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Abstract

This paper aims to estimate a structural macro finance model of term struc-

ture based on the approximate solution of a standard dynamic general equilib-

rium model with nominal rigidities. To capture the nonlinearity that can con-

tribute to a more precise analysis of the dynamics of macro variables and the

yield curve, we apply a second order approximation of the equilibrium condi-

tions to solve the model. New closed-form solutions for bond yields are proposed

to make estimation practically feasible. We estimate the model based on US

data by Bayesian methods. Our results provide clear macroeconomic interpre-

tations of term structure factors such as level, slope, and curvature. Also, our

analysis favors the explanation that the downward trend of the level of the yield

curve and term premia after the early 1980s is primarily related with changes

in monetary policy. However, the impact of the Volcker disinflation policy on

this decline is found to be delayed.
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1 Introduction

Recent empirical studies on the macroeconomics of term structure(Ang and Piazzesi

(2003), Diebold et al. (2006) among others) show a close link between macroeco-

nomic variables and bond prices. They incorporate macroeconomic variables into

factors that explain the entire set of yields. In spite of the inclusion of macro fac-

tors into models, they still retain unobserved term structure factors to explain the

yield curve dynamics. These latent factors are often called “level,”, “slope,”, and

“curvature,”. Since latent factors themselves are not amenable to economic interpre-

tations, many papers search for macroeconomic variables that are highly correlated

with them. For example, Diebold et al. (2006) and Rudebusch and Wu (2004)

associate the level with inflation or the inflation objective of the central bank. The

slope is found to be linked with capacity utilization. But the corresponding macro

variable for the curvature is not provided in this literature.

By contrast, clear economic interpretations of latent factors are possible when we

use equilibrium bond yields implied by a structural macro model in the analysis since

model implied bond yields are entirely determined by macroeconomic fundamentals.

While the estimation of a dynamic stochastic general equilibrium (DSGE) model is

by now a widespread practice among researchers, bond yields data are rarely used

in the estimation even though the model implies equilibrium bond yields. When

bond yields data are used, risk premia are restricted to be time-invariant in most

cases by the nature of the popular log-linear approximation of the macro model.

The log-linear approximation eliminates nonlinear terms generating time-varying

risk premia. Otherwise, the underlying macro model is used to obtain only macro

dynamics while bond prices are obtained from an exogenously given stochastic dis-

count factor. Nonetheless both ways ignore nonlinear terms implied by the model.

However, recent developments in the nonlinear analysis of DSGE models (An and

Schorfheide (2006), Fernández-Villaverde and Rubio-Ramı́rez (2006) etc.) show that

DSGE models solved with nonlinear methods can be estimated. This paper extends

their framework and considers bond yields data as well as macro data. Specifically,

we study term structure implications of a New Keynesian DSGE model solved with
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a second order approximation to equilibrium conditions. New closed-form expres-

sions for bond yields are proposed to make the joint estimation practically feasible.

Our solutions for bond yields are much faster than numerical solutions in Ravenna

and Seppälä (2006) and more accurate than closed-form solutions in Hördahl et al.

(2005b). No exogenous components accounting for time varying risk premia added

to the model.

Equilibrium bond yields derived in this paper are regarded as discrete time

counterparts of bond yields in a continuous time quadratic term structure model.

(e.g. Ahn et al. (2002)) The no-arbitrage restriction in a quadratic term structure

model does not imply constant risk premia which are implied by the affine term

structure model derived from the log-linear approximation. We magnify the model’s

ability to generate time varying risk premia by adding an autoregressive conditional

heteroskedasticity (ARCH)effect of a structural shock. Combining the approximate

macro dynamics with the quadratic term structure, we can represent the whole

model as a special case of nonlinear state space models.

We estimate the model based on US data and obtain estimates of unobserved

macro factors. We find the level of the yield curve is strongly related to a persistent

shock to the target inflation of the central bank, while the curvature of the yield

curve is dominated by a monetary policy shock. The slope of the yield curve is

highly related with a markup shock which is a real disturbance. The association of

the slope with a real factor is in line with empirical findings in Diebold et al. (2006)

and Evans and Marshall (2002) Also, the time variation of the term premium is

found to be highly correlated with that of the target inflation shock. Our analysis

indicates that the downward trend of the target inflation after the early 1980s drove

down both the level of the yield curve and the term premium at the same time. In

spite of these successes in identifying macro sources of the yield curve dynamics,

the model fails to match some predictive moments. The mean term premium is

underpredicted in the model compared to the actual sample moment.

The target inflation estimated by using both macro and term structure data

sheds new lights on the Volcker disinflation episode from 1979:QIV to 1982:QIV.
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The rapid fall of inflation after the early 1980s is regarded as evidence on the success

of the Volcker disinflation policy as suggested by Clarida et al. and (2000) Sargent

et al. (2006). However, the expected inflation reflected in long term bond rates

declined more slowly than the actual inflation. The long term rates showed a sharp

peak in the second quarter of 1984 even though the actual inflation did not increase

much. Goodfriend (1993) and Goodfriend and King (2005) observed the initial

Volcker disinflation policy was not so credible and the credibility was only established

after fighting the inflation scare in the second quarter of 1984. In line with their

observations, the estimated target inflation in our empirical analysis indicates that

the sluggish responses of long term rates to the Volcker disinflation policy were

related to the lingering suspicion of the disinflation policy. The finding is further

confirmed by the high correlation between estimated target inflation and inflation

forecasts from survey data.

Our work is closely related to the literature on term structure implications of the

log-linearized New Keynesian model. Hördahl et.al. (2005a) and Rudebusch and Wu

(2004) estimate the log-linearized New Keynesian model jointly with macro and term

structure data. However, they do not use stochastic discount factor implied by the

underlying structural model. In Bekaert et al. (2005), the stochastic discount factor

derived from the log-linearized New Keynesian model is used to compute equilibrium

bond yields. They find that the level of the yield curve is driven by the target

inflation of the central bank while the slope and the curvature are mainly related

to monetary policy shocks. However, the conclusion that all the term structure

factors are dominated by nominal disturbances seems to be extreme and at odds

with the conclusion of other papers relating some of the time variation of the yield

curve with real factors, such asDiebold et al. (2006), Evans and Marshall (2002),

and Ludvigson and Ng (2005) etc. Compared with the micro evidence on nominal

rigidities, the estimate of the degree of price stickiness in Bekaert et al. (2005) seems

to be bigger. Our estimate is more in line with the estimate from micro data. For

the degree of nominal rigidities compatible with the micro evidence, there is a room

for real disturbances to explain the yield curve dynamics.
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The paper is organized as follows. Section 2 describes the model economy and

presents the second order approximation to the solution of the model. Section 3

proposes a new method to construct measurement equations for bond yields under

a second order approximation. Section 4 describes the econometric methodology

used. Section 5 discusses the prior-posterior analysis based on the estimation of

the model using US dataset. Section 6 discusses the identification of term structure

factors. Section 7 provides implications of the yield curve for impacts of the Vol-

cker disinflation policy. Section 8 concludes. Technical details are provided in the

appendix.

2 Model Economy

A small scale New Keynesian model which has been widely used in business cycle

and monetary policy analysis is considered in this paper. Woodford (2003) pro-

vides an excellent discussion of many variations of this kind of model. Our model

closely follows the prototypical New Keynesian model studied in An and Schorfheide

(2006). To improve asset pricing implications of the model, we introduce a kind of

internal habit formation mechanism into the utility function. A similar specifica-

tion is considered in Ravenna and Seppälä (2006). Shocks to the target inflation of

the central bank and the desired markups of firms are allowed as done in Bekaert

et.al. (2005), for example. But unlike the existing literature, an autoregressive con-

ditional heteroskedasticity (ARCH)effect of a shock to the desired markup of a firm

is introduced as a device to amplify time variations of term premia.

2.1 Private Agents

The production sector in the economy consists of two parts. The one is the perfectly

competitive final good sector and the other is the intermediate goods sector made of

a continuum of monopolistically competitive firms. The final good sector combines

each intermediate good indexed by j ∈ [0, 1] using the technology
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Yt = (
∫ 1

0
Yt(j)

ζt−1
ζt dj)

ζt
ζt−1 (1)

The representative firm in the final good sector maximizes its profit given output

prices Pt and input prices Pt(j). The resulting input demand is given by

Yt(j) = (
Pt(j)
Pt

)−ζtYt (2)

Hence, ζt > 1 represents the elasticity of demand for each intermediate good.

Production technology for intermediate good j is linear with respect to labor.

Yt(j) = AtNt(j) (3)

where At is an exogenously given common technology and Nt(j) is the labor

input of firm j. We assume labor market is perfectly competitive and denote the

real wage as Wt. Firms in the intermediate goods sector face nominal rigidities in

the form of quadratic price adjustment cost.

ACt(j) =
φ

2
(

Pt(j)
Pt−1(j)

− π?
t )

2Yt(j) (4)

Here φ is a parameter governing the degree of price stickiness in this economy

and π?
t is the target inflation of central bank in terms of the price of the final good.

Firm j decides its labor input Nt(j) and the price Pt(j) to maximize the present

value of profit stream1

Et[
∞∑

s=0

βsλt+s(
Pt+s(j)
Pt+s

Yt+s(j)−Wt+sNt+s(j)−ACt+s(j))] (5)

where λt+s is the marginal utility of a final good to the representative household

at time t + s, which is exogenous from the viewpoint of the firm.

1The price of the final good is given by Pt = (
R 1

0
Pt(j)

1−ζtdj)
1

1−ζt .
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The representative household maximizes its utility by choosing consumption

(Ct), real money balance(Mt
Pt

), and labor supply(Ht). We deflate consumption by

the current technology level to ensure a balanced growth path for the economy.

Also, we introduce a kind of internal habit formation into the utility function. The

specification corresponds to the closed economy version of Lubik and Schorfheide

(2005). The objective function of the household is given by

Et[
∞∑

s=0

βs(
(Ca

t+s/At+s)1−τ − 1
1− τ

+ χM ln
Mt+s

Pt+s
− H

1+ 1
ν

t+s

1 + 1
ν

)] (6)

where Ca
t+s = Ct+s − heu?

aCt+s−1 is the consumption relative to the habit level

which is determined by the previous period consumption, h is the parameter gov-

erning the magnitude of habit persistence, τ the constant relative risk aversion, ν

the short-run (Frisch) labor supply elasticity. Assuming asset markets are complete,

the household is subject to the following period by period budget constraint:

PtCt +
∞∑

n=1

Pn,t(Bn,t−Bn+1,t−1)+Mt +Tt = PtWtHt +B1,t−1 +Mt−1 +Qt +Πt (7)

where Pn,t the price of an n quarter bond, Bn,t bond holding, Tt lump-sum tax or

subsidy, Qt the net cash flow from participating in state-contingent security markets

and Πt the aggregate profit respectively. Here the utility function is separable with

respect to consumption, real money balance, and hours worked. 2

2.2 Monetary Policy

The monetary policy of the central bank is assumed to follow forward-looking Taylor

rule with interest rate inertia. The nominal gross interest rate reacts to expected

inflation, and output gap in the following way:
2Because of this separability assumption, the demand for real money balance does not affect

the dynamics of consumption and hours worked. In our estimation below, we do not use the Euler

equation for real money balance nor estimate χm.
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(1 + it) = (1 + i?t )
1−ρi(1 + it−1)ρieηiεi,t

1 + i?t = ((1 + r?)(π?))(Et(πt+1)
π?

t
)γp( Yt

Y n
t

)γy

(8)

where r? is the steady state real interest rate which is eu?
a

β − 1, πt the actual

inflation defined by Pt
Pt−1

, π?
t the target inflation and Y n

t the natural rate of out-

put which will prevail in a frictionless economy where nominal rigidities and habit

formation disappear. It can be defined as follows.3

Y n
t = Cn

t = (ft)
− 1

ν+ 1
τ At (9)

In the mode, the time varying target inflation is assumed to be exogenously

given. ρi captures the degree of interest rate inertia.

2.3 Exogenous Processes

The model economy is subject to four structural disturbances. Technology evolves

according to

ua,t =
At

At−1
, lnua,t+1 = (1− ρa)u?

a + ρa lnua,t + ηaεa,t+1 (10)

Desired markups of firms in the intermediate goods sector are affected by a

persistent shock which is subject to AR(1) process with ARCH(1) structure. The

ARCH effect in the disturbance can generate time varying volatilities of macro

variables.4

3In Bekaert et al. (2005), the natural rate of output is defined by the output level when exogenous

disturbances are at steady state values in a flexible price economy. Our definition of the natural

rate of output does not impose restrictions on exogenous disturbances but makes the fluctuation

of the natural rate of output isolated from nominal disturbances by assuming away frictions in the

economy.
4Allowing ARCH effects for other disturbances is found to create either too low average term

premium or too high volatility of inflation.
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ft =
ζt

ζt − 1
, ln ft+1 = (1− ρf ) ln f? + ρf ln ft +

√
η2
0,f + η1,f (ln ft − ln f?)2εf,t+1

(11)

Monetary policy is exposed to a serially uncorrelated shock(εi,t) and a persistent

target inflation shock.

lnπ?
t+1 = (1− ρπ?) lnπ? + ρπ? ln π?

t + ηπ?επ?,t+1 (12)

All the four serially uncorrelated innovations(εa,t, εf,t, εi,t, επ?,t) are independent

of each other at all leads and lags. Each innovation is assumed to follow a standard

normal distribution.

2.4 Equilibrium Conditions

Market clearing conditions for the final good market and labor market are given by

Yt = Ct + ACt , Ht = Nt (13)

The first order conditions for firms and the represent household can be expressed

as follows:

λtAt = λa
t = (Ca

t /At)−τ − βheu?
aEt((Ca

t+1/At+1)−τAt/At+1) (14)

1 = βEt[(
λa

t+1

λa
t

)
At

At+1

1 + it
πt

] (15)

1 = ζt[1−
( Yt

At
)

1
ν

λa
t

] + φπt(πt − π?
t )−

φ

2
ζt(πt − π?

t )
2

− φβEt[(
λa

t+1

λa
t

)
Yt+1/At+1

Yt/At
πt+1(πt+1 − π?

t+1)] (16)
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2.5 Model Solutions

To solve the model around the steady state, we need to eliminate the non-stationary

trend of technology and make all the variables stationary, for example by setting ct =

Ct/At. And the percentage deviation from the steady state value of consumption is

denoted by ĉt = ln(ct/c?). Before deriving the nonlinear solution of the model, we

can analyze the log-linearized system first to have some insights on the implications

of the model for macro dynamics. The log-linear approximation of optimization

conditions and monetary policy around the steady state yields the following system

of equations.

λ̂a
t = Et(λ̂a

t+1) + ît −Et(π̂t+1)−Et(ûa,t+1) (17)

π̂t − π̂?
t = βEt(π̂t+1 − π̂?

t+1) + κ(ŷt − ŷn
t ) (18)

ŷn
t = − f̂t

ν + 1
τ

(19)

where κ =
1

νφπ?2(f? − 1)

ît = ρiît−1 + (1− ρi)(γp(Et(π̂t+1)− π̂?
t ) + γy(ŷt − ŷn

t )) + εi,t (20)

The log-linearized system provides a clear intuition for the source of economic

fluctuations. Without the nominal rigidity(φ = 0), κ would be equal to ∞ and

the actual output is always the same as the natural rate of output and nominal

disturbances have no impacts on output. On the contrary, if the degree of nominal

rigidity(φ) is high, κ would approach to 0 and nominal disturbances would have big

impacts on the actual output. So when the time variation of the yield curve is traced

to macro variables, the high nominal rigidity would imply nominal disturbances are

dominant factors.

While the log-linear approximation can provide insights on macro dynamics,

asset pricing implications of the model can not be studied in the pure log-linear

approximation because there is no consideration of the risk in the log-linearized

macro dynamics. Jermann (1998) obtains the risk premium term by combing the log-

normality of disturbance with the log-linear approximation of macro dynamics. He
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uses this method in the context of studying on the asset pricing implications of a real

business cycle model. The basic idea of this approach is to derive risk premia from

the second order terms implied by the log-linear approximation. Wu (2005) applies

the same approach for studying on term structure implications of a New Keynesian

model. He computes equilibrium bond prices from using an affine term structure

model derived from the log-linear and log-normal approach. Recent literature(An

and Schorfheide (2006), Fernández-Villaverde and Rubio-Ramı́rez (2006)) show that

there may be some significant differences between the nonlinear analysis and the

linear one even for only macro variables. Since the main goal of the macro finance

model is to identify term structure factors in terms of macro risks, a more accurate

analysis of macro dynamics would be desirable.

We follow Schmitt-Grohé and Uribe (2004) to obtain the second order approxi-

mate solution of the DSGE model. The nonlinear solution starts from representing

equilibrium conditions as a rational expectations system with respect to:

yt = [ ˆYt/At, ˆCt/At, π̂t, ˆ(1 + it), ˆCa
t /At, λ̂

a
t ] and

xt = [ûa,t, f̂t, εi,t, π̂
?
t ,

ˆ(1 + it−1), ˆCt−1/At−1].

Etf(yt+1, yt, xt+1, xt, σεt+1) = 0 (21)

Here σ ∈ [0, 1] is a perturbation parameter which determines the distance from

the deterministic steady state. σ = 0 corresponds to the non-stochastic steady

state. Since σεt+1 is the only source of uncertainty, the approximation order in the

perturbed system is determined by the the degree of powers of σ in the approximated

system.

The exact solution of the nonlinear model is given as follows:

yt = g(xt, xt−1, σ) , xt+1 = h(xt, σ) + ση(xt)εt+1 (22)

Since the previous period markup affects the volatility of the current period

markup, the solution for the policy function needs to include xt−1 as well as xt.
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However, up to the second order approximation of g and h around the determin-

istic steady state (xt, σ) = (0, 0), it can be shown there is no need to add xt−1 as

additional state variables to approximate policy functions.

Result 1 : Up to the second order, the coefficients on g and h are not affected by

time varying volatility. Indeed they are the same as those under the homoskedastic

case where η(xt) is replaced by η(0).

Proof In Appendix.

The resulting approximate solutions are:5

yt =
1
2
gσσσ2 + gxxt +

1
2
(Iny ⊗ xt)′(gxx)xt (23)

xt+1 =
1
2
hσσσ2 + hxxt +

1
2
(Inx ⊗ xt)′(hxx)xt + η(xt)σεt+1 (24)

3 Measurement Equations for Bond Yields

3.1 Construction of arbitrage-free bond prices

Measurement equations for macro variables can be constructed by the approximate

model solutions. Measurement equations for bond yields require an additional work.

With the second order approximation, it is much more complicated than the log-

linear and log-normal case. First of all, implied bond yields are not affine with

respect to the state vector because the short rate is now a quadratic function of the

state vector rather than an affine one. However the discrete time counterpart of a

quadratic term structure model studied in Ahn et al. (2002) can be obtained by

using Euler equation for the representative household in our model. One complica-

tion in our setting is that current period consumption, therefore, marginal utility

of consumption is quadratic with respect to current state variables. Mechanical

forward iteration of second order approximation generates extra higher order terms
5Here, the representation of solutions follows Klein (2005).
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in measurement equations because long term bond yields under the no-arbitrage

assumption involve the conditional expectations of the future state variables. As

discussed in Kim et.al. (2005), these extra higher order terms do not necessarily

increase the accuracy of approximation because they do not correspond to higher

order terms of the Taylor series expansion. Following their suggestion, we use the

pruning scheme which effectively ignores extra higher order terms. Then, we can

generate the future state variables according to the following scheme:

xl
t+1 = hx(xl

t + xq
t ) + η0σεt+1

xq
t+1 =

1
2
hσσ +

1
2
(Inx ⊗ xl

t)
′hxxxl

t + η1(Inε ⊗ xt)σεt+1

xt+1 = xl
t + xq

t (25)

The one-period ahead log nominal stochastic discount factor in our equilibrium

model and equilibrium bond prices are expressed as follows:

M̂t,t+1 = (λ̂a
t+1 − λ̂a

t )− ûa,t+1 − π̂t+1

ep̂n,t = Et(e
Pn−1

j=0 m̂t+j,t+j+1) (26)

After applying the pruning to the log stochastic discount factor, we can obtain

the following representation.

M̂t,t+1 = ε′t+1m0εt+1 + (m1 + m2x
l
t)εt+1 + (m3 + m4(xl

t + xq
t ) + xl

t
′
m5x

l
t) (27)

Another thing that we should be careful about is the ARCH(1) part of shocks to

desired markups. Since the functional form of it is known, we do not approximate

the ARCH(1) part in the transition equation. Even though the procedure may not

create any problem for using the transition equation in the estimation, it may induce

higher order terms for the law of motion of ln ft and thus complicate measurement

equations for bond yields. Therefore we consider only terms up to the second order
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of structural shocks εt when we construct measurement equations.6 In the end, we

obtain closed form solutions for bond prices which are accurate up to the second

order of stochastic shocks.

Result 2 : The log of bond prices of maturity of n, pn,t under the no-arbitrage

assumption has the following representation:

p̂n,t = an + bn(xl
t + xq

t ) + xl
t
′
cnxl

t + op(σ2)

Proof : In appendix.

The coefficients(an, bn, cn) in the above formula are obtained in the recursion

implied by the Euler equation of the representative household. Our closed-form so-

lutions for bond prices are different from those suggested by Hördahl et.al. (2005b).

They also use the second order approximation of macro variables to derive closed

form expressions for bond prices. However, they approximate ep̂n,t up to the second

order of stochastic shocks, not p̂n,t. Since ep̂n,t =
∑∞

j=0

p̂j
n,t

j! , some part of second

order terms in p̂n,t correspond to higher order terms in ep̂n,t . But they throw away

all these higher order terms in ep̂n,t . Resulting solutions are not second-order accu-

rate regarding p̂n,t. If bond yields share the same approximation order with ep̂n,t ,

that would not be a serious concern. However, bond yields are linear functions of

p̂n,t
7 and, therefore, the second order accurate approximation of ep̂n,t would not be

the valid second order approximation of bond yields. On the contrary, our solutions

for bond prices are second-order accurate because we throw away only higher order

terms in p̂n,t.

3.2 Term structure implications of the approximate model solution

Before taking the model to data, it would be useful to examine the properties of the

term structure model implied by the model. The purpose is checking whether or

6The second order approximation of
q

η2
0,f + η1,f (ln ft − ln f?)2 around ln f? is η0,f while the

second order approximation of η2
0,f + η1,f (ln ft − ln f?)2 is exact.

7Note that ŷn,t = − p̂n,t

n
.
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not some kind of the salient features of data can be replicated in the model. We will

start the discussion from briefly discussing deficiencies in term structure implications

of a standard real business cycle model pointed out by Den Haan (1995) would be

repeated in our model. Consider the log real stochastic discount factor implied by

a standard real business cycle model as illustrated in Den Haan (1995).

mr
t,t+1 = ln β − τ(lnCt+1 − ln Ct) (28)

In this case, the autocorrelation of the log real stochastic discount factor is

tightly related to that of consumption growth. Therefore, if consumption growth

is positively autocorrelated, the uncertainty in h-period ahead stochastic discount

factor(Vart(mr
t,t+h)) is greater than h×Vart(mr

t,t+1). That means a long-term bond

is a hedge against unforeseen movements in consumption and ,therefore, on aver-

age commands a negative term premium.8 A similar argument can be applied to

a nominal stochastic discount factor (mt,t+1 = mr
t,t+1 − πt+1) when inflation and

consumption growth are uncorrelated. Because inflation is more positively auto-

correlated than consumption growth, the same observation can be made for the

nominal stochastic discount factor too. It seems that positive autocorrelations of

consumption growth and inflation make one of stylized facts of the yield curve-

a positive term premium, on average-hard to match by a standard equilibrium

business cycle model. It should be noticed that we focus on the term premium

rather than the yield spread. The reason is that the unconditional mean of the

term premium is easier to understand compared to that of the yield spread. Den

Haan (1995)’s discussion of the unconditional mean of the yield spread is mislead-

ing because his derivation of the unconditional expectation of interest rates is in-

correct. When the log consumption growth ln(Ct+1/Ct) follows an AR(1) process

like ln(Ct+1/Ct) = ρc ln(Ct/Ct−1) + (1 − ρc)C̄ + εc,t+1, the unconditional mean of

8Indeed, this can be analytically proved when consumption growth is log-normally distrib-

uted. In this case, the unconditional mean of the term premium defined by the difference

between the long term rate and the average of expected short rates yn,t − Et(
Pn−1

j=0 it+j)

n
is

−τ2(
EVart(

Pn
j=1 ln(yt+j/yt+j−1))

2n
− E(

Pn
j=1 Vart(ln(yt+j/yt+j−1)))

2
).
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Et(ln(Ct+2/Ct)) is (1+ρc)C̄ instead of 2C̄. But in Den Haan (1995), E(ln(Ct+2/Ct))

equates to 2C̄. If we correct this error, the expression for the yield spread is much

more complicated.

Going back to the counterfactual implications on the term premium, we can

imagine several ways out of these deficiencies as pointed out by Hördahl et.al.(

2005b). First, one can sever the linear relationship between log marginal utility of

consumption and log consumption growth by introducing habit formation. Second,

a negative correlation between inflation and consumption growth can mitigate the

variance of the long horizon stochastic discount factor and so increase the long-term

bond yield because the inter-temporal insurance service value of a long term bond

is reduced.9 Our model incorporates both features. Habit formation is already

introduced in the utility function of the representative household. And shocks to

desired markups of firms can create a negative correlation between inflation and

output growth because high prices of intermediate goods depresses the output of

the final good and increase inflation rate at the same time.

4 Econometric Methodology

4.1 Construction of the likelihood by particle filtering

In the previous section, we derived the law of motions of state variables and the

measurement equations for bond yields under the second order approximation. The

resulting state transition equations and measurement equations can be cast into the

following nonlinear state space model.

xt = Γ0(ϑ) + Γ1(ϑ)xt−1 + (Inx ⊗ xt−1)′Γ2(ϑ)xt−1 + η(xt−1)σεt (29)

zt = α0(ϑ) + α1(ϑ)xt + (Inz ⊗ xt)′α2(ϑ)xt + Hξt where ξt ∼ N (0, Inz) (30)
9Piazzesi and Schneider (2006) emphasize this channel in order to get a positive inflation risk

premium.
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Here, zt is a set of observed variables such as [lnYt, ln(1+πt), ln(1+it), y4,t, y8,t, y12,t, y16,t, y20,t],

ξt a vector of measurement errors, and ϑ a vector of structural parameters. Standard

deviations of measurement errors are fixed because they mitigate the evaluation of

the likelihood by particle filtering convenient.10 We allow measurement errors for

all the observed variables. If the above state model is linear and Gaussian, Kalman

filter is optimal and we can compute the prediction error likelihood by recursively

applying it. However, once we get out of the linear Gaussian case, Kalman fil-

ter is no longer optimal. Simulation-based particle filtering is found to work well

in the estimation of a DSGE model solved with nonlinear methods.(An (2005),

Fernández-Villaverde and Rubio-Ramı́rez (2006)) The basic idea of particle filtering

is to approximate unknown filtering density p(xt|zt, ϑ) by a large swarm of particles

xi
t (i = 1, · · ·N). Arulampalam et.al. (2002) provide an excellent survey of various

algorithms. We use the sequential importance resampling filter suggested by Kita-

gawa (1996). The same algorithm is used and discussed in An (2005) in the context

of the constructing the likelihood for a DSGE model solved with the second order

approximation. Detailed description of the filtering algorithm can be found in the

appendix.

4.2 Posterior simulation

Once the likelihood function is obtained, we can combine that information with

the prior information on structural parameters to compute the posterior density.

Prior information on structural parameters can be represented by the following

prior density p(ϑ). All the parameters are assumed to be independent a priori. The

posterior kernel is the product of prior density and likelihood:

p(ϑ|zT ) ∝ p(ϑ)L(ϑ|zT ) (31)

The analytical form of the posterior density is not known but we can use

simulation methods to generate draws from the posterior density. Markov Chain
10The detailed explanation is given in the appendix.
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Monte Carlo(MCMC) methods can be used for the purpose as explained in An and

Schorfheide (2006). We adopt their algorithm with some modifications to avoid the

posterior density maximization step whose solution is not found reliably in our case.

We initialize the MCMC chain at the point with the highest log-likelihood among

100 prior draws. Multiple MCMC chains are run starting from different points. If

each chain is wandering around deeply separated region, we pick up the highest

posterior area.11 More details of our methods are available in the appendix.

4.3 Monte Carlo smoothing

The estimation of a macroeconomic model jointly with term structure data may

provide valuable insights about macroeconomic dynamics which are not uncovered

in the analysis of only macro data. For example, Doh (2006) finds that incorporating

term structure data gives very different estimates of the federal reserve’s target infla-

tion especially during the mid 1980s. Estimates of unobserved macro state variables

conditional on all the observations E(xt|zT , ϑ) can enhance our understanding of

macro dynamics. In the linear model, we can use the classical fixed interval Kalman

smoothing without resorting to simulation. However, in the nonlinear model, we

have to use simulation methods to figure out latent factors. We will use an efficient

way of smoothing via backward simulation as proposed in Godsill et.al. (2004) and

applied in Fernández-Villaverde and Rubio-Ramı́rez (2006). The key idea of the

simulation scheme is to regenerate a lot trajectories of resmapled state variables

stored in the forward filtering. Information from all the observations is used to

select particular values of state variables at each time period. The more trajecto-

ries we generate, the more accurate smoothed estimates would be. However, the

computational cost of generating one trajectory is the same as that of evaluating a

likelihood value which is around 6 seconds. We choose the number of trajectories
11In the linear analysis, two separated regions have the similar magnitude of the posterior density

and the selection of the highest posterior region is difficult. Unless it is mentioned otherwise, we

report results of the linear analysis from the posterior region which has a higher posterior density

in the nonlinear analysis.
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used in the smoothing based on the performance for the simulated dataset. The

detailed information is provided in the appendix.

5 Estimation Results

5.1 Data

We estimate the model based on U.S. macro and treasury bond data. Macro vari-

ables are taken from the Federal Reserve Database (FRED)Saint Louis. The mea-

sure of output is per-capita real GDP which is obtained by dividing real GDP

(GDPC1) by total population (POP). For the inflation rate, the log difference of

the GDP price index (GDPCTPI) is used. The nominal interest rate is extracted

from the Fama CRSP risk free rate file. We select the average quote of 3-month

treasury bill rate. Five bond yields (1,2,3,4,5 year) are obtained from Fama CRSP

discount bond yields files. Observations from 1983:QI to 2002:QIV are used for

the estimation. To match the frequency of the yields with that of macro data, the

monthly observations of the treasury bill rate and bond yields are transformed into

quarterly data by averaging three monthly observations.

5.2 Prior information

5.2.1 Prior distributions of parameters

The specification of prior distributions is shown in Table 1. The prior mean of

the average technological progress (u?
a) is set to be 0.5% at the quarterly frequency

to imply the steady state growth rate of 2% per year which is roughly the aver-

age growth rate of per capita real GDP during the pre-sample period (1960:QI to

1982:QIV). The prior mean of the discount factor (β) is chosen to set the steady

state real interest rate to 2.8% in annualized percentage.12 The elasticity of labor
12Since the average real interest rate during the pre-sample period was less than 2%, we can set

u?
a and β to match the real interest rate and output growth at the same time. The real interest rate

is about 3.2% during the sample period and we target the steady state real interest rate is slightly
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supply(ν) is fixed at 0.5 which is roughly the posterior mean in Chang et al. (2006).

The average markup of 1.1 used in Ravenna and Walsh (2004) motivates our choice

of 0.1 as the prior mean of the steady state log-markup. The prior mean of lnA0

is set in order to match the detrended output of 1982:QIII with the steady state

level implied by prior mean values of parameters. Measurement errors of output,

inflation rate, and bond yields are fixed at about 20% of the sample standard de-

viations of output growth, inflation rate, and the nominal interest rate. The prior

distribution ARCH parameter η1,f is assumed to be distributed uniformly over the

interval where the existence of the stationary distribution of ln ft is guaranteed.13

The prior standard deviation of the monetary policy reaction to expected inflation

is set to be a bit smaller than that in other literature. This is because a loose prior

generates a low value of the reaction coefficient which creates a numerical prob-

lem in the computation of the likelihood. It turns out the likelihood is extremely

sensitive to the reaction coefficient when the parameter gets closer to 1. For other

parameters, we set pretty loose priors to enhance the model’s ex-ante explanatory

power. Table 1 summarizes the prior information for all the parameters.

5.2.2 Prior predictive checks

Before estimating the model, it is useful to evaluate the model’s ability to replicate

salient features of data. If the model can not match salient features of data, it may

not be worth estimating the model. Here, we generate 80 observations from 100 prior

draws and compute sample moments of macro variables and term structure variables

such as the standard deviation of inflation, mean term premium and the standard

deviation of term premium. We also compute sample statistics for empirical proxies

for the level(y20,t+y8,t+y1,t

3 ), the slope(y1,t − y20,t), and the curvature(2y8,t − y1,t −
y20,t) of the yield curve. To detect the differences across models, we generate data

from (i)the linear model, (ii)the nonlinear model without ARCH effect, and (iii)the

lower than that.
13Borkovec and Klüppelberg (2001) derive the interval under the condition that ρf belongs to

[0, 1]. As we decrease the possible range of ρf , the boundary where the strict stationarity of ln ft

is satisfied.
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nonlinear model with ARCH effect. We assume no measurement error in predictive

checks to isolated the differences across models transparent. The resulting 100

sample moments for three models are plotted in Figure 1 - 2. Several things are

noticeable. First, ARCH effect gets mean term premium closer to the actual sample

moment. The average of 100 means of the term premium increases 30 basis points

with ARCH effect than other models.14 At the same time, the standard deviation

of the term premium increases and gets closer to the actual sample moment in the

quadratic model with ARCH effect. Time-varying volatility induced by ARCH effect

seems to have the potential to explain time variation of the term premium better.

However, the term structure of volatilities is not well matched even with ARCH

effect. Volatilities of bond yields decrease rapidly over maturities. This explains

the underprediction of the volatility of the level together with the overprediction

of volatilities of the slope and the curvature. The same problem is documented

in other literature using equilibrium bond yields implied by a macro model.(Den

Haan (1995), Piazzesi and Schneider (2006), Ravenna and Seppälä (2006) etc.)15

Making structural shocks very persistent increase volatilities of long term rates but

creates the poor fit for macro data which are not so persistent at least during our

sample period.16 Prior checks indicate that ARCH effect may not be useful for

solving this problem. Second, the three models tend to overpredict the volatility

of inflation a bit. Assuming less persistent or less volatile shocks may help us in

getting the moment closer to the actual sample moment. However, by doing so,

term structure implications of the model deteriorate seriously because long term

rates are much more persistent and volatile in data than in the model. Our prior

distribution is a compromise between macro and term structure implications of the

model. Third, consistent with the previous discussion of term structure implications

of habit formation, all the models can account for a positive autocorrelation of
14Nonlinear terms without ARCH effect do not change mean term premium much.
15The exception is Wachter (2006). She introduces a complicated nonlinear habit shock which

creates a time-varying risk aversion by construction. However, the structural interpretation of habit

shock is not clear and for that reason, we avoid introducing the channel.
16The AR(1) coefficient of inflation during the sample period is just 0.6 while AR(1) coefficients

of bond yields are around 0.95.



21

output growth and a positive mean term premium at the same time.17 Finally, the

markup shock generates the negative correlation of output growth and inflation.

Since ARCH effect amplifies the volatility of a markup shock, the impact is more

pronounced in the case of the quadratic model with ARCH effect.

5.3 Posterior analysis

5.3.1 Posterior predictive checks

We compute predictive moments from the posterior distribution by simulating data

from posterior draws. Since posterior draws obtained by MCMC methods are seri-

ally correlated, we take every 500th draw from 50,000 posterior draws to attenuate

the dependence of parameter draws. Comparing bi-dimensional scatter plots of

posterior predictive moments in Figure 3 - 4 with plots in Figure 1 - 2, we can

extract additional information from data. Data move posterior moments of macro

variables such as the autocorrelation of output growth and the standard deviation

of inflation rate closer to actual sample moments than prior moments even though

the unconditional volatility of inflation is higher than the actual sample moment.

And the nonlinear model does better at matching the standard deviation of the

inflation rate. On the other hand, the posterior analysis fails to match the first

moments of term structure data. The mean term premium and the mean slope are

still significantly away from sample counterparts of actual data. Here, the nonlinear

terms including ARCH effect do not improve term structure implications much. The

mean term premium does not show much difference across models. As mentioned

before, the channel through which ARCH effect increases mean term premium is

the increased volatility of a markup shock. In our model, the markup shock affect

inflation via Phillips curve relation created by nominal rigidities.18 Hence to match
17We generate data from the linear model without habit formation too. As expected, moments

from simulated data can not match the positive autocorrelation of output growth and the positive

mean term premium at the same time.
18Without nominal rigidities, a markup shock induces one-time adjustment of the price and would

not affect inflation.
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the relatively less volatile inflation series during the sample period, the volatility of

a markup shock is constrained. In prior predictive checks, we can select the ARCH

effect parameter either in the direction of the better fit for first moments or that for

second moments. The lesson from the posterior predictive analysis is that the latter

aspect is more important in data.

5.3.2 Posterior distribution of parameters

Additional information from data about the model also can be gleaned from con-

trasting prior distributions of parameters with the posterior counterparts. Figure 5 -

6 depict the draws from prior and posterior distribution of each parameter. For most

parameters, the posterior draws are more concentrated as expected. Also, there are

clear shifts of the mean values for some parameters. The risk aversion parameter(τ)

and the degree of habit formation(h) are higher in the posterior distribution for both

linear and nonlinear models. The steady state of target inflation(lnπ?) is higher in

the nonlinear model. In the steady state target inflation is not the same as the un-

conditional average inflation in the nonlinear model due to the impacts of quadratic

terms while the two concepts coincide in the linear model. The difference can be

illustrated in the following equation.

E(lnπt)− lnπ? =
1
2
gπ
σσ + gπ

it−1
E(̂it−1) + gπ

ct−1
E(ĉt−1) + tr(gπ

xxE(xtx
′
t)) (32)

We can call this term the quadratic adjustment term. The magnitude of this

term can be quantified by simulating a long time series and replacing the expectation

by the average. In our case, the term is negative reflecting the fact the estimated

steady state target inflation is higher in the nonlinear analysis. The above finding

is consistent with An and Schorfheide (2006) who call this term stochastic steady

state effect. The reaction of the central bank to expected inflation is stronger in

the posterior distribution. Interestingly, the nonlinear model implies a bit more

stronger response of the central bank. This is due to the fact that the likelihood in

the quadratic model decreases rapidly when the reaction parameter gets closer to
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the indeterminacy region. The ARCH effect parameter η1,f is much smaller in the

posterior distribution.19 The finding is consistent with discussions made regarding

predictive moments. Boudoukh (1993) finds that in a standard real business cycle

model, the stochastic volatilities do not generate enough average term premium

while it can improves the model fit for the standard deviation of the term premium.

Our finding is in line with his observation. Still, there can be other channels that

we can introduce into DSGE models in order to amplify the average term premium.

One lesson from our analysis is that the channel should not induce a high volatility

of inflation to explain that.

Even though term structure implications in terms of posterior predictive mo-

ments are not much different across models, the nonlinear analysis provides useful

information which can not be obtained in the linear analysis. Figure 7 provides the

posterior contours of parameters around posterior mean values of (ρf , ρπ?) com-

puted from different MCMC chains. It turns out the nonlinear analysis clearly

identifies the highest posterior region of parameters while the linear analysis can

not do that. Also, the nonlinear analysis can give us smaller posterior intervals of

parameters than the linear analysis. The posterior draws of risk aversion parameter

(τ), the reaction of the central bank to expected inflation (γp), the average techno-

logical progress (u?
a), and the degree of habit formation (h) in Figure 5 - 6 are more

concentrated in the nonlinear version. This finding is consistent with other literature

on the nonlinear analysis of DSGE models.(An and Schorfheide (2006),Fernández-

Villaverde and Rubio-Ramı́rez (2006)) On the other hand, the precautionary saving

effect which is related to the third order derivative of the utility function is consid-

ered only in the nonlinear analysis. As the curvature of the utility function increases,

the precautionary saving increase and that would push down the real interest rate.

The bi-variable scatter plots of the risk aversion parameter(τ) and the steady state

real interest rate in Figure 8 show that the two variables are slightly negatively

correlated in the nonlinear model as the theory predicts. However, the linear model
19If η1,f is greater than 1− ρ2

f , the second moment of ln ft does not exist. This would make the

unconditional distribution of macro variables and bond yields fairly heavy-tailed.
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implies a positive correlation. In terms of the overall fit, the nonlinear model is a bit

better though the difference is not great. Log marginal data densities in Table 3 sup-

ports the conclusion.20 Another measure of assessing the model’s ability to fit the

data is to check for ex-post measurement errors. If standard deviations of measure-

ment errors were estimated, we could evaluate the model in terms of the estimated

standard deviations of measurement errors. Since these are fixed in our estimation

for the evaluation of the likelihood function by particle filtering, we directly extract

smoothed estimates of measurement errors and compute means and standard devi-

ations of them. Results in Table 4 show that means of ex-post measurement errors

are very close to zero. Also standard deviations of measurement errors are quite

small. For example, standard deviations of the measurement errors of bond yields

are fixed at 44 basis points but the corresponding values of ex-post measurement

errors are at most around 25 basis points. Brandt and Yaron (2002) report that the

average mean absolute pricing error of bond yields is around 9 basis points when

the exogenous stochastic discount factor with macro variables are constructed to fit

the cross-sectional data at each time period. The corresponding value for our model

is 15 basis points. Given restrictions on our stochastic discount factor imposed by

the structural model, the fit does not seem to be much worse.

6 Identification of Term Structure Factors

6.1 Macro explanation for empirical counterparts of term structure

factors

The posterior analysis of our model gives us two lessons. First, the predictive perfor-

mance of the model is limited. Second, the model’s ability to capture the dynamics

of the yield curve evaluated by ex-post measurement errors is not so bad. Therefore,

even though the DSGE model itself may not be the best tool to deliver good forecasts

of bond yields, the structural model has the potential to provide the clear economic
20Geweke (1999)’s modified harmonic mean estimator is used to compute the marginal data

density.
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interpretation of the yield curve dynamics captured in other flexible models. Here

we try to identify term structure factors in terms of macro factors appearing in the

DSGE model. It is well known that the statistical decomposition of the yield curve

into the level, the slope, and the curvature factors can explain most(up to 98%) of

the time variation of bond yields(e.g.) Litterman and Scheinkman (1991).). These

latent factors are constructed by rotating the observed bond yields and do not have

clear economic meanings by themselves. There are many papers which try to figure

out macro forces of term structure factors by linking the empirical counterparts of la-

tent term structure factors with observed macroeconomic variables (e.g.)Diebold et

al. (2006)), identified macroeconomic shocks from structural vector autoregressions

(VAR)(e.g.)Evans and Marshall (2002)), or macro shocks in DSGE models(Bekaert

et al. (2005), and Wu (2005) etc.).

We link smoothed estimates of macro shocks in the model with empirical coun-

terparts of latent term structure factors. Empirical proxies of term structure factors

in sample data are regressed on smoothed estimates of macro shocks as follows:

Depi,t = ci,0 + ci,1E(ûa,t|zT ) + ci,2E( ˆln f t|zT )

+ci,3E(εi,t|zT ) + ci,4E( ˆlnπ
?

t |zT ) + υt (33)

where , i = (level,slope,curvature)

Here Dep stands for a term structure factor. Each macro factor is normalized

so that the standard deviation of it is equal to one. The results in Table 5 show

that macro factors capture time variations of latent factors remarkably well. R2 is

0.997 for the level, 0.794 for the slope, and 0.565 for the curvature. It seems that

there is a big discrepancy between the evidence from predictive checks implying

the poor fit of the DSGE model and strong explanatory power of macro factors

in the above regressions. The difference comes from the fact that constant terms

in these regressions are free parameters. Fitting average values of term structure

factors is much easier in the above regressions than the structural model where

the constant term is restricted by structural parameters. In predictive checks, the
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model is relatively better at generating the magnitude of the time variation of term

structure factors while it misses first moments of those factors. Also, estimated

macro factors are constructed by using information from all the observations and

the above regressions can not be predictive regressions in a strict sense. Our analysis

associates the level with the target inflation of the central bank, the slope with

the time variation of the desired markup, and the curvature with the transitory

monetary policy shock. Linking the level of the yield curve with the target inflation

of the central bank is common in other literature. (Bekaert et al. (2005), Rudebusch

and Wu (2004) among others) No-arbitrage arguments imply that long term rates

reflect expected future short term rates after adjusting risk premia. Hence, the

target inflation of the central bank which can affect the future behavior of the

short term rate is important in determining the level of the yield curve. There is

some disagreement about the interpretation of the slope. Diebold et al. (2006) and

Rudebusch and Wu (2004) link the slope with the cyclical variation of a real factor

like the capacity utilization rate. On the contrary, Bekaert et al. (2005) find only

limited roles for real factors. They conclude that the transitory monetary policy

shock drives the slope of the yield curve. The difference of our finding from Bekaert

et al. (2005) comes from the fact that the degree of price stickiness estimated in

our model is lower than that of Bekaert et al. (2005).21 As mentioned before, the

higher the degree of price stickiness, the bigger portion of economic fluctuations

are attributed to nominal disturbances. The implied value of the Phillips curve

parameter in the log-linearized model κ is 0.064 in their estimation while it is 0.261

at the posterior mean in our estimation. And the implied mean price duration

according to the estimates of Bekaert et al. (2005) is longer than 1 year which is

in conflict with micro evidence from Bils and Klenow (2004) reporting much more

frequent price adjustments. Also, the estimate of the reaction of the monetary policy

is very small and not significantly different from zero in Bekaert et al. (2005) which
21Another possible reason is that their model includes the dynamic indexation of prices unlike

ours. The inclusion of the previous period inflation into the Phillips curve due to the dynamic

indexation of prices can mitigate the role of real disturbances in generating the persistence of the

observed inflation as documented in Del Negro and Schorfheide (2006).
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dampens the response of the systematic monetary policy to real disturbances. This

is in conflict with estimates reported in Rudebusch and Wu (2004) and Ang et al.

(2006) who report the significant positive response of the monetary policy to real

disturbances. Weighing in all the evidences, we conclude the identification of the

slope with the shock to the desired markup is more plausible. Our identification of

the curvature with transitory monetary policy shocks is in line with Bekaert et al.

(2005) and Cogley (2005). Transitory policy shocks are found to be more strongly

loaded on the short term rate than medium or long term rates. Dynamic responses

of the yield curve to various macro shocks shown in Figure 9 and time series plots of

smoothed estimates of macro shocks together with empirical counterparts of term

structure factors in Figure 10 strengthen our conclusion.

6.2 Macro factors and the term premium

The decomposition of the yield curve into three latent factors can be useful for

describing the overall variation of the yield curve. However, from the perspective

of economics, the decomposition of long term rates into expected future short term

rates and term premium is more interesting. Here, we seek a macro explanation for

the time variation of the term premium. It should be noticed that the empirical

proxy of the level factor is highly correlated with ex-post term premium. The co-

movement of two variables is clear in Figure 11.22 Hence, macro factors explaining

the downward trend of the level factor can also account for a similar downward

trend of term premium. Our identification of term structure factors implies the

downward trend of term premium can be related to the change in the target inflation.

According to this evidence, the term premium is mainly driven by a persistent policy

shock.
22Cochrane and Piazzesi (2006) claim the time variation of the term premium defined by the

expected excess return of the long term bond is well explained by the return forecasting factor

which is a linear combination of forward rates and orthogonal to the level, the slope, and the

curvature of the yield curve. Our definition of risk premium is different from theirs.
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7 The Yield Curve and Monetary Policy

7.1 Term structure information on the Volcker disinflation policy

So far, focus has been concentrated on the identification of macro factors behind the

movement of bond yields. However, we can extract useful information about macro-

economy from bond yields themselves. The rapid fall of inflation after the Volcker

disinflation period of the early 1980s has been paid much attention in macroeco-

nomics.(Lubik and Schorfheide (2004), Primiceri (2005), and Sargent et al. (2006)

etc.) However, whether or not that decline can be also interpreted as the decrease

of the long run expected inflation deserves a more careful study. Information from

the yield curve may shed some lights on this issue because long term rates reflect

expected future inflation rates. Recent studies incorporating term structure infor-

mation for the monetary policy analysis dispute the immediate impacts and mag-

nitude of the Volcker disinflation policy. For example, Ang et al. (2006) show the

variability of the monetary policy shock decreases much when term structure data

are included in the estimation of the monetary policy rule and conclude that the

Volcker experience was not as a big surprise as macro data suggested. Doh (2006)

takes the non-stationary target inflation of the central bank as the level factor of the

yield curve and estimates a log-linearized New Keynesian model with term structure

data. Smoothed estimates of the target inflation stayed high during the mid 1980s

when the actual inflation stayed low after the Volcker disinflation period.

Empirical findings in the above literature can be related to the delayed and

gradual responses of bond yields to the Volcker disinflation policy. If bond yields

had reacted to the Volcker disinflation much like macro data indicated, we would

have observed the large policy shock and the rapid fall of the target inflation during

this period. The lack of these observations indicate that there might have been

lingering suspicions of the disinflation policy even after the Volcker period. The

conjecture is consistent with the observation in Goodfriend (1993) and Goodfriend

and King (2005). They argue that the credibility of the central bank to low inflation

was not obtained immediately after the Volcker experiment. Instead, the credibility
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was established after increasing the short term rate during the third quarter of

1984 in response to the sharp rise of the long term rate. The pattern of smoothed

estimates of the target inflation in this paper supports the observation. The level

factor of the yield curve and smoothed estimates of the target inflation in Figure 11

both peaked in the second quarter of 1984 and declined subsequently. In Doh

(2006), the target inflation is assumed to be the level factor of bond yields. Here,

we allow competing macroeconomic sources for the level factor of the yield curve. In

the end, the target inflation is selected as determining the level of the yield curve.

In this sense, our evidence for the movement of the target inflation is stronger

than Doh (2006). On the other hand, our results are distinguished from Ang et

al. (2006) in that no explicit role is given to latent term structure factors. In

Ang et al. (2006), the dynamics of the latent factor is modeled together with

macro variables. In our setting, there is no independent latent factor except for

macro state variables. Their conclusion that the Volcker disinflation policy was

not a big surprise may be reversed if we decompose the latent factor into macro

fundamentals. We agree with macroeconomic studies emphasizing large monetary

policy changes during the Volcker disinflation period.(Clarida et al. (2000), Lubik

and Schorfheide (2004), Primiceri (2005), Sargent et al. (2006), and Schorfheide

(2005) etc.) But we find that rapid fall of inflation rate did not induce the immediate

swift decline of expected inflation. One-year ahead inflation forecasts shown in

Figure 12 began a downward movement after the third quarter of 1984. Estimates of

target inflation from the estimation using only macro data tracks the actual inflation

better than those from the estimation with term structure data. The correlation

of actual inflation and estimates of target inflation from the macro estimation is

0.749 while the corresponding number is 0.616 for estimates of target inflation in

the joint estimation. However, estimated target inflation from the macro estimation

is poorly correlated with expected inflation from the survey data. The correlation is

just 0.258. On the contrary, the correlation is 0.910 for the estimated target inflation

from the joint estimation. Estimated target inflation from the joint estimation in

Figure 12 seems to be consistently higher than actual inflation. As mentioned before,
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in the quadratic model the steady inflation rate is not the same as the unconditional

mean of the actual inflation. To quantify the impacts of quadratic terms, we simulate

5,000 observations from the model at the posterior mean of parameters. It turns

out the average inflation in simulated data is 1.1% lower than the steady state

inflation.23 If this factor is considered, the estimated target inflation tracks the

survey data of expected inflation well. To sum it up, while the Volcker disinflation

policy was a large policy shock, the impacts on expected inflation was somewhat

delayed unlike the actual inflation. The additional information from the yield curve

provides us estimates of target inflation which are more consistent with survey data

of inflation forecasts.

One possible objection to our analysis is that high long term rates might have

reflected high inflation risk premia rather than high expected inflation. This is a

perfectly plausible scenario but begs the following question. What drove up inflation

risk premia? If people expected the long run expected inflation would decline with

little uncertainty, why did inflation risk premia go up even though actual inflation

rapidly declined and stayed low? Maybe it was related to the high uncertainty

about future monetary policy changes. There are some evidences for this hypothesis.

Cogley (2005) points out that the fluctuation of the target short term rate is closely

related to the yield spread. He argues that the uncertainty about the target rate

at the time of the Volcker disinflation was high and this fact can explain high risk

premia of long term bonds during this period. Also, Buraschi and Jiltsov (2006)

mention that high inflation risk premia during this period is related to a lack of

confidence by the market in the central bank’s effectiveness in pursuing the low

inflation target. The basic message of our analysis that there was lingering suspicions

of the disinflation policy is consistent with findings in the above literature.

7.2 Lessons from the joint estimation

Our analysis of the impacts of the Volcker disinflation policy provides some caution

against estimating macro dynamics by only macro data and plug those estimates into
23For the posterior mean of parameters from the macro estimation, the impact is just 0.2%.
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equilibrium bond prices implied by the structural model.(e.g.)Piazzesi and Schneider

(2006), Wachter (2006)) The practice hides the interesting implications of bond

yields for macro dynamics. If we used only macro data, our model could not detect

sluggish responses of bond yields to the Volcker disinflation policy are related to the

expectations of future monetary policies. Also, the significant portion of the term

premium variation may not be linked with macro factors by doing so. For example,

Duffee (2006) argues there is only weak evidence that macro variables like inflation,

output growth, and the short term interest rate are related to term premia. The

argument is based on the observation that the steady decline of the term premium

from more than 4 percent in 1985:QI to about 1 percent in 2004:QIV could not be

explained by actual inflation series even though the survey data of expected inflation

can explain some part of the decline. However, when changes in the monetary

policy are decomposed into the persistent part(target inflation) and the transitory

part(temporary policy shock), the downward trend of the term premium can be

well explained by the persistent part according to our analysis. The analysis is

consistent with Kozicki and Tinsley (2005) who report sizeable movements in bond

yields can be explained by permanent policy shocks. It should be emphasized that

the estimation using macro data can not reveal this point. The intricate relationship

between macro dynamics and the yield curve can be better captured in the joint

estimation of the macro equilibrium model with both macro variables and bond

yields.

8 Conclusion

We estimate a small-scale New Keynesian model solved with a second-order approx-

imation to the equilibrium conditions. Both macro and term structure data of the

United States from 1983:QI to 2002:QIV are used in the estimation. To magnify the

time variation of the term premium, we introduce an ARCH(1) effect to a markup

shock to an otherwise standard model. New closed form solutions of bond prices are

proposed to make the estimation practically feasible. Main empirical findings are
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as follows. First, the model can provide clear economic interpretations of empirical

counterparts of latent term structure factors. The level, the slope, and the curvature

of the yield curve are found to be closely related to the persistent part of monetary

policy, the real disturbance to the desired markup of a firm, and the transitory

monetary policy shock, respectively. Also, the time variation of the term premium

is found to be driven by the persistent monetary policy shock. Second, from the

viewpoint of macroeconomics, our analysis sheds new lights on the interpretation of

the Volcker disinflation policy. Smoothed estimates of the target inflation from the

joint estimation closely track the inflation forecasts of the survey data while those

from the macro estimation do not. Sluggish responses of long term rates reveal the

lingering suspicion of the disinflation policy in spite of the relatively low inflation

rate. Even though a relatively standard macro model is used, our analysis provide

interesting implications for both macroeconomics and finance. However, the model

misses some predictive moments of bond yields and implies a bit more volatile infla-

tion than the actual data. Dynamic macro models with richer structures-asymmetric

information between the central bank and private agents, for example- can improve

term structure implications in terms of predictive moments. Our analysis indicates

that the joint estimation of such a model with macro and term structure data is

essential to fully investigate the issue. That remains a challenging but promising

task.

9 Appendix

9.1 Proof of result 1

We adopt notations used in Schmitt-Grohé and Uribe (2004). The nonlinear rational

expectations system is represented by

Et(y′, y, x′, x, σε′) = 0 (34)
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Let st = [xt, xt−1]. First, we would establish the fact that first order terms like

(gs and hs) are not affected by the heteroskedasticity. Consider the derivative of F

with respect to st and σ.

[Fs(0, 0)]ij = Et([fy′ ]iα[gs]αβ [hs + ση′ε′]βj + [fy]iα[gs]αj + [fs′ ]iβ[hs]
β
j + [fs]ij)

= ([fy′ ]iα[gs]αβ [hs]
β
j + [fy]iα[gs]αj + [fs′ ]iβ[hs]

β
j + [fs]ij)

= 0 (35)

[Fσ(0, 0)]i = Et([fy′ ]iα[gs]αβ [hσ]β + [fy′ ]iα[gs]αβ [η]βφ[ε′]φ + [fy′ ]iα[gσ]α + [fy]iα[gσε ]
α

+ [fs′ ]iβ[hσ]β + [fs′ ]iβ[η]βφ[ε′]φ)

= [fy′ ]iα[gs]αβ [hσ]β + [fy′ ]iα[gσ]α + [fy]iα[gσ]α + [fs′ ]iβ[hσ]β

= 0 (36)

So in the end, we are back to the same equations as those in Schmitt-Grohé and

Uribe (2004) derived under the homoskedasticity assumption. Therefore, hσ = gσ =

0.

Second, we need to take a look at the second order terms too. Although the

algebra is complicated, the conclusion is simple.
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[Fss(0, 0)]ijk = Et{([fy′y′ ]iαγ [gx]γδ [hs + ση′ε′]δk + [fy′y]iαγ [gs]
γ
k

+ [fy′s′ ]iαδ[hs + ση′ε′]δk + [fy′s]iαk)[gs]αβ [hs + ση′ε′]βj

+ [fy′ ]iα[gss]αβδ[hs + ση′ε′]δk[hs + ση′ε′]βj

+ [fy′ ]iα[gs]αβ [hss + ση′′ε′]βjk

+ ([fyy′ ]iαγ [gs]
γ
δ [hs + ση′ε′]δk + [fyy]iαγ [gs]

γ
k + [fys′ ]iαδ[hs + ση′ε′]δk + [fys]iαk)[gs]αj

+ [fy]iα[gss]αjk

+ ([fs′y′ ]iβγ [gs]
γ
δ [hs + ση′ε′]δk + [fs′y]iβγ [gs]

γ
k + [fs′s′ ]iβδ[hs + ση′ε′]δk + [fs′s]iβk)[hs + ση′ε′]βj

+ [fs′ ]iβ[hss + ση′′ε′]βjk

+ [fsy′ ]ijγ [gs]
γ
δ [hs + ση′ε′]δk + [fsy]ijγ [gs]

γ
k + [fss′ ]ijδ[hs + ση′ε′]δk + [fss]ijk}

= 0 (37)

Once again, the fact we evaluate the above expression at σ = 0 and Et(ε′) is

equal to 0 gives us the same equation as that in Schmitt-Grohé and Uribe (2004).

[Fσσ(0, 0)]i = Et{[fy′ ]i[gx]αβ [hσσ]β

+ [fy′y′ ]iαγ [gs]
γ
δ [hσ + ηε′]δζ [gs]αβ [hσ + ηε′]βφ

+ [fy′s′ ]iαδ[hσ + ηε′]δζ [gs]αβ [hσ + ηε′]βφ

+ [fy′ ]iα[gss]αβδ[hσ + ηε′]δζ [hσ + ηε′]βφ

+ [fy′ ]iα[gσσ]α

+ [fy]iα[gσσ]α

+ [fs′ ]iβ[hσσ]β

+ [fs′y′ ]iβγ [gs]
γ
δ [hσ + ηε′]δζ [hσ + ηε′]βφ

+ [fs′s′ ]iβδ[hσ + ηε′]δζ [hσ + ηε′]βφ}

= 0 (38)

From the result on first order terms, we know gσ = hσ = 0. Then we get the
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same expression as the one in Schmitt-Grohé and Uribe (2004) except that here η

is a constant matrix evaluated at (x = 0, σ = 0).

The cross derivatives can be obtained in a similar way.

[Fσs(0, 0)]ij = Et{[fy′ ]iα[gs]αβ [hσx + η′ε′]βj + [fy′ ]iα[gσx]αγ [hs]
γ
j

+ [fy]iα[gσs]αj + [fs′ ]
j
β[hσs + η′ε′]βj }

= 0 (39)

The system of equations is homogenous in the unknown gσs and hσs. Therefore,

both of them are equal to 0.

Therefore, it is shown that up to the second order the heteroskedasticity does

not affect the approximation of g, h. This implies that we can safely replace st by

xt in the approximation of g, h.

9.2 Proof of result 2

The coefficients on p̂1,t are obtained after solving the policy function for nominal

interest rate because p̂1,t = −ît.

a1 = −gi
σσ , b1 = −gi

x , c1 = −gi
xx

M̂t,t+1 = (λ̂a
t+1 − λ̂a

t )− ûa,t+1 − π̂t+1

M̂t,t+1 + p̂n−1,t+1 = x′t+1(
1
2
gλa

xx −
1
2
gπ
xx + cn−1)xt+1 + (gλa

x − ba − gπ
x + bn−1)xt+1

+ x′t(−
1
2
gλa

xx)xt − gλa

x xt − 1
2
gπ
σσ + an−1

= x′t+1Ω0xt+1 + Ω1xt+1 + Ω2 (40)

where ba = [1, 0, · · · , 0]

If we apply the pruning scheme to M̂t,t+1 + p̂n−1,t+1, then we would obtain:
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x′t+1Ω0xt+1 = (Γ1xt + η0εt+1)′Ω0(Γ1xt + η0εt+1) + op(σ2)

≈ x′t(Γ
′
1Ω0Γ1)xt + 2x′tΓ

′
1Ω0η0εt+1 + ε′t+1η

′
0Ω0η0εt+1

Ω1xt+1 = Ω1(Γ0 + Γ1xt + (Inx ⊗ xt)′Γ2xt + (η0 + η1(Inε ⊗ xt))εt+1) + op(σ2)

≈ Ω1(Γ0 + Γ1xt + (Inx ⊗ xt)′Γ2xt + (η0 + η1(Inε ⊗ xt))εt+1)

Ω2 = x′t(−
1
2
gλa

xx)xt − gλa

x xt − 1
2
gπ
σσ + an−1 (41)

Rearranging the approximated M̂t,t+1 + p̂n−1,t+1 by the order of εt+1 leads into:

M̂t,t+1 + p̂n−1,t+1 ≈ ε′t+1Cn−1εt+1 + Bn−1εt+1 + An−1

In the end, Cn−1 = η′0Ω0η0 , Bn−1 = 2x′tΓ
′
1Ω0η0 + Ω1(η0 + η1(Inε ⊗ xt))

where , An−1 = x′t(Γ
′
1Ω0Γ1 − 1

2
gλa

xx)xt + Ω1(Inx ⊗ xt)′Γ2xt

+Ω1(Γ0 + Γ1xt)− gλ
xxt − 1

2
gπ
σσ + an−1 (42)

Now, we can use the multi-normality of εt+1 to derive:

Et(eε′t+1Cn−1εt+1+Bn−1εt+1+An−1)

=
∫
|2πI|− 1

2 e(− 1
2
εt+1

′(I−2Cn−1)εt+1+Bn−1εt+1+An−1)dεt+1

=
∫
|2π(I − 2Cn−1)−1|− 1

2 e(− 1
2
ε′t+1(I−2Cn−1)εt+1) × e(Bn−1εt+1)|I − 2Cn−1|−

1
2 eAn−1dεt+1

=
∫
|2π(I − 2Cn−1)−1|− 1

2 e(− 1
2
(εt+1−(I−2Cn−1)−1B′n−1)′(I−2Cn−1)(εt+1−(I−2Cn−1)−1B′n−1))

×e(Bn−1(I−2Cn−1)−1B′n−1)|I − 2Cn−1|−
1
2 eAn−1dεt+1

= e
1
2
Bn−1(I−2Cn−1)−1B′n−1 |I − 2Cn−1|−

1
2 eAn−1 , εt+1 ∼ N (0, I) (43)

As long as I−2Cn−1 is positive definite, this is well defined. Practically, Cn−1 is

pretty small relative to I and this condition is satisfied. For all the parameter draws

from prior distribution or MCMC chains, this condition was satisfied. By matching
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1
2Bn−1(I − 2Cn−1)−1B′

n−1 − 1
2 ln |I − 2Cn−1| + An−1 with an + bnxt + x′tcnxt, we

obtain the following recursion formula for the coefficients.

an = an−1 + Ω1Γ0 +
1
2
Ω1η0(I − 2Cn−1)−1η′0Ω

′
1 −

1
2
gπ
σσ −

1
2

ln |I − 2Cn−1|

−1
2
gπ
σσ

bn = −gλa

x + Ω1Γ1 + 2Ω1η0(I − 2Cn−1)−1η′0Ω1

cn = 2Γ′1Ω0η0(I − 2Cn−1)−1η′0Γ1 + Γ′1Ω0Γ1 − 1
2
gλa

xx

+[(gλa

x − ba − gπ
x + bn−1)]it−1 [Γ2]it−1

+[(gλa

x − ba − gπ
x + bn−1)]ct−1 [Γ2]ct−1 +

1
2
Ω2,2

1 (I − 2Cn−1)−1η1,f (44)

Here the subscript (it−1 , ct−1) denote the element or the matrix related to these

variables and Ω2,2
1 means (2,2)th element of Ω1. Notice that η1,f is missed in the

approximation of the model solution but captured in the measurement equation

for bond yields. The above recursion is the extension of recursion formula in the

affine term structure model. If we consider only constant and first order terms and

ignore the second order terms in the approximate model solution, we are back to

the following affine recursion formula much discussed in Wu (2005), for example.

an = an−1 +
1
2
Ω1η0η

′
0Ω

′
1

bn = −gλa

x + Ω1Γ1

where a0 = 0 , b0 = [0, · · · , 0] (45)

9.3 Particle filtering algorithm

The predictive likelihood p(zt|zt−1, ϑ) can be evaluated by
∫ ∫

p(zt|xt, ϑ)p(xt|xt−1, ϑ)p(xt−1|zt−1, ϑ)dxt−1dxt. In the linear and Gaussian world,

the Kalman filter provides the analytical solution for the integral. In the general

nonlinear model, that is no longer the case but we can approximate the integral by
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Monte Carlo methods. Particle filtering belongs to these methods. The algorithm

can be described as follows.

• Step 1 Initialization : Draw N particles {xi
0}N

i=1 by using the initial distri-

bution of p(x0|ϑ). In period t, we are given with the particles {xi
t−1}N

i=1 which

are randomly sampled from the discrete approximation of the true filtering

density p(xt−1|zt−1, ϑ).

• Step 2 Prediction : Draw one-step ahead particles {x̂i
t}N

i=1 by generating

one draw from p(xt|xi
t−1, ϑ) for each i. Thus, the distribution of {x̂i

t}N
i=1 ap-

proximates that of p(xt|zt−1, ϑ) by

p(xt|zt−1, ϑ) ≈ 1
N

N∑

i=1

p(xt|xi
t−1, ϑ).

• Step 3 Updating : The true filtering density p(xt|zt, ϑ) is proportional to

p(zt|xt, ϑ)p(xt|zt−1, ϑ). Since {x̂i
t}N

i=1 are generated from the approximated

p(xt|zt−1, ϑ), the approximation of the filtering density reduces to adjusting

the probability weights assigned to x̂i
t

N

i=1 according to π̂i
t = p(zt|x̂i

t, ϑ). Here,

the role of measurement errors is crucial. Without measurement errors, π̂i
t

would have 0 or 1 point mass. With continuously distributed measurement

errors, π̂i
t would be positive for all i. That essentially makes the likelihood

function which is evaluated as the average of π̂i
t , (i = 1, · · · , N) less rough.

We normalize {π̂i
t}N

i=1 as follows:

πi
t =

π̂i
t∑N

j=1 π̂j
t

The resulting sampler {x̂i
t, π

i
t}N

i=1 approximates the true filtering density p(xt|zt, ϑ).

• Step 4 Resampling : The above samplers are undesirable because after a

few iterations, most particles will have negligible weights and the accuracy

of Monte Carlo approximation of the integral in Step 2 and Step 3 would
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deteriorate. To overcome this problem, we generate a new swarm of particles

{xi
t}N

i=1 such that

Pr(xi
t = x̂i

t) = πi
t , i = 1, · · · , N

The resulting sample is indeed a random sample form the discrete approxima-

tion of the filtering density p(xt|zt, ϑ), and hence is equally weighted.24

• Step 5 Likelihood Evaluation : The log-likelihood can be approximated

by using the average of unnormalized weights.

lnL(ϑ|zT ) ≈
T∑

t=1

ln(
1
N

N∑

i=1

π̂i
t)

Several remarks are necessary for the actual implementation of the above algo-

rithm. First, since our state variables include pre-determined endogenous variables

as well as structural shocks which follow linear processes, it is not obvious to get

initial values for them. As in An (2005), we draw the initial structural shocks from

their unconditional distributions and generate the initial values of pre-determined

endogenous state variables from putting the previous period’s values to their steady

state values. Second, we choose the number of particles based on the evaluation

of the log-likelihood across 40 different random seeds. The standard deviation of

the likelihood values changes only by a small amount after 60,000 particles. That

motivates our choice of 60,000 particles.

9.4 MCMC algorithm

The random walk Metropolis-Hastings algorithm widely used in the estimation of

DSGE models usually starts from the posterior mode. However, in our case, finding
24By the nature of the discrete approximation of the filtering density, the likelihood evaluated by

particle filters may not be continuous with respect to parameters. This can be a serious problem

for the numerical maximization of the likelihood. Our Markov Chain Monte Carlo methods are

less susceptible for the lack of the continuity but still the problem is a concern for the posterior

inference.
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the posterior mode by numerical optimization routines does not work well. But as

Chernozuhkov and Hong (2003) shows, MCMC algorithm itself can be used as an

optimization tool. Indeed, we find even after a small number of draws we get to the

point with a higher posterior density than the one reached by the simplex method.

• Step 1 Selection of the Starting Point : Compute the log-likelihood for

100 draws from prior distribution. Select one point which gives the highest

log-likelihood value ϑ?.

• Step 2 Proposal : Starting from ϑ?, generate a new draw by the following

random-walk proposal density. The scaling matrix c is chosen by multiplying

a small positive real number to the prior covariance matrix.

ϑ̂j+1 = ϑj + cN (0, I) , j = 0, · · · , R− 1

• Step 3 Accept/Reject Compute the acceptance rate α = min{p(ϑ̂j+1|zT )
p(ϑj |zT )

, 1}
and accept or reject ϑ̂j+1 according to the value of u which is drawn from the

uniform distribution over the unit interval [0, 1].

ϑj+1 = ϑ̂j+1 , if u < α

ϑj , otherwise

• Step 4 Burn-In For the purpose of the posterior inference, burn in the

initial B draws and use the remaining draws.

We try multiple MCMC chains and select the highest posterior region. Unfor-

tunately, different MCMC chains are wandering around deeply separated regions of

the parameter space even after significant draws (200,000 for the nonlinear model,

1,000,000 for the linear model). In the quadratic model, the highest posterior region

is associated with the MCMC chain starting from the ϑ?. However, in the linear

model, the difference of the posterior density across different chains is small. Al-

though Hoogerheide et al. (2006) suggest a sophisticated proposal density which
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can explore deeply separated regions of the parameter space, the algorithm depends

on the numerical optimization which does not work well for our case. We left this

issue as a future agenda. In the paper, we report results from the MCMC chain

whose starting point is ϑ?.

9.5 Monte Carlo smoothing algorithm

The key steps of Monte Carlo smoothing can be described as follows:

• Step 1 : Store resampled state variables xi
t at each time for i = 1, · · ·N

• Step 2 : For {xi
T }M

i=1, calculate wi,j
T−1|T ∝ p(xi

T |xj
T−1) where M <= N .

• Step 3 : Choose xk
T−1 = xj

T−1 with probability wi,j
T−1|T for k = 1, · · ·N .

• Step 4 : Repeat Step 2 and Step 3 until we get M trajectories of smoothed

states x1:T conditional on zT

We follow Godsill et.al. (2004) and generate a bunch of trajectories of state

variables based on the resampled state variables in the forward filtering. Fernández-

Villaverde and Rubio-Ramı́rez (2006) make the number of trajectories equal to that

of particles. However, since the computation time of one trajectory amount to that

of the evaluation of the likelihood, this is computationally costly. In a simulation

study, 6,000 trajectories are enough to make the mean estimates close to true values.

Smoothed estimates of macro factors in the paper are based on 6,000 trajectories of

state variables. Figure 13 shows the accuracy of smoothed estimates for the data

simulated from our model. Mean smoothed estimates are found to track true states

reasonably well.
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Table 1: Prior Distribution

Parameters Domain Density Para(1) Para(2)

τ R+ Gamma 2 0.5

β [0, 1) Beta 0.998 0.001

ln f? R+ Gamma 0.11 0.05

φ R+ Gamma 100 40

u?
a R+ Gamma 0.005 0.002

γp R+ Gamma 2 0.2

γy R+ Gamma 0.5 0.2

ρa [0,1) Beta 0.3 0.1

ρf [0,1) Beta 0.8 0.1

ρi [0,1) Beta 0.5 0.2

ρπ? [0,1) Beta 0.8 0.1

ηa R+ Inverse Gamma 0.004 4

η0,f R+ Inverse Gamma 0.010 4

ηi R+ Inverse Gamma 0.003 4

ηπ? R+ Inverse Gamma 0.002 4

ln A0 R Normal 9.951 0.2

lnπ?
0 R+ Gamma 0.01 0.002

h [0,1) Beta 0.3 0.1

η1,f [0,2.42) Uniform 0 2.42

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta,

Gamma, and Normal distributions; s and ν for the Inverse Gamma distribution,

where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
, a and b for the Uniform distribution from a

to b. The elasticity of labor supply ν is fixed at 0.5 which is roughly the posterior

mean of the parameter in Chang et al.(2006). Standard deviations of measurement

errors are also fixed as explained in the paper.
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Table 2: Posterior Distribution

Prior Posterior(Linear) Posterior(Quadratic)

90% Interval Mean 90% Interval Mean 90% Interval

τ [1.18,2.79] 2.47 [1.71,3.27] 2.72 [2.11,3.36]

β [0.997,0.999] 0.997 [0.995,0.998] 0.997 [0.996,0.999]

ln f? [0.033,0.185] 0.055 [0.021,0.092] 0.055 [0.029,0.088]

φ [36.0,160] 58.2 [18.5,93.9] 65.6 [30.9,98.8]

400u?
a [0.8,3.2] 2.4 [1.6,2.8] 2.0 [1.6,2.4]

γp [1.68,2.33] 2.10 [1.76,2.44] 2.18 [1.89,2.53]

γy [0.19,0.81] 0.17 [0.06,0.28] 0.15 [0.06,0.23]

ρa [0.135,0.459] 0.145 [0.074,0.219] 0.162 [0.073,0.239]

ρf [0.650,0.961] 0.822 [0.776,0.867] 0.801 [0.718,0.855]

ρi [0.171,0.825] 0.627 [0.488,0.786] 0.642 [0.541,0.758]

ρπ? [0.651,0.960] 0.990 [0.983,0.997] 0.986 [0.979,0.994]

400ηa [0.8,3.2] 2.8 [2.4,3.2] 2.8 [2.4,3.2]

100η0,f [0.5,2.0 ] 1.3 [0.9,1.7] 1.0 [0.7,1.2]

400ηi [0.64,2.36] 0.8 [0.68,0.96] 0.8 [0.68,0.96]

400ηπ? [0.4,1.6] 0.36 [0.32,0.44] 0.4 [0.32,0.44]

lnA0 [9.62,10.28] 9.82 [9.75,9.90] 9.81 [9.75,9.87]

400 lnπ? [2.8,5.2] 5.2 [4.0,6.0] 6.4 [4.4,7.6]

h [0.14,0.46] 0.42 [0.30,0.54] 0.41 [0.34,0.47]

η1,f [0.223,2.399] 0.948 [0.001,1.717] 0.040 [0.002,0.086]

Table 3: Log Marginal Data Densities

Linear Quadratic

Log marginal data density 3149.7 3151.3
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Table 4: Smoothed Estimates of Measurement Errors

πt y1,t y4,t y8,t y12,t y16,t y20,t

mean -0.009 -0.036 -0.005 -0.0248 -0.0116 0.0358 0.0362

standard deviation 0.044 0.221 0.252 0.214 0.152 0.148 0.182

mean absolute values 0.033 0.180 0.197 0.166 0.117 0.123 0.143

Notes: All the estimates are in terms of the annualized percentage. They are

evaluated at the posterior mean values of parameters.

Table 5: Regression of Empirical Counterparts of Term Structure Fac-

tors and term premium

Regression level slope curvature term premium

constant 9.354 (0.059) 0.565 (0.202) 0.068 (0.157) 3.527 (0.469)

ûa,t -0.130 (0.015) -0.214 (0.052) 0.096 (0.040) -0.272 (0.104)

ˆln f t 0.653 (0.026) 1.116 (0.088) -0.120 (0.068) 0.331 (0.202)

εi,t 1.483 (0.145) 1.177 (0.495) 1.952 (0.384) 0.135 (0.189)

ˆln π
?

t 2.440 (0.033) 0.563 (0.111) -0.032 (0.086) 1.522 (0.228)

R2 0.997 0.794 0.565 0.728

Notes: The level, slope, and curvature of the yield curve are defined by y20,t+y8,t+y1,t

3 ,

y1,t − y20,t, and 2y8,t − y20,t − y1,t. Term premium is defined by y20,t −
P19

j=0 y1,t+j

20 .

Regressors are smoothed estimates of macro factors(expressed in terms of log devia-

tions from steady state values) at the posterior mean of the quadratic model. Each

regressor is normalized so that the variance of it is equal to 1. Numbers in ( ) are

standard errors.
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Figure 1: Prior Predictive Checks I
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Notes: TP stands for the term premium defined by y20,t − (
P19

j=0 it+j)

20 . 1,000 draws

from the prior distribution are used for simulation. Red lines represent sample

moments from actual data.
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Figure 2: Prior Predictive Checks II
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Notes: TP stands for the term premium defined by y20,t − (
P19

j=0 it+j)

20 . 1,000 draws

from the prior distribution are used for simulation. Red lines represent sample

moments from actual data.
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Figure 3: Posterior Predictive Checks I
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Notes: TP stands for the term premium defined by y20,t − (
P19

j=0 it+j)

20 . Every 500

draw of parameters from 50,000 posterior draws is used for simulation. Red lines

represent sample moments from actual data.
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Figure 4: Posterior Predictive Checks II

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

Std(Level)

E
(L

ev
el

)

linear

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

Std(Slope)

E
(S

lo
pe

)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

Std(Curvature)

E
(C

ur
va

tu
re

)

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

Std(Level)

E
(L

ev
el

)

quadratic(benchmark)

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

Std(Slope)

E
(S

lo
pe

)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

Std(Curvature)

E
(C

ur
va

tu
re

)

Notes: TP stands for the term premium defined by y20,t − (
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20 . Every 500

draw of parameters from 50,000 posterior draws is used for simulation. Red lines

represent sample moments from actual data.
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Figure 5: Prior-Posterior Draws I
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Notes: Every 500 draw of parameters from 50,000 posterior draws is plotted. 100

posterior draws are contrasted with 100 prior draws. The intersection of solid lines

represent the posterior mean from the quadratic model while the intersection of

dot lines represent the posterior mean from the linear model.
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Figure 6: Prior-Posterior Draws II
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Notes: Every 500 draw of parameters from 50,000 posterior draws is plotted. 100

posterior draws are contrasted with 100 prior draws. The intersection of solid lines

represent the posterior mean from the quadratic model while the intersection of

dot lines represent the posterior mean from the linear model.
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Figure 7: Posterior Contour
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Figure 8: Steady State Real Interest Rate and Risk Aversion
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Figure 9: Dynamic Responses of Bond Yields
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Notes:Dynamic responses of bond yields are conditional on the one standard de-

viation shock in the current period and no shocks in the future. The economy is

assumed to be at the steady state initially.
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Figure 10: Macro Factors and Empirical Counterparts of Term Struc-

ture Factors
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Figure 11: Time Variation of Term Premium
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61

Figure 12: Inflation, Expected Inflation, and Target Inflation
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the survey of the professional forecasters provided by the federal reserve bank of
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Figure 13: Accuracy of Smoothed Estimates
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