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1 Introduction

Much has been written about the spurious effects temporal aggregation may have on testing

for Granger causality, see e.g. Granger (1980), Granger (1988), Lütkepohl (1993), Granger

(1995), Renault, Sekkat, and Szafarz (1998), Breitung and Swanson (2002), McCrorie and

Chambers (2006), among others. In this paper we deal with what might be an obvious, yet

largely overlooked remedy. Time series processes are often sampled at different frequencies.

Some series are available at a daily or even intra-daily frequency, other series are weekly,

monthly, quarterly or even annually. Data are typically aggregated to the common lowest

frequency - and therefore the availability of higher frequency data is ignored. The analysis of

the paper pertains to comparing testing for Granger causality with all series aggregated to

the common lowest frequency, and testing for Granger causality taking advantage of all the

series sampled at whatever frequency they are available. The latter involves so called MIDAS,

meaning Mi(xed) Da(ta) S(ampling), regressions introduced in Ghysels, Santa-Clara, and

Valkanov (2002).1

There are a lot of daily and intra-daily data available, and the collection of such data

is expanding as the cost of retrieval and storage have been vastly reduced over the last

decade. The mixture of macroeconomic low frequency series and daily or intra-daily

financial data is the most prominent example, of course. The increased availability of

financial series is not only due to the reduced harvesting costs, but also due to the

multiple financial innovations. For example, daily option-implied series contain market

expectations of some future contingent claim outcome. Such series are starting to being

used more commonly among macroeconomists. It is this type of applications that MIDAS

regressions are designed for. Recent work on this topic includes, improving quarterly macro

forecasts with monthly data using MIDAS regressions (see e.g. Armesto, Hernandez-Murillo,

Owyang, and Piger (2008), Clements and Galvão (2008a), Clements and Galvão (2008b),

Galvão (2006), Schumacher and Breitung (2008), Tay (2007)), or improving quarterly and

monthly macroeconomic predictions with daily financial data (see e.g. Andreou, Ghysels,

and Kourtellos (2008), Ghysels and Wright (2008), Hamilton (2006), Tay (2006)). In the

context of linear time series processes it is also worth noting that the Kalman filter has be

1The original work on MIDAS focused on volatility predictions, see e.g. Alper, Fendoglu, and Saltoglu
(2008), Chen and Ghysels (2008), Engle, Ghysels, and Sohn (2008), Forsberg and Ghysels (2006), Ghysels,
Santa-Clara, and Valkanov (2005), Ghysels, Santa-Clara, and Valkanov (2006), León, Nave, and Rubio
(2007), among others.
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considered to handle mixed frequency data, treating as “missing data” to be interpolated

the high frequency observations of the low frequency sampled processes, see e.g. Harvey and

Pierse (1984), Harvey (1989), Bernanke, Gertler, and Watson (1997), Harvey and Chung

(2000) and more recently, Aruoba, Diebold, and Scotti (2008), Bai, Ghysels, and Wright

(2009) and Ghysels and Wright (2008).

We propose tests for Granger causality in mixed sampling frequency settings and derive their

asymptotic properties. We also study their finite sample behavior. The paper concludes

with an empirical application involving the impact of daily oil prices on monthly inflation,

industrial production and quarterly GDP growth.

Section 2 starts off the paper with two motivating examples. In section 3 we study the generic

setting of Granger causality with data series sampled at a low and high data frequency.

In section 4 we study VAR processes - both stationary and nonstationary. In section

5 we propose various Granger causality tests and discuss their asymptotic distributions.

Section 6 reports a Monte Carlo simulation study followed by section 7 containing empirical

applications. Section 8 concludes the paper.

2 Motivating Examples

The purpose of this section is to provide some introductory motivating examples. To set the

stage, we start with a bivariate vector autoregressive process of order one, namely:

y(τ + 1) = a11y(τ) + a12x(τ) + uy(τ + 1) (2.1)

x(τ + 1) = a21y(τ) + a22x(τ) + ux(τ + 1)

where we assume that the errors in each equation are i.i.d., in particular that E[uy(τ +

1)ux(τ + 1)] = 0, hence so called instantaneous Granger causality is ruled out for simplicity.

Suitable regularity conditions to guarantee that the VAR is weakly stationary are assumed

to hold. Suppose now that the process y(τ) is only observed for τ even, whereas x(τ) is

observed at all τ. We will index the time series regression that emerges for y by t = τ/2 with

τ even. We will also sometimes use the terms low frequency process for y and high frequency

process for x. To keep track of time scales we will distinguish the process y(τ) from the

process yt. Similarly, the process xt+i/2 is observed for all t positive or negative integers and
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i = iMod(2), using the convention that all odd τ are translated into fractions t - 1/2 (since

τ = 2(t - 1/2)).

We start with a restricted VAR, however, where the x process is exogenous, namely:

y(τ + 1) = a11y(τ) + a12x(τ) + uy(τ + 1) (2.2)

x(τ + 1) = a22x(τ) + ux(τ + 1)

We will compare regressions involving temporally aggregated series with MIDAS regressions

- to be defined shortly - when all series are stock variables for the sake of simplicity and

illustrative purpose.

Let us start with the restricted system of equations (2.2). Suppose we want to test whether x

Granger causes y and use the common low frequency data set - as is typically done. Namely,

consider the following low frequency regression for aggregated processes:

yt = β1yt−1 + β2xt−1 + υt (2.3)

where β1 = a2
11, β2 = = a12(a11 + a22) and υt = uy

t + a11u
y
t−1/2 + a12u

x
t−1/2, using again the

convention that all odd τ are translated into fractions t - 1/2 for the errors. Suppose now

that β2 = 0 because (a11 + a22) = 0. Then we have the spurious impression that x does not

cause y.

If we take advantage of the fact that x can be sampled more frequently, we can make

proper inference in this case. Namely, consider a MIDAS regression, where the low and high

frequency processes are mixed. In this specific example a MIDAS regression consists of:

yt = γ1yt−1 + γ2xt−1/2 + γ3xt−1 + υ̃t (2.4)

where γ1 = a2
11, γ2 = a12, γ3 = a11a12 and υ̃t = uy

t + a11u
y
t−1/2. Note that the orthogonality

of regression errors in equation (2.2) implies that xt−1/2 is a valid regressor, and that the

MIDAS regression allows us to separately identify a12. Hence, the MIDAS regression yields

the right inference of one-period ahead causality patterns.

The possibility to test Granger causality from the low frequency process y to the high

frequency processes x brings us to the second illustrative example. We turn now to the

unconstrained bivariate system involving y and x. Suppose we are interested in testing
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Granger causality via the null hypothesis a21 = 0, which is the low frequency processes

causing x. Consider the following two-sided regressions:

yt = α−2xt+1 + α0xt + α2xt−1 + υa
t (2.5)

using aggregate processes, while for mixed data sampling we have:

yt = α−1xt+1/2 + α0xt + α1xt−1/2 + υm
t (2.6)

The former regression is inspired by the Sims (1972) causality regression setup. In the

standard application of the Sims causality test one runs regressions with data sampled at

the same frequency and one tests the significance of future regressors. Equation (2.6) is a

MIDAS variation of the Sims causality test regression and will later be referred to as a reverse

MIDAS regression as it will allow us to study indirectly projections of low frequency onto

high frequency series [since a MIDAS regression involves the projection of high frequency

onto low frequency].2

We are interested in the estimates of the lead terms as they relate to the null hypothesis.

Indeed for the MIDAS regression we have that:

E[ytxt+1/2|xt, xt−1/2] = a21V ar(yt|xt) (2.7)

so that the estimates of α−1 are directly linked to the null since a21 = 0 implies that α−1 =

0. For the aggregate regression, we obtain:

E[yt, xt+1|xt, xt−1] = a21(a11 + a22)V ar(yt|xt) (2.8)

so that α−2 is zero whenever a21 = 0 or (a11 + a22) = 0. Hence, the MIDAS regression ought

to provide a more powerful test, whereas the information loss due to aggregation of x yields

a test that may have low power or may have no power at all in certain directions, i.e. when

(a11 + a22) = 0.

The illustrative examples showed the potential advantages of using all the data available,

despite the mixed frequencies. In the remainder of the paper we formalize the intuition

provided by these two examples and provide test statistics for general VAR models.

2Reverse MIDAS regressions were introduced in Ghysels and Valkanov (2007).
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3 The Generic Setting

We consider a K-dimensional process x(τ) = (x1(τ), . . . , xK(τ))′, xi(τ) ∈ L2, i = 1, . . . , K.

Suppose now that the first K1 < K elements, collected in the vector process x1(τ), are only

observed every m periods. The remaining K2 = K - K1 series, represented by the vector

process x2(τ), are observed at the (high) frequency τ. As in the previous section, we will

often refer to x1(τ) as the low frequency process, and the x2(τ) process as the high frequency

one. For the sake of simplicity we consider the combination of two sampling frequencies.

More than two sampling frequencies would amount to more complex notation, but would be

conceptually similar to the analysis with a combination of two frequencies. Since the first

K1 elements are only observed every m periods, we define a time scale t = . . . , −1, 0, 1, . . . ,

corresponding to all τ such that τ = t × m, where:

Assumption 3.1 (Stock Variable Skip-Sampling) The processes x1,t ≡ x1(τ) is

observed for τ = t × m, and the process x2(τ) ≡ x2,t+i/m is observed for τ = t × m + i

with i = iMod(m). The stacked process xt ≡ (x′1,t, x
′

2,t) ≡ x(τ) is observed for τ = t × m.

Assumption 3.1 simplifies the analysis to a stock aggregation scheme - the case of flow

variables will be discussed later. The key equations to run Granger causality tests will be

the following system of MIDAS regressions:

x1,t = dM
t

︸︷︷︸
+

∑P
i=1 ΛL

i x1,t−i
︸ ︷︷ ︸

+ ΛIx2,t−1/m
︸ ︷︷ ︸

+ ΛF x2,t+1/m
︸ ︷︷ ︸

+v1,t

determ. lags low freq. lag high freq. lead high freq.

comp. variable variable variable

(3.1)

Note that the above equation is a VAR model for the low frequency process x1,t augmented

with high frequency lead and lag observations of x2,t±1/m. The Granger causality tests

between x1 and x2 will translate into parametric restrictions on the matrix coefficients ΛI

and ΛF . Equation (3.1) shares features with (a) the original MIDAS regressions of Ghysels,

Santa-Clara, and Valkanov (2002), namely the presence of high frequency data x2,t−1/m, (b)

the so called reverse MIDAS regression introduced in Ghysels and Valkanov (2007), namely

the presence of low frequency data future data x2,t+1/m, and (c) the presence of lagged

dependent variables in MIDAS regressions as in Clements and Galvão (2008b). Equation

(3.1) combines all these features and does it in a multivariate setting as opposed to the

single regression setting typically used so far. It is the purpose of this section to explain the
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purpose of running the above regressions for the purpose of Granger causality testing.

Note that in equation (3.1) we only consider one high frequency lead/lag augmentation.

For the purpose of formulating statistical tests, we will also consider higher order high

frequency lead/lag augmentation. The key issue will be a trade-off between increase in

power of statistical tests due to multiple restrictions across various lead/lags versus parameter

proliferation which will typically dilute power. The issue of parameter proliferation is exactly

one of the key insights in the formulation of MIDAS regressions, as will be discussed later

in section 5. It will suffice for the moment to introduce multi-lead/lag extensions of (3.1),

namely:

x1,t = dM
t

︸︷︷︸
+

∑P
i=1 ΛL

i x1,t−i
︸ ︷︷ ︸

+
∑Pb

i=1 ΛI
i x2,t−i/m

︸ ︷︷ ︸
+

∑Pf

i=1 ΛFx2,t+i/m
︸ ︷︷ ︸

+v1,t

determ. lags low freq. lags high freq. leads high freq.

comp. variable variable variable

(3.2)

The new time index t also defines the relevant information accounting for the Granger

causality tests. In Appendix A we define explicitly various information sets, both for the

underlying high frequency processes as well as the skip-sampled ones. We will only introduce

informally the most relevant information sets used in the Granger causality tests. First, for

all integers t we have the aggregate information sets IA
i,t (i = 1,2) which represent univariate

filtrations available at time t only involving low frequency observations of either x1,t (i =

1) or x2,t (i = 2). in the case of x2,t this means dropping the high frequency data and

foregoing their information content. Also related is the joint low frequency information set:

IA
t ≡ IA

1,t + IA
2,t. Second, for all integers t IHF

2,t , represents the high frequency data univariate

filtration of x2,t̃−i/m for t̃ ≤ t and i = iMod(m). Obviously IA
2,t ∈ IHF

2,t . Third and last but

not least we have the information set IM
t ≡ IA

1,t + IHF
2,t . This is an information set that the

econometrician could collect, but typically does not, containing past x1,t̃ and x2,t̃−i/m for t̃

≤ t and i = iMod(m).

We also need to define information sets are defined as if the entire process would be observable

all the time. The purpose of our paper is precisely to link Granger causality at high frequency

with Granger causality identified via mixed data sampling. As mentioned before, the formal

definitions of all the information sets are skipped here, but they can be found in Appendix

A. Notably, they also include information sets Iτ (x), Iτ (x1) and Iτ (x2) representing the

natural filtrations of the K-dimensional process x(τ) and its K1-dimensional subvector x1(τ)
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and K2-dimensional subvector x2(τ) respectively.

We will focus exclusively on Granger causality between the x1(τ) and x2(τ) via observations

x1,t and x2,t, without looking inside the vector processes to see whether there might be causal

chains between subvectors of x1,t and x2,t. Not covering tests between subvectors avoids a

number of complex issues related to the distinction between single- and multi-step Granger

causality. As discussed elaborately by Dufour and Renault (1998) and Dufour, Pelletier,

and Renault (2006), there might be indirect causal chains in systems having at least three

components. By restricting our attention to “bivariate” systems we do not run into the

issues of one- versus multi-horizon Granger causality as they are equivalent (see Proposition

2.3 of Dufour and Renault (1998)). Since we will be interested in Granger causality between

subvectors x1(τ) and x2(τ) we need to define:

Definition 3.1 (Granger Non-causality) The vector xi(τ) does not Granger cause xj(τ),

i, j = 1, 2, i 6= j, (denoted xi(τ) 9 xj(τ) | I(x)), if:

P[xi(τ + 1)|Iτ(xi)] = P[xi(τ + 1)|Iτ (x)] ∀τ > ω

where P[.|.] is the best linear projection onto the information sets Iτ (xi) i = 1, 2 and Iτ (x)

defined in Appendix A.

Note that the above definition of Granger causality is in terms of information sets we cannot

actually record, due to the limitation of data collection. We will only use projections

involving information sets IA
i,t i = 1,2, IA

t , IHF
2,t , or IM

t , to run Granger causality tests.

It is worth noting that equation (3.2) implicitly defines the following projections:

P[x1,t|I
A
1,t−1] = dM

t +

PM∑

i=1

ΛL
i x1,t−i (3.3)

P[x1,t|I
M
t−1/m] = dM

t +

PM∑

i=1

ΛL
i x1,t−i + ΛIx2,t−1/m (3.4)

P[x1,t|I
M
t+1/m] = dM

t +

PM∑

i=1

ΛL
i x1,t−i + ΛIx2,t−1/m + ΛF x2,t+1/m (3.5)

Last but not least, we need to make the following critical assumption:
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Assumption 3.2 (No Information Loss) The low frequency process x1,t ≡ x1(τ) for τ =

t × m can be predicted equally well with low and high frequency data information sets:

P [x1(τ + m) − P[x1(τ + m)|Iτ−i×m(x1), i ≥ 0]|Iτ−i(x1), i ≥ 0] = 0

Note that Assumption 3.2 pertains to the univariate properties of the low frequency time

series process. It says that univariate m-steps ahead predictions for the low frequency data

using the entire high frequency history or the entire low frequency history coincide. The

most prominent example is that of a VAR(1) process for x1(τ). Other examples include

seasonal processes, say the low frequency process - if it were available daily - only involves

a monthly, quarterly or yearly lag. The assumption is obviously critical as it excludes many

stochastic processes, such as MA processes for which we need the high frequency filtration,

or AR-type processes with more than one lag - not a multiple of m. It is important to stress,

however, that the assumption only pertains to the marginal process, not the joint process

for which we test Granger causality. It is worth pointing out, however, that Assumption 3.2

has implications for the joint process, namely:

Lemma 3.1 Let Assumptions 3.2 hold. Then:

P [x1(τ + m) − P[x1(τ + m)|Iτ−i×m(x), i ≥ 0]|Iτ−i(x1), i ≥ 0] = 0 (3.6)

The proof of Lemma 3.1 is a rather straightforward application of the law of iterated

projections, and therefore omitted.

We now state the relationship between Granger causality between high frequency data, and

what we can test with mixed frequency data. Namely, the following result is obtained:

Proposition 3.1 Let Assumptions 3.1 and 3.2 hold. Then the vector x2(τ) does not Granger

cause x1(τ), implies that the parameters ΛI
i in equations (3.1) and (3.2) are zero. Likewise,

when the vector x1(τ) does not Granger cause x2(τ), then the parameters ΛF
i in equations

(3.1) and (3.2), are zero.

The proof of Proposition 3.1 appears in Appendix B. Proposition 3.1 tells us that we can

conduct inference about Granger causality relations in the high frequency joint process,

despite the fact we can only partially observe at high frequency the vector process. Needless
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to say that this is progress with respect to the situation where we would only rely on the

low frequency observations of both series.

To conclude, we turn our attention to the case of flow variables, namely we assume:

Assumption 3.3 (Flow Variable Aggregation) The processes x1,t ≡
∑m−1

i=0 x1(τ − i) is

observed for τ = t × m, and the process x2(τ) ≡ x2,t+i/m is observed for τ = t × m + i with

i = iMod(m). The stacked process xt ≡ (x′1,t, x
′

2,t) ≡ x(τ) is observed for τ = t × m.

It should be noted that maintaining Assumption 3.2 for flow variables is more debatable.

Yet, it is easy to find a simple example that fulfills the restriction. Namely, consider a process

x1,t ≡
∑m−1

i=0 x1(τ − i), with x1(τ − i) ≡ x̃1(τ) + εi where the latter is i.i.d. zero mean noise.

In that case the flow aggregation averages out the noise. If in addition x̃1(τ) is a ’seasonal’

AR(1) with lag m we have a process that satisfies Assumptions 3.2 and 3.3. The following

proposition is then proven in Appendix C:

Proposition 3.2 Let Assumptions 3.3 and 3.2 hold. Then the vector x2(τ) does not Granger

cause x1(τ), implies that the parameters ΛI
i in equations (3.1) and (3.2) are zero. Likewise,

when the vector x1(τ) does not Granger cause x2(τ), then the parameters ΛF
i in equations

(3.1) and (3.2), are zero.

In the next section we turn to the VAR(1) model for which we can obtain stronger results.

4 The Case of Order one VAR Processes

So far we were not specific about the data generating process. In this section we focus our

attention on the widely used class of VAR models, and in particular the case of an order one

VAR. In particular we assume that:

Assumption 4.1 The vector process x(τ), with τ ≥ ω (ω possibly equal to −∞) has a first

order VAR representation.

x(τ) = d(τ) + Γx(τ − 1) + u(τ) (4.1)
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which can be written as:

[

x1(τ)

x2(τ)

]

=

[

d1(τ)

d2(τ)

]

+

[

Γ11 Γ12

Γ21 Γ22

] [

x1(τ − 1)

x2(τ − 1)

]

+

[

u1(τ)

u2(τ)

]

(4.2)

where the matrices Γij are of dimension Ki×Kj, d(τ) is a deterministic process (e.g. constant,

seasonals, etc.).

In the sequel we will also assume that the error process in (4.1) is Gaussian i.i.d. with

covariance matrix Ω. The distributional assumption can be relaxed, as usual, but we will

assume normality to facilitate the discussion.

Note that we do not assume that the VAR process in (4.1) is covariance stationary. As noted

for instance by Dufour and Renault (1998), we do not need stationarity to discuss causal

relations. However, we do need to talk about stationary versus non-stationary VARs when

we turn our attention to statistical tests. This will be deferred to section 5. We will only

assume that the information regarding the d(τ) is contained in an information set Iω known

at the beginning of time.

When all processes are aggregated to the common low frequency and the processes satisfy

Assumption 3.1, we also have an order one VAR process, namely:

[

x1,t

x2,t

]

=

[

d1,t

d2,t

]

+

[

Ψ11 Ψ12

Ψ21 Ψ22

] [

x1,t−1

x2,t−1

]

+

[

u1,t

u2,t

]

(4.3)

From equation (4.2), we can write:

x1(τ) = dm
1 (τ −m)+(Γ11)mx1(τ −m)+

m∑

j=1

(Γ11)j−1Γ12x2(τ −j)+
m∑

j=1

(Γ11)j−1u1(τ −j) (4.4)

where dm
1 (τ − m) (also denoted dm

1 (t − m)) is the deterministic component compounded

m-steps ahead. Note that we can also rewrite equation (4.2) as a one-step ahead projection

in the t time scale, augmented with lagged high frequency data as:

P[x1,t+1|I
M
(t+1)−1/m] = dm

1 (t − m) + (Γ11)mx1,t + Γ12
m∑

i=1

(Γ11)i−1x2,t (4.5)
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When we compare equation (4.2) with with equations (3.1) and (3.2), we observe mapping

between the parameter λI (eq. (3.1)) or parameters λI
i (eq. (3.2)) and the high frequency

VAR parameters. This will be further explored in the context of testing. Indeed, we can

see the benefits and costs of using a single high frequency lag, as in equation (3.1), versus

multiple lags in (3.2). For the latter, we can avoid proliferation of parameters if we either

exploit the explicit link that λI
i = (Γ11)i−1Γ12 and therefore remain parsimonious - or else

apply some of the original insights of MIDAS regressions where some generic parsimonious

parametric structure is applied. Otherwise, empirical tests will most likely loose power as

we increase lags in the regression equation (3.2). In contrast, in the single lag case, we do

not face parameter proliferation, but we are bound to leave unexploited the possibility of

increasing power through joint restrictions across lags. This matter will be discussed further

in section 5.

In contrast, only using low frequency data for both x1 and x2 yields:

P[x1,t+1|I
A
t (x)] = dm

1 (t − m) + Θ11
mx1,t + Θ12

mx2,t (4.6)

where Θ11
m = Θ11

m−1Γ
11 + Θ12

m−1Γ
21, Θ12

m = Θ11
m−1Γ

12 + Θ12
m−1Γ

22, with Θ1i
1 = Γ1i, i = 1, 2.

We note again the problems with disentangling the parameters of the high frequency VAR

process, as illustrated in section 2.

Next, we turn to the reverse MIDAS formulation, namely suppose we want to compare

P[x1,t+1|I
M
(t+1)+(m−1)/m] with P[x1,t+1|I

M
(t+1)−1/m]. We can build on the projection appearing

in (4.5) and characterize the incremental effect of adding the lead term in x2 as it appears

in equation (3.1). Using the standard results of the Frisch and Waugh (1933) theorem, we

know that the coefficient of the incremental effect is zero if the following covariance is zero:

E{[

m∑

i=1

(Γ11)i−1u1(τ − i − 1)][u2(τ) + Γ21

m∑

i=1

(Γ11)i−1u1(τ − i − 1)] (4.7)

The above equation implies that P[x1,t+1|I
M
(t+1)+(m−1)/m] = P[x1,t+1|I

M
(t+1)−1/m] when Γ21

=0. The latter turns out to be the condition for x1(τ) 9 x2(τ) | I(x). As expected from

Proposition 3.1, the reverse MIDAS allows us to test whether the low frequency process x1

does not Granger cause the high frequency process x2. Note that having multiple leads, as

in equation (3.2) results in the same parameter proliferation issues discussed with respect to

equation (4.2), and therefore omitted here.
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Finally, it should also be noted that replacing Assumption 3.1 by 3.3 results in similar

findings, albeit algebraically more involved in terms of parameter restrictions.

5 Statistical Tests

INCOMPLETE

6 Monte Carlo Study

We conduct a Monte Carlo investigation of the Granger causality tests discussed in the

previous section. We start with a parsimoneously parametrized VAR(1) model for the

purpose of simulation, namely:

x(τ) = Γxτ−1 + u(τ) (6.1)

The matrix Γ is specified as:

Γ1 = ρ ×

[

1 δl

δh 1

]

such that a single parameter ρ determines the persistence of both series, whereas δl and δh

capture the dependence between the two series. The bivariate random vector u(τ) is drawn

from N(0, I), where 0 is a bivariate zero-vector, and I is the identity matrix of dimension

2. The data is generated for ρ = {0.10, 0.50, 0.90, 0.95} and δh = δl = {0,−0.5,−1.5,−3.5}.

The series are simulated for m × T observations, where m = {5, 10, 20, 60, 120, 250}, and

T = {500, 1000}. We choose m to reflect empirical work. For instance, if we have daily and

weekly data, then m = 5. If we have daily and monthly data, m = 20, and for daily and

annual data, m = 250. For each of the parameters ρ, δl, m, and T , we simulate the series

1,000 times, where the high frequency index τ = 1, 2, ..., m × T .

We use equation (3.1) to test Granger causality and we are interested in the null hypotheses:

ΛI
i = 0, for i = 1, . . .m − 1. This hypothesis pertains to x2 not Granger causing x1, i.e.

Γ12 is zero, or x2(τ) 9 x1(τ) | I(x). Conversely, we also want to test for the same equation

(3.1) whether x1(τ) 9 x2(τ) | I(x), and this via the null hypothesis that: ΛF
i = 0, for i =

1, . . .m − 1.

12



INCOMPLETE

7 Empirical Illustration

We turn our attention now to an empirical illustration. We examine the relation between oil

prices and inflation. The latter is available at a montly frequency or lower. Oil prices can be

retrieved at a daily frequency. In particular, we consider data sets that span from January

1985 - October 2008 for monthly inflation, and brent oil price series at a weekly frequency.

The data sources are Thomson-Reuters Datastream for the oil price series, whereas CPI

NSA series are from the Fame International Database. With these data we run regression

equation (3.1) with two data frequency configurations. In Table 1 we consider a combination

of quarterly inflation and monthly oil prices, whereas in Table 2 considers a combination of

monthly inflation and weekly oil prices. In both Tables we report what would be standard

Sims-type causality tests with leads and lags for oil prices at the same frequency as inflation

- hence respectively quarterly (Table 1) and monthly (Table 2). In both cases we see clearly

differences in Granger causality findings.

INCOMPLETE

8 Conclusions

INCOMPLETE
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Technical Appendix

A Information sets

We consider a K-dimensional process x(τ) = (x1(τ), . . . , xK(τ))′, xi(τ) ∈ L2, i = 1, . . . , K. The first K1 <

K elements, collected in the vector process x1(τ), are only observed every m periods. The remaining K2 =

K - K1 series, represented by the vector process x2(τ) are observed at the (high) frequency τ.

We divide this section into three subsections dealing with (1) the high frequency process, (2) the mixed

frequency stock variable and (3) mixed frequency flow variable case.

A.1 The high frequency process

For the high frequency process we have the following information accounting:

Definition A.1 The information set Iω contains the purely deterministic components known throughout.

Moreover, for integers τ ∈ Z the following holds:

• The vector processes x(τ), x1(τ) and x2(τ) are associated with information sets Iτ (x) ≡ {x(τ̃ )|τ̃ ≤ τ}

+ Iω, Iτ (x1) ≡ {x1(τ̃ )|τ̃ ≤ τ} + Iω , and Iτ (x2) ≡ {x2(τ̃ )|τ̃ ≤ τ} + Iω, each nondecreasing sequences

of closed Hilbert subspaces.

• The information set Iτ (x) ≡ Iτ (x1) + Iτ (x2) represents information available at time τ.

A.2 Mixed frequency sampling with stock variables

Let Assumption 3.1 hold and the first K1 elements are only observed every m periods, for which we define

a time scale t = . . . , −1, 0, 1, . . . , corresponding to all τ such that τ = t × m, where:

Definition A.2 The process x1,t ≡ x1(τ) for τ = t×m, and x2(τ) ≡ x2,t+i/m is observed for τ = t×m + i

with i = iMod(m). The process xt ≡ (x′1,t, x
′
2,t). For all integers t the following information sets are defined:

• A nondecreasing sequence of closed Hilbert subspaces aggregate information sets IA
t , IA

i,t (i = 1,2):

– IA
i,t ≡ {xi,t̃|xi,t̃ ≡ xi(τ), τ = t̃ × m, t̃ ≤ t} + Iω , i = 1, 2.

– IA
t , ≡ IA

1,t + IA
2,t

• A nondecreasing sequence of closed Hilbert subspaces information sets IHF
2,t , which represents the

univariate filtration of IHF
2,t ≡ {x2,t̃−i/m|x2,t̃−i/m ≡ xi(τ), τ = t̃ × m + i, t̃ ≤ t, i = iMod(m)} + Iω

• IM
t ≡ IA

1,t + IHF
2,t .
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A.3 Mixed frequency sampling with flow variables

We replace Assumption 3.1 by Assumption 3.3. Again, the first K1 elements are only observed every m

periods, for which we define a time scale t = . . . , −1, 0, 1, . . . , corresponding to all τ such that τ = t × m,

where:

Definition A.3 The process x1,t =
∑m−1

i=0 x1(τ−i)for τ = t×m. is a flow variable, whereas x2(τ) ≡ x2,t+i/m

is observed for τ = t×m+ i with i = iMod(m). For all integers t the following information sets are defined:

• A nondecreasing sequence of closed Hilbert subspaces aggregate information sets IA
t , IA

i,t (i = 1,2):

– IA
i,t ≡ {xi,t̃|xi,t̃ ≡

∑m−1
i=0 xi(τ − i), τ = t̃ × m, t̃ ≤ t} + Iω, i = 1, 2.

– IA
t , ≡ IA

1,t + IA
2,t

• A nondecreasing sequence of closed Hilbert subspaces information sets IHF
2,t , which represents the

univariate filtration of IHF
2,t ≡ {x2,t̃−i/m|x2,t̃−i/m ≡ xi(τ), τ = t̃ × m + i, t̃ ≤ t, i = iMod(m)} + Iω

• IM
t ≡ IA

1,t + IHF
2,t .

B Proof of Proposition 3.1

We operate under the information accounting appearing in subsection A.2.

Let us first consider the case of x2(τ) not Granger causing x1(τ), i.e. x2(τ) 9 x1(τ) | I(x). We want to show

that ΛI = 0 in equation (3.1), ΛI
i = 0 ∀ i in equation (3.2), or equivalently P[x1,t|I

A
1,t−1] = P[x1,t|I

M
t−1/m].

Using Assumption 3.1 and the property of iterated projections we know that:

P[x1,t|I
M
t−1/m] = P

[

P[x1(tm)|I(tm−1)(x)]|IM
t−1/m

]

(B.1)

= P

[

P[x1(tm)|I(tm−1)(x1)]|I
M
t−1/m

]

(B.2)

where we use in equation (B.2) the fact x2(τ) 9 x1(τ) | I(x). From Proposition 2.3 of Dufour and Renault

(1998) (so called Exhaustivity Condition for Noncausality at all Horizons) we know that one-horizon Granger

noncausality also implies multi-horizon noncausality. Hence, equation (B.2) also implies:

P[x1,t|I
M
t−1/m] = P

[

P[x1(tm)|I(tm−m)(x1)]|I
M
t−1/m

]

(B.3)

Note that:

P[x1(tm)|I(tm−m)(x1)] = P[x1(tm)|IA
1,t−1] + P[x1(tm) −P[x1(tm)|IA

1,t−1]|I(tm−m)(x1)] (B.4)

Hence, combining (B.3) and (B.4) yields:

P[x1,t|I
M
t−1/m] = P[x1(tm)|IA

1,t−1] + P
[
x1(tm) −P[x1(tm)|IA

1,t−1]|I
HF
1,t−1

]
(B.5)
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Finally, using Assumption 3.2, we know we can condition only on the low frequency information set, so that

the last term on the right hand side disappears. Therefore:

P[x1,t|I
M
t−1/m] = P

[

P[x1,t|I
A
1,t−1]|I

M
t−1/m

]

= P[x1,t|I
A
1,t−1] (B.6)

which means ΛI = 0 in equation (3.1) and ΛI
i = 0 ∀ i in equation (3.2).

Next, we consider the case of x1(τ) not Granger causing x2(τ), i.e. x1(τ) 9 x2(τ) | I(x). We want to show

that ΛF = 0 in equation (3.1), ΛF
i = 0 ∀ i in equation (3.2) or equivalently P[x1,t|I

A
1,t−1+IHF

2,t−1/m+x2,t+1/m]

= P[x1,t|I
A
1,t−1 + IHF

2,t−1/m].

Using Theorem 2 of Sims (1972), we know that x1(τ) 9 x2(τ) | I(x) implies that:

P[x1(τ)|I(τ−1)(x) + I(τ+1)(x2)] = P[x1(τ)|I(τ−1)(x)] (B.7)

Projecting both sides of the above equation onto I(τ−m)(x1) + I(τ+1)(x2), we have:

P[x1(τ)|I(τ−m)(x1) + I(τ+1)(x2)] = P[x1(τ)|I(τ−m)(x1) + I(τ−1)(x2)] (B.8)

Next, we consider:

P[x1,t|I
A
1,t−1 + IHF

2,t−1/m + x2,t+1/m]

= P

[

P[x1(tm)|I(tm−m)(x1) + I(tm+1)(x2)]|I
A
1,t−1 + IHF

2,t−1/m + x2,t+1/m

]

= P

[

P[x1(tm)|I(tm−m)(x1) + I(tm−1)(x2)]|I
A
1,t−1 + IHF

2,t−1/m + x2,t+1/m

]

(B.9)

where the latter follows from equation (B.8), or equivalently x1(τ) 9 x2(τ) | I(x). We can rewrite (B.9) as

follows:

P

[

P[x1(tm)|I(tm−m)(x1) + I(tm−1)(x2)]|I
A
1,t−1 + IHF

2,t−1/m + x2,t+1/m

]

= P

[

P[x1(tm)|IA
1,t−1 + IHF

2,t−1/m]|IA
1,t−1 + IHF

2,t−1/m + x2,t+1/m

]

+ P

[

εt|I
A
1,t−1 + IHF

2,t−1/m + x2,t+1/m

]

(B.10)

where:

εt = P[x1(tm) −P[x1(tm)|IA
2,t−1 + IHF

1,t−1/m]|I(tm−m)(x1) + I(tm−1)(x2)] (B.11)

Next we apply Lemma 3.1, which implies that εt is zero in equation (B.11) and combining equations (B.9)

and (B.10) yields:

P[x1,t|I
A
1,t−1 + IHF

2,t−1/m + x2,t+1/m] = P[x1,t|I
A
1,t−1 + IHF

2,t−1/m] (B.12)
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which implies that ΛF = 0 in equation (3.1), ΛF
i = 0 ∀ i in equation (3.2). �

C Proof of Proposition 3.2

We replace information accounting in subsection A.3 with that applicable to flow variables as appearing in

subsection A.3.

Using Assumption 3.3, we can again Proposition 2.3 of Dufour and Renault (1998) showing that one-horizon

Granger noncausality also implies multi-horizon noncausality. Hence, equation (B.3) now becomes:

P[x1,t|I
M
t−1/m] = P

[

P[

m−1∑

i=1

x1(tm − i)|I(tm−m)(x1)]|I
M
t−1/m

]

(C.1)

Then with appropriate interpretations of x1,t and the information set IA
1,t−1, we obtain the result in equation

(B.6).

Next, we consider again the case of x1(τ) not Granger causing x2(τ), i.e. x1(τ) 9 x2(τ) | I(x). Theorem 2

of Sims (1972) combined with equation (B.8) also implies the following for i = 0, 1, . . . , m − 1:

P[x1(τ − i)|I(τ−m)(x) + I(τ+1)(x2)] = P[x1(τ − i)|I(τ−m)(x) + I(τ−1)(x2)] (C.2)

We can then take the sum of i = 0, 1, . . . , m−1 and proceed to equation (B.9) and proceed with the rest of the

proof using again the appropriate interpretations of x1,t and the information set IA
1,t−1. �
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Table 1: Developed Countries - Quarterly Inflation and Brent Oil Price Series

The entries are point estimates and standard errors for equation (3.1), namely:

x1,t = dM
t +

P∑

i=1

ΛL
i x1,t−i + ΛIx2,t−1/m + ΛF x2,t+1/m + v1,t

where dM
t is a constant, using quarterly inflation for x1 and end-of-the-month oil prices for x2. with

data from January 1985 - October 2008 for monthly inflation, and brent oil price series at a weekly
frequency. The data sources are Thomson-Reuters Datastream for the oil price series, whereas CPI
NSA series are from the Fame International Database. The colums m − 1 and m + 1 pertain to
lag/leads for monthly oil prices whereas the columns q − 1 and q + 1 represent standard Sims-type
test involving quarterly series for both inflation and oil prices.

Country m-1 m+1 q-1 q+1
United States .01575 .00606 -.001 .00119

.0032 .00312 .00307 .00335

Canada .01638 -.00359 -.00535 .00425
.00489 .00336 .00409 .00378

France .00083 -.00063 -.00073 .01039
.00275 .00286 .00159 .00146

Germany .00642 .01139 -.00291 -.00152
.00358 .00374 .0028 .00263

Italy .00426 .00572 -.00268 .00105
.00239 .0022 .00191 .00262

Japan .00477 -.00388 -.00469 .00743
.0034 .00582 .00269 .00234

Norway .01256 .00144 -.00616 -.00381
.00572 .00561 .00431 .00433

U.K. .00447 .00003 .00137 .00167
.00429 .00413 .00289 .00373
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Table 2: Developed Countries - Monthly Inflation and Brent Oil Price Series

The entries are point estimates and standard errors for equation (3.1), namely:

x1,t = dM
t +

P∑

i=1

ΛL
i x1,t−i + ΛIx2,t−1/m + ΛF x2,t+1/m + v1,t

where dM
t is a constant, using monthly inflation for x1 and end-of-the-week oil prices for x2. with

data from January 1985 - October 2008 for monthly inflation, and brent oil price series at a weekly
frequency. The data sources are Thomson-Reuters Datastream for the oil price series, whereas CPI
NSA series are from the Fame International Database. The colums w − 1 and w + 1 pertain to
lag/leads for weekly oil prices whereas the columns m− 1 and m + 1 represent standard Sims-type
test involving monthly series for both inflation and oil prices.

Country w-1 w+1 m-1 m+1
United States -.00633 .00484 -.00052 -.00126

.00252 .00218 .00136 .0011

Canada .00358 .00434 .0018 -.0009
.00591 .00308 .00185 .00181

France -.00054 .00104 -.00203 -.00047
.00256 .00203 .00095 .00101

Germany .00563 .00046 .00178 .00133
.00281 .00219 .00119 .00121

Italy .00024 .00269 .00057 .00061
.00203 .00126 .0009 .00087

Japan .00199 -.00036 .00047 -.00085
.00345 .00307 .00138 .00162

Norway -.00358 .00057 .00233 .00027
.00469 .00436 .00194 .00195

U.K. -.00089 .0004 -.0022 -.00047
.00294 .00246 .00144 .00142
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