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Abstract. A large fraction of the literature on program evaluation focuses on
e¢ cient estimation of binary treatment e¤ects under the assumption of unconfound-
edness. In practice, however, treatments are frequently multi-valued and available
econometric techniques in this literature cannot be applied directly. This paper stud-
ies the e¢ cient estimation of a large class of multi-valued treatment e¤ects as implicitly
de�ned by a collection of possibly over-identi�ed non-smooth moment conditions when
treatment assignment is assumed to be ignorable. We propose two estimators, one
based on an inverse probability weighting scheme and the other based on the e¢ cient
in�uence function of the model, and provide a set of su¢ cient conditions that ensure
root-N consistency, asymptotic normality and e¢ ciency of these estimators. Under
mild assumptions, these conditions are satis�ed for the marginal mean treatment ef-
fect and marginal quantile treatment e¤ect, two estimands of particular importance
for empirical applications. Furthermore, based on these large sample results, other
important population parameters of interest may be e¢ ciently estimated by means of
transformations of the two estimators considered. Using this idea, previous results for
average and quantile treatments e¤ects may be seen as particular cases of the meth-
ods proposed here when treatment is assumed to be dichotomous. We illustrate the
procedures presented in this paper by studying the e¤ect of maternal smoking inten-
sity during pregnancy on birth weight. Our main �ndings suggest the presence of
approximately homogeneous, non-linear treatment e¤ects concentrated on the �rst 10
cigarettes-per-day smoked during pregnancy.
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1. Introduction
A large fraction of the literature on program evaluation focuses on the e¢ cient estimation of
treatment e¤ects under the assumption of unconfoundedness. This literature concentrates
almost exclusively on the special case of binary treatment assignments, despite the fact
that in many empirical applications treatments are implicitly or explicitly multi-valued in
nature. For example, in training programs participants receive di¤erent hours of training,
in conditional cash transfer programs households receive di¤erent levels of transfers, and in
educational interventions individuals are assigned to di¤erent classroom sizes. In cases such
as these, a common empirical practice is to collapse the multi-valued treatment status into
a binary indicator for eligibility or participation, a procedure that allows for the application
of available semiparametric econometric techniques at the expense of a considerable loss
of information. Important phenomena such as non-linearities and di¤erential e¤ects across
treatment levels cannot be captured by the classical dichotomous treatment literature. This
is especially important in a policy-making context where this additional information may
provide a better understanding of the policy under consideration.
This paper is concerned with the e¢ cient estimation of a general class of �nite multi-

valued treatment e¤ects when treatment assignment is assumed to be ignorable. We study
two estimation procedures for a population parameter implicitly de�ned by a possibly over-
identi�ed non-smooth collection of moment restrictions and we provide a set of su¢ cient
conditions that guarantees that these estimators be e¢ cient in large samples. This general
model covers important estimands for applied work such as marginal mean treatment e¤ects
and marginal quantile treatment e¤ects, and provides the basis for the analysis of a rich set
of population parameters by allowing not only for comparisons across and within treatment
levels, but also for the construction of other quantities of interest. For example, the researcher
may easily construct measures of inequality, di¤erential treatment e¤ects, and heterogeneous
treatment e¤ects by considering di¤erent functions of means and quantiles such as pairwise
di¤erences, interquantile ranges and incremental ratios. Moreover, the model considered
in this paper may provide further e¢ ciency gains in the estimation of treatment e¤ects by
allowing for over-identi�cation. For instance, if the underlying distributions of the potential
outcomes are assumed to be symmetric, we may incorporate this information to obtain more
e¢ cient treatment e¤ect estimators.
The results presented in this paper are closely related to the program evaluation literature,

the missing data literature and the measurement error literature in both econometrics and
statistics.1 Most of these works may be traced back to the seminal papers of Rubin (1974)
and Rosenbaum and Rubin (1983), and often focus on the identi�cation and semiparametric
(e¢ cient) estimation of di¤erent population parameters of interest. In the context of program
evaluation and for the particular case of binary treatments, great e¤ort has been devoted to
the e¢ cient estimation of the average treatment e¤ect (ATE) and average treatment e¤ect
on the treated (ATT) using either nonparametric regression methods (Hahn (1998), Heck-
man, Ichimura, and Todd (1998), Imbens, Newey, and Ridder (2006)), matching techniques
(Abadie and Imbens (2006)), or procedures based on the nonparametric estimation of the
propensity score (Hirano, Imbens, and Ridder (2003)). Recently, Firpo (2007) considered a

1For recent surveys on these topics, usually with a particular emphasis on binary treatment assignments,
see Rosenbaum (2002), Frölich (2004), Imbens (2004), Lee (2005), or Tsiatis (2006)
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di¤erent population parameter by studying the e¢ cient estimation of quantile treatment ef-
fects for dichotomous treatment assignments using a nonparametrically estimated propensity
score. In the closely related context of missing data, Robins, Rotnitzky, and Zhao (1994),
Robins and Rotnitzky (1995) and Robins, Rotnitzky, and Zhao (1995) develop a general
(locally) e¢ cient estimation strategy for models where the missingness indicator is binary
involving the parametric estimation of both a regression function and the propensity score.
Finally, two recent contributions by Chen, Hong, and Tamer (2005) and Chen, Hong, and
Tarozzi (2007) study e¢ cient GMM estimation in the context of measurement error models
under a set of assumptions similar to ignorability with a binary missingness indicator.
Considerably less work is available in the literature for the case of multiple treatment

assignments. In the context of program evaluation, Imbens (2000) derives a generalization
of the propensity score, termed the Generalized Propensity Score (GPS), and shows that
the results of Rosenbaum and Rubin (1983) continue to hold when the treatment status is
multi-valued. Concerning identi�cation and estimation, Imbens (2000) and Lechner (2001)
discuss marginal mean treatment e¤ects but do not assess the asymptotic properties of their
estimators, while Abadie (2005) studies the large sample properties of an estimator for the
marginal mean treatment e¤ect conditional on a treatment level in the context of a di¤erence-
in-di¤erences model. In the framework of missing data and under the assumption of missing
at random there are further results in terms of limiting distributions and (local) e¢ ciency
properties for estimators of the marginal means; for a survey on these results see the recent
paper of Bang and Robins (2005) and the references therein. Finally, in the context of missing
data but without the assumption of missing at random, Horowitz and Manski (2000) develop
sharp bounds for di¤erent multi-valued marginal mean treatment e¤ects.
This paper contributes to the literature of program evaluation by developing a uni�ed

framework for the e¢ cient estimation of a large class of multi-valued treatment e¤ects. This
general framework not only includes as particular cases important results from the program
evaluation literature when treatment is binary, but also allows for the e¢ cient estimation
of other estimands of interest. We begin by computing the E¢ cient In�uence Function
(EIF) and Semiparametric E¢ ciency Bound (SPEB) for the general population parameter
of interest using the methodology outlined in Newey (1990) and Bickel, Klaasen, Ritov, and
Wellner (1993). We then propose two estimators of multi-valued treatment e¤ects which are
the solution to a general GMM model. To circumvent the fundamental problem of causal
inference, we construct both estimators by forming sample analogues of two (possibly over-
identi�ed) moment conditions that depend only on observed data. For the �rst estimator, the
observed moment condition is obtained by an Inverse Probability Weighting (IPW) scheme
based on the GPS which may be interpreted as a moment condition exploiting a portion of
the EIF. For the second estimator, the observed moment condition is obtained by using the
complete form of the EIF and involves both the GPS and another conditional expectation.
Because the observed moment conditions include not only the treatment e¤ects of interest
but also some in�nite dimensional nuisance parameters, both estimators are of the two-step
variety. In the �rst step, the in�nite dimensional nuisance parameters are estimated and, in
the second step, the corresponding GMM problem is solved.
The large sample results presented in this paper are derived in two basic stages. In the

�rst stage, we establish consistency, asymptotic normality and e¢ ciency of both estima-
tors for any given nonparametric estimator of the in�nite dimensional nuisance parameters.



Efficient Estimation of Multi-valued Treatment Effects 4

These results are obtained by imposing a set of mild su¢ cient conditions concerning the
underlying moment identi�cation functions as well as two well-known high-level conditions
involving the nonparametric estimators. This strategy provides a better understanding of
the set of su¢ cient conditions required for the general procedure to work and allows for
di¤erent choices of the nonparametric estimator of the nuisance parameters. The mild con-
ditions imposed for the underlying moment identi�cation functions are easily veri�ed in
applications, as shown in the examples discussed below, while the two-high level conditions
generally require additional work. Thus, in the second stage, we discuss the nonparametric
estimation of the two nuisance parameters for the particular case of series estimation. Since
both nuisance parameters are conditional expectations, results from the nonparametric se-
ries (or sieve) estimation literature may be applied directly. However, since the GPS is a
conditional probability we propose a new nonparametric estimator, labeled Multinomial Lo-
gistic Series Estimator, which is based on series estimation and captures the speci�c features
of this nuisance parameter. This estimator generalizes the nonparametric estimator for the
propensity score introduced by Hirano, Imbens, and Ridder (2003) and may be interpreted as
a nonlinear sieve procedure (Chen (2007)) having the key advantage of providing predicted
positive probabilities that add up to one. Using these nonparametric estimators, we provide
simple primitive conditions that guarantee the e¢ cient estimation of general multi-valued
treatment e¤ects.
Once an e¢ cient estimation procedure is available, we discuss how other important pop-

ulation parameters of interest may be e¢ ciently estimated by means of transformations.
Intuitively, because semiparametric e¢ ciency is preserved by a standard delta-method ar-
gument, other treatment e¤ects that may be written as functions of the general population
parameter of interest are also e¢ ciently estimated. For the case of binary treatments, this
implies that the results of Hahn (1998), Hirano, Imbens, and Ridder (2003), and Firpo (2007)
may be seen as particular cases of our procedure. Furthermore, our general procedure allows
for the e¢ cient estimation of restricted treatment e¤ects by means of a simple minimum
distance estimator based on the e¢ ciently estimated, unrestricted treatment e¤ects. In ad-
dition to enlarging the class of treatment e¤ects covered by our results, these ideas also allow
for �optimal�testing of many hypotheses of interest.
Finally, to illustrate the results discussed in this paper we report a brief empirical study of

the e¤ect of maternal smoking intensity on birth weight that extends the analysis of Almond,
Chay, and Lee (2005). These authors study the costs of low birth weight using di¤erent non-
experimental techniques and �nd an important negative e¤ect of maternal smoking on birth
weight de�ning maternal smoking as a binary treatment. Exploiting the fact that their rich
database includes the number of cigarettes-per-day smoked by the mother, we extend the
analysis to a multi-valued treatment setup and study the e¤ect of maternal smoking intensity
on birth weight. Our main �ndings suggest the presence of a nonlinear negative e¤ect where
two thirds of the full impact of smoking on birth weight are due to the �rst 5 cigarettes,
while the remaining third is explained by the next 5 cigarettes with no important e¤ects
beyond the tenth cigarette-per-day smoked. Moreover, these e¤ects appear to be additive,
shifting parallelly the entire distribution of birth weight along smoking intensity.
The rest of the paper is organized as follows. Section 2 introduces the multi-valued

treatment e¤ect model and discusses identi�cation of the general population parameter of
interest. Section 3 includes the semiparametric e¢ ciency calculations for the model con-
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sidered and presents the general form of the EIF and SPEB. Section 4 describes the two
proposed estimators and Section 5 presents the large sample results. Section 6 discusses e¢ -
cient estimation of other interesting population parameters and optimal hypothesis testing.
Section 7 presents the empirical illustration and Section 8 concludes. All proofs are collected
in the Appendix.

2. Statistical Model and Identification
In this section we describe the multi-valued treatment e¤ect model and discuss identi�cation
of the general population parameter of interest.

2.1. The Model. We study a multi-valued treatment e¤ect model that is the natural
extension of the well-known model used in the classical binary treatment e¤ect literature.2

Assume there exists a �nite collection of multiple treatment status (categorical or ordinal)
indexed by t 2 T , where without loss of generality T = f0; 1; 2; � � � ; Jg with J 2 N �xed.
The random variables fY (t); t 2 T g, with Y (t) 2 Y � R, denote the collection of potential
outcomes under treatment t 2 T , while the random variable T 2 T indicates which of the
J + 1 potential outcomes is observed. Thus, the observed outcome is the random variable
Y =

P
t2T Dt � Y (t), where Dt = 1 fT = tg for all t 2 T and 1 f�g is the indicator function.

We also assume there exists a real-valued random vector X 2 X � Rdx, dx 2 N, which is
always observed.
The population parameter of interest is the vector �� = [��00 ; �

�0
1 ; � � � ; ��0J ]

0, where ��t 2
B � Rd� for all t 2 T and d� 2 N. We assume that this parameter solves a collection of
J + 1 (possibly over-identi�ed) moment conditions given by

E [m (Y (t); �t)] = 0 if and only if �t = ��t , 8t 2 T , (1)

where the function m : Y � B ! Rdm is known (possibly non-smooth) with dm � d�.3

The maintained assumption in equation (1) imposes a conventional high-level identi�cation
condition for GMM estimation as de�ned by the collection of moment conditions. This
model allows for a large class of population parameters of interest including those de�ned
by non-smooth moment functions such as quantiles or other robust estimands.
We assume a random sample of size n from (Y; T;X) is observed, which is denoted by

(Yi; Ti; Xi), i = 1; 2; � � � ; n. This leads to a cross-sectional random sample scheme where only
the potential outcome corresponding to T = t is observed, which implies that we e¤ectively
sample from the conditional distribution of Y (t) given T = t rather than from the marginal
distribution of Y (t), a fact that will in general induce a bias in the estimation. Notice that

2For a review on the binary treatment e¤ect literature see Imbens (2004), and for a review on the multi-
valued treatment e¤ect literature see Frölich (2004).

3The model considered in this paper corresponds to a slightly specialized case of a general GMM model
with multi-level missing data. This may be veri�ed by a simple change in notation: let Y (t) 2 Rdy with
dy � 1 and (abusing notation) rede�ne Y (t) = (Y (t) ; X) for all t 2 T . Although all the results in this paper
apply to this more general model without changes, for simplicity we restrict our attention to the multi-valued
treatment e¤ect model. Furthermore, observe that we have set all dimensions and moment conditions equal
across treatment levels t 2 T . This is done only to simplify notation since all the results presented continue
to hold in the more general case where di¤erent dimensions and/or moment conditions depending on t are
considered.
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in this model the fundamental problem of causal inference is exacerbated: for each unit we
only observe one of the J + 1 potential outcomes.
Of particular relevance for applied work are the following particular forms of this model:

Example 1: Marginal Mean Treatment Effect (MMTE). The �rst leading
example is a classical population parameter of interest in the literature of Biostatistics, Public
Health and Medicine, among other �elds. This population parameter, sometimes called the
Dose-Response Function, captures the mean response for each treatment level and, in the
context of program evaluation, can be seen as an extension of the ATE. The MMTE is
denoted by �� = [��0; �

�
1; � � � ; ��J ]

0 and solves equation (1) with m (Y (t); X;�t) = Y (t) � �t,
for all t 2 T , which leads to ��t = E [Y (t)]. In this case identi�cation follows immediately
after assuming a �nite �rst moment of the potential outcomes. �

Example 2: Marginal Quantile Treatment Effect (MQTE). Characterizing
distributional impacts of a multi-valued treatment is crucial because these e¤ects are closely
related to usual inequality and heterogeneity measures. The second leading example captures
this idea by looking at the treatment e¤ect at di¤erent quantiles of the outcome variable.
For some � 2 (0; 1), the MQTE is denoted by q� (�) = [q�0 (�) ; q�1 (�) ; � � � ; q�J (�)]

0 and it is
assumed to solve equation (1) with m (Y (t); qt (�)) = 1 fY (t) � qt (�)g � � , for all t 2 T ,
which leads to q�t (�) 2 inf

�
q : FY (t) (q) � �

	
, where FY (t) is the c.d.f. of Y (t). In this case,

a simple su¢ cient condition for identi�cation is that Y (t) be a continuous random variable
with density fY (t) (q�t (�)) > 0. �

Example 3: MMTE with Symmetry. A very simple example where further e¢ -
ciency gains may be obtained in the estimation of treatment e¤ects is when the distribution
of Y (t) is assumed to be symmetric for location. In this case, mean and median coincide
and hence we obtain two moment conditions for the same parameter of interest. Thus, the
population parameter of interest solves the following (over-identi�ed) moment condition:
m (Y (t); X;#t) = (Y (t)� #t;1 fY (t) � #tg � 1=2), for all t 2 T . Since this moment condi-
tion collects the moment conditions used in Example 1 and Example 2, the results for this
case will follow from the conditions and results discussed for the �rst two examples. �

2.2. Identi�cation. The identi�cation condition in equation (1) covers many cases of
interest. However, it has the obvious drawback of being based on unobservable random
variables, the potential outcomes, which makes estimation infeasible. To proceed, we need to
impose an additional identi�cation restriction. Following the program evaluation literature,
we make a �selection on observables� assumption based on the always observed random
vector X:

Assumption 1. For all t 2 T : (a) Y (t) ?? Dt j X; and (b) 0 < pmin � p�t (X) �
P [T = t j X].

In the context of multi-valued treatment e¤ects, Assumption 1 is sometimes referred to as
Ignorability while the conditional probabilities p�t (X), t 2 T , are known as the Generalized
Propensity Score. Imbens (2000) and Lechner (2001) provide a detailed discussion of this
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assumption and discuss the role of the GPS in the estimation of the particular population
parameter covered by Example 1.
Part (a) of Assumption 1 has been widely used in the program evaluation, missing data

and measurement error literatures. This condition, sometimes called Unconfoundedness or
Missing at Random, ensures that the distribution of each potential outcome and the treat-
ment level indicator are conditionally independent and consequently provides identi�cation
by imposing �random assignment�conditional on observables. Intuitively, this assumption
guarantees that, after conditioning on X, the conditional distribution of Y (t) given T = t
and the marginal distribution of Y (t) be identical. This assumption turns out to be su¢ cient
for identi�cation of �� because it leads to

E [E [m (Y ; �t) j T = t;X]] = E [m (Y (t); �t)] = 0 if and only if �t = ��t , 8t 2 T . (2)

Part (b) of Assumption 1 is important for at least two reasons. First, it is a necessary
condition for �niteness of the semiparametric e¢ ciency bound for regular estimators of �� as
discussed in the next section. Second, together with part (a), it provides the opportunity to
consider alternative identi�cation conditions based on the observed random variables. For
example, we may easily verify that

E
�
Dt �m (Y ; �t)

p�t (X)

�
= E [m (Y (t); �t)] = 0 if and only if �t = ��t , 8t 2 T , (3)

and

E
�
Dt � E [m (Y ; �t) j X]

p�t (X)

�
= E [m (Y (t); �t)] = 0 if and only if �t = ��t , 8t 2 T , (4)

which leads to two additional observed moment conditions.4

Using equations (2), (3) and (4) as a starting point, several estimation procedures and
their corresponding e¢ ciency properties have been considered in the literature for the par-
ticular case of binary treatment e¤ects (or binary missingness indicator). Estimators that
exploit moment conditions (2) or (4) are usually known as �imputation� or �projection�
estimators because �rst a conditional expectation function is (nonparametrically) estimated
and then missing outcomes are imputed for all (or some subset of) the observations and
averaged out. Recent examples of papers studying these kind of estimators are Hahn (1998)
and Imbens, Newey, and Ridder (2006) in the context of program evaluation with binary
treatments, and Chen, Hong, and Tamer (2005) and Chen, Hong, and Tarozzi (2007) in the
context of nonclassical measurement error. In the framework of missing data, there is a vast
literature known as Doubly Robust Estimation that is based on moment conditions such as
equation (4) and uses parametric speci�cations of the unknown functions. Bang and Robins
(2005) present a comprehensive review on this topic.
Estimators constructed from the moment condition (3) lead naturally to an Inverse Prob-

ability Weighting (IPW) scheme and have been considered by many authors in di¤erent con-
texts at least since the work of Horvitz and Thompson (1952). Intuitively, this procedure

4Other identi�cation conditions are also available in the literature based on this idea. For example, see
Hahn (1998).
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achieves identi�cation by reweighting the observations to make them representative of the
population of interest. This idea has been exploited in the program evaluation literature by
Imbens (2000), Hirano, Imbens, and Ridder (2003) and Firpo (2007), in the missing data
literature by Robins, Rotnitzky, and Zhao (1994) and Robins, Rotnitzky, and Zhao (1995),
and in the measurement error literature by Chen, Hong, and Tarozzi (2007), among others.
Wooldridge (2007) provides a very interesting discussion of this estimation strategy.
Assumption 1 leads to an important collection of alternative asymptotically equivalent

e¢ cient estimators in the context of program evaluation. In this paper we study two e¢ cient
estimators for the case of multi-valued treatment e¤ects. The �rst estimator is based on
equation (3), while the second estimator is based on a di¤erent moment condition that may
be constructed as a linear combination of equations (2), (3) and (4). These estimators are
also asymptotically equivalent to those available in the literature in the special case of binary
treatment e¤ects. It remains as an important open research question to rank the large class
of available semiparametric e¢ cient estimators.

2.3. Notation. Before turning to the discussion of e¢ cient estimation in the context of
multi-valued treatment e¤ects, it is convenient to introduce some notation that will simplify
the presentation. We work with two important functions: the J + 1 vector-valued function
representing the GPS, denoted by p� (�) = [p�0 (�) ; � � � ; p�J (�)]

0, and the (J + 1) � dm vector-
valued function of conditional expectations denoted by e� (�; �) =

�
e�0 (�; �0)

0 ; � � � ; e�J (�; �J)
0�0,

where e�t (X; �t) = E [m (Y (t); �t) j X]. We assume that p�t (�) 2 P and e�t (�; �t) 2 E for all
�t 2 B and t 2 T , where P and E represent some (smooth) space of functions. For simplicity,
in the remaining of the paper we will drop the arguments of the functions considered whenever
it is clear from the context.
We let j�j denote the matrix norm given by jAj =

p
trace (A0A) for any matrix A. As for

functions, we work with the sup-norm in all arguments denoted by k�k1. In particular, for
all t 2 T , we have kptk1 = supx2X jpt (x)j for some pt 2 P, ket (�t)k1 = supx2X jet (x; �t)j
and ketk1 = sup�2B;x2X jet (x; �t)j for some et (�t) 2 E , and similarly for the vector-valued
functions p and e. Later in the paper we will restrict the class of functions considered to
enable the nonparametric estimation of these nuisance parameters.
Finally, to reduce the notational burden we introduce the following vector-valued func-

tions

m (Y; T;X; �; p) =

�
D0

p0 (X)
�m (Y ; �0)

0 ; � � � ; DJ

pJ (X)
�m (Y ; �J)

0
�0
,

and

� (T;X; p; e (�)) =

�
e0 (X; �0)

0 � D0 � p0 (X)

p0 (X)
; � � � ; eJ (X; �J)

0 � DJ � pJ (X)

pJ (X)

�0
,

for some p 2 PJ+1 and e (�) 2 EJ+1 for all � 2 BJ+1.

3. Semiparametric Efficiency Calculations
In this section we provide basic semiparametric e¢ ciency calculations essential for the con-
struction of e¢ cient estimators of ��. Semiparametric e¢ ciency theory has received consider-
able attention in econometrics at least since the seminal work of Bickel, Klaasen, Ritov, and



Efficient Estimation of Multi-valued Treatment Effects 9

Wellner (1993) (see also Newey (1990) for an excellent survey). This general theory provides
the necessary ingredients for the construction of e¢ cient estimators of �nite dimensional
parameters in the context of semiparametric models under some mild regularity conditions.
First, it provides the analogue concept of the Cramer-Rao Lower Bound for semiparametric
models, that is, an e¢ ciency benchmark for regular estimators of the population parame-
ter of interest. Second, and more importantly, it provides a way of constructing e¢ cient
estimators using the e¢ cient in�uence function or the e¢ cient score of the model. In the
simplest possible case, the construction of an e¢ cient estimator starts by deriving the EIF in
the statistical model and then verifying that the proposed estimator admits an asymptotic
linear representation based on this function. In this paper we use these ideas to verify that
our estimators are in fact e¢ cient.
Several semiparametric e¢ ciency calculations are available in the literature when some

form of Assumption 1 holds. In the context of program evaluation with binary treatments,
e¢ cient in�uence functions and e¢ ciency bounds have been computed by Hahn (1998),
Hirano, Imbens, and Ridder (2003) and Firpo (2007) for average and quantile treatment
e¤ect parameters using the methodology outlined in Bickel, Klaasen, Ritov, and Wellner
(1993). In models of missing data, Robins, Rotnitzky, and Zhao (1994) and Robins and
Rotnitzky (1995) develop a general methodology to construct e¢ cient scores and compute
the corresponding e¢ ciency bounds when the missingness indicator is binary. In a recent
contribution, Chen, Hong, and Tarozzi (2007) provide semiparametric e¢ ciency calculations
for GMMmodels in the context of nonclassical measurement error with one auxiliary sample.
The results presented in this section cover all these cases by considering a multi-level missing
mechanism in a GMM model. In Section 6 we show how the e¢ ciency bounds derived in the
program evaluation literature may be recovered from the calculations presented here.

Assumption 2. (a) For all t 2 T , E[jm (Y (t); �t)j
2] < 1 and E [m (Y (t); �t)] is di¤eren-

tiable in �t 2 B at ��t ; and (b) rank (��) = (J + 1) � d�, where

�� =

26664
��0 0 � � � 0
0 ��1 � � � 0
...

...
. . .

...
0 0 � � � ��J

37775 ,
where 0 is a (dm � d�) matrix of zeros and

��t =
@

@�0t
E [m (Y (t); �t)]

����
�t=�

�
t

, 8t 2 T .

The main role of Assumption 2 (together with part (b) of Assumption 1) is to ensure that
the bound is �nite. The full column rank assumption on the gradient matrix �� ensures a
local identi�cation condition necessary for the semiparametric calculations. A key necessary
requirement to provide semiparametric calculations is to establish the pathwise di¤erentia-
bility of the population parameter of interest, which is done in the Appendix under this
Assumption (and Assumption 1).
The following theorem provides the general form of the EIF and SPEB for the model

considered in this paper.
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Theorem 1. (EIF and SPEB) Let Assumptions 1 and 2 hold. Then the EIF for any
regular estimator of �� is given by

	(y; t; x; ��; p�; e� (��)) = �
�
�0�V

�1
� ��

��1
�0�V

�1
�  (y; t; x; ��; p�; e� (��)) ,

where  (y; t; x; ��; p�; e� (��)) = m (y; t; x; ��; p�)� � (t; x; ��; p�; e� (��)) and

V� = V [ (Y; T;X; ��; p�; e� (��))] .

Consequently, the SPEB for any regular estimator of �� is given by V � = (�0�V
�1
� ��)

�1.

The results in Theorem 1 may be directly compared to those presented in Newey (1994).
This leads to a natural interpretation for the EIF, where the vector-valued function � (�)
corresponds to the �adjustment term�in the in�uence function due to the presence of the
unknown nuisance parameter (GPS) when the estimator is constructed from the sample
analogue of the moment condition given by equation (3). In the next section we use this
interpretation to compare the two estimators considered in this paper.
It is possible to provide additional intuition for the structure of the SPEB after noting

that

V� = E [V [m (Y; T;X; ��; p�) j X]] + E
�
e� (X; ��) e� (X; ��)0

�
. (5)

Using this decomposition, we see that the results in Theorem 1 may be interpreted as the
multi-level generalization of the SPEB in Theorem 1 of Chen, Hong, and Tarozzi (2007)
in the context of measurement error with �verify-in-sample�auxiliary data. Extending the
results of Hahn (1998) and Chen, Hong, and Tarozzi (2007) to the context of multi-valued
treatments, we verify that (i) the GPS is ancillary for the estimation of �� (i.e., the SPEB
does not change whether we assume the GPS to be known), and (ii) if the distribution of X
is known or correctly speci�ed the SPEB is reduced (in particular, if the distribution of X is
assumed to be known, then the second term in equation (5) drops out). We do not provide
details for these results to conserve space.
It is important to note that we have explicitly allowed for the components ��0; � � � ; ��J of

the population parameter �� to be di¤erent. Under this assumption, the SPEB obtained in
Theorem 1 will be in general larger than the one we would obtain had we imposed ��0 =
� � � = ��J . Since our main goal is to estimate e¢ ciently the components of �

� (i.e., treatment
e¤ects), the result presented in Theorem 1 seems to be the most appropriate. The SPEB for
the �restricted�case may be easily obtained by similar derivations to those presented in the
appendix.
One important simpli�cation in Theorem 1 is achieved in the important case of exact

identi�cation:

Corollary 1. If dm = d�, then Theorem 1 implies that the EIF for any regular estimator of
�� is given by

	(y; t; x; ��; p�; e� (��)) = ��1�  (y; t; x; ��; p�; e� (��)) .

Consequently, the SPEB for any regular estimator of �� is given by V � = ��1� V��
0�1
� .
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Notice further that in the just-identi�ed case, �� = diag (��0; � � � ;��J).
The result in Corollary 1 is important because it shows that in the just-identi�ed case

the EIF may be constructed by collecting in a single vector the EIF�s corresponding to each
��0; � � � ; ��J . Moreover, using this result, it will follow that in the just-identi�ed case we may
estimate e¢ ciently �� by estimating each ��0; � � � ; ��J independently. We discuss this result
further in the following sections.
Finally, we apply the results of Theorem 1 to the examples under study:

Example 1 (Continued): MMTE. Assume E[Y (t)2] < 1 and note that ��t = 1 for
all t 2 T in this case. Thus, Assumption 2 is satis�ed and Theorem 1 implies that the SPEB
for the MMTE is given by V � with typical (i; j)-th element

V �
[i;j] = E

�
1 fi = jg � �

2
i (X)

p�i (X)
+ (�i (X)� ��i ) �

�
�j (X)� ��j

��
,

where �2i (X) = V [Y (i) j X], �i (X) = E [Y (i) j X], for all i 2 T . �

Example 2 (Continued): MQTE. Using Leibniz�s rule we have ��t = f �Y (t) (q
�
t (�)) for

t 2 T , which was assumed strictly positive. Thus, Assumption 2 is satis�ed and Theorem 1
implies that the SPEB for the MQTE is given by V � with typical (i; j)-th element

V �
[i;j] = E

"
1 fi = jg � �2i (X; �)

f �Y (i) (q
�
i (�))

2 � p�i (X)
+

qi (X; �) � qj (X; �)
f �Y (i) (q

�
i (�)) � fY (j)

�
q�j (�)

�# ,
where �2i (X; �) = V [1 fY (i) � q�i (�)g j X], qi (X; �) = E [1 fY (i) � q�i (�)g � � j X], for
all i 2 T . �

4. Estimation Procedures
In this paper we consider two estimators for the multi-valued treatment e¤ects. The �rst
estimation procedure uses an IPW approach and is based on equation (3), while the second
estimation procedure combines the IPW and imputation approaches and is based on the EIF
derived in Theorem 1. For simplicity, in the over-identi�ed case, the construction does not
use continuously updated GMM but rather uses a consistent estimator of the corresponding
weighting matrix.5 In particular, we assume that An is a ((J + 1) � d�) � ((J + 1) � dm)
(random) matrix such that An = A+ op (1) for some positive semide�nite matrix W = A0A.

4.1. Inverse Probability Weighting Estimator (IPWE). We may motivate this
procedure by a simple sample analog principle. Recall that our goal is to estimate the
parameters implicitly de�ned by the moment conditions E [m (Y (t); ��t )] = 0 for all t 2
T . Had we observed the random variables (Y (0); � � � ; Y (J)), a natural estimator would
simply solve the sample analog counterpart of the J + 1 moment conditions leading to a
standard GMM estimation procedure. Unfortunately, due to the presence of the missingness
mechanism, we cannot perform such estimation since we only observe Y . Instead, we may
use the result in Equation (3) to obtain a moment condition based only on observed random

5A generalization to a continuously updated GMM model is straightforward provided the corresponding
additional regularity conditions are imposed.
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variables. This alternative has the drawback that now the feasible moment conditions involve
both the �nite dimensional parameter of interest, ��, and an in�nite dimensional nuisance
parameter (GPS). This reasoning suggests that if we could construct a preliminary estimator
for the GPS that converges to the true GPS su¢ ciently fast, we would still be able to
consistently estimate the �nite dimensional parameter of interest.
Using these ideas, we may consider a simple semiparametric two-step GMM estimation

procedure where the parameter �� is estimated after a preliminary nonparametric estimator
for the GPS has been constructed. In particular, to save on notation, de�ne the moment
condition

M IPW (�; p) = E [m (Y; T;X; �; p)] ,

and its sample analogue

M IPW
n (�; p) =

1

n

nX
i=1

m (Yi; Ti; Xi; �; p) .

Formally the IPWE may be described by the following steps. First, construct a nonpara-
metric estimator of the GPS based on the full sample, denoted p̂ = [p̂0; � � � ; p̂J ]0. Second,
the IPWE for �� is given by

�̂
IPW

= arg min
�2BJ+1

��AnM IPW
n (�; p̂)

��+ op(n
�1=2).

This estimation procedure has the important advantage of being based only on the non-
parametric estimator of the GPS. Note that the in�nite dimensional component does not
depend on � and therefore we only need to estimate it once to form the GMM problem,
leading to a very simple two-step procedure. On the other hand, this estimation procedure
has an important drawback based on its construction. Because it only involves the �rst
part of the EIF derived in the previous section, to ensure its semiparametric e¢ ciency the
nonparametric estimator p̂ will have to play two roles simultaneously: not only does it have
to approximate p� fast enough, but it also has to do it in such a way that the limiting GMM
problem becomes a GMM problem based on the EIF. For example, as pointed out by Hirano,
Imbens, and Ridder (2003) in the model of binary treatment e¤ects, the extreme case where
p̂ = p� will not lead in general to an e¢ cient estimator because this procedure will be solving
the incorrect GMM problem. We will make explicit the requirements on p̂ in the next section
when we study the large sample properties of this estimator.6

For the just-identi�ed case, the procedure leading to the IPWE is equivalent to solving

�̂
IPW

t = argmin
�2B

����� 1n
nX
i=1

Dt;i �m (Yi; �t)
p̂t (Xi)

�����+ op(n
�1=2), 8t 2 T ,

which leads to a very simple estimator.

6The role of the propensity score and how information about it may be e¢ ciently incorporated in semi-
parametric models have received considerable attention in the literature of program evaluation and related
areas of study. See, e.g., Hahn (1998), Heckman, Ichimura, and Todd (1998), Hirano, Imbens, and Ridder
(2003), and Chen, Hong, and Tarozzi (2007), among others, for a discussion on this topic.
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This applies directly to our examples:

Example 1 (Continued): MMTE. In this case, we obtain a closed-form solution given
by

�̂IPWt =

�Xn

i=1

Dt;i

p̂t (Xi)

��1Xn

i=1

Dt;i � Yi
p̂t (Xi)

,

which corresponds to a properly re-weighted average for each t 2 T . �

Example 2 (Continued): MQTE. In this case we cannot obtain a closed-form solution
to the minimization problem. Instead, we have for �xed � 2 (0; 1),

q̂IPWt (�) = argmin
q2B

���� 1nXn

i=1

Dt;i � (1 fYi � qg � �)

p̂t (Xi)

����
for all t 2 T . �

4.2. E¢ cient In�uence Function Estimator (EIFE). This estimator is based on the
EIF derived in Theorem 1. This procedure can also be motivated by the analogue principle
after observing that E [ (Y; T;X; �; p; e (�))] = 0 if and only if � = ��, p = p� and e = e�.
In words, the EIF provides another collection of moment conditions that can be exploited
to obtain a GMM estimator. Inspection of E [ (Y; T;X; �; p; e (�))] shows that its sample
analogue corresponds to a linear combination of three sample analogues already discussed
in the literature for the special case of binary treatment e¤ects. In particular, this moment
condition includes (i) the moment condition leading to an IPW estimator, (ii) the moment
condition leading to a nonparametric version of the doubly robust estimator, and (iii) the
moment condition leading to an imputation estimator.
To describe the estimator, de�ne the moment condition

MEIF (�; p; e (�)) = E [ (Y; T;X; �; p; e (�))] ,

and its sample analogue

MEIF
n (�; p; e (�)) =

1

n

nX
i=1

 (Yi; Ti; Xi; �; p; e (�)) .

Formally the EIFE may be described by the following steps. First, construct a nonpara-
metric estimator of the GPS, denoted p̂ = [p̂0; � � � ; p̂J ]0, and for each � 2 B construct a
nonparametric estimator of e (�), denoted ê (�) = [ê0 (�)

0 ; � � � ; êJ (�)0]0. Second, the EIFE
for �� is given by

�̂
EIF

= arg min
�2BJ+1

��AnMEIF
n (�; p̂; ê (�))

��+ op(n
�1=2).

This estimator appears to be in general more complicated than the IPWE because it
requires the nonparametric estimation of two in�nite dimensional parameters, one of which
is a function of � itself. On the other hand, it has the attractive feature of being based
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on the EIF and therefore each nonparametric estimator would only be required to have the
intuitive role of approximating well its own population counterpart. For example, it is now
possible to consider the extreme case of p̂ = p� and still obtain an e¢ cient estimator, as we
discuss below.7

As for the IPWE, in the just-identi�ed case this procedure is equivalent to solve for all
t 2 T ,

�̂
EIF

t = argmin
�t2B

����� 1n
nX
i=1

Dt;i �m (Yi; �t)� êt (Xi; �t) � (Dt;i � p̂t (Xi))

p̂t (Xi)

�����+ op(n
�1=2).

In the case of our leading example, this estimation procedure gives:

Example 1 (Continued): MMTE. In this case, for t 2 T we have e�t (X;�t) =
��t (X)� �t and therefore we may obtain a close form solution,

�̂EIFt =
1

n

nX
i=1

Dt;i � Yi � �̂t (Xi) � (Dt;i � p̂t (Xi))

p̂t (Xi)
,

where �̂t (x) represents some nonparametric estimator of �
�
t (x). �

Example 2 (Continued): MQTE. In this example, e�t (X; �t) = F �Y (t) (qt (�) j X)�� ,
for t 2 T , and the minimization problem becomes for �xed � 2 (0; 1),

q̂EIFt (�) = argmin
qt2B

����� 1n
nX
i=1

Dt;i � (1 fYi � qtg � �)� (F̂Y (t) (qt j Xi)� �) � (Dt;i � p̂t (Xi))

p̂t (Xi)

����� ,
where F̂Y (t) (y j x) represents some nonparametric estimator of F �Y (t) (y j x). �

5. Large Sample Properties
This section presents the main large sample results of the paper in four stages. First, we
establish consistency of both the IPWE and EIFE under mild regularity conditions. Second,
we provide su¢ cient conditions for asymptotic normality and e¢ ciency of the IPWE and
EIFE for any nonparametric estimators of the in�nite dimensional nuisance parameters based
on a set of high-level conditions. Third, we construct estimators for the di¤erent components
of the SPEB derived in Theorem 1. Finally, we discuss nonparametric estimation of the
in�nite dimensional nuisance parameters and thereby provide a full data-driven procedure
for the e¢ cient estimation of ��.
The large sample theory presented in this paper is based on the work of Pakes and Pollard

(1989).8 In the following discussion, we will repeatedly employ terminology and results from
the modern theory of empirical processes. For consistency and to simplify the exposition, all
references to this literature are based on van der Vaart and Wellner (1996) (see also Andrews
(1994) and van der Vaart (1998) for excellent reviews on this topic).

7It is important to note that this is not the only way in which information about the (generalized)
propensity score may be incorporated in semiparametric e¢ cient estimators. For two other examples, see
the recent work of Chen, Hong, and Tarozzi (2007) in the context of measurement error models.

8Alternatively, we may apply the general large sample theory of Chen, Linton, and van Keilegom (2003).
However, because in our case the criterion function is smooth in the in�nite dimensional nuisance parameters,
the results from Pakes and Pollard (1989) turn out to be su¢ cient.
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5.1. Consistency. Consistency of the IPW estimator will follow from two mild condi-
tions imposed on the underlying identifying function m (�; �):

Assumption 3. For all t 2 T , (a) the class of functions fm (�; �t) : �t 2 Bg is Glivenko-
Cantelli, and (b) E[ sup�t2B jm (Y (t); �t)j] <1.

Part (a) of Assumption 3 restricts the class of functions that may be considered to
implicitly de�ne the population parameter of interest. Functions in this class enjoy an
important property: sample averages of these functions are uniform consistent in � for their
population mean. Although consistency may be established by other means, requiring an
uniform consistency property of the underlying sample moment conditions is standard in the
GMM literature. Newey and McFadden (1994) discuss this and other related conditions. A
simple set of su¢ cient conditions for Assumption 3(a) are B compact, m (�; �t) continuous
in �t, and Assumption 3(b). Although this set of conditions is reasonably weak, it is still
stronger than necessary. In fact, to cover interesting nonsmooth cases (such as quantiles) it is
necessary to rely on slightly stronger results such as those presented in the empirical process
literature. From this literature, many classes of functions are known to be Glivenko-Cantelli
and many other classes may be formed by some �permanence�theorem.9

Part (b) of Assumption 3 is a usual dominance condition.

Theorem 2. (Consistency of IPWE) Let Assumptions 1 and 3 hold. Assume the fol-
lowing additional condition holds:

(2.1) kp̂� p�k1 = op (1).

Then, �̂
IPW

= �� + op (1).

The additional condition (2.1) in Theorem 2 is very weak, requiring only that the non-
parametric estimator of the GPS is uniformly consistent.
Next, we consider the EIFE. For this estimator, we additionally assume:

Assumption 4. For all t 2 T , the class of functions fe�t (�; �t) : �t 2 Bg is Glivenko-Cantelli.

Assumption 4 captures the ideas implied by Assumption 3(a). In this case, however,
this assumption may be easier to verify because the functions e�t (�; �t) are conditional ex-
pectations and therefore it is natural to assume they are smooth in �t. Thus, verifying the
underlying uniform consistency requirement should be straightforward in this case, possibly
after imposing some additional mild regularity conditions.

Theorem 3. (Consistency of EIFE) Let Assumptions 1, 3, and 4 hold. Assume the
following additional condition holds:

(3.1) kp̂� p�k1 = op (1) and kê� e�k1 = op (1).

9Primitive conditions that ensure a given class of functions to be Glivenko-Cantelli (or Donsker) usually
involve some explicit assumption concerning the �size� of the class as measured by some version of the
entropy numbers. For a recent example in the context of GMM estimation see Ai and Chen (2003).
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Then, �̂
EIF

= �� + op (1).

Since we are now using the full EIF to construct the estimator, it is natural to observe
that Theorem 3 also requires the nonparametric estimator ê to be uniformly consistent for
e� in both arguments (the covariates X and the parameter �). This condition is still weak
and reasonable for most nonparametric estimators.
For our examples, Assumptions 3 and 4 may be easily veri�ed:

Example 1 (Continued): MMTE. Assume B is compact and E [jY (t)j] < 1 for
all t 2 T . Assumption 3 follows directly because the class of functions f(� � �t) : �t 2 Bg
is Glivenko-Cantelli. Therefore, Theorem 2 implies �̂IPW

p�! ��. Moreover, the class of
f(��t (�)� �t) : �t 2 Bg is also Glivenko-Cantelli and Theorem 3 implies �̂EIF

p�! ��. �

Example 2 (Continued): MQTE. Assumption 3 follows immediately because the
class of functions f(1 f� � qtg � �) : qt 2 Bg is Glivenko-Cantelli and Theorem 2 gives q̂IPW (�)
p�! q� (�). Furthermore, if the class of functions fF �Y (t) (qt j �) � � : qt 2 Bg is Glivenko-
Cantelli, Theorem 3 gives q̂EIF (�)

p�! q� (�). The last requirement may be veri�ed if, for
example, we have B compact and F �Y (t) (y j x) continuous in y for every x. �

5.2. Asymptotic Normality and E¢ ciency. We are now ready to discuss the con-
ditions needed to establish the limiting distribution and e¢ ciency of the two estimators
considered in this paper. We begin by stating a set of su¢ cient conditions for the IPWE:

Assumption 5. For all t 2 T and some � > 0: (a) fm (�; �t) : j�t � ��t j < �g is a Donsker
class; (b) E[ jm (Y (t); �t)�m (Y (t); ��t )j

2]! 0 as �t ! ��t ; (c) there exists a constant C > 0
such that E [jm (Y (t); �t)�m (Y (t); ��t )j] � C � j�t � ��t j for all �t with j�t � ��t j < �; and
(d) E[ supj�t���t j<� jm (Y (t); �t)j

2] <1.

Similar to the requirement for consistency, Part (a) of Assumption 5 restricts the class
of functions de�ning the population parameter of interest that may be considered. This
assumption is standard from the empirical process literature and ensures that an uniform
(in �t) central limit theorem holds. In turn, this result together with part (b) and part (c) will
ensure that a certain stochastic equicontinuity condition applies, which allows us to obtain an
asymptotic linear representation for the estimator. For most applications, Assumption 5(a)
is already established or can be easily veri�ed by some �permanence theorem�. Assumptions
5(b) and 5(c) are standard in the literature and may be veri�ed directly, while Assumption
5(d) is a usual dominance condition.

Theorem 4. (Asymptotic Linear Representation of IPWE) Let �� 2 int
�
BJ+1

�
,

�̂
IPW

= �� + op (1), and Assumptions 1, 2, and 5 hold. Assume the following additional
conditions hold:

(4.1) kp̂� p�k1 = op
�
n�1=4

�
.

(4.2) M IPW
n (��; p̂) =MEIF

n (��; p�; e� (��)) + op
�
n�1=2

�
.
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Then,

�̂
IPW � �� = � (�0�W��)

�1
�0�WMEIF

n (��; p�; e� (��)) + op(n
�1=2).

Asymptotic normality of �̂
IPW

follows directly from Theorem 4 while e¢ ciency is easily
obtained by an appropriate choice of the limiting weighting matrixW . This theorem requires
two important additional conditions involving the estimator of the GPS. These conditions
imply certain restrictions in terms of smoothness for the class of functions P and E , depending
on the nonparametric estimator chosen and the dimension of X .
Condition (4.1) is standard in the literature and imposes a lower bound in the uniform rate

of convergence of p̂. Condition (4.2) is crucial. This condition involves the sample moment
condition (at � = ��) and the nonparametric estimator, and requires a particular linear
expansion based on the EIF to hold. Newey (1994) provides an in-depth general discussion
of this particular condition and outlines high-level assumptions that ensure this condition
holds. This assumption is very important because it employs the exact form of the EIF to
guarantee that the resulting estimator is e¢ cient (provided the weighting matrix is chosen
appropriately). If condition (4.2) holds for a function di¤erent than MEIF

n (��; p�; e� (��)),
then the estimator cannot be e¢ cient. For example, if the GPS is known and we replace p̂ =
p� inM IPW

n (��; p̂) when constructing the estimation procedure, then the resulting estimator
will not be e¢ cient as mentioned before. In this sense, Condition (4.2) imposes an upper
bound on the uniform rate of convergence of p̂. Intuitively, this is due to the fact that p̂ plays
two roles simultaneously: it estimates nonparametrically p�, and it also nonparametrically
approximates the correction term � (�; p; e (�)) present in the EIF. Consequently, even if the
GPS is known, one may obtain an e¢ cient estimator only if the GPS is nonparametrically
estimated.
One way to avoid requiring p̂ to play this dual role is to consider the full EIF, which

leads to the EIFE. This estimator will be asymptotically normal if the following additional
assumption holds:

Assumption 6. For all t 2 T , some � > 0, and for all x 2 X and all �t such that j�t � ��t j <
�: (a) e�t (x; �t) is continuously di¤erentiable with derivative given by @�te

�
t (x; �t) � @

@�t
e�t (x; �t)

with E[ supj�t���t j<�
��@�te�t (X; �t)��] < 1; and (b) there exists � > 0 and a measurable func-

tion b (x), with E [jb (X)j] < 1, such that
��@�tet (x; �t)� @�te

�
t (x; �t)

�� � b (x) � ket � e�tk
�
1

for all functions et (�t) 2 E such that ket � e�tk1 < �.

Assumption 6 basically restricts the class of functions G = fet : et (�) 2 E , ket � e�tk1 < �
and j�t � ��t j < �g, where e�t 2 G by construction. Part (a) of this assumption is simple and
natural, requiring only mild smoothness conditions of the conditional expectation et (�t) in
�t as well as a usual dominance condition. Note that this part of the assumption will imply
the smoothness requirement in Assumption 2 whenever integration and di¤erentiation can
be interchanged. Part (b) of Assumption 6 further restricts the possible class of functions
by requiring that functions that are uniformly close also have their derivatives close. This
special technical requirement has also been used by Chen, Hong, and Tamer (2005) and Chen,
Hong, and Tarozzi (2007) in the context of nonclassical measurement error. Assumption
6(b) is imposed because uniform convergence is not enough to ensure uniform convergence
of derivatives, a result needed in the proof of the following theorem.
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Theorem 5. (Asymptotic Linear Representation of EIFE) Let �� 2 int
�
BJ+1

�
,

�̂
EIF

= �� + op (1) and Assumptions 1, 2, 5 and 6 hold. Assume the following additional
conditions hold:

(5.1) kp̂� p�k1 = op
�
n�1=4

�
.

(5.2) supj����j<� kê (�)� e� (�)k1 = op (1), for some � > 0.

(5.3) MEIF
n (��; p̂; ê (��)) =MEIF

n (��; p�; e� (��)) + op(n
�1=2).

Then,

�̂
EIF � �� = � (�0�W��)

�1
�0�WMEIF

n (��; p�; e� (��)) + op
�
n�1=2

�
.

Asymptotic normality of �̂
EIF

also follows directly from Theorem 5. This time, three
additional conditions involving the nonparametric estimators are imposed. Condition (5.1)
is the same as Condition (4.1) in Theorem 4. Condition (5.2) further requires uniform
consistency of the nonparametric estimator of e� in both arguments, although in this case no
particular rate is required. This result follows from the additional smoothness assumptions
imposed in this theorem. Finally, Condition (5.3) is the analogue of Condition (4.2) in
Theorem 4, although much easier to verify in general. In this case, additional knowledge
about the GPS may be easily incorporated in the estimation without a¤ecting the asymptotic
variance, provided the asymptotic linear representation continues to hold.
E¢ ciency of the estimators follow directly from Theorems 4 and 5:

Corollary 2. If dm = d� (just-identi�ed case) or W = V �1
� (as given in Theorem 1), then

the IPWE and EIFE are e¢ cient for ��.

This corollary distinguishes two cases. First, if the problem is exactly identi�ed (as in
our Examples 1 and 2), then the estimators are e¢ cient without further work. Second, if the
problem is over-identi�ed (as in our Example 3), then a consistent estimator of the matrix
V �1
� is needed, generating an intermediate step in the construction of the GMM problems
for the IPWE and the EIFE. A consistent estimator for V �1

� is easy to construct without
further assumptions, as we show below after we consider our leading examples.

Example 1 (Continued): MMTE. The class of functions f(� � �t) : j�t � ��t j < �g
is Donsker and E [jm (Y (t) ;�t)�m (Y (t) ;��t )j] = j�t � ��t j, giving Assumption 5. Thus,
under the conditions of Theorem 4 and Corollary 2 we conclude that

p
n(�̂IPW � ��)

d�!
N (0; V �), and the estimator �̂IPW is e¢ cient. Further, in this case Assumption 6 is triv-
ially satis�ed and therefore under the conditions of Theorem 5 and Corollary 2 we obtainp
n(�̂EIF � ��)

d�! N (0; V �), and the estimator �̂EIF is also e¢ cient. �

Example 2 (Continued): MQTE. The class of functions f(1 fy � qt (�)g � �) : jqt (�)
�q�t (�) j < �g is Donsker and

E [jm (Y (t) ; qt (�))�m (Y (t) ; q�t (�))j] =
Z
j1 fy � qt (�)g � 1 fy � q�t (�)gj � dFY (t) (y)

� C � jqt (�)� q�t (�)j ,
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for all qt (�) such that jqt (�)� q�t (�)j < �, for some � > 0, under regularity conditions.
It follows from this calculation that Assumption 5 is satis�ed in this case and under the
conditions of Theorem 4 and Corollary 2 we conclude

p
n(q̂IPW (�)� q� (�))

d�! N (0; V �),
and q̂IPWt (�) is e¢ cient. Turning to Assumption 6, part (a) may be easily veri�ed under
mild regularity conditions because e�t (X; �t) = F �Y (t) (qt (�) j X)�� , while part (b) requires
further restrictions on the class of distribution functions allowed for in this case. Thus, under
regularity conditions, we obtain

p
n(q̂EIF (�)� q� (�))

d�! N (0; V �) with q̂EIF (�) e¢ cient.
�

5.3. Optimal Weighting Matrix and Uncertainty Estimation. Now we turn to
the estimation of V� and ��, the variance of the EIF and the �sandwich�matrix appearing
in the SPEB, respectively. For the over-identi�ed case, estimation of V� is crucial since the
square-root of this matrix is the optimal weighting matrix of both GMM problems.
The natural plug-in estimator of V� is given by

Vn =
1

n

nX
i=1

 (Yi; Ti; Xi; �̂; p̂; ê(�̂)) (Yi; Ti; Xi; �̂; p̂; ê(�̂))
0,

for some consistent estimator �̂ of ��.
Theorem 6 gives a set of simple su¢ cient conditions that ensure V̂n is consistent for V�.

Theorem 6. (Consistent Estimator of V �) Let Assumptions 1, 2, 5, and 6(a) with
E[ supj�t���t j<�

��@�te�t (X; �t)��2] < 1 hold. If �̂ = �� + op (1), kp̂� p�k1 = op (1) and
supj����j<� kê (�)� e� (�)k1 = op (1), for some � > 0, then Vn = V� + op (1).

Observe that the conditions imposed in Theorem 6 are the same as those assumed in
Theorem 4 plus the mild smoothness and dominance condition on e�. Next, consider the
estimation of ��. Because this matrix has a very particular structure there are several
simple alternative approaches to construct a consistent estimator. For example, it is possible
to consider a numerical derivative approach directly applied to the sample analogue (e.g.,
Pakes and Pollard (1989)) or, in some cases, the estimator may be constructed by taking into
consideration the explicit form of the matrix (for instance, in Example 2 we have �t (�

�
t ) =

f �Y (t) (q
�
t )). As a third alternative, it is also possible to construct a generic estimator, under the

assumptions we have already imposed if integration and di¤erentiation can be interchanged.
In this case, we see that for all t 2 T we have

��t =
@

@�t
E [m (Y (t); �t)]

����
�t=�

�
t

= E

"
@

@�t
et (X; �t)

����
�t=�

�
t

#
,

which suggests the plug-in estimator given by

�̂t;n =
1

n

nX
i=1

@

@�t
êt (X; �t)

����
�t=�̂t

.

We verify the consistency of this plug-in estimator in the following theorem.
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Theorem 7. (Consistent Estimator of ��) Let Assumptions 1, 2, 6 hold. If �̂ =
��+ op (1) and supj����j<� kê (�)� e� (�)k1 = op (1), for some � > 0, then �̂t;n = ��t + op (1).

From Theorem 7 it is straightforward to form a consistent estimator of the gradient
matrix ��.

5.4. Nonparametric Estimation of Nuisance Parameters. We have established as-
ymptotic normality and e¢ ciency of the estimators considered in this paper. These results
have been obtained by imposing high-level assumptions concerning the behavior of the non-
parametric estimators used for the estimation of the in�nite dimensional nuisance parameters
rather than by specifying a particular form of such estimators. In this section we discuss
explicitly the nonparametric estimation of p� and e� and verify the additional high-level
conditions imposed in Theorems 4 and 5.
Since both p� and e� are (possibly high-dimensional) conditional expectations, a non-

parametric series estimator seems an appropriate choice. These estimators are attractive
because they are computational convenient and they can incorporate dimension reduction
restrictions easily. This nonparametric estimation procedure has been studied in detailed by
Newey (1997) and may be interpreted as a linear sieve estimator as discussed in Chen (2007).
To brie�y describe the estimator, let g (X) = E [Z j X] for some random variable Z and ran-
dom vectorX 2 X , and let frk (x)g1k=1 be a sequence of known approximating functions with
the property that a linear combination of RK (x) = (r1 (x) ; � � � ; rK (x))0 can approximate
g (x) for K = 1; 2; � � � . An approximating function is formed by g (X; 
K) = RK (X)

0 
K
and the series estimator based on an i.i.d. random sample (Zi; Xi), i = 1; 2; � � � ; n, is given
by ĝ (X) = g (X; 
̂K), with


̂K = argmin

K

nX
i=1

(Zi � g (Xi; 
K))
2 ,

where, in this case, the closed-form solution is given by


̂K =

 
nX
i=1

RK (Xi)RK (Xi)
0

!� nX
i=1

RK (Xi)Zi (6)

with B� denoting the generalized inverse of the matrix B.
By choosing the approximating basis appropriately and under suitable conditions on the

function g (�) and growth rate of K it is possible to establish the consistency and rate of
convergence (in both L2 and uniform sense) of this nonparametric estimator. Two com-
mon choices for an approximating basis are power series and splines, leading to polynomial
regression and spline regression, respectively. See Newey (1997) for further details.
This nonparametric estimator may be used directly to estimate the vector valued function

e�. For all t 2 T , let Z (�t) = m (Y ; �t)
0 and let 
̂t;K (�t) to be de�ned as in equation (6)

but when only the data for T = t is used. Then, for all t 2 T , the series nonparametric
estimator of e�t (X; �t), �t 2 B, is given by êt (X; �t)

0 = RK (X)
0 
̂t;K (�t) where


̂t;K (�t) =

 
nX
i=1

Dt;i �RK (Xi)RK (Xi)
0

!� nX
i=1

Dt;i �RK (Xi)m (Yi; �t)
0 .
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We may construct similarly a series estimator for p�. However, the GPS is not only a
conditional expectation but also a conditional probability (i.e., all elements are positive and
add up to one), which imposes additional restrictions that cannot be captured by this stan-
dard nonparametric estimator. Thus, in this case we consider a nonparametric estimator
consistent with this additional requirements. We study a generalization of the estimator
introduced by Hirano, Imbens, and Ridder (2003) for the particular context of binary treat-
ments, labeled Multinomial Logistic Series Estimator (MLSE), which may be interpreted as
a non-linear sieve (Chen (2007)) estimation procedure.
Intuitively, since we are estimating nonparametrically J + 1 conditional probabilities it

is reasonable to embed them within a multinomial logistic model. Using the notation intro-
duced for series estimation, for all t 2 T , let g

�
X; 
t;K

�
= RK (X)

0 
t;K be the approximating
function and for notational simplicity let 
K = (


0
0;K ; 


0
1;K ; � � � ; 
0J;K)0. When the coe¢ cients


t;K , t 2 T , are chosen as in equation (6) with Z = Dt we obtain the usual series estimator
for the components of p�. Alternatively, the MLSE chooses simultaneously all the vectors in

K by solving the maximum likelihood multinomial logistic problem


̂K = arg max

K j
00;K=0K

nX
i=1

JX
t=0

Dt;i � log
 

exp
�
g
�
Xi; 
t;K

�	PJ
j=0 exp

�
g
�
Xi; 
t;K

�	! ,
where 0K represents aK�1 vector of zeros used to impose the usual normalization 
K;0 = 0K
needed to achieve identi�cation in this model. In this case, the nonparametric estimator p̂ (�)
has typical t-th element given by

p̂t (X) =
exp

�
RK (X)

0 
̂t;K
	

1 +
PJ

j=1 exp
�
RK (X)

0 
̂t;K
	 .

It is straightforward to verify that this nonparametric estimator satis�es the additional
restrictions underlying the GPS. The rates of convergence of this non-linear sieve estimator
are established in Appendix B.
For simplicity and to reduce the notational burden, we restrict attention to power series

and splines as possible approximation basis and we assume that the same bases is used for
all the nonparametric estimators. The following simple assumption is enough to establish
the appropriate large sample results for both the linear series estimator and the MLSE.

Assumption 7. (a) For all t 2 T , p�t (�) and e�t (�; ��i ) are s times di¤erentiable with s=dx >
5�=2 + 1=2, where � = 1 or � = 1=2 depending on whether power series or splines are
used as basis functions, respectively; (b) X is continuously distributed with density bounded
and bounded away from zero on its compact support X ; and (c) for all t 2 T and some
� > 0, V [m (Y (t) ; �t) j X = x] is uniformly bounded for all x 2 X and all �t such that
j�t � ��t j < �.

Part (a) of Assumption 7 provides the exact restrictions needed on the spaces P and E ,
describing the minimum smoothness required as a function of the dimension of X and the
choice of basis of approximation. Part (b) of Assumption 7 restricts X to be continuous
on a compact support with �well-behaved� density. These assumptions may be relaxed
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considerably at the expense of some additional notation. For example, it is possible to allow
for some components of X to be discretely distributed and to permit X to be unbounded
by restricting the tail-behavior of the density of X (see Chen, Hong, and Tamer (2005) for
an example). Part (c) of Assumption 7 is standard from the series (or sieve) nonparametric
estimation literature.

Theorem 8. (Nonparametric Estimation) Let Assumptions 1(b) and 7 hold. Then,
conditions (4.1) and (4.2) in Theorem 4, and conditions (5.1), (5.2) and (5.3) in Theorem 5
are satis�ed by the nonparametric estimators introduced in this section if K = n� with

1

4s=dx � 6�
< � <

1

4� + 2

where � = 1 or � = 1=2 depending on whether power series or splines are used as basis
functions, respectively.

6. Other Population Parameters and Hypothesis Testing
The results presented in the paper so far allow for the joint e¢ cient estimation of several
multi-valued treatment e¤ects. For instance, using the procedures discussed we may easily
estimate jointly (and e¢ ciently) several marginal quantiles as well as the marginal mean
of all potential outcomes. However, in many applications the population parameters of
interest may be not only the marginal treatment e¤ects but also other quantities involving
possibly more than one marginal treatment e¤ect. Because di¤erentiable transformations of
e¢ cient estimators of Euclidean parameters lead to e¢ cient estimators for the corresponding
population parameters, a simple delta-method argument allows us to easily recover any
collection of treatment e¤ects that can be written as (or approximated by) a di¤erentiable
function of the marginal treatment e¤ects.
Using this idea and Examples 1 and 2, we may e¢ ciently estimate many other treatment

e¤ects such as pairwise comparisons (in the spirit of ATE), di¤erences between pairwise
comparisons, incremental ratios, interquantile ranges, quantile ratios or other measures of
di¤erential and heterogeneous treatments e¤ects. Moreover, by a straightforward extension
of Example 1, we can consider the e¢ cient estimation of the e¤ect of di¤erent treatments on
dispersion as measured by the standard deviation of the potential outcome distribution. We
exploit these ideas further in the next section when we present the empirical illustration.
In particular, because the ATE and QTE are continuous transformations of the treatment

e¤ects studied in Example 1 and Example 2, we may also obtain the important results of
Hahn (1998), Hirano, Imbens, and Ridder (2003) and Firpo (2007) from the binary treatment
e¤ect literature as particular cases of our examples:

Example 1 (Continued): MMTE. If T = f0; 1g and because the ATE can be written
as �ATE � E [Y (1)] � E [Y (0)] = v0��, where v = (�1; 1)0, using Theorem 1 we conclude
that

V � = E

"
�20(X)

p0(X)
+ (�0 (X)� ��0)

2 (�0 (X)� ��0) � (�1 (X)� ��1)

(�0 (X)� ��0) � (�1 (X)� ��1)
�21(X)

p1(X)
+ (�1 (X)� ��1)

2

#
.
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Then, either Theorem 4 or Theorem 5 and the transformation g (z) = v0z gives

p
n
�
�̂ATE ��ATE

�
d�! N [0; v0V �v] ,

where

v0V �v = E
�
�20 (X)

p (0; X)
+

�21 (X)

p (1; X)
+
�
�ATE (X)��ATE

�2�
,

and �ATE (X) = �1 (X)� �0 (X). In this case, the asymptotic variance is the SPEB found
by Hahn (1998) and the resulting estimator in the case of Theorem 4 is essentially the same
as the one considered in Hirano, Imbens, and Ridder (2003) (see also Imbens, Newey, and
Ridder (2006) for another similar modi�cation of this estimator). �

Example 2 (Continued): MQTE. If T = f0; 1g and because the QTE may also
be written as �QTE � q�1 (�) � q�0 (�) = v0q� (�), where v = (�1; 1)0, either Theorem 4 or
Theorem 5 gives

p
n
�
�̂QTE ��QTE

�
d�! N [0; v0V �v] .

In this case, the asymptotic variance coincides with the SPEB derived in Firpo (2007)
and the resulting estimator in the case of Theorem 4 corresponds to the Z-estimator version
of Firpo�s estimator for the QTE. �

Furthermore, because in some applications incorporating additional information about
the treatment e¤ects in a general over-identi�ed model may be challenging, we can consider
an alternative approach to the e¢ cient estimation of multiple restricted treatment e¤ects. In
particular, suppose that the restrictions of interests can be imposed by writing the marginal
treatment e¤ects as a function of the parameters ��, and denote this function by � (��).
Then, it can be veri�ed that, under mild regularity conditions, an e¢ cient estimator of ��

is given by

�̂ = argmin
�
[�̂ � � (�)]0

�
�0nV

�1
n �n

�
[�̂ � � (�)],

where �̂ is an e¢ cient estimator of ��, �n is a consistent estimator of ��, and Vn is a consistent
estimator of V�. In this case, we obtain

p
n (�̂ � ��)

d�! N
h
0;
�
@� (��)0 �0�V

�1
� ��@� (�

�)
��1i

,

where @� (��) = @
@�
� (�)

��
�=��

. From this result, a consistent estimator of the covariance
matrix of �̂ may be constructed using a plug-in approach.
To �x ideas, consider the case of Example 3. As discussed before, under the assumption

of symmetry we may incorporate this information to form a over-identi�ed GMM problem.
Alternatively, we could �rst estimate jointly (��; q� (:5)) using either the IPWE or the EIFE
and then solve the following problem:

�̂ = argmin
�

�
�̂� �

q̂ (:5)� �

�0 �
�0nV

�1
n �n

� � �̂� �
q̂ (:5)� �

�
,
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which leads to an e¢ cient estimator of the multi-valued treatment e¤ect for location under
symmetry. Similarly, using this idea we may also incorporate additional restrictions on
di¤erent quantiles and other estimands of interest.
Finally, because testing procedures based on e¢ cient estimators are optimal (possibly

after restricting the class of allowed tests), it is straightforward to perform optimal testing
of di¤erent hypotheses concerning multi-valued treatment e¤ects. This can be done within
and across treatment levels for marginal treatment e¤ects, for treatment e¤ects obtained
by means of some (di¤erentiable) transformation of these parameters, and for restricted
treatment e¤ects by relying on standard testing strategies.

7. Empirical Illustration
To show how our procedures work in practice, we report a brief empirical exercise that studies
the e¤ect of maternal smoking during pregnancy on birth weight. In a recent paper, Almond,
Chay, and Lee (2005) (ACL hereafter) present detailed empirical evidence on the economic
costs of low birth weight (LBW). In their paper, the authors estimate the direct economic
costs imposed by LBW on society and also study the possible causes of LBW using di¤erent
nonexperimental techniques. In particular, ACL present empirical evidence on the e¤ect of
maternal smoking on birth weight for a rich database of singletons in Pennsylvania and �nd
a strong e¤ect of about 200-250 gram reduction in birth weight using both subclassi�cation
on the propensity score and regression adjusted methods.
In our application, we extend the results of ACL by considering the e¤ect of maternal

smoking intensity during pregnancy on birth weight. The database used by ACL not only
includes almost half a million singleton births and many pre-intervention covariates, but
also records the mother�s declared number of cigarettes-per-day smoked during pregnancy.
This additional information allows us to consider multi-valued treatment e¤ects and address
several interesting questions, particularly relevant from a policy-making perspective. For
example, we assess whether the e¤ect of smoking is constant across levels of smoking, whether
there exist di¤erential and/or heterogeneous treatment e¤ects, and whether the variability
in birth weight is a¤ected by smoking intensity.
The empirical illustration uses the same database, response variable and pre-intervention

variables as ACL. In this sample, approximately 80% of mothers did not smoke during
pregnancy, while for the remaining 20% inspection of the empirical distribution of smoked
cigarettes reveals important mass points approximately every 5 cigarettes ranging from 1 to
25. This feature suggests considering 5-cigarette bins as a starting point for the empirical
analysis. We collapse the number of smoked cigarettes into 6 categories (J = 5) {0, 1-5, 6-10,
11-15, 16-20, 21+} and we consider the joint estimation of �ve quantiles (:9,:75,:5,:25,:1),
the mean and standard deviation for each potential outcome, leading to 42 treatment e¤ects.
For t 2 T , the identifying moment function in this case is given by the vector-valued func-
tion m (y; �t) = ((1 fy � �1tg � 0:95), (1 fy � �2tg � 0:75), (1 fy � �3tg � 0:5), (y � �4t),
(1 fy � �5tg � 0:25), (1 fy � �6tg � 0:1), (y2 � �7t))

0 for �t = (�1t, �2t, �3t, �4t, �5t, �6t)
0.

We �rst jointly estimate �� using both the IPWE and EIFE and then we recover the marginal
population parameters of interest by means of the delta method.
To ensure comparability we use the same pre-intervention covariates as in ACL. In par-

ticular, we include 43 dummy variables (mother�s demographics, father�s demographics, pre-
natal care, alcohol use, pregnancy history, month of birth and county of residency) and 6
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�continuous� covariates (mother�s age and education, father�s age and education, number
of prenatal visits, months since last birth and order of birth).10 For the estimation of both
nonparametric nuisance parameters, we use cubic B-splines with knots ranging from 1 to 3
depending on the continuous covariate, and to reduce the computational burden we impose
an additive separability assumption on the approximating functions. We experimented with
di¤erent choices of smoothing parameters for the splines as well as with di¤erent interactions
between the dummies and the smoothed covariates. In all the cases considered, the results
appear to be robust to the particular speci�cation of the nonparametric estimators.11

Because in this case the model is exactly identi�ed, we may estimate each treatment
e¤ect separately and then form the full EIF to estimate the SPEB. Table 1 presents the
point and uncertainty estimates for the 42 treatment e¤ects using three estimators: a simple
dummy regression estimator (DRE), the IPWE and the EIFE. In this sample, estimates from
the (ine¢ cient, possibly inconsistent) DRE appear to be very similar to those obtained from
the (consistent and e¢ cient) IPWE and EIFE. This result is consistent with the �ndings
in ACL. The standard errors of our estimators appear to be very similar to each other and
considerably lower than those of the DRE in the case of the mean, while for the quantiles
the standard errors are slightly higher.12

A simple way to present the information in Table 1 is by means of Figure 1, which
gives important qualitative information about the treatment e¤ects. This �gure shows the
point estimates and their 95% (marginal) con�dence intervals for the case of the MMTE
and MQTE when estimated using the IPWE. Interestingly, we observe a parallel shift in
the entire distribution of birth weight along smoking intensity. In particular, there is a
large reduction of about 150 grams when the mother starts to smoke (1-5 cigarettes), an
additional reduction of approximately 70 grams when changing from 1-5 to 6-10 cigarettes-
per-day, and no additional e¤ects once the mother smokes at least 11 cigarettes. These
�ndings provide qualitative evidence that di¤erential treatment e¤ects are non-linear and
approximately homogeneous along the distribution of the potential outcomes. In particular,
we observe a close to symmetric distribution with approximately constant dispersion (as
measured by both interquartile ranges and standard deviation).
The qualitative results summarized in Figure 1 may be formally tested. Since we have

jointly estimated the 42 marginal treatment e¤ects, it is straightforward to test the hy-
potheses suggested by Figure 1 as well as other hypotheses of interest. Table 2 presents a
collection of hypothesis tests regarding pairwise di¤erences and di¤erence-in-di¤erences of
marginal mean treatment e¤ects. On the diagonal, we report pairwise di¤erences across

10A full description of the variables used is given in footnote 36 of ACL. We do not include maternal
medical risk factors in the analysis; see also footnote 39 of ACL.
11This is consistent with the available literature on semiparametric estimation suggesting that the choice

of basis or smoothing parameters are relatively unimportant (see for example Newey (1994), Ai and Chen
(2003), Chen, Hong, and Tamer (2005), or Chen, Hong, and Tarozzi (2007)). Based on these results, and
for computational simplicity, we did not consider data-driven procedures such as cross-validation for the
selection of the smoothing parameters.
12In the quantile dummy regression case the standard errors were calculated using a kernel density esti-

mator with bandwidth set by Silverman�s rule-of-thumb. In the case of IPWE and EIFE, we estimate the
gradient matrix �� using its exact form (implemented by a weighted kernel density estimator with band-
width set by Silverman�s rule-of-thumb as in Firpo (2007)). We also experimented with the general numerical
derivative approach (implemented by a simple numerical di¤erence), which led to very similar estimates.
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treatment levels. For example, the reduction in birth weight induced by increasing maternal
smoking from 0 to 1-5 cigarettes is 146 grams (statistically signi�cant), while the corre-
sponding reduction induced by increasing maternal smoking from 6-10 to 11-15 cigarettes is
37 grams (not statistically signi�cant). This table also reports the di¤erence-in-di¤erences
comparisons which may be used to test for non-linearities. For example, increasing maternal
smoking from 0 to 1-5 cigarettes induces an additional 75 gram reduction in birth weight
when compared to the corresponding reduction induced by increasing maternal smoking from
1-5 to 6-10 cigarettes. This di¤erential e¤ect is statistically signi�cant and provides formal
evidence of non-linear treatment e¤ects. Importantly, non-linearities disappear beyond the
tenth cigarette smoked during pregnancy. Similar results are obtained when analyzing the
MQTE.
Table 3 illustrates additional multiple-hypotheses tests of interest. In the �rst row, we

jointly test the hypothesis of no treatment e¤ect (as measured by mean, quantile and spread)
for the highest three treatment levels, while in the second and third rows we present the
analogous tests considering the highest four and highest �ve treatment levels, respectively.
As shown in this table, increasing smoking intensity beyond 10 cigarettes per day has no
further e¤ect on birth weight. The remaining rows in Table 3 test for di¤erent hypotheses
involving possible distributional e¤ects across and within treatment levels. We �nd small
but statistically signi�cant di¤erences on the interquantile ranges.
Finally, based on our main �nding that most of the e¤ect of smoking on birth weight ap-

pears to be concentrated on the �rst 10 cigarettes-per-day smoked, we replicate our analysis
for the subpopulation of mothers who smoked between 0 and 10 cigarettes-per-day break-
ing up the treatment variable into 2-cigarette bins.13 To conserve space, we only present
qualitative results in Figure 2. According to this �gure, the treatment e¤ects continue to
be non-linear and approximately homogenous at all quantile levels. Interestingly, the main
reduction in birth weight appears to be caused by increasing the number of cigarettes smoked
from 0 to 1-2. This e¤ect appears constant until the fourth cigarette. Increasing smoking
beyond the fourth cigarette has an additional negative e¤ect on birth weight, although this
e¤ect is smaller than the e¤ect from 0 to 1-2.

8. Final Remarks
We study the e¢ cient estimation of a large class of multi-valued treatment e¤ects implic-
itly de�ned by a possibly over-identi�ed non-smooth collection of moment conditions. We
propose two alternative estimators based on standard GMM arguments combined with the
corresponding modi�cations needed to circumvent the fundamental problem of causal in-
ference. Under regularity conditions, these estimators are shown to be root-N consistent,
asymptotically normal and e¢ cient for the general population parameter of interest. Using
these estimators we show how other estimands of interest may also be e¢ ciently estimated,
allowing the researcher to recover a rich class of population parameters. We verify that
important results in the literature of program evaluation with binary treatment assignments
may be seen as particular cases of our procedure when the treatment is dichotomous.
Considering multi-valued treatment assignments provides the opportunity for a better

characterization of the program under study. As illustrated in the empirical application,

13Unfortunately, 1-cigarette bins could not be used due to sample size restrictions.
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collapsing a multiple treatment into a binary indicator may prevent the researcher from
detecting the presence of important non-linear e¤ects. More generally, in many applications
we may expect to have multiple di¤erential impacts within and across treatments, which
highlights the relevance of considering multi-valued treatments, when possible, for making
informed policy decisions. A possible extension of our results would focus on studying the
e¤ect of policies that change the distribution of multiple treatments and how these alternative
con�gurations may a¤ect the population (or subpopulations) under consideration.
Our results have been obtained under the assumption of �nite multi-valued treatments,

which leads to a statistical model where many estimands of interest are regular, this is,
they can be estimated at the parametric rate. A natural extension would be to relax this
assumption to continuous treatment assignments. This may be appealing from an empirical
perspective, but would make many population parameters of interest irregular. Nonetheless,
when treatments are continuous, it may be possible to consider relevant regular estimands
such as speci�c functionals of the treatment e¤ect process or, more interestingly, alternative
restrictions on the underlying statistical model that may deliver regular population parame-
ters.
The results presented in this paper could also be extended based on the developments

available in the literature of binary treatment e¤ects. For example, in applications it may
be of interest to consider the multi-valued analogue of weighted treatment e¤ects (Hirano,
Imbens, and Ridder (2003)), including average and quantile treatment e¤ects for a given
treatment level as particular cases. E¢ ciency calculations and the corresponding e¢ cient
estimation procedures for these estimands may be derived by following and extending the
work discussed here. For an alternative extension, consider the important concern in empir-
ical work about the lack of common support in the estimated propensity score, a pathology
likely to be exacerbated in the context of multi-valued treatments. Using the results pre-
sented here, it may be possible to consider a systematic approach to deal with limited overlap
by extending the recent work of Crump, Hotz, Imbens, and Mitnik (2007) to the context of
multiple treatments.
Finally, in this paper we proposed two estimators that are �rst-order e¢ cient. However,

as in the binary treatment case, other e¢ cient estimators may also be considered, which
implies that an important open question for future research is how to rank the large class
of �rst-order e¢ cient estimators available. Although it seems unclear how to rank these
estimators, the results of this paper justify focusing on the marginal treatment e¤ects as the
target estimand when ranking the competing �rst-order e¢ cient estimators.
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Appendix A. Proofs of Theorems
In this appendix we let C denote a generic positive constant which may vary depending on the context. Also,
for any vector v we denote its t-th element by v[t], and for any matrix A we denote its (i; j)-th element by
A[i;j]. Let �min(A) and �max(A) denote the minimum and maximum eigenvalue of the matrix A, respectively.

Proof of Theorem 1 (EIF and SPEB): the proof given is based on the theoretical approach described
in Bickel, Klaasen, Ritov, and Wellner (1993) and Newey (1990), and follows the results presented in Hahn
(1998) and Chen, Hong, and Tarozzi (2007). The derivation is completed in three steps: characterization of
the tangent space, veri�cation of pathwise di¤erentiability of the parameter of interest, and SPEB computa-
tion. Let L20 (FW ) be the usual Hilbert space of zero-mean, square-integrable functions with respect to the
distribution function FW .

First, consider a (regular) parametric submodel of the joint distribution of (Y; T;X), the observed data
model, with c.d.f. F (y; t; x; �) and log-likelihood given by

log f (y; t; x; �) =
X

j2T
1 ft = jg �

�
log fj (y j x; �) + log pj (x;�)

�
+ log fX (x; �) ,

which equals log f (y; t; x) when � = �0, and where fj (y j x; �) corresponds to the density of Y (j)jX,
pj (x;�) = P [Dj = 1jx; �] and pj (x;�0) = p�j (x) for all j 2 T . The corresponding score is given by

S (y; t; x; �0) =
d

d�
log f (y; t; x; �)

����
�0

= Sy (y; t; x) + Sp (t; x) + Sx (x) ,

where

Sy (y; t; x) =
X

j2T
1 ft = jg � sj (y; x) , sj (y; x) =

d

d�
log fj (y j x; �)

����
�0

,

Sp (t; x) =
X

j2T
1 ft = jg �

_p�j (x)

p�j (x)
, _p�j (x) =

d

d�
pj (x;�)

����
�0

,

Sx (x) =
d

d�
log fX (x; �)

����
�0

.

Therefore, the tangent space of this statistical model is characterized by the set of functions T �
Ty + Tp + Tx, where

Ty =
n
Sy (Y; T;X) : sj (Y (t); X) 2 L20

�
FY (t)jX

�
, 8j 2 T

o
,

Tp =
n
Sp (T;X) : Sp (T;X) 2 L20

�
FT jX

�o
,

Tx =
n
Sx (X) : Sx (X) 2 L20 (FX)

o
.

In particular, observe that

E [Sp (T;X) j X] = E
�X

t2T
Dj �

_p�t (X)

p�t (X)

���� X� =Xt2T
_pt (X; �0) ,

and

E
h
Sp (T;X)

2
��� Xi = E"X

i2T

X
j2T

Di �
_p�i (X)

p�i (X)
�Dj �

_p�j (X)

p�j (X)

����� X
#
=
X

t2T

_p�t (X)
2

p�t (X)
,

and hence it is required that p�t (x) and _pt (x; �0) are measurable functions such that
P

t2T _p
�
t (X) = 0 andP

t2T _p
�
t (X)

2
=p�t (X) <1, almost surely. Notice that the �rst condition implies that by varying the model

the probabilities should change in such a way that they still add up to one. The second condition is veri�ed
by Assumption 1(b) and the fact that T is �nite.
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Next, de�ne m
¯
(�) = [m (Y (0) ;�0)

0
; � � � ;m (Y (J) ;�J)

0
] and let A be any (d� � (J + 1)� dm � (J + 1))

positive semi-de�nite matrix. Then the population parameter of interest satis�es AE[m
¯
(�)] = 0 if and only

if � = ��, and using the implicit function theorem we obtain

@

@�
�� (�) = � (A��)�1A�(�0) ,

where

�� =
@

@�
E [m
¯
(�)]

����
�=��

, �(�0) =
@

@�
E� [m¯

(��)]

����
�=�0

=
@

@�

Z
m
¯
(��) dF (y; t; x; �)

����
�=�0

,

and observe that

�(�0) =

"
@

@�
E�
�
m (Y (0) ;�0)

0�����
�=�0

; � � � ; @
@�
E�
�
m (Y (J) ;�J)

0�����
�=�0

#

with typical element j 2 T ,

@

@�
E�
h
m
�
Y (j) ;��j

�0i����
�=�0

= E
�
m
�
Y (j) ;��j

�
� sj (Y (j) j X)

�
+ E

�
e�j
�
X;��j

�
� Sx (X)

�
.

Now, to show that the parameter is pathwise di¤erentiable we need to �nd a d� � (J + 1)-valued function
	� (y; t; x;A) 2 T such that for all regular parametric submodels

@

@�
�� (�) = E [	� (Y; T;X;A) � S (Y; T;X; �0)] .

It is not di¢ cult to verify that the function satisfying such condition is given by

	� (Y; T;X;A) = � (A��)�1A (Y; T;X;��; p�; e� (��)) ,

for a �xed choice of the matrix A.
Finally, it follows from semiparametric e¢ ciency theory and standard GMM arguments that the EIF is

obtained when A = �0�V
�1
� , which leads to the SPEB given by V � = (��V �1� �0�)

�1. �

Proof of Theorem 2 (Consistency of IPWE): we apply Corollary 3.2 in Pakes and Pollard (1989)
after setting � = �, �0 = ��, Gn (�) = AnM

IPW
n (�; p̂), G (�) = AM IPW (�; p�), and verifying their three

su¢ cient conditions (i), (ii), and (iii). First observe that conditions (i) and (ii) are satis�ed by construction
of the estimator and the model considered. Next, because An � A = op (1), to verify condition (iii) it is
enough to show

sup
�2B

���M IPW
[t];n (�; p̂t)�M IPW

[t] (�; p�t )
���

� sup
�2B

���M IPW
[t];n (�; p̂t)�M IPW

[t];n (�; p�t )
���+ sup

�2B

���M IPW
[t];n (�; p�t )�M IPW

[t] (�; p�t )
��� = op (1) ,

for all t 2 T . Now the result follows because for n large enough we have

sup
�2B

���M IPW
[t];n (�; p̂t)�M IPW

[t];n (�; p�t )
��� � C � kp̂t � p�t k1 � 1

n

nX
i=1

Dt;i

p�t (Xi)
� sup
�t2B

jm (Yi;�t)j = op (1) ,

by Assumption 3(b), and

sup
�2B

���M IPW
[t];n (�; p�t )�M IPW

[t] (�; p�t )
��� = sup

�t2B

����� 1n
nX
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Dt;i �m (Yi;�t)
p�t (Xi)

� E
�
Dt �m (Y ;�t)

p�t (X)

������ = op (1)
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because (assuming dm = 1 or applying the following argument element by element) the class of functions
Ft = f1 f� = tg �m (�;�) =p�t (�) : � 2 Bg is Glivenko-Cantelli by Assumptions 1(b) and 3 (van der Vaart and
Wellner (2000)). �

Proof of Theorem 3 (Consistency of EIFE): the proof of this theorem follows the same logic as
the proof of Theorem 2. We apply Corollary 3.2 in Pakes and Pollard (1989) after setting � = �, �0 = ��,
Gn (�) = AnM

EIF
n (�; p̂; ê), G (�) = AMEIF (�; p�; e�), and verifying their three su¢ cient conditions (i), (ii),

and (iii). Using the same arguments in the proof and the conclusion of Theorem 2, it is su¢ cient to show

sup
�2B

����� 1n
nX
i=1

êt (Xi;�) �
Dt;i � p̂t (Xi)

p̂t (Xi)

����� = op (1) ,

for all t 2 T . To establish this result, �rst notice that by Assumption 3(b) we have E
�
sup�2B je�t (X;�)j

�
<1

for all t 2 T . Now, for n large enough we have

sup
�2B

����� 1n
nX
i=1

êt (Xi;�) �
Dt;i � p̂t (Xi)

p̂t (Xi)

�����
� C � sup

�2B
kêt (�)� e�t (�)k1 + sup

�t2B

����� 1n
nX
i=1

e�t (Xi;�) �
Dt;i � p�t (Xi)

p�t (Xi)

�����+ op (1) = op (1) ,

because (assuming dm = 1 or applying the argument element by element) the class of functions Ft =
fe�t (�;�) � (1 f� = tg � p�t (�)) =p�t (�) : � 2 Bg is Glivenko-Cantelli by Assumptions 1(b) and 3 (van der Vaart
and Wellner (2000)). �

Proof of Theorem 4 (Asymptotic Linear Representation of IPWE): we apply Theorem 3.3
and Lemma 3.5 in Pakes and Pollard (1989) after setting � = �, �0 = ��, Gn (�) = AnM

IPW
n (�; p̂),

G (�) = AM IPW (�; p�), and verifying their �ve su¢ cient conditions (i)-(v). First, observe that conditions
(i), (ii), (iv) and (v) hold in our case by the construction of the estimator, Assumptions 2 and 5, and condition
(2.1). Thus it only remains to show the stochastic equicontinuity condition (iii). To establish this condition,
it su¢ ces to show (see, e.g., Lemma 3.5 in Pakes and Pollard (1989) and Lemma 1 in Andrews (2002)) for
all sequences �n = o (1) that

sup
j�t���t j��n

n1=2 �
���M IPW

[t];n (�; p̂)�M IPW
[t] (��; p�)�M IPW

[t];n (��; p̂)
���

1 + C � n1=2 � j�t � ��t j
= op (1) ,

for all t 2 T . Now, to verify this �nal condition de�ne

�[t];n (�; p� p�) = �
1

n

nX
i=1

Dt;i �m (Yi;�t)
p�t (Xi)

2 � (pt (Xi)� p�t (Xi)) ,

and consider the following decomposition���M IPW
[t];n (�; p̂)�M IPW

[t] (��; p�)�M IPW
[t];n (��; p̂)

���
�
���M IPW
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��� (A-1)

+
���M IPW

[t];n (�; p̂)�M IPW
[t];n (�; p�)��[t];n (�; p̂� p�)

��� (A-2)

+
���M IPW

[t];n (��; p̂) +M IPW
[t];n (��; p�)��[t];n (��; p̂� p�)

��� (A-3)

+
���[t];n (�; p̂� p�)��[t];n (��; p̂� p�)�� . (A-4)

Now, for n large enough and using the �rst term (A-1) we have

sup
j�t���t j��n

n1=2 �
���M IPW

[t];n (�; p�)�M IPW
[t] (��; p�)�M IPW

[t];n (��; p�)
���

1 + C � n1=2 � j�t � ��t j
= op (1)
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because (assuming dm = 1 or applying the following argument element by element) the class of functions
Ft = f1 f� = tg �m (�;�) =p�t (�) : j� � ��t j � �g is Donsker with �nite integrable envelope by Assumption 5
(Theorem 2.10.6 of van der Vaart and Wellner (1996)) and L2 continuous by Assumptions 2 and 5 (compare
to Lemma 2.17 in Pakes and Pollard (1989)).

For the second term (A-2) we have

sup
j�t���t j��n

n1=2 �
���M IPW

[t];n (�; p̂)�M IPW
[t];n (�; p�)��[t];n (�; p̂� p�)

���
1 + C � n1=2 � j�t � ��t j

� C � n1=2 � kp̂t � p�t k
2
1 � 1

n

nX
i=1

Di (t) � supj�t���t j��n jm (Yi;�t)j
p�t (Xi)

= op (1) ,

by condition (2.1) and Assumption 2.
For the third term (A-3) we have

sup
j�t���t j��n

n1=2 �
���M IPW

[t];n (��; p̂) +M IPW
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���
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2
1 � 1

n

nX
i=1

Di (t) � jm (Yi;��t )j
p�t (Xi)

= op (1) ,

by condition (2.1) and Assumption 2.
Finally, for the last term (A-4) consider the following decomposition

sup
j�t���t j��n

n1=2 �
���[t];n (�; p̂� p�)��[t];n (��; p̂� p�)��

1 + C � n1=2 � j�t � ��t j

� C � kp̂t � p�t k1 � n1=2 � sup
j�t���t j��n

����� 1n
nX
i=1

Dt;i � jm (Yi;�t)�m (Yi;��t )j
p�t (Xi)

� E
�
Dt;i � jm (Yi;�t)�m (Yi;��t )j

p�t (Xi)

������
+ C � kp̂t � p�t k1 � sup

j�t���t j��n

n1=2 � E [jm (Y (t); X;�t)�m (Y (t); X;��t )j]
1 + C � n1=2 � j�t � ��t j

= op (1) ,

because (assuming dm = 1 or applying the following argument element by element) the class of functions Ft =
f1 f� = tg � jm (�;�)�m (�;��t )j =p�t (�) : j� � ��j � �g is Donsker with �nite integrable envelop by Assumption
5 (Theorem 2.10.6 of van der Vaart and Wellner (1996)) and L2 continuous by Assumptions 2 and 5.

This establishes condition (iii) of Theorem 3.3 in Pakes and Pollard (1989). �

Proof of Theorem 5 (Asymptotic Linear Representation of EIFE): the proof of this theorem
follows the same logic as the proof of Theorem 4. We apply Theorem 3.3 and Lemma 3.5 in Pakes and
Pollard (1989) after setting � = �, �0 = ��, Gn (�) = AnM

EIF
n (�; p̂; ê), G (�) = AMEIF (�; p�; e�), and

verifying their �ve su¢ cient conditions (i)-(v). Like in the proof of Theorem 4, conditions (i), (ii), (iv) and
(v) are already satis�ed in our case, thus it only remains to establish the stochastic equicontinuity condition
(iii), which is implied by the following condition: for all sequences �n = o (1),
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j�t���t j��n
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���MEIF
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= op (1) ,

for all t 2 T . Now, using the results in Theorem 4, it only remains to show that
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Now, for n large enough we obtain
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(A-5)
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���
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, (A-6)

for some convex linear combination ~� (between �t and �
�
t ).

Next, for the �rst term (A-5) we obtain for n large enough,
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����
= op (1) ,

because the �rst term is op (1) by Assumption 6(b), the second term is op (1) because (assuming dm = 1
or applying the argument element by element) the class of functions Ft = f(@�e�t (�;�)� @�e�t (�;��t )) �
(1 f� = tg � p�t (�)) =p�t (�) : j� � ��t j � �g is Glivenko-Cantelli for some � > 0 by Assumption 6(a) (van der
Vaart and Wellner (2000)), and the third term is op (1) by Assumption 6(a).

The second term (A-6) is
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by Assumption 6(a).
This establishes condition (iii) of Theorem 3.3 in Pakes and Pollard (1989). �

Proof of Theorem 6 (Consistent Estimator of V �): �rst we establish the following two results:
for all sequences �n = o (1) and for all t 2 T ,

1

n

nX
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���m(Yi; Ti; Xi; �̂; p̂)�m (Yi; Ti; Xi;�
�; p�)

���2 = op (1) (A-7)
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and

1
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nX
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����(Ti; Xi; p̂; ê(�̂))� � (Ti; Xi; p
�; e� (��))

���2 = op (1) . (A-8)

The �rst result (A-7) follows because for n large enough and for all t 2 T we have
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by the same arguments and assumptions used in Theorem 4 and an application of Theorem 2.10.14 of van
der Vaart and Wellner (1996). The second result (A-8) follows because for n large enough and for all t 2 T
we have
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Now, de�ne
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�; p�; e� (��))
0 ,

and notice that Vn � V� = op (1). Next, using Holder�s Inequality we have���V̂n � V���� � ���V̂n � Vn���+ jVn � V�j � R1;n +R2;n +R3;n +R4;n +R5;n + op (1) ,

where
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,

and using (A-7) and (A-8) the result follows. �

Proof of Theorem 7 (Consistent Estimator of ��): follows directly by the same arguments given
in the proof of Theorem 5. �
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Proof of Theorem 8 (Nonparametric Estimation): �rst, for power series and splines, we have
� (K) = K�, with � = 1 and � = 1=2, respectively, and using Assumption 7 (which for these cases implies
Assumption B-1 in Appendix B), we have � = s=dx (Newey (1997)). Now Theorem B-1 in Appendix B
implies

n1=4 � sup
x2X

jp̂ (x)� p� (x)j = n1=4 �Op
�
K�K1=2n�1=2 +K�K1=2K�s=dx

�
= op (1) ,

under the assumptions of the theorem and therefore condition (4.1) in Theorem 4 holds.
Next, we consider condition (4.2) in Theorem 4. It is enough to show the result for a typical t-th

component of the vector. Thus,
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+

����� 1pn
nX
i=1

(
�Dt;i �m (Yi;��t )

p�t (Xi)
2 � (p̂t (Xi)� p�t (Xi)) +

e�t (Xi;�
�
t )

p�t (Xi)
� (p̂t (Xi)� p�t (Xi))

)�����
(A-10)
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The bound of term (A-9) is given by (for n large enough)����� 1pn
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The bound of term (A-10) is given by����� 1pn
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using the notation introduced in Appendix B. Now, to obtain a bound on the term (A-12), �rst notice that
by a second order Taylor expansion and using the results in Appendix B we obtain for some ~
K such that��~
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which implies that����� 1pn
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where the bound follows because the random variables inside the sums are mean zero and variance bounded
by K.

Now, for the term (A-13) we have����� 1pn
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Finally, the bound of term (A-11) is given by
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using the �rst order condition for MLSE, which implies that
Pn
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� 2 RK is any vector. Now, by choosing � appropriately, we conclude for n large enough that����� 1pn
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Using the bounds derived and under the assumptions of Theorem 8, we obtain��M IPW
n (��; p̂)�MEIF

n (��; p�; e� (��))
�� = op

�
n�1=2

�
,

which veri�es condition (4.2) in Theorem 4 as desired.

Next, consider Theorem 5. Conditions (5.1) and (5.2) follow directly from the previous calculations and
the �rst part of Proposition A1 in Chen, Hong, and Tamer (2005), respectively. It remains only to show
condition (5.3) in Theorem 5. From Newey (1997) it follows immediately that
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Now, to establish the �nal condition is enough to show the result for the typical t-th component. From
the previous calculations we have
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and using the identity
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Putting these results together, we see that
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Finally, observe that by the same arguments as those used for term (A-10) above, we obtain

1p
n

Xn

i=1

Dt;i � (m (Yi;��t )� e�t (Xi;�
�
t ))

p�t (Xi)
2 � (p̂t (Xi)� p�t (Xi)) = op (1) ,

and by analogous arguments, but for the case of series (linear sieves) we may verify that
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under the assumptions of this theorem. Therefore we conclude that
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which gives condition (5.3) in Theorem 5 as needed. �

Appendix B. Multinomial Logistic Series Estimator
In this appendix we derive uniform rates of convergence for the non-linear sieve estimator proposed for the
estimation of the GPS. The results presented here generalize those in Hirano, Imbens, and Ridder (2003)
by allowing for arbitrary number of outcomes, arbitrary choice of approximating basis, and less stringent
requirements in terms of smoothness of the underlying conditional expectation.

We begin by introducing some normalizations and notation. Under some conditions imposed below and
by choosing an appropriate non-singular linear transformation we can assumed without loss of generality
that E

�
RK (X)RK (X)

0�
= IK , where IK is the (K �K) identity matrix (see Newey (1997) for details).

Let � (K) = supx2X jRK (x)j, and observe that in general this bound will depend on the approximating
functions chosen. To reduce notational burden we use the same number of approximating functions for
each conditional probability, a feature that may be relaxed at the expense of only additional notation. To
deal with all the relevant probabilities simultaneously we de�ne p�0 (X) = (p1 (X) ; � � � ; pJ (X))0 2 RJ ,

�0;K =

�

0K;1; � � � ; 
0K;J

�0 2 RJK , and g�0 (X; 
K) = [RK (X)0 
K;1; � � � ; RK (X)0 
K;J ]0 2 RJ . Recall that
p�0 (X) = 1�

PJ
j=1 p

�
j (X).
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Next, de�ne for a vector z 2 RJ , z = [z1; � � � ; zJ ]0, the functions Lt : RJ ! R and L�1t : RJ ! R, for all
t = 1; 2; � � � ; J ,

Lt (z) =
exp fztg

1 +
PJ

j=1 exp fzjg
, and L�1t (z) = log

(
zt

1�
PJ

j=1 zj

)
.

and set L0 (z) = 1�
PJ

j=1 Lj (z). The gradient of Lt : RJ ! R is given by

_Lt (z) = [�Lt (z) � L1 (z) ; � � � ; � Lt (z) � Lt�1 (z) ; Lt (z) � (1� Lt (z)) ; � Lt (z) � Lt+1 (z) ; � Lt (z) � LJ (z)]0

and observe that supz j _Lt (z) j < C since jLt (z) � Lj (z)j < 1 and Lt (z) � (1� Lt (z)) < 1=4. Also de�ne
the vector-valued functions L (z) = [L1 (z) ; � � � ; LJ (z)]0 and L�1 (z) = [L�11 (z) ; � � � ; L�1J (z)]0 and observe
that the function L (�) is di¤erentiable with gradient (matrix) _L (z) = [ _L1 (z) ; � � � ; _LJ (z)] 2 RJ�J and
notice that supz j _L (z) j < C, for some constant C that only depends on J . With this notation, we obtain
p
�
X; 
t;K

�
= Lt (g�0 (X; 
K)) for t 2 T (recall 
K;0 = 0K for identi�cation purposes).

The multinomial logistic log-likelihood is given by
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Dt;i � log (Lt (g�0 (Xi; 
K))) ,

with solution 
̂K = argmax
K `n (
K) and estimated probabilities given by p̂t (X) = Lt (g�0 (Xi; 
̂K)) for
all t 2 T . Verify that

@

@
K;t
`n (
K) =

nX
i=1

[Dt;i � Lt (g�0 (Xi; 
K))] �RK (Xi) ,

@2

@
K;t@

0
K;l

`n (
K) = �
nX
i=1

Ll (g�0 (Xi; 
K)) � [1 ft = lg � Lt (g�0 (Xi; 
K))] �RK (Xi)RK (Xi)
0 ,

for t = 1; 2; � � � ; J , l = 1; 2; � � � ; J , and in matrix notation we have

@

@
K
`n (
K) =

nX
i=1

[Di � L (g�0 (Xi; 
K))]
RK (Xi) ,

@2

@
K@

0
K

`n (
K) = �
nX
i=1

H (Xi; 
K)
RK (Xi)RK (Xi)
0 ,

whereDi = (D1;i; D2;i � � � ; DJ;i)
0 andH (Xi; 
K) = diag (L (g�0 (Xi; 
K)))�L (g�0 (Xi; 
K))L (g�0 (Xi; 
K))

0.
To derive the uniform rates of convergence, we impose the followings conditions:

Assumption B-1. (a) The smallest eigenvalue of E
�
RK (X)RK (X)

0� is bounded away from zero
uniformly in K; (b) there is a sequence of constants � (K) satisfying supx2X jRK (x)j � � (K), for K =
K (n) ! 1 and � (K)K1=2n�1=2 ! 0, as n ! 1; and (c) for all t 2 T there exists 
0t;K 2 RK and � > 0
such that

sup
x2X

����log�p�t (x)p�0 (x)

�
�RK (x)0 
0t;K

���� = O
�
K��� ,

and � (K)K1=2K�� ! 0.

Assumption B-1 is automatically satis�ed in the case of power series or splines if the GPS is smooth
enough. Parts (a) and (b) are standard in the literature (Newey (1997)), while Part (c) is slightly stronger
than its counterpart for linear series because it imposes a lower bound in � > 0. Part (c) guarantees
the existence of an approximating sequence that can approximate the function uniformly well. For no-
tational simplicity, we denote such sequence by p0t;K (X) = Lt

�
g�0

�
X; 
0K

��
, for all t 2 T , and de�ne

p0K = [p
0
0;K ; � � � ; p0J;K ]0.
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The following theorem provides the uniform rate of convergence for the MLSE.

Theorem B-1. (Uniform Rate of Convergence of MLSE) If Assumptions 1(b) and B-1 hold,
then

(i)


p0K � p�

1 = O (K��),

(ii)
��
̂K � 
0K�� = Op

�
K1=2n�1=2 +K1=2K���,

and consequently kp̂� p�k1 = Op(� (K)K
1=2n�1=2 + � (K)K1=2K��).

Proof of Theorem B-1 (Uniform Rate of Convergence of MLSE):
First, Assumption B-1(c) implies that supx2X

��L�1 �p��0 (x)�� g�0 �x; 
0K��� = O (K��). Since the map-
ping L (�) is di¤erentiable with supz j _L (z) j < C, an application of the mean value theorem gives

sup
x2X

��p��0 (x)� L �g�0 �x; 
0K���� � C � sup
x2X

��L�1 �p��0 (x)�� g�0 �x; 
0K��� ,
and since p�0 (x) = 1�

PJ
j=1 p

�
j (x) and L0

�
g�0

�
x; 
0K

��
= 1�

PJ
j=1 Lj

�
g�0

�
x; 
0K

��
part (i) follows directly.

For part (ii), �rst recall that Lt (g�0 (x; 
)) > 0, for all t = 1; 2; � � � ; J , and
PJ

t=1 Lt (g�0 (x; 
)) < 1.
The special structure of the matrix H (x; 
) and Theorem 1 in Tanabe and Sagae (1992) shows that H (x; 
)
is symmetric positive de�nite with 0 < �min (H (x; 
)) � �max (H (x; 
)) < 1, which implies that H (x; 
) �
�min (H (x; 
)) � IJ and �min (H (x; 
)) � det (H (x; 
)). These results and the exact Cholesky decomposition
of H (x; 
) gives

inf
x2X

H (x; 
) � inf
x2X

YJ

t=0
Lt (g�0 (x; 
)) � IJ ,

in a positive semide�nite sense.
Now, let 
̂K = n�1

Pn
i=1RK (Xi)RK (Xi)

0, and observe that (Newey (1997)) j
̂K�IK j = Op(� (K)K
1=2n�1=2).

De�ne the event An = f�min(
̂K) > 1=2g and by Assumption B-1(b) we have Op
�
� (K)K1=2n�1=2

�
= op (1),

which implies P [An]! 1.
Next, we have

E
����� 1n @

@

`n
�

0K
������

= E

"����� 1n
nX
i=1

�
Di � L

�
g�0

�
Xi; 


0
K

���

RK (Xi)

�����
#

�

0@E
24����� 1n

nX
i=1

�
Di � p��0 (Xi)

�

RK (Xi)

�����
2
351A1=2

+ E

"����� 1n
nX
i=1

�
p��0 (Xi)� L

�
g�0

�
Xi; 


0
K

���

RK (Xi)

�����
#

� C �
�
1

n
� E
h���Di � p��0 (Xi)

�

RK (Xi)

��2i�1=2 + C � sup
x2X

��p��0 (x)� L �g�0 �x; 
0K���� � E [jRK (X)j]
= O

�
K1=2n�1=2 +K1=2K��

�
,

and by Markov�s Inequality we conclude���� 1n @

@

`n
�

0K
����� = Op

�
K1=2n�1=2 +K1=2K��

�
,

which implies that for any �xed constant & > 0 the probability of the event

Bn (&) =
����� 1n @

@

`n
�

0K
����� < & �

�
K1=2n�1=2 +K��+1=2

��
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approaches one, i.e., P [Bn (&)]! 1.
Let � = infx2X

QJ
t=0 Lt

�
g�0

�
x; 
0K

��
and observe that for K large enough � > 0 by part (i) and the

assumption that the true probabilities are strictly between zero and one. De�ne the sets

��K =

�

 2 RJK : inf

x2X

YJ

t=0
Lt (g�0 (x; 
)) >

�

2

�
,

and �0K (%) =
�

 2 RJK :

��
 � 
0K�� � % �
�
K1=2n�1=2 +K1=2K���	 for any % > 0, and because (for some

intermediate point ~
K),

sup
x2X ;
2�0K(%)

��L (g�0 (x; 
))� L �g�0 �x; 
0K���� � sup
x2X ;
2�0K(%);~
K

��� _L (g�0 (x; ~
K))
RK (Xi)
0
��� � ��
 � 
0K��

� C � � (K) � sup

2�0K(%)

��
 � 
0K��
= O

�
� (K)K1=2n�1=2 + � (K)K1=2K��

�
= o (1)

by Assumptions B-1(b) and B-1(c), we conclude that for n for large enough ��K � �0K (%).
To �nish the argument, choose n large enough so that ��K � �0K (C), P [An] � 1�"=2 and P [Bn (�C=8)] �

1� "=2, for some C > 0. Then for any 
K 2 �0K we have

� @

@
@
0
`n (
K) =

1

n

nX
i=1

H (Xi; 
K)
RK (Xi)RK (Xi)
0

� 1

n

nX
i=1

�
inf
x2X

YJ

t=0
Lt (g�0 (x; 
K)) � IJ

�

RK (Xi)RK (Xi)

0

� �

2
�
h
IJ 
 
̂K

i
,

which implies that with probability at least (1� "),

�min

�
� @

@
@
0
`n (
K)

�
� �

4
.

Moreover, under the same conditions (i.e., also with probability at least (1� ")) we verify that for any

K 2 �0K

��

0K
	
we have

`n (
K)� `n
�

0K
�
=

@

@

`n
�

0K
�
�
�

K � 
0K

�
� 1
2

�

K � 
0K

�0 �� @

@
@
0
`n (~
K)

� �

K � 
0K

�
�

���� @@
 `n �
0K�
���� � ��
K � 
0K��� �

8
�
��
K � 
0K��2

�
����� @@
 `n �
0K�

����� �

8
� C �

�
K1=2n�1=2 +K1=2K��

��
�
��
K � 
0K�� < 0,

for some ~
K such that
��~
K � 
0K�� � ��
K � 
0K��. Since `n (
K) is continuous and concave, it follows that 
̂K

maximizes `n (
K) and 
̂K satis�es the �rst order condition with probability approaching one.
Now the result follows directly. �
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Figure 1: E¤ect of Maternal Smoking Intensity on Birth Weight (5-cigarette bins)
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Figure 2: E¤ect of Maternal Smoking Intensity on Birth Weight (2-cigarette bins)
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