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Abstract

Reclassification risk is a major concern in health insurance. We use a rich dataset

with individual-level information on health risk to empirically study one possible solu-

tion: dynamic contracts. Empirically, dynamic contracts with one-sided commitment

substantially reduce the reclassification risk present with spot contracting, achieving

close to the first-best for consumers with flat net income paths. Gains are smaller for

consumers with net income growth, and these consumers prefer ACA-like community

rating over dynamic contracts. However, lower risk aversion, suffi cient switching costs,

or government insurance of pre-age-25 health risks can raise welfare with dynamic

contracts above the level in ACA-like markets.

1 Introduction

Consumers face substantial health risks over their lifetime. Much of this risk involves

conditions, such as diabetes, heart disease, and cancer, that lead to higher expected medical

expenses over significant periods of time. Development of these conditions can expose

individuals who buy short-term insurance coverage to substantial premium increases —so-

called “reclassification risk”—greatly reducing the extent to which their health risks are

insured.
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The state-by-state health insurance exchanges set up under the Affordable Care Act

(ACA), and many similar markets worldwide, respond to this problem through pricing

regulations that enforce community rating and guaranteed issuance, thereby prohibiting dis-

crimination against consumers who have developed “pre-existing conditions.”Unfortunately,

while such bans can eliminate reclassification risk, requiring identical pricing for consumers

with different ex ante risk levels can create adverse selection, leading to under-provision of

insurance [Handel, Hendel and Whinston (2015), Patel and Pauly (2002)].

In this paper, we explore the extent to which long-term contracts, without pricing regu-

lation, could offer a way to reduce reclassification risk without incurring welfare losses from

adverse selection. Specifically, we characterize optimal long-term contracts theoretically,

and then use data on the preferences, income paths, and health transitions of a population

of employees at a large firm to assess the welfare achievable through long-term contracts,

and compare it to other possible approaches, such as the annual contracts with community

rating present in the ACA.

We model the insurance contracting problem as one of symmetric learning as in Harris

and Holmstrom (1983), who study labor markets, and Hendel and Lizzeri (2003), who study

life insurance markets. In the model, consumers seek to insure against negative health shocks

over their lifetimes. Consumers and insurers symmetrically learn those shocks over time. If

only spot contracts are available, risk-averse consumers fully insure within-period risk but

premiums reflect the information revealed over time, implying that consumers fully bear

the risk of persistent health shocks. If both consumers and firms can commit to long-term

contracts ex ante, prior to information revelation, then the effi cient (first-best) allocation,

which involves full insurance, is possible. However, in practice, consumer commitment over a

long time horizon is unlikely.1 As a result, the empirically relevant contracting environment

is likely one with one-sided commitment on the part of insurers, and we focus on this case.

We assume as well the presence of capital market imperfections preventing consumers from

borrowing, due for example to a lack of collateral.2 As shown in Harris and Holmstrom

(1983) and Hendel and Lizzeri (2003), the competitive equilibrium in markets with one-sided

commitment only partially insures reclassification risk.

We show theoretically that optimal unilateral commitment contracts offer consumers a

minimum guaranteed consumption level over time, as a function of their risk preferences and

income paths. This minimal guarantee is bumped up to a new level within a contract when

1See, for example, the discussions in Diamond (1992), Cochrane (1995), and Pauly, Kunreuther, and
Hirth (1995). Another reason the first best may be unattainable, which we do not model, is moral hazard.

2Were consumers able to borrow freely, the first best could be achieved by having consumers pay all
premiums up front. This finanical imperfection likely stems from similar factors as those that prevent
committing consumers to make large ex post payments to an insurer.
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necessary to meet competitive offers from other insurers. The improved terms are necessary

to ensure that consumers won’t leave the long-term contract after receiving a positive shock.

These consumption floors are the counterpart of the downwardly rigid wages in Harris and

Holmstrom (1983), whose model we generalize and apply to the context of health insurance.

As there, optimal contracts involve “front-loading”—here premium payments in excess of

expected medical costs — to lock consumers into the contract and allow insurers to both

break even and offer insurance against reclassification risk. We also show that these optimal

contracts can be equivalently offered as guaranteed premium path contracts, and when offered

in this form are self-selective, in the sense that consumers with different lifetime income paths

and risk preferences prefer the contracts designed for them.3

We apply this model empirically using an individual-level panel data set on the medical

claims of the employees (and their dependents) of a large firm. The key data are diagnostic

codes of each individual in the sample, which we combine with professional software designed

to predict future medical expenditures to produce a measure of an individual’s health status.

We thus observe the medical expense risk that consumers face within the typical one-year

span of health insurance contracts. (Notably, we know the same information that insurers use

at underwriting.) A key ingredient to study dynamic contracts is the stochastic process that

determines the evolution of health. Because we have multiple observations of individuals’

health status we are able to estimate a long-run health state transition process that captures

how this risk evolves over time. We use as well risk preference estimates from Handel,

Hendel, and Whinston (2015), identified based on the insurance choices in these data, to

assess consumers’preferences for consumption smoothing.

We first compute optimal contracts with one-sided insurer commitment using our data,

to examine the premiums and the extent of front-loading associated with these contracts.

For consumers with flat net income over time (“net income” is income minus expected

medical costs), a healthy consumer at age 25 pays a premium of $2,750 despite expected

costs of only $1,131 in that year. The extent of front-loading is inverted U-shaped: front-

loading is highest for individuals in medium health states. This occurs because the extent

of front-loading at any point in time depends on both the current health state and the

implications of that current state for future states (measured through our estimated health

status transition matrix). Good health draws can afford the front-loading better, while bad

3Guaranteed premium path contracts contractually specify the path of future premiums at which the
consumer can continue coverage if she has not previously lapsed. These are distinguished by their premium
guarantees from what are called “guaranteed renewable”contracts. The latter merely state that the con-
sumer has a right to renew at a rate at the insurer’s discretion, but that must be the same as what the
insurer offers to all other consumers in the same policy. This discretion potentially allows the insurer to
induce lapsation by raising premiums or degrading quality (effectively cancelling the policy) and to then
re-enroll consumers in new policies at rates based on their health states. In practice, in the pre-ACA world,
an insurer’s ability to do this varied across states due to differences in state regulatory stringency.
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draws benefit more from the future promises front-loading buys. The extent of front-loading

is substantial. Over the first ten years of these long-term contracts, the average consumer

contributes $21,209 extra through front-loading, in order to fund long-term insurance against

health shocks leading to reclassification risk.

We also examine the structure of these contracts as a function of consumers’expected in-

come paths. In addition to the case of flat net income, we use the income paths of managers

at the firm to represent steeply increasing net income, the income paths of non-managers

to reflect rising but flatter income paths, and we also consider the case of a “downscaled

manager”whose lifetime income path is proportionately scaled down from that of a manager

to generate the same present discounted value as that of a non-manager. Downscaled man-

agers, for example, with steeper income growth, have equilibrium contracts with noticeably

lower front-loading than for the case of flat net income: a downscaled manager in perfect

health at age 25 front-loads only $547 in that year, over $1,000 lower than the $1,619 that

a consumer with flat net income front-loads at that same age and health state. This fea-

ture holds in general: conditional on age and health state, managers front-load much less

early in the contract, primarily because their marginal value of incremental income is much

higher in those periods than later in life, when their incomes are much higher. Thus, their

income growth over time limits their desire to insure future health risks with current income.

Nonetheless, managers’contracts still exhibit substantial consumption guarantees that pro-

tect against the risks of their health status worsening over time. The primary difference

relative to flatter income paths is that the consumption guarantees of managers are lower

and provide less insurance, due to the lower degree of front-loading.

We then consider the welfare effects of these long-term contracts. We investigate first

the welfare loss from a market with only year-to-year spot contracts (and no community

rating). Spot contracts result in a welfare loss between 14% and 40% relative to the first

best, depending on the income profile, with larger losses for consumers with steeper income

paths. Part of these losses come from the inability of spot contracts to smooth consumption

over time. Since our interest is insurance, not consumption smoothing, we also use as

a benchmark contracts that offer full insurance with premiums at each age equal to the

average medical expenses of that age group. These contracts offer full insurance (generating

a deterministic consumption path), without allowing consumption smoothing over time.

Relative to this alternative benchmark, we find that spot contracts imply a 10% to 14%

welfare loss, representing the loss from being unable to insure reclassification risk. Still, this

is a very large loss in lifetime expected uility.

We then assess the performance of optimal dynamic contracts with one-sided commit-

ment. We find that, for consumers with flat net income, these dynamic contracts achieve

close to the first best, closing 87.7% of the welfare gap between spot contracts and the first
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best. However, for steeper income profiles, optimal dynamic contracts bridge much less of

this gap. For example, for downscaled managers, optimal dynamic contracts with one-sided

commitment bridge only 10.8% of this welfare gap. They perform somewhat better relative

to the case of full insurance with no consumption smoothing, closing 38% of the welfare loss

suffered by a downscaled manager due to the reclassification risk arising from spot contracts.

We compare as well optimal dynamic contracts with one-sided commitment to ACA-like

market regulation with spot contracts and community rating, where price discrimination is

prohibited and consumers are mandated to purchase one of several levels of coverage. In

ACA-like markets, community-rating fully insures reclassification risk, but creates adverse

selection [studied in Handel, Hendel, and Whinston (2015)] leading to a welfare loss be-

tween 2% and 6% relative to the first best, depending on the income path considered. This

welfare loss occurs because, due to adverse selection, consumers’within-period event insur-

ance unravels to the minimum allowable coverage of 60% actuarial value in equilibrium.4

We find that whether the ACA-like market is preferred from a welfare perspective depends

on the income paths we consider. For rising income paths (non-managers, managers, and

downscaled managers) the ACA-like environment does better than dynamic contracts, but

for consumers with flat net income paths, dynamic contracts are preferred. Intuitively, the

ACA-like environment is better for individuals who find front-loading costly.

We also explore several robustness checks and extensions. First, we explore the role that

risk aversion plays in our analysis, and specifically focus on the case in which risk aversion is

one-fifth the magnitude as what we estimated in our empirical context. Reduced risk aversion

limits the extent of surplus that is lost via either spot contracts or dynamic contracts, but,

ultimately, the intuition of how dynamic contracting gains relate to income paths remains

the same. However, with this lower level of risk aversion, dynamic contracts are preferred to

the ACA-like market by consumers with all four income paths we consider, albeit the welfare

losses from risk bearing are in all cases much smaller than in our base case (although not

insubstantial). Second, we consider the effects of switching costs, as estimated in Handel

(2013). By improving consumers’ commitment to their current insurer, these costs can

improve the insurance of reclassification risk. We find that a switching cost in the range of

$5,000 increases the welfare optimal dynamic contracts deliver to the range of the ACA-like

market. Third, we verify that our findings also hold using health state transitions computed

for employees of a larger firm (so that data for some transition cells are less sparse). Fourth,

we examine the degree to which optimal precautionary savings would improve welfare under

spot contracting. While consumer welfare improves, the basic insights from our analysis are

unchanged. Fifth, we examine the welfare optimal dynamic contracts deliver to consumers

4Risk adjustment, which we do not model here, could reduce this loss [see, for example, the discussion in
Handel, Hendel, and Whinston (2015)].
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who arrive at age 25 in different health states. We find that consumers who are in poor

initial health are significantly disadvantaged relative to how they do in alternative market

designs, a fact that suggests the desirability of providing some form of insurance for this

risk if contracting does not occur until age 25. Insuring this pre-age 25 health risk, so

that all consumers have the same lifetime welfare as the healthiest 25-year old, would cost

the government roughly $2,000 per consumer. Alternatively, a revenue-neutral government

tax/subsidy scheme that insures this pre-age 25 risk results in welfare similar to that in the

ACA-like exchange.

We are not the first to consider the use of long-term contracts as a means of addressing

reclassification risk in insurance markets. Long-term contracts have been explored in life

insurance markets by Hendel and Lizzeri (2003) who document that long-term life-insurance

contracts involve front-loaded premiums, as the theory of optimal contracts with one-sided

commitment predicts. Finkelstein, McGarry and Sufi (2005) study positive implications of

dynamic contracting in the context of long-term care markets, and show evidence of adverse

retention, namely that healthier consumers lapse from contracts over time, leading to high

average costs from those consumers that remain.5

In the context of health insurance, Pauly, Kunreuther, and Hirth (1995) and Cochrane

(1995) provide theoretical discussions of schemes to address reclassification risk. Pauly,

Kunreuther, and Hirth (1995) focus on “guaranteed renewable”contracts that ensure that

an insured can renew future coverage at the same rates that the healthiest possible type

would pay, while Cochrane (1995) proposes the use of “premium insurance” as a means

of insuring against long-term negative shocks to health.6 We discuss both of these ideas,

and their relation to our optimal contracts, in Section 7. Closest to our approach here is

Herring and Pauly (2006), who conduct an empirical calibration of the Pauly, Kunreuther

and Hirth (1995) model, using data from the Medical Expenditure Panel Survey (MEPS).

After deriving their guaranteed renewable contract they compare its time path of premiums

to the average premiums paid by age in the MEPS data. Compared to our analysis, they

place a much simpler structure on the evolution of health and possible health states, and do

not derive optimal contracts that take account of consumption-smoothing concerns, nor do

they conduct a welfare analysis as we do.

One-sided dynamic health insurance contracts are offered in several countries, including

Germany and Chile. Browne and Hoffmann (2013) study the German private health insur-

ance (PHI) market and demonstrate that (i) front-loading of premiums generates lock-in of

consumers, (ii) more front-loading is associated with lower lapsation, and (iii) consumers

5Abramitzky (2010) applies a similar model to understand the evolution and existence of the kibbutz as
an institution.

6Pauly, Kunreuther, and Hirth (1995) refer to these policies as guaranteed renewable contracts, but (as
they note) effectively treat them as guaranteed premium path contracts.
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that lapse are healthier than those who do not. Atal (2016) studies the impact of lock-in to

an insurance plan on the matching between individuals and health care providers in Chile.7

Compared to all of this previous work on long-term health insurance contracts, our work

is unique in using data to derive optimal contracts with one-sided commitment, and in assess-

ing the welfare impacts of these contracts. More generally, the paper provides an empirical

assessment of the gains to optimal long-term contracting in an economically significant set-

ting.

The rest of the paper proceeds as follows. Section 2 presents our model and its equilibrium

implications. Section 3 describes the data we use to quantify the positive and normative

implications of different market designs. Section 4 briefly discusses computation. Section

5 presents our main positive and normative results. Section 6 examines several extensions.

Section 7 addresses the relation of our work to that of Pauly, Kunreuther, and Hirth (1995)

[and, by extension, Herring and Pauly (2006)] and Cochrane (1995). Section 8 concludes,

including a discussion of potential barriers to adoption of dynamic health insurance contracts.

2 Model of Dynamic Insurance

We consider a dynamic insurance problem T periods long, with periods indexed t = 1, ...T .

In the empirical analysis, periods represent years, with t = 1 corresponding to a 25-year old,

and T = 40 corresponding to a 65-year old, when Medicare coverage would begin in the U.S.

A consumer enters each period t characterized by her health state λt ∈ Λ, with greater

λt indicating sicker individuals. We take Λ to be a finite set. The consumer’s initial health

state is λ1, which occurs with probability f0(λ1). For periods t < T , state λt determines

both the distribution of period t medical expenses, mt, and the transition probabilities to the

period t + 1 health state λt+1, according to the joint probability ft(mt, λt+1|λt). We denote
by f t(λt+1|λt) the marginal conditional probability of λt+1. As future health is not relevant

for the period T insurance problem, we need only specify the probability fT (mT |λT ).8

7Bundorf, Levin, and Mahoney (2012) investigate the implications of reclassification risk in a large-
employer context in a short-run environment. See Hendel (2016) for a survey of the literature on reclassifi-
cation risk.

8Incorporating health-dependent income is straightforward. We can allow for a link between different
health states and income by allowing for an additional expense associated with the state. Equilibrium
contracts would be determined in the same way as we describe below. However, the optimal policy would
then provide both health and income insurance, and could affect labor supply incentives.
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An individual’s health state λt is observed by both the individual and all insurance firms,

namely, there is symmetric information and symmetric learning.9 We make the following

assumptions concerning the stochastic health process:

Assumption A1 E[mt|λt] is strictly increasing in λt.

Assumption A2 If λ′t > λt, then f t(λt+1|λ′t) first-order stochastically dominates f t(λt+1|λt).

Assumption A1 says that the state λt captures the consumer’s period t health: larger λt
implies greater period t expected medical expenses. Assumption A2 says that being in worse

health in period t implies that the consumer’s health state in period t + 1 will be worse, in

the sense of first-order stochastic dominance.

We assume that the insurance market is perfectly competitive, with risk-neutral firms who

discount future cash flows using the discount factor δ ∈ (0, 1). A consumer’s risk preferences

are described by u(·), the consumer’s Bernoulli utility function, while the consumer’s long-
run utility is E[

∑
t δ

tu(ct)], where ct ∈ R is the consumer’s period t consumption level.

Throughout, we assume that u′(·) > 0 and that u′′(·) < 0, which motivates the consumer’s

desire for insurance. The consumer’s income in period t is yt, and evolves deterministically.10

Throughout we assume that consumers are unable to borrow to fund premium payments or

other expenses.

In what follows, we will sometimes refer to a consumer’s income path y ≡ (y1, ..., yT ) and

risk preferences u(·) as the consumer’s “type”θ ≡ (y, u). The optimal contract will depend

on this type.

2.1 Three Benchmarks

We will compare optimal dynamic contracts with one-sided commitment against three nat-

ural benchmarks.11 The first is the effi cient, first-best allocation. In this setting, this outcome

involves a constant consumption in all states and periods, equal to the present discounted

value of the consumer’s “net income”from periods t = 1 to T (where the “net income”in

9Our assumption that all insurers have access to the same information assumes the ability of insurers
to underwrite effectively potential new customers. If, instead, an individual’s current insurer had better
information than other firms, prospective insurers would face an adverse selection problem when attempting
to attract lapsing consumers. For the consequences of this type of adverse selection, see, for example,
DeGaridel-Thoron (2005).
10The model readily generalizes to stochastic income —possibly dependent on the consumer’s health state,

provided that E[yt − mt|λt] is strictly decreasing in λt. As noted in footnote 8, in this case the optimal
contract would insure both health and income risk.
11We also compare the outcome of optimal dynamic contracts with one-sided commitment to an ACA-like

exchange market institution.
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period t equals period t income, yt, less the ex ante expectation of period t medical expenses,

E[mt]). That is, it involves the constant consumption level

C∗ =

(
1− δ

1− δT
) T∑

t=1

δt−1(yt − E[mt]). (1)

As is well known, if consumers and insurance firms could both commit to a long-term contract

prior to the realization of λ1, the competitive equilibrium would yield this outcome.

At the opposite extreme, long-term contracts may be impossible, leading to single-period

“spot” insurance contracts. In a competitive market, such contracts will fully insure the

consumer’s within-period medical expense risks at a premium equal to E[mt|λt], the con-
sumer’s expected medical expense given her period t health state λt. This results in the

period t consumption level yt − E[mt|λt]. Because the consumer’s period t health state λt
is ex ante uncertain, this outcome faces the consumer with risk from an ex ante perspec-

tive. The consumer’s constant certainty equivalent of this uncertain consumption path is the

constant consumption level CESPOT such that

u(CESPOT ) =

(
1− δ

1− δT
)
E

[
T∑
t=1

δt−1u(yt − E[mt|λt])
]

(2)

Finally, in this dynamic setting both insurance and consumption smoothing over time are

needed to achieve the first best. Since we will focus on settings in which income is increasing

over time and borrowing is impossible, another natural benchmark is the outcome that would

result if the consumer was fully insured within each period (eliminating all ex ante risk) but

resources could not be transferred over time. This certain but time-varying consumption

path results in the same welfare as the constant consumption level C∗NBNS (“NBNS”= “No

Borrowing/No Savings”) such that

u(C∗NBNS) =

(
1− δ

1− δT
) T∑

t=1

δt−1u(yt − E[mt])). (3)

2.2 Optimal Dynamic Contracts with One-Sided Commitment

We now turn to the setting in which competitive insurers can offer long-term contracts

that they, but not consumers, are committed to. We assume that contracting begins

in period 1 (in our empirical setting, at age 25) after λ1 has been realized.12 We can

view a long-term contract as specifying the consumer’s period t consumption level ct as

a function of the consumer’s publicly-observed health history up through period t, ht =

12We consider the effects of health risk before age 25 in Section 6.5.
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[λ1, (m1, λ2), ...(mt, λt+1)].13 (The insurer’s profit in the period then equals the consumer’s

income yt less the sum of period t medical expenses and period t consumption.) The lack of

commitment by the consumer, however, means that the consumer is free in each period to

change to another insurer who is offering the consumer better terms.

As in Harris and Holmstrom (1982), without loss of generality we can restrict attention

when solving for the optimal contract to contracts in which the consumer never has an

incentive to “lapse”in this way: since the new contract the consumer signs following history

ht must give her new insurer a non-negative expected discounted continuation profit, the

consumer’s initial insurer could include the same contract continuation in the initial insurance

contract and weakly increase its expected discounted profit (lapsation would instead yield the

initial insurer a continuation profit of zero). As a result, we can look for an optimal contract

by imposing “lapsation constraints”that require that after no history ht is it possible to offer

the consumer an alternative continuation contract that (i) itself prevents future lapsation,

(ii) breaks even in expectation, and (iii) gives the consumer a higher continuation utility

than in the original contract.

We take a recursive approach to solving this optimal contracting problem. At each date

t, we define the state to be the pair (λt, St) where λt is the consumer’s current health state

(which determines future expected medical expenses), and St is the absolute value of the

loss that the insurer is allowed to sustain going forward (i.e., St is the subsidy for future

insurance). This is a useful formulation for two reasons. First, after any history ht,

continuation of the original contract generates some expected utility to the consumer and

some expected loss St to the insurer. A necessary condition for an optimal contract, given

the consumer’s current health state, is that it is not possible to increase the consumers’

continuation utility while keeping the insurer’s loss equal to St. So, the continuation of the

contract must itself solve an optimal contracting problem for an insurer who can sustain

the loss St starting in health state λt. Second, the constraint that the contract prevents

lapsation can be viewed as saying that the consumer’s continuation utility starting in any

period t when in health state λt cannot be less than in an optimal contract offered by an

insurer who must break even, i.e., who has St = 0.

Thus, we begin by considering the period T contracting problem that arises when an

insurer faces a consumer in health state λT and can sustain a loss of ST :

maxcT (·)
∫
u(cT (mT ))dFT (mT |λT )

s.t.
∫
cT (mT )dFT (mT |λT ) ≤ ST + yT − E[mT |λT ]; γT

(4)

13This formulation assumes, for convenience, that the consumer cannot engage in hidden savings. While
we will make this assumption initially, in the end we show that under the optimal contract the consumer
has no desire to save.
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In problem (4), the insurer offers cT (·), which specifies a consumption level cT for each
realization of period T medical expenses mT , subject to the constraint that the insurer’s

losses not exceed ST . In a long-term contract that breaks even overall, a positive subsidy

ST > 0 is enabled by previous front-loading of premiums —i.e., premiums that exceeded the

insurer’s expected medical expenses. For the firm that initially contracted with the consumer

in period 1, ST may be positive, while for firms seeking to induce the consumer to lapse and

sign with them, ST = 0. We denote the value of this problem by VT (λT , ST ).

For periods t < T , we then consider the problem —whose value we denote by Vt(λt, St)

—that arises if a firm faces a consumer in health state λt and can sustain, going forward, a

(discounted expected) loss of St:

maxct(·),St+1(·)
∫

[u(ct(mt, λt+1)) + δtVt+1(λt+1, St+1(mt, λt+1))]dFt(mt, λt+1|λt)

s.t.
(i)

∫
[ct(mt, λt+1) + δSt+1(mt, λt+1)]dFt(mt, λt+1|λt) ≤ St + yt − E[mt|λt]

(ii) Vt+1(λt+1, St+1(mt, λt+1)) ≥ Vt+1(λt+1, 0) for all (mt, λt+1)

(5)

In this problem, the firm allocates resources to current consumption ct(·) and to support-
ing future insurance through subsidies St+1(·), both of which are functions of the period t
medical expense realization mt and continuation state λt+1 [as well as, implicitly, the state

(λt, St)]. The first constraint is the break-even constraint for the firm going forward, given

the subsidy St that is available at the start of period t. The second constraint is the “lap-

sation constraint,”which says that the consumer’s continuation value for each realization of

λt+1 cannot fall below the value Vt+1(λt+1, 0) that a rival insurer (who has no subsidy —i.e.,

who must break even) can provide. Since the value that can be provided to the consumer is

increasing in the subsidy, this constraint can equivalently be written as St+1(mt, λt+1) ≥ 0 —

i.e., the optimal contract cannot involve strictly positive discounted continuation profits (a

negative “subsidy”) for the insurer, since if it did a rival insurer could offer the consumer a

greater continuation utility while still earning a strictly positive expected discounted profit.

Our main result, which can be viewed as a generalization of Harris and Holmstrom (1982),

and which we establish in the Appendix, is:14

Proposition 1 The equilibrium contract in a competitive market with one-sided commit-

ment for a consumer of type θ = (y, u) and who cannot borrow is characterized by a collection

of consumption guarantees {cθt (λt)}, where each cθt (λt) is the consumption guarantee offered
14Aside from the change of context from labor markets to health insurance, our model generalizes Harris

and Holmstrom (1982) by allowing for more general stochastic medical expense and health state transition
processes. We also offer a recursive proof of the result, show that the optimal contracts are self-selective
(Section 2.3), and introduce switching costs (Sections 2.4 and 6.2).
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to the consumer in the first period of a break-even (i.e., zero subsidy) contract starting in

period t when the consumer is in health state λt. The consumer who agrees to a contract

in period 1 when in health state λ1 enjoys in each period t following health state history

(λ1, ..., λt) the certain consumption maxτ≤t c
θ
τ (λτ ). Consumers have no incentive to save

after agreeing to the contract.

Proof. In Appendix A.

Proposition 1 says that the equilibrium contract with one-sided commitment can be

viewed as offering the consumer in period 1 an initial minimum guaranteed consumption

level cθ1(λ1). This minimal guarantee is bumped up in later periods t > 1 to a new, higher

guarantee cθt (λt) > cθ1(λ1) to match the outside market at the first instance at which the

consumer’s health state λt is suffi ciently good that an outside firm could offer a better

contract (i.e., a higher consumption guarantee) to the consumer and break even. That new

guarantee is in turn bumped up in the periods that follow if, again, doing so is necessary to

match the outside market. The equilibrium contract provides full within-period insurance for

the consumer (i.e., consumption in each period is independent of mt), and partial insurance

against reclassification risk, as consumers who have experienced suffi ciently bad health states

leading up through a given period t [such that cθτ (λτ ) ≤ cθ1(λ1) for all τ ≤ t] all enjoy the

same level of consumption regardless of differences in their health states. The extent of this

partial insurance is a function of the consumer’s initial health state λ1, income path y, and

risk preferences u(·), as well as the health state transition process. Since the consumer’s
consumption level is always weakly rising over time, the consumer never wishes to save.

The optimal contract in Proposition 1 specifies directly the consumer’s consumption

levels and prevents lapsation. Note, however, that the same outcome can alternatively be

achieved by means of a guaranteed premium path contract from which the consumer may

lapse. Specifically, the consumer is given the option to renew, if she has not yet lapsed, at

the guaranteed premium path pθ ≡ (pθ1, ..., p
θ
T ) where pθt = yt−cθ1(λ1) for t = 1, ...T , provided

that she has always renewed in the past.15 With this contract, some consumers, who have a

suffi ciently good health state λt, may choose not to renew in a given period t, instead signing

a contract with a new insurer that offers premium path pθτ = yτ − cθt (λt) for τ ≥ t, where

cθt (λt) > cθ1(λ1). Such lapses have no effect on the profit of the consumer’s initial insurer as

that firm was indifferent about whether to match the outside offer.16 ,17

15This form of contract is the counterpart to the “Annual Renewable Term”life insurance contracts studied
in Hendel and Lizzeri (2003).
16We discuss in Section 8 the difference between this guaranteed guranteed premium path contract and

that of Pauly, Kunreuther, and Hirth (1995).
17The recursive formulation also makes clear that this equilibrium outcome can be achieved instead with

single-period contracts. A consumer in period 1 with health state λ1 could purchase a contract that covers
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2.3 Unobserved Types and Self-Selection

The analysis above assumed that a consumer’s lifetime income path y = (y1, ..., yT ) and risk

preferences u(·), summarized in the consumer’s “type” θ = (y, u), is known by both the

consumer and all insurers. In practice, this is unlikely to be the case. In this subsection we

show that insurers’failure to possess this information does not pose an obstacle to the use

of optimal dynamic contracts. Specifically, we show that if offered the collection of optimal

contracts for all types derived above, presented as the guaranteed premium path contracts

described above, consumers will self-select, choosing the optimal contract for their type.18

Specifically, suppose that there is a set Θ of types in the market. As above, a guaranteed

premium path contract is a p = (p1, ..., pT ) that allows the consumer to continue coverage

in period t paying premium pt provided that she has not previously lapsed. The optimal

guaranteed premium path contract for a known type θ starting in period t when the con-

sumer’s health state is λt is denoted by the path pθt (λt) ≡ {yτ − cθt (λt)}Tτ=t, a path that keeps

consumption constant [equal to cθt (λt)] as income changes from year to year.

Our result is:

Proposition 2 Suppose that, in each period t = 1, ...T , the menu of optimal guaranteed

premium path contracts {pθt (λt)}θ∈Θ,λt∈∆ is offered, where pθt (λt) ≡ {yt − cθt (λt)}Tt=1. Then

in each period the menu is self-selective: that is, if a consumer of type θ agrees to a new

contract she chooses that type’s optimal contract pθt (λt).

Proof. In Appendix B.
Since insurers cannot offer any type of consumer a greater value than in the optimal

contract and still break even, Proposition 2 implies that it is an equilibrium for this menu

of contracts to be offered, which results in the same allocation as if consumer types were

perfectly observable.

all period 1 medical expenses, and that in addition pays the consumer at the start of period 2 the amount
S∗2 (m1, λ2) from the solution to problem (5) for t = 1. The premium in period 1 would equal y1−cθ1(λ1), while
the period 2 premium would equal y2−E[m2|λ2]−maxτ≤2 cθτ (λτ ) +S∗2 (m1, λ2). This is exactly the amount
that is needed to buy a long-term policy in period 2 that offers the consumer a consumption guarantee equal
to maxτ≤2 cyτ (λτ ). Upon reaching period 2, however, the consumer could instead again buy a one-period
policy of this type, and could continue in this manner until period T . [This approach to replicating a
long-term contract with a series of short-term contracts is reminiscent of Fudenberg et al. (1990), although
our setting is not captured in their model because of the presence of lapsation constraints and the consumer’s
inability to borrow.]
As noted in Cochrane (1995), such short-term contracts avoid the consumer being locked into an insurer,

perhaps resulting in better insurer performance as well as better matching of insurers and consumers when
health care networks are bundled with insurance provision. However, such contracts require that courts can
verify the consumer’s health state λ, while guaranteed premium path contracts do not.
18Note that contracts that instead present the optimal contracts as guaranteed consumption levels (as in

Proposition 1), would clearly not induce self-selection as consumers with low lifetime incomes would choose
contracts intended for consumers with high lifetime incomes.
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2.4 Switching Costs

Recent evidence suggests that consumers may exhibit substantial inertia in their health

insurance choices [see, e.g., Handel (2013)]. In Section 6.2 we extend our analysis to consider

the effect of switching costs, modeled as creating a consumption loss of σ > 0 if the consumer

lapses and switches insurers. We show in Appendix A that the key change this introduces is

that the lapsation constraint in the period t problem (5) becomes St+1(mt, λt+1) ≥ −σ; that
is, the insurer can now earn positive discounted expected continuation profits up to σ without

causing the consumer to lapse. Nonetheless, the basic structure of an optimal contract

is unchanged when switching costs are present, again involving consumption guarantees.

Switching costs simply allow those guarantees to be greater because healthy consumers

are less likely to need to receive a premium reduction (consumption increase) to prevent

lapsation, enabling a greater shift of resources from healthy to unhealthy states.

3 Data and Parameter Estimates

We investigate positive and normative outcomes for each type of contracting relationship. To

predict equilibrium contracts and welfare under each regime we need four basic ingredients:

(i) expected medical costs conditional on an individual’s health state, (ii) the transitions

across health states as individuals age,(iii) preferences towards risk, and (iv) income paths.19

We use detailed administrative data on the health insurance choices and medical utiliza-

tion of employees (and their dependents) at a large U.S.-based firm over the period 2004

to 2009. These proprietary panel data include information on employee plan choices, and

detailed, claim-level employee (and dependent) medical expenditure and utilization informa-

tion. Overall, the data include 11,253 employees and 9,710 dependents, implying a total of

20,963 covered lives. For more information and descriptives statistics see Handel, Hendel

and Whinston (2015).

The sample used in our analysis includes individuals between the ages of 25 and 65 who

are present over a given two-year period in our data (two years are needed to estimate health

state transitions for those individuals). The sample displays ages close to uniformly spread

between 25 and 65, is 45% male, and has incomes dispersed over the full range we can

measure from Tier 1 (less than $41,000) to Tier 5 (greater than $176,000).

19One of the market configurations we consider, the ACA, does not entail full event insurance. Computing
welfare without full event insurance requires as an input the distribution of health expenses conditional onan
individual’s health state, rather than just its mean. See Handel, Hendel, and Whinston (2015).
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3.1 Health States

The most essential part of the data is the available information on diagnostics (ICD-9 codes)

of each individual in the sample. The diagnostic codes as well as other demographics are

fed into the ACG software developed at Johns Hopkins Medical School to create individual-

level measures of predicted expected medical expenses for the upcoming year relative to

the mean of the population.20 The output is an index that represents the health status of

each individual in the population. Since the ACG is used by insurers in their underwriting

processes, our empirics are based on similar information about risks that market participants

(insurers) have.21

We denote the ACG index by λ and we refer to λit as individual i’s “health state”at time

t. As the ACG score measures expected medical expenses, Assumption 1 in the previous

section holds by construction, though we verify that the higher predicted expenditures do

imply higher actual expenditures and vice-versa.

Table 1 presents the decomposition of health expenses between the predictable compo-

nent λ, and the deviation around this expectation. The former reflects heterogeneity and the

potential source of reclassification risk, while the latter captures the gains from spot insur-

ance (conditional on λ). For each age cohort, the first two columns show the mean expense

and the overall standard deviation around this mean. The last two columns then decom-

pose this standard deviation into the standard deviation of E[m|λ] and the average standard

deviation of medical expenses around E[m|λ]. The table illustrates that both within-period

insurance for expenditure risk and longer-run insurance for health state transitions are im-

portant aspects of consumer risk protection in this market. The large standard deviation

in E[m|λ] conditional on age suggests that there could be significant reclassification risk in

spot contracting environments, as well as meaningful adverse selection if community rating is

introduced (as under the Affordable Care Act), something that is shown in Handel, Hendel,

and Whinston (2015).

20We use the Johns Hopkins ACG (Adjusted Clinical Groups) Case-Mix System. It is one of the most
widely used and respected risk adjustment and predictive modeling packages in the health care sector,
specifically designed to use diagnostic claims data to predict future medical expenditures.
21This is one of the main advantages of our empirical strategy. Most of the literature on health insurance

estimates the distribution of risks from observed insurance choices and realized total medical expenditures.
Instead our measure of risk is based on diagnosis codes and professional diagnostics (the ACG index). The
distribution of risk is data, as opposed to being inferred from choice and expense realizations.
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Sample Total Health Expenditure Statistics

Ages Mean S. D. S. D. of E[m|λ] S. D. around E[m|λ]
All 6,099 13,859 6,798 9,228
25-30 3,112 9,069 4,918 5,017
30-35 3,766 10,186 5,473 5,806
35-40 4,219 10,753 5,304 6,751
40-45 5,076 12,008 5,942 7,789
45-50 6,370 14,095 6,874 9,670
50-55 7,394 15,315 7,116 11,092
55-60 9,175 17,165 7,414 13,393
60-65 10,236 18,057 7,619 14,366

Table 1: Sample statistics for total health expenditures for (i) the entire sample used in our
equilibrium analysis and (ii) 5-year age buckets within that sample. “Mean”column reports
the average medical cost for the relevant group; “S.D.”reports its standard deviation; “S.D.
of E[m|λ]”and “S.D. around E[m|λ]”columns decompose the overall standard deviation
into the parts related to the observable health state and the average of the residual variation.

3.2 Health State Transitions

The second key input into our empirical analysis are the health state transitions over time.

Once we have λit for every individual in the sample, we estimate the probabilistic health

state transition process as follows. First, we divide the λ into seven mutually exclusive and

exhaustive bins that each contain one-seventh of the final sample. Table 2 presents the pro-

portion of individuals in each age group in each of these seven health state categories, with

bin 1 being the healthiest, and bin 7 being the sickest. We then compute a separate

transition matrix for each five-year age group (e.g., transitions within cohort 25-30) using

the actual transitions of consumers within each age range. We limit the partition of the

health space to seven bins, and the age groups to five-year bins, to guarantee meaningful

support to estimate each probability in these transition matrices. The advantage of comput-

ing transitions of ACG scores as opposed to medical expense transitions is that the ACG is

based on persistent diagnostics. A broken arm probably does not affect significantly future

medical expense realizations while asthma does. In other words, the ACG eliminates tem-

porary expenses from the forecast of future expenses.22 We use the eight 7-by-7 transition

matrices for the five-year age bins from 25-65 as the foundation for modeling health state

persistence and transitions over time.23

22Admittedly, by defining transitions over ACGs we may miss potential information on what condition led
to the current ACG index that could entail different persistence.
23To study the long run predictive power of these one-year ACG transitions we compared the proportion

of individuals in each state at different ages in the sample, to the proportions predicted by the transition
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Health State by Age

Age 1 (Healthy) 2 3 4 5 6 7 (Sick)
25-30 0.49 0.19 0.14 0.07 0.04 0.03 0.04
30-35 0.41 0.18 0.13 0.08 0.06 0.06 0.07
35-40 0.27 0.30 0.13 0.06 0.09 0.07 0.09
40-45 0.19 0.28 0.16 0.09 0.12 0.08 0.10
45-50 0.01 0.15 0.32 0.15 0.13 0.12 0.12
50—55 0.00 0.10 0.25 0.19 0.15 0.16 0.15
55-60 0.00 0.01 0.01 0.25 0.24 0.28 0.22
60-65 0.00 0.00 0.00 0.18 0.24 0.26 0.31

Table 2: Health state by age, where consumers are divided into 7 bins of their predicted
medical spending (determined by their Johns Hopkins ACG predictive score) for the year
ahead.

Health State Transitions: 30-35 Year Olds
λt+1

λt 1 2 3 4 5 6 7
λt = 1 0.72 0.13 0.05 0.05 0.02 0.01 0.03
λt = 2 0.35 0.25 0.12 0.11 0.04 0.03 0.11
λt = 3 0.15 0.23 0.19 0.15 0.10 0.08 0.10
λt = 4 0.20 0.08 0.12 0.24 0.18 0.12 0.08
λt = 5 0.10 0.10 0.05 0.20 0.20 0.20 0.15
λt = 6 0.16 0.11 0.14 0.11 0.08 0.22 0.19
λt = 7 0.11 0.11 0.07 0.04 0.11 0.20 0.37

Table 3: Health state transitions from one year to the next, for 30-35 year olds.

Tables 3 and 4 present these transition matrices for ages 30-35 and 40-45 respectively.

Entries along the diagonal of each matrix reflect health state persistence, while off-diagonal

elements reflect health state changes. For example, 72% of consumers aged 30-35 who are

in the healthiest state bin in one year (λit = 1) are estimated to stay in that category for

the following year. Only 11% of these consumers begin the next year in one of the four

sickest bins (λit ∈ {4, 5, 6, 7}). On the other hand, 57% of consumers who begin the first

year in the sickest health state bin (λit = 7) begin the next year in one of the two sickest bins

(λit ∈ {6, 7}). Though the distributions of health are different for 40-45 year olds, health
states show similar persistence.

matrices for an individual who starts healthy at age 24. To assess the fit between predicted and actual
proportions, we ran a regression of actual on predicted proprortions. The coeffi cient on predicted proportions
is 0.95 and the R-squared 0.77. Splitting the sample for the ages 25 to 44, and 45 to 64, the R-squared are
0.89 and 0.63. While the predictive power of the latter is lower, it involves predictions on average 30 years
away, but is still quite a good fit.
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Health State Transitions: 40-45 Year Olds
λt+1

λt 1 2 3 4 5 6 7
λt = 1 0.57 0.27 0.08 0.01 0.01 0.04 0.02
λt = 2 0.21 0.37 0.14 0.14 0.05 0.05 0.04
λt = 3 0.08 0.16 0.29 0.18 0.10 0.13 0.07
λt = 4 0.09 0.14 0.19 0.17 0.20 0.12 0.09
λt = 5 0.05 0.10 0.24 0.23 0.10 0.12 0.16
λt = 6 0.04 0.14 0.09 0.20 0.18 0.09 0.27
λt = 7 0.00 0.03 0.03 0.17 0.20 0.20 0.37

Table 4: Health status transitions from one year to the next, for 40-45 year olds.

Age 30 Present value of expected expenses
health at various ages
state 30 31-35 36-40 31-65
1 1,131 16,888 20,066 135,132
2 2,290 22,184 20,482 140,884
3 3,780 25,155 20,761 144,159
4 3,975 25,752 20,810 144,809
5 5,850 29,228 20,960 148,450
6 10,655 28,854 20,853 147,950
7 18,554 33,366 20,988 152,618

Table 5: The table shows the present value of expected health expenses for different periods
(age 30, ages 31-35, 36-40, and 31-65), for an individual who at age 30 was in the respective
health state shown in each row of the first column.

The persistence embodied in these health state transitions is illustrated in Tables 5 and

6. Table 5 shows the net present value of expected medical expenses starting at age 30

for consumers in different health states at age 30. Table 6 shows the same for consumers

starting at age 40. The tables show that while there is significant persistence, much of it is

dissipated in 10 years, and to a large extent after 5 years.24 ,25

24The fact that expected costs depend very little on the health state 10 years prior is consistent with
actuarial mortality tables. There are two kinds of tables: “ultimate” tables are based on attained age
only, while “select and ultimate”tables report the death rate not only by attained age, but by years since
underwriting (namely, conditional on being in good health at that time). The tables converge as the years
since underwriting increase; 10 years after underwriting the rates are quite similar.
25In Appendix C we examine how the level of health state persistence affects welfare under optimal dynamic

contracts relative to our benchmarks. One point to note is that complete persistence would eliminate the
benefit of dynamic contracts as there would be no reclassification risk to insure once a consumer’s age 25
health state is realized.
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Age 40 Present value of expected expenses
health at various ages
state 40 41-45 46-50 41-65
1 1,131 19,587 24,317 119,397
2 2,290 23,827 24,753 124,126
3 3,780 28,023 25,096 128,705
4 3,975 28,993 25,127 129,710
5 5,850 30,851 25,236 131,690
6 10,655 33,376 25,316 134,304
7 18,554 38,403 25,552 139,532

Table 6: The table shows the present value of expected health expenses for different periods
(age 40, ages 41-45, 46-50, and 41-65), for an individual who at age 40 was in the respective
health state shown in each row of the first column.

3.3 Risk Preferences

The third ingredient is a consumer’s risk aversion, i.e., the degree to which consumption

smoothing over different states of the world is valued by consumers. To this end, we use the

risk preferences estimated from our data in Handel, Hendel, and Whinston (2015). There

we estimate a panel discrete choice model where risk aversion is identified by the choices

that households make conditional on their household-specific health expenditure risk for the

upcoming year. Consumers have constant absolute risk aversion (CARA) preferences:

u(c) = −1

γ
e−γc (6)

where c = y − p − o is consumption (which equals income less premium payments p and

out-of-pocket medical expenses o) and γ is the risk aversion parameter.26

Handel, Hendel, and Whinston (2015) estimate the distribution of γ which fits the ob-

served choices, given the choice sets available each year of the sample. The mean estimated

risk-aversion level is 0.000428 and the standard deviation in this mean from observed hetero-

geneity is 0.00001. The estimates fall within the range reported in the literature. See Handel,

Hendel, and Whinston (2015) for further discussion of these risk preference estimates.

In the next sections we use our median risk aversion estimate, γ = 0.0004. We also

consider the robustness of our conclusions with respect to the degree of risk aversion in

Section 6.1.
26In the model, we assume that consumers have zero price elasticity of demand for health care services,

which is why full insurance is effi cient in our setup. See Handel, Hendel, and Whinston (2015) for a discussion;
a correlation test, in the spirit of Chiappori and Salanie (2000), does not reject this assumption.
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Figure 1: Income paths for managers, non-managers, proportionally “downscaled”managers,
and flat net income.

3.4 Income Paths

The shape of the optimal contract depends on a consumer’s income path. Firms offer different

contracts to consumers with different income paths to maximize their lifetime expected

utilities conditional on breaking even and the lapsation constraint. In our analysis, we

consider the income paths of managers at the firm which are steepest, those of non-managers

which are flatter, and a baseline of a completely flat net income path.27 The latter eliminates

intertemporal consumption smoothing motives (for an individual who would pay a certain

premium in each period equal to her ex ante expected medical costs), as individuals with

flat net income do not want to use the contract as a mechanism to borrow or save, unlike

consumers with increasing or decreasing income profiles over time. The manager income path

is the steepest and highest dashed curve depicted in Figure 1, while non-managers’income

path is represented by the flatter curve comprised of dashes and dots. The bold dashed

curve is a proportionally scaled-down managers’income path that makes the present value of

lifetime income equal to that of a non-manager (which facilitates certain comparative statics

we present). The solid curve is a flat net income path. As can be seen in the figure, both

managers and non-managers have income that grows more quickly than expected medical

expenses, leading to steeper paths than the flat net income curve.

27The manager and non-manager income paths we use here are estimated in Handel, Hendel, and Whinston
(2015).
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4 Computation of Optimal Dynamic Contracts

Given estimated values of transitions f(·) and preferences u(·), income profile y, and a value
for δ, we derive the contracts described in Proposition 1 recursively. We first derive, for

each possible λT , the last period consumption levels c
y
T (λT ) = yT −E[mT |λT ] that would be

offered to a consumer in state λT by competitive firms. We then look at each possible state

λT−1 in period T − 1. We find cyT−1(λT−1) by doing a binary search over possible values for

the consumption guarantee cT−1, looking for the largest cT−1 that generates non-negative

profits for the insurer, taking account of the fact that the consumer will lapse in period

T (or, if retained, yield the insurer continuation profits of zero) in those states in which

cyT (λT ) > cT−1. We then continue backward in this fashion, with the transition matrix

being used to generate probabilities that the consumer is in each possible state at each

future date (which also generates the probability that the consumer will have lapsed by that

date).

More formally, for each period t, we denote by Cy
t the (T − t + 1) × 7 matrix of first-

period consumption guarantees whose (τ , s) element for τ > t and s ∈ {1, ..., 7} is cyτ (λτ = s),

a consumption guarantee that breaks even for a contract starting in period τ with health

state λτ = s, given the future guarantees described in Proposition 1 (which are, themselves,

contained in Cy
t+1). We start at t = T where, as noted above, cyT (λT = s) = yT −E[mT |λT =

s]. This gives us Cy
T . We then proceed iteratively backwards, deriving Cy

t given C
y
t+1 and

the transition probabilities. Specifically, Cy
t adds an additional row to C

y
t+1; each element

(t, s) of this row is the consumption guarantee cyt (λt = s). We derive cyt (λt = s) by doing a

grid search to find the (unique) value c such that

{yt − E(mt|λt = s)− c}+
{

T∑
τ=t+1

δτ−t
7∑
z=1

[yτ − E(mτ |λτ = z)− c] · Pτ (z|λt = s, Cy
t+1, c)

}
= 0,

(7)

where Pτ (z|λt = s, Cy
t+1, c) is the probability that, starting in health state λt = s in period

t, the health state transitions (λt+1, ..., λτ ) from period t to period τ are such that λτ = z

and cyt′(λt′) ≤ c for all t′ ∈ {t + 1, ..., τ}.28 The first term in curly brackets in (7) is the

expected profit in period t given the initial consumption guarantee c, while the second term

in curly brackets is the expected continuation profit and uses the fact that starting at the first

instance at which the consumer’s health state λτ is such that cyτ (λτ ) > c (i.e., the lapsation

constraint binds), the insurer’s continuation payoff is zero. We continue in this iterative

manner until we have derived Cy
1 , whose first row gives the initial consumption guarantees

offered in period-1 to consumers in each of the seven possible period 1 health states.

28These probabilities are computed using Cyt+1 and the transition matrices.
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5 Results

Using the data and computational approach described above, we find the consumptions and

premiums in optimal dynamic contracts. In what follows we first examine the structure of

these contracts, and then turn to welfare analysis.

5.1 Front-loading and Reclassification Risk

We describe first the extent of front-loading in the equilibrium contracts, and then consider

the amount of remaining reclassification risk. We begin by considering the contract for a

consumer with flat net income (corresponding to the solid curve in Figure 1), an income

path that creates no borrowing or savings motive.

In our context, a contract specifies a premium and resulting consumption level for each

possible history of states at each age from 25 to 65. There are too many histories and

concurrent premiums to present: instead we focus on select attributes of the contract. First,

we look in detail at the early contract periods, which provide intuition for the form of the

equilibrium contract over longer time horizons. The first-period premiums, actuarial costs,

and front-loading are presented in Table 7. In all but the worst state, premiums are larger

than actuarial costs: consumers front-load premiums to transfer utility to future states with

negative health shocks. For example, for the healthiest consumer at the beginning of the

year, the premium is $2,750 despite average costs of only $1,131.

The extent of front-loading rises as the consumer’s health state worsens to bin 5 out of 7,

and then declines to zero for the sickest bin of consumers (7 out of 7). The extent of front-

loading depends on both the current state and also on the implications of the current state for

future health. While the healthier type can afford the most front-loading, she might benefit

the least. This is why maximum front-loading occurs for consumers in the middle of the ex

ante health range, rather than for the healthiest consumers. The least healthy, on the other

hand, have very high costs (and, hence, high marginal utility of consumption) compared to

their expected future costs (recall Table 5); for them, front-loading isn’t worthwhile. It is

important to note that front-loading in this example is not driven by saving motives, since

net income is flat. Front-loading is done to enable inter-temporal insurance against poor

health state realizations.

Tables 8 and 9 present second-period premiums and consumptions, respectively, reflecting

the 7 x 7 possible histories up through the beginning of that period (health state at the

beginning of period 1 crossed with health state at the beginning of period 2). Certain

patterns are indicative of the longer-run structure of the contract. First, second-period

premiums and consumptions display extensive pooling which takes place in states for which

the lapsation constraint is not binding. For example, if a consumer was in the healthiest
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First-Year Equilibrium Contract Terms: Flat Net Income
λ1

1 2 3 4 5 6 7
Premium 2,750 4,155 6,008 6,130 8,885 11,890 18,554

First-Year Costs 1,131 2,291 3,780 3,975 5,850 10,655 18,554
Front-Loading 1,619 1,864 2,228 2,155 3,035 1,235 0
Consumption 52,550 51,145 49,292 49,170 46,415 43,410 36,746

Table 7: First-year contract terms in the equilibrium long-run contract for a flat net in-
come path, showing first-year premiums, expected costs, the extent of front-loading, and
consumption levels.

Second-Year Equilibrium Premiums: Flat Net Income First-Year
λ2 Premium

λ1 1 2 3 4 5 6 7
1 2,943 3,300 3,300 3,300 3,300 3,300 3,300 2,750
2 2,943 4,302 4,705 4,705 4,705 4,705 4,705 4,155
3 2,943 4,302 6,090 6,206 6,558 6,558 6,558 6,008
4 2,943 4,302 6,090 6,206 6,680 6,680 6,680 6,130
5 2,943 4,302 6,090 6,206 8,955 9,434 9,434 8,885
6 2,943 4,302 6,090 6,206 8,955 11,919 12,440 11,890
7 2,943 4,302 6,090 6,206 8,955 11,919 18,554 18,554

Table 8: First- and second-year premiums in the equilibrium long-run contract for a flat net
income path, as a function of the period 1 and period 2 health states.

possible state in period 1, all other second-year states have the same consumption of $52,550,

an amount equal to her first-year consumption. The lapsation constraint does not bind for

this consumer when λ2 > 1 because the first period front-loaded amount suffi ces to make

outside offers less attractive than the current consumption guarantee. Only when λ2 = 1

does the lapsation constraint bind for this consumer, resulting in an increase in consumption

to $52,905 (and a corresponding reduction in her premium).

The lapsation constraint binds for more and more second-year states the sicker the con-

sumer was at the start of the contract. For consumers initially in the sickest health bin

(λ1 = 7), all second-year health states involve different consumption levels that also dif-

fer from the period 1 consumption level: long-run contracts cannot provide any insurance

against reclassification risk in year 2 for this consumer as her first-year needs were so great

as to preclude any front loading. For this consumer, the long-run contract continuation in

year 2 simply matches the best contract she could get on the market given her second-year

health state.
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Second-Year Equilibrium Consumptions: Flat Net Income First-Year
λ2 Consumption

λ1 1 2 3 4 5 6 7
1 52,905 52,550 52,550 52,550 52,550 52,550 52,550 52,550
2 52,905 51,545 51,145 51,145 51,145 51,145 51,145 51,145
3 52,905 51,545 49,758 49,642 49,292 49,292 49,292 49,292
4 52,905 51,545 49,758 49,642 49,170 49,170 49,170 49,170
5 52,905 51,545 49,758 49,642 46,893 46,415 46,415 46,415
6 52,905 51,545 49,758 49,642 46,893 43,929 43,410 43,410
7 52,905 51,545 49,758 49,642 46,893 43,929 37,294 36,746

Table 9: First- and second-year consumptions in the equilibrium long-run contract for a flat
net income path, as a function of the period 1 and period 2 health states.

Equilibrium Front-loading: Flat Net Income
Contract Year

1 2 3 4 5 6 7 8 9 10
Mean Front-Loading 1,702 1,682 1,758 1,834 1,919 2,280 2,461 2,536 2,568 2,469
Max. Front-Loading 3,035 3,105 3,174 3,324 3,236 3,324 3,623 3,781 3,859 3,438

Table 10: Mean and maximum front-loading for each of the first ten years of the equilibrium
long-run contract.

It is diffi cult to display premiums beyond the first couple of years, as there are 7t−1histories

to consider in year t. For example, by year 10 there are over 40 million histories. Table 10

shows statistics associated with premiums for the first ten contract years including the mean

and maximum front-loading across possible histories. Specifically, the table shows for each

of the first ten years the mean front-loading (averaging across all possible histories, including

the possible age 25 health states, weighted by the probability of the histories).29 The second

row shows the maximum possible front-loading in each year, across these ten periods. Mean

front-loading increases over time from $1,702 in year 1 to $2,536 in year 9, and declines to

$2,469 in year 10. Maximum possible front-loading increases slightly over time through year

9, and also declines in year 10.

29Throughout our analysis, we assume that the consumer arrives at age 25 with the health distribution
given by the transitions from the healthiest state for 25-30 year olds (i.e., we take the age-25 health dis-
tribution to be that generated by one transition from λ = 1 using the transition matrix in Table 3). The
distribution of health states for 25-30 year olds implied by this assumption closely matches the distribution
in Table 2, as discussed in footnote 22.
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First-Year Equilibrium Contract Term: Downscaled Managers
λ1

1 2 3 4 5 6 7
Premium 1,678 3,165 5,256 5,449 8,245 11,593 18,554

First-Year Costs 1,131 2,291 3,780 3,975 5,850 10,655 18,554
Front-Loading 547 874 1,476 1,474 2,395 938 0
Consumption 32,022 30,535 28,244 28,051 25,255 21,907 14,946

Table 11: First-year contract terms in the equilibrium long-run contract for a downscaled
manager income path, showing first-year premiums, expected costs, the extent of front-
loading, and consumption levels.

5.2 Effects of Income Paths

The equilibrium contracts offered depend crucially on a consumer’s rate of income growth

over her lifetime. When income is relatively low early in life, front-loading is quite costly

and undesirable in the absence of well-functioning capital markets.

Table 11 presents first-period contract characteristics for “downscaled managers,”and is

the analog to Table 7 for flat net income. Recall that, as shown in Figure 1, a downscaled

manager income path proportionally scales down the income of a manager to match the

net present value of a non-manager’s lifetime income path. The table makes clear that

for downscaled managers, the extent of front-loading is much more limited than in the flat

net income case, which translates into less generous consumption guarantees later in life.

Essentially, the rapidly rising income makes paying extra early in life for long-term insurance

quite costly, as marginal utility is high early compared to what is expected later in life. For

example, a downscaled manager who is in the healthiest state at age 25 front-loads only

$547, compared to $1,619 for a consumer with flat net income.

Tables 12 and 13 show second-year premiums and consumption levels for downscaled

managers as a function of different health histories. Though front-loading is much more

limited, the year 2 health states in which the lapsation constraint binds, conditional on

the initial year 1 health state, are quite similar to those of consumers with flat net income

profiles.

5.3 Welfare

We now turn to the welfare analysis of these dynamic contracts. We measure and compare the

welfare they achieve to several alternatives. For each market setup and potential income path

considered, we compute a lifetime certainty equivalent. The certainly equivalent represents

the constant consumption for the forty years of life from age 25 to 65 that makes the consumer
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Second-Year Equilibrium Premiums: Downscaled Managers First-Year
λ2 Premium

λ1 1 2 3 4 5 6 7
1 1,699 3,204 3,524 3,524 3,524 3,524 3,524 1,678
2 1,699 3,204 5,011 5,011 5,011 5,011 5,011 3,165
3 1,699 3,204 5,289 5,478 7,102 7,102 7,102 5,256
4 1,699 3,204 5,289 5,478 7,295 7,295 7,295 5,449
5 1,699 3,204 5,289 5,478 8,279 10,090 10,090 8,245
6 1,699 3,204 5,289 5,478 8,279 11,615 13,439 11,593
7 1,699 3,204 5,289 5,478 8,279 11,615 18,554 18,554

Table 12: First- and second-year premiums in the equilibrium long-run contract for a down-
scaled manager income path, as a function of the period 1 and period 2 health states.

Second-Year Equilibrium Consumption: Downscaled Managers First-Year
λ2 Consumption

λ1 1 2 3 4 5 6 7
1 33,833 32,328 32,008 32,008 32,008 32,008 32,008 32,008
2 33,833 32,328 30,521 30,521 30,521 30,521 30,521 30,521
3 33,833 32,328 30,243 30,054 28,430 28,430 28,430 28,430
4 33,833 32,328 30,243 30,054 28,237 28,237 28,237 28,237
5 33,833 32,328 30,243 30,054 27,253 25,441 25,441 25,441
6 33,833 32,328 30,243 30,054 27,253 23,917 22,093 22,093
7 33,833 32,328 30,243 30,054 27,253 23,917 16,978 15,132

Table 13: First- and second-year consumptions in the equilibrium long-run contract for a
downscaled manager income path, as a function of the period 1 and period 2 health states.
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as well off as in a given market setup, ex ante.30 Specifically, we compare the certainty

equivalent of optimal dynamic contracts with one-sided commitment, denoted by CED, to

the three benchmarks we have described previously (see Section 2.1 for formal definitions):

(i) The first-best, fully-smoothed consumption C∗, which equates the marginal utility of
consumption across periods and states. This is the welfare achievable were long-term

contracts with two-sided commitment feasible.

(ii) The certainty equivalent from spot contracts that fully insure event risk in every period
and state, but leave reclassification risk across periods fully uninsured, denoted by

CESPOT ;

(iii) The constant consumption equivalent of the No Saving/No Borrowing constrained first
best, in which risk is fully insured in each period but neither borrowing nor saving is

possible, denoted C∗NBNS.

We also compare optimal dynamic contracts with one-sided commitment to an alternative

market design that has been used to cope with reclassification risk, ACA-like exchanges.

These markets have year-to-year contracts, but are community rated: they thus fully insure

premium reclassification risk, at the potential cost of creating adverse selection for within-

year coverage.

We compute welfare under ACA-like regulation imposing (i) one-year contracts, (ii) com-

munity rating (no health-state based pricing allowed), (iii) age-based pricing, (iv) a fully

enforced mandate, requiring coverage purchase, and (v) insurers that offer coverage of spe-

cific actuarial values, with a minimum plan that covers 60% of spending for an average

population. As shown in Handel, Hendel, and Whinston (2015), this market eliminates re-

classification risk, but induces adverse selection that reduces within-period event insurance.

The market unravels to minimum coverage (60%). Insurees end up responsible for 40% of

their costs on average. Because of the partial coverage, consumers face some future risk, not

from increased premiums, but rather from out-of-pocket expenses. We denote the certainty

equivalent of this outcome by CEACA. Notice that C∗NBNS is the same as this ACA outcome

except that it provides 100% coverage rather than unraveling to 60%; the difference between

C∗NBNS and CEACA therefore reflects the cost of adverse selection under the ACA.

To ease comparisons across different income paths, all profiles we consider have the same

net present value of income, except for the manager’s profile when it is not downscaled. In

the first best, where consumers are fully insured and income is fully smoothed over time, all

30By “ex ante”we mean prior to learning the age 25 health state. (See footnote 29 for a discussion of
how we determine that state.)
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income paths (except managers without downscaling) have a certainty equivalent of $53,666

(reflecting the present value of income minus expected medical expenses).

Column (2) shows welfare outcomes under spot contracts, with no protection for reclas-

sification risk. As column (6) shows, the welfare loss from spot contracting, relative to the

first best, is highest for relatively steep income profiles (40.9% for downscaled managers).

With steep income profiles, the first best both eliminates reclassification risk, and smooths

consumption over time. However, the welfare loss from spot contracts is substantial (13.8%)

even in the case of flat net income, where no intertemporal consumption smoothing is oc-

curing in the first best.31

Column (3) presents the certainty equivalent for dynamic contracts with one-sided com-

mitment, CED. As expected CED lies between C∗ and CESPOT . Column (7) shows the

fraction of the welfare gap between the first best and spot contracts that these dynamic con-

tracts close, CED−CESPOT
C∗−CESPOT . For flatter income profiles, dynamic contracts almost fully insure

reclassification risk and are quite close to first best: in the case of flat net income, 87.7%

of this gap is recovered by dynamic contracts. In contrast, since consumers with steeper

income profiles dislike front-loading, dynamic contracts only recover a small portion of this

welfare loss for steeper income profiles (10.8% for downscaled managers).

Column (4) shows C∗NBNS, the constant consumption equivalent of the constrained first-

best outcome that does not allow for intertemporal consumption smoothing. For situations

with rising net income, this may be a more relevant benchmark of how well optimal dynamic

contracts with one-sided commitment do at eliminating reclassification risk, since saving

and borrowing on their own can greatly improve utility for steep net income paths. Column

(8) therefore reports CED−CESPOT
C∗NBNS−CESPOT

, which shows the proportion of the gap between spot

contracting and this No-borrowing/No-saving benchmark that is closed by optimal dynamic

contracts. The progress made by dynamic contracts relative to this constrained first best is

a good deal higher than when using C∗ as a benchmark. Dynamic contracts get downscaled

managers 38.1% of the way to the constrained first best, instead of 10.8%, and those with

flat net income get 89.5% of the way to the constrained first best. In sum, dynamic contracts

are very effective at eliminating reclassification risk when net income paths are fairly flat,

but with rising income paths they are only partially effective.

Comparing columns (3) and (5) in Table 14 reveals that the ACA environment is pre-

ferred to the dynamic contracting environment for non-managers, managers, and downscaled

managers, whose incomes rise over time. For these individuals, the desire to front-load when

young and income is low is limited, which reduces the benefits from dynamic contracts. In-

terestingly, individuals with flat net income profiles prefer dynamic contracts to the ACA

31In Section 6.4 we extend this analysis to allow precautionary savings in the spot contracting regime.
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Certainty Equivalent ($1,000s) Gains from Long-term contracts
(1) (2) (3) (4) (5) (6) (7) (8)

Income C∗ CESPOT CED C∗NBNS CEACA
C∗−CESPOT

C∗
CED−CESPOT
C∗−CESPOT

CED−CESPOT
C∗NBNS−CESPOT

Flat net 53.67 46.27 52.77 53.53 51.30 13.8% 87.7% 89.5%
Non-mngr 53.67 40.73 44.10 47.39 46.25 24.1% 26.0% 50.6%
Manager 84.00 50.32 51.77 56.08 55.09 40.1% 4.3% 25.2%
Downs Mngr 53.67 31.74 34.10 37.93 36.84 40.9% 10.8% 38.1%

Table 14: Long-run welfare results showing the certainty equivalent consumption of different
insurance institutions under a discount factor of 0.975 for consumers with median estimated
constant absolute risk aversion equal to 0.0004.

environment, so the optimal market design depends on which of several types of income

paths individuals have.

Finally, note that the gap betweenCEACA andC∗NBNS reflects the cost of adverse selection

in the exchanges relative to the constrained first-best. Both regimes involve community

rating, the first with consumers buying plans with 60% actuarial value (due to adverse

selection) and the second with consumers in full insurance. This cost of adverse selection

ranges from roughly $1,000 per year (downscaled managers) to roughly $2,200 per year for

flat net income.

6 Extensions and Robustness

6.1 Risk Aversion

So far our analysis has used the median risk preferences estimated in Handel, Hendel, and

Whinston (2015). We now consider the robustness of the analysis with respect to the degree

of risk aversion. We are particularly interested in lower risk aversion. The reason is that we

are afraid our estimate of risk preferences, estimated from health insurance choice, might not

reflect consumers’risk tolerance for the larger stakes associated with reclassification risk.32

The scale of losses from reclassification risk is larger in our environment than in the setting

in which risk preferences were estimated.

Table 15 presents the welfare comparisons for risk aversion of 0.00008, five times lower

than that in our main analysis. To put the coeffi cients in perspective consider a lottery

that assigns the loss associated with each of the 7 health states, with each of them having

equal probability. (The expected health care costs are reported in Table 7.) Our 0.0004 risk

aversion coeffi cient estimate implies a willingness to pay of $7, 222 to avoid the uncertainty

32See Rabin (2000) for a discussion of issues with CARA and scaling of gambles.
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Certainty Equivalent ($1,000s) Gains from Long-term contracts
Income C∗ CESPOT CED C∗NBNS CEACA

CED−CESPOT
C∗−CESPOT

C∗NBNS−CESPOT
C∗NBNS

CED−CESPOT
C∗NBNS−CESPOT

Flat-net 53.67 52.47 53.62 53.67 52.85 95.8% 2.2% 95.8%
Non-mngr 53.67 50.91 51.70 51.84 51.35 28.6% 1.8% 85.0%
Manager 84.00 68.73 69.06 69.39 69.00 2.2% 1.0% 50.0%
Downs mngr 53.67 46.41 46.94 47.20 46.80 7.3% 1.7% 67.1%

Table 15: Long-run welfare results showing the certainty equivalent consumption of different
insurance institutions for a discount factor of 0.975 and constant absolute risk aversion equal
to 0.00008.

associated with this risky prospect. Instead, the lower risk aversion coeffi cient leads to a

willingness to pay of $1, 491.

Lowering risk aversion substantially reduces the loss associated with reclassification risk

(captured by the gap between C∗NBNS and CESPOT ). The loss is between 1.0% and 2.2%,

depending on the income path. For the higher 0.0004 risk aversion, the loss was between

13% and 41%. Still, a loss of 1-2% of lifetime certainty equivalent is not insubstantial.

While the loss from reclassification risk is lower, the gains from long-term contracting,

as captured by how much of the gap is recaptured by optimal contracts with one-sided

commitment, is larger. Optimal dynamic contracts come very close to eliminating the gap

for all income profiles. It appears that most of the welfare loss is eliminated with tolerable

levels of front-loading, while the remaining reclassification risk is not that harmful for the

less risk averse consumer.

The lower risk aversion not only attenuates the cost of reclassification risk, increasing

welfare under spot and dynamic contracts, but also lowers the losses from the partial coverage

of medical costs under the ACA. However, for lower risk aversion, dynamic contracts are

preferred to the ACA for all four income paths (although, as noted above, the losses due to

risk bearing are much smaller than before in both cases).

6.2 Switching Costs

Recent evidence from health insurance markets [Handel (2013), Ho et al. (2016)] points to

substantial inertia in insurance choice. Switching costs have the potential to improve how

dynamic contracts perform. Our basic model assumes that consumers lapse whenever they

get a better offer. As discussed in Section 2.4, switching costs relax the lapsation constraints,

which can enhance commitment and the welfare achievable with optimal dynamic contracts.
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Switching Cost Flat-net Non-manager Managers Downs mngr
0 52.76 44.10 51.77 34.10

100 52.79 44.16 51.85 34.17
1, 000 52.95 44.68 52.54 34.95
5, 000 53.39 46.45 55.07 36.92
10, 000 53.58 47.85 57.45 38.82
50, 000 53.66 51.67 65.37 44.72
100, 000 53.67 53.52 70.75 48.76
500, 000 53.67 53.67 84.00 53.67

C∗ 53.67 53.67 84.00 53.67
C∗NBNS 53.53 47.39 56.08 37.93

Table 16: Long-run welfare (in $1,000s) from optimal dynamic contracts (CED) under dis-
count factor of 0.975 and risk aversion of 0.0004 for different levels of switching costs and
four income profiles.

Table 16 shows the welfare achieved by dynamic contracts for different levels of switching

costs and our four income profiles. As expected, welfare is monotonic in the switching cost.

Relaxing the lapsation constraints enables the transfer of resources from good health states

to less fortunate ones. Qualitatively, as switching costs increase, from 0 to infinity, welfare

in the optimal dynamic contract with one-sided commitment approaches the first-best (two-

sided commitment) level.

Notice that while it takes an unreasonably large switching cost to achieve a welfare close

to first best, a switching cost of around $5,000 delivers welfare close to CEACA for consumers

with rising income paths, and a switching cost between $5,000 and $10,000 achieves welfare

comparable to C∗NBNS. The reason is that the commitment afforded by switching costs

helps in two ways. By lowering lapsation, commitment allows for a reduction in reclassifica-

tion risk. In addition, enhanced commitment enables the insurer to facilitate consumption

smoothing across periods. However, consumption smoothing through borrowing requires a

lot of commitment, especially when the income profile is steep. Thus, a substantial switching

cost is necessary to achieve the first best. Instead achieving the welfare level C∗NBNS requires

more modest inertia, as no consumption smoothing is involved.

Table 17 shows first and second-year consumption levels for a flat net income path and

switching costs of $5,000 and $1,000. It is interesting to note that for all second-year

states without a binding lapsation constraint consumption is higher with a higher switching

cost, while consumption is lower for second-year states with a binding lapsation constraint.
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First and Second-Year Consumptions: Switching Cost = 5,000 First Year
λ2 Consump

λ1 1 2 3 4 5 6 7
1 53,612 53,612 53,612 53,612 53,612 53,612 53,612 53,612
2 52,910 52,765 52,765 52,765 52,765 52,765 52,765 52,765
3 52,910 51,717 51,717 51,717 51,717 51,717 51,717 51,717
4 52,910 51,551 51,243 51,243 51,243 51,243 51,243 51,243
5 52,910 51,551 49,763 49,647 49,224 49,224 49,224 49,224
6 52,910 51,551 49,763 49,647 46,898 46,881 46,881 46,881
7 52,910 51,551 49,763 49,647 46,898 43,934 40,652 40,652

First and Second-Year Consumptions: Switching Cost = 1,000
1 53,088 53,088 53,088 53,088 53,088 53,088 53,088 53,088
2 53,010 51,733 51,733 51,733 51,733 51,733 51,733 51,733
3 53,010 51,651 50,001 50,001 50,001 50,001 50,001 50,001
4 53,010 51,651 49,901 49,901 49,901 49,901 49,901 49,901
5 53,010 51,651 49,863 49,747 47,162 47,162 47,162 47,162
6 53,010 51,651 49,863 49,747 46,998 44,301 44,301 44,301
7 53,010 51,651 49,863 49,747 46,998 44,034 37,759 37,759

Table 17: First and second-year consumptions for switching costs of $5,000 and $1,000 and
flat net income.

Namely, conditional on a history, higher switching costs enable transferring resources from

the good to the bad states.

6.3 Transitions

One of the key ingredients in our simulation are the health state transitions. While our

transition matrices, such as Tables 3 and 4, largely satisfy the stochastic dominance property

(Assumption A2), there are a few violations of this property.33 The violations probably

reflect the sparsity of individuals in some cells. To study the robustness of our results to

the transition matrices, we present equilibrium contracts using the transitions from a larger

employer with over 50,000 insured lives.34

Table 18 shows welfare for the new transitions. Qualitatively our results remain un-

changed. Quantitatively, overall welfare is a little lower due to a higher level of expected

medical costs (observe that C∗ is lower than before, so the reason has to be a higher level of

expected costs, rather than related to uncertainty). To compare to our original results, we

33The assumption is suffi cient for our characterization result (Proposition 1), but not necessary.
34We do not use these transition matrices in our main analysis out of a desire to have our transition

matrices and risk aversion estimates correspond to the same population.
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Certainty Equivalent (1,000s) Gains from Long-term contracts

Income C∗ CESPOT CED
C∗−CESPOT
CESPOT

CED−CESPOT
C∗−CESPOT

Flat net 51.22 44.60 49.98 14.8% 81.3%
Non-mngr 51.22 38.14 41.01 34.3% 21.9%
Manager 81.55 47.37 48.72 72.2% 4.0%
Downs Mng 51.22 28.87 31.01 77.4% 9.6%

Table 18: Welfare for alternative transition matrices obtained for employees of a larger
employer.

can rescale the numbers in Table 18 so that C∗ equals that in the analysis above; after this

adjustment, all of the welfare numbers with the alternative transitions are within 3% of our

base numbers, reported in Section 5.3.35

6.4 Precautionary Savings

So far we have not allowed for savings in our welfare calculations. From Proposition 1

we know that this is without loss of generality for the case of optimal contracts with one-

sided commitment. Consumers also would not want to engage in savings in the first best.

However, with spot contracting consumers may want to engage in precautionary savings to

lower the costs of reclassification risk. Individuals can save in good states to weather periods

of bad health. To study the impact of precautionary savings we solve a finite-horizon savings

problem, with the same underlying fundamentals as in our main analysis, namely, the same

income paths, risk preferences, and transition matrices. We find optimal savings starting at

age 25 given an income path and the actuarially fair health insurance premiums associated

with the different health states.36 Once we find optimal savings for each age and state, we

compute the certainty equivalent, which we denote by CESPOTwS (SPOTwS = “Spot with

Savings”).

35Note that we cannot compute an ACA welfare for this population because we lack data for this population
that would allow us to determine full distributions of medical expense risk.
36For each income profile, we solve a finite-horizon dynamic programming problem, from ages 25 to 65.

Starting at age 64, for a grid of saving values entering that period, the individual finds the optimal saving level
going into the last period that maximizes the sum of current utility from consumption and the discounted
value of the expected utility in the last period, where the expectation is taken for each state given the
transition matrices. Once we obtain the value function at age 64 for each possible health state and incoming
saving level, we proceed backwards all the way to age 25, where we obtain the discounted expected utility
starting in each possible health state. The ex-ante certainty equivalent is the certain consumption level that
makes the consumer indifferent to the expected utility of entering the dynamic problem before observing the
health realization at age 25.
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Certainty Equivalent (1,000s) % Gains
(1) (2) (3) (4) (5) (6)

Income CED CESPOTwS CESPOT
CED−CESPOT

CESPOT

CESPOTwS−CESPOT
CED−CESPOT

CED−CESPOTwS
CENSNB−CESPOTwS

Flat net 52.77 50.45 46.27 14.1% 64.3% 75.3%
Non-mngr 44.10 42.38 40.73 8.3% 49.0% 34.3%
Manager 51.77 50.82 50.32 2.9% 34.5% 18.1%
Downs mngr 34.10 32.75 31.74 7.4% 42.8% 26.1%

Table 19: Long-run welfare allowing for precautionary savings under spot contracts. The
certainty equivalent of spot contracting with precautionary savings is denoted by CESPOTwS.

Table 19 shows the welfare effect of precautionary savings. As the spot contracting

with precautionary savings outcome is feasible in our dynamic problem with one-sided com-

mitment, CESPOTwS lies between CES and CED. Savings enable the consumer to transfer

resources to future periods, to be consumed in periods of high marginal utility from consump-

tion. Optimal dynamic contracts, however, do better, as they allow for state-specific savings.

By charging state-contingent premiums the optimal contract enables equating consumption

across all states in which the lapsation does not bind. As well, the optimal contract transfers

no resources to the most fortunate states.

Column (5) shows that precautionary savings closes between 42% and 65% of the gap be-

tween welfare with optimal dynamic contracts and spot contracting without savings. Column

(6) gives the fraction of the welfare gap between the no-borrowing/no-savings constrained

first-best outcome and the spot contracting with precautionary savings outcome that is

closed by optimal dynamic contracts. As in our earlier analysis, dynamic contracts close a

significant fraction of this gap with flat net income, but less when net incomes are increasing

with age.

6.5 Initial Health State

In our analysis we have assumed that a 25-year-old’s health state is observable and priced

when contracting starts. As a result, individuals who arrive at age 25 in different health

states may face very different outcomes.

Table 20 presents welfare when contracting starts in various health states at age 25, for a

non-manager income path. Starting in a good initial state has a limited impact on first-best

welfare because of the relatively temporary nature of a poor initial health state. However,

it has a dramatic effect on the welfare achieved under optimal dynamic contracts with one-

sided commitment because starting in a poor health state makes front-loading much less

attractive. As a result, there is a dramatic effect of the age-25 health state of a consumer on
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Welfare and Initial Health ($1,000s): Non-managers
Initial state

C∗ CED CESPOT CESPOTwS Subsidy Break-even subsidies
Ex ante 53.67 44.10 40.73 42.19 46.70
λ1:
1 53.76 47.20 41.79 43.70 − −1.74
2 53.56 46.05 40.82 42.71 4.20 1.79
3 53.35 44.55 39.36 41.21 9.10 6.47
4 53.29 44.34 39.23 41.05 10.27 7.57
5 53.08 42.10 37.37 39.25 15.62 12.88
6 52.86 39.47 37.26 37.87 21.07 18.27
7 52.50 33.16 33.04 33.10 30.43 27.69

E[·] 1.93 —

Table 20: Non-manager welfare from alternative contracting institutions for alternative initial
states λ1, and the subsidies required to give all 25-year old non-manager consumers the same
lifetime welfare with dynamic contracting as if they were in the healthiest state.

her lifetime welfare under this regime. The situation with spot contracts (with or without

precautionary savings) is intermediate.

These welfare results raise the question of how much ex ante welfare would be increased

with optimal dynamic contracts if consumers were insured for the risk they bear that arises

from uncertain age-25 health, perhaps through some form of government insurance. The

next-to-last column of Table 20 shows the subsidy that is required in each age-25 health

state to give a consumer facing the dynamic contracting environment the same welfare as if

they were in the healthiest age-25 state.37 The expected value of these subsidies, using the

probabilities of the various possible health states at age 25, is given in the last row of the

table: the government would incur a cost of $1,930 per consumer to achieve this. The last

column instead reports the expected revenue-neutral age-25 taxes and subsidies that would

insure this risk, and (at the top of the column) the resulting certainty equivalent of $46,704.

With this balanced-budget government scheme, the welfare from dynamic contracts slightly

exceeds that in the (non-risk-adjusted) ACA-like market for these consumers (reported in

Table 14).

37For each state we find the subsidy that, when added to the first year of the consumer’s income path,
leads to a certainty equivalent of $47,200 with an optimal dynamic contract.
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7 Comparison to Pauly, Kunreuther, and Hirth (1995)

and Cochrane (1995)

Pauly, Kunreuther, and Hirth (1995) (PKH) propose guaranteed renewable contracts as a

solution to prevent reclassification risk. In contrast to the long-term contracts described

in Proposition 1, PKH aim to design a policy that provides full insurance in each period

and guarantees that the consumer can renew in the future at the same premium as would

be offered to the healthiest consumer type at that age. The idea is that a consumer with

such a policy never wishes to lapse and faces no uncertainty in their consumption (i.e, no

reclassification risk). In the context of our model, these policies provide a consumer who

starts period 1 in the healthiest possible state (λ1 = 1) with the guaranteed consumption

path {yt − pt}Tt=1, where the period t premium pt is (we denote by λt = 1 the healthiest

possible state in period t):38

pt = E[mt|λt = 1] +
∑
τ>t

δτ−t{E[mτ |λt = 1]− E[mτ |λt+1 = 1]} for t = 1, ..., T (8)

To understand this formula, consider a case in which T = 2. In period 2 (the last period),

the consumer pays a premium equal to p2 = E[m2|λ2 = 1], the expected medical expenses of

the healthiest possible period 2 consumer. In period 1, the consumer pays a premium of

p1 = E[m1|λ1 = 1] + δ{E[m2|λ1 = 1]− E[m2|λ2 = 1]}
= E[m1|λ1 = 1] + δ Pr(λ2 > 1|λ1 = 1){E[m2|λ2 > 1]− E[m2|λ2 = 1]}

The first term is the consumer’s expected period 1 medical costs (since he starts with λ1 = 1),

while the second term is the prepayment of the expected period 2 discount being offered to

the consumer (which he enjoys when it turns out that λ2 > 1). In a problem in which

T = 3, period 2 and 3 premiums would be as just described, while in the first period the

consumer would prepay the value of the expected period 2 premium discount: Pr(λ2 > 1|λ1 =

1){
∑

τ=2,3 δ
τ−1E[mτ |λ2 > 1]− E[mτ |λ2 = 1]} =

∑
τ=2,3 δ

τ−1{E[mτ |λ1 = 1]− E[mτ |λ2 = 1]}.
The fact that the PKH policies differ from those described in Proposition 1 points to

two limitations of the PKH approach. First, unlike the contracts described in Proposition

1, the PKH contracts do not optimally balance the benefits of reducing reclassification risk

against the costs of front-loading; indeed, as formula (8) makes clear, the PKH contract is

unaffected by a consumer’s income path and risk preferences. The PKH contracts go to

the extreme of completely preventing reclassification risk, resulting in a fully deterministic

38We provide the derivation in Appendix D.
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consumption path but excessively low initial consumption.39 Second, because PKH contracts

do not optimize in this way, they are actually not lapsation-proof in periods t ∈ [2, T − 1] if

insurers offer optimal dynamic contracts: the healthiest types would actually be drawn away

by a firm offering the contracts described in Proposition 1.40

Cochrane (1995) proposes a different scheme to protect consumers from reclassification

risk: premium insurance purchased in each period t that pays the consumer the change in

the present discounted value of his future medical expenses at the start of the next period,

equal to ∑
τ>t

δτ−(t+1){E[mτ |λt+1]− E[mτ |λt]}

As Cochrane notes, however, this policy has the problem that the consumer would have to

pay the insurer when the evolution of his expected future health expenses is better than

expected, which may be impossible to enforce.

One possible solution to this problem would be to have the consumer pre-pay the max-

imum possible ex post payment up front as part of her premium.41 In each period t the

consumer would pay a premium of

E[mt|λt] +
∑
τ>t

δτ−t{E[mτ |λt]− E[mτ |λt+1 = 1]} (9)

and in each period t + 1 (for t < T ) the insurer would pay the consumer the non-negative

amount

Payment =
∑
τ>t

δτ−(t+1){E[mτ |λt+1]− E[mτ |λt]}+
∑
τ>t

δτ−(t+1){E[mτ |λt]− E[mτ |λt+1 = 1]}

=
∑
τ>t

δτ−(t+1){E[mτ |λt+1]− E[mτ |λt+1 = 1]} ≥ 0, (10)

equal to the change in expected medical expenses plus the repayment (with interest) of the

second term in (9). Subtracting the period t payment [(10) modified to be for period t]

from the period t premium (9), we see that the net premium payment in each period t for a

consumer who begins with λ1 = 1 is exactly the PKH premium (8).

39PKH’s Proposition 2 asserts that their contract is Pareto optimal, but their argument assumes that
“capital markets are perfect,”when the motivation for considering these contracts to begin with was precisely
the presence of capital market imperfections that prevent the payment of all lifetime premiums up front [see
Pauly, Kunreuther, and Hirth (1995, p. 146)].
40This lapsation problem in the PKH contract arises only if T ≥ 3.
41Cochrane (1995) proposes a different approach: an account that has to be used to receive and make

these premium insurance payments. Unfortunately, Cochrane’s assertion that such an account would never
run into a negative balance for a consumer who starts out healthy is incorrect. For example, a consumer
who starts healthy (λ1 = 1) and remains healthy (λt = 1 for all t > 1) would need to make payments in
every period.
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7.1 Empirical Comparison of PKH and Optimal Dynamic Con-
tracts

Using formula (8), we calculate that the initial PKH premium paid by a healthy 25-year old

is about 27% higher than the initial premium paid by a healthy 25-year old individual with

flat net income in the optimal dynamic contract.42 ,43 For a consumer with a flat net income

path, the excessively low initial consumption required to eliminate all reclassification risk

translates into a lower welfare: CEPKH = 49, 509, which is 3.6% lower than the certainty

equivalent that this consumer would have with an optimal dynamic contract. The welfare

loss from the PKH contract relative to an optimal contract increases with rising income paths:

for example, for a healthy 25-year old downscaled manager we find that CEPKH = 31, 159,

resulting in a loss of 16.6% compared to an optimal dynamic contract, while for a non-

manager CEPKH = 42, 758 which represents a 16.0% welfare loss.

8 Conclusion

In this paper we have studied the potential for long-term contracting in health insurance

markets to insure against reclassification risk when insurers, but not consumers, can commit

to the contract and consumers are unable to borrow to pre-pay premiums. We character-

ized optimal contracts, and quantified their positive and normative implications relative to

alternative market designs using detailed individual-level data on health risks, health state

transitions, insurance choices, and income profiles for the employees of a large firm.

Optimal dynamic contracts exhibit front-loading at early ages, thereby enabling con-

sumption guarantees that reduce reclassification risk. These guarantees can also be provided

by offering an equivalent guaranteed premium path whose year-to-year increases match the

consumer’s income growth. Moreover, when framed as guaranteed premium path contracts,

these optimal contracts —which differ according to a consumer’s income path and risk pref-

erences —are self-selective, in the sense that consumers with differing types will choose the

contract that is designed for them.

Empirically, we find that optimal dynamic contracts for our population of consumers

exhibit substantial front loading: at age 25 a healthy consumer with a flat net income path,

for example, pays a premium of $2,750 compared to expected medical costs of only $1,131.

42In this section we use the transition matrices described in Section 6.3 for the employer with a larger
population of covered individuals. The reason is that the PKH contract is very sensitive to the transition
matrices later in life.
43At age 25 the value of the second term in equation (8), representing the premium pre-payment that

is required in the PKH contract, is $4,604. This amount divided by δ (= 0.975) is also the end-of-period
amount that the consumer would need to pay out in the event that she remained healthy (with λ26 = 1) to
achieve the first best in the reclassification-risk insurance scheme proposed by Cochrane (1995).
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However, a healthy “downscaled manager,”whose income rises steeply over time would front

load much less, paying a premium of $1,678. We find that the welfare implications of optimal

dynamic contracts also depend crucially on the steepness of a consumer’s income path:

Optimal dynamic contracts with one-sided commitment almost achieve the first-best for

consumers with flat net income paths, but offer less improvement over spot market contracts

(with or without precautionary savings) for consumers with rising income profiles, for whom

front-loading to facilitate reclassification risk insurance is quite costly. This intuition carries

over to the welfare comparison between dynamic contracts and ACA-like markets: consumers

with flatter income profiles prefer dynamic contracts but those with steeper income profiles

prefer ACA-like markets.

We also considered several extensions of our main analysis. We find that lower consumer

risk aversion, which reduces the costs of reclassification risk, makes optimal dynamic con-

tracts nearly achieve the first best for all income paths. While lower risk aversion also

improves the performance of other contracting institutions, with low risk aversion dynamic

contracts offer higher welfare than an ACA-like market for all income paths. (Of course, the

differences in welfare are smaller when risk aversion is lower.) Higher switching costs also

improve the performance of dynamic contracts, which can achieve a level of welfare com-

parable to the ACA with switching costs on the order of $5,000. We also show that those

consumers who are in poor health at age 25 do particularly poorly with dynamic contracts,

as their high medical needs at that age preclude front loading. Insuring consumers against

the risks of their age 25 health realization would cost the government approximately $2,000

per consumer. Alternatively, a revenue-neutral government tax/subsidy scheme can insure

this pre-age-25 risk, resulting in welfare similar to that in an ACA-like exchange.

In sum, dynamic contracts offer a way to reduce reclassification risk without requiring

community rating as in the ACA. However, with rising incomes we find in our base specifi-

cation that the ACA approach (even without effective risk adjustment) offers greater lifetime

welfare. This conclusion can be reversed, though, if consumers’risk aversion is lower (in

which case risk-bearing has much smaller, though not insubstantial, welfare consequences),

consumers face significant switching costs, or the government insures pre-age-25 (i.e., pre-

contracting) risk.

A natural question, then, is whether there are other factors that might in practice limit the

use of dynamic contracts, but that we have abstracted from. We conclude with a discussion

of this issue.

Our model has abstracted from a number of factors that could potentially reduce the

benefits of dynamic contracts. One concern is that firms may have diffi culty forecasting

future medical cost levels, an issue that does not arise in markets such as life insurance
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in which long-term contracts are prevalent. Moreover, this risk is not fully diversifiable.44

Nonetheless, this need to forecast can be alleviated (in part) by indexing future guaranteed

premiums to medical cost inflation indices, which also would allow for a sharing of the risk

between firms and consumers.

Another potential problem is that consumer lock-in might lead to quality degradation

by insurers. However, it would seem that insurers’ quality incentives would actually be

enhanced in some dimensions, as they would have increased incentives to promote long-term

health. Lock-in could also reduce a consumer’s ability to re-match with firms if firm-specific

preferences change (Atal (2015)).45

One might also be concerned that front-loaded contracts would be unappealing to “young

invincibles,”a group that has been diffi cult to attract into the ACA market. However, for

these consumers (i.e., 25 year old consumers with λ25 = 1) the optimal contract’s $2,750

premium for the case of flat net income is less than the average medical cost for 25-30 year

olds (equal to $3,112), which would be the premium in an age-based community rating

environment with full insurance. For healthy 25-year-old downscaled managers the optimal

contract premium is even less: $1,678.

Perhaps the most serious current limitation on the benefits of dynamic contracts is that

consumers have a tax-based incentive to use employer-based insurance when it is available

to them, which can limit the duration of consumers’involvement in the individual market.

For example, in the pre-ACA world, while some consumers purchased individual insurance

over long periods of time, many others used it as a short-term solution between employment

spells, leading median duration in the individual market in one study to be less than 2

years [Marquis et al (2006); see also Herring, Song, and Pauly (2008)]. Short durations can

greatly reduce the benefits of a long-term contract.46 In addition, those older consumers

newly arriving to the individual market with pre-existing conditions (perhaps because of a

job loss) would still face reclassification risk, much as in our discussion of unhealthy 25-year-

old consumers in Section 6.5, perhaps necessitating some sort of government insurance (such

as high-risk pool subsidies).

Another way to address this question is to look at the extent to which dynamic contracts

are used in practice. In the U.S., before the ACA mandated annual policies, few explicitly

44The need to forecast could also introduce “winner’s curse”type concerns, as firms who attract a lot of
business would tend to be those whose forecasts of future medical cost inflation are unreasonably low.
45This problem would be greatly reduced if health insurance products were purely financial.
46Introducing an exogenous probability of break up into our model is equivalent to lowering the discount

rate, provided that separation payments upon break up cannot be made. With a discount factor of 0.5
(which generates an expected duration of 2), optimal dynamic contracts close only 36.8% of the gap between
spot contracts and the no-borrowing/no-savings benchmark for a consumer with flat net income.
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dynamic contracts seem to have been offered.47 Nonetheless, it does appear that there were

important dynamic aspects to the contracts offered to consumers. While good evidence on

the workings of the pre-ACA individual market is limited, it appears that in most states

insurers faced guaranteed renewability regulations that prevented them from re-pricing a

policy to continuing customers on an individual basis [Patel and Pauly (2002)].48 There is also

evidence that these constraints, where present, did in fact significantly limit reclassification

risk consumers faced once enrolled in a policy [Marquis and Buntin (2006), Herring and Pauly

(2006), Herring, Song, and Pauly (2008)].49 ,50 At the very least, this suggests that insurers

can deal with considering dynamic concerns in their pricing of policies. However, why

insurers did not offer optimal dynamic contracts to improve upon the regulated guaranteed

renewable policies is an open question; whether these regulated contracts were close to

optimal, whether instead insurance regulations made it diffi cult to do so, or whether other

impediments existed (such as the short average duration of consumers in the individual

market) is not clear.

Of course, the high number of uninsured consumers in the pre-ACA world is well-

documented. It is not clear that optimal dynamic contracts will significantly help with

this problem, especially given that some form of dynamic contracting seems to have been

part of the pre-ACA environment. In part, this high rate of uninsurance may have been due

to problems of adverse selection [Hendren (2013)] and the availability of free care through

various means [Mahoney (2015)]. As well, the poor may have a low demand for high-cost

medical expenditures given their limited wealth, and hence also a low demand for insur-

ance that covers such care. As a result, significant expansion of comprehensive insurance,

whether via dynamic contracts or annual contracts, may require large government subsidies.

What our analysis shows is that significant insurance of reclassification risk may be effec-

tively provided via long-term contracts that are risk-rated, rather than through short-term

community-rated policies, provided that consumers enroll when young and healthy.

47One attempt to do so is described in http://www.nytimes.com/2008/12/03/business/03insure.html (ac-
cessed Feburary 23, 2017). The possible adoption of the ACA may have reduced demand for this policy.

48Insurers were generally free to set initial premiums based on health status (Kaiser Family Foundation
(2012)), and could also raise a policy’s premiums on a non-individual basis, although potentially subject to
state-level regulatory constraints. The pool of customers in a policy generally worsened over time due to
attrition of the healthiest consumers (much as in our theory) and insurers would raise rates over time to the
continuing pool of customers (so-called “durational rating”). This ability to raise rates did allow insurers to
avoid medical cost inflation risk, as a policy’s premiums could be increased in response to cost increases.
49However, consumers with pre-existing conditions needing to insure for the first time in the individual

market (perhaps because of a job loss) faced risk-rating in most states.
50Similar regulations are present in Germany and Chile, as noted in Browne and Hoffman (2013) and Atal

(2016), respectively. Germany requires premiums to be constant over time, although they are indexed, much
as we discussed above. In Chile firms face restrictions on how they initially risk rate and also a band limiting
the range of policy-level price increases, although average policy-level price increases are unregulated.
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9 Appendix A: Characterization of Equilibrium Con-

tracts with One-Sided Commitment

In this appendix, we characterize equilibrium contracts with one-sided commitment, allowing

for a switching cost σ ≥ 0 that represents the consumer’s consumption loss should she

switch. Proposition 1 follows as the special case in which σ = 0. Specifically, we establish

the following result:

Proposition 3 The equilibrium contract in a competitive market with one-sided commit-

ment for a consumer of type θ = (y, u) who cannot borrow and has a switching cost σ ≥ 0 is

characterized by a collection of consumption guarantees {cθσt (λt)}, where each cθσt (λt) is the

consumption guarantee offered to the consumer in the first period of a break-even (i.e., zero

subsidy) contract starting in period t when the consumer is in health state λt. The consumer

who agrees to a contract in period 1 when in health state λ1 enjoys in each period t following
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health state history (λ1, ..., λt) the certain consumption maxτ≤t c
θσ
τ (λτ ). Consumers have no

incentive to save after agreeing to the contract.

We begin by specifying the contract design problem recursively, and then provide a series

of characterization results that collectively establish Proposition 3.

9.1 The period T problem

Suppose that the period T state is (λT , ST , σT ), where ST is the discounted expected loss that

can be sustained from that period on (i.e., the available subsidy), and σT is the switching

cost the consumer incurs in period T (which equals 0 if he is not switching and equals σ if

he is). Consider the following problem, whose value is V T (λT , ST , σT ):

maxcT (·)
∫
u(cT (mT )− σT )dFT (mT |λT )

s.t.
∫
cT (mT )dFT (mT |λT ) ≤ ST + yT − E[mT |λT ]; γT

(11)

The FOC for this problem is

u′(cT (mT )− σT ) = γT for all mT

So we have

cT (mT ) = ST + yT − E[mT |λT ]

and

V T (λT , ST , σT ) = u(ST + yT − E[mT |λT ]− σT )

Observe, that we can rewrite problem (11) as

maxCT (·)
∫
u(CT (mT ))dFT (mT |λT )

s.t.
∫

(CT (mT ) + σT )dFT (mT |λT ) ≤ ST + yT − E[mT |λT ]; γT

and in turn as

maxCT (·)
∫
u(CT (mT ))dFT (mT |λT )

s.t.
∫
CT (mT )dFT (mT |λT ) ≤ (ST − σT ) + yT − E[mT |λT ]; γT

(12)

which shows that V T (λT , ST , σT ) = V T (λT , ST − σT , 0). That is, having the consumer

incur a consumption loss of σT due to switching is equivalent to having the loss that can be

sustained by the firm be ST −σT . Intuitively, we can think of the firm as first compensating
the consumer for the switching cost, and then devising the optimal consumption level given

a subsidy of ST − σT .
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It will be convenient to define the value function VT (λT , ST − σT ) ≡ V T (λT , ST − σT , 0),

which is the value of problem (12). Observe that this value function is strictly concave in

ST since ∂2VT (λT , ST )/∂S2
T = u′′(ST + yT −E[mT |λT ]), and by Assumption A1 we also have

strict increasing differences in (λT , ST ) since ∂VT (λT , ST )/∂ST = u′(ST + yT −E[mT |λT ]) is

strictly increasing in λT .

9.2 The period t problem

Suppose the period t state is (λt, St, σt). (As above, σt equals 0 if the consumer is not

switching and equals σ if he is.) Consider the following problem, whose value is V t(λt, St, σt):

maxct(·),St+1(·)
∫

[u(ct(mt, λt+1)− σt) + δV t+1(λt+1, St+1(mt, λt+1), 0)]dFt(mt, λt+1|λt)

s.t.

∫
[ct(mt, λt+1) + δSt+1(mt, λt+1)]dFt(mt, λt+1|λt) ≤ St + yt − E[mt|λt]; γt

V t+1(λt+1, St+1(mt, λt+1), 0) ≥ V t+1(λt+1, 0, σ) for all (mt, λt+1); µt(mt, λt+1)

(13)

Remark 1 The second constraint is the lapsation constraint.

Remark 2 Note that ct(mt, λt+1) and St+1(mt, λt+1) also depend on (λt, St, σt), the state

entering period t. We do not include these arguments to simplify notation. Below, for

example, we report some results on how changes in the state (λt, St, σt) affect ct(mt, λt+1)

and St+1(mt, λt+1).

Following similar logic as for the period T problem, we can rewrite problem (13) as

maxCt(·),St+1(·)
∫

[u(Ct(mt, λt+1)) + δV t+1(λt+1, St+1(mt, λt+1), 0)]dFt(mt, λt+1|λt)

s.t.

∫
[Ct(mt, λt+1) + δSt+1(mt, λt+1)]dFt(mt, λt+1|λt) ≤ (St − σt) + yt − E[mt|λt]; γt

V t+1(λt+1, St+1(mt, λt+1), 0) ≥ V t+1(λt+1, 0, σ) for all (mt, λt+1); µt(mt, λt+1)

(14)

Thus, we have:

Lemma 1 V t(λt, St, σt) = V t(λt, St − σt, 0) for all (λt, St, σt)

As in the period T problem, it is convenient to define the value function Vt(λt, St−σt) ≡
V t(λt, St − σt, 0)
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Corollary 1 The lapsation constraint can be written as St(mt, λt+1) ≥ −σ.

Proof. From Lemma 1, the inequality V t+1(λt+1, St+1, 0) ≥ V t+1(λt+1, 0, σ) is equivalent

to the inequality V t+1(λt+1, St+1, 0) ≥ V t+1(λt+1,−σ, 0), which holds if and only if St ≥ −σ.

As a result, we can rewrite problem (14) as the following problem, whose value is

Vt(λt, St − σt):

maxct(·),St+1(·)
∫

[u(ct(mt, λt+1)) + δVt+1(λt+1, St+1(mt, λt+1)))]dFt(mt, λt+1|λt)

s.t.

∫
[ct(mt, λt+1) + δSt+1(mt, λt+1)]dFt(mt, λt+1|λt) = St − σt + yt − E[mt|λt]; γt

δft(mt, λt+1|λt) · St+1(mt, λt+1) ≥ −δft(mt, λt+1|λt) · σ for all (mt, λt+1); µt(mt, λt+1)

(15)

Remark 3 We write the second constraint with δft(mt, λt+1|λt) (which is strictly positive)
to simplify statement of the FOC (17) below. We also write the budget constraint as an

equality, as it will clearly bind at the solution.

9.3 Equilibrium Contract Characterization

Since without loss of generality the equilibrium contract prevents lapsation, it solves (12)

and (15) with σt = 0 for all t. We now characterize its solution. We do so through an

inductive argument. We have already seen that VT (λT , ST ) is strictly concave in ST and

has strictly increasing differences in (λT , ST ). In considering the period t problem, we now

assume that Vt+1(λt+1, ST+1) is strictly concave in St+1 and has strictly increasing differences

in (λt+1, St+1). The characterization results below will imply that the same properties hold

for the value function Vt(λt, St).

The FOC for problem (15) are:

u′(ct(mt, λt+1)) = γt for all (mt, λt+1) (16)
∂Vt+1(λt+1, St+1(mt, λt+1))

∂St+1

= γt − µt(mt, λt+1) for all (mt, λt+1) (17)
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Condition (16) implies that ct is independent of (mt, λt+1). We can therefore rewrite problem

(15) for σt = 0, whose value is Vt(λt, St), as:

maxct,St+1(·) u(ct) + δ
∫
Vt+1(λt+1, St+1(mt, λt+1))dFt(mt, λt+1|λt)

s.t.
ct + δ

∫
St+1(mt, λt+1)]dFt(mt, λt+1|λt) = St + yt − E[mt|λt]; γt

δft(mt, λt+1|λt) · St+1(mt, λt+1) ≥ −δft(mt, λt+1|λt) · σ for all (mt, λt+1); µt(mt, λt+1)

(18)

The FOC for this problem are (17) and

u′(ct) = γt for all (mt, λt+1) (19)

We now establish a number of lemmas characterizing the solution of this problem.

Lemma 2 Vt(λt, St) is strictly concave in St.

Proof. Let [ct, St+1(·)] be the solution of problem (18) for (λt, St) and [c′t, S
′
t+1(·)] 6=

[ct, St+1(·)] be the solution for (λt, S
′
t). Consider the problem for (λt, S

ρ
t ) where Sρt = ρSt+(1−

ρ)S ′t for ρ ∈ (0, 1). In this problem [cρt , S
ρ
t+1(·)] is feasible, where cρt = ρct+(1−ρ)c′t and S

ρ
t+1 =

ρSt+1 + (1− ρ)S ′t+1. Moreover, because u(·) is strictly concave and Vt+1(λt+1, St+1) is strictly

concave in St+1, [cρt , S
ρ
t+1(·)] achieves a value strictly larger than ρVt(λt, St)+(1−ρ)Vt(λt, S

′
t),

which implies that Vt(λt, S
ρ
t ) > ρVt(λt, St) + (1− ρ)Vt(λt, S

′
t).

Lemma 3 St+1(·) is independent of mt.

Proof. Suppose St+1(mt, λt+1) > St+1(m′t, λt+1) for some mt and m′t 6= mt. Then

∂Vt+1(λt+1, St+1(m′t, λt+1))

∂St+1

>
∂Vt+1(λt+1, St+1(mt, λt+1))

∂St+1

Moreover, since St+1(mt, λt+1) > St+1(m′t, λt+1) ≥ −σ, we have µt(m′t, λt+1) ≥ µt(mt, λt+1) =

0. But this contradicts (17).
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So, letting f t(λt+1|λt) be the marginal conditional distribution of λt+1 given λt, we can

rewrite the period t problem (for σt = 0) as

maxct,St+1(·) u(ct) + δ
∫
Vt+1(λt+1, St+1(λt+1))f t(λt+1|λt)dλt+1

s.t.
ct + δ

∫
St+1(λt+1)f t(λt+1|λt)dλt+1 = St + yt − E[mt|λt]; γt

δf t(λt+1|λt) · St+1(λt+1) ≥ −δf t(λt+1|λt) · σ for all λt+1; µt(λt+1)

(20)

Its FOC are (19) and

∂Vt+1(λt+1, St+1(λt+1))

∂St+1

= γt − µt(λt+1) for all λt+1 (21)

Lemma 4 St+1(·) is nondecreasing in λt+1.

Proof. Suppose St+1(λt+1) > St+1(λ′t+1) where λt+1 < λ′t+1. Then

∂Vt+1(λ′t+1, St+1(λ′t+1))

∂St+1

>
∂Vt+1(λt+1, St+1(λ′t+1))

∂St+1

>
∂Vt+1(λt+1, St+1(λt+1))

∂St+1

,

where the first inequality follows because Vt+1(λt+1, St+1) has strict increasing differences in

(λt+1, St+1) and the second because Vt+1(λt+1, St+1) is strictly concave in St+1. Moreover,

since St+1(λt+1) > St+1(λ′t+1) ≥ −σ, we have µt(λ′t+1) ≥ µt(λt+1) = 0. But this contradicts

(21).

The next three results show how the consumption and the subsidy varies with the state

(λt, St) (only the last of the three is necessary for the proof of Proposition 3).

Lemma 5 ct is strictly increasing in St, and γt is strictly decreasing in St.

Proof. By the Envelope Theorem, ∂Vt(λt, St)/∂St = γt. Since Vt(λt, St) is strictly

concave in St, γt is strictly decreasing in St. By (19), this implies that ct is strictly increasing

in St.

Lemma 6 For all λt, St+1(λt+1) is nondecreasing in St at all λt+1.

Proof. Consider St > S ′t. Denote the solutions [ct, St+1(·)] and [c′t, S
′
t+1(·)] respectively.

Consider state λt+1. The result is immediate if S ′t+1(λt+1) = −σ so suppose that S ′t+1(λt+1) >
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−σ. Then µ′t(λt+1) = 0. Since γt < γ′t by Lemma 5 and µt(λt+1) ≥ µ′t(λt+1), (21) implies

that we must have

∂Vt+1(λt+1, S
′
t+1(λt+1))

∂St+1

>
∂Vt+1(λt+1, St+1(λt+1))

∂St+1

which, in turn, implies that St+1(λt+1) > S ′t+1(λt+1) by the strict concavity of Vt+1(λt+1, St+1)

in St+1.

Lemma 7 ct is strictly increasing in λt, and γt is strictly decreasing in λt.

Proof. Suppose that λ′t > λt but γ′t ≤ γt. Denote the solutions for (λt, St) and (λ′t, St)

by [ct, St+1(·)] and [c′t, S
′
t+1(·)] respectively. Then, by (21) and Lemma 2, for all λt+1 such

that St+1(λt+1) > −σ, we have S ′t+1(λt+1) ≥ St+1(λt+1). Thus, S ′t+1(λt+1) ≥ St+1(λt+1) at

all λt+1. Assumptions A1 and A2, plus Lemma 4, then imply that

St + yt − E[mt|λt]− δ
∫
St+1(λt+1)f t(λt+1|λt)dλt+1

> St + yt − E[mt|λ′t]− δ
∫
St+1(λt+1)f t(λt+1|λ′t)dλt+1

≥ St + yt − E[mt|λ′t]− δ
∫
S ′t+1(λt+1)f t(λt+1|λ′t)dλt+1

so the budget constraint implies that c′t < ct. But this violates (19) when γ′t ≤ γt —a

contradiction.

Lemma 8 Vt(λt, St) has strictly increasing differences in (λt, St).

Proof. Since, by the Envelope Theorem, ∂Vt(λt, St)/∂St = γt, the result follows from

Lemma 7.

Lemmas 2 and 8 establish that the induction hypothesis is valid. We now argue that the

above lemmas establish Proposition 3.

Note from (21) for the period t problem that the states in which the lapsation constraint

does not bind (so that St+1 > −σ) have equal marginal utilities of St+1, equal to γt. This

implies (using the Envelope Theorem for the period t+1 problems) that they have equal

γt+1, which in turn implies that they have equal ct+1. Moreover, γt = γt+1 in those states,

so ct = ct+1. The states in which lapsation constraint does bind in the period t problem

have marginal utilities of St+1 that are strictly less than γt. Hence, again from the Envelope

Theorem, in these states we have γt+1 < γt, which implies that ct+1 > ct. Thus, the contract

can be thought of as starting with a guaranteed consumption, which gets bumped up to

a new higher guaranteed consumption whenever the lapsation constraint binds. The new
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higher guaranteed consumption level is exactly the first-period consumption in the optimal

contract that would start at that date and health state if the consumer were to start with a

new firm, incurring the switching cost σ (since St+1 = −σ at that continuation).51

Finally, observe as well that γt is weakly falling (and ct is weakly increasing) along any

realized path. As a result, the consumer never has any desire to save.

10 Appendix B: Self Selection

We first establish the following Lemma:

Lemma 9 Let p = (pτ , ..., pT ) and p̂ = (p̂τ , ..., p̂T ) be guaranteed premium paths (that start

in period τ) such that p̂ ≥ p. Suppose that (i) the insurer earns a non-negative expected

continuation payoff when guaranteed premium path p is chosen in period τ by a type θ con-

sumer in health state λτ (given the consumer’s optimal lapsation behavior), and (ii) under

premium path p, in every period t > τ and health state λt in which a type θ consumer op-

timally does not lapse, the insurer’s expected continuation payoff is non-positive. Then the

insurer’s expected continuation payoff is non-negative when premium path p̂ is chosen by a

type θ consumer in health state λτ .

Proof. Let U(t, λt) and Û(t, λt) denote the type θ consumer’s continuation payoffat state

(t, λt) given optimal lapsation behavior under p and p̂ respectively. Let Λ(t) and Λ̂(t) denote

the set of health states at which the consumer optimally lapses in period t, under p and p̂

respectively; ΛNL(t) and Λ̂NL(t) are the complementary sets at which the consumer does

not lapse. Finally, let Π(t, λt) and Π̂(t, λt) denote the insurer’s expected continuation payoff

at state (t, λt) given the consumer’s optimal lapsation behavior under p and p̂ respectively.

Assumption (i) therefore says that Π(τ , λτ ) ≥ 0, while assumption (ii) says that Π(t, λt) ≤ 0

if t > τ and λt ∈ ΛNL(t) [of course, Π(t, λt) = 0 for all λt ∈ Λ(t)].

Note, first, that U(t, λt) ≥ Û(t, λt): starting in period t, the consumer who faces p could

adopt the same lapsation behavior as when facing p̂ and receive a weakly higher continuation

payoff since under p she would be facing lower prices. Her optimal lapsation behavior yields

a still higher payoff. Next, the fact that U(t, λt) ≥ Û(t, λt) implies that Λ(t) ⊆ Λ̂(t): in any

health state in which the consumer lapses in period t when facing p, she also lapses when

facing p̂. Finally, consider the expected payoff of the insurer starting at state (τ , λτ ) under

p. This is the probability weighted average of the payoffs achieved along the various possible

sequences of health states (λτ , ..., λT ). For each sequence the insurer earns premiums and

51Equivalently, it is the guaranteed consumption level that would be offered to a consumer who incurs no
switching costs but faces firms who must earn an expected discounted profit equal to σ.

51



incurs costs until the consumer lapses. Since Λ(t) ⊆ Λ̂(t), each such sequence hits lapsation

weakly earlier under p̂ than under p. Since, under path p, Π(t, λt) ≤ 0 if t > τ and

λt ∈ ΛNL(t), the earlier termination behavior under Λ̂ (but earning the same premiums p

prior to lapsation) would weakly raise the expected payoff earned by the insurer for the

sequence by changing a non-positive expected continuation payoff into a continuation payoff

of zero. Moreover, the fact that the premiums earned until lapsation are higher under p̂ than

under p, while the expected costs are the same, means that a change from premium path p

to path p̂, holding lapsation behavior fixed at Λ̂, would further raise the insurer’s expected

payoff earned from this health state sequence. As a result, Π(τ , λτ ) ≤ Π̂(τ , λτ ).

We next establish the following Lemma:

Lemma 10 Suppose that in each period t ≥ τ the menu of contracts offered to a consumer

who is in health state λt and wishes to sign a new contract is the set of optimal contracts

for that consumer, {pθt (λt)}θ∈Θ,λt∈∆, and that moreover, in each period t > τ this menu is

self-selective. Then an insurer earns a non-negative continuation expected NPV if in period

τ type θ′ consumer in health state λτ chooses the guaranteed premium path pθτ (λτ ) that is

intended for a type θ consumer in health state λτ .

Proof. The proof is by induction. Consider the following induction hypothesis:

Induction Hypothesis: Under contract pθτ (λτ ), if starting in period t > τ the consumer

has not yet lapsed, lapsation behavior of type θ′ starting in period t is either (A) the

same as for type θ (meaning, it is the same after any history of health states between

periods τ and t and sequence of decisions not to lapse), or (B) different and raises

the expected continuation payoff of the insurer starting in period t compared to the

continuation payoff the insurer receives when facing a type θ consumer.

Observe that the Induction Hypothesis holds if t = T , since then lapsation behavior is

the same for type θ′ as for type θ —both types lapse if and only if E[mT |λT ] < pθT , where p
θ
T

is the last period price in guaranteed premium path pθτ (λτ ) ≡ (pθτ , ..., p
θ
T ).

Now suppose that the Induction Hypothesis holds for periods t, ..., T , and consider period

t − 1 (≥ τ + 1) after some previous history of health states and a sequence of decisions in

which the insured has not yet lapsed. Suppose first that, under pθτ (λτ ), period t−1 lapsation

behavior is different for type θ′ than for type θ in a health state λt−1 in which type θ would

not lapse. Then since the lapsation constraint in problem (20) requires that St−1(λt−1) ≥ 0

in the solution to the type θ problem in period t − 1, lapsation by type θ′ in state λt−1

would remove a continuation that had a weakly negative continuation expected payoff for

the insurer when facing type θ and replace it with a zero payoff when facing type θ′.

52



Suppose, instead, that state λt−1 is one in which type θ would lapse in period t − 1,

choosing a contract with premium path p̂, while type θ′ does not lapse. We will show

that this changes what would have been a zero payoff continuation for the insurer into a

continuation with a non-negative expected payoff when facing type θ′. By the self-selection

assumption, we know that the contract p̂ type θ chooses is pθt−1(λt−1), the optimal guaranteed

premium path contract for that consumer, so the insurer offering that contract breaks even.

Note now that since that contract induces the type θ consumer to lapse there is a ∆ > 0

such that p̂k = pθk − ∆ for all periods k ≥ t − 1 (this is true because the two guaranteed

premium paths differ only in offering different initial premiums and then the premium change

each period equals the change in the type θ’s income). Hence, by Lemma 9, if the type θ

consumer were instead not to lapse from path pθτ (λτ ) ≡ (pθτ , ..., p
θ
T ) in this state, the insurer’s

expected continuation payoff would be non-negative. But the Induction Hypothesis then

implies that it is also non-negative when the type θ′ consumer does not lapse in this state:

the insurer’s payoffs in period t − 1 from the two types are the same as both the premium

paid and the expected medical costs are the same for the two types. The transitions to the

period t state λt are also the same. But, by the Induction Hypothesis, the insurer’s expected

continuation payoff under contract pθτ (λτ ) is weakly higher starting in period t when facing

the type θ′ consumer than when facing a type θ consumer. So the Induction Hypothesis

holds in period t− 1, and hence —applying induction —in period 2.

Finally, consider period τ . The argument is similar to that above: If a type θ′ consumer

in health state λτ chooses the premium path pθτ (λτ ) intended for a type θ consumer in health

state λτ , the insurer’s first period costs are the same as if a type θ consumer in health state

λτ had chosen that contract, and the transitions to health states in the next period are the

same as well. If the lapsation behavior starting in period τ + 1 were the same, the insurer

would break even. But, we have just concluded that if the lapsation behavior is different,

the insurer’s expected continuation payoff must be weakly higher. Thus, the insurer must

have a non-negative expected payoff when a type θ′ consumer in health state λτ chooses

contract pθτ (λτ ) in period τ .

Apply induction

We now prove Proposition 2:

Proof. of Proposition 2: We suppose that, in each period t = 1, ...T , the menu

of optimal guaranteed premium path contracts {pθt (λt)}θ∈Θ,λt∈∆ is offered, where pθt (λt) ≡
{yt − cθt (λt)}Tt=1. The proof is by induction. Consider the following induction hypothesis.

Induction Hypothesis: In each period t > τ the menu is self-selective: that is, if a

consumer of type θ agrees to a new contract she chooses that type’s optimal contract

pθt (λt).
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The hypothesis is clearly true for τ = T , as given any previous history the menu {pθT (λT )}
is a singleton with pT = E[mT |λT ], and hence necessarily self-selective. Now suppose it is

true for some τ ; we argue that it is then also true for τ − 1. From Lemma 10 we know that

if a type θ consumer chooses in period τ − 1 when in health state λτ−1 the contract intended

for her then the insurer breaks even, but if she chooses instead the contract intended for type

θ′ the insurer earns a non-negative profit. But the policy intended for the type θ consumer

maximizes the type θ consumer’s discounted expected utility subject to the constraint that

the insurer at least break-even. The policy intended for type θ′ was therefore feasible for

type θ, which implies that it cannot be preferred by type θ.

Apply induction.

Remark 4 The proof goes through unchanged if we also allow consumers to have unob-
servable risk aversion coeffi cients. It does not go through, however, if consumers have

unobservable switching costs. This makes sense: As discussed in Sections 2.4 and 6.2,

high switching costs can, for example, allow the consumer to borrow, but a low-switching cost

consumer would then find it worthwhile to misrepresent his type, borrow and then lapse.

11 Appendix C: Effects of Health State Persistence

In this Appendix we explore the effects of health state persistence on the welfare achieved

under various contracting institutions. To illustrate the effects of greater persistence, we

derive the optimal contracts and corresponding welfare using transition matrices representing

the weighted average of the identity matrix (with weight ρ ∈ {0, 1]) and uniform transition

probabilities (namely, from any state there is 1/7 probability to transition to any state). The

identity matrix represents full persistence, which is captured by ρ = 1. Instead for low ρ

the states become less persistent, and in the extreme case of ρ = 0 the state is independent

of past health. Note also that, with this transition process, ex ante (prior to the realization

of λ1) expected medical expenses are independent of ρ. We assume here flat income (since

expected health care costs are independent of age, this also represents flat net income).

Table 21 reports the welfare achieved in the first best (C∗), with spot contracting

(CESPOT ), with optimal dynamic contracts with one-sided commitment (CD), and with

spot contracts with precautionary savings possible (CESPOTwS).52 (Since we have flat net

income, C∗NBNS = C∗ here.) The last two columns show the percentage welfare gain from

optimal dynamic contracts versus spot contracting and versus spot contracting with precau-

tionary savings. Observe that greater persistence has no effect on welfare for either the

52Precautionary savings was discussed in Section 6.4.
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ρ C∗ CSPOT CED CSPOTwS
CED

CESPOT

CED
CESPOTwS

0 47.05 39.83 45.59 44.45 1.14 1.03
0.3000 47.05 39.83 45.17 43.45 1.13 1.04
0.5000 47.05 39.83 44.72 42.68 1.12 1.05
0.7000 47.05 39.83 43.94 41.78 1.10 1.05
0.9000 47.05 39.83 42.12 40.64 1.06 1.04
0.9999 47.05 39.83 39.84 39.83 1.00 1.00

Table 21: Welfare for alternative transition matrices capturing health state persistence. With
probability ρ the state is unchanged, and with probability 1− ρ the state is a random draw,
with equal probabilities, of the seven possible states.

first best or spot contracting regimes. The first best is unaffected by persistence because

expected medical expenses are independent of ρ. Welfare with spot contracting is also inde-

pendent of ρ because the ex ante distribution of premiums in any period is independent of

ρ and preferences are additive across time periods. Once precautionary savings is allowed,

however, welfare is greater the lower is ρ, as precautionary savings can smooth out short-run

shocks to medical expenses, but accomplishes less when those shocks are persistent; as shocks

become perfectly persistent, precautionary savings provides no benefit at all. Finally, the

welfare achievable by optimal dynamic contracts with one-sided commitment is declining

in the level of persistence. Indeed, in the limit as ρ approaches 1 welfare with dynamic

contracts approaches the level with spot contracting (with or without precautionary sav-

ings) as, in that limiting case, there is no reclassification risk to insure once the consumer’s

age-25 health state is realized. The gains of optimal contracts over spot contracts declines

montonically in ρ, while it is inverse U-shaped when there is precautionary savings.

12 Appendix D: PKH premiums

Consider one-period contracts signed in each period t in return for the premium pt(λt) paid

at signing that does the following:

• fully insures period t health expenses

• if t < T , pays in addition the amount pt+1(λt+1)− pt+1(1) [where pt+1(1) is the period

t+ 1 premium for the healtiest period t+ 1 health state, λt+1 = 1, at the start of the

next period t+ 1].

These contracts pay an amount that gurantees that the insured’s outlays for the next

period contract (net of the insurance payout from the previous period) always equal the

amount that the healtiest type would pay.
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The premiums for these contracts will in equilibrium be:

pT (λT ) = E[mT |λT ]

and for t < T ,

pt(λt) = E[mt|λt] + δE{pt+1(λt+1)− pt+1(1)|λt}

The next result derives an expression for the premium paid in period t, corresponding to

expression (8) in the text.

Lemma 11 For all t, pt(λt) = E[mt|λt] +
∑

τ>t δ
τ−t{E[mτ (λτ )|λt]− E[mτ (λτ )|λt+1 = 1]}

Proof. Clearly true in period T . Suppose it is true for all periods τ > t. To see it is

true in period t , we substitute and use the Law of Iterated Expectations:

pt(λt) = E[mt|λt] + δ{E[pt+1(λt+1)|λt]− pt+1(1)}
= E[mt|λt] + δE{E[mt+1|λt+1] +

∑
τ>t+1

δτ−(t+1){E[mτ (λτ )|λt+1]− E[mτ (λτ )|λt+2 = 1]|λt}

−δ{E[mt+1|λt+1 = 1] +
∑
τ>t+1

δτ−(t+1){E[mτ (λτ )|λt+1 = 1]− E[mτ (λτ )|λt+2 = 1]}

= E[mt|λt] + δ{E[mt+1|λt] +
∑
τ>t+1

δτ−(t+1)E[mτ (λτ )|λt]

−δ{E[mt+1|λt+1 = 1] +
∑
τ>t+1

δτ−(t+1){E[mτ (λτ )|λt+1 = 1]}

= E[mt|λt] +
∑
τ>t

δτ−t{E[mτ (λτ )|λt]− E[mτ (λτ )|λt+1 = 1]}
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