracy is the mean-square forecast error (MSFE) defined in

(6). The basis for our theory is the following representation of the MSFE.

Theorem 1

MSFE = E
(
σ̂2
)
+
2σ2B

n
+O

(
n−3/2

)
(8)

where σ̂2 is from (4) and

B = σ−2 tr
(
Q−1Ω

)
(9)

Q = E
(
xt−hx

′
t−h
)

Ω =
h−1∑

j=−(h−1)
E
(
xt−h−jet−jx

′
t−het

)
.

Therorem 1 shows that the sum of square errors is a biased estimate of the MSFE with the

bias determined by the constant B. The constant B is a function of the matrix Ω which appears in

the covariance matrix for the parameter estimates β̂ as is standard for estimation with overlapping

error dependence, as shown by Hansen and Hodrick (1980).
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7 Conditionally Homoskedastic One-Step-Ahead Forecasting

Suppose that h = 1 and the forecast error is a conditionally homoskedastic martingale difference:

E (et | =t−1) = 0

E
(
e2t | =t−1

)
= σ2.

In this case

Ω = Qσ2 (10)

so that the bias term (9) takes the simple form

B = k. (11)

In this case Theorem 1 implies

MSFE = E
(
σ̂2
)
+
2kσ2

n
.

This shows that in a homoskedastic MDS forecasting equation, the Mallows criterion

C = σ̂2 +
2kσ̃2

n

(where σ̃2 is a preliminary consistent estimate of σ2), Akaike’s final prediction error (FPE) criterion

FPE = σ̂2
(
1 +

2k

n

)
and the exponential of the Akaike information criterion (AIC)

exp (AIC) = σ̂2 exp

(
2k

n

)
' FPE

are all approximately unbiased estimators of MSFE.

These three information criteria essentially use the approximation B ' k to construct the

parameterization penalty, which is appropriate for one-step homoskedastic forecasting due to the

information-matrix equality (10). However, (10) generally fails for multi-step forecasting as pointed

out by Hansen and Hodrick (1980). When (10) fails, then AIC, FPE, and Mallows are biased

information criteria.

7.1 Criterion Distortion in h-step Forecasting

We have shown that classic information criteria estimate the bias of the sum of squared errors us-

ing the approximation B ' k which is valid for one-step homoskedastic forecasting but generally in-
valid for multi-step forecasting. Instead, the correct penalty is proportional to B = σ−2 tr

(
Q−1Ω

)
.
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What is the degree of distortion due to the use of the traditional penality k rather than the correct

penalty B? In this section we explore this question with a simple example.

Suppose that (1) holds with xt−h and et mutually independent. In this case

B = k + 2
h−1∑
j=1

tr
((
E(xt,x

′
t)
)−1

E(xt,xt−j)
)
corr(et, et−j).

Notice that if both xt and et are positively serially correlated, then B > k. In this sense, we see

that generally the conventional approximation B ' k is an underestimate of the correct penalty.
To be more specific, suppose that the elements of xt are independent AR(1) processes with

coeffi cient ρ, in which case

tr
((
E(xt,x

′
t)
)−1

E(xt,xt−j)
)
= kρj

and

B = k

1 + 2 h−1∑
j=1

ρj corr(et, et−j)

 .

Furthermore, suppose that et is a MA(h-1) with equal coeffi cients. Then

corr(et, et−j) = 1−
j

h

and

B = k + 2k
h−1∑
j=1

ρj
(
1− j

h

)
.

This is increasing with ρ. The limit as ρ→ 1 is

lim
ρ→1

B = kh.

We have found that in this simple setting the correct penalty kh is proportional to both the

number of parameters k and the forecast horizon h. The classic penalty k is off by a factor of h, and

puts too small a penalty on the number of parameters. Consequently, classic information criteria

will over-select for multi-step forecasting.

8 Leave-h-out Cross Validation

Our second major contribution is a demonstration that the leave-h-out CV criterion is an

approximately unbiased estimate of the MSFE.
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The leave-h-out estimator of β for observation t in regression (1) is

β̃t,h =

 ∑
|j−t|≥h

xj−hx
′
j−h

−1 ∑
|j−t|≥h

xj−hyj


where the summation is over all observations except the 2h+1 observations {t−h+1, ..., t+h−1}
omitted. In other words, leaving out observations within h − 1 periods of the time period t. The
leave-h-out residual is

ẽt,h = yt − β̃
′
t,hxt−h

and the leave-h-out cross-validation criterion is

CVh =
1

n

n∑
t=1

ẽ2t,h.

Theorem 2 E (CVh) =MSFE + o(1)

Theorem 2 shows that leave-h-out CV is an appropriate h-step forecast selection criterion. This

is in contrast to AIC, FPE, Mallows and leave-one-out CV, which are generally biased estimates of

the MSFE for h > 1.

9 Computation

Let X be the matrix of stacked regressors x′t−h.

When h = 1, a well-known simplification for the leave-one-out residual is

ẽt,1 = êt

(
1− x′t−h

(
X ′X

)−1
xt−h

)−1
.

For h > 1, a similar equation is not available. However, Racine (1997) showed that

β̃t,h =

[(
X ′X

)−1
+
(
X ′X

)−1
X ′t,h

(
I −Xt,h

(
X ′X

)−1
X ′t,h

)−1
Xt,h

(
X ′X

)−1] (
X ′y −X ′t,hyt,h

)
whereXt,h and yt,h are the blocks ofX and y for the removed observations {t−h+1, ..., t, ..., t+h−
1}. Now, let ẽt:h be the 1+2h×1 vector of residuals for the observations {t−h+1, ..., t, ..., t+h−1}
when the coeffi cient is estimated by β̃t,h, and let êt:h be the corresponding elements of ê. Note that
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ẽt,h is the middle element of the vector ẽt:h. Let P t,h =Xt,h (X
′X)−1X ′t,h. We find

ẽt:h = yt,h −Xt,hβ̃t,h

= yt,h −Xt,hβ̂ + P t,h (I − P t,h)
−1P t,hyt,h

− P t,h (I − P t,h)
−1Xt,hβ̂ + P t,hyt,h

=
(
I + P t,h (I − P t,h)

−1P t,h + P t,h

)
êt:h

−
(
P t,h (I − P t,h)

−1 − P t,h − P t,h (I − P t,h)
−1P t,h

)
Xt,hβ̂

= (I − P t,h)
−1 êt:h

using the matrix equalities

I − P + P (I − P )−1 = (I − P )−1

P (I − P )−1 − P − P (I − P )−1P = 0.

This shows that a simple method to calculate ẽt,h is as the middle element of the vector

ẽt:h = (I − P t,h)
−1 êt:h. (12)

Alternatively, the matrix equality

(I − P t,h)
−1 =

(
I −Xt,h

(
X ′X

)−1
X ′t,h

)−1
= I +Xt,h

(
X ′X −X ′t,hXt,h

)−1
X ′t,h

shows that

ẽt:h = êt:h +Xt,h

(
X ′X −X ′t,hXt,h

)−1
X ′t,hêt:h

and thus an alternative formula to calculate ẽt,h is

ẽt,h = êt + x
′
t−h
(
X ′X −X ′t,hXt,h

)−1
X ′t,hêt:h. (13)

The relative numerical computation costs for (12) versus (13) roughly depends on the relative size

of the matrices P t,h and X ′X. Thus roughly (12) is less costly if 2h+1 < k, otherwise (13) is less

costly. This is an important consideration as the leave-h-out criterion requires calculation of ẽt,h
for all observations t

10 Proofs

The current proofs are sketches, and consequently I do not provide regularity conditions. Essen-

tially, the regularity conditions will be strictly stationarity, mixing, and suffi ciently finite moments.
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Proof of Theorem 1: The MSFE is

MSFE = E
(
yn+h − x′nβ̂

)2
= E

(
en+h − x′n

(
β̂ − β

))2
= σ2 + E

(
x′n

(
β̂ − β

))2
' σ2 + E

(
x′t−h

(
β̂ − β

))2
. (14)

[Note: The approximation (14) needs more careful justification.]

Now the least-squares residual is

êt = et − x′t−h
(
β̂ − β

)
so

σ̂2 =
1

n

n∑
t=1

ê2t

=
1

n

n∑
t=1

e2t −
2

n

n∑
t=1

etx
′
t−h

(
β̂ − β

)
+
1

n

n∑
t=1

(
x′t−h

(
β̂ − β

))2
.

Its expected value is

E
(
σ̂2
)
= σ2 − 2

n
E (ξn) + E

(
x′t−h

(
β̂ − β

))2
(15)

where

ξn =
n∑
t=1

etx
′
t−h

(
β̂ − β

)

=
1√
n

n∑
t=1

etx
′
t−h

(
1

n

n∑
t=1

xt−hx
′
t−h

)−1
1√
n

n∑
t=1

etx
′
t−h.

Combining (14) and (15) we see that

MSFE ' E
(
σ̂2
)
+
2

n
E (ξn) .

Now by the WLLN and CLT,

ξn →d Z
′Q−1Z

where Z ∼ N (0,Ω) . If ξn is uniformly integrable

E (ξn)→ E
(
Z ′Q−1Z

)
= tr

(
Q−1Ω

)
= σ2B
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and

E (ξn) = tr
(
Q−1Ω

)
+O

(
n−1/2

)
.

We have shown that

MSFE ' E
(
σ̂2
)
+
2σ2

n
B +O

(
n−3/2

)
as claimed.

Proof of Theorem 2. In (13) we showed that

ẽt,h = êt + x
′
t−h
(
X ′X −X ′t,hXt,h

)−1
X ′t,hêt:h.

Thus

CVh =
1

n

n∑
t=1

ẽ2t,h

' 1

n

n∑
t=1

ê2t +
2

n

n∑
t=1

êtx
′
t−h
(
X ′X −X ′t,hXt,h

)−1
X ′t,hêt:h

= σ̂2 +
2

n

n∑
t=1

êtx
′
t−h
(
X ′X −X ′t,hXt,h

)−1 h−1∑
j=−(h−1)

xt−h+j êt+j

= σ̂2 +
2

n
tr

(X ′X −X ′t,hXt,h

)−1 h−1∑
j=−(h−1)

êtxt−hx
′
t−h+j êt+j


= σ̂2 +

2

n
tr
(
Q̂
−1
h Ω̂

)
where

Q̂h =
1

n

(
X ′X −X ′t,hXt,h

)
=
1

n

n∑
t=1

xt−hx
′
t−h −

1

n

h−1∑
j=−(h−1)

xt−h−jx
′
t−h−j

and

Ω̂ =

h−1∑
j=−(h−1)

1

n

∑
t

xt−h+jx
′
t−hêt+j êt.

Applying the central limit theorem we find that

tr
(
Q̂
−1
h Ω̂

)
= tr

(
Q−1Ω

)
+Op(n

−1/2)
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and thus

CVh = σ̂2 +
2

n
tr
(
Q−1Ω

)
+Op(n

−3/2)

= σ̂2 +
2σ2B

n
+Op(n

−3/2).

Combined with Theorem 1 and assuming that tr
(
Q̂
−1
h Ω̂

)
is uniformly integrable, it follows that

E (CVh) = E
(
σ̂2
)
+
2σ2B

n
+O(n−3/2)

=MSFE +O(n−3/2)

as stated.
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JACKKNIFE MODEL AVERAGING

BRUCE E. HANSEN AND JEFFREY S. RACINE

Abstract. We consider the problem of obtaining appropriate weights for averagingM approximate
(misspecified) models for improved estimation of an unknown conditional mean in the face of
non-nested model uncertainty in heteroskedastic error settings. We propose a “jackknife model
averaging” (JMA) estimator which selects the weights by minimizing a cross-validation criterion.
This criterion is quadratic in the weights, so computation is a simple application of quadratic
programming. We show that our estimator is asymptotically optimal in the sense of achieving the
lowest possible expected squared error. Monte Carlo simulations and an illustrative application
show that JMA can achieve significant efficiency gains over existing model selection and averaging
methods in the presence of heteroskedasticity.

1. Introduction

Confronting parametric model uncertainty has a rich heritage in the statistics and econometrics

literature. The two most popular approaches towards dealing with model uncertainty are ‘model

selection’ and ‘model averaging,’ while both Bayesian and non-Bayesian approaches have been

proposed.

Model selection remains perhaps the most popular approach for dealing with model uncertainty.

This method has the user first adopt an estimation criterion such as the Akaike information criterion

(AIC, Akaike (1970)) and then select from among a set of candidate models that which scores most

highly based upon this criterion. Unfortunately, a variety of such criteria have been proposed in

the literature, different criteria favor different models from within a given set of candidate models,

and seasoned practitioners know that some criteria will favor more parsimonious models (e.g., the

Schwarz-Bayes information criterion (BIC); Schwarz (1978)) while others will favor more heavily

parameterized models (e.g., AIC).

Model averaging, on the other hand, deals with model uncertainty not by having the user select

one model from among a set of candidate models according to a criterion such as AIC or BIC, but

rather by averaging over the set of candidate models in a particular manner. Many readers will no

doubt be familiar with the Bayesian model averaging literature, and we direct the interested reader

to Hoeting, Madigan, Raftery & Volinsky (1999) for a comprehensive review of this literature. There

is also a rapidly-growing literature on frequentist methods for model averaging, including Buckland,

Date: October 11 2010.
We thank the Co-Editor, Associate Editor, and two referees for helpful comments. Hansen would like to gratefully
acknowledge support from the National Science Foundation. Racine would like to gratefully acknowledge support
from Natural Sciences and Engineering Research Council of Canada (NSERC:www.nserc.ca), the Social Sciences and
Humanities Research Council of Canada (SSHRC:www.sshrc.ca), and the Shared Hierarchical Academic Research
Computing Network (SHARCNET:www.sharcnet.ca).

1



2 BRUCE E. HANSEN AND JEFFREY S. RACINE

Burnhamn & Augustin (1997), Juditsky & Nemirovski (2000), Yang (2001), Yang (2004), Hansen

(2007), Goldenshluger (2009) and Wan, Zhang & Zou (2010). Most of these methods involve sample

splitting, which can be inefficient, and all exclude heteroskedasticity, which limits their applicability.

In this paper we propose a frequentist model averaging method which we term “jackknife model

averaging” (hereafter JMA) that selects the weights by minimizing a cross-validation criterion. In

models that are linear in the parameters the cross-validation criterion is a simple quadratic function

of the weights, so the solution is found through a standard application of numerical quadratic pro-

gramming. (Delete-one) cross-validation for selection of regression models was introduced by Allen

(1974), Stone (1974), Geisser (1974) and Wahba & Wold (1975), and its optimality demonstrated

by Li (1987) for homoskedastic regression and Andrews (1991) for heteroskedastic regression. After

our initial submission we discovered that the idea of using cross-validation to select model averaging

weights has been proposed before by Wolpert (1992) and Breiman (1996), but these papers had no

theoretical justification (only simulation evidence) for their proposed methods.

Applying the theory developed in Li (1987), Andrews (1991) and Hansen (2007), we establish the

asymptotic optimality of the JMA estimator allowing for bounded heteroskedasticity of unknown

form. Our results are the first (to our knowledge) theoretical results for model averaging allowing

for heteroskedasticity. We show that the JMA estimator is asymptotically optimal in the sense of

achieving the lowest possible expected squared error over the class of linear estimators constructed

from a countable set of weights. The class of linear estimators includes but is not limited to

linear least-squares, ridge regression, Nadaraya-Watson and local polynomial kernel regression with

fixed bandwidths, nearest neighbor estimators, series estimators, estimators of additive interaction

models, and spline estimators. Our results apply both to nested and nonnested regression models,

extending the theory of Hansen (2007) whose proof was limited to the nested regression case.

An important limitation is that our theoretical results are limited to random samples (and thus

excludes time-series). While we expect that the methods are applicable to time-series regression

with martingale difference errors, the theoretical extension would be quite challenging.

Our proof method follows Hansen (2007) by restricting the weight vectors to a discrete grid while

allowing for an unbounded number of models. An alternative proof method used by Wan et al.

(2010) allows for continuous weights but at the cost of greatly limiting the number of allowable

models.

We demonstrate the potential efficiency gains through a simple Monte Carlo experiment. In a

classic regression setting, we show that JMA achieves lower mean squared error than competitive

methods. In the presence of homoskedastic errors, JMA and Mallows model averaging (MMA) are

nearly equivalent, but when the errors are heteroskedastic, JMA has significantly lower MSE.

We also illustrate the method with an empirical application to cross-section earnings prediction.

We find that JMA achieves out-of-sample prediction squared error which is either equivalent or

lower than that achieved by all other methods considered.
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The remainder of the paper is organized as follows. Section 2 presents averaging estimators,

and Section 3 presents the jackknife weighting method. Section 4 provides an asymptotic opti-

mality theory under high-level conditions for a broad class of linear estimators. Section 5 presents

the optimality theory for linear regression models. Section 6 reports the Monte Carlo simulation

experiment, and Section 7 an application to predicting earnings. Section 8 concludes, and the

mathematical proofs are presented in the appendix.

2. Averaging Estimators

Consider a sample of independent observations (yi, xi) for i = 1, . . . , n. Define the conditional

mean µi = µ (xi) = E (yi | xi) so that

yi = µi + ei(1)

E (ei | xi) = 0

Define y = (y1, . . . , yn)
′ , µ = (µ1, . . . , µn)

′ , and e = (e1, . . . , en)
′. Let σ2i = E

(
e2i | xi

)
denote the

conditional variance which is allowed to depend on xi.

Suppose that we have a set of linear estimators
{
µ̂1, µ̂2, . . . , µ̂Mn

}
for µ. By linear, we mean that

the m’th estimator can be written as µ̂m = Pmy where Pm is not a function of y. As mentioned in

the introduction, this class of estimators includes linear least-squares, ridge regression, Nadaraya-

Watson and local polynomial kernel regression with fixed bandwidths, nearest neighbor estimators,

series estimators, estimators of additive interaction models, and spline estimators. This restriction

to linear estimators will be used for our optimality theory, but is not essential to the definition of

the JMA estimator.

Our primary focus will be on least-squares estimators, in which case Pm = Xm (Xm′Xm)−1Xm′

and the i’th row of Xm is xmi , a km × 1 function of xi. An estimator (or model) corresponds to a

particular set of regressors xmi . In some applications the regressor matrices will be nested so that

span (Xm) ⊂ span
(
Xm+1

)
, while in other applications the regressor sets will be non-nested.

The typical application we envision is when the potential regressor set xi is large, and the

regressors xmi are subsets of xi. Another potential application is series estimation, for example a

spline. In this case, xmi is a set of basis transformations of a (low-dimensional) regressor xi.

In practice the number of estimators Mn can be quite large. To allow for this possibility, our

optimality theory does not impose a bound onMn and we view this as one of its important strengths.

The problem of “model selection” is how to select an estimator from the set
{
µ̂1, µ̂2, . . . , µ̂Mn

}
.

If a mean-square criterion is adopted, it is well-known that the optimal estimator is not necessarily

the largest or most complete model. This should be quite apparent in context where the number

of potential regressors exceeds the number of observations, but it is also true in any finite sample

context. To minimize the mean-square estimation error, a balance must be attained between

the bias due to omitted variables and the variance due to parameter estimation. Optimal model

selection addresses this by designing a data-dependent rule to pick an individual estimator so that

the selected estimator has low risk.
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Further reductions in mean-squared error can be attained by averaging across estimators. Let

w =
(
w1, w2, . . . , wMn

)′
be a set of weights which sum to one. Given w, an averaging estimator

for µ takes the form

(2) µ̂ (w) =

Mn∑
m=1

wmµ̂m = µ̂w = P (w)y

where µ̂ =
(
µ̂1, . . . , µ̂Mn

)
is the n×Mn matrix of estimates and

(3) P (w) =

Mn∑
m=1

wmPm

is a linear operator indexed by w. Thus for fixed weights the averaging estimator µ̂ (w) is linear in

y and is also linear in the weights w.

By setting the weights w to be unit vectors ιm (where wm = 1 and wℓ = 0 for ℓ ̸= m) the

averaging estimator simplifies to a selection estimator µ̂m. By allowing non-unit weights we gener-

alize selection estimators and obtain smoother functions of the data. As shown by Hansen (2007),

the estimator (2) can achieve lower mean-squared-error (MSE) than any individual estimator. The

source of the improvement is similar to shrinkage, where the introduction of bias allows a reduction

in estimation variance.

We require the weights to be non-negative and thus lie on the RMn unit simplex:

Hn =

{
w ∈ RMn : wm ≥ 0,

Mn∑
m=1

wm = 1

}
.

One might ask: Why restrict the weights to be non-negative? Can improved performance be

attained by lifting this restriction and allowing for negative weights? The answer – at least in the

context of linear regression – appears to be no. As shown by Cohen (1966) in a Gaussian setting

and discussed by Li (1987) for regression, a necessary condition for the linear estimator P (w)y

to be admissible is that all eigenvalues of P (w) lie in the interval [0, 1]. For all common linear

estimators (including regression), the eigenvalues of Pm lie in [0, 1], so a sufficient condition for

P (w) to have eigenvalues in [0, 1] is that w ∈ Hn. Furthermore this restriction is necessary in the

leading case of nested linear regression. To see this, rewrite

P (w) =

Mn∑
m=1

wm∗ (Pm −Pm−1)

where

wm∗ =

Mn∑
j=m

wj .

When the models are nested and ordered, then Pm−Pm−1 are mutually orthogonal projection ma-

trices. It follows that the eigenvalues of P (w) take only the values {0, w1
∗, w

2
∗, . . . , w

Mn
∗ }. Restricting

these eigenvalues to [0, 1] is equivalent to the restriction 0 ≤ wm ≤ 1 for all m, e.g. w ∈ Hn. It
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follows that for nested linear regression, the restriction of the weight vector to the unit simplex is

a necessary condition for admissibility.

It is also instructive to investigate the form of the averaging estimator in the context of nonpara-

metric series regression with orthogonal regressors1. Let xij be an orthogonal basis of functions of

xi and set Xj = (x1j , . . . , xnj)
′ to be the n × 1 vector of observations on the j’th regressor. Since

the regressors are orthogonal then the OLS estimate of µ using the first m regressors is

µ̂m =

m∑
j=1

Xj β̂j

where β̂j =
(
X ′
jXj

)−1
X ′
jy is least-squares on the j’th regressor. In this context a nested averaging

estimator takes the simple form

µ̂ (w) =
(
w1 + · · ·+ wMn

)
X1β̂1 +

(
w2 + · · ·+ wMn

)
X2β̂2 + · · ·+ wMnXMn β̂Mn .

Thus a nested averaging estimator necessarily assigns (weakly) declining weights to the components

Xj β̂j . It follows that the ordering of the regressors Xj is of critical importance. Different orderings

lead to different individual estimators, and thus to different averaging estimators.

While the order of the regressors is critical for averaging estimators, it is equally critical for

traditional selection estimators. Averaging and selection methods are equally dependent on the

individual estimators (models) and thus on the explicit ordering of the variables in nested modelling.

3. Jackknife Weighting

In this paper we propose jackknife selection of w (also known as leave-one-out cross-validation).

This requires the jackknife residuals for the averaging estimator, which we now derive.

Them’th jackknife estimator is µ̃m = (µ̃m1 , µ̃
m
2 , . . . , µ̃

m
n )

′ , where µ̃mi is the estimator µ̂mi computed

with the i’th observation deleted, and can be written as µ̃m = P̃my where P̃m has zeros on the

diagonal. The jackknife residual vector for the m’th estimator is ẽm = y − µ̃m.

In the least-squares example described in the previous section, µ̃mi = xm′
i

(
Xm′

(−i)X
m
(−i)

)−1
Xm′

(−i)y(−i),

where Xm
(−i) and y(−i) denote the matrices Xm and y with the i’th row deleted. As shown in equa-

tion (1.4) of Li (1987), we have the simple relationship

(4) P̃m = Dm (Pm − I) + I

where Dm is the n × n diagonal matrix with the i’th diagonal element equal to (1− hmii )
−1 , and

hmii = xm′
i (Xm′Xm)−1 xmi is the i’th diagonal element of Pm. (See also the generalization of (4)

by Racine (1997)). It follows that the jackknife residual vector can be conveniently written as

ẽm = Dmê
m where êm = y −Pmy is the least squares residual vector. Using this representation,

ẽm can be computed with a simple linear operation and does not require n separate regressions.

1We thank the Associate Editor for this suggestion.
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The jackknife version of the averaging estimator is

µ̃ (w) =

Mn∑
m=1

wmµ̃m = µ̃w = P̃ (w)y

where µ̃ =
(
µ̃1, . . . , µ̃Mn

)
and P̃ (w) =

∑Mn
m=1w

mP̃m. Note that the matrix P̃ (w) has zeros on the

diagonal.

The jackknife averaging residual is

ẽ (w) = y − µ̃ (w)

=

Mn∑
m=1

wmẽm

= ẽw

where ẽ =
(
ẽ1, . . . , ẽMn

)
.

The jackknife estimate of expected true error2 is

(5) CVn (w) =
1

n
ẽ (w)′ ẽ (w) = w′Snw

where Sn = 1
n ẽ

′ẽ is Mn×Mn. CVn (w) is also known as the least-squares cross-validation criterion.

The jackknife (or cross-validation) choice of weight vector is the value which minimizes CVn (w)

over w ∈ H∗
n, where H∗

n is some subset of Hn :

(6) ŵ =argmin
w∈H∗

n

CVn (w) .

The jackknife model average (JMA) estimator of µ is µ̂ (ŵ) = µ̂ŵ.

If we again consider unit weight vectors ιm then CVn (ιm) is the standard jackknife criterion for

selection of regression models, and its minimizer ι̂m is the standard jackknife selected model. Thus

the JMA estimator µ̂ (ŵ) is a generalization of jackknife model selection. It is a smoother function

of the data, as the discrete selection of individual models is replaced by the smooth selection of

weights across models.

The set H∗
n can be the entire unit simplex Hn or a constrained subset. For the theoretical

treatment of the regression model in Section 5 we restrict H∗
n to consist of discrete weights wm

from the set {0, 1
N ,

2
N , · · · , 1} for some positive integer N . For empirical practice, however, we set

H∗
n = Hn, the unrestricted unit simplex.

Even though CVn (w) is a quadratic function of w, the solution to (6) is not available in closed

form due to the inequality constraints on w. This is a quadratic programming problem, for which

numerical solutions have been thoroughly studied and algorithms are widely available. For example,

in the R language (R Development Core Team (2009)) it is solved using the quadprog package, in

2For a detailed overview of expected apparent, true and excess error, we direct the reader to Efron (1982, Chapter
7).
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GAUSS by the qprog command, and in MATLAB by the quadprog command. Even when Mn is

very large the solution to (6) is nearly instantaneous using any of these packages.

Algebraically, (6) is a constrained least-squares problem. The vector ŵ is the Mn × 1 coefficient

vector obtained by the constrained regression of y on the n ×Mn matrix µ̃. We can write this

regression problem as y = µ̃ŵ + ẽ. The jackknife weight vector ŵ is the weights which find the

linear combination of the different estimators which yields the lowest squared error.

4. Asymptotic Optimality

Define the average squared error

(7) Ln (w) =
1

n
(µ− µ̂ (w))′ (µ− µ̂ (w))

and the expected squared error (or risk)

(8) Rn (w) = E (Ln (w) | X) .

The average squared error (7) may be viewed as a measure of in-sample fit, while the risk (8)

is equivalent to out-of-sample prediction mean-squared-error. Both are useful measures of the

accuracy of µ̂ (w) for µ.

Following Li (1987), Andrews (1991), and Hansen (2007), we seek conditions under which the

jackknife selected weight vector ŵ is asymptotically optimal in the sense of making Ln (w) and

Rn (w) as small as possible among all feasible weight vectors w. Specifically, we wish to show that

(OPT.1)
Ln (ŵ)

infw∈H∗
n
Ln (w)

→p 1

and

(OPT.2)
Rn (ŵ)

infw∈H∗
n
Rn (w)

→p 1.

(OPT.1) means that the average squared error of the jackknife estimator is asymptotically as small

as the average squared error of the infeasible best possible averaging estimator. (OPT.2) is a similar

statement about the expected squared error. These are conventional optimality criteria for selection

of series terms and bandwidths for nonparametric estimation.

The optimality statements (OPT.1) and (OPT.2) are oracle properties – that the selected weight

vector is asymptotically equivalent to the infeasible best weight vector. A limitation of these

optimality statements is that they restrict attention to estimators which are weighted averages of

the original estimators µ̂m. Thus the optimality is conditional on the given set of estimators. The

averaging estimator is not necessarily better than an estimator not included in the original set of

estimators. For example, if we restrict attention to nested regression models, then the optimality

of the averaging estimator will depend on the ordering of the regressors. Different orderings will

lead to different estimator sets, and thus to different averaging estimators and optimality bounds.
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In this section we establish optimality for the JMA estimator under a set of high-level condi-

tions. Define the jackknife average squared error L̃n (w) = 1
n (µ− µ̃ (w))′ (µ− µ̃ (w)) and jackknife

expected squared error R̃n (w) = E
(
L̃n (w) | X

)
. Let λ (A) denote the largest absolute eigenvalue

of a matrix A. For some integer N ≥ 1, assume the following conditions hold almost surely.

(A.1) inf
i
σ2i ≥ σ2 > 0

(A.2) sup
i

E
(
e
4(N+1)
i | xi

)
<∞

(A.3) lim
n→∞

max
1≤m≤Mn

λ (Pm) <∞

(A.4) lim
n→∞

max
1≤m≤Mn

λ(P̃m) <∞

(A.5) sup
w∈H∗

n

∣∣∣∣∣R̃n (w)

Rn (w)
− 1

∣∣∣∣∣→ 0

(A.6)
∑

w∈H∗
n

(nRn (w))−(N+1) → 0.

Theorem 1. If (A.1)-(A.6) hold, then ŵ is asymptotically optimal in the sense that (OPT.1) and

(OPT.2) hold.

Condition (A.1) excludes degenerate heteroskedasticity. (A.2) is a strong conditional moment

bound. Condition (A.3) is quite mild as typical estimators satisfy λ (Pm) ≤ 1. Condition (A.4) is

an analog of (A.3). Condition (A.5) says that as n gets large, the difference between the risk of the

regular and leave-one-out estimators gets small, uniformly over the class of averaging estimators.

This is standard for the application of cross-validation.

The key assumption is (A.6). It requires the weight vector set H∗
n to be countably discrete,

and thus must be a strict subset of the unit simplex Hn. It also implicitly incorporates a trade-off

between the number of models permitted, the set of potential weights, and the fit of the individual

models.

The choice of N involves a trade-off between the conditional moment bound in (A.2) and the

summation in (A.6). As N increases (A.6) becomes easier to satisfy, but at the cost of a stronger

moment bound in (A.2).

Theorem 1 is an application of results in Li (1987) and Andrews (1991). It is similar to Theorem

5.1 of Li (1987) and Theorem 4.1* of Andrews (1991) which also give high-level conditions for the

asymptotic optimality of cross-validation, but makes two different assumptions. One difference is

that our condition (A.6) is somewhat stronger than theirs, as (A.6) specifies uniform convergence

over the index set H∗
n, while Li and Andrews only require such convergence for sequences wn

for which Rn (wn) → 0 or R̃n (wn) → 0. This distinction does not appear to exclude relevant
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applications, however. The other difference is that Li and Andrews assume that infw∈H∗
n
Rn (w) →

0, while this assumption is not required in our Theorem 1. Their assumption means that as n→ ∞
the optimal expected squared error declines to zero. In practice this means that the index set H∗

n

needs to expand with n in a way so that the estimate µ̂ (w) gets close to the unknown mean µ.

Our Theorem 1 is consistent with but does not require this extra assumption.

A condition which appears to be necessary for (A.6) is

(A.7) ξn = inf
w∈Hn

nRn (w) → ∞

almost surely as n → ∞. This is identical to the condition in Hansen (2007) for Mallows weight

selection, is quite similar to the conditions of Li (1987) and Andrews (1991), and its central role is

emphasized by Shao (1997). It requires that all finite dimensional models are approximations, and

thus the trade-off between bias and variance is present for all sample sizes.

In the context of regression (1), it means that there is no finite dimensional model which is

correctly specified. This corresponds to the case of an infinite-order regression µi =
∑∞

j=1 θjxji

with an infinite number of non-zero coefficients.

We can use (A.7) to obtain a crude but useful primitive condition for (A.6). Let Cn = #(H∗
n)

denote the cardinality of H∗
n, the number of distinct weight vectors. For example, if H∗

n is a grid

on the unit simplex with N grid points on each axis then Cn = O
(
NMn

)
. It is not hard to see

that (A.7) plus Cnξ
−(N+1)
n → 0 are sufficient for (A.6). A useful implication of this bound is that

(A.6) can hold for any sequence ξn if we take N sufficiently large and if Cn diverges sufficiently

slowly. Furthermore, this bound holds regardless of the estimators used. The downside is that the

allowable rate for Cn is quite slow. For example, if ξn = nδ for some 0 < δ < 1, then Cnξ
−(N+1)
n → 0

requires Cn = o
(
nNδ

)
. This is compatible with a grid on the unit simplex only if Mn = O (lnn) ,

which is highly restrictive. In the next section, we develop alternative primitive conditions for the

case of linear regression estimators which allow Mn to be unbounded.

5. Linear Regression

In this section we focus attention on linear regression estimates. These are estimators which take

the form µ̂m = Pmy where Pm = Xm (Xm′Xm)−1Xm′ and Xm is an n×km matrix of regressors. In

this setting it is relatively straightforward to find primitive conditions for assumptions (A.3)-(A.6).

To apply Theorem 1 we need to construct a countably discrete subset H∗
n of Hn. Following

Hansen (2007), we set H∗
n to be an equal-spaced grid on Hn. For N defined in (A.2) let the weights

wm be restricted to the set {0, 1
N ,

2
N , · · · , 1}, and let H∗

n be the subset of Hn restricted to this set

of weights. We view this limitation as a technical artifact of the proof technique. This restriction

becomes less binding as N increases (as H∗
n is dense in Hn). For empirical practice we ignore the

discrete restriction and select ŵ by minimizing CVn(w) over the unrestricted unit simplex.

One of our important advances over Hansen (2007) is that we allow both nested and non-nested

regressors. The primary difficulty with the non-nested regression case is that the number of potential

models can be quite large, and this is difficult to reconcile with Condition (A.6). The solution we
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propose is to limit the number of models for each dimension, but we do not restrict the number of

models or the dimension of the largest model. Specifically, let qjn = # {m : km = j}, the number

of models which have exactly j parameters. For example, if there are Rn regressors and the models

include all regressions with a single regressor in addition to the intercept, then q2n = Rn. If the

models include all pairs of regressors in addition to the intercept, then q3n = Rn(Rn − 1)/2. In

general, if all subsets of r regressors are included models, then

qr+1,n =

(
Rn
r

)
=

Rn!

r! (Rn − r)!
.

Set

(9) qn = max
j≤Mn

qjn.

This is the largest number of models of any given dimension. Our optimality theory restricts the

rate of growth of qn, specifically that

(A.8) qn = o
(
ξ1/Nn

)
where ξn is defined in (A.7). In the special case of nested models, then qn = 1 so (A.8) is automati-

cally satisfied, even if there is a infinity of potential regressors. In general, (A.8) limits the number

of non-nested models.

While Condition (A.7) requires that ξn diverges to infinity, its rate of divergence will be quite

slow. Thus the allowable rate of divergence for qn given in (A.8) is also slow. Hence (A.8) effectively

restricts qn to be bounded, or diverging quite slowly with sample size. As discussed above, in non-

nested regression the number of potential subset models increases rapidly with the number of

variables, thus implementation of (A.8) either restricts the number of variables Rn quite severely,

or restricts the number of permitted subset models. While these restrictions may seem strong, they

are still a significant advance in allowing for an unbounded number of non-nested models.

Finally, let hmii = xm′
i (Xm′Xm)−1 xmi denote the i’th diagonal element of Pm. Assume that

(A.9) max
1≤m≤Mn

max
1≤i≤n

hmii → 0,

almost surely, as n → ∞. This requires that the self-weights hmii be asymptotically negligible for

all models considered. This is a reasonable restriction, as it excludes only extremely unbalanced

designs (where a single observation remains relevant asymptotically). Instead of (A.9), Li (1987)

and Andrews (1991) assume the uniform bound hmii ≤ Λkm/n for some Λ <∞, which is similar to

(A.9), but neither condition is strictly stronger than the other. Conditions of this form are typical

for the application of cross-validation.

Theorem 2. Suppose that Conditions (A.1), (A.2), (A.7), (A.8) and (A.9) hold. Then Conditions

(A.3)-(A.6) hold, and hence ŵ is asymptotically optimal in the sense that (OPT.1) and (OPT.2)

hold.
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Theorem 2 is our main result. It shows that under minimal primitive conditions, the JMA

estimator is asymptotically optimal in the class of weighted averages of linear estimators. The

assumptions imply a trade-off between the moments of the error ei and the number of grid points.

Condition (A.2) means that the number of permitted grid points N on each axis is smaller than

one-fourth of the number of moments of the error. When ei has all moments finite then N can be

selected to be arbitrarily large.

An important limitation of Theorem 2 is the restriction to random samples. The assumptions

do not allow time-series dependence, even though a natural application would be to time-series

models with unknown lag order, such as (vector) autoregressions or GARCH models. Extending

this theory to allow dependent data would be desirable but technically challenging.

6. Finite-Sample Performance

In this section we investigate the finite sample mean squared error of the JMA estimator via a

modest Monte Carlo experiment.

We follow Hansen (2007) and consider an infinite-order regression model of the form yi =∑∞
j=1 θjxji + ϵi, i = 1, . . . , n. We set x1i = 1 to be the intercept, while the remaining xji are

independent and identically distributed N(0, 1) random variates. The error ϵi is also N(0, σ2i ) and

is independent of the xji. For the homoskedastic simulation we set σi = 1 for all i, while for the

heteroskedastic simulation we set σi = x22i which has a mean value of 1. (Other specifications for

the heteroskedasticity were considered and produced similar qualitative results.)

The parameters are determined by the rule θj = c
√
2αj−α−1/2. The difficult aspect here is

determining the appropriate truncation J for
∑J

j=1 θjxji (α is unknown). The issue of ‘appropriate

truncation’ occurs frequently in model selection and is also related to the problem of bandwidth

selection in kernel regression (smaller values of J could correspond to larger bandwidths and vice

versa). The sample size is varied between n = 25, 50, 75, and 100. The parameter α is varied

from 1/2, 1, and 3/2.3 Larger values of α imply that the coefficients θj decline more quickly with

j. The number of models M is determined by the rule M = 3n1/3 (so M = 9, 11, 13, and 14 for

the four sample sizes considered herein). The coefficient c was selected to control the population

R2 = 2aζ(1+2a)c2/(1+ ζ(1+2a)c2) where ζ(k) is the Zeta function. We fix a and set c so that R2

varies on a grid between approximately 0.1 and 0.8. The simulations use nested regression models

with variables {xji, j = 1, . . . ,Mn}. We consider five estimators: (1) AIC model selection (AIC), (2)

BIC model selection (BIC), (3) leave-one-out cross-validated model selection (CV), (4) Jackknife

model averaging (JMA), and (5) Mallows model averaging (MMA, Hansen (2007)). To evaluate

the estimators, we compute the risk (expected squared error). We do this by computing averages

across 10,000 simulation draws. For each parameterization, we normalize the risk by dividing by

the risk of the infeasible optimal least squares estimator (the risk of the best-fitting model m when

averaged over all replications).

3We report results for 1/2 only for space considerations. All results are available on request from the authors.
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6.1. Homoskedastic Error Processes. We first compare risk under homoskedastic errors. The

risk calculations are summarized in Figure 1. The four panels in each graph display results for a

variety of sample sizes. In each panel, risk (expected squared error) is displayed on the y axis and

c2/(1 + c2) is displayed on the x axis.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

n=25

c2 (1 + c2)

R
is

k

JMA
AIC
BIC
CV
MMA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

.8
1

.0
1

.2
1
.4

1
.6

1
.8

n=50

c2 (1 + c2)

R
is

k

JMA
AIC
BIC
CV
MMA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

n=75

c2 (1 + c2)

R
is

k

JMA
AIC
BIC
CV
MMA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

n=100

c2 (1 + c2)

R
is

k

JMA
AIC
BIC
CV
MMA

Figure 1. Finite-sample performance, homoskedastic errors, α = 1/2, σi = 1.

It can be seen from Figure 1 that for the homoskedastic data generating process, the proposed

method dominates it peers for all sample sizes and ranges of the population R2 considered, though

there is only a small gain to be had relative to the MMA method which performs very well overall

and becomes indistinguishable as n increases beyond some modest level.

6.2. Heteroskedastic Error Processes. Next, we compare risk under heteroskedastic errors,

and the risk calculations are summarized in Figure 2.
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Figure 2. Finite-sample performance, heteroskedastic errors, α = 1/2, σi = x2i2.

It can be seen from Figure 2 that for the heteroskedastic data generating process considered

herein, the proposed method dominates it peers for all sample sizes and ranges of goodness of fit

considered. Furthermore, the gain over that of the MMA approach is substantially larger than for

the homoskedastic case summarized in Figure 1, especially for small values of c2/(1 + c2).

7. Predicting Earnings

We employ Wooldridge’s (2003, pg. 226) popular ‘wage1’ dataset, a cross-section consisting of a

random sample taken from the U.S. Current Population Survey for the year 1976. There are 526

observations in total. The dependent variable is the log of average hourly earnings (‘lwage’), while

explanatory variables include dummy variables nonwhite, female, married, numdep, smsa, northcen,



14 BRUCE E. HANSEN AND JEFFREY S. RACINE

south, west, construc, ndurman, trcommpu, trade, services, profserv, profocc, clerocc, servocc, non-

dummy variables educ, exper, tenure, and interaction variables nonwhite× educ, nonwhite×exper,

nonwhite×tenure, female×educ, female×exper, female×tenure, married×educ, married×exper, and

married×tenure.4

We presume there exists uncertainty about the appropriate model but need to predict earnings

for a set of hold-out data. We consider two cases, i) a set of thirty models ranging from the

unconditional mean (k = 1) through a model that includes all variables listed above (k = 30), and

ii) a set of eleven models that use dummy variables female and married, and non-dummy variables

educ, exper, and tenure that range from simple bivariate models that have as covariates each non-

dummy regressor (k = 2) through a model that contains third-order polynomials in all non-dummy

regressors and allows for interactions among all variables (k = 64).

Next, we shuffle the sample into a training set of size n1 and an evaluation set of size n2 = n−n1,
and select models via model selection based on AIC, BIC, and leave-one-out CV, then consider

model average-based models using JMA and MMA. We also consider two nonparametric kernel

estimators, namely, the local linear (NPll) and local constant (NPlc) estimators with data-driven

bandwidths modified to handle categorical and continuous data; see Li & Racine (2004) and Racine

& Li (2004) for details. Note that the nonparametric model for case i) contains more covariates

that that for case ii), most of which are categorical. Finally, we evaluate the models on the

independent hold-out data computing their average square prediction error (ASPE). We repeat

this procedure 1,000 times then report the median ASPE over the 1,000 splits. We vary n1 and

consider n1 = 100, 200, 300, 400, 500. Tables 1 and 2 report the median ASPE for this experiment.

Entries greater than one indicate inferior performance relative to the JMA method.

Table 1 reveals that the proposed method delivers models that are no worse than existing model

selection-based models or model-average based models across the range of sample sizes considered,

often delivering an improved model. The MMA method works very well for case i) and yields

models comparable to those selected by the JMA method. However, this is not the situation for

case ii), as Table 2 reveals. It would appear that the MMA method is somewhat sensitive to the

estimate of σ2 needed for its computation, and relying on a “large” approximating model (Hansen

(2007, pg. 1181) may not be sufficient to deliver optimal results. This issue deserves further study.

This application suggests that the proposed method could be of interest to those who predict

using model-selection criterion. These results, particularly in light of the simulation evidence,

suggest that the method could be recommended for general use though it would of course be

prudent to base this recommendation on more extensive simulation evidence than that outlined in

Section 6.

8. Conclusion

We propose a frequentist method for model averaging that does not preclude heteroskedastic

settings, unlike many of its peers. The method is computationally tractable, is asymptotically

4See http://fmwww.bc.edu/ec-p/data/wooldridge/WAGE1.des for a full description of the data.
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Table 1. Case i), relative out-of-sample predictive efficiency. Entries greater than
one indicate inferior performance relative to the JMA method.

n AIC BIC CV MMA NPll NPlc
100 1.10 1.34 1.07 1.01 2.76 1.77
200 1.04 1.04 1.02 1.00 4.08 3.01
300 1.03 1.01 1.02 1.00 3.06 2.89
400 1.01 1.01 1.03 1.00 3.34 2.69
500 1.00 1.01 1.01 1.00 2.78 2.56

Table 2. Case ii), relative out-of-sample predictive efficiency. Entries greater than
one indicate inferior performance relative to the JMA method.

n AIC BIC CV MMA NPll NPlc
100 1.20 1.00 0.98 4.46 1.01 1.06
200 1.02 1.01 1.00 1.11 1.04 1.09
300 1.02 1.00 1.00 1.04 1.02 1.08
400 1.02 1.00 1.00 1.02 1.02 1.07
500 1.03 1.00 1.01 0.99 1.00 1.03

optimal, and its finite-sample performance is better than that exhibited by its peers. An application

to predicting wages is undertaken that demonstrates performance not worse than other methods

of model selection considered by way of comparison, and performance that is often better for the

range of sample sizes investigated.

There are many questions about the JMA estimator which are open for future research. What

is the behavior of the optimal weights (the minimizers of (A.7)) as n→ ∞? What is the behavior

of the selected weights? What is the asymptotic distribution of the parameter estimates? How can

we construct confidence intervals for the parameters or the conditional mean? Can the theory be

extended to allow for dependent data? These questions remain to be answered by future research.
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Appendix A. Mathematical Proofs

Proof of Theorem 1. The Mallows criterion for a linear estimator Pe is the average squared residu-

als plus a penalty proportional to E (e′Pe | X) . Since CVn(w) defined in (5) is the average squared

residual from the jackknife estimator µ̃ (w) = P̃ (w)y, and

(10) E
(
e′P̃ (w) e | X

)
= tr

(
P̃ (w)Ω

)
= 0

since the diagonal elements of P̃ (w) are zero and Ω = diag
{
σ21, . . . , σ

2
n

}
then CVn(w) is a Mallows

criterion without the need for a penalty. As shown by Theorem 2.1 of Li (1987) as extended by

Andrews (1991) to the heteroskedastic case, ŵ, as the minimizer of CVn(w), is asymptotically

optimal for the jackknife risk R̃n(w), that is

(11)
R̃n (ŵ)

infw∈H∗
n
R̃n (w)

→p 1,

under (A.1), (A.2),

(12) lim
n→∞

sup
w∈H∗

n

λ(P̃ (w)) <∞

and

(13)
∑

w∈H∗
n

(
nR̃n (w)

)−(N+1)
→ 0

almost surely. It is thus sufficient to verify (12) and (13) in order to establish (11).

First, the inequality λ(A+B) ≤ λ(A) + λ(B) plus (A.4) shows that

(14) λ(P̃ (w)) ≤
Mn∑
m=1

wmλ(P̃m) <∞

uniformly in w ∈ H∗
n, almost surely as n→ ∞. establishing (12). Second, using (A.5) and (A.6)∑

w∈H∗
n

(
nR̃n (w)

)−(N+1)
=
∑

w∈H∗
n

(nRn (w))−(N+1)

(
Rn (w)

R̃n (w)

)N+1

≤

 ∑
w∈H∗

n

(nRn (w))−(N+1)

 sup
w∈H∗

n

(
Rn (w)

R̃n (w)

)N+1

→ 0(15)

almost surely, establishing (13). Thus (11) holds. Combined with (A.5) this implies (OPT.2).

Equation (7.1*) of Andrews (1991) states that

sup
w∈H∗

n

∣∣∣∣Ln (w)

Rn (w)
− 1

∣∣∣∣→ 0

which holds under our assumptions. Combined with (OPT.2) this implies (OPT.1), completing the

proof. □
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Proof of Theorem 2. We will show that Conditions (A.3) through (A.6) hold, so an application of

Theorem 1 yields (OPT.1) and (OPT.2).

First, since the Pm are idempotent, Condition (A.3) holds trivially.

Second, let λ̄m and λm denote the largest and smallest diagonal elements of Dm. Condition (A.9)

implies that

(16) λ̄m = 1 + o(1) = λm

uniformly in m ≤Mn. Using (4), this implies

λ(P̃m) ≤ 1 + λ(Dm (Pm − I)) ≤ 1 + o(1)

uniformly in m, so (A.4) holds.

We next show (A.5). We can calculate that

nRn (w) = µ′
(
I−P (w)′

)
(I−P (w))µ+ tr

(
P (w)′P (w)Ω

)
=

Mn∑
m=1

Mn∑
ℓ=1

wmwℓ
[
µ′
(
I−P′

m

)
(I−Pℓ)µ+ tr

(
P′
mPℓΩ

)]
.(17)

The first equality is given in Andrews (1991) and the second uses (3). Similarly,

(18) nR̃n (w) =

Mn∑
m=1

Mn∑
ℓ=1

wmwℓ
[
µ′(I− P̃′

m)(I− P̃ℓ)µ+ tr(P̃′
mP̃ℓΩ)

]
.

It is sufficient to establish that

(19) tr(P̃′
mP̃ℓΩ) = tr

(
P′
mPℓΩ

)
(1 + o(1))

and

(20) µ′(I− P̃′
m)(I− P̃ℓ)µ = µ′

(
I−P′

m

)
(I−Pℓ)µ (1 + o(1))

where the o(1) terms are uniform in m ≤Mn and ℓ ≤Mn. First take (19). Using (4) and the fact

that the diagonal elements of P̃m are zero, (16), again (4), and finally (16)

tr(P̃′
mP̃ℓΩ) = tr(P̃′

mDℓPℓΩ)− tr(P̃′
mDℓΩ) + tr(P̃′

mΩ)

= tr(P̃′
mDℓPℓΩ)

= tr(P̃′
mPℓΩ) (1 + o(1))

=
(
tr
((
P′
m − I

)
DmPℓΩ

)
+ tr (PℓΩ)

)
(1 + o(1))

=
(
tr
((
P′
m − I

)
PℓΩ

)
+ tr (PℓΩ)

)
(1 + o(1))

= tr
(
P′
mPℓΩ

)
(1 + o(1))

establishing (19). Next, (4) implies I − P̃m = Dm (I−Pm) , which combined with (16) directly

implies (20). We have established (19) and (20) which are sufficient for (A.5).
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Finally, we show (A.6). Without loss of generality, arrange the models (estimators) so that they

are weakly ordered by the number of parameters km, e.g. k1 ≤ k2 ≤ · · · ≤ kMn . As in the proof

of Theorem 1 of Hansen (2007), for integers 1 ≤ j1 ≤ j2 ≤ · · · ≤ jN let wj1,j2,...,jN be the weight

vector which sets wjl = 1/N for l = 1, . . . , N, and the remainder zero.

Pick a sequence ψn which satisfies

(21) ψn = o
(
ξ1+1/N
n

)
yet

(22) q1+Nn = o (ψn)

which is feasible since

q1+Nn = o
(
ξ1+1/N
n

)
under (A.8).

We then have

(23)
∑

w∈H∗
n

(nRn(w))−(N+1) =

Mn∑
jN=1

jN∑
jN−1=1

· · ·
j2∑
j1=1

(nRn(wj1,j2,...,jN ))
−(N+1) ≤ B1n +B2n

where

(24) B1n =

ψn∑
jN=1

jN∑
jN−1=1

· · ·
j2∑
j1=1

(nRn(wj1,j2,...,jN ))
−(N+1)

and

(25) B2n =
∞∑

jN=ψn+1

jN∑
jN−1=1

· · ·
j2∑
j1=1

(nRn(wj1,j2,...,jN ))
−(N+1) .

Take (24). As the sum has less than ψNn elements, we apply nRn(w) ≥ ξn from (A.7) and find

that

(26) B1n ≤ ψNn ξ
−(N+1)
n ≤ o(1)

under (21).
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To bound (25) we use the simple inequality

nRn (wj1,j2,··· ,jN ) ≥ tr (P (wj1,j2,··· ,jN )P (wj1,j2,··· ,jN )Ω)

≥ σ2 tr (P (wj1,j2,··· ,jN )P (wj1,j2,··· ,jN ))

=
σ2

N2

 N∑
l=1

tr (Pjl) +
N∑
l=1

∑
m̸=l

tr (PjlPjm)


≥ σ2

N2

(
N∑
l=1

tr (Pjl)

)

=
σ2

N2

(
N∑
l=1

kjl

)

≥ σ2

N2
kjN

≥ σ2

N2

jN
qn

(27)

where the first inequality is from (17), the second inequality uses tr (AB) ≥ tr (A)λmin (B) and

λmin (Ω) ≥ σ2, and the following equality uses the definition of P (w) and the weights wj1,j2,··· ,jN .

The third inequality is

tr (PjlPjm) ≥ tr (Pjl)λmin (Pjm) = 0

since the matrices Pjm are idempotent. The final inequality (27) follows from Definition (9) and

the ordering of the models by the number of parameters kj .

Using inequality (27) we obtain

B2n ≤
∞∑

jN=ψn+1

jN∑
jN−1=1

· · ·
j2∑
j1=1

(
σ2

N2

j

qn

)−(N+1)

≤ N2(N+1)

σ2(N+1)
qN+1
n

∞∑
j=ψn+1

j−2

≤ N2(N+1)

σ2(N+1)
q1+Nn ψ−1

n

≤ o(1).(28)

the last inequality by (22). Equations (23), (26), and (28) establish (A.6).

Conditions (A.3)-(A.6) have been verified as desired. □
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