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Abstract

We consider estimation of parameters in a regression model with endogenous re-
gressors. The endogenous regressors along with a large number of other endogenous
variables are driven by a small number of unobservable exogenous common factors.
We show that the estimated common factors can be used as instrumental variables.
These are not only valid instruments, they are more efficient than the observed vari-
ables in our framework. Consistency and asymptotic normality of the single equation
factor instrumental variable estimator (FIV) is established. We also consider estimat-
ing panel data models in which all regressors are endogenous. We show that valid
instruments can be constructed from the endogenous regressors which are themselves
invalid instruments.
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1 Introduction

The primary purpose of structural econometric modeling is to explain how endogenous vari-

ables evolve according to fundamental processes such as taste shocks, policy, and produc-

tivity variables. To completely characterize the behavior and the evolution of a particular

endogenous variable in a data consistent manner, the economist needs to estimate the struc-

tural parameters of the model. It is well known that because these parameters are often

coefficients attached to endogenous variables, endogeneity bias invalidates least squares es-

timation. There is a long history and continuing interest in estimation by instrumental

variables, especially when the instruments are weak; see, for example, Andrews et al. (2006)

and the references therein. This paper, however, does not consider the problem of weak

instruments. Instead, we suggest a new way of constructing instrumental variables that can

lead to more efficient estimates.

We show that if we have a large panel of instruments and that these variables and the

endogenous regressors share some common factors, the factors estimated from the panel are

valid and efficient instruments for the endogenous regressors. We provide the asymptotic

theory for single equation estimation, and for systems of equations including panel data

models. In the single equation case, we show that the estimated factors can be used as

though they are the ideal but latent instruments. In the case of a large panel, we show that

consistent estimates can be obtained by constructing valid instruments from variables that

are themselves invalid instruments in a conventional sense. High dimensional factor analysis

is a topic of much research in recent years especially in the context of forecasting; see, for

example, Stock and Watson (2002) and Forni et al. (2005). Our analysis provides a new way

of using the estimated factors not previously considered in either the factor analysis or the

instrumental variables literature.

There are two reasons why the common factors can be valid instruments. In economic

analysis, firms and households are assumed to make decisions given a set of primitive condi-

tions. Some of these primitives are common to households and firms, while others are not.

For example, an individual’s consumption depends on cash-on-hand, which will likely be

high when the economy is strong, but it may also vary according to the individual’s status.

Firms’ decisions, on the other hand, are affected by the conditions of the aggregate economy,

as well as specific conditions such as productivity. The (linearized) solution to a dynamic

stochastic general equilibrium (DSGE) model is almost always a system of linear (expecta-

tional) stochastic difference equations in which the endogenous variables are expressed as a
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function of a small number of fundamental variables. It follows that the realized endogenous

variables are functions of these fundamental variables, which are common across endogenous

variables, plus expectational errors, which are specific to the endogenous variable in ques-

tion. In these examples, the fundamental variables, if they were observed, would have been

perfect instruments because they are correlated with the included endogenous regressors,

but are uncorrelated with the equation-specific error. Our main premise is that even though

the common fundamental variables are not observed, we can estimate them consistently.

An alternative view can also be developed by noting that the variables as defined in an

economic model may not coincide exactly with how the measured data are defined. For

example, non-durable consumption is often used to estimate preference parameters, but

non-durable consumption ignores service flows, which the model’s notion of consumption

includes. As is well known, measurement error in the regressors will invalidate least squares

estimation, but estimation by instrumental variables will yield consistent estimators. The

question is just how to find these instruments. In this view, our proposed estimator works

if there are many indicators of the variable that is observed with error.

It is well recognized that use of all potentially relevant instruments in the first stage of

two-stage least squares estimation will lead to a degrees of freedom problem. This motivates

Kloek and Mennes (1960) to construct a small number of principal components from the

predetermined variables as instruments. Our methodology is similar in some ways, but we

put more structure on the predetermined variables. Our point of departure is that if the

variables in the system are driven by common sources of variations, then the ideal instruments

for the endogenous variables in the system are their common components. Thus, while we

have many valid instruments, each is merely a noisy indicator of the ideal instruments that

we do not observe. However, we can extract the ideal instruments from the valid set. We

use a factor approach to estimate the feasible instruments space from the space spanned

by the observed instruments. The resulting factor-based instrumental variable estimator is

denoted FIV. In the terminology of Bernanke and Boivin (2003), what we propose is a way to

construct instrumental variables in a ‘data rich environment’. Favero and Marcellino (2001)

used estimated factors as instruments to estimate forward looking Taylor rules with the

motivation that the factors contain more information than a small number of series. Here, we

provide a formal analysis and show that the estimated factors are more efficient instruments

than the observed variables. As far as we are aware, Kapetanios and Marcellino (2006) is

the only other paper that considers using estimated factors as instruments. Their framework

assumes that there are many observed weak instruments having a weak factor structure. In
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contrast, we assume that there are many observed instruments with an identifiable factor

structure. As such, we adopt standard instead of weak instrument asymptotics. A further

point of departure is that we consider high dimensional simultaneous equations system in

which there exist no valid instruments in the conventional sense.

The rest of this paper is organized as follows. Section 2 presents the framework for

estimation using the feasible instrument set. Section 3 studies instrumental variables esti-

mation for panel data models without observable valid instrument variables. Simulations

are given in Section 4. Our analysis is confined to cases in which the model is linear in the

endogenous regressors, though we permit non-linear instrumental variable estimation when

the non-linearity is induced by parameter restrictions. Non-linear instrumental variable es-

timation is a more involved problem even when the instruments are observed, and this issue

is not dealt with in our analysis.

2 The Econometric Framework

We begin with the case of a single equation. For t = 1, . . . T , the endogenous variable yt is

specified as a function of a K × 1 vector of regressors xt:

yt = x′1tβ1 + x′2tβ2 + εt

= x′tβ + εt (1)

The parameter vector of interest is β = (β′1, β
′
2)
′ and corresponds to the coefficients on the

regressors xt = (x′1t, x
′
2t)

′, where the exogenous and predetermined regressors are collected

into a K1 × 1 vector x1t, which may include lags of yt. The K2 × 1 vector x2t is endogenous

in the sense that E(x2tεt) 6= 0 and the least squares estimator suffers from endogeneity bias.

We assume that

x2t = Ψ′Ft + ut (2)

where Ψ′ is a K2 × r matrix, Ft is a r × 1 vector of fundamental variables, and r ≥ K2 is a

small number. Endogeneity arises when E(Ftεt) = 0 but E(utεt) 6= 0. This induces a non-

zero correlation between x2t and εt. If Ft were observed, β = (β′1, β
′
2)
′ could be estimated,

for example, by using Ft to instrument x2t. This paper assumes that the ideal instrument

vector Ft is not observed.

We assume that there is a ‘large’ panel of data, z1t, . . . zNt that are weakly exogenous for

β and generated as follows:

zit = λ′iFt + eit. (3)
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The r × 1 vector Ft above is a set of common factors, λi is the factor loadings, λ′iFt is

referred to as the common component of zit, eit is an idiosyncratic error that is uncorrelated

with x2t and uncorrelated with εt. Neither eit nor Ft is observed. Viewed from the factor

model perspective, x2t is just K2 of the many other variables in the economic system that

has a common component and an idiosyncratic component. This assumption underlies the

co-movement observed for economic time series.

Although zt, like x2t, is driven by Ft, we assume eit is uncorrelated with εt, and zit is

correlated with x2t through Ft. Thus, zit is weakly exogenous for β, and {zit} constitutes a

large panel of valid instruments. While valid, zit is a ‘noisy’ instrument for each x2t because

the ideal instrument for x2t is Ft. When the context is clear, we will simply refer to Ft as

instruments instead of ‘factor-based instruments’. We cannot use Ft only because it is not

observed. The idea is to use estimated Ft as instrument.

2.1 Assumptions and Estimation of Ft

We estimate the factors from a panel of instruments zit, i = 1, . . . N, t = 1, . . . T , by the

method of principal components. Let zt = (z1t, z2t, ..., zNt)
′ be the N × 1 vector of the

instrumental variables, and let Z = (z1, z2, ..., zT ), which is N×T . We define F = (F1, ..., FT )′

to be the T×r factor matrix, and Λ = (λ1, ..., λN)′ to be the N×r factor loading matrix. The

estimated factors, denoted F̃ = (F̃1, ..., F̃T )′, is a T × r matrix consisting of r eigenvectors

(multiplied by
√

T ) associated with the r largest eigenvalues of the matrix Z ′Z/(TN) in

decreasing order. Then Λ̃ = (λ̃1, . . . , λ̃N)′ = ZF̃/T , which is N × r, is an estimate for the

factor loading matrix Λ. Let ẽ = Z − Λ̃F̃ ′ be the residual matrix (N × T ). Also let Ṽ be

the r × r diagonal matrix consisting of the r largest eigenvalues of Z ′Z/(TN). Hereafter,

variables denoted with a ‘tilde’ are (based on) principal component estimates associated with

the factor model (3), while ‘hatted’ variables are estimated from the regression model. The

following assumption is concerned with the factor model (3).

Assumption A:

a. E‖Ft‖4 ≤ M and 1
T

∑T
t=1 FtF

′
t

p−→ΣF > 0, is a r × r non-random matrix.

b. λi is either deterministic such that ‖λi‖ ≤ M , or it is stochastic such that E‖λi‖4 ≤ M .

In either case, N−1Λ′Λ
p−→ΣΛ > 0, a r × r non-random matrix, as N →∞.

c.i E(eit) = 0, E|eit|8 ≤ M .
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c.ii E(eitejs) = σij,ts, |σij,ts| ≤ σ̄ij for all (t, s) and |σij,ts| ≤ τts for all (i, j) such that
1
N

∑N
i,j=1 σ̄ij ≤ M, 1

T

∑T
t,s=1 τts ≤ M, and 1

NT

∑
i,j,t,s=1 |σij,ts| ≤ M .

c.iii For every (t, s), E|N−1/2
∑N

i=1

[
eiseit − E(eiseit)

]
|4 ≤ M .

d. {λi}, {Ft}, and {eit}, are three mutually independent groups. Dependence within each

group is allowed.

Assumption A was used in Bai and Ng (2002) and Bai (2003) to obtain properties of F̃

and Λ̃ as estimators for F = (F1, ..., FT )′ and Λ = (λ1, ..., λN)′, respectively. Assumptions

(A.a) and (A.b) imply existence of r factors. The idiosyncratic errors eit are allowed to be

cross-sectionally and serially correlated, but only weakly as stated under condition (A.c).

If eit are iid, then A.c(ii) and A.c(iii) are satisfied. For Assumption (A.d), within group

dependence means that Ft can be serially correlated, λi can be correlated over i, and eit can

have serial and cross-sectional correlations. All these correlations cannot be too strong so

that (A.a)-(A.c) hold. However, we assume no dependence between the factor loadings and

the factors, or between the factors and the idiosyncratic errors, etc, which is the meaning of

mutual independence between groups.

The variable x1t serves as its own instrument because it is predetermined. Let F+
t =

(x′1t, F
′
t)
′, the vector of ideal instruments with dimension K1 + r. Let β0 denote the true

value of β. Introduce εt(β) = yt − x′tβ and thus εt = εt(β
0).

Assumption B

a. E(εt) = 0, E|εt|4+δ < ∞ for some δ > 0. The vector process gt(β
0) = F+

t εt satisfies

E[gt(β
0)] = 0 with E(gt(β)) 6= 0 when β 6= β0. Let ḡ0 = 1

T

∑T
t=1 F+

t εt, and
√

T ḡ0 =

T−1/2
∑T

t=1 F+
t εt

d−→N(0, S0) for some S0 > 0.

b. x2t = Ψ′Ft + ut with Ψ′Ψ > 0, E(Ftut) = 0, and E(utεt) 6= 0.

c. For all i and t, E(eitut) = 0, and E(eitεt) = 0.

Part (a) states that the model is correctly specified and a set of orthogonality conditions

hold at β0. In general, S0 is the limit of T−1
∑T

t=1

∑T
s=1 E[F+

t F+′
s εtεs]. However, to focus

on the main idea, we shall assume throughout F+
t εt to be serially uncorrelated so that S0

is the probability limit of T−1
∑T

t=1 F+
t F ′+

t ε2
t . Heteroskedasticity of εt is allowed and will

be reflected in the asymptotic variance, S0. Validity of Ft as an instrument requires that

Fjt has a non-zero loading on x2t for each j = 1, . . . r. Thus, Ft is the ideal but infeasible

instrument for x2t. The requirement that Ψ′Ψ > 0 in part (b) is thus important for our
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analysis. Part (c) assumes that the correlation between the instruments and the endogenous

regressor come through Ft and not eit. It further implies that all the instruments are valid.

This assumption is stronger than is necessary and can be relaxed, see Remark 1 below.

In certain cases, lags of Ft can also serve as instruments, though in general, lags of Ft

should provide no further information about x2t once conditioned on Ft. When ut is serially

uncorrelated and all the dynamics in x2t are due to Ft, then lags of Ft are better instruments

than lags of x2t. Lags of x2t can be better instruments if Ft does not contribute to the

dynamics in x2t.

In order to use past values of the observed variables as instruments,, we also need

Condition C: (a) E(x2tx
′
2t−j) 6= 0 for some j > 1. and (b) E(εt|It−1) = 0 where It−1 =

{x1t−j, x2t−j, yt−j}t−1
j=1.

Essentially, x2t must be serially correlated and εt must be uncorrelated with the past

observations. If lags of x2t are valid instruments, they are in general better instruments than

lags of yt because the latter are correlated with x2t through the correlation between x2t and

its past values.1

2.2 A Feasible Factor IV Estimator

The conventional treatment of endogeneity bias is to use lags of yt, x1t and x2t as instruments

for x2t and invoke Condition C. Our point of departure is to note that gt contains all the

information about β. The reason why the moments gt are not used to estimate β is that

Ft is not observed. We suggest to use F̃t in place of Ft. To fix ideas and for notational

simplicity, we assume the absence of regressor x1t (K1 = 0) so that the instrument is F̃t. It

is understood that when x1t is present, the results still go through upon replacing F̃t in the

estimator below by F̃+
t = (x′1t, F̃

′
t)
′.

Define g̃t(β) = F̃tεt(β). Consider estimating β using the r moment conditions ḡ(β) =
1
T

∑T
t=1 F̃tεt(β). Let WT be a r × r positive definite weighting matrix. Where appropriate,

the dependence of ḡ on β will be suppressed. The linear GMM estimator is defined as

β̆FIV = argmin
β

ḡ(β)′WT ḡ(β)

= (S ′
F̃ x

WT SF̃ x)
−1S ′

F̃ x
WT SF̃ y

1When x1t is strongly exogenous such that E(x1tεs) = 0 for all t and s, εt itself is allowed to be serially
correlated of unknown form (this situation of course rules out x1t being the lag of yt). When εt is serially
correlated, the lags of x2t cannot be used as instruments since x2t−j can be correlated with εt−j , which is
correlated with εt.
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where SF̃ x = 1
T

∑T
t=1 F̃tx

′
t. Let ε̆t = yt − x′tβ̆FIV and let S̆ = 1

T

∑T
t=1 F̃tF̃

′
t ε̆

2
t . Then the

efficient GMM estimator, which is our main focus, is to let WT = S̆−1, giving

β̂FIV = (S ′
F̃ x

S̆−1SF̃ x)
−1S ′

F̃ x
S̆−1SF̃ ′y.

Theorem 1 Under Assumptions A and B, as N, T →∞,
√

T (β̂FIV − β0)
d−→N(0, Ω)

where Ω = plim(S ′
F̃ x

(S̆)−1SF̃ x)
−1. Furthermore, J = T ḡ(β̂FIV )′ S̆−1 ḡ(β̂FIV )

d−→χ2
r−K.

Theorem 1 establishes consistency and asymptotic normality of the GMM estimator when

F̃t are used as instruments, and when the observed instruments are not weak.2 Just as if

Ft was observed, β̂FIV reduces to (F̃ ′x)−1F̃ ′y and is the instrumental variable estimator in

an exactly identified model with K = r. It is the two-stage least squares (2SLS) estimator,

i.e., β̂FIV = (x′PF̃ x)−1x′PF̃ y, under conditional homoskedasticity. Furthermore, T times

the value of the objective function is asymptotically χ2 distributed with r − K degrees of

freedom. Essentially, if both N and T are large, estimation and inference can proceed as

though Ft was observed. Other estimators such as obtained by minimizing mean-squared

error considered in Carrasco (2006) and Hausman et al. (2006), as well as LIML and JIVE,

can also be derived. Since F̃t can be used as though it was Ft, we expect a factor based

version of these estimators will remain valid, but analyzing their properties is beyond the

scope of the present analysis.

The essence behind Theorem 1 is that F̃t is estimating a rotation of Ft, denoted by HFt,

where H is an r× r invertible matrix. If Ft is a vector of valid instruments, then HFt is also

a vector of valid instruments and will give rise to an identical estimator. To show F̃t will

lead to the same estimator (asymptotically only), we need to establish

T−1/2

T∑
t=1

(F̃t −HFt)εt = op(1). (4)

This result is given in Lemma 1 in the appendix. In fact, it can be shown that F̃t −HFt is

equal to D 1
N

∑N
i=1 λieit plus a term that is negligible, where matrix D depends on N and

T and is Op(1). Thus T−1/2
∑T

t=1(F̃t −HFt)εt ' DN−1/2 1√
NT

∑T
t=1

∑N
i=1 λieitεt. Thus if εt

and eit are independent, then the left hand side of (4) is Op(N
−1/2) = op(1).

2Irrelevant instruments are allowed in the sense that some factor loadings λi can be zero. All needed is
1
N

∑N
i=1 λiλ

′
i

p−→ΣΛ > 0, as in Assumption A(b). The analysis should also go through when the instruments
are not too weak in the sense of Hahn and Kuersteiner (2002). A weak factor model in which all factor loadings
λi is of O(N−α) (α > 0) necessitates a different asymptotic framework and is considered in Kapetanios and
Marcellino (2006).
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Remark 1: Theorem 1 is derived under the assumption E(εteit) = 0 for all i and t so

that all instruments are valid. The assumption is, however, not necessary under a data

rich environment. Suppose that E(εteit) 6= 0 for all i so that none of the instruments are

valid. When N is fixed, the instrument variable estimator based on zt will not be consistent.

But with a large N and under the assumption that
∑N

i=1 |E(εteit)| ≤ M < ∞ for all N

with M not depending on N , Theorem 1 still holds provided that
√

T/N → 0. Suppose

γi = E(eitεt) 6= 0, then

T−1/2N−1

T∑
t=1

N∑
i=1

λieitεt = N−1/2 1√
TN

T∑
t=1

N∑
i=1

λi[eitεt − E(eitεt)] +
√

TN−1

N∑
i=1

λiγi

The first term on the right hand side is N−1/2Op(1) = op(1). For the second term, since

E‖λi‖ ≤ M by assumption, the absolute value of the second term is bounded in expectation

by M
√

TN−1
∑N

i=1 |γi|. Thus if
∑N

i=1 |γi| is bounded and
√

T/N → 0, then the second term

is also op(1), implying that (4) still holds. In fact,
∑N

i=1 |γi| is allowed to go to infinity, all

that is needed is the product (
√

T/N)
∑N

i=1 |γi| → 0. This would be impossible when N

is fixed as long as there exists an i such that γi 6= 0. This result highlights the benefit of

working in a data rich environment.

Remark 2: The assumption that N → ∞ ensures consistent estimation of the factor

space and is a key feature of the data rich environment. But even with N fixed, we can

always mechanically construct F̃t as the principal components of zt. Under the assumption

that all the instruments are valid, the resulting FIV estimator is still consistent because

linear combinations of valid instruments remain valid instruments. However, when invalid

instruments satisfying the condition of Remark 1 is permitted, consistent estimation will not

be possible unless N is large.

In early work, Kloek and Mennes (1960) were concerned with situations when N is large

relative to the given T (in their case, 30) so that the first stage estimation is inefficient.

These authors motivated principal components as a practical dimension reduction device.

Amemiya (1966) and more recently Carrasco (2006) provided different statistical justifica-

tions for the approach without reference to a factor structure. In contrast, we motivated

principal components as a method that consistently estimates the space spanned by the

ideal instruments with the goal of developing a theory for inference. Our asymptotic theory

necessitates a factor structure on zt and it is because of this structure that leads to the

following:

8



Proposition 1 Let z2t be a subset of the observed instruments such that z2t is r × 1. Let

mt = z2t(yt − x′tβ) with
√

Tm̄
d−→N(0, Q). Let β̂IV be the minimizer of m̄′(Q̆)−1m̄ with the

property that
√

T (β̂IV − β0)
d−→N(0, ΩIV ). If var(eit) ≥ c > 0 for all i in the z2t set, then as

N, T →∞,

ΩIV − ΩFIV > 0

where ΩFIV denotes the asymptotic variance of β̂FIV , i.e., Ω in Theorem 1.

Proposition 1 says that when each observed instrument is measured with error, then in

a data rich environment, β̂FIV is more efficient than β̂IV , which uses an equal number of z2t

as instruments. The intuition is straightforward. The observed instruments are the ideal

instruments contaminated with errors while F̃ is consistent for the ideal instrument space.

Pooling information across the observed variables washes out the noise to generate more

efficient instruments for x2t. Proposition 1 rules out cases when the observed variables are

perfect instruments. This may seem restrictive, but is not unrealistic as researchers cannot

be expected to isolate the perfect instruments, even if they exist. Of course, when the

model assumptions do not hold, such as if the factor structure is weak (e.g., factor loadings

λi = Op(N
−1/2) → 0 as N increases), Proposition 1 will not necessarily hold.

The single equation set up extends naturally to a system of equations. Suppose there are

G equations, where G is finite. For g = 1, . . . G, and t = 1, . . . T ,

ygt = x′gtβg + εgt

where xgt is Kg × 1. As an example of G = 2, (y1, y2) could be aggregate consumption and

earnings, while the endogenous regressor is hours worked. Let F̃gt be the rg × 1 vector of

instruments for the g-th equation, g = 1, . . . G, and let r =
∑

g rg. Then gt is a r × 1 vector

of stacked up moment conditions. Assuming that for each g = 1, . . . G, the rg ×Kg moment

matrix E(F̃gtx
′
gt) is of full column rank, Theorem 1 still holds, but the r× r matrix S is now

the asymptotic variance of the stacked up moment conditions. Note that this need not be

a block diagonal matrix. Likewise, SF̃ x is a K × r matrix. If each equation has a regressor

matrix of the same size and uses the same number of instruments, the SF̃ x matrix under

systems estimation will be G times bigger, just as when Ft is observed. See, for example,

Hayashi (2000).

2.3 A Control Function Interpretation

We have motivated the FIV as a method of constructing more efficient instruments, but

the estimator can also be motivated in a different way. Under the assumed data generating
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process, ie x2t = Ψ′Ft + ut, the non-zero correlation between x2t and εt arises because

cov(ut, εt) 6= 0. We can decompose εt into a component that is correlated with ut, and a

component that is not. Let

εt = u′tγ + εt|u

where εt|u is orthogonal to ut and thus x2t. We can rewrite the regression yt = x1tβ1+x2tβ2+εt

as

yt = x′tβ + u′tγ + εt|u

If Ft was observed, we would estimate the reduced form for x2t to yield fitted residuals ût.

Then least squares estimation of

yt = x′tβ + û′tγ + error

not only provides a test for endogeneity bias, it also provides estimates of β that are nu-

merically identical to two stage least squares with Ft as instruments. This way of using the

fitted residuals to control endogeneity bias is sometimes referred to as a ‘control function’

approach as in Hausman (1978).

In our setting, we cannot estimate the reduced form for x2t because Ft is not observed.

Indeed, if we only observe x2t, and x2t = Ψ′Ft + ut, there is no hope of identifying the two

components in x2t. However, we have a panel of data Z with a factor structure, and F̃t

are consistent estimates of Ft up to a linear transformation. The control function approach

remains feasible in our data rich environment and consists of three steps. In step one, we

obtain F̃t. In step 2, for each i = 1, . . . K2, least squares estimation of

x2it = F̃ ′
tΨi + uit

will yield
√

T consistent estimates of Ψi, from which we obtain ût. Least squares estimation

of

yt = x′1tβ1 + x′2tβ2 + ũ′tγ + εu
t (5)

will yield
√

T consistent estimates of β. It is straightforward to show that the estimate is

again numerically identical to 2SLS with F̃t as instruments. In this regard, the FIV is a

control function estimator. But the 2SLS is a special case of the FIV that is efficient only

under conditional homoskedasticity. Thus, the FIV can be viewed as an efficient alternative

to controlling endogeneity when conditional homoskedasticity does not hold or may not be

appropriate. The control function approach also highlights the difference between the FIV

and the IV. With the IV, ut is estimated from regressing x2t on z2t, where z2t are noisy
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indicators of Ft. With the FIV, ut is estimated from regressing x2t on a consistent estimate

of Ft and is thus more efficient than the IV.

3 Panel Data and Large Simultaneous Equations System

Consider a large panel data regression model and assume for simplicity that there are no

predetermined variables. For i = 1, 2, ..., N, t = 1, 2, ..., T with N and T both large, let

yit = x′itβ + εit

where xit is K × 1. This is a large simultaneous equation system since we allow

E(xitεit) 6= 0

for all i and t. Therefore, the pooled OLS estimator

β̂POLS = (
N∑

i=1

T∑
t=1

xitx
′
it)

−1

N∑
i=1

T∑
t=1

xityit

is inconsistent. Unlike the single equation system, we do not need the existence of valid

instruments zit. When N is large, xit can play the role of zit despite the fact that none of xit

is a valid instrument in the conventional sense. As in the single equation case, the regressors

are influenced by the common factors,

xit = Λ′
iFt + uit = Cit + uit

where Λi is a matrix of r × K, Ft is r × 1 with r ≥ K. We assume εit is correlated with

uit but not with Ft so that E(Ftεit) = 0. The loading Λi can be treated as a constant or

random; when it is regarded as random, we assume εit is independent of it. Therefore we

have

E(Citεit) = 0.

In this panel data setting, the common component Cit = Λ′
iFt is the ideal instrument for

xit. As we will see later, it is a more effective instrument than Ft in terms of convergence

rate and the mean squared errors of the estimator. Again, Cit is not available, but it can be

estimated.

Let Xi = (xi1, xit, ..., xiT )′ be a T ×K matrix of regressors for the ith cross-section unit,

so that X = (X1, X2, ..., XN) is T ×(NK). Let Λ be a (NK)×r matrix while F is T ×r. Let

11



F̃ be the principal component estimate of F from the matrix XX ′, as explained in Section

2.1 with Z replaced by X. Let C̃it = Λ̃′
iF̃t, which is K × 1.

Consider the pooled two-stage least-squares estimator with C̃it as instruments

β̂PFIV =
( N∑

i=1

T∑
t=1

C̃itx
′
it

)−1
N∑

i=1

T∑
t=1

C̃ityit. (6)

To study the properties of this estimator, we need the following assumptions:

Assumption A′: Same as Assumption A (a-d) with three changes. Part (b) holds with

λi replaced by Λi; part (c) holds with eit replaced by each component of uit (note that uit is

a vector). In addition, we assume uit are independent over i.

Assumption B′:

a. E(εit) = 0, E|εit|4+δ < M < ∞ for all i, t, for some δ > 0; εit are independent over i.

b. xit = Λ′
iFt + uit; E(uitεit) 6= 0; εit is independent of Ft and Λi.

c. (NT )−1/2 ∑N
i=1

∑T
t=1 Citεit

d−→N(0, S), where S is the long-run covariance of the se-

quence ξt = N−1/2
∑N

i=1 Citεit, defined as

S = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

T∑
s=1

E(CitC
′
isεitεis).

Theorem 2 Suppose Assumptions A′ and B′ hold. As N, T →∞, we have

(i) β̂PFIV − β0 = Op(T
−1) + Op(N

−1) and thus β̂PFIV
p−→β0.

(ii) If T/N → τ > 0, then

√
NT (β̂PFIV − β0)

d−→N(τ 1/2∆0
1 + τ−1/2∆0

2, Ω)

where Ω = plim[Sx̃x̃]
−1S[Sx̃x̃]

−1 with Sx̃x̃ = (NT )−1
∑N

i=1 C̃itx
′
it, and ∆0

1 and ∆0
2 are

defined in the appendix.

Theorem 2 establishes that the estimator β̂PFIV is consistent for β as N, T → ∞. Re-

markably, there can be no instrument in the conventional sense, yet, we can still consistently
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estimate the large simultaneous equations system.3 In a very rich data environment, the

information in the data collectively permits consistent instrumental variable estimation un-

der much weaker conditions on the individual instruments. Because the bias is of order

max[N−1, T−1], the effect of the bias on β̂PFIV can be expected to vanish quickly.

If Cit is known, asymptotic normality simply follows from Assumption B′(c) and there

will be no bias. However, Cit is not observed, and biases arise from the estimation of Cit.

More precisely, C̃it contains uit which is correlated with εit, and is the underlying reason

for biases. When T and N are of comparable magnitudes, β̂PFIV is
√

NT consistent and

asymptotically normal, but the limiting distribution is not centered at zero, as shown in part

(ii) of Theorem 2.

A biased-corrected estimator can be considered to recenter the asymptotic distribution

to zero for small N and T . For this purpose, we assume that εit are serially uncorrelated.4

Let

δ̂1 =

(
1

NT

T∑
t=1

N∑
i=1

K∑
k=1

Λ̃′
iṼ

−1λ̃i,kũit,kε̂it

)
, and ∆̂1 = (Sx̃x̃)

−1δ̂1

δ̂2 =

(
1

NT

N∑
i=1

T∑
t=1

ũitF̃
′
t F̃tε̂it

)
, and ∆̂2 = (Sx̃x̃)

−1δ̂2,

3 This estimator can be easily extended to include additional regressors that are uncorrelated with εit.
For example, yit = x′1itβ1 + x′2itβ2 + εit with x1it being exogenous. We estimate F̃ and Λ̃ from x2 alone.
Then the pooled 2SLS is simply

β̂PFIV =
( N∑

i=1

T∑
t=1

Z̃itx
′
it

)−1 N∑
i=1

T∑
t=1

Z̃ityit

where Z̃it = (x′1it, C̃
′
it)

′. It is noted that equation (6) can be written alternatively as

β̂PFIV =
( N∑

i=1

X ′
iPF̃ Xi

)−1 N∑
i=1

X ′
iPF̃ Yi

where Yi = (yi1, yi2, ..., yiT )′ is (T × 1). This follows from the fact that (C̃i1, C̃i2, ..., C̃iT )′ = PF̃ Xi = F̃ Λ̃i.
However, this representation is not easily amendable in the presence of additional regressors x1it.

4It is possible to construct biased-corrected estimators when εit is serially correlated. The bias correction
involves estimating a long-run covariance matrix, denoted by Υ. The estimated long-run covariance Υ̂ must
have a convergence rate satisfying

√
N/T (Υ̂−Υ) = op(1). Assuming T 1/4(Υ̂−Υ) = op(1), this implies the

requirement that N/T 3/2 → 0 instead of N/T 2 → 0 under no serial correlation.
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where ũit = xit − C̃it, ε̂it = yit − x′itβ̂PFIV , and Sx̃x̃ = 1
NT

∑N
i=1

∑T
t=1 C̃itx

′
it. The estimated

bias is5

∆̂ =
1

N
∆̂1 +

1

T
∆̂2.

Corollary 1 Suppose Assumptions A′ and B′ hold. If εit are serially uncorrelated, T/N2 →
0, and N/T 2 → 0, then

√
NT (β̂PFIV − ∆̂− β0)

d−→N(0, Ω).

Both β̂PFIV and its bias-corrected variant are
√

NT consistent. One can expect the esti-

mators to be more precise than the single equation estimates because of the fast rate of

convergence. However, while β̂PFIV is expected to be sufficiently precise in terms of the

mean squared errors, the bias corrected estimator, β̂+
PFIV = β̂PFIV − ∆̂ should provide more

accurate inference in terms of the t statistic because it is properly re-centered around zero.

It is worth noting that the PFIV estimator is different from the traditional panel IV

estimator that uses F̃ as instruments. Such an estimator, PTFIV, would be constructed as

β̂PTFIV =

(
S

′

F̃ x
S̆−1SF̃ x

)−1

S
′

F̃ x
S̆−1SF̃ y

where SF̃ x = 1
NT

∑N
i=1

∑T
t=1 F̃tx

′
it, and S̆ = 1

NT

∑N
i=1

∑T
t=1 F̃tF̃

′
t ĕ

2
it, ĕit is based on a prelim-

inary estimate of β using a r × r positive definite weighting matrix. However, the prob-

ability limit of SF̃ x is ΣFx = E(λi)
′ΣF , which can be singular if E(λi) = 0, and in that

case the estimator is only
√

T consistent. The β̂PTFIV is
√

NT consistent only if one as-

sumes a full column rank for ΣFx. In contrast, the proposed estimator uses the moment
1

NT

∑N
i=1

∑T
t=1 xitc

′
it = 1

NT

∑N
i=1

∑T
t=1 citc

′
it + op(1) > 0 and is always

√
NT consistent, with-

out the extra rank condition.

4 Simulations

In this section, we evaluate the effectiveness of the FIV using F̃+ = [x1 F̃ ] as instruments,

where F̃ is T × r.6 We also consider an estimator with f̃+ = [x1 f̃ ] as instruments, where

5In the presence of exogenous regressors x1it as in footnote 3, the corresponding terms become

∆̂1 =
( 1

NT

N∑
i=1

T∑
t=1

Z̃itx
′
it

)−1
[

0
δ̂1

]
, and ∆̂2 =

( 1
NT

N∑
i=1

T∑
t=1

Z̃itx
′
it

)−1
[

0
δ̂2

]
.

A small sample adjustment can also be made by using NT − (N + T )r instead of NT when computing δ̂1

and δ2, where r(N + T ) is the number of parameters used to estimate ûit.
6In practice, the IC2 criterion in Bai and Ng (2002) or the criterion of Hallin and Liska (2007) can be

used to determine r. Since the estimated r is consistent for r, it can be shown that r can be treated as
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the dimension of f̃ is T × rmax with rmax > r. This estimator is denoted fIV. The GMM

estimator uses an identity weighting matrix in the first step to yield β̆. For the sake of

comparison, we also report results of two other estimators. The first is a GMM using a

set of observed variables most correlated with x2 and is the same dimension as F̃ . These

instruments are determined by the R2 from regressions of x2 on both x1 and an instrument

one at a time. This estimator is labeled IV. The second is OLS, which does not account for

endogeneity bias.

We consider three data generating processes. In all cases,

zit = λizFt +
√

rσzeit

Fjt = ρjFjt−1 + ηjt j = 1, . . . r

where eit ∼ N(0, 1), ηjt ∼ N(0, 1), λiz ∼ N(0, 1), ρj ∼ U(.2, .8), and σz = 3 for all i. The

examples differ in how yt, x1t, and x2t are generated.

Example 1 We modify the DGP of Moreira (2003). The equation of interest is

yt = x′1tβ1 + x′2tβ2 + σyεt

xi1t = αxxi1,t−1 + vit, i = 1, . . . K1

xi2t = λi2Ft + uit, i = 1, . . . K2

with εt = 1√
2
(ε̃2

t − 1) and uit = 1√
2
(ũ2

it − 1). We assume αx ∼ U(.2, .8), vit ∼ N(0, 1)

and uncorrelated with ũjt and ε̃t. Furthermore, (ε̃t, ũ
′
t)
′ ∼ N(0K2+1, Σ) where diag(Σ) = 1,

Σ(j, 1) = Σ(1, j) ∼ U(.3, .6), and zero elsewhere. This means that ε̃t is correlated with ũit

with covariance Σ(1, i) but ũit and ũjt are uncorrelated (i 6= j). By construction, the errors

are heteroskedastic. The parameter σ2
y is set to K1σ̄

2
x1 + K2σ̄

2
x2 where σ̄xj

is the average

variance of xjt, j = 1, 2. This puts the noise-to-signal ratio in the primary equation of

roughly one-half.

The parameter of interest is β2. We considered various values of K2, σz, and r. The

results are reported in Table 1 with K2 = 1, and σz = 3. This is the least favorable situation

since the factors are less informative with a low common component to noise ratio. The

column labeled ρx2ε is the correlation coefficient between x2 and ε and thus indicates the

degree of endogeneity. Under the assumed parametrization, this correlation is around .2. The

true value of β2 is 2, and the impact of endogeneity bias on OLS is immediately obvious. The

known.
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estimators that use the factors as instruments are more precise. The factor based instruments

dominate the IV either in bias or RMSE, if not both. The J test associated with the FIV is

close to the nominal size of 5%, while the two-sided t statistic for testing β2 = 2 has some

size distortion when N, T are both small. The size distortions of both tests decrease with T .

Example 2 In this example, the regression model is

yt = β1 + x′2tβ2 + εt. (7)

The endogenous variables x2t are spanned by L factors, while the panel of observed instru-

ments is spanned by r factors and r ≥ L. To generate data with this structure, let F be a

T × r matrix of iid N(0, 1) variables and let F (:, 1 : L) be a T × L matrix consisting of the

columns 1 to L of F . We simulate a T × 1 vector y, a T ×N matrix Z, and a T ×L matrix

X2 as

y = F (:, 1 : L)Λ′
y + σyey

X2 = F (:, 1 : L)Λ′
x + ex

where ejt ∼ N(0, σ2
j ), σ2

j ∼ U(σl, σh). Now if F (:, 1 : L) is L dimensional, it can be

represented in terms of any L variables spanned by the these factors. Thus, using F (:, 1 :

L) = (X2 − ex)Λ
′−1
x yields

y = X2Λ
−1
x Λy + ey − exΛ

−1
x Λy

= X2β
∗
2 + ε∗

where β∗ = Λ′−1
x Λy is L × 1 and ε∗ = ey − exβ

∗. For given Λx, we then solve for Λy such

that β∗2 = (1′K2
, 0′L−K2

). The x2t in (7) corresponds to the first K2 columns of X2t. This also

implies that the true value of every element of β2 is unity. The endogeneity bias is β′cov(ex)β.

For the loadings, we assume λz ∼ N(0N , IN). The elements of the L×L matrix Λx are drawn

from the N(1, 1) distribution. Written in terms of r factors, X2 = F (:, 1 : r)Λ
(r)
x where Λ

(r)
x

only has the first L × L positions being non-zero. Viewed this way, the first L factors are

the relevant factors.

We estimate rmax = r + 2 factors and report simulations for K2 = 1 with β0
2 = 2. The

results are reported in Table 2. Unlike Example 1, the correlation between x2t and εt is

now negative. In this example, the IV is actually more biased than OLS. The factor IV

estimators again perform well.
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Example 3 Here, we consider estimation of β by panel regressions. The DGP is

yit = β1 + β2xit + εit

xit = λ′iFt +
√

r uit

ρi = corr(εit, uit) ∼ U(.3, .6).

where Ft is again r × 1, ρi is the correlation between εit and uit. We set the true value of

β = (β1, β2)
′ = (0, 1)′ but include an intercept in the regression. According to Theorem 2,

we can use the factors estimated from xit to instrument themselves. For the PFIV, we use

r factors. We also consider an estimator, denoted PfIV, which uses rmax = r + 2 factors.

Note that these estimates are not corrected for bias in order to to show that the bias is of

second order importance. For the sake of comparison, we also consider PTFIV. Note that in

this example, E(λi) = 0 and the PTFIV should be more volatile (larger variance) because

SF̃ x can be near singular.

The results are reported in Table 3. As expected, the pooled POLS estimator is quite

severely biased. The PTFIV has noticeably larger RMSE than the three factor based estima-

tors, which are all centered around the true value. The PFIV has smaller bias than the PfIV

with no increase in variance. Even with min[N, T ] as small as 25, the PFIV is quite precise.

Increasing N and/or T clearly improves precision even without bias correction. Because the

PFIV has a small variance, the t test becomes very sensitive to small departures of the esti-

mate from the true value. Thus, without bias correction, the t test based on the PFIV has

important size distortions. The bias-corrected test is, however, much more accurate though

there is still size distortions when r is large. The t-statistics based on OLS will have much

higher distortions (not reported). The test based on PTFIV is much closer to the nominal

size of 5% regardless of r, primarily because the variance of the estimator is much larger

than the PFIV. In terms of MSE. The PFIV is clearly the estimator of choice.

Summing up, we have reported results for the FIV which uses the true number of factors

underlying the endogenous variable x2, and the fIV which uses more instruments than is

necessary. While the results do not show significant difference, using too many factors

can sometimes increase bias but may reduce mean-squared error. This suggests further

research on choosing the number of factors. Instead of using the suggested information

criteria, selecting relevant factors via boosting is an alternative. A further alternative is to

directly choose instruments from the observed ones or use the regularization approach of

Carrasco (2006) without assuming a factor structure. Whether we use estimated factors or

Z as instruments, it is open issue how to select the most relevant ones from many valid
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instruments that have no natural ordering. This problem, along with empirical applications,

will be reported in a separate paper, Bai and Ng (2007).

5 Conclusion

This paper provides a new way of using the estimated factors not previously considered in

either the factor analysis or the instrumental variables literature. We take as starting point

that in a data rich environment, there are many instruments that are weakly exogenous for

the parameters of interest. Pooling the information across instruments enables us to con-

struct factor based instruments that are not only valid, but are more strongly correlated with

the endogenous variable than each individually observed instrument. The result is a factor

based instrumental variable estimator (FIV) that is more efficient. For large simultaneous

systems, we show that valid instruments can be constructed from invalid ones. Whereas the

correlation between a particular instrument and the endogenous regressor may be weak, the

estimated factors are less susceptible to this problem under our maintained assumption that

variables in the system have a factor structure.
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Table 1: Finite Sample Properties of β̂2, β0
2 = 2.

T N r rmax ρx2ε FIV fIV IV OLS JF tF Jf tf
Mean/RMSE

50 50 1 2 0.38 1.97 2.00 2.18 2.73 0.00 0.06 0.04 0.07
0.41 0.39 0.45 0.85

100 50 1 2 0.35 1.98 2.00 2.06 2.67 0.00 0.05 0.04 0.06
0.25 0.25 0.28 0.73

100 100 1 2 0.32 2.00 2.01 2.05 2.59 0.00 0.05 0.05 0.06
0.23 0.22 0.26 0.64

200 100 1 2 0.28 2.01 2.01 2.03 2.50 0.00 0.06 0.04 0.06
0.14 0.14 0.15 0.53

50 50 2 4 0.56 2.04 2.15 2.57 3.18 0.05 0.09 0.04 0.14
0.59 0.51 0.78 1.28

100 50 2 4 0.52 2.01 2.05 2.23 3.08 0.04 0.06 0.03 0.09
0.32 0.29 0.41 1.14

100 100 2 4 0.52 2.01 2.04 2.23 3.07 0.05 0.08 0.05 0.10
0.31 0.29 0.40 1.13

200 100 2 4 0.50 2.00 2.03 2.04 3.04 0.05 0.06 0.05 0.07
0.21 0.20 0.23 1.06

Note: FIV and fIV are GMM estimators with F̃ and f̃ as instruments. These are of dimensions r and rmax,
respectively. IV is the GMM estimator with z2 as instruments, where z2 is of dimension r and has the largest
correlation with x2.
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Table 2: Finite Sample Properties of β̂2: β0
2 = 1

T N r L ρx2ε FIV fIV IV OLS JF tF Jf tf
Mean/RMSE

50 50 2 2 -0.43 1.01 0.99 0.94 0.72 0.04 0.08 0.03 0.10
0.19 0.19 0.20 0.32

100 50 2 2 -0.43 1.01 1.00 1.00 0.72 0.04 0.08 0.05 0.10
0.13 0.14 0.14 0.30

100 100 2 2 -0.68 0.99 0.94 0.81 0.29 0.05 0.09 0.07 0.15
0.20 0.20 0.25 0.71

200 100 2 2 -0.56 1.00 0.99 0.94 0.53 0.05 0.07 0.05 0.07
0.10 0.10 0.13 0.48

50 50 4 3 -0.56 0.96 0.92 0.85 0.57 0.04 0.11 0.04 0.17
0.22 0.23 0.24 0.45

100 50 4 3 -0.59 0.97 0.96 0.90 0.53 0.06 0.09 0.05 0.11
0.15 0.15 0.17 0.48

100 100 4 3 -0.61 0.97 0.95 0.86 0.50 0.06 0.09 0.06 0.13
0.16 0.16 0.21 0.51

200 100 4 3 -0.67 0.99 0.97 0.88 0.40 0.05 0.07 0.04 0.10
0.13 0.13 0.17 0.60

Note: FIV and fIV are GMM estimators with F̃ and f̃ as instruments. These are of dimensions r and
rmax = r + 2, respectively. IV is the GMM estimator with z2 as instruments, where z2 is of dimension r

and has the largest correlation with x2.
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Table 3: Finite Sample Properties of β̂2 for panel data, β0
2 = 1.

T N r ρx2ε PFIV PFIV+ PfIV PfIV+ PTFIV POLS tβ̂PFIV
tβ̂PFIV +

tβ̂PTFIV

Mean/RMSE
15 15 2 0.29 1.05 1.03 1.08 1.06 1.12 1.10 0.40 0.20 0.10

0.07 0.05 0.09 0.07 0.22 0.11
25 25 2 0.30 1.03 1.01 1.06 1.04 1.08 1.10 0.43 0.11 0.07

0.04 0.02 0.06 0.04 0.18 0.10
25 50 2 0.30 1.03 1.01 1.05 1.03 1.07 1.10 0.50 0.09 0.08

0.03 0.02 0.05 0.03 0.17 0.10
50 25 2 0.27 1.02 1.01 1.04 1.02 1.07 1.09 0.39 0.08 0.10

0.03 0.02 0.04 0.03 0.13 0.10
50 50 2 0.29 1.02 1.00 1.03 1.02 1.06 1.10 0.37 0.06 0.08

0.02 0.01 0.03 0.02 0.13 0.10
100 50 2 0.28 1.01 1.00 1.02 1.01 1.05 1.09 0.36 0.06 0.09

0.01 0.01 0.02 0.01 0.10 0.09
50 100 2 0.29 1.01 1.00 1.03 1.01 1.04 1.10 0.48 0.06 0.06

0.01 0.01 0.03 0.01 0.13 0.10
100 100 2 0.29 1.01 1.00 1.02 1.01 1.04 1.10 0.38 0.06 0.07

0.01 0.00 0.02 0.01 0.11 0.10
15 15 4 0.28 1.06 1.04 1.07 1.06 1.08 1.07 0.79 0.57 0.15

0.06 0.05 0.07 0.06 0.14 0.08
25 25 4 0.29 1.04 1.02 1.05 1.04 1.06 1.07 0.88 0.43 0.14

0.04 0.03 0.05 0.04 0.11 0.07
25 50 4 0.30 1.03 1.01 1.05 1.03 1.06 1.08 0.93 0.37 0.12

0.04 0.02 0.05 0.03 0.10 0.08
50 25 4 0.28 1.03 1.01 1.04 1.03 1.05 1.07 0.86 0.33 0.15

0.03 0.02 0.04 0.03 0.08 0.07
50 50 4 0.28 1.02 1.01 1.03 1.02 1.04 1.07 0.87 0.18 0.11

0.02 0.01 0.03 0.02 0.08 0.07
100 50 4 0.29 1.02 1.00 1.02 1.01 1.03 1.07 0.90 0.14 0.14

0.02 0.01 0.03 0.01 0.06 0.07
50 100 4 0.29 1.02 1.00 1.03 1.01 1.03 1.07 0.91 0.16 0.09

0.02 0.01 0.03 0.01 0.08 0.07
100 100 4 0.29 1.01 1.00 1.02 1.01 1.02 1.07 0.88 0.09 0.10

0.01 0.00 0.02 0.01 0.05 0.07

Note: PFIV and PfIV are panel instrumental variable estimators with C̃it = λ̃′iF̃t and c̃it = λ̃′if̃t as instru-
ments, respectively. The PFIV+ and PfIV+ are biased-corrected estimators. F̃t is r× 1, and f̃t is rmax× 1
with rmax = r + 2. PTFIV is the ‘traditional’ panel IV estimator that uses F̃t as instruments.
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Appendix

To prove the main result we need the following lemma:

Lemma A1 Let H = Ṽ −1(F̃ ′F/T )(Λ′Λ/N). Under Assumption (A) and as N, T →∞,

i 1
T

∑T
t=1 ‖F̃t −HFt‖2 = Op(min[N, T ]−1);

ii If there exists an M < ∞ such that
∑N

i=1 |E(εteit)| ≤ M for all N and t, then

T−1

T∑
t=1

(F̃t −HFt)εt = Op(min[N, T ]−1)

iii If εt is uncorrelated with eit for all i and t, then

T−1

T∑
t=1

(F̃t −HFt)εt = Op(
1√
NT

) + Op(T
−1)

The proof of part (i) is in Bai and Ng (2002); the proof of part (ii) is the same as that of

Lemma B.1 of Bai (2003). The proof of part (iii) is also the same as part (ii), and the bound

is tightened by using the uncorrelation assumption. The details are omitted.

Proof of Theorem 1: Let g̃t(β
0) = F̃tεt and ḡ = 1

T

∑T
t=1 g̃t(β

0). Then

β̂FIV − β0 = (S ′
F̃ x

S̆−1SF̃ x)
−1S ′

F̃ x
S̆−1ḡ.

Now

√
T ḡ = T−1/2

T∑
t=1

F̃tεt

= T−1/2

T∑
t=1

(F̃t −HFt)εt + HT−1/2

T∑
t=1

Ftεt

= HT−1/2

T∑
t=1

Ftεt + op(1)

By Lemma A1(iii), T−1/2
∑T

t=1(F̃t − HFt)εt = Op(N
−1/2) + Op(T

−1/2) = op(1), as N, T →
∞. By assumption, T−1/2

∑T
t=1 Ftεt

d−→N(0, S0). Thus
√

T ḡ
d−→N(0, H0S

0H ′
0), where H0 =

plim H. But plim S̆ = H0S
0H ′

0. This implies that S̆−1/2
√

T ḡ
d−→N(0, I). Furthermore,

SF̃ x = 1
T
F̃ ′x = 1

T
H ′F ′x + op(1)

p−→H ′
0ΩFx, where ΩFx is the probability limit of 1

T
F ′x =

1
T

∑T
t=1 Ftx

′
t. Thus S ′

F̃ x
S̆−1SF̃ x

p−→Ω′
Fx(S

0)−1ΩFx. Summarizing result, we have

√
T (β̂FIV − β)

d−→N(0, (Ω′
Fx(S

0)−1ΩFx)
−1)
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Thus the limiting distribution coincides with that using the true F as instruments.

Finally, because F̃t is a vector of r×1 instruments, and β is K×1, the over-identification

J test of Hansen (1982) has a limit of χ2
r−K .

Proof of the Claim in Remark 1: Following the proof of Theorem 1, instead of invoking

Lemma A1(iii), we use Lemma A1(ii) to obtain T−1/2
∑T

t=1(F̃t−HFt)εt = Op(
√

T/ min[N, T ]),

which is op(1) provided that
√

T/N → 0. The rest of the proof is identical to that of Theorem

1.

Proof of Proposition 1: Without loss of generality, we assume homoskedasticity for εt.

In addition, we assume there is no x1 so that x = x2. Writing in vector format, equation (2)

can be rewritten as x = FΨ+u, where F = (F1, ..., FT )′, and x and u are T × 1 vectors. Let

z2 be a T × r matrix consisting of r valid instruments from the N available instruments. Let

P2 be the projection matrix associated with z2, i.e., P2 = z2(z
′
2z2)

−1z2. Let M2 = I − P2.

The asymptotic variance of the GMM estimator with a r observed variables as instruments

is the probability limit of

Ω̂IV = σ2
ε(T

−1x′P2x)−1

The asymptotic variance of the FIV is the probability limit of

Ω̂FIV = σ2
ε(T

−1x′PF x)−1.

Now x = FΨ + u, P2x = P2FΨ + P2u. Thus,

T−1x′P2x2 = T−1x′P2FΨ + op(1), (A.1)

where we have used T−1z′2u = op(1), which follows from E(zitut) = 0. Furthermore, PF x =

PF FΨ + PF u = FΨ + PF u and from I = M2 + P2, we have

T−1x′PF x = T−1x′FΨ + op(1) = T−1x′(M2 + P2)FΨ + op(1), (A.2)

where 1
T
x′PF u = op(1) because E(Ftut) = 0 and T−1F ′u = op(1). Subtract (A.2) from (A.1),

Ω̂−1
IV − Ω̂−1

FIV = σ−2
ε T−1(x′P2x)− σ−2

ε T−1(x′PF x)

= −σ−2
ε T−1(x′M2FΨ) + op(1) = −σ−2

ε T−1(x− u + u)′M2FΨ + op(1)

= −σ−2
ε T−1Ψ′F ′M2FΨ + op(1) < 0,

where the last equality follows from x − u = FΨ and T−1u′M2F = op(1). The limit of

T−1F ′M2F is positive because z2 can be written as z2 = FΛ2 + e2 with T−1e′2e2 > 0 under

the assumption of the proposition (note that if e2 = 0, then F ′M2F = 0).
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Proof of Theorem 2, part(i): We shall show β̂PFIV − β = Op(T
−1) + Op(N

−1), equiva-

lently,
√

NT (β̂PFIV−β) = Op(
√

N/T )+Op(
√

T/N). From β̂PFIV = β+S−1
x̃x̃

1
NT

∑N
i=1

∑T
t=1 Ĉitεit,

it is sufficient to consider the limit of (NT )−1/2
∑N

i=1

∑T
t=1 Ĉitεit. Because

(NT )−1/2
∑N

i=1

∑T
t=1 Citεit

d−→N(0, S), we need to show, for part (i)

(NT )−1/2

N∑
i=1

T∑
t=1

(Ĉit − Cit)εit = Op(
√

N/T ) + Op(
√

T/N).

Notice

Ĉit − Cit = Λ̃′
iF̃t − Λ′

iFt = (Λ̃i −H−1Λi)
′F̂t + Λ′

i(F̃t −HFt)

= (Λ̃i −H−1Λi)
′(F̂t −HFt) + (Λ̃i −H−1Λi)

′HFt + Λ′
i(F̃t −HFt)

The first term is dominated by the last two terms and can be ignored. Let Λi = (λi,1, ..., λi,k)

(r × k) and uit = (uit,1, ..., uit,K)′ (K × 1). From Bai (2003), equations (A.5) and (A.6)

F̃t −HFt = V −1
NT (

1

T
F̃ ′F )

1

NK

N∑
j=1

K∑
k=1

λj,kujt,k + Op(δ
−2
NT )

Denote G = V −1
NT ( 1

T
F̃ ′F ), which is Op(1), we have

(NT )−1/2

N∑
i=1

T∑
t=1

Λ′
i(F̃t −HFt)εit = (NT )−1/2

T∑
t=1

1

N

N∑
i=1

N∑
j=1

K∑
k=1

ΛiεitGλj,kujt,k + op(1)

Note that εit is scalar, thus commutable with all vectors and matrices. Here Λiεit is under-

stood as Λi ⊗ εit, which is K × r. We can rewrite the above as

(NT )−1/2

N∑
i=1

T∑
t=1

Λ′
i(F̃t −HFt)εit

= (T/N)1/2 1

T

T∑
t=1

( 1√
N

N∑
i=1

Λiεit

)
G

( 1√
N

N∑
j=1

K∑
k=1

λj,kujt,k

)
+ op(1) (A.3)

= (T/N)1/2Op(1)

Next, by (B.2) of Bai (2003),

Λ̃i −H−1Λi = H
1

T

T∑
s=1

Fsu
′
is + Op(δ

−2
NT )

Thus

(NT )−1/2

N∑
i=1

T∑
t=1

(Λ̃i −H−1Λi)
′HFtεit = (NT )−1 1

T

N∑
i=1

T∑
s=1

uisF
′
sH

′H

T∑
t=1

Ftεit + op(1)
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= (N/T )1/2 1

N

N∑
i=1

( 1√
T

T∑
s=1

uisF
′
s

)
H ′H

( 1√
T

T∑
t=1

Ftεit

)
+ op(1) (A.4)

= (N/T )1/2Op(1)

Combining (A.3) and (A.4), we prove part (i) of the theorem.

Proof of Theorem 2 part (ii): The biases equal to S−1
x̃x̃ multiplied by the expected values

of (A.3) and (A.4). We analyze these expected values below. Introduce

At =
1√
N

N∑
i=1

Λiεit, and Bt =
1√
N

N∑
j=1

K∑
k=1

λj,kujt,k

The summand in (A.3) is AtGBt, which is a vector. Thus

AtGBt = vec(AtGBt) = (B′
t ⊗ At)vec(G)

it follows that (again ignoring the op(1) term):

(A.3) = (T/N)1/2
( 1

T

T∑
t=1

(Bt ⊗ At

)
vec(G)

Because of the cross-sectional independence assumption on εit and on uit, we have

E(B′
t ⊗ At) =

1

N

N∑
i=1

K∑
k=1

(λ′j,k ⊗ Λi)E(uit,kεit)

Let

δ1 =
( 1

T

T∑
t=1

E(B′
t ⊗ At)

)
vec(G) =

1

TN

T∑
t=1

N∑
i=1

K∑
k=1

ΛiGλi,kE(uit,kεit)

From 1
T

∑T
t=1[(B

′
t ⊗ At)− E(B′

t ⊗ At)] = Op(T
−1/2), it follows immediately that

(A.3) = (T/N)1/2δ1 + op(1)

Let δ0
1 denote the limit of δ1. If T/N → τ , it follows that

(A.3) → τ 1/2δ0
1

Next consider (A.4). Let

Θi = T−1/2

T∑
s=1

uisF
′
s and Φi = T−1/2

T∑
t=1

Ftεit
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then (A.4) can be rewritten as (ignoring the op(1) term):

(A.4) = (N/T )1/2
( 1

N

N∑
i=1

(Φ′
i ⊗Θi)

)
vec(H ′H)

The expected value of Φ′
i ⊗ Θi contains the elements of the long-run variance of the vector

sequence ηt = (vec(uitFt)
′, F ′

tεit)
′. From 1

N

∑N
i=1[(Φ

′
i ⊗ Θi) − E(Φ′

i ⊗ Θi)] = Op(N
−1/2), we

have

(A.4) = (N/T )1/2∆2 + op(1)

where δ2 =
(

1
N

∑N
i=1 E(Φ′

i ⊗Θi)
)
vec(H ′H). It can be shown that

H ′H = (F ′F/T )−1 + Op(δ
−2
NT ) = Σ−1

F + op(1)

Let

δ0
2 = lim

( 1

N

N∑
i=1

E(Φ′
i ⊗Θi)

)
Σ−1

F

If N/T → τ , we have (A.4) → τ−1/2δ0
2. Denote

∆0
1 = [plim Sx̃x̃]

−1δ0
1, and ∆0

2 = [plim Sx̃x̃]
−1δ0

2

then the asymptotic bias is

τ 1/2∆0
1 + τ−1/2∆0

2,

proving part (ii).

Proof of Corollary 1: The analysis in part (ii) of the theorem shows that

√
NT (β̂PFIV − β) = S−1

x̃x̃

1√
NT

N∑
i=1

T∑
t=1

Citεit +
√

T/NS−1
x̃x̃ δ1 +

√
N/TS−1

x̃x̃ δ2 + op(1) (A.5)

It can be shown that ∆̂1 − S−1
x̃x̃ δ1 = Op(δ

−1
NT ) and ∆̂2 − S−1

x̃x̃ δ2 = Op(δ
−1
NT ). These imply that

(T/N)1/2(∆̂1−S−1
x̃x̃ δ1) = op(1) if T/N2 → 0, and ((N/T )1/2(∆̂2−S−1

x̃x̃ δ2) = op(1) if N/T 2 → 0.

Thus, we can replace S−1
x̃x̃ δ1 by ∆̂1 and replace S−1

x̃x̃ δ2 by ∆̂2 in (A.5). Equivalently,

√
NT (β̂PFIV −

1

N
∆̂1 −

1

T
∆̂2 − β) = S−1

x̃x̃

1√
NT

N∑
i=1

T∑
t=1

Citεit + op(1).

Asymptotic normality of the biased corrected estimator follows from the asymptotic normal-

ity for (NT )−1/2
∑N

i=1

∑T
t=1 Citεit. This proves Corollary 1.
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