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Abstract

In finite samples, the use of a slightly invalid but highly relevant instrument can substantially
reduce mean-squared error (MSE). Building on this observation, I propose a moment selec-
tion criterion for GMM in which over-identifying restrictions are chosen based on the MSE of
their associated estimators rather than their validity: the focused moment selection criterion
(FMSC). I then show how the asymptotic framework used to derive the FMSC can be em-
ployed to address the problem of inference post-moment selection. Treating post-selection
estimators as a special case of moment-averaging, in which estimators based on different
moment sets are given data-dependent weights, I propose a simulation-based procedure to
construct valid confidence intervals. In a Monte Carlo experiment for 2SLS estimation, the
FMSC performs well relative to alternatives suggested in the literature, and the simulation-
based procedure achieves its stated minimum coverage. I conclude with an empirical example
examining the effect of instrument selection on the estimated relationship between malaria
transmission and economic development.
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1. Introduction

For consistent estimates, instrumental variables must be valid and relevant: correlated
with the endogenous regressors but uncorrelated with the error term. In finite samples, how-
ever, the use of an invalid but sufficiently relevant instrument can improve inference, reducing
estimator variance by far more than bias is increased. Building on this observation, I propose
a new moment selection criterion for generalized method of moments (GMM) estimation:
the focused moment selection criterion (FMSC). Rather than selecting only valid moment
conditions, the FMSC chooses from a set of potentially mis-specified moment conditions
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to yield the smallest mean squared error (MSE) GMM estimator of a user-specified target
parameter. I derive FMSC using asymptotic mean squared error (AMSE) to approximate
finite-sample MSE. To ensure that AMSE remains finite, I employ a drifting asymptotic
framework in which mis-specification, while present for any fixed sample size, vanishes in
the limit. In the presence of such locally mis-specified moment conditions, GMM remains
consistent although, centered and rescaled, its limiting distribution displays an asymptotic
bias. Adding an additional mis-specified moment condition introduces a further source of
bias while reducing asymptotic variance. The idea behind FMSC is to trade off these two
effects in the limit as an approximation to finite sample behavior. While estimating asymp-
totic variance is straightforward, even under local mis-specification, estimating asymptotic
bias requires over-identifying information. I consider a setting in which two blocks of mo-
ment conditions are available: one that is assumed correctly specified, and another that may
not be. When the correctly specified block identifies the model, I derive an asymptotically
unbiased estimator of AMSE: the FMSC. When this is not the case, it remains possible to
use the AMSE framework to carry out a sensitivity analysis.

Still employing the local mis-specification assumption, I show how the ideas used to derive
FMSC can be applied to the important problem of inference post-moment selection. Because
they use the same data twice, first to choose a moment set and then to carry out estimation,
post-selection estimators are randomly weighted averages of many individual estimators.
While this is typically ignored in practice, its effects can be dramatic: coverage probabilities
of traditional confidence intervals are generally far too low, even for consistent moment
selection. I treat post-selection estimators as a special case of moment averaging: combining
estimators based on different moment sets with data-dependent weights. By deriving the
limiting distribution of moment average estimators, I propose a simulation-based procedure
for constructing valid confidence intervals. This technique can be used to correct confidence
intervals for a number of moment selection procedures including FMSC.

While the methods described here apply to any model estimated by GMM, subject to
standard regularity conditions, I focus on their application to linear instrumental variables
(IV) models. In simulations for two-stage least squares (2SLS), FMSC performs well relative
to alternatives suggested in the literature. Further, the procedure for constructing valid con-
fidence intervals achieves its stated minimum coverage, even in situations where instrument
selection leads to highly non-normal sampling distributions. I conclude with an empirical
application from development economics, exploring the effect of instrument selection on the
estimated relationship between malaria transmission and income.

My approach to moment selection under mis-specification is inspired by the focused
information criterion of Claeskens and Hjort (2003), a model selection criterion for models
estimated by maximum likelihood. Like them, I allow for mis-specification and use AMSE
to approximate small-sample MSE in a drifting asymptotic framework. In contradistinction,
however, I consider moment rather than model selection, and general GMM estimation rather
than maximum likelihood.

The existing literature on moment selection under mis-specification is comparatively
small. Andrews (1999) proposes a family of moment selection criteria for GMM by adding
a penalty term to the J-test statistic. Under an identification assumption and certain re-
strictions on the form of the penalty, these criteria consistently select all correctly specified
moment conditions in the limit. Andrews and Lu (2001) extend this work to allow simulta-
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neous GMM moment and model selection, while Hong et al. (2003) derive analogous results
for generalized empirical likelihood. More recently, Liao (2010) proposes a shrinkage pro-
cedure for simultaneous GMM moment selection and estimation. Given a set of correctly
specified moment conditions that identifies the model, this method consistently chooses all
valid conditions from a second set of potentially mis-specified conditions. In contrast to
these proposals, which examine only the validity of the moment conditions under consid-
eration, the FMSC balances validity against relevance to minimize MSE. The only other
proposal from the literature to consider both validity and relevance in moment selection is
a suggestion by Hall and Peixe (2003) to combine their canonical correlations information
criterion (CCIC) – a relevance criterion that seeks to avoid including redundant instruments
– with Andrews’ GMM moment selection criteria. This procedure, however, merely seeks
to avoid including redundant instruments after eliminating invalid ones: it does not allow
for the intentional inclusion of a slightly invalid but highly relevant instrument to reduce
MSE. The idea of choosing instruments to minimize MSE is shared by the procedures in
Donald and Newey (2001) and Donald et al. (2009). Kuersteiner and Okui (2010) also aim
to minimize MSE but, rather than choosing a particular instrument set, suggest averaging
over the first-stage predictions implied by many instrument sets and using this average in
the second stage. Unlike FMSC, these papers consider the higher-order bias that arises from
including many valid instruments rather than the first-order bias that arises from the use of
invalid instruments.

The literature on post-selection, or “pre-test” estimators is vast. Leeb and Pötscher (2005,
2009) give a theoretical overview, while Demetrescu et al. (2011) illustrate the practical
consequences via a simulation experiment. There are several proposals to construct valid
confidence intervals post-model selection, including Kabaila (1998), Hjort and Claeskens
(2003) and Kabaila and Leeb (2006). To my knowledge, however, this is the first paper to
examine the problem specifically from the perspective of moment selection. The approach
adopted here, treating post-moment selection estimators as a specific example of moment
averaging, is adapted from the frequentist model average estimators of Hjort and Claeskens
(2003). Another paper that considers weighting GMM estimators based on different moment
sets is Xiao (2010). While Xiao combines estimators based on valid moment conditions to
achieve a minimum variance estimator, I combine estimators based on potentially invalid
conditions to minimize MSE.

The remainder of the paper is organized as follows. Section 2 describes the local mis-
specification framework and gives the main limiting results used later in the paper. Section 3
derives FMSC as an asymptotically unbiased estimator of AMSE, presents specialized results
for 2SLS, and examines their performance in a Monte Carlo experiment. Section 4 describes
a simulation-based procedure to construct valid confidence intervals for moment average
estimators and examines its performance in a Monte Carlo experiment. Section 5 presents
the empirical application and Section 6 concludes. Proofs, along with supplementary figures
and tables, appear in the Appendix.

2. Notation and Asymptotic Framework

Let f(·, ·) be a (p+q)-vector of moment functions of a random vector Z and r-dimensional
parameter vector θ, partitioned according to f(·, ·) = (g(·, ·)′, h(·, ·)′)′ where g(·, ·) and h(·, ·)
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are p- and q-vectors of moment functions. The moment condition associated with g(·, ·) is
assumed to be correct whereas that associated with h(·, ·) is locally mis-specified. To be
more precise,

Assumption 2.1 (Local Mis-Specification).

E[f(Zni, θ)] = E
[
g(Zni, θ0)
h(Zni, θ0)

]
=

[
0

τ/
√
n

]
where τ is an unknown, q-dimensional vector of constants.

For any fixed sample size n, the expectation of h evaluated at the true parameter value
value θ0 depends on the unknown constant vector τ . Unless all components of τ are zero,
some of the moment conditions contained in h are mis-specified. In the limit however, this
mis-specification vanishes, as τ/

√
n converges to zero. Local mis-specification is used here as

a device to ensure that squared asymptotic bias is of the same order as asymptotic variance.
Define the sample analogue of the expectations in Assumption 2.1 as follows:

fn(θ) =
1

n

n∑
i=1

f(Zni, θ) =

[
gn(θ)
hn(θ)

]
=

[
n−1

∑n
i=1 g(Zni, θ)

n−1
∑n

i=1 h(Zni, θ)

]
(2.1)

In particular, gn is the sample analogue of the correctly specified moment conditions and
hn that of the mis-specified moment conditions. To describe the two estimators that will
play an important role in later results, let W̃ be a (q + p) × (q + p), positive semi-definite
weighting matrix

W̃ =

[
W̃gg W̃gh

W̃hg W̃hh

]
(2.2)

partitioned conformably to the partition of f(Z, θ) by g(Z, θ) and h(Z, θ).
The valid estimator uses only those moment conditions known to be correctly specified:

θ̂v = arg min
θ∈Θ

gn(θ)′W̃gg gn(θ) (2.3)

For estimation based on g alone to be possible, we must have p ≥ r. With the exception of
Section 3.2, this assumption is maintained throughout.

The full estimator uses all moment functions, including the possibly invalid ones con-
tained in h

θ̂f = arg min
θ∈Θ

fn(θ)′W̃ fn(θ) (2.4)

For this estimator to be feasible, we must have (p+ q) ≥ r. Note that the same weights are
used for g in both the valid and full estimation criteria. Although not strictly necessary, this
simplifies notation and is appropriate for the efficient GMM estimator.

To consider the limit distributions of θ̂f and θ̂v we require some further notation. For
simplicity, assume that the triangular array {Zni}ni=1 is asymptotically stationary and denote
by Z its almost-sure limit, i.e. limn→∞ P{Zni = Z} = 1 for all i. By Assumption 2.1,
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E[f(Z, θ0)] = 0. Define

F =

[
G
H

]
= E

[
∇θ g(Z, θ0)
∇θ h(Z, θ0)

]
(2.5)

and

Ω = V ar

[
g(Z, θ0)
h(Z, θ0)

]
=

[
Ωgg Ωgh

Ωhg Ωhh

]
(2.6)

Notice that each of these expressions involves the limit random variable Z rather than Zni,
i.e. the corresponding expectations are taken with respect to a distribution for which all
moment conditions are correctly specified.

The following high level assumptions are sufficient for the consistency and asymptotic
normality of the full and valid estimators.

Assumption 2.2 (High Level Sufficient Conditions).

(a) θ0 lies in the interior of Θ, a compact set

(b) W̃ →p W , a positive definite matrix

(c) WE[f(Z, θ)] = 0 and WggE[g(Z, θ)] = 0 if and only if θ = θ0

(d) E[f(Z, θ)] is continuous on Θ

(e) supθ∈Θ ‖fn(θ)− E[f(Z, θ)]‖ →p 0

(f) f is almost surely differentiable in an open neighborhood B of θ0

(g) supθ∈B ‖∇θfn(θ)− F (θ)‖ →p 0

(h)
√
nfn(θ0)→d Np+q

([
0
τ

]
,Ω

)
(i) F ′WF and G′WggG are invertible

Although Assumption 2.2 closely approximates the standard regularity conditions for
GMM estimation, establishing primitive conditions for Assumptions 2.2 (d), (e), (g) and (h)
is somewhat more involved under local mis-specification. Appendix B provides details for
the case where {Zni}ni=1 is iid over i for fixed n. Notice that identification, (c), and continuity,
(d), are conditions on the distribution of Z, the limiting random vector to which {Zni}ni=1

converges.
Under Assumptions 2.1 and 2.2 both the valid and full estimators are consistent and

asymptotically normal. The full estimator, however, shows an asymptotic bias. Let

M =

[
Mg

Mh

]
∼ Np+q

([
0
τ

]
,Ω

)
(2.7)

Theorem 2.1 (Consistency). Under Assumptions 2.1 and 2.2 (a)–(e), θ̂f →p θ0 and θ̂v →p

θ0.
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Theorem 2.2 (Asymptotic Normality). Under Assumptions 2.1 and 2.2

√
n
(
θ̂v − θ0

)
→d −[G′WggG]−1G′WggMh

and √
n
(
θ̂f − θ0

)
→d −[F ′WF ]−1F ′WM

To study moment selection generally, we need to describe the limit behavior of estimators
based on any subset of the the moment conditions contained in h. Fortunately, this only
requires some additional notation. Define an arbitrary moment set S by the components
of h that it includes. We will always include the moment conditions contained in g. Since
h is q-dimensional, S ⊆ {1, 2, . . . , q}. For S = ∅, we have the valid moment set; for S =
{1, 2, . . . , q}, the full moment set. Denote the number of components from h included in S
by |S|. Let ΞS be the (p + |S|)× (p + q) selection matrix that extracts those elements of a
(p+ q)-vector corresponding to the moment set S: all p of the first 1, . . . , p components and
the specified subset of the p + 1, . . . , p + q remaining components. Accordingly, define the
GMM estimator based on moment set S by

θ̂S = arg min
θ∈Θ

[ΞSfn(θ)]′
[
ΞSW̃Ξ′S

]
[ΞSfn(θ)] (2.8)

To simplify the notation let FS = ΞSF , WS = ΞSWΞ′S, MS = ΞSM and ΩS = ΞSΩΞ′S.
Define

KS = [F ′SWSFS]−1F ′SWS. (2.9)

Then, by an argument nearly identical to the proof of Theorem 2.2, we have the following.

Corollary 2.1 (Estimators for Arbitrary Moment Sets). Assume that

(a) WSΞSE[f(Z, θ)] = 0 if and only if θ = θ0, and

(b) F ′SWSFS is invertible.

Then, under Assumptions 2.1 and 2.2,
√
n(θ̂S − θ0)→d −KSMS.

Conditions (a) and (b) from Corollary 2.1 are analogous to Assumption 2.2 (c) and (i).

3. The Focused Moment Selection Criterion

3.1. The General Case

FMSC chooses among the potentially invalid moment conditions contained in h to min-
imize estimator AMSE for a target parameter. Denote this target parameter by µ, a real-
valued, almost-surely continuous function of the parameter vector θ. Further, define the
GMM estimator of µ based on θ̂S by µ̂S = µ(θ̂S) and the true value of µ by µ0 = µ(θ0).
Applying the delta method to Corollary 2.1 gives the AMSE of µ̂S.
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Corollary 3.1 (AMSE of Target Parameter). Under the hypotheses of Corollary 2.1,

√
n (µ̂S − µ0)→d −∇θµ(θ0)′KSMS.

In particular

AMSE (µ̂S) = ∇θµ(θ0)′KSΞS

{[
0 0
0 ττ ′

]
+ Ω

}
Ξ′SK

′
S∇θµ(θ0).

For the full and valid moment sets, we have

Kf = [F ′WF ]−1F ′W (3.1)

Kv = [G′WggG]
−1
G′Wgg (3.2)

Ξf = Ip+q (3.3)

Ξv =
[
Ip 0p×q

]
(3.4)

Thus, the valid estimator µ̂v of µ has zero asymptotic bias while the full estimator, µ̂f ,
inherits a bias from each component of τ . Typically, however, µ̂f has the smallest asymptotic
variance. In particular, the usual proof that adding moment conditions cannot increase
asymptotic variance under efficient GMM continues to hold under local mis-specification,
because all moment conditions are correctly specified in the limit.1 Estimators based on
other moment sets lie between these two extremes: the precise nature of the bias-variance
tradeoff is governed by the size of the respective components of τ and the projections implied
by the matrices KS. Thus, local mis-specification gives an asymptotic analogue of the finite-
sample observation that adding a slightly invalid but highly relevant instrument can decrease
MSE.

To use this framework for moment selection, we need to construct estimators of the
unknown quantities: θ0, KS, Ω, and τ . Under local mis-specification, the estimator of θ under
any moment set is consistent. In particular, Theorem 2.1 establishes that both the valid
and full estimators yield a consistent estimate of θ0. Recall that KS = [F ′SWSFS]−1F ′SWSΞS.
Now, ΞS is known because it is simply the selection matrix defining moment set S. The
remaining quantities FS and WS that make up KS are consistently estimated by their sample
analogues under Assumption 2.2. Similarly, consistent estimators of Ω are readily available
under local mis-specification, although the precise form depends on the situation. Section
3.3 considers this point in more detail for 2SLS and the case of micro-data.

The only remaining unknown is τ . Estimating this quantity, however, is more challenging.
The local mis-specification framework is essential for making meaningful comparisons of
AMSE, but prevents us from consistently estimating the asymptotic bias parameter. When
the correctly specified moment conditions in g identify θ, however, we can construct an
asymptotically unbiased estimator τ̂ of τ by substituting θ̂v, the estimator of θ0 that uses
only correctly specified moment conditions, into hn, the sample analogue of the mis-specified
moment conditions. That is,

τ̂ =
√
nhn(θ̂v). (3.5)

1See, for example Hall (2005, chapter 6).

7



Returning to Corollary 3.1, we see that it is ττ ′ rather than τ that enters the expression for
AMSE. Although τ̂ is an asymptotically unbiased estimator of τ , the limiting expectation
of τ̂ τ̂ ′ is not ττ ′ but rather ττ ′ + ΨΩΨ′. To obtain an asymptotically unbiased estimator of
ττ ′ we must subtract a consistent estimator of ΨΩΨ′ from τ̂ τ̂ ′.

Theorem 3.1 (Asymptotic Distribution of τ̂). Suppose that p ≥ r. Then,

τ̂ =
√
nhn(θ̂v)→d ΨM

where Ψ =
[
−HKv Iq

]
. Therefore ΨM ∼ Nq(τ,ΨΩΨ′).

Corollary 3.2 (Asymptotically Unbiased Estimator of ττ ′). Let Ω̂ and Ψ̂ be consistent
estimators of Ω and Ψ. Then,

τ̂ τ̂ ′ − Ψ̂Ω̂Ψ̂′ →d Ψ (MM ′ − Ω) Ψ′

i.e. τ̂ τ̂ ′ − Ψ̂Ω̂Ψ̂′ provides an asymptotically unbiased estimator of ττ ′.

Therefore,

FMSCn(S) = ∇θµ(θ̂)′K̂SΞS

{[
0 0

0 τ̂ τ̂ ′ − Ψ̂Ω̂Ψ̂′

]
+ Ω̂

}
Ξ′SK̂

′
S∇θµ(θ̂) (3.6)

provides an asymptotically unbiased estimator of AMSE.

3.2. Digression: The Case of r > p

When r > p, the dimension of the parameter vector θ exceeds that of the moment
function vector. Thus θ0 is not estimable by θ̂v so τ̂ is not a feasible estimator of τ . A
näıve approach to this problem would be to substitute another consistent estimator of θ0,
e.g. θ̂f , and proceed analogously. Unfortunately, this approach fails. To understand why,
consider the case in which all moment conditions are potentially invalid so the full moment
set is h. By a slight variation in the argument used in the proof of Theorem 3.1 we have√
nhn(θ̂f )→d Γ×Nq(τ,Ω), where

Γ = Iq −H (H ′WH)
−1
H ′W (3.7)

The mean, Γτ , of the resulting limit distribution does not in general equal τ . Because Γ has
rank q−r we cannot pre-multiply by its inverse to extract an estimate of τ . Intuitively, q−r
over-identifying restrictions are insufficient to estimate the q-vector τ .

Thus, τ is not identified unless we have a minimum of r valid moment conditions. How-
ever, the limiting distribution of

√
nhn(θ̂f ) partially identifies τ even when we have no valid

moment conditions at our disposal. A combination of this information with prior restrictions
on the magnitude of the components of τ allows the use of the FMSC framework to carry
out a sensitivity analysis when r > p. For example, the worst-case estimate of AMSE over
values of τ in the identified region could still allow certain moment sets to be ruled out. This
idea shares certain similarities with Kraay (2010) and Conley et al. (2010), two recent papers
that suggest methods for evaluating the robustness of conclusions drawn from IV regressions
when the instruments used may be invalid.
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3.3. The FMSC for 2SLS Instrument Selection

This section specializes FMSC to a case of particular applied interest: instrument selec-
tion for 2SLS in a micro-data setting. The expressions given here are used in the simulation
studies and empirical example that appear later in the paper.

Consider a linear IV regression model with response variable yni, regressors xni, valid
instruments z

(1)
ni and potentially invalid instruments z

(2)
ni . Define zni = (z

(1)
ni , z

(2)
ni )′. We assume

that {(yni,x′ni, z′ni)′}ni=1 is iid across i for fixed sample size n, but allow the distribution to
change with n. In this case, the local mis-specification framework given in Assumption 2.1
becomes

E

[
z

(1)
ni (yni − x′niθ0)

z
(2)
ni (yni − x′niθ0)

]
=

[
0

τ/
√
n

]
. (3.8)

Stacking observations, let X = (xn1, . . . ,xnn)′, y = (yn1, . . . , ynn)′, Z1 = (z
(1)
n1 , . . . , z

(1)
nn)′,

Z2 = (z
(2)
n1 , . . . , z

(2)
nn)′, and Z = (Z1, Z2). Further define uni(θ) = yni−x′niθ and u(θ) = y−Xθ.

The 2SLS estimator of θ0 under instrument set S is given by

θ̂S =
[
X ′ZS (Z ′SZS)

−1
Z ′SX

]−1

X ′ZS (Z ′SZS)
−1
Z ′Sy (3.9)

where ZS = ZΞ′S. Similarly, the full and valid estimators are

θ̂f =
[
X ′Z (Z ′Z)

−1
Z ′X

]−1

X ′Z (Z ′Z)
−1
Z ′y (3.10)

θ̂v =
[
X ′Z1 (Z ′1Z1)

−1
Z ′1X

]−1

X ′Z1 (Z ′1Z1)
−1
Z ′1y (3.11)

Let (x′, z′)′ be the almost-sure limit of {(x′ni, z′ni)′}ni=1 as n→∞ and define zS = ΞSz. Then,
the matrix KS defined in 2.9 becomes

KS = −
(
E [xz′S] (E[zSz

′
S])
−1 E [z′Sx]

)−1

E [xz′S] (E[zSz
′
S])
−1
. (3.12)

Because observations are iid for fixed n,

Ω = lim
n→∞

V ar

(
1√
N

n∑
i=1

zniuni(θ0)

)
= lim

n→∞
V ar [zniuni(θ0)] (3.13)

This expression allows for conditional but not unconditional heteroscedasticity.
To use the FMSC for instrument selection, we first need an estimator of KS for each

moment set under consideration, e.g.

K̂S = n
[
X ′ZS (Z ′SZS)

−1
Z ′SX

]−1

X ′ZS (Z ′SZS)
−1

(3.14)

which is consistent for KS under Assumption 2.2. To estimate Ω for all but the valid
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instrument set, I employ the centered, heteroscedasticity-consistent estimator

Ω̂ =
1

n

n∑
i=1

ziz
′
iui(θ̂f )

2 −

(
1

n

n∑
i=1

ziui(θ̂f )

)(
1

n

n∑
i=1

ui(θ̂f )z
′
i

)
.

Centering allows moment functions to have non-zero means. While the local mis-specification
framework implies that these means tend to zero in the limit, they are non-zero for any fixed
sample size. Centering accounts for this fact, and thus provides added robustness.

Since the valid estimator θ̂v has no asymptotic bias, the AMSE of any target parameter
based on θ̂v equals asymptotic variance. Rather than using the (p×p) upper left sub-matrix

of Ω̂ to estimate this quantity, I use

Ω̃11 =
1

n

n∑
i=1

z1iz
′
1iui(θ̂v)

2. (3.15)

This estimator imposes the assumption that all instruments in Z1 are valid so that no center-
ing is needed, and thus should be more precise. A robust estimator of ∇θµ(θ0) is provided by

∇θµ(θ̂V alid). The only remaining quantity needed for FMSC is the asymptotically unbiased

estimator τ̂ τ̂−Ψ̂Ω̂Ψ̂ of ττ ′ (see Theorem 3.1 and Corollary 3.2). For 2SLS, τ̂ = n−1/2 Z ′2 u(θ̂v)
while

Ψ̂ =
[
−n−1Z ′2XK̂v I

]
. (3.16)

3.4. Simulation Study

In this section I evaluate the performance of FMSC in a simple setting: instrument
selection for 2SLS. The simulation setup is as follows. For i = 1, 2, . . . , n

yi = 0.5xi + ui (3.17)

xi = 0.1(z1i + z2i + z3i) + γwi + εi (3.18)

where (ui, εi, wi)
′ ∼ iid N (0,V) with

V =

 1 0.5− γρ ρ
0.5− γρ 1 0

ρ 0 1

 (3.19)

independently of (z1i, z2i, z3i) ∼ N (0, I). This design keeps the endogeneity of x fixed,
Cov(x, u) = 0.5, while allowing the validity and relevance of w to vary according to

Cov(w, u) = ρ (3.20)

Cov(w, x) = γ (3.21)

The instruments z1, z2, z3 are valid and relevant: they have first-stage coefficients of 0.1 and
are uncorrelated with the second stage error u.

Our goal is to estimate the effect of x on y with minimum MSE by choosing between
two estimators: the valid estimator that uses only z1, z2, and z3 as instruments, and the full
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Table 1: Difference in RMSE between the estimator including w (full) and the estimator excluding it (valid)
over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument. Negative
values indicate that including w gives a smaller RMSE. Values are calculated by simulating from Equations
3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 -0.01 0.00 0.02 0.07 0.13 0.18 0.25 0.31 0.39
0.1 -0.06 0.00 0.09 0.19 0.30 0.42 0.53 0.65 0.79
0.2 -0.10 -0.04 0.07 0.19 0.32 0.46 0.58 0.72 0.86
0.3 -0.14 -0.09 0.01 0.12 0.24 0.36 0.48 0.61 0.72
0.4 -0.17 -0.12 -0.03 0.06 0.16 0.26 0.36 0.46 0.57
0.5 -0.19 -0.15 -0.07 0.01 0.10 0.19 0.27 0.34 0.45
0.6 -0.20 -0.17 -0.10 -0.03 0.04 0.11 0.19 0.26 0.34

γ
=
C
ov

(w
,x

)

0.7 -0.21 -0.18 -0.13 -0.07 -0.01 0.07 0.14 0.20 0.26
0.8 -0.22 -0.20 -0.15 -0.09 -0.04 0.03 0.09 0.15 0.20
0.9 -0.23 -0.21 -0.16 -0.12 -0.07 -0.01 0.04 0.10 0.14
1.0 -0.25 -0.22 -0.19 -0.13 -0.08 -0.04 0.01 0.06 0.11
1.1 -0.24 -0.22 -0.20 -0.16 -0.10 -0.07 -0.02 0.03 0.07
1.2 -0.26 -0.22 -0.19 -0.16 -0.12 -0.07 -0.05 -0.01 0.03
1.3 -0.29 -0.24 -0.20 -0.17 -0.14 -0.09 -0.06 -0.01 0.02

estimator that uses z1, z2, z3, and w. The inclusion of z1, z2 and z3 in both moment sets
means that the order of over-identification is two for the the valid estimator and three for
the full estimator. Because the moments of the 2SLS estimator only exist up to the order of
over-identification (Phillips, 1980), this ensures that the small-sample MSE is well-defined.
All simulations are carried out over a grid of values for (γ, ρ) with 10, 000 replications at each
point. Estimation is by 2SLS without a constant term, using the expressions from Section
3.3.

Table 1 gives the difference in small-sample root mean squared error (RMSE) between the
full and valid estimators for a sample size of 500. Negative values indicate parameter values
at which the full instrument set has a lower RMSE. We see that even if Cov(w, u) 6= 0, so
that w is invalid, including it in the instrument set can dramatically lower RMSE provided
that Cov(w, x) is high. In other words, using an invalid but sufficiently relevant instrument
can improve our estimates. Tables C.22 and C.23 present the same results for sample sizes of
50 and 100, respectively. For smaller sample sizes the full estimator has the lower RMSE over
increasingly large regions of the parameter space. Because a sample size of 500 effectively
divides the parameter space into two halves, one where the full estimator has the advantage
and one where the valid estimator does, I concentrate on this case. Summary results for
smaller sample sizes appear in Table 6.

The FMSC chooses moment conditions to minimize an asymptotic approximation to
small-sample MSE in the hope that this will provide reasonable performance in practice.
The first question is how often the FMSC succeeds in identifying the instrument set that

11



Table 2: Correct decision rates for the FMSC in percentage points over a grid of values for the relevance,
Cov(w, x), and validity, Cov(w, u), of the instrument w. A correct decision is defined as an instance in which
the FMSC identifies the estimator that in fact minimizes small sample MSE, as indicated by Table 1. Values
are calculated by simulating from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 79 61 69 85 91 94 94 95 96
0.1 82 25 62 91 98 99 99 100 100
0.2 84 82 46 80 96 99 100 100 100
0.3 85 85 31 60 82 94 98 99 100
0.4 84 86 77 42 65 82 92 96 98
0.5 84 87 82 31 49 68 81 90 95
0.6 84 88 84 75 38 54 68 80 87

γ
=
C
ov

(w
,x

)

0.7 85 87 86 80 69 44 57 69 79
0.8 84 87 86 82 74 36 48 60 71
0.9 85 87 87 84 78 69 41 52 61
1.0 85 88 87 85 79 74 35 45 53
1.1 85 88 88 86 82 76 68 39 48
1.2 85 88 88 87 84 79 72 65 43
1.3 86 87 88 88 84 80 75 69 39

minimizes small sample MSE. Table 2 gives the frequency of correct decisions in percentage
points made by the FMSC for a sample size of 500. A correct decision is defined as an
instance in which the FMSC selects the moment set that minimizes finite-sample MSE as
indicated by Table 1. We see that the FMSC performs best when there are large differences in
MSE between the full and valid estimators: in the top right and bottom left of the parameter
space. The criterion performs less well in the borderline cases along the main diagonal.

Ultimately, the goal of the FMSC is to produce estimators with low MSE. Because the
FMSC is itself random, however, using it introduces an additional source of variation. Table
3 accounts for this fact by presenting the RMSE that results from using the estimator chosen
by the FMSC. Because these values are difficult to interpret on their own, Tables 4 and 5
compare the realized RMSE of the FMSC to those of the valid and full estimators. Negative
values indicate that the RMSE of the FMSC is lower. As we see from Table 4, the valid
estimator outperforms the FMSC in the upper right region of the parameter space, the
region where the valid estimator has a lower RMSE than the full. This is because the FMSC
sometimes chooses the wrong instrument set, as indicated by Table 2. Accordingly, the
FMSC performs substantially better in the bottom left of the parameter space, the region
where the full estimator has a lower RMSE than the valid. Taken on the whole, however,
the potential advantage of using the valid estimator is small: at best it yields an RMSE 0.06
smaller than that of the FMSC. Indeed, many of the values in the top right of the parameter
space are zero, indicating that the FMSC performs no worse than the valid estimator. In
contrast, the potential advantage of using the FMSC is large: it can yield an RMSE 0.16
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Table 3: RMSE of the estimator selected by the FMSC over a grid of values for the relevance, Cov(w, x),
and validity, Cov(w, u), of the instrument w. Values are calculated by simulating from Equations 3.17–3.19
with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.26 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
0.1 0.24 0.26 0.28 0.27 0.27 0.27 0.27 0.27 0.27
0.2 0.22 0.25 0.30 0.31 0.28 0.27 0.28 0.27 0.27
0.3 0.20 0.23 0.29 0.32 0.31 0.29 0.28 0.27 0.28
0.4 0.20 0.22 0.27 0.31 0.32 0.31 0.30 0.30 0.28
0.5 0.20 0.20 0.25 0.29 0.32 0.32 0.32 0.31 0.29
0.6 0.19 0.19 0.23 0.27 0.30 0.33 0.33 0.32 0.31

γ
=
C
ov

(w
,x

)

0.7 0.18 0.19 0.22 0.25 0.28 0.31 0.32 0.33 0.32
0.8 0.18 0.19 0.21 0.24 0.27 0.30 0.31 0.32 0.32
0.9 0.18 0.19 0.20 0.23 0.26 0.28 0.30 0.32 0.33
1.0 0.18 0.18 0.19 0.22 0.25 0.27 0.29 0.30 0.32
1.1 0.17 0.17 0.19 0.21 0.23 0.25 0.28 0.29 0.31
1.2 0.17 0.17 0.18 0.20 0.22 0.24 0.26 0.28 0.29
1.3 0.17 0.17 0.17 0.19 0.21 0.23 0.25 0.27 0.28

smaller than the valid model. The situation is similar for the full estimator only in reverse,
as shown in Table 5. The full estimator outperforms the FMSC in the bottom left of the
parameter space, while the FMSC outperforms the full estimator in the top right. Again,
the potential gains from using the FMSC are large compared to those of the full instrument
set: a 0.86 reduction in RMSE versus a 0.14 reduction. Average and worst-case RMSE
comparisons between the FMSC and the full and valid estimators appear in Table 6.

I now compare the FMSC to a number of alternative procedures from the literature. An-
drews introduces the following GMM analogues of Schwarz’s Bayesian Information Criterion
(BIC), Akaike’s Information Criterion (AIC) and the Hannan-Quinn Information Criterion
(HQ):

GMM-BIC(S) = Jn(S)− (p+ |S| − r) log n (3.22)

GMM-HQ(S) = Jn(S)− 2.01 (p+ |S| − r) log log n (3.23)

GMM-AIC(S) = Jn(S)− 2 (p+ |S| − r) (3.24)

where Jn(S) is the J-test statistic under moment set S. In each case, we choose the mo-
ment set S that minimizes the criterion. Under certain assumptions, the HQ and BIC-type
criteria are consistent, they select any and all valid moment conditions with probability ap-
proaching one in the limit (w.p.a.1). When calculating the J-test statistic under potential
mis-specification, Andrews recommends using a centered covariance matrix estimator and
basing estimation on the weighting matrix that would be efficient under the assumption of
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Table 4: Difference in RMSE between the estimator selected by the FMSC and the valid estimator (which
always excludes w) over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instru-
ment w. Negative values indicate that the FMSC gives a lower realized RMSE. Values are calculated by
simulating from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.1 -0.04 -0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
0.2 -0.05 -0.02 0.03 0.03 0.00 0.00 0.00 0.00 0.00
0.3 -0.07 -0.04 0.02 0.04 0.04 0.01 0.01 0.00 0.00
0.4 -0.08 -0.05 0.00 0.04 0.05 0.04 0.03 0.02 0.01
0.5 -0.08 -0.07 -0.02 0.02 0.05 0.06 0.05 0.02 0.02
0.6 -0.09 -0.08 -0.04 0.00 0.03 0.04 0.05 0.04 0.04

γ
=
C
ov

(w
,x

)

0.7 -0.09 -0.08 -0.06 -0.03 0.00 0.04 0.05 0.06 0.05
0.8 -0.10 -0.09 -0.07 -0.03 -0.01 0.02 0.04 0.05 0.04
0.9 -0.10 -0.09 -0.08 -0.06 -0.03 0.00 0.02 0.04 0.04
1.0 -0.12 -0.11 -0.10 -0.06 -0.04 -0.02 0.00 0.02 0.04
1.1 -0.11 -0.11 -0.11 -0.09 -0.05 -0.04 -0.02 0.01 0.02
1.2 -0.13 -0.11 -0.11 -0.09 -0.07 -0.04 -0.04 -0.01 0.00
1.3 -0.16 -0.12 -0.11 -0.10 -0.09 -0.05 -0.04 -0.01 0.00

Table 5: Difference in RMSE between the estimator selected by the FMSC and the full estimator (which
always includes w) over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument
w. Negative values indicate that the FMSC gives a lower realized RMSE. Values are calculated by simulating
from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.00 -0.01 -0.03 -0.07 -0.13 -0.18 -0.25 -0.31 -0.39
0.1 0.02 -0.01 -0.07 -0.18 -0.30 -0.42 -0.53 -0.65 -0.78
0.2 0.05 0.02 -0.04 -0.16 -0.31 -0.46 -0.58 -0.72 -0.86
0.3 0.07 0.05 0.01 -0.08 -0.20 -0.34 -0.47 -0.61 -0.71
0.4 0.09 0.07 0.03 -0.02 -0.11 -0.22 -0.33 -0.44 -0.56
0.5 0.11 0.08 0.05 0.01 -0.05 -0.13 -0.22 -0.32 -0.42

γ
=
C
ov

(w
,x

)

0.6 0.11 0.09 0.07 0.03 -0.01 -0.06 -0.14 -0.22 -0.30
0.7 0.12 0.10 0.07 0.04 0.01 -0.03 -0.08 -0.14 -0.22
0.8 0.13 0.11 0.08 0.05 0.03 0.00 -0.05 -0.10 -0.15
0.9 0.13 0.11 0.08 0.06 0.04 0.01 -0.02 -0.06 -0.10
1.0 0.13 0.11 0.09 0.07 0.05 0.02 -0.01 -0.04 -0.07
1.1 0.13 0.11 0.09 0.07 0.05 0.03 0.01 -0.02 -0.05
1.2 0.14 0.11 0.09 0.07 0.05 0.03 0.02 0.00 -0.03
1.3 0.13 0.12 0.09 0.07 0.05 0.04 0.02 0.00 -0.02
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correct specification. Accordingly, I calculate

JFull =
1

n
u(θ̂f )

′ Z Ω̂−1 Z ′ u(θ̂f ) (3.25)

JV alid =
1

n
u(θ̂v)

′ Z1 Ω̃−1
11 Z ′1 u(θ̂v) (3.26)

for the full and valid instrument sets, respectively, using the formulas from Section 3.3.
Because the Andrews-type criteria only take account of instrument validity, not relevance,

Hall and Peixe (2003) suggest combining them with their canonical correlations information
criterion (CCIC). The CCIC aims to detect and eliminate redundant instruments, those
that add no further information beyond that contained in the other instruments. While
including such instruments has no effect on the asymptotic distribution of the estimator, it
could lead to poor finite-sample performance. By combining the CCIC with an Andrews-
type criterion, the idea is to eliminate invalid instruments and then redundant ones. For the
present simulation example, with a single endogenous regressor and no constant term, the
CCIC takes the following form (Jana, 2005)

CCIC(S) = n log
[
1−R2

n(S)
]

+ h(p+ |S|)µn (3.27)

where R2
n(S) is the first-stage R2 based on instrument set S and h(p + |S|)µn is a penalty

term. Specializing these by analogy to the BIC, AIC, and HQ gives

CCIC-BIC(S) = n log
[
1−R2

n(S)
]

+ (p+ |S| − r) log n (3.28)

CCIC-HQ(S) = n log
[
1−R2

n(S)
]

+ 2.01 (p+ |S| − r) log log n (3.29)

CCIC-AIC(S) = n log
[
1−R2

n(S)
]

+ 2 (p+ |S| − r) (3.30)

I consider procedures that combine CCIC criteria with the corresponding criterion of An-
drews (1999). For the present simulation example, these are as follows:

CC-MSC-BIC: Include w iff doing so minimizes GMM-BIC and CCIC-BIC (3.31)

CC-MSC-HQ: Include w iff doing so minimizes GMM-HQ and CCIC-HQ (3.32)

CC-MSC-AIC: Include w iff doing so minimizes GMM-AIC and CCIC-AIC(3.33)

A less formal but extremely common procedure for moment selection in practice is the
downward J-test. In the present context this takes a particularly simple form: if the J-test
fails to reject the null hypothesis of correct specification for the full instrument set, use
this set for estimation; otherwise, use the valid instrument set. In addition to the moment
selection criteria given above, I compare the FMSC to selection by a downward J-test at the
90% and 95% significance levels.

Table 6 compares average and worst-case RMSE over the parameter space given in Table 1
for sample sizes of 50, 100, and 500 observations. For each sample size the FMSC outperforms
all other moment selection procedures in both average and worst-case RMSE. The gains are
particularly large for smaller sample sizes. Pointwise RMSE comparisons for a sample size
of 500 appear in Tables C.24–C.31. These results given here suggest that the FMSC may be
of considerable value for instrument selection in practice.
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Table 6: Summary of Simulation Results. Average and worst-case RMSE are calculated over the simulation
grid from Table 1. All values are calculated by simulating from Equations 3.17–3.19 with 10, 000 replications
at each point on the grid.

Average RMSE N = 50 N = 100 N = 500
Valid Estimator 0.69 0.59 0.28
Full Estimator 0.44 0.40 0.34
FMSC 0.47 0.41 0.26
GMM-BIC 0.61 0.52 0.29
GMM-HQ 0.64 0.56 0.29
GMM-AIC 0.67 0.58 0.28
Downward J-test 90% 0.55 0.50 0.28
Downward J-test 95% 0.51 0.47 0.28
CC-MSC-BIC 0.61 0.51 0.28
CC-MSC-HQ 0.64 0.55 0.28
CC-MSC-AIC 0.66 0.57 0.28

Worst-case RMSE N = 50 N = 100 N = 500
Valid Estimator 0.84 1.06 0.32
Full Estimator 1.04 1.12 1.14
FMSC 0.81 0.74 0.33
GMM-BIC 0.99 0.99 0.47
GMM-HQ 0.97 1.03 0.39
GMM-AIC 0.95 1.04 0.35
Downward J-test 90% 0.99 0.98 0.41
Downward J-test 95% 1.01 1.00 0.46
CC-MSC-BIC 0.86 0.99 0.47
CC-MSC-HQ 0.87 1.03 0.39
CC-MSC-AIC 0.87 1.04 0.35
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4. Estimators Post-Selection and Moment Averaging

4.1. The Effects of Moment Selection on Inference

The usual approach to inference post-selection is to state conditions under which tradi-
tional distribution theory continues to hold, typically involving an appeal to Lemma 1.1 of
Pötscher (1991, p. 168), which states that the limit distributions of an estimator pre- and
post-consistent selection are identical. Pötscher (1991, pp. 179–180), however, also states
that this result does not hold uniformly over the parameter space. Accordingly, Leeb and
Pötscher (2005, p. 22) emphasize that a reliance on the lemma “only creates an illusion of
conducting valid inference.” In this section, we return to the simulation experiment described
in Section 3.4 to briefly illustrate the impact of moment selection on inference.

Figure 4.1 gives the distributions of the valid and full estimators alongside the post-
selection distributions of estimators chosen by the GMM-BIC and HQ criteria, defined in
Equations 3.22 and 3.23. The distributions are computed by kernel density estimation using
10, 000 replications of the simulation described in Equations 3.17 and 3.18, each with a sample
size of 500 and γ = 0.4, ρ = 0.2. For these parameter values the instrument w is relevant but
sufficiently invalid that, based on the results of Table 1, we should exclude it. Because GMM-
BIC and HQ are consistent procedures, they will exclude any invalid instruments w.p.a.1.
A näıve reading of Pötscher’s Lemma 1.1 suggests that consistent instrument selection is
innocuous, and thus that the post-selection distributions of GMM-BIC and HQ should be
close to that of the valid estimator, indicated by dashed lines. This is emphatically not the
case: the post-selection distributions are highly non-normal mixtures of the distributions of
the valid and full estimators. While Figure 4.1 pertains to only one point in the parameter
space, the problem is more general. Tables 7 and 8 give the empirical coverage probabilities
of traditional 95% confidence intervals over the full simulation grid. Over the vast majority
of the parameter space, empirical coverage probabilities are far lower than the nominal level
0.95. The lack of uniformity is particularly striking. When w is irrelevant, γ = 0, or valid
ρ = 0, empirical coverage probabilities are only slightly below 0.95. Relatively small changes
in either ρ or γ, however, lead to a large deterioration in coverage.

Because FMSC, GMM-AIC and selection based on a downward J-test at a fixed signif-
icance level are not consistent procedures, Lemma 1.1 of Pötscher (1991) is inapplicable.
Their behavior, however, is similar to that of the GMM-BIC and HQ (see Figures C.2–C.3
and Tables 9 and C.32–C.34). As this example illustrates, ignoring the effects of moment
selection can lead to highly misleading inferences.

4.2. Moment Average Estimators

To account for the effects of moment selection on inference, I extend a framework devel-
oped by Hjort and Claeskens (2003) for frequentist model averaging. I treat post-selection
estimators as a special case of moment-averaging: combining estimators based on different
moment sets using data-dependent weights. Consider an estimator of the form,

µ̂ =
∑
S∈A

ω̂(S)µ̂S (4.1)

where µ̂S = µ(θ̂S) is an estimator of the target parameter µ under moment set S, A is
the collection of all moment sets under consideration, and the weight function ω̂(·) may be
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Figure 1: Post-selection distributions for the estimated effect of x on y in Equation 3.17 with γ = 0.4, ρ = 0.2,
N = 500. The distribution post-GMM-BIC selection appears in the top panel, while the distribution post-
GMM-HQ selection appears in the bottom panel. The distribution of the full estimator is given in dotted
lines while that of the valid estimator is given in dashed lines in each panel. All distributions are calculated
by kernel density estimation based on 10,000 simulation replications generated from Equations 3.17–3.19.
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Table 7: Coverage probabilities post-GMM-BIC moment selection of a traditional 95% asymptotic confidence
interval for the effect of x on y in Equation 3.17, over a grid of values for the relevance, Cov(w, x), and validity,
Cov(w, u), of the instrument w. Values are calculated by simulating from Equations 3.17–3.19 with 10, 000
replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.92 0.92 0.92 0.93 0.92 0.92 0.92 0.92 0.93
0.1 0.92 0.83 0.77 0.83 0.90 0.92 0.93 0.92 0.92
0.2 0.93 0.76 0.55 0.57 0.74 0.86 0.89 0.90 0.91
0.3 0.93 0.75 0.45 0.35 0.50 0.69 0.80 0.85 0.88
0.4 0.93 0.75 0.40 0.22 0.31 0.48 0.63 0.74 0.80
0.5 0.93 0.75 0.38 0.18 0.20 0.32 0.46 0.59 0.68
0.6 0.94 0.76 0.38 0.14 0.14 0.23 0.32 0.43 0.53

γ
=
C
ov

(w
,x

)

0.7 0.94 0.76 0.37 0.12 0.11 0.16 0.24 0.32 0.42
0.8 0.93 0.76 0.37 0.11 0.08 0.12 0.18 0.25 0.33
0.9 0.94 0.75 0.37 0.11 0.07 0.10 0.14 0.19 0.25
1.0 0.93 0.76 0.37 0.10 0.06 0.08 0.11 0.16 0.20
1.1 0.93 0.77 0.37 0.10 0.06 0.07 0.10 0.13 0.16
1.2 0.94 0.77 0.38 0.10 0.05 0.06 0.08 0.11 0.14
1.3 0.94 0.77 0.38 0.10 0.04 0.05 0.07 0.09 0.12

Table 8: Coverage probabilities post-GMM-HQ moment selection of a traditional 95% asymptotic confidence
interval for the effect of x on y in Equation 3.17, over a grid of values for the relevance, Cov(w, x), and validity,
Cov(w, u), of the instrument w. Values are calculated by simulating from Equations 3.17–3.19 with 10, 000
replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93
0.1 0.92 0.85 0.84 0.89 0.92 0.93 0.93 0.92 0.93
0.2 0.92 0.78 0.66 0.74 0.86 0.91 0.91 0.92 0.92
0.3 0.92 0.76 0.54 0.54 0.69 0.83 0.88 0.90 0.91
0.4 0.91 0.76 0.47 0.38 0.52 0.69 0.79 0.85 0.88
0.5 0.91 0.75 0.44 0.30 0.39 0.54 0.67 0.77 0.82
0.6 0.91 0.76 0.42 0.25 0.29 0.41 0.54 0.64 0.72

γ
=
C
ov

(w
,x

)

0.7 0.92 0.76 0.40 0.21 0.24 0.33 0.43 0.53 0.63
0.8 0.91 0.76 0.41 0.19 0.20 0.27 0.36 0.45 0.53
0.9 0.92 0.75 0.40 0.19 0.17 0.23 0.30 0.38 0.44
1.0 0.91 0.76 0.40 0.16 0.15 0.20 0.25 0.32 0.38
1.1 0.91 0.76 0.40 0.16 0.14 0.18 0.23 0.28 0.33
1.2 0.92 0.76 0.40 0.16 0.13 0.16 0.20 0.25 0.30
1.3 0.92 0.77 0.41 0.15 0.13 0.15 0.18 0.22 0.27
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data-dependent. As above µ(·) is a R-valued, almost-surely continuous function of θ. When
µ̂ is an indicator function taking on the value one at the moment set S that minimizes some
moment selection criterion, µ̂ is a post-moment selection estimator. More generally, µ̂ is a
moment average estimator.

The limiting behavior of µ̂ follows almost immediately from Corollary 2.1, which states
that asymptotic distribution of θ̂S depends only on KS and M . Because KS is a matrix of
constants, the random variable M governs the joint limiting behavior of θ̂S, S ∈ A. Under
certain conditions on the ω̂(·), we can fully characterize the limit distribution of µ̂.

Assumption 4.1 (Conditions on Weight Functions).

(a)
∑

S∈A ω̂(S) = 1,

(b) ω̂(·) is almost-surely continuous, and

(c) ω̂(S)→d ω(M |S), a function of M (defined in Theorem 2.2) and constants only.

Corollary 4.1 (Asymptotic Distribution of Moment-Average Estimators). Under Assump-
tion 4.1 and the conditions of Corollary 2.1,

√
n (µ̂− µ0)→d Λ(τ) = −∇θµ(θ0)′

[∑
S∈A

ω(M |S)KSΞS

]
M.

Notice that the limit random variable, denoted Λ(τ), is a randomly weighted average of
the multivariate normal vector M . Hence, Λ(τ) is in general non-normal.

Although it restricts the convergence of the weight functions, Assumption 4.1 is satisfied
by a number of familiar moment selection criteria. Substituting Corollary 3.2 into Equation
3.6 shows that the FMSC converges to a function of M and constants only. Therefore,
any almost surely continuous weights that can be written as a function of FMSC satisfy
Assumption 4.1. Thus, we can use Corollary 2.1 to study the limit behavior of post-FMSC
estimators. Moment selection criteria based on the J-test statistic also satisfy the conditions
of Assumption 4.1. Under local mis-specification, the J-test statistic does not diverge, but
has a non-central χ2 limit distribution that can be expressed as a function of M and constants
as follows.

Theorem 4.1 (Distribution of J-Statistic under Local Mis-Specification). Under the con-
ditions of Corollary 2.1,

Jn(S) = n
[
ΞSfn(θ̂S)

]′
Ω̂−1

[
ΞSfn(θ̂S)

]
→d

(
Ω
−1/2
S MS

)′
(I − PS)

(
Ω
−1/2
S MS

)
where Ω̂−1

S is a consistent estimator of Ω−1
S , PS is the projection matrix based on the identi-

fying restrictions Ω
−1/2
S FS, and MS = ΞSM .

Thus, the downward J-test procedure, GMM-BIC, GMM-HQ, and GMM-AIC all satisfy
Corollary 4.1. GMM-BIC and GMM-HQ, however, are not particularly interesting under
local mis-specification. Intuitively, because they aim to select all valid moment conditions
w.p.a.1, we would expect that under Assumption 2.1 they simply choose the full moment set
in the limit. The following result states that this intuition is correct.
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Theorem 4.2 (Behavior of Consistent Criteria under Local Mis-Specification). Consider a
moment selection criterion of the form MSC(S) = Jn(S)− h(|S|)κn, where

(a) h is strictly increasing, and

(b) κn →∞ as n→∞ and κn = o(n).

Under the conditions of Corollary 2.1, MSC(S) selects the full moment set w.p.a.1.

Because moment selection using the GMM-BIC or HQ leads to weights ω(M |S) with a
degenerate distribution, these examples are not considered further below.

4.3. Valid Confidence Intervals

While Corollary 4.1 characterizes the limiting behavior of moment-average, and hence
post-selection estimators, it does not immediately suggest a procedure for constructing confi-
dence intervals. The limiting random variable Λ(τ) defined in Corollary 4.1 is a complicated
function of the normal random vector M , the precise form of which depends on the weight
function ω(·|S). To surmount this difficulty, I adapt a suggestion from Claeskens and Hjort
(2008) and approximate the behavior of moment average estimators by simulation. The
result is a conservative procedure that provides asymptotically valid confidence intervals.

First, suppose that KS, ω(·|S), θ0, Ω and τ are known. Then, by simulating from
M , as defined in Theorem 2.2, the distribution of Λ(τ), defined in Corollary 4.1, can be
approximated to arbitrary precision. To operationalize this procedure, substitute consistent
estimators of KS, θ0, and Ω, e.g. those used to calculate FMSC. To estimate ω(·|S), we first
need to derive the limit distribution of ω̂(S), the data-based weight function specified by the
user. As an example, consider the case of moment selection based on the FMSC. Here ω̂(S)
is simply the indicator function

ω̂(S) = 1

{
FMSCn(S) = min

S′∈A
FMSCn(S ′)

}
(4.2)

To estimate ω(·|S) we require the limiting distribution of FMSCn(S). From 3.6, by Corollary

3.2, if Ω̂→p Ω, K̂S →p KS and θ̂ →p θ0, FMSCn(S)→d FMSC(M |S) where

FMSC(M |S) = ∇θµ(θ0)′KSΞS

{[
0 0
0 Ψ (MM ′ − Ω) Ψ′

]
+ Ω

}
Ξ′K ′S∇θµ(θ0) (4.3)

Defining

F̂MSC(M |S) = ∇θµ(θ̂)′K̂SΞS

{[
0 0

0 Ψ̂
(
MM ′ − Ω̂

)
Ψ̂′

]
+ Ω

}
Ξ′SK̂

′
S∇θµ(θ̂) (4.4)

yields the following estimator of ω(·|S) for the case of FMSC moment selection

ω̂(·|S) = 1

{
F̂MSC(·|S) = min

S′∈A
F̂MSC(·|S ′)

}
(4.5)
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For GMM-AIC moment selection or selection based on a downward J-test, ω(·|S) may be
estimated analogously, following Theorem 4.1.

Simulating from M , defined in Equation 2.7, requires estimates of Ω and τ . Recall that no
consistent estimator of τ is available under local mis-specification; the estimator τ̂ has a non-
degenerate limit distribution (see Theorem 3.2). Thus, simulation from a Np+q((0′, τ̂ ′)′, Ω̂)
distribution may lead to erroneous results by failing to account for the uncertainty that enters
through τ̂ . The solution is to use a two-stage procedure. First construct a 100(1 − δ)%
confidence region T (τ̂) for τ using Theorem 3.2. Then simulate from the distribution of
Λ(τ), defined in Corollary 4.1, for each τ ∈ T (τ̂). Taking the lower and upper bounds of the
resulting intervals, centering and rescaling yields a conservative interval for µ̂, as defined in
defined in Equation 4.1. The precise algorithm is as follows.

Algorithm 4.1 (Simulation-based Confidence Interval for µ̂).

1. For each τ ∈ T (τ̂)

(i) Generate Mj(τ) ∼ Np+q
(

(0′, τ ′)′, Ω̂
)

, j = 1, 2, . . . , B

(ii) Set Λj(τ) = −∇θµ(θ̂)′
[∑

S∈A ω̂(Mj(τ)|S)K̂SΞS

]
Mj(τ), j = 1, 2, . . . , B

(iii) Using {Λj(τ)}Bj=1, calculate â(τ), b̂(τ) such that

P
{
â(τ) ≤ Λ(τ) ≤ b̂(τ)

}
= 1− α

2. Define

âmin(τ̂) = min
τ∈T (τ̂)

â(τ)

b̂max(τ̂) = max
τ∈T (τ̂)

b̂(τ)

3. The confidence interval for is µ given by

CIsim =

[
µ̂− b̂max(τ̂)√

n
, µ̂− âmin(τ̂)√

n

]

Theorem 4.3 (Simulation-based Confidence Interval for µ̂). If

(a) Ψ̂, Ω̂, θ̂ and K̂S are consistent estimators of Ψ, Ω, θ0 and KS;

(b) ω̂(M |S) = ω(M |S) + op(1);

(c) ∆̂(τ̂ , τ) = (τ̂ − τ)′
(

Ψ̂Ω̂Ψ̂′
)−1

(τ̂ − τ) and

(d) T (τ̂) =
{
τ : ∆n(τ̂ , τ) ≤ χ2

q(δ)
}

where χ2
q(δ) denotes the 1−δ quantile of a χ2 distribution

with q degrees of freedom
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Table 9: Coverage probabilities post-FMSC moment selection of a traditional 95% asymptotic confidence
interval for the effect of x on y in Equation 3.17, over a grid of values for the relevance, Cov(w, x), and
validity, Cov(w, u), of the instrument w. Values are calculated by simulating from Equations 3.17–3.19 with
10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
0.1 0.91 0.87 0.88 0.91 0.93 0.93 0.93 0.93 0.93
0.2 0.90 0.79 0.72 0.82 0.90 0.93 0.92 0.93 0.93
0.3 0.90 0.76 0.58 0.64 0.80 0.90 0.92 0.93 0.93
0.4 0.89 0.75 0.50 0.47 0.64 0.80 0.88 0.91 0.92
0.5 0.89 0.74 0.45 0.36 0.50 0.67 0.79 0.87 0.91
0.6 0.89 0.74 0.43 0.30 0.38 0.54 0.68 0.78 0.85

γ
=
C
ov

(w
,x

)

0.7 0.90 0.74 0.41 0.24 0.31 0.44 0.57 0.68 0.78
0.8 0.89 0.74 0.41 0.22 0.25 0.36 0.48 0.59 0.70
0.9 0.91 0.74 0.41 0.20 0.21 0.31 0.41 0.52 0.61
1.0 0.90 0.75 0.40 0.18 0.19 0.25 0.35 0.45 0.53
1.1 0.90 0.76 0.40 0.17 0.17 0.23 0.32 0.39 0.47
1.2 0.91 0.76 0.41 0.17 0.15 0.20 0.27 0.34 0.42
1.3 0.92 0.77 0.41 0.16 0.15 0.19 0.24 0.31 0.39

then, the interval CIsim defined in Algorithm 4.1 has asymptotic coverage probability no less
than 1− (α + δ) as B, n→∞.

To evaluate the performance of the procedure given in Algorithm 4.1, we revisit the
simulation experiment described in Section 3.4, considering FMSC moment selection. The
following results are based on 10,000 replications, each with a sample size of 500. Table 9
gives the empirical coverage probabilities of traditional 95% confidence intervals post-FMSC
selection. These are far below the nominal level over the vast majority of the parameter space.
Table 10 presents the empirical coverage of conservative 90% confidence intervals constructed
according to Algorithm 4.1, with B = 1000.2 The two-stage simulation procedure performs
remarkably well, achieving a minimum coverage probability of 0.89 relative to its nominal
level of 0.9. Moreover, a näıve one-step procedure that omits the first-stage and simply
simulates from M based on τ̂ performs surprisingly well; see Table 11. While the empirical
coverage probabilities of the one-step procedure are generally lower than the nominal level of
0.95, they represent a substantial improvement over the traditional intervals given in Table
9, with a worst-case coverage of 0.72 compared to 0.15. This suggests that the one-step
intervals might be used as a rough but useful approximation to the fully robust but more
computationally intensive intervals constructed according to Algorithm 4.1.

2Because this simulation is computationally intensive, I use a reduced grid of parameter values.
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Table 10: Coverage probabilities of two-step, conservative 90% intervals for the effect of x on y in Equation
3.17, post-FMSC moment selection. Intervals are calculated using Algorithm 4.1 with B = 1000, over a grid
of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument w. As above, simulations
are generated from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.1 0.2 0.3 0.4

0.0 0.92 0.93 0.93 0.93 0.94
0.2 0.95 0.91 0.93 0.95 0.97
0.4 0.95 0.95 0.90 0.93 0.97
0.6 0.95 0.95 0.92 0.90 0.92

γ
=
C
ov

(w
,x

)

0.8 0.94 0.95 0.96 0.90 0.89
1.0 0.94 0.94 0.96 0.93 0.90
1.2 0.94 0.94 0.96 0.95 0.92

Table 11: Coverage probabilities of corrected one-step, 95% intervals for the effect of x on y in Equation
3.17, post-FMSC moment selection. Intervals are calculated using Step 1 of Algorithm 4.1, fixing τ = τ̂ ,
with B = 1000, over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument
w. As above, simulations are generated from Equations 3.17–3.19 with 10, 000 replications and a sample size
of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.94
0.1 0.93 0.91 0.91 0.92 0.92 0.92 0.93 0.94 0.95
0.2 0.94 0.91 0.86 0.87 0.92 0.93 0.94 0.95 0.96
0.3 0.95 0.94 0.87 0.81 0.85 0.91 0.94 0.96 0.96
0.4 0.95 0.95 0.91 0.82 0.77 0.84 0.90 0.94 0.95
0.5 0.95 0.95 0.93 0.86 0.76 0.76 0.82 0.88 0.92
0.6 0.94 0.94 0.94 0.90 0.80 0.74 0.75 0.81 0.87

γ
=
C
ov

(w
,x

)

0.7 0.94 0.94 0.95 0.93 0.85 0.74 0.73 0.75 0.81
0.8 0.94 0.94 0.95 0.94 0.88 0.79 0.73 0.73 0.76
0.9 0.95 0.94 0.94 0.94 0.91 0.83 0.76 0.72 0.73
1.0 0.95 0.94 0.94 0.94 0.92 0.86 0.78 0.73 0.73
1.1 0.95 0.94 0.94 0.95 0.94 0.89 0.81 0.76 0.73
1.2 0.95 0.94 0.94 0.95 0.94 0.90 0.85 0.79 0.75
1.3 0.95 0.94 0.94 0.95 0.95 0.92 0.87 0.81 0.78
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4.4. Moment Averaging

The moment average estimators of the previous section were derived primarily to provide
valid confidence intervals post-moment selection, but in fact allow us to carry out inference
for a wider class of estimators. Viewed as a special case of Equation 4.1, moment selection
is in fact a fairly crude procedure, giving full weight to the minimizer of the criterion no
matter how close its nearest competitor lies. Under moment selection, when competing
moment sets have similar criterion values in the population, random variation in the sample
will be magnified in the selected estimator. Thus, it may be possible to achieve better
performance by using smooth weights rather than discrete selection. In this section, I briefly
examine a proposal based on exponential weighting.

In the context of maximum likelihood estimation, Buckland et al. (1997) suggest av-
eraging the estimators resulting from a number of competing models using weights of the
form

wk =
exp(−Ik/2)∑K
i=1 exp(−Ii/2)

(4.6)

where Ik is an information criterion evaluated for model k, and i ∈ {1, 2, . . . , K} indexes the
set of candidate models. This expression, constructed by an analogy with Bayesian model
averaging, gives more weight to models with lower values of the information criterion but
non-zero weight to all models. Applying this idea to the moment selection criteria given
above, consider

ω̂BIC(S) = exp
{
−κ

2
GMM-BIC(S)

}/∑
S′∈A

exp
{
−κ

2
GMM-BIC(S ′)

}
(4.7)

ω̂AIC(S) = exp
{
−κ

2
GMM-AIC(S)

}/∑
S′∈A

exp
{
−κ

2
GMM-AIC(S ′)

}
(4.8)

ω̂HQ(S) = exp
{
−κ

2
GMM-HQ(S)

}/∑
S′∈A

exp
{
−κ

2
GMM-HQ(S ′)

}
(4.9)

ω̂FMSC(S) = exp
{
−κ

2
FMSC(S)

}/∑
S′∈A

exp
{
−κ

2
FMSC(S ′)

}
(4.10)

The parameter κ varies the uniformity of the weighting. As κ→ 0 the weights become more
uniform; as κ→∞ they approach the moment selection procedure given by minimizing the
corresponding criterion.

Table 12 compares moment averaging based on Equations 4.7–4.10 to the correspond-
ing moment selection procedures using the simulation experiment described in Section 3.4.
Calculations are based on 10,000 replications, each with a sample size of 500. For FMSC
averaging κ = 1/100 to account for the fact that the FMSC is generally more variable than
criteria based on the J-test. Weights for GMM-BIC, HQ, and AIC averaging set κ = 1. Both
in terms of average and worst-case RMSE, moment selection is inferior to moment averaging.
The only exception is worst-case RMSE for the FMSC. Moreover, as we see from Tables 13–
16, which compare the averaging and selection procedures at each point on the simulation
grid, this improvement is nearly uniform. If our goal is estimators with low RMSE, moment
averaging may be preferable to moment selection.
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Table 12: Average and worst-case RMSE of the moment averaging procedures given in Equations 4.7–
4.10 and their moment selection counterparts, with κ = 1/100 for FMSC averaging and κ = 1 for all other
averaging procedures. Values are calculated by simulating from Equations 3.17–3.19 with 10, 000 replications
at each combination of parameter values from Table 1 and a sample size of 500.

Average RMSE Averaging Selection
FMSC 0.24 0.26
GMM-BIC 0.26 0.29
GMM-HQ 0.26 0.29
GMM-AIC 0.26 0.28
Worst-Case RMSE Averaging Selection
FMSC 0.36 0.33
GMM-BIC 0.41 0.47
GMM-HQ 0.36 0.39
GMM-AIC 0.33 0.35

Table 13: Difference in RMSE between GMM-BIC moment averaging with κ = 1 and GMM-BIC moment
selection, over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument w.
Negative values indicate that averaging gives a lower realized RMSE. Values are calculated by simulating
from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02
0.1 -0.01 -0.01 -0.03 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02
0.2 0.00 -0.02 -0.04 -0.04 -0.02 -0.02 -0.02 -0.02 -0.02
0.3 -0.01 -0.02 -0.04 -0.05 -0.05 -0.04 -0.03 -0.02 -0.03
0.4 -0.01 -0.02 -0.03 -0.04 -0.05 -0.05 -0.04 -0.04 -0.03
0.5 -0.01 -0.01 -0.03 -0.04 -0.05 -0.06 -0.05 -0.05 -0.05
0.6 -0.01 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.06 -0.06

γ
=
C
ov

(w
,x

)

0.7 -0.01 -0.01 -0.02 -0.04 -0.04 -0.05 -0.05 -0.06 -0.06
0.8 -0.02 -0.02 -0.02 -0.03 -0.04 -0.04 -0.05 -0.05 -0.06
0.9 -0.01 -0.02 -0.01 -0.03 -0.03 -0.04 -0.05 -0.05 -0.06
1.0 -0.02 -0.02 -0.03 -0.02 -0.03 -0.04 -0.04 -0.05 -0.05
1.1 -0.01 -0.01 -0.01 -0.02 -0.03 -0.03 -0.04 -0.04 -0.05
1.2 -0.02 -0.01 -0.02 -0.02 -0.03 -0.03 -0.04 -0.04 -0.04
1.3 -0.01 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.04 -0.04

26



Table 14: Difference in RMSE between GMM-HQ moment averaging with κ = 1 and GMM-HQ moment
selection, over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument w.
Negative values indicate that averaging gives a lower realized RMSE. Values are calculated by simulating
from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
0.1 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 -0.01 -0.02
0.2 -0.01 -0.02 -0.03 -0.02 -0.01 0.00 -0.01 0.00 -0.01
0.3 -0.01 -0.03 -0.04 -0.04 -0.03 -0.01 0.00 0.00 0.00
0.4 -0.02 -0.02 -0.03 -0.04 -0.04 -0.03 -0.02 -0.01 -0.01
0.5 -0.02 -0.03 -0.04 -0.04 -0.04 -0.04 -0.03 -0.02 -0.02
0.6 -0.02 -0.02 -0.03 -0.04 -0.04 -0.05 -0.04 -0.04 -0.03

γ
=
C
ov

(w
,x

)

0.7 -0.02 -0.03 -0.03 -0.04 -0.05 -0.05 -0.05 -0.05 -0.04
0.8 -0.02 -0.03 -0.03 -0.04 -0.04 -0.05 -0.05 -0.05 -0.05
0.9 -0.03 -0.02 -0.03 -0.04 -0.04 -0.04 -0.05 -0.05 -0.05
1.0 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 -0.05 -0.05 -0.05
1.1 -0.03 -0.03 -0.04 -0.04 -0.04 -0.04 -0.05 -0.05 -0.05
1.2 -0.03 -0.02 -0.03 -0.03 -0.04 -0.04 -0.04 -0.05 -0.05
1.3 -0.05 -0.02 -0.03 -0.03 -0.04 -0.04 -0.04 -0.04 -0.05

Table 15: Difference in RMSE between GMM-AIC moment averaging with κ = 1 and GMM-AIC moment
selection, over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument w.
Negative values indicate that averaging gives a lower realized RMSE. Values are calculated by simulating
from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00
0.1 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 -0.01 -0.01
0.2 -0.02 -0.02 -0.02 0.00 0.01 0.01 0.00 0.00 0.00
0.3 -0.03 -0.03 -0.03 -0.01 0.00 0.01 0.01 0.01 0.00
0.4 -0.03 -0.03 -0.03 -0.03 -0.01 0.00 0.00 0.01 0.01
0.5 -0.03 -0.03 -0.03 -0.03 -0.02 -0.01 -0.01 0.00 0.00
0.6 -0.03 -0.03 -0.03 -0.04 -0.03 -0.02 -0.02 -0.01 -0.01

γ
=
C
ov

(w
,x

)

0.7 -0.04 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 -0.02
0.8 -0.03 -0.03 -0.04 -0.04 -0.03 -0.03 -0.03 -0.03 -0.02
0.9 -0.04 -0.03 -0.03 -0.04 -0.04 -0.04 -0.03 -0.03 -0.03
1.0 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.03 -0.03
1.1 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
1.2 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
1.3 -0.05 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04
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Table 16: Difference in RMSE between FMSC moment averaging with κ = 1/100 and FMSC moment
selection, over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument w.
Negative values indicate that averaging gives a lower realized RMSE. Values are calculated by simulating
from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.02 0.02
0.1 -0.01 -0.01 -0.01 0.03 0.05 0.06 0.06 0.06 0.06
0.2 -0.02 -0.03 -0.04 0.00 0.05 0.08 0.08 0.07 0.06
0.3 -0.03 -0.04 -0.05 -0.04 0.01 0.05 0.08 0.09 0.08
0.4 -0.04 -0.04 -0.05 -0.06 -0.03 0.01 0.04 0.07 0.08
0.5 -0.04 -0.04 -0.05 -0.06 -0.05 -0.03 0.00 0.03 0.06
0.6 -0.04 -0.04 -0.05 -0.06 -0.06 -0.05 -0.03 0.00 0.03

γ
=
C
ov

(w
,x

)

0.7 -0.04 -0.04 -0.05 -0.06 -0.06 -0.06 -0.05 -0.03 0.00
0.8 -0.04 -0.04 -0.05 -0.05 -0.06 -0.06 -0.05 -0.05 -0.02
0.9 -0.04 -0.04 -0.04 -0.05 -0.06 -0.06 -0.06 -0.05 -0.04
1.0 -0.04 -0.04 -0.04 -0.05 -0.05 -0.06 -0.06 -0.05 -0.05
1.1 -0.04 -0.04 -0.04 -0.04 -0.05 -0.06 -0.06 -0.06 -0.06
1.2 -0.04 -0.03 -0.03 -0.04 -0.05 -0.05 -0.06 -0.06 -0.06
1.3 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05 -0.05 -0.06 -0.06

5. Empirical Example: Geography or Institutions?

Carstensen and Gundlach (2006) address a controversial question from the development
literature: does geography directly effect income after controlling for institutions? A number
of well-known studies find little or no direct effect of geographic endowments. Acemoglu et al.
(2001), for example, find that countries nearer to the equator do not have lower incomes
after controlling for institutions. Rodrik et al. (2004) report that geographic variables have
only small direct effects on income, affecting development mainly through their influence
on institutions. Similarly, Easterly and Levine (2003) find no effect of “tropics, germs and
crops” except through institutions. Sachs (2003) responds directly to these three papers
by showing that malaria transmission, a variable largely driven by ecological conditions,
directly influences the level of per capita income, even after controlling for institutions.
Because malaria transmission is very likely endogenous, Sachs uses a measure of “malaria
ecology,” constructed to be exogenous both to present economic conditions and public health
interventions, as an instrument. Carstensen and Gundlach (2006) address the robustness of
Sachs’s results using the following baseline regression for a sample of 45 countries:

lngdpci = β1 + β2 · institutions i + β3 ·malaria i + εi (5.1)

Treating both institutions and malaria transmission as endogenous, they consider a variety
of measures of each and a number of instrument sets. In each case, they find large nega-
tive effects of malaria transmission, lending further support to Sach’s conclusion. In this

28



section, using data kindly supplied by the authors, I expand on the instrument selection
exercise given in Table 2 of Carstensen and Gundlach (2006) using the FMSC and corrected
confidence intervals described above. I consider two questions. First, based on the FMSC
methodology, which instruments should we choose to produce the best estimate of β3, the
effect of malaria transmission on per capita income? Second, after correcting confidence
intervals for instrument selection, do we still find evidence of large and negative effects of
malaria transmission on income? All results given here are calculated by 2SLS using the
formulas from Section 3.3 and the variables described in Table 17. In keeping with Table
2 of Carstensen and Gundlach (2006), I use lngdpc as the dependent variable and rule and
malfal as measures of institutions and malaria transmission throughout this section.

To apply the FMSC to the present example, we need a minimum of two valid instru-
ments besides the constant term. Based on the arguments given in Acemoglu et al. (2001),
Carstensen and Gundlach (2006) and Sachs (2003), I proceed under the assumption that
lnmort and maleco, measures of early settler mortality and malaria ecology, are exogenous.
Rather than selecting over every possible subset of instruments, I consider a number of in-
strument blocks defined in Carstensen and Gundlach (2006). The baseline block contains
lnmort, maleco and a constant; the climate block contains frost, humid, and latitude; the
Europe block contains eurfrac and engfrac; and the openness block contains coast and trade.
Full descriptions of these variables appear in Table 17. Table 18 gives 2SLS results and
traditional 95% confidence intervals for all instrument sets considered here.

Table 19 presents FMSC results for instrument sets 1–8 as defined in Table 18. The left
panel takes the effect of malfal, a measure of malaria transmission, as the target parameter
while the right uses the effect of rule, a measure of institutions. Results are sorted in
decreasing order of FMSC, with the selected instrument set and corresponding estimate
at the bottom. In each case, the FMSC selects instrument set 8: the full instrument set
containing the baseline, climate, Europe and openness blocks. The FMSC rankings, however,
differ depending on the target parameter. For example, when the target is rule instrument
sets 8 and 5 are virtually identical in terms of FMSC: 0.26 versus 0.23. In Table 2 of their
paper, Carstensen and Gundlach (2006) report GMM-BIC and HQ results for selection over
instrument sets 2–4 and 8 that also favor instrument set 8. However, the authors do not
consider instrument sets 5–7. Although the FMSC also selects instrument set 8, the FMSC
values of instrument set 5 are small enough to suggest that including the openness block
does little to reduce MSE.

The bottom two panels of Table 19 present a number of alternative 95% confidence
intervals for the effects of malfal and rule, respectively. The first row gives the traditional
asymptotic confidence interval from Table 18, while the following three give simulation-based
intervals accounting for the effects of instrument selection. I do not present intervals for the
conservative procedure given in Algorithm 4.1 because the results in this example are so
insensitive to the value of τ that the minimization and maximization problems given in Step
2 of the Algorithm are badly behaved. To illustrate this, I instead present intervals that
use the same simulation procedure as Algorithm 4.1 but treat τ as fixed. I consider four
possible values of the bias parameter. When τ = τ̂ , we have the one-step corrected interval
considered in Table 11. When τ = 0, we have an interval that assumes all instruments are
valid. The remaining two values τ̂min and τ̂max correspond to the lower and upper bounds
of elementwise 95% confidence intervals for τ based on the distributional result given in
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Theorem 3.1. These result in a region with greater than 95% coverage for τ considered
jointly. We see that the corrected 95% intervals for the effect of malfal are extremely similar
regardless of the value of τ used in the simulation. The same is true for rule. There is no
evidence that accounting for the effects of instrument selection should change our conclusions
about the sign or significance of either malfal or rule.

Table 19: FMSC values and corrected confidence intervals for selection over instrument sets 1–8. The left
panel gives results when the coefficient on malfal is the target parameter; the right panel gives results when
the coefficient on rule is the target parameter.

µ =malfal FMSC µ̂
Valid (1) 3.03 -1.04
Climate (2) 2.67 -0.90
Openness (3) 2.31 -1.09
Europe (4) 1.83 -1.14
Openness, Europe (7) 1.72 -1.16
Climate, Openness (6) 1.65 -0.98
Climate, Europe (5) 0.71 -1.02
Full (8) 0.53 -1.08

µ =malfal lower upper
Traditional -1.58 -0.58
τ = τ̂ -1.54 -0.61
τ = 0 -1.53 -0.64
τ = τ̂max -1.51 -0.55
τ = τ̂min -1.61 -0.58

µ =rule FMSC µ̂
Valid (1) 1.27 0.89
Openness (3) 1.23 0.81
Climate (2) 0.92 0.97
Openness, Europe (7) 0.77 0.81
Europe (4) 0.55 0.86
Climate, Openness (6) 0.43 0.86
Climate, Europe (5) 0.26 0.93
Full (8) 0.23 0.84

µ =rule lower upper
Traditional 0.57 1.10
τ = τ̂ 0.55 1.13
τ = 0 0.55 1.12
τ = τ̂max 0.55 1.17
τ = τ̂min 0.49 1.15

The FMSC is designed to include invalid instruments when doing so will reduce AMSE.
Table 20 considers adding two almost certainly invalid instruments to the baseline instrument
set: rule2 and malfal2. Because they are constructed from the endogenous regressors, these
instruments are likely to be highly relevant. Unless the effect of institutions and malaria
transmission on GDP per capita is exactly linear, however, they are invalid. When the
target is malfal, we see that the FMSC selects an instrument set including malfal2 and the
baseline instruments. Notice that the FMSC is negative in this case. Although it provides an
asymptotically unbiased estimator of AMSE, the FMSC may be negative because it subtracts
Ψ̂Ω̂Ψ̂′ from τ̂ τ̂ ′ when estimating the squared bias. When the target is rule, the FMSC chooses
the full instrument set, including the baseline instruments along with rule2 and malfal2.
While these instruments are likely invalid, they are extremely strong. The FMSC chooses to
include them because its estimate of the bias they induce is small compared to the reduction
in variance they provide. Table 21 further expands the instrument sets under consideration
to include 1–4 and 9–12. In this case, the FMSC chooses instrument set 12 for both target
parameters. However, we see from the FMSC rankings that most of the reduction in MSE
achieved by instrument set 12 comes from the inclusion of the squared endogenous regressors
in the instrument set. Turning our attention to the confidence intervals in Tables 20 and 21,
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we again see that the simulation-based intervals are extremely insensitive to the value of τ
used. Once again, the sign and significance of malfal and rule is not sensitive to the effects
of instrument selection. These results lend further support to the view of Carstensen and
Gundlach (2006) and Sachs (2003) that malaria transmission has a direct effect on economic
development.

Table 20: FMSC values and corrected confidence intervals for selection over instrument sets 1 and 9–11. The
left panel gives results when the coefficient on malfal is the target parameter; the right panel gives results
when the coefficient on rule is the target parameter.

µ =malfal FMSC µ̂
Valid (1) 3.03 -1.04
rule2 (10) 2.05 -0.84
Full (11) -0.20 -0.85
malfal2 (9) -0.41 -0.92

µ =malfal lower upper
Traditional -1.39 -0.46
τ = τ̂ -1.49 -0.38
τ = 0 -1.46 -0.38
τ = τ̂max -1.51 -0.38
τ = τ̂min -1.49 -0.38

µ =rule FMSC µ̂
Valid (1) 1.27 0.89
rule2 (10) 0.28 1.02
malfal2 (9) 0.18 0.93
Full (11) -0.06 1.02

µ =rule lower upper
Traditional 0.72 1.32
τ = τ̂ 0.68 1.36
τ = 0 0.71 1.32
τ = τ̂max 0.66 1.37
τ = τ̂min 0.71 1.35

6. Conclusion

This paper has introduced the FMSC, a proposal to choose moment conditions based on
the quality of the estimates they provide. The criterion performs well in simulations, and the
framework used to derive it allows us to construct confidence intervals that properly account
for the effects of moment selection on inference. While I focus here on an application to
instrument selection for cross-section data, the FMSC could prove useful in any context in
which moment conditions arise from more than one source. In a panel model, for example,
the assumption of contemporaneously exogenous instruments may be plausible while the
stronger assumption of predetermined instruments is more dubious. Using the FMSC, we
could assess whether the extra information contained in the lagged instruments outweighs
their potential invalidity. Similarly, in a macro model, measurement error could be present in
variables entering the intratemporal Euler equation but not the intertemporal Euler equation,
as considered by Eichenbaum et al. (1988). In this case we could use the FMSC to decide
whether to include the moment conditions arising from the intra-Euler. Because the FMSC
uses only first-order asymptotics, a possible extension of this work would be to consider
refinements based on higher-order expansions. Another possibility would be to derive a
version of the FMSC for generalized empirical likelihood (GEL) estimators. While GMM
and GEL are first-order equivalent, GEL often gives finite-sample performance (Newey and
Smith, 2004), and may thus improve the performance of the moment selection procedure.
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Table 21: FMSC values and corrected confidence intervals for selection over instrument sets 1–4 and 9–12.
The left panel gives results when the coefficient on malfal is the target parameter; the right panel gives
results when the coefficient on rule is the target parameter.

µ =malfal FMSC µ̂
Valid (1) 3.03 -1.04
Climate (2) 2.85 -0.90
Openness (3) 2.51 -1.09
Europe (4) 1.94 -1.14
rule2 (10) 1.88 -0.84
malfal2, rule2 (11) 0.06 -0.85
malfal2 (9) -0.20 -0.92
Full (12) -1.38 -1.00

µ =malfal lower upper
Traditional -1.42 -0.57
τ = τ̂ -1.51 -0.51
τ = 0 -1.48 -0.52
τ = τ̂max -1.50 -0.50
τ = τ̂min -1.50 -0.49

µ =rule FMSC µ̂
Valid (1) 1.27 0.89
Openness (3) 1.26 0.81
Climate (2) 0.95 0.97
Europe (4) 0.58 0.86
rule2 (10) 0.25 1.02
malfal2 (9) 0.15 0.93
malfal2, rule2 (11) -0.03 1.02
Full (12) -0.61 0.88

µ =rule lower upper
Traditional 0.63 1.12
τ = τ̂ 0.57 1.17
τ = 0 0.60 1.15
τ = τ̂max 0.55 1.17
τ = τ̂min 0.59 1.18

References

Acemoglu, D., Johnson, S., Robinson, J. A., 2001. The colonial origins of comparative de-
velopment: An empirical investigation. American Economic Review 91 (5), 1369–1401.

Andrews, D. W. K., May 1999. Consistent moment selection procedures for generalized
methods of moments estimation. Econometrica 67 (3), 543–564.

Andrews, D. W. K., Lu, B., 2001. Consistent model and moment selection procedures for
GMM estimation with application to dynamic panel data models. Journal of Econometrics
101, 123–164.

Buckland, S. T., Burnham, K. P., Augustin, N. H., 1997. Model selection: An integral part
of inference. Biometrics 53 (2), 603–618.

Carstensen, K., Gundlach, E., 2006. The primacy of institutions reconsidered: Direct income
effects of malaria prevelance. World Bank Economic Review 20 (3), 309–339.

Claeskens, G., Hjort, N. L., 2003. The focused information criterion. Journal of the American
Statistical Association 98 (464), 900–945.

Claeskens, G., Hjort, N. L., 2008. Model Selection and Model Averaging. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge.

34



Conley, T. G., Hansen, C. B., Rossi, P. E., 2010. Plausibly exogenous. Forthcoming, Review
of Economics and Statistics.

Davidson, J., 1994. Stochastic Limit Theory. Advanced Texts in Econometrics. Oxford.

Demetrescu, M., Hassler, U., Kuzin, V., 2011. Pitfalls of post-model-selection testing: Ex-
perimental quantification. Empirical Economics 40, 359–372.

Donald, S. G., Imbens, G. W., Newey, W. K., 2009. Choosing instrumental variables in
conditional moment restriction models. Journal of Econometrics 152, 28–36.

Donald, S. G., Newey, W. K., September 2001. Choosing the number of instruments. Econo-
metrica 69 (5), 1161–1191.

Easterly, W., Levine, R., 2003. Tropics, germs, and crops: how endowments influence eco-
nomic development. Journal of Monetary Economics 50, 3–39.

Eichenbaum, M. S., Hansen, L. P., Singleton, K. J., 1988. A time series analysis of rep-
resentative agent models of consumption and leisure choice under uncertainty. Quarterly
Journal of Economics 103 (1), 51–78.

Hall, A. R., 2005. Generalized Method of Moments. Advanced Texts in Econometrics. Oxford.

Hall, A. R., Peixe, F. P., 2003. A consistent method for the selection of relevant instruments
in linear models. Econometric Reviews 22, 269–288.

Hjort, N. L., Claeskens, G., 2003. Frequentist model average estimators. Journal of the
American Statistical Association 98 (464), 879–899.

Hong, H., Preston, B., Shum, M., 2003. Generalized empirical likelihood-based model selec-
tion for moment condition models. Econometric Theory 19, 923–943.

Jana, K., 2005. Canonical correlations and instrument selection in econometrics. Ph.D. thesis,
North Carolina State University.

Kabaila, P., 1998. Valid confidence intervals in regressions after variable selection. Econo-
metric Theory 14, 463–482.

Kabaila, P., Leeb, H., 2006. On the large-sample minimal coverage probability of confidence
intervals after model selection. Journal of the American Statistical Association 101 (474),
819–829.

Kraay, A., 2010. Instrumental variables regressions with uncertain exclusion restrictions: A
Bayesian approach. Forthcoming, Journal of Applied Econometrics.

Kuersteiner, G., Okui, R., March 2010. Constructing optimal instruments by first-stage
prediction averaging. Econometrica 78 (2), 679–718.

Leeb, H., Pötscher, B. M., 2005. Model selection and inference: Facts and fiction. Econo-
metric Theory 21 (1), 21–59.

35



Leeb, H., Pötscher, B. M., 2009. Model selection. In: Handbook of Financial Time Series.
Springer.

Liao, Z., November 2010. Adaptive GMM shrinkage estimation with consistent moment
selection, Working Paper.

Newey, W. K., McFadden, D., 1994. Large Sample Estimation and Hypothesis Testing.
Vol. IV. Elsevier Science, Ch. 36, pp. 2111–2245.

Newey, W. K., Smith, R. J., 2004. Higher order properties of gmm and generalized empirical
likelihood. Econometrica 72 (1), 219–255.

Phillips, P. C. B., 1980. The exact distribution of instrumental variables estimators in an
equation containing n+ 1 endogenous variables. Econometrica 48 (4), 861–878.

Pötscher, B. M., 1991. Effects of model selection on inference. Econometric Theory 7, 163–
185.

Rodrik, D., Subramanian, A., Trebbi, F., 2004. Institutions rule: The primacy of institutions
over geography and integration in economic development. Journal of Economic Growth 9,
131–165.

Sachs, J. D., February 2003. Institutions don’t rule: Direct effects of geography on per capita
income, NBER Working Paper No. 9490.

Xiao, Z., 2010. The weighted method of moments approach for moment condition models.
Economics Letters 107, 183–186.

36



Appendix A. Proofs

Proof of Theorem 2.1. Essentially identical to the proof of Newey and McFadden (1994)
Theorem 2.6.

Proof of Theorem 2.2. C.f. the proof of Newey and McFadden (1994) Theorem 3.1. The
only difference is that the proof here involves a normal vector with non-zero mean.

Proof of Theorem 3.1. By a mean-value expansion:

τ̂ =
√
nhn

(
θ̂valid

)
=
√
nhn(θ0) +H

√
n
(
θ̂valid − θ0

)
+ op(1)

= −HKv

√
nfn(θ0) + Iq

√
nhn(θ0) + op(1)

= Ψ
√
nfn(θ0) + op(1)→d ΨM

Multiplying through,

E [ΨM ] = ΨE[M ] =
[
−HKv Iq

] [ 0
τ

]
= τ

and V ar [ΨM ] = ΨΩΨ′.

Proof of Corollary 3.2. By Theorem 3.1 and the Continuous Mapping Theorem,

τ̂ τ̂ ′ →d ΨMM ′Ψ′.

Since
V[ΨM ] = E[ΨMM ′Ψ′]− E[ΨM ]E[ΨM ]′ = E[ΨMM ′Ψ′]− ττ ′

we have
E[ΨMM ′Ψ′] = V[ΨM ] + ττ = ΨΩΨ′ + ττ ′.

Proof of Corollary 4.1. Because the weights sum to one

√
n (µ̂− µ0) =

√
n

[(∑
S∈A

ω̂(S)µ̂S

)
− µ0

]
=
∑
S∈A

[
ω̂(S)

√
n (µ̂S − µ0)

]
.

By Corollary 3.1, √
n (µ̂S − µ0)→d −∇θµ(θ0)′KSMS.

By assumption ω̂(S)→d ω(M |S) where ω(M |S) is a function ofM and constants only. Hence
ω̂(·) and

√
n (µ̂(·)− µ0) convergence jointly in distribution to their respective functions of

M , for S ∈ A. Therefore, applying the Continuous Mapping Theorem,

√
n (µ̂− µ0)→d −∇θµ(θ0)′

[∑
S∈A

ω(M |S)KSΞS

]
M

since the weight functions are almost surely continuous.
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Proof of Theorem 4.1. By a mean-value expansion,

√
n [ΞSfn(θ)] =

√
n [ΞSfn(θ0)] + FS

√
n
(
θ̂S − θ0

)
+ op(1).

Since √
n
(
θ̂S − θ0

)
= − (F ′SWSFS)

−1
F ′SWS

√
n [ΞSfn(θ0)] + op(1)

we have

√
n
[
ΞSfn(θ̂S)

]
=
[
I − FS (F ′SWSFS)

−1
F ′SWS

]√
n [ΞSfn(θ0)] + op(1).

By Assumption 2.2 (viii),
√
n [ΞSfn(θ0)] →d MS. Thus, for estimation using the efficient

weighting matrix
Ω̂
−1/2
S

√
n [ΞSfn(θ0)]→d [I − PS] Ω

−1/2
S MS

where Ω̂
−1/2
S is a consistent estimator of Ω

−1/2
S and PS is the projection matrix based on

Ω
−1/2
S FS, the identifying restrictions.3 Combining and rearranging,

Jn(S) = n
[
ΞSfn(θ̂S)

]′
Ω̂−1

[
ΞSfn(θ̂S)

]
→d

(
Ω
−1/2
S MS

)′
(I − PS)

(
Ω
−1/2
S MS

)
.

Proof of Theorem 4.2. Let S1 and S2 be arbitrary moment sets in A, i.e. two subsets of
the full moment set SFull = {1, 2, . . . , q}, and let |S| denote the cardinality of S. By Theorem
4.1, Jn(S) = Op(1), S ∈ A, thus

MSC(S1)−MSC(S2) = [Jn(S1)− Jn(S2)]− [h (p+ |S2|)− h (p+ |S1|)]κn
= Op(1)− Cκn

where C = [h (p+ |S2|)− h (p+ |S1|)]. Now, since h is strictly increasing, C is positive for
|S2| > |S1|, negative for |S2| < |S1|, and zero for |S2| = |S1|. Hence:

|S2| > |S1| ⇒ ∆n(S1, S2)→ −∞
|S2| = |S1| ⇒ ∆n(S1, S2) = Op(1)

|S2| < |S1| ⇒ ∆n(S1, S2)→∞

The result follows because |Sfull| > |S| for any S 6= Sfull.

Proof of Theorem 4.3. We have

P {µtrue ∈ CIsim} = P
{
µ̂− b̂0(τ̂)/

√
n ≤ µtrue ≤ µ̂− â0(τ̂)/

√
n
}

= P
{
â0(τ̂) ≤

√
n (µ̂− µtrue) ≤ b̂0(τ̂)

}
3See Hall (2005), Chapter 3.
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By Theorem 3.1 and Corollary 4.1,[ √
n(µ̂− µtrue)

τ̂

]
→d

[
Λ(τ)
ΨM

]
.

Thus 
√
n(µ̂− µtrue)

∆̂(τ̂ , τ)
âmin(τ̂)

b̂max(τ̂)

→d


Λ(τ)

∆(ΨM, τ)
amin(ΨM)
bmax(ΨM)


where we define amin(ΨM) = min {a(τ) : τ ∈ T (δ)}, bmax(ΨM) = max {b(τ) : τ ∈ T (δ)},
T (δ) =

{
τ : ∆(ΨM, τ) ≤ χ2

q(δ)
}

and ∆(ΨM, τ) = (ΨM − τ)′ (ΨΩΨ′)−1 (ΨM − τ). By the
Continuous Mapping Theorem

P
[
âmin(τ̂) ≤

√
n (µ̂− µtrue) ≤ b̂max(τ̂)

]
→ P [amin(ΨM) ≤ Λ(τ) ≤ bmax(ΨM)]

so it suffices to show that

P [amin(ΨM) ≤ Λ(τ) ≤ bmax(ΨM)] ≥ 1− (α + δ).

Define the event A =
{

∆(ΨM, τ) ≤ χ2
q(δ)

}
, so that P(A) = 1− δ. Then,

1− α = P {a(τ) ≤ Λ(τ) ≤ b(τ)}
= P [{a(τ) ≤ Λ(τ) ≤ b(τ)} ∩ A] + P [{a(τ) ≤ Λ(τ) ≤ b(τ)} ∩ Ac]

By the definitions of amin(ΨM), bmax(ΨM) and A,

{a(τ) ≤ Λ(τ) ≤ b(τ)} ∩ A ⊆ {a0(ΨM) ≤ Λ(τ) ≤ b0(ΨM)}

hence
P [{a(τ) ≤ Λ(τ) ≤ b(τ)} ∩ A] ≤ P {amin(ΨM) ≤ Λ(τ) ≤ bmax(ΨM)}

Further, since
{a(τ) ≤ Λ(τ) ≤ b(τ)} ∩ Ac ⊆ Ac

we have
P [{a(τ) ≤ Λ(τ) ≤ b(τ)} ∩ Ac] ≤ P(Ac) = δ

Combining:

1− α = P [{a(τ) ≤ Λ(τ) ≤ b(τ)} ∩ A] + P [{a(τ) ≤ Λ(τ) ≤ b(τ)} ∩ Ac]
≤ P {amin(ΨM) ≤ Λ(τ) ≤ bmax(ΨM)}+ δ

Therefore
P {amin(ΨM) ≤ Λ(τ) ≤ bmax(ΨM)} ≥ 1− (α + δ).
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Appendix B. Primitive Conditions for Assumption 2.2

In this section I derive primitive conditions for Assumptions 2.2 (iv), (v), (vii) and (viii)
when the triangular array {Zni} is independent and identically distributed within each row.

Lemma Appendix B.1 (Continuity and Convergence of Moments). Suppose that

(a) f is almost-surely continuous

(b) There exists a random variable Y (θ) such that |f (j)(Zni, θ)| ≤ Y (θ) for all j, n with
E[supθ∈Θ Y (θ)2] <∞

Then,

(i) limn→∞ E[f(Zni, θ)] = E[f(Z, θ)],

(ii) limn→∞ V ar[f(Zni, θ0)] = V ar[f(Z, θ)],

(iii) and E[f(Z, θ)] is continuous

for all θ ∈ Θ.

Proof. For (i), simply apply the Lebesgue Dominated Convergence Theorem element-wise
to interchange limit and expectation. For (ii), express the typical element of V ar[f(Zni, θ)]
as

{V ar[f(Zni, θ)]}j,k = E
[
f (j)(Zni, θ)f

(k)(Zni, θ)
]
− E

[
f (j)(Zni, θ)

]
E
[
f (k)(Zni, θ)

]
Convergence of the second term to E

[
f (j)(Z, θ)

]
E
[
f (k)(Z, θ)

]
follows from (a) and continuity.

For the first term, write

E
[
f (j)(Zni, θ)f

(k)(Zni, θ)
]
≤ E

[
f (j)(Zni, θ)

2
]
E
[
f (k)(Zni, θ)

2
]

by Cauchy-Schwartz and again apply Lebesgue Dominated Convergence.
For (iii), since Z is the almost-sure limit of {Zni} and f is almost-surely continuous,

f(Z, θ) is the almost-sure limit of f(Zni, θ). Thus, Y (θ) dominates the components of f(Z, θ)
so we may again apply Lebesgue Dominated Convergence to find

lim
θ→θ∗

E[f(Z, θ)] = E
[

lim
θ→θ∗

f(Z, θ)
]

= E[f(Z, θ∗)]

establishing continuity.

Lemma Appendix B.2 (Uniform WLLN). Suppose that

(a) The triangular array {Zni} is iid within each row

(b) There exists a random variable Y (θ) such that |f (j)(Zni, θ)| ≤ Y (θ) for all n and j ∈
{1, . . . , p+ q}, with E[supθ∈Θ Y (θ)2] <∞

(c) f is almost-surely differentiable on Θ∗, an open convex set containing Θ
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(d) E
[
supθ∗∈Θ∗ ‖∇θf

(j)(Zni, θ
∗)‖
]

= O(1), for all j ∈ {1, 2, . . . , p+ q}

Then, supθ∈Θ ‖fn(θ)− E[f(Z, θ)]‖ →p 0

Proof. It suffices to establish that

sup
θ∈Θ

∣∣f (j)
n (θ)− E[f (j)(Z, θ)]

∣∣→p 0

for each component j ∈ {1, 2, . . . , p+q}. By Davidson (1994) Theorem 21.9, this is equivalent
to pointwise convergence in probability and stochastic equicontinuity of {fn}.

To show pointwise convergence, first combine Markov’s Inequality and the fact that {Zni}
is iid in each row, yielding

P
(∣∣f (j)

n (θ)− E[f (j)(Z, θ)]
∣∣ > ε

)
≤

E
{∣∣f (j)(Zni, θ)− E[f (j)(Z, θ)]

∣∣2}
nε2

Now define

A =
∣∣f (j)(Zni, θ)− E[f (j)(Zni, θ)]

∣∣
B =

∣∣E[f (j)(Zni, θ)]− E[f (j)(Z, θ)]
∣∣

By the triangle inequality it suffices to show that

lim
n→∞

n−1E[A2] = lim
n→∞

n−1E[AB] = lim
n→∞

n−1E[B2] = 0

First

n−1E[A2] = n−1V ar[f (j)
n (Zni, θ)] ≤ n−1E[f (j)

n (Zni, θ)
2] ≤ n−1E

[
sup
θ∈Θ

Y (θ)2

]
→ 0

next

n−1E[AB] = n−1E
{∣∣f (j)(Zni, θ)− E[f (j)(Zni, θ)]

∣∣} ∣∣E[f (j)(Zni, θ)]− E[f (j)(Z, θ)]
∣∣

≤ 2n−1E
[∣∣f (j)(Zni, θ)

∣∣] ∣∣E[f (j)(Zni, θ)]− E[f (j)(Z, θ)]
∣∣

≤ 2n−1E
[
sup
θ∈Θ

Y (θ)2

] ∣∣E[f (j)(Zni, θ)]− E[f (j)(Z, θ)]
∣∣

and finally

n−1E[B2] = n−1
∣∣E[f (j)(Zni, θ)]− E[f (j)(Z, θ)]

∣∣2 → 0

where we have used the fact that limn→∞ E[f(Zni, θ)] = E[f(Z, θ)] as implied by (a) via
Lemma Appendix B.1.

To establish stochastic equicontinuity, we appeal to Davidson (1994) Theorem 21.11,
under which it suffices to find a stochastic array {Bni} such that

∑n
i=1 E[Bni] = O(1) and

1

n

∣∣f (j)(Zni, θ1)− f (j)(Zni, θ2)
∣∣ ≤ Bni‖θ1 − θ2‖
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almost surely for all θ1, θ2 ∈ Θ. Now, by the mean-value theorem, for any θ1, θ2 ∈ Θ∗ we can
find a θ̄ ∈ Θ such that

f (j)(Zni, θ1)− f (j)(Zni, θ2) = ∇θf(Zni, θ̄)
′(θ1 − θ2)

almost surely. Taking the absolute value of both sides and applying the Cauchy-Schwarz
inequality, ∣∣f (j)(Zni, θ1)− f (j)(Zni, θ2)

∣∣ ≤ sup
θ∗∈Θ∗

‖∇θf
(j)(Zni, θ

∗)‖ · ‖θ1 − θ2‖

almost surely for all θ1, θ2 ∈ Θ∗, where Bni does not depend on θ. Setting,

{Bni} =

{
n−1 sup

θ∗∈Θ∗
‖∇θf

(j)(Zni, θ
∗)‖
}

we have
n∑
i=1

Bni =
1

n

n∑
i=1

sup
θ∗∈Θ∗

‖∇θf
(j)(Zni, θ

∗)‖ = sup
θ∗∈Θ∗

‖∇θf
(j)(Zni, θ

∗)‖

Corollary Appendix B.1 (Uniform WLLN for Derivative Matrix). Suppose that

(a) The triangular array {Zni} is iid within each row

(b) There exists a random variable Y (θ) such that
∣∣∇θkf

(j)(Zni, θ)
∣∣ ≤ Y (θ) for all j, k, n and

E[supθ∈Θ Y (θ)2] <∞

(c) f is twice differentiable almost-surely on Θ∗, an open convex set containing Θ

(d) E
[
supθ∗∈Θ∗ ‖∇2

θ,θk
f (j)(Zni, θ

∗)‖
]

= O(1), for all j, k

Then,
sup
θ∈Θ
‖∇θfn(θ)− F (θ)‖ →p 0

Lemma Appendix B.3. Suppose that

(a) The triangular array {Zni} is iid within each row

(b) limn→∞ V ar[f(Zni, θ0)] = Ω

(c) There is a random variable Y such that ‖f(Zni, θ0)‖ ≤ Y for all n and E[Y 2+δ] <∞ for
some δ > 0.

Then,
√
nfn(θ0)→d Np+q

([
0
τ

]
,Ω

)
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Proof. Define An(ε) = {‖f(Zni, θ0)‖ > ε
√
n}. By Hölder’s Inequality,

E
[
‖f(Zni, θ0)‖21 {An(ε)}

]
≤

{
E
[
‖f(Zni, θ0)‖2+δ

]}2/(2+δ)
{
E
[
1 {An(ε)}(2+δ)/δ

]}δ/(2+δ)

=
{
E
[
‖f(Zni, θ0)‖2+δ

]}2/(2+δ)
[P {An(ε)}]δ/(2+δ)

and by Markov’s Inequality

P {An(ε)} = P
{
‖f(Zni, θ0)‖ > ε

√
n
}
≤ E [‖f(Zni, θ0)‖ ]

ε
√
n

Since ‖f(Zni, θ0)‖ ≤ Y ,
E[‖f(Zni, θ0)‖2+δ] ≤ E[Y 2+δ] <∞

and
E[‖f(Zni, θ0)‖] ≤ E[Y ] <∞

Combining,

E
[
‖f(Zni, θ0)‖21 {An(ε)}

]
≤
{
E[Y 2+δ]

}2/(2+δ)
{
E [Y ]

ε
√
n

}δ/(2+δ)

so that
lim
n→∞

E
[
‖f(Zni, θ0)‖21

{
‖f(Zni, θ0)‖ > ε

√
n
}]

= 0

Thus, by the Lindeberg-Feller Central Limit Theorem,

√
nfn(θ0)−

√
n E[f(Zni, θ0)]→d Np+q(0,Ω)

Now, by Assumption 2.1
√
nE[f(Zni, θ0)] =

[
0
τ

]
so that

√
nfn(θ0)→d Np+q

([
0
τ

]
,Ω

)
as asserted.

Theorem Appendix B.1 (Primitive Conditions for Assumption 2.2). Suppose that

(a) θ0 lies in the interior of Θ, a compact set

(b) W̃ →p W , a positive semi-definite matrix

(c) WE[f(Z, θ)] = 0 and WggE[g(Z, θ)] = 0 if and only if θ = θ0

(d) The triangular array {Zni} is iid in each row

(e) f is almost surely twice differentiable in an open convex set Θ∗ containing Θ
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(f) There is a random variable Y (θ) that dominates |f (j)(Zni, θ)|,
∣∣∇θkf

(j)(Zni, θ)
∣∣ and∣∣∣∇2

θj ,θk
f (j)(Zni, θ)

∣∣∣ for all j, k, n where E
[
supθ∈Θ Y (θ)2+δ

]
<∞

(g) F ′WF and G′WggG are invertible

Then Assumption 2.2 is satisfied.

Proof. Conditions (d)–(f) imply Assumptions 2.2 (d)–(h) by the preceding lemmas. The
remaining conditions are simply Assumptions 2.2 (a)–(c) and (i).

Appendix C. Supplementary Tables and Figures
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Table C.22: Difference in RMSE between the estimator including w (full) and the estimator excluding it
(valid) over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument. Negative
values indicate that including w gives a smaller RMSE. Values are calculated by simulating from Equations
3.17–3.19 with 10, 000 replications and a sample size of 50.

ρ = Cov(w, u)
N = 50 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 -0.14 -0.14 -0.09 -0.05 0.00 0.03 0.12 0.15 0.20
0.1 -0.15 -0.15 -0.13 -0.07 -0.01 0.03 0.10 0.14 0.22
0.2 -0.25 -0.23 -0.19 -0.17 -0.04 0.03 0.00 0.10 0.24
0.3 -0.37 -0.31 -0.36 -0.21 -0.16 -0.11 0.01 -0.01 0.14
0.4 -0.44 -0.39 -0.34 -0.27 -0.25 -0.14 -0.15 0.00 0.07
0.5 -0.44 -0.41 -0.40 -0.37 -0.29 -0.22 -0.16 -0.09 0.00
0.6 -0.45 -0.45 -0.42 -0.38 -0.34 -0.32 -0.30 -0.15 -0.08

γ
=
C
ov

(w
,x

)

0.7 -0.47 -0.46 -0.43 -0.47 -0.32 -0.30 -0.25 -0.19 -0.16
0.8 -0.47 -0.47 -0.46 -0.45 -0.36 -0.35 -0.26 -0.20 -0.19
0.9 -0.52 -0.46 -0.54 -0.40 -0.36 -0.34 -0.47 -0.22 -0.19
1.0 -0.49 -0.45 -0.41 -0.44 -0.39 -0.34 -0.31 -0.26 -0.20
1.1 -0.46 -0.48 -0.44 -0.42 -0.37 -0.41 -0.34 -0.24 -0.21
1.2 -0.50 -0.44 -0.43 -0.39 -0.38 -0.34 -0.29 -0.29 -0.24
1.3 -0.43 -0.42 -0.42 -0.40 -0.43 -0.33 -0.32 -0.25 -0.22

Table C.23: Difference in RMSE between the estimator including w (full) and the estimator excluding it
(valid) over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument. Negative
values indicate that including w gives a smaller RMSE. Values are calculated by simulating from Equations
3.17–3.19 with 10, 000 replications and a sample size of 100.

ρ = Cov(w, u)
N = 100 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 -0.10 -0.08 -0.05 -0.01 0.06 0.16 0.22 0.25 0.39
0.1 -0.14 -0.13 -0.08 0.00 0.10 0.17 0.27 0.36 0.49
0.2 -0.41 -0.25 -0.14 -0.09 0.02 0.12 0.26 0.29 0.45
0.3 -0.30 -0.34 -0.24 -0.15 -0.08 0.04 0.12 0.25 0.36
0.4 -0.50 -0.36 -0.29 -0.23 -0.23 -0.08 0.03 0.07 0.23
0.5 -0.43 -0.39 -0.35 -0.31 -0.66 -0.12 -0.05 0.03 0.11
0.6 -0.44 -0.39 -0.35 -0.37 -0.24 -0.21 -0.16 -0.04 -0.05

γ
=
C
ov

(w
,x

)

0.7 -0.46 -0.42 -0.38 -0.35 -0.31 -0.28 -0.17 -0.11 -0.03
0.8 -0.45 -0.46 -0.45 -0.38 -0.31 -0.25 -0.19 -0.16 -0.06
0.9 -0.43 -0.43 -0.45 -0.35 -0.33 -0.24 -0.26 -0.16 -0.12
1.0 -0.44 -0.42 -0.43 -0.38 -0.34 -0.27 -0.24 -0.18 -0.16
1.1 -0.43 -0.42 -0.38 -0.39 -0.32 -0.30 -0.23 -0.21 -0.21
1.2 -0.43 -0.43 -0.40 -0.36 -0.33 -0.34 -0.27 -0.21 -0.23
1.3 -0.41 -0.42 -0.47 -0.35 -0.33 -0.30 -0.29 -0.22 -0.19
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Table C.24: Difference in RMSE between the estimator selected by the FMSC and that selected by the
GMM-BIC over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument w.
Negative values indicate that the FMSC gives a lower realized RMSE. Values are calculated by simulating
from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.00 -0.01 -0.02 -0.04 -0.05 -0.05 -0.07 -0.07 -0.08
0.1 0.00 -0.01 -0.05 -0.05 -0.04 -0.04 -0.04 -0.05 -0.08
0.2 0.03 0.00 -0.04 -0.09 -0.10 -0.09 -0.09 -0.08 -0.09
0.3 0.04 0.02 -0.02 -0.07 -0.10 -0.13 -0.13 -0.12 -0.12
0.4 0.06 0.04 0.00 -0.04 -0.08 -0.12 -0.14 -0.14 -0.15
0.5 0.06 0.04 0.01 -0.02 -0.05 -0.09 -0.12 -0.15 -0.17
0.6 0.05 0.04 0.03 0.00 -0.03 -0.06 -0.10 -0.13 -0.16

γ
=
C
ov

(w
,x

)

0.7 0.06 0.05 0.02 -0.01 -0.03 -0.05 -0.07 -0.10 -0.13
0.8 0.04 0.04 0.02 0.02 -0.01 -0.03 -0.05 -0.08 -0.11
0.9 0.06 0.04 0.03 0.01 -0.01 -0.02 -0.04 -0.06 -0.09
1.0 0.03 0.02 0.01 0.02 0.00 -0.02 -0.04 -0.05 -0.06
1.1 0.06 0.05 0.03 0.01 0.00 -0.01 -0.02 -0.03 -0.05
1.2 0.04 0.04 0.03 0.01 0.01 0.00 -0.03 -0.03 -0.04
1.3 0.04 0.03 0.03 0.00 0.00 0.00 -0.01 -0.03 -0.04

Table C.25: Difference in RMSE between the estimator selected by the FMSC and that selected by the
GMM-HQ over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument w.
Negative values indicate that the FMSC gives a lower realized RMSE. Values are calculated by simulating
from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.00 -0.01 -0.02 -0.03 -0.03 -0.04 -0.04 -0.05 -0.05
0.1 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.05
0.2 0.01 -0.01 -0.02 -0.04 -0.05 -0.03 -0.04 -0.04 -0.04
0.3 0.01 0.00 -0.01 -0.03 -0.05 -0.06 -0.05 -0.05 -0.05
0.4 0.02 0.01 0.00 -0.02 -0.04 -0.06 -0.06 -0.06 -0.06
0.5 0.01 0.00 -0.01 -0.02 -0.02 -0.04 -0.05 -0.07 -0.08
0.6 0.01 0.00 0.00 -0.01 -0.02 -0.04 -0.05 -0.07 -0.07

γ
=
C
ov

(w
,x

)

0.7 0.01 0.00 -0.01 -0.02 -0.03 -0.03 -0.04 -0.05 -0.06
0.8 0.00 -0.01 -0.02 -0.01 -0.02 -0.02 -0.03 -0.04 -0.06
0.9 0.00 -0.01 -0.01 -0.02 -0.02 -0.02 -0.03 -0.04 -0.06
1.0 -0.03 -0.03 -0.03 -0.01 -0.02 -0.03 -0.03 -0.04 -0.04
1.1 -0.01 -0.02 -0.04 -0.04 -0.02 -0.03 -0.03 -0.03 -0.04
1.2 -0.03 -0.01 -0.02 -0.03 -0.02 -0.02 -0.04 -0.04 -0.04
1.3 -0.06 -0.02 -0.03 -0.04 -0.04 -0.03 -0.03 -0.03 -0.04
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Table C.26: Difference in RMSE between the estimator selected by the FMSC and that selected by the
GMM-AIC over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument w.
Negative values indicate that the FMSC gives a lower realized RMSE. Values are calculated by simulating
from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.03
0.1 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.03
0.2 -0.02 -0.02 0.00 0.00 -0.02 -0.01 -0.02 -0.02 -0.02
0.3 -0.02 -0.02 0.00 0.00 0.00 -0.02 -0.02 -0.02 -0.02
0.4 -0.03 -0.02 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.02
0.5 -0.03 -0.03 -0.01 0.00 0.01 0.01 0.00 -0.02 -0.02
0.6 -0.03 -0.03 -0.02 -0.01 0.00 0.00 0.00 -0.01 -0.02

γ
=
C
ov

(w
,x

)

0.7 -0.04 -0.04 -0.04 -0.03 -0.02 0.00 0.00 0.00 -0.01
0.8 -0.04 -0.05 -0.04 -0.02 -0.02 -0.01 0.00 0.00 -0.02
0.9 -0.04 -0.05 -0.04 -0.04 -0.03 -0.02 -0.01 -0.01 -0.02
1.0 -0.07 -0.07 -0.07 -0.04 -0.03 -0.03 -0.02 -0.02 -0.01
1.1 -0.06 -0.06 -0.07 -0.06 -0.04 -0.04 -0.03 -0.02 -0.02
1.2 -0.08 -0.06 -0.07 -0.06 -0.05 -0.04 -0.04 -0.03 -0.03
1.3 -0.11 -0.07 -0.08 -0.07 -0.06 -0.04 -0.04 -0.03 -0.03

Table C.27: Difference in RMSE between the estimator selected by the FMSC and that selected by the
CC-MSC-BIC over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument
w. Negative values indicate that the FMSC gives a lower realized RMSE. Values are calculated by simulating
from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.1 -0.02 -0.02 -0.03 -0.03 -0.03 -0.02 -0.02 -0.03 -0.04
0.2 0.03 0.00 -0.04 -0.08 -0.11 -0.09 -0.09 -0.08 -0.09
0.3 0.04 0.02 -0.02 -0.07 -0.10 -0.13 -0.13 -0.12 -0.12
0.4 0.06 0.04 0.00 -0.04 -0.08 -0.12 -0.14 -0.14 -0.15
0.5 0.06 0.04 0.01 -0.02 -0.05 -0.09 -0.12 -0.15 -0.17
0.6 0.05 0.04 0.03 0.00 -0.03 -0.06 -0.10 -0.13 -0.16

γ
=
C
ov

(w
,x

)

0.7 0.06 0.05 0.02 -0.01 -0.03 -0.05 -0.07 -0.10 -0.13
0.8 0.04 0.04 0.02 0.02 -0.01 -0.03 -0.05 -0.08 -0.11
0.9 0.06 0.04 0.03 0.01 -0.01 -0.02 -0.04 -0.06 -0.09
1.0 0.03 0.02 0.01 0.02 0.00 -0.02 -0.04 -0.05 -0.06
1.1 0.06 0.05 0.03 0.01 0.00 -0.01 -0.02 -0.03 -0.05
1.2 0.04 0.04 0.03 0.01 0.01 0.00 -0.03 -0.03 -0.04
1.3 0.04 0.03 0.03 0.00 0.00 0.00 -0.01 -0.03 -0.04
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Table C.28: Difference in RMSE between the estimator selected by the FMSC and that selected by the
CC-MSC-HQ over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument w.
Negative values indicate that the FMSC gives a lower realized RMSE. Values are calculated by simulating
from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00
0.1 -0.01 -0.02 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02 -0.04
0.2 0.01 -0.01 -0.02 -0.03 -0.05 -0.03 -0.04 -0.03 -0.04
0.3 0.01 0.00 -0.01 -0.03 -0.05 -0.06 -0.05 -0.05 -0.05
0.4 0.02 0.01 0.00 -0.02 -0.04 -0.06 -0.06 -0.06 -0.06
0.5 0.01 0.00 -0.01 -0.02 -0.02 -0.04 -0.05 -0.07 -0.08
0.6 0.01 0.00 0.00 -0.01 -0.02 -0.04 -0.05 -0.07 -0.07

γ
=
C
ov

(w
,x

)

0.7 0.01 0.00 -0.01 -0.02 -0.03 -0.03 -0.04 -0.05 -0.06
0.8 0.00 -0.01 -0.02 -0.01 -0.02 -0.02 -0.03 -0.04 -0.06
0.9 0.00 -0.01 -0.01 -0.02 -0.02 -0.02 -0.03 -0.04 -0.06
1.0 -0.03 -0.03 -0.03 -0.01 -0.02 -0.03 -0.03 -0.04 -0.04
1.1 -0.01 -0.02 -0.04 -0.04 -0.02 -0.03 -0.03 -0.03 -0.04
1.2 -0.03 -0.01 -0.02 -0.03 -0.02 -0.02 -0.04 -0.04 -0.04
1.3 -0.06 -0.02 -0.03 -0.04 -0.04 -0.03 -0.03 -0.03 -0.04

Table C.29: Difference in RMSE between the estimator selected by the FMSC and that selected by the
CC-MSC-AIC over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u), of the instrument
w. Negative values indicate that the FMSC gives a lower realized RMSE. Values are calculated by simulating
from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
0.1 -0.02 -0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.02 -0.03
0.2 -0.02 -0.02 0.00 0.00 -0.02 -0.01 -0.02 -0.02 -0.02
0.3 -0.02 -0.02 0.00 0.00 0.00 -0.02 -0.02 -0.02 -0.02
0.4 -0.03 -0.02 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.02
0.5 -0.03 -0.03 -0.01 0.00 0.01 0.01 0.00 -0.02 -0.02
0.6 -0.03 -0.03 -0.02 -0.01 0.00 0.00 0.00 -0.01 -0.02

γ
=
C
ov

(w
,x

)

0.7 -0.04 -0.04 -0.04 -0.03 -0.02 0.00 0.00 0.00 -0.01
0.8 -0.04 -0.05 -0.04 -0.02 -0.02 -0.01 0.00 0.00 -0.02
0.9 -0.04 -0.05 -0.04 -0.04 -0.03 -0.02 -0.01 -0.01 -0.02
1.0 -0.07 -0.07 -0.07 -0.04 -0.03 -0.03 -0.02 -0.02 -0.01
1.1 -0.06 -0.06 -0.07 -0.06 -0.04 -0.04 -0.03 -0.02 -0.02
1.2 -0.08 -0.06 -0.07 -0.06 -0.05 -0.04 -0.04 -0.03 -0.03
1.3 -0.11 -0.07 -0.08 -0.07 -0.06 -0.04 -0.04 -0.03 -0.03
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Table C.30: Difference in RMSE between the estimator selected by the FMSC and that selected by a
downward J-test at the 90% level over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u),
of the instrument w. Negative values indicate that the FMSC gives a lower realized RMSE. Values are
calculated by simulating from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.00 -0.01 -0.02 -0.03 -0.04 -0.04 -0.06 -0.05 -0.06
0.1 -0.01 -0.01 -0.02 -0.03 -0.02 -0.02 -0.02 -0.03 -0.05
0.2 0.02 0.00 -0.02 -0.05 -0.05 -0.04 -0.04 -0.04 -0.04
0.3 0.02 0.01 -0.01 -0.04 -0.06 -0.07 -0.07 -0.06 -0.06
0.4 0.03 0.02 0.00 -0.02 -0.05 -0.07 -0.08 -0.07 -0.08
0.5 0.03 0.02 0.00 -0.01 -0.03 -0.05 -0.07 -0.09 -0.10
0.6 0.02 0.02 0.01 0.00 -0.02 -0.04 -0.06 -0.08 -0.09

γ
=
C
ov

(w
,x

)

0.7 0.03 0.02 0.00 -0.01 -0.02 -0.03 -0.04 -0.06 -0.08
0.8 0.01 0.01 0.00 0.01 -0.01 -0.02 -0.03 -0.05 -0.07
0.9 0.03 0.01 0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.06
1.0 0.00 0.00 -0.01 0.01 0.00 -0.02 -0.03 -0.04 -0.04
1.1 0.02 0.02 0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.04
1.2 0.00 0.02 0.00 -0.01 -0.01 -0.01 -0.03 -0.02 -0.03
1.3 0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.03

Table C.31: Difference in RMSE between the estimator selected by the FMSC and that selected by a
downward J-test at the 95% level over a grid of values for the relevance, Cov(w, x), and validity, Cov(w, u),
of the instrument w. Negative values indicate that the FMSC gives a lower realized RMSE. Values are
calculated by simulating from Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.00 -0.01 -0.02 -0.04 -0.05 -0.05 -0.07 -0.07 -0.08
0.1 0.00 -0.01 -0.04 -0.04 -0.03 -0.03 -0.03 -0.04 -0.06
0.2 0.03 0.00 -0.03 -0.08 -0.09 -0.07 -0.07 -0.06 -0.07
0.3 0.04 0.02 -0.01 -0.06 -0.09 -0.12 -0.11 -0.11 -0.10
0.4 0.05 0.03 0.01 -0.03 -0.07 -0.11 -0.13 -0.13 -0.13
0.5 0.05 0.04 0.02 -0.01 -0.04 -0.08 -0.11 -0.14 -0.15
0.6 0.05 0.04 0.03 0.01 -0.02 -0.06 -0.09 -0.12 -0.14

γ
=
C
ov

(w
,x

)

0.7 0.05 0.04 0.02 0.01 -0.02 -0.03 -0.06 -0.09 -0.12
0.8 0.04 0.04 0.03 0.02 0.00 -0.02 -0.05 -0.07 -0.10
0.9 0.06 0.03 0.03 0.02 0.00 -0.02 -0.03 -0.05 -0.08
1.0 0.03 0.04 0.03 0.02 0.01 0.00 -0.03 -0.04 -0.06
1.1 0.06 0.05 0.03 0.01 0.00 -0.01 -0.02 -0.03 -0.04
1.2 0.04 0.04 0.03 0.01 0.02 0.00 -0.02 -0.02 -0.04
1.3 0.04 0.03 0.03 0.01 0.01 0.01 -0.01 -0.02 -0.03
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Figure C.2: Post-selection distributions for the estimated effect of x on y in Equation 3.17 with γ = 0.4,
ρ = 0.2, N = 500. The distribution post-FMSC selection appears in the top panel, while the distribution
post-GMM-AIC selection appears in the bottom panel. The distribution of the full estimator is given in
dotted lines while that of the valid estimator is given in dashed lines in each panel. All distributions are
calculated by kernel density estimation based on 10,000 simulation replications generated from Equations
3.17–3.19.
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Figure C.3: Post-selection distributions for the estimated effect of x on y in Equation 3.17 with γ = 0.4,
ρ = 0.2, N = 500. The distribution after a downward J-test at the 90% level appears in the top panel, while
the distribution after a downward J-test at the 95% level appears in the bottom panel. The distribution of
the full estimator is given in dotted lines while that of the valid estimator is given in dashed lines in each
panel. All distributions are calculated by kernel density estimation based on 10,000 simulation replications
generated from Equations 3.17–3.19.

51



Table C.32: Coverage probabilities after selection using a downward J-test at the 90% level of a traditional
95% asymptotic confidence interval for the effect of x on y in Equation 3.17, over a grid of values for the
relevance, Cov(w, x), and validity, Cov(w, u), of the instrument w. Values are calculated by simulating from
Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.92 0.92 0.93 0.93 0.93 0.92 0.93 0.92 0.93
0.1 0.92 0.86 0.83 0.88 0.92 0.93 0.93 0.92 0.93
0.2 0.92 0.79 0.65 0.70 0.83 0.90 0.91 0.92 0.92
0.3 0.92 0.77 0.54 0.51 0.65 0.80 0.87 0.89 0.91
0.4 0.92 0.77 0.48 0.37 0.47 0.64 0.75 0.83 0.87
0.5 0.92 0.77 0.45 0.30 0.36 0.49 0.62 0.73 0.79
0.6 0.92 0.77 0.44 0.25 0.28 0.38 0.48 0.59 0.68

γ
=
C
ov

(w
,x

)

0.7 0.92 0.77 0.42 0.22 0.24 0.31 0.40 0.49 0.58
0.8 0.91 0.77 0.43 0.21 0.20 0.26 0.32 0.41 0.49
0.9 0.93 0.76 0.42 0.20 0.18 0.23 0.28 0.34 0.41
1.0 0.92 0.78 0.42 0.18 0.16 0.19 0.23 0.30 0.35
1.1 0.92 0.78 0.42 0.19 0.15 0.18 0.22 0.25 0.31
1.2 0.93 0.78 0.42 0.19 0.14 0.16 0.20 0.23 0.27
1.3 0.93 0.78 0.43 0.17 0.13 0.15 0.17 0.21 0.24

Table C.33: Coverage probabilities after selection using a downward J-test at the 95% level of a traditional
95% asymptotic confidence interval for the effect of x on y in Equation 3.17, over a grid of values for the
relevance, Cov(w, x), and validity, Cov(w, u), of the instrument w. Values are calculated by simulating from
Equations 3.17–3.19 with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93
0.1 0.92 0.84 0.79 0.84 0.91 0.92 0.93 0.92 0.93
0.2 0.92 0.78 0.59 0.60 0.76 0.87 0.90 0.91 0.91
0.3 0.93 0.76 0.48 0.40 0.54 0.71 0.81 0.86 0.89
0.4 0.93 0.76 0.43 0.27 0.35 0.51 0.66 0.75 0.82
0.5 0.93 0.76 0.41 0.22 0.25 0.36 0.50 0.62 0.70
0.6 0.93 0.76 0.40 0.18 0.18 0.26 0.36 0.46 0.56

γ
=
C
ov

(w
,x

)

0.7 0.93 0.76 0.39 0.16 0.15 0.20 0.28 0.36 0.46
0.8 0.92 0.76 0.39 0.15 0.12 0.16 0.22 0.29 0.36
0.9 0.94 0.76 0.39 0.14 0.10 0.14 0.18 0.23 0.29
1.0 0.93 0.77 0.39 0.13 0.09 0.11 0.15 0.20 0.24
1.1 0.93 0.77 0.39 0.13 0.09 0.11 0.13 0.16 0.20
1.2 0.93 0.77 0.39 0.13 0.08 0.09 0.12 0.14 0.17
1.3 0.94 0.78 0.40 0.12 0.07 0.08 0.10 0.13 0.15
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Table C.34: Coverage probabilities post-GMM-AIC moment selection of a traditional 95% asymptotic con-
fidence interval for the effect of x on y in Equation 3.17, over a grid of values for the relevance, Cov(w, x),
and validity, Cov(w, u), of the instrument w. Values are calculated by simulating from Equations 3.17–3.19
with 10, 000 replications and a sample size of 500.

ρ = Cov(w, u)
N = 500 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
0.1 0.92 0.88 0.89 0.92 0.93 0.93 0.93 0.93 0.93
0.2 0.91 0.81 0.76 0.84 0.91 0.92 0.92 0.92 0.92
0.3 0.91 0.78 0.64 0.70 0.82 0.89 0.91 0.92 0.92
0.4 0.90 0.77 0.56 0.55 0.69 0.82 0.88 0.90 0.91
0.5 0.90 0.76 0.52 0.45 0.57 0.71 0.80 0.86 0.89
0.6 0.90 0.76 0.50 0.39 0.47 0.60 0.70 0.79 0.83

γ
=
C
ov

(w
,x

)

0.7 0.90 0.76 0.47 0.34 0.41 0.52 0.62 0.70 0.77
0.8 0.89 0.76 0.47 0.32 0.36 0.44 0.55 0.63 0.70
0.9 0.91 0.76 0.46 0.30 0.31 0.39 0.48 0.56 0.63
1.0 0.91 0.77 0.46 0.27 0.29 0.35 0.43 0.51 0.56
1.1 0.91 0.78 0.46 0.27 0.27 0.33 0.40 0.45 0.51
1.2 0.92 0.78 0.47 0.27 0.26 0.30 0.36 0.41 0.47
1.3 0.92 0.79 0.48 0.26 0.26 0.29 0.33 0.38 0.44
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