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Abstract

We study mediated many-to-many matching in dynamic two-sided markets in which agents’

valuations for potential partners evolve over time, as the result of shocks, learning through ex-

perimentation, or a preference for variety, by which valuations for current partners drop with the

number of past interactions. The matching dynamics that maximize either the platform’s profits

or welfare can be sustained through a sequence of matching auctions in which agents bid for all

possible partners and where the matches with the highest bilateral score are implemented. Each

score is either myopic or takes the form of an index, accounting for the endogenous changes in

the partners’expected match values. In equilibrium, bidding is straight-forward and myopic. The

analysis also sheds light on the merits of regulating, taxing, or subsidizing such markets. When all

agents benefit from interacting with all other agents from the opposite side, profit maximization

involves fewer and shorter interactions than what is effi cient, for all agents, including those at the

top of the distribution. This conclusion, however, need not extend to environments where certain

agents dislike certain interactions.
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1 Introduction

Matching markets have been growing at an unprecedented rate in the last few years, reflecting the role

that the “shared economy” is taking in the organization of modern business activities. In electronic

commerce, for example, a sizeable fraction of trade is mediated by business-to-business (B2B) platforms

matching vendors with procurers in search of business opportunities.1 Likewise, a sizeable fraction of

online advertising is mediated by media outlets, content providers, online malls, videogame consoles,

and search engines, matching consumers with advertisers (see, e.g., “Marketing in the digital age: A

brand new game”, The Economist, August 29, 2015).

Mediated matching plays an important role also in the growing market for scientific outsourcing.

Arrangements in the form of “contract-experiments,” in which researchers or startup firms contract

with laboratories that carry out research on their behalf, have existed for a long time.2 Recently,

however, new intermediary firms, such as Science Exchange, have revolutionized the market by intro-

ducing the ideas of the shared economy. These platforms match research labs with idle equipment

with research units that wish to conduct experiments off-site (see, e.g., “Uber for Experiments,”The

Economist, December 6, 2014). They introduce parties that otherwise would be unlikely to come in

contact, and also provide crucial services that remove most of the complexities involved in such ad-

hoc relationships. For example, Science Exchange creates an agreement governing the nature of the

interaction between the parties, a service without which negotiations, especially for startups, would be

costly and lengthy. In addition, it offers a concierge service, which includes the services of a dedicated

scientist with a master’s degree or a PhD, who follows up the entire matching process. Finally, it

provides access to a software that allows projects to be tracked through a webpage where parties can

monitor their joint activity and exchange data, and that includes an integrated payment system.

Most matching markets are intrinsically dynamic, due to the gradual resolution of uncertainty

about match values, shocks that alter the desirability of the existing matching allocations, or a pref-

erence for variety by which agents’ valuations for existing partners drop with the number of past

interactions. Furthermore, matching in these markets is typically many-to-many – the same agent is

matched to multiple agents from the other side of the market.

In the market for scientific outsourcing, for example, the participating research labs, which are

highly differentiated in size, equipment, and specialization, typically allow numerous firms to conduct

experiments simultaneously within their facilities. Likewise, firms typically seek to run a battery of

experiments across different labs within the same period.3 Over time, labs learn about the reliability

of the participating research firms and firms learn about the characteristics of the participating labs.

1According to the U.S Census Bureau, electronic commerce accounted for 47 percent of manufacturing total value in

the US in 2010 (http://www.census.gov/econ/estats/2010/2010reportfinal.pdf).
2For example, facilities that own wind tunnels perform tests for the aerospace industry, for architectural design, for

auto and ship design, and for bicycle design.
3The list of laboratories that work with Science Exchange includes 75 of the top 100 recipients of NIH grant funding.

Examples include Johns Hopkins University, the Mayo Clinic, and Harvard Medical School.
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Natural capacity constraints preclude the possibility of all firms using all labs simultaneously. As a

result, experimentation and re-matching plays an important role in such exchanges. Over time, firms

change labs as a function of the evolution of their needs and the information they gather about the

participating labs. The prices asked by the labs are also dynamic, reflecting the information the labs

obtain about the participating research units, as well as the competition among research firms.

Other matching markets sharing similar features include project finance, where consulting firms

match start-ups seeking project-finance with banks;4 lobbying, where commercial firms mediate the in-

teractions between policy makers and interest groups;5 the market for private medical-tourism services,

where intermediaries match patients from abroad seeking specialized treatments with local physicians

providing such treatments;6 the market for organized events, where online platforms such as meet-

ings.com match clients in search of conference venues, meeting spaces, corporate hotel travel plans, or

other hospitality services, with hotels and venues.7

In all the above examples, matching is many-to-many and mediated by a profit-maximizing plat-

form collecting payments from the various sides of the market. Matching is also dynamic, with agents

changing partners over time using the same platform, and with prices also varying over time in response

to the evolution of the agents’preferences and information. Furthermore, in most cases of interest, the

services provided by the matching intermediary extend well beyond simply introducing agents from

the various sides of the market, as the example of Science Exchange discussed above illustrates. The

platforms’ costs of such services are also naturally dynamic and match-specific. Finally, platforms

often face capacity constraints that restrict the number of interactions they may accommodate.8

4A similar role is played by peer-to-peer lending platforms such as Prosper and LendingClub. Such platforms match

borrowers requesting loans with individual or institutional investors. In addition to connecting borrowers with lenders,

the platform verifies the borrowers’identities and personal data and manages all stages of funded loans. Prosper operated

as an online auction marketplace between 2006 and 2009. It recently switched to a system of pre-set rates determined

by an algorithm evaluating borrowers’credit risks.
5See Allard (2008) and Kang and You (2016) for a detailed account of how lobbying firms provide tailored (many-

to-many) matching services and dynamically price-discriminate each side of the market. See also Dekel, Jackson, and

Wolinsky (2008) for a detailed account of how intermediaries help buying and selling votes.
6For example, MEDIGO matches providers of medical services abroad with potential patients. Similarly to Science

Exchange, it also offers a “Custom A-to-Z Concierge Package” including a variety of costly services. See the New

York Times article http://www.nytimes.com/2013/08/07/us/the-growing-popularity-of-having-surgery-overseas.html for

details about the growing popularity of overseas surgeries.
7As in the case of Science Exchange, meetings.com does not simply introduce the parties, it also offers tailored

services (through its local affi liates), such as site selection, contract negotiations, and on-site event management. Clients

of meetings.com include corporations, online travel agencies, sport organizations, colleges, and government institutions.

Matching is many-to-many, as hotels and venues hold multiple events within the same period, and clients seek a variety

of locations for different types of events. Matching is also dynamic, as clients seek repeated services and both their

preferences as well as those of the venues typically change over time as the result of previous experiences and variations

in needs and availability.
8For instance, for medical-tourism intermediaries, the capacity constraint is determined by the medical facilities they

contract with. For lobbying firms, the capacity constraint comes from the limited time they can devote to follow up on

individual relationships. For online content providers, the capacity constraint comes from the impossibility to place too

many adds on the same page.
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A question that is receiving growing interest in the design of these markets is how prices and

matches should respond to the dynamics of market conditions, variations in preferences, and the ar-

rival of information. In large markets such as those for shared transportation services, it is natural

for intermediaries such as Uber and Lift to price discriminate as a function of variations in demand

and supply. In markets with a smaller number of participating agents such as those for scientific

outsourcing, analysts have predicted that intermediaries will eventually resort to auctions to dynami-

cally allocate their limited capacity. In fact, auctions are already used in the market for personalized

display ads by online search engines such as Google and Yahoo!. These intermediaries have been using

variations of the second-price auction, the so-called GSP auction (Generalized Second Price) to match

ads with viewers – see, e.g., Edelman, Ostrovsky, and Schwarz 2007, and Gomes and Sweeney (2014).

Such auctions, however, have been criticized for being static, and in particular for not taking into

account the value that both the platform and the advertisers assign to learning the click-through rates

through experimentation (see, e.g., Li, Mahdian, and McAfee (2010) and the discussion therein).

In this paper we propose a new class of matching auctions that account explicitly for the fact that,

in many environments of interest, match values evolve over time, either exogenously (as the result of

changes in preferences and needs) or endogenously (as the result of learning and experimentation).

We investigate the properties of matching auctions that maximize either profits or welfare.

The key ingredients of our model are the following. The payoff that each agent derives from

being matched to any other agent from the opposite side is governed by two components: a time-

invariant vertical characteristic that is responsible for the overall importance that the agent assigns

to interacting with agents from the opposite side of the market; and a vector of time-varying relation-

specific values capturing the evolution of the agent’s information and preferences for interacting with

specific partners. The latter values evolve stochastically over time and may turn negative, reflecting

the idea that agents may dislike certain interactions. We consider both the case in which the relation-

specific values evolve exogenously, as well as the case in which they evolve endogenously as a function

of previous interactions. The latter case may capture either the possibility that agents gradually learn

the attractiveness of their partners via individual interactions, or a preference for variety, by which

agents’values change (possibly stochastically) with the number of past interactions. Both the vertical

and the horizontal components are the agents’private information. The model also accounts for the

possibility that the level of activity the platform can accommodate within each period may be limited,

reflecting either time, resource, or facility constraints.

The analysis first introduces and then studies the properties of a class of matching auctions that

operate as follows. Upon joining the platform, agents select a membership status whose level deter-

mines the weight their bids receive in the subsequent auctions. At any period, agents are then asked to

bid for each possible partner from the opposite side of the market. Each bilateral match then receives

a “score” that depends on the involved agents’reciprocal bids, on their membership status, and on

the number of past interactions between the pair of agents. The matches with the highest nonnegative

score are then implemented, up to capacity. As in the case of the GSP auction used by search engines
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for display advertisement, the payments the platform asks to each agent reflect the externalities the

agent imposes on others due to the capacity constraint. Contrary to the GSP auction, however, such

externalities are computed taking into account the value of experimentation and the dynamics of the

agents’informational rents. In particular, the platform may find it optimal to cross-subsidize certain

interactions to generate information that can be used in future periods.

When match values evolve exogenously over time, the proposed scoring rules are myopic: The

score the platform assigns to each pair of agents coincides with the pair’s joint flow surplus, adjusted

by (a) “handicaps”controlling for the informational rents the platform must leave to the agents, and

(b) the platforms’own cost of implementing the matches, which reflect the relation-specific services

provided by the platform, as discussed above.

When, instead, the match values evolve endogenously, as in the case of experimentation, or when

agents have a preference for variety, the scores take the form of an index. As in other experimentation

environments, such indexes summarize both the current and future expected profitability of each

match, taking into account the dynamics of (i) the agents’joint values, (ii) informational rents, and

(iii) the platforms’cost of implementing the matches.

In both cases, at all histories, including those off-path, in equilibrium, agents bid truthfully their

myopic values for all partners. The reason why bidding the myopic values is optimal under the proposed

auctions is that the matching allocations under truthful bidding maximize continuation weighted

surplus, that is, the sum of all agents’current and future payoffs, net of the platform’s matching costs,

and net of the agents’information rents. This property, together with the fact that the payments make

each agent’s continuation payoff proportional to the agent’s contribution to continuation weighted

surplus, then guarantees that each agent finds it optimal to stay in the mechanism and bid truthfully

at all periods, irrespective of the agent’s beliefs about other agents’current and past types, as well as

of the implemented past matches. As as result, the proposed auctions can be made fully transparent.

At the end of each period, agents see the membership status selected by any other agent as well as all

the bids received by the platform over time.

One of the advantages of the proposed auctions is that they explicitly account for the value of

experimentation, as advocated by many analysts and market designers, without, however, expecting

the agents to adjust their bids to incorporate such value. The complexity of computing indexes to

optimally control for the trade-offs between “experimentation”and “exploitation” is entirely on the

platform’s side. Once the agents understand the proposed scoring rules and their associated payment

schemes (which can be facilitated by the platform explaining such role to the bidders), it is in their

interest to bid straightforwardly their myopic values in all periods.

The proposed matching auctions allow for a high sensitivity of matches and prices to the evolu-

tion of the agents’preferences and information. As mentioned above, such sensitivity is desirable in

markets with a small number of participating agents, in which interactions are far from being anony-

mous. Certain results, however, have implications also for larger markets in which matching is more

anonymous but where pricing is dynamic as it responds to the evolution of market conditions.
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The results also shed light on the value of regulating such markets. The last few years have

witnessed great interest (both from policy makers and academics) on how to regulate matching markets

dominated by large platforms (see, e.g., the articles “Online Platforms: Nostrums for Rostrums”and

“Regulating Technology Companies: Taming the Beasts,” recently published inThe Economist, May

28, 2016). We contrast matching dynamics under public (welfare-maximizing) and private (profit-

maximizing) provision of matching services. When agents assign a nonnegative value to all interactions

at every period, profit maximization results in fewer and shorter interactions. Specifically, when the

capacity constraint is not binding, a profit-maximizing intermediary matches each pair of agents for an

ineffi ciently short period of time. When, instead, the capacity constraint is binding, certain interactions

may last longer under profit maximization than under welfare maximization. However, the aggregate

number of interactions in each period under profit maximization is always lower than under welfare

maximization. Interestingly, the above conclusions need not extend to markets in which certain agents

derive a negative payoff (equivalently, a payoff lower than their outside option) from interacting with

certain other agents. In this case, profit maximization may result in an ineffi ciently large volume of

matches, for any number of periods. The above conclusions have implications for how governments

should subsidize certain platforms while taxing others, as well as for the costs and benefits of leaving

certain matching markets unregulated.

The rest of the paper is organized as follows. We wrap up the introduction with a brief discussion

of the most pertinent literature. Section 2 describes the model. Section 3 introduces the matching

auctions. Section 4 derives equilibrium properties of the proposed mechanisms. Section 5 identifies

a subclass of matching auctions that are profit-maximizing. Section 6, instead, identifies a class of

auctions that are welfare-maximizing and contrasts matching dynamics under profit maximization with

their counterparts under welfare maximization. Section 7 concludes. All proofs are in the Appendix

at the end of the document.

1.1 Related Literature

Centralized dynamic matching. Much of the recent literature on centralized dynamic matching

focuses on markets without transfers, in which agents are matched once, with dynamics stemming

from the arrival and possibly departure of agents to and from the market. In the context of kidney

exchange, Ünver (2010) studies optimal mechanisms for two-way and multi-way exchanges, minimizing

total waiting costs, in a market with stochastic arrivals of donors and recipients. Optimal dynamic

matching in markets in which agents gradually arrive over time and may be matched at most once is

also the focus of Anderson, Ashlagi, Gamarnik, and Kanoria (2015), Baccara, Lee, and Yariv (2015),

Akbarpour, Li, and Oveis Gharan (2016), and Herbst and Schickner (2016). A key trade-off in such

environments is between avoiding waiting costs and waiting for the market to thicken. A related strand

of papers study the assignment of objects through waiting lists (see Leshno (2015), Thakral (2015),
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Bloch and Cantala (2016), and Schummer (2016) for recent developments).9

The key difference with respect to this literature is that, in the present paper, agents change

partners over time in response to changes in their valuations for one another. In particular, dynamics

stem from changes in actual or perceived match values rather than the arrival and departure of agents

to and from the market.

Matching with transfers. The paper is also related to the literature on profit-maximization in

matching markets with private information and transfers. Damiano and Li (2007) and Johnson (2013)

consider a one-to-one matching environment where the intermediary faces asymmetric information

about agents’vertical characteristics responsible for match values. Board (2009) studies the problem

of a profit-maximizing platform (e.g., a school) that can induce agents to self-select into mutually

exclusive groups (e.g., classes). These papers derive conditions on primitives for a profit-maximizing

intermediary to induce positive assortative matching. Gomes and Pavan (2015) study many-to-many

matching in a setting where agents differ both in their consumer value (willingness-to-pay) and input

value (salience) and where matching is non-partitional.

Matching in all of these papers is static. In contrast, the present paper considers dynamic matching

in an environment in which match values evolve, either exogenously, or endogenously, over time.

Position and scoring auctions. In procurement auctions, scoring rules are often used to ag-

gregate the various dimensions of the sellers’offers (price, product design, delivery time, etc.). See,

for example, Che (1993), and Asker and Cantillon (2008). Our matching auctions share with this

literature the idea that the desired allocations can be induced through an appropriate design of the

scoring rules governing the auctions. However, while the above literature focuses on static settings, our

scoring rules are for dynamic environments in which preferences evolve over time. Another difference

is that our scores aggregate the preferences of different agents from different sides of the market, as

opposed to the various dimensions of each seller’s own offer.

Another related literature studies auctions for sponsored links. For example, Varian (2007), Edel-

man, Ostrovsky and Schwarz (2007), and Gomes and Sweeney (2014) study the properties of the GSP

auction, used by online search engines to allocate ads.10 Our matching auctions could be used also for

these markets, modulo the fact that, in online search, searchers typically do not pay for the matches.

Notwithstanding this qualification, one of the advantages of our auctions is that they explicitly account

for the value of generating information that can be used in future periods.

Two-sided markets. Markets where agents purchase access to other agents are the focus of

the literature on two-sided markets (see Rysman (2009) for a survey, and Weyl (2010), Bedre-Defolie

and Calvano (2013), Lee (2013), and Jullien and Pavan (2016) for some of the recent developments).

This literature, however, restricts attention to a single network or to mutually exclusive networks. In

contrast, the present paper allows for general matching rules and for more flexible payoff structures.

9See also Damiano and Lam (2005), Kurino (2009), and Doval (2015) for appropriate stability notions in dynamic

matching environments.
10See also Athey and Ellison (2011), Börgers, Cox, Pesendorfer and Petricek (2013), and Gomes (2014).
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In particular, it does not restrict agents’willingness to pay to coincide with their attractiveness. Most

importantly, it focuses on a dynamic environment in which match values change over time. Cabral

(2011) also considers a dynamic model with network effects but in which values are constant over time.

Screening under experimentation. The paper is also related to the literature on screening

agents who are experimenting about the value of a good. In particular, the mechanisms proposed here

can be seen as the matching analogs of the bandit auctions of Pavan et al. (2014) and Kakade et al.

(2013) for the sale of an indivisible object. See also Bergemann and Valimaki (2006) for a survey on

bandit problems in economics.

Mechanism design. From a methodological standpoint, we draw from recent results in the

dynamic mechanism design literature. In particular, the conditions for incentive compatibility in the

present paper adapt to the environment under examination results in Pavan, Segal, and Toikka (2014).

See also Baron and Besanko (1984), Besanko (1985), Courty and Li (2000), Board (2007), and Eso and

Szentes (2007), for some of the earlier contributions, Borgers (2015) and Bergemann and Pavan (2015)

for a general overview of this literature, and Bergemann and Strack (2015) for recent developments in

continuous time. In most of these models, the agents’private information is exogenous. In contrast,

the agents’private information is endogenous in the present paper, in the bandit single-unit auction

of Pavan et al. (2014), in the dynamic virtual pivot mechanism of Kakade et al. (2013), and in the

taxation model of Makris and Pavan (2015).

Particularly related is also the strand of the dynamic mechanism design literature that investigates

how to implement dynamically effi cient allocations in settings in which the agents’ types change

over time, thus extending the Vickrey—Clarke—Groves (VCG) and d’Aspremont—Gérard-Varet (AGV)

results from static to dynamic settings (see, for example, Bergemann and Valimaki, 2010, Athey and

Segal, 2013, and the references therein). The payments in the auctions we propose here are determined

by a pricing formula similar to those in Bergemann and Valimaki (2010), and in Kakade et al. (2013),

adapted to the fact that the private information the agents receive in each period is multi-dimensional.

Another stream of the dynamic mechanism design literature considers both effi cient and profit-

maximizing mechanisms in settings where the agents’ private information is static, but where the

dynamics originate in the arrival and/or departure of objects and agents to and from the market (for

an overview of this literature, see Bergemann and Said (2011), and Gershkov and Moldovanu (2014)).

2 Model

Agents, matches, and preferences

A platform mediates the interactions among agents from two sides of a market, A and B. There are

nA ∈ N agents on side A and nB ∈ N agents on side B, with NA ≡ {1, ..., nA} and NB ≡ {1, ..., nB}
denoting the corresponding sets of agents on the two sides. Time is discrete, indexed by t = 0, 1, ...,∞.
Agents live for infinitely many periods and can change partners infinitely many times.

Below, we describe various features of the environment from the perspective of a generic agent

8



from side A. A similar description applies to side B.

The flow period-t utility that agent i ∈ NA derives from being matched to agent j ∈ NB is given

by

uAijt(θ
A
i , ε

A
ijt) = θAi · εAijt. (1)

The parameter θAi is time- and match-invariant and controls for the overall importance that agent

i assigns to interacting with agents from the opposite side of the market. That is, θAi parametrizes

the value that agent i assigns to an interaction with a generic agent from the opposite side, prior

to conditioning on the specific profile of the latter agent. The parameter εAijt, instead, is match-

specific and time-variant and controls for the attractiveness of agent j from side B in the eyes of

agent i. These match-specific values evolve over time, reflecting the change in the agents’ true (or

perceived) attractiveness. They can either represent the evolution of the agents’beliefs about fixed,

but unknown, match qualities, or variations in attractiveness triggered by stochastic changes in the

environment. Hereafter we refer to θAi as the agent’s “vertical type”and to ε
A
it ≡ (εAijt)j∈NB as the

profile of the agent’s period-t “horizontal types”. We refer to uAit ≡ (uAijt)j∈NB as the agent’s period-t

“match values”.

Both the agent’s vertical and horizontal types are his own private information. Agent i’s vertical

type θAi is drawn from an absolutely continuous cumulative distribution function FAi with density

fAi strictly positive over ΘA
i = [θAi , θ

A
i ], with θAi > 0. Vertical types are drawn independently across

agents and from the horizontal types ε ≡ (εkijt)
(i,j)∈NA×NB ,k=A,B
t=1,...,∞ ∈ E . Importantly, while we restrict

the agents’vertical types to be nonnegative, we allow the horizontal types to be negative, reflecting

the possibility that an agent may derive a negative utility from interacting with certain agents from

the opposite side.11

For any t ≥ 1, and any pair of agents (i, j) ∈ NA ×NB, let Xijt ≡ {0, 1}, with xijt = 1 denoting

the decision to match the pair (i, j) in period t, and with xijt = 0 denoting the decision to leave the

two agents unmatched.12 Matching is many-to-many, meaning that the same agent may be matched

to multiple agents from the opposite side.

All agents are expected-utility maximizers and maximize the expected discounted sum of their flow

payoffs using the common discount factor δ ∈ (0, 1]. Let pt ≡ (pklt)l∈Nk,k=A,B denote the payments

collected by the platform from the two sides of the market in period t, and p ≡ (pt)
∞
t=0 an entire

sequence of payments. Note that, while the matching starts in period one, we allow the platform to

start collecting payments from the agents in period zero, after the agents have observed their vertical

types, but before they observe their horizontal partner-specific types. This assumption is motivated

by the idea that, in many markets of interest, at the time the agents join the platform, they do not

11Under the assumed multiplicative structure uAijt = θAi ·εAijt, allowing the vertical types to also take on negative values
is not desirable as it facilitates confusion given that the horizontal types εAijt are already allowed to take on negative

values.
12 Implicit in this formalization is a reciprocity condition imposing that whenever agent i ∈ NA is matched to agent

j ∈ NB , then agent j is matched to agent i (see also Gomes and Pavan (2015) for the role played by a similar condition
in a different matching environment).
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know yet the specific profile of the agents who join from the opposite side. In other words, agents

learn about agents from the opposite side only after “getting on board”. Also note that payments are

allowed to be negative, reflecting the possibility that (a) certain agents may dislike certain interactions

and ask to be compensated, or (b) even if all agents like interacting with all other agents, the platform

may want to cross-subsidize certain matches.

The (Bernoulli) payoff function for each agent i ∈ NA is given by

UAi =
∞∑
t=1

δt
∑
j∈NB

xijtu
A
ijt −

∞∑
t=0

δtpAit. (2)

The platform’s (Bernoulli) payoff function is the discounted sum of the payments collected from the

two sides of the market, net of possible costs of implementing the matches:

U0 =

∞∑
t=0

δt

∑
i∈NA

pAit +
∑
j∈NB

pBjt

− ∞∑
t=1

δt

∑
i∈NA

∑
j∈NB

cijt(x
t−1
ij ) · xijt

 ,

where cijt ≥ 0 is the period-t cost of matching the pair (i, j), with xt−1ij ≡ (xijs)
t−1
s=1 ∈ X

t−1
ij ≡

∏t−1
s=1Xijs

denoting the history of past interactions between the pair (i, j). These costs incorporate all the

auxiliary services that the platform provides to the agents, over and above putting the agents in

contact one with the other.

Evolution of match values

The match values uAijt that agent i from side A derives from interacting with agent j from side B

are correlated over time, both through the fully persistent vertical component θAi and through the

partially persistent horizontal components εAijt. In particular, we assume that the latter evolve over

time according to the following process. For each pair (i, j) ∈ NA × NB, and each period t ≥ 1, εAijt
may take any value in EAijt ⊆ R. While not essential to the results, we find it convenient to think of
EAijt either as the entire real line, or as a compact and connected subset of it.

The evolution of agent i’s horizontal types is governed by a collection of match-specific kernels

GAij ≡ (GAijt : EAijt × EAijt−1 × Xt−1
ij → [0, 1])∞t=1, with X

0
ij ≡ ∅. We then let G ≡ (Gkij)

k=A,B
(i,j)∈NA×NB

denote the complete collection of kernels for all matches. The interpretation of these kernels is the

following. Each period-1 horizontal type εAij1 is drawn from the cdf GAij1. In each subsequent period

t > 1, the period-t type εAijt is drawn from the cdf GAijt(ε
A
ijt | εAijt−1, xt−1), where εAijt−1 is the agent’s

horizontal match-specific type from the preceding period, and where xt−1ij = (xs)
t−1
s=1 is the history of

past interactions between the pair (i, j). Importantly, while the support of each kernel GAijt is a subset

of EAijt, we allow for the possibility that, for certain histories (εAijt−1, x
t−1), it is a strict subset of EAijt.

To guarantee that the expected payoff of each agent is well defined at all histories, and satisfies a

certain envelope formula (more below), we assume that, for all i ∈ NA, there exists a constant EAi > 0

such that, for any sequence of matches x, E
[∑∞

t=1 δ
t∑

j∈NB |ε
A
ijt| · xijt

]
≤ EAi , where the expectation

is taken with respect the distribution over E generated by the kernels G, under the matches x.
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We will focus on two environments that capture different features of various dynamic matching

markets with private information. The first environment is one in which the evolution of the agents’

match values and of the platform’s costs is exogenous. The second environment is one in which the

match values and the platform’s costs depend on past interactions, with properties reflecting either

private experimentation or a preference for variety.

• Exogenous processes. For all (i, j) ∈ NA ×NB, t > 1, εAijt−1 ∈ EAijt−1, GAijt(· | εAijt−1, xt−1) is
invariant in xt−1. Furthermore, cijt does not depend on xt−1.

• Endogenous processes. For any (i, j) ∈ NA×NB, the following properties hold: (i) whenever

xijt−1 = 1, the dependence of GAijt(ε
A
ijt | εAijt−1, xt−1) on xt−1 is only through

∑t−1
s=1 xijs; (ii) whenever

xijt−1 = 0, GAijt(· | εAijt−1, xt−1) is a Dirac measure at εAijt = εAijt−1, i.e., G
A
ijt(ε

A
ijt | εAijt−1, xt−1) =

1{εAijt≥εAijt−1}
; (iii) there exists a sequence (ωAijs)

∞
s=1 drawn from an exogenous distribution, such that,

for any number Rij of past interactions between agent i ∈ NA and agent j ∈ NB, the period-t match

value εAijt is given by a deterministic function of (ωAijs)
Rij
s=1, uniformly over t; (iv) the cost cijt(x

t−1
ij )

depends on xt−1ij only through
∑t−1

s=1 xijs.

In the case of endogenous processes, the above assumptions imply the following properties: (1)

agents’match-specific values change only upon interacting with partners; (2) The processes governing

the agents’match values are Markov time-homogeneous – if agents (i, j) ∈ NA ×NB are matched in

period t−1, the distribution of εAijt depends only on ε
A
ijt−1 and the number of past interactions between

the pair (i, j). These assumptions capture important features of environments in which agents either

(a) learn gradually about unknown but constant values for interacting with agents from the other side

of the market, or (b) have a preference for variety. That, under endogenous processes, the platform’s

cost of linking a pair of agents depends on the number of times the pair interacted in the past reflects

the idea that, in most cases of interest, costs decrease with the number of past interactions.13

Example 1 (Gaussian learning) Suppose that every agent i ∈ NA derives a constant value vAij
from interacting with each agent j ∈ NB, and that this value is unknown to the platform and to all

agents. Agent i starts with a prior belief that vAij ∼ N(εAij1, τ
A
ij), where the variance τ

A
ij is common

knowledge but where the initial prior mean εAij1 is the agent’s private information. The agent’s prior

mean εAij1 is drawn from a distribution GAij1. Each time agent i is matched to agent j, agent i receives

a conditionally i.i.d. private signal ξAij ∼ N(vAij , ϑ
A
ij) about v

A
ij and updates his expectation of v

A
ij

using standard projection formulae.14 Let εAijt be agent i’s posterior mean about v
A
ij in period t.

Such environment satisfies the assumptions of the above endogenous-processes model. In particular,

when xijt−1 = 1, agent i’s posterior mean εAijt about v
A
ij is drawn from a (Gaussian) distribution

GAijt(· | εAijt−1, xt−1) that depends only on the agent’s mean εAijt−1 in the previous period and the

number of past interactions
∑t−1

s=1 xijs. �
13A case of special interest is when the cost vanishes after the first interaction.
14Specifically, each signal ξAij can be written as ξ

A
ij = vAij+ςAij with the innovations ς

A
ij drawn from a normal distribution

with mean 0 and variance ϑAij , independently from all other random variables.

11



Example 2 (preference for variety) Suppose that the value each agent i ∈ NA derives from inter-

acting with each agent j ∈ NB decreases (possibly stochastically) with the number of past interactions

with agent j. Precisely, for all t ≥ 1, all j ∈ NB, all (εAijt−1, ε
A
ijt) ∈ EAijt−1 × EAijt, GAijt(εAijt | εAijt−1, xt−1)

is non-decreasing in
∑t−1

s=1 xijs. This assumption captures the idea that agents gradually lose interest

in partners with whom they interacted already. Alternatively, agents may have a fixed demand for

interactions with each partner, or each agent may provide only up to a fixed number of services to

each of his partners. Such environments can be captured as special cases of the endogenous-processes

model. For example, the case in which each agent has a fixed demand for interactions with each

partner can be captured by assuming that, for each agent i ∈ NA, each partner j ∈ NB, there exists

αAij ∈ N such that, whenever
∑t−1

s=1 xijs > αAij , G
A
ijt(ε

A
ijt | εAijt−1, xt−1) = 1 for all εAijt ≥ 0. �

Remarks. Given the matches x, agent i’s horizontal types εAij ≡ (εAijt)t=1,..,∞ for interacting with

agent j from side B are drawn independently from the values εAij′ = (εAij′t)t=1,..,∞ the agent derives from

interacting with any other agent j′ ∈ NB. In the case of endogenous processes, such an assumption

facilitates the characterization of the optimal mechanism by favoring an index representation of the

optimal policy (more below). This assumption, however, can be dispensed with in case of exogenous

processes, where types can be allowed to be correlated. That the values agent i derives from interacting

with agent j are independent of the values that other agents derive from interacting with the same

agent in turn avoids the possibility that the platform trivially extracts the entire surplus from each

agent using payments similar to those in Cremer and McLean (1988).

Finally, that the value agent i derives from interacting with agent j is invariant in the composition

of agent i’s matching set (that is, it does not depend on who else the individual interacts with) is

also meant to facilitate the description of the scoring rules in the matching auctions below. This

assumption can be dispensed with in the case of exogenous processes (albeit at the cost of an increase

in the complexity of the scores), but is more diffi cult to dispense with in the case of endogenous

processes.15 Importantly, we see both assumptions (type independence and preference separability) as

a reasonable description of markets in which the platform lacks detailed information about the agents’

precise preference structure.

Capacity constraints

In each period t ≥ 1, the platform can match at most M agents from opposite sides, independently of

past matching allocations. That is, M is a constraint on the stock of existing matches. In each period,

the platform can delete some of the previously formed matches and create new ones. We only impose

that the total number of existing matches be no greater than M in all periods. As mentioned in the

Introduction, such limited capacity may capture various constraints on the platform’s side, such as

limited facilities, time, or services availability.

15The case where each agent values interacting with at most one agent from the opposite side (one-to-one matching)

corresponds to a particular relaxation of this assumption.
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We will consider both the case in which M is suffi ciently large that this constraint never binds

(i.e., M ≥ nA · nB), as well as the case M < nA · nB in which this constraint may be binding. The set
of feasible period-t matches is therefore given by

Xt ≡

xt ∈ ∏
(i,j)∈NA×NB

Xijt :
∑
i∈NA

∑
j∈NB

xijt ≤M

 ,

and is independent of past allocations. The set of sequences of feasible matching allocations is denoted

by X ≡
∏∞
t=1Xt.

Matching mechanisms, effi ciency, and profit maximization

The interactions between the two sides can be thought of as governed by a matching mechanism

Γ ≡ (M,S, χ, ψ, ρ). The latter consists of: (i) a collection of matching setsM ≡ (Mt)
∞
t=0, with each

Mt ≡
∏
l∈Nk,k=A,BM

k
lt denoting the set of messages the agents can send in period t; (ii) signals

S ≡ (St)∞t=0 that the platform may disclose to the agents, with St ≡
∏
l∈Nk,k=A,B S

k
lt; (iii) a matching

rule χ ≡ (χt)
∞
t=1 describing, for each t ≥ 1, the matches χt : Mt → Xt implemented given the

history of received messages; (iv) a payment rule ψ ≡ (ψt)
∞
t=0 describing, for each t ≥ 0, the payments

ψt : Mt → RNA+NB asked from, or made to, the agents; and (v) a disclosure policy ρ ≡ (ρt)
∞
t=0

specifying the information ρt :Mt → St disclosed to the agents over time. Each ρt must reveal to each
agents his own matches. It may also reveal additional information, but it cannot conceal the matches

in which the individual is involved.

A matching mechanism Γ is feasible if, for any sequence of messages m ∈ M, the implemented

allocations are feasible, that is, χ(m) ∈ X.16

Each agent must choose whether or not to join the platform after observing his vertical type

θAi but before observing his horizontal types. As explained above, this assumption reflects the idea

that, in most markets of interest, agents choose whether or not to get “on-board”before learning the

profile of potential partners. In environments in which the platform maximizes welfare (a possibility

we consider below), the information the agents possess at the time they join the platform plays no

role (they can be assumed to know only their vertical types θ, or also the period-1 horizontal types

ε1, or to have no private information at all). If, instead, the platform maximizes profits, then the

private information the agents possess at the time they join plays a fundamental role. If the agents

possess no private information at all, the platform can extract the entire surplus. If, in addition to

their vertical types, they also possess private information about their period-1 types ε1, the optimal

mechanism is significantly more complicated, because of the multi-dimensionality of the agents’initial

private information. To maintain tractability of the analysis, we thus assume that the agents’private

information at the time of joining is limited to the vertical types θ.

16Note that the rule χ is deterministic. This is because, in this environment, the platform never gains from inducing

random matches, irrespective of whether its objective is profit maximization, or welfare maximization – see the discussion

in the proof of Theorem 2 below.
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Upon joining the platform, at each period t ≥ 0, each agent l ∈ Nk, from each side k = A,B, is

asked to send a message mk
lt from the setMk

lt. In the auctions we introduce in the next section, such

messages correspond to the selection of a membership status along with a collection of bids, one for

each partner. Note that, while the game starts in period 0, the actual matching begins in period 1.

We use perfect Bayesian equilibrium (PBE) as our solution concept. A matching mechanism will

be referred to as profit-maximizing if it is feasible and admits a PBE such that, under such equilibrium,

the platform’s profits are at least as high as under any other PBE of any other feasible mechanism.

A welfare maximizing mechanism is defined in a similar way, but with welfare replacing profits in the

platform’s objective.

Remark. The equilibria in our dynamic matching auctions satisfy properties stronger than those

required by PBE. In particular, the equilibrium strategies remain optimal no matter the information

each agent may possess about other agents’past messages and match allocations, and no matter the

beliefs the agent may have about other agents’past and current types. Consistently with the rest of

the dynamic mechanism design literature, we will refer to such equilibria as periodic ex-post (see, e.g.,

Bergemann and Valimaki (2010), Athey and Segal (2013), and Pavan, Segal, and Toikka (2014)). As

a result, both the profit-maximizing and the welfare-maximizing mechanisms we propose can be made

fully transparent, in the sense that all bids, matches, and payments are made public after each period.

Lastly, while we only require that the mechanisms induce participation in period zero, in the specific

mechanisms we propose, agents find it optimal to remain in the mechanism after each history.

3 Matching auctions

We now introduce a class of mechanisms, which we refer to as “matching auctions,” in which agents

bid repeatedly to be matched with potential partners. The structure is the following.

Definition 1 (matching auctions) A matching auction is a mechanism with the following proper-

ties:

• At period t = 0, upon joining the platform, each agent l ∈ Nk, from each side k = A,B, is asked

to select a membership status θkl0 ∈ Θk
l . Each status is conveniently indexed by the vertical type it is

designed for. A higher status translates into a more favorable treatment, on average, in the subsequent

auctions. Accordingly, a higher status comes with a higher fee pkl0 ∈ R.

• In each subsequent period t ≥ 1, each agent l ∈ Nk, from each side k = A,B, is first offered the

possibility to revise his membership status by selecting θklt ∈ Θk
l . Each agent is then invited to submit

bids bklt ≡ (bkljt)j∈N−k , one for each potential partner from the opposite side. Each pair of agents

(i, j) ∈ NA ×NB is then assigned a “score”Sijt ∈ R that depends on the pair’s period-0 and period-t
status, the pair’s reciprocal bids (bAijt, b

B
ijt) and, possibly, the number of times the pair interacted in the

past. All pairs of agents with the highest nonnegative score are matched, up to capacity. All agents

who are unmatched in period t, pay nothing. Matched agents make (or receive) payments pklt ∈ R that
may depend also on other agents’bids and membership status.
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• All past bids, payments, membership choices, and matches are public.

The details of the scoring rules and of the corresponding payment functions naturally depend on

the environment under examination and, in particular, the platform’s capacity constraint and the

nature of the processes governing the evolution of the agents’match values and the platform’s costs.

3.1 Scoring rules

A scoring rule S consists of a sequence of mappings (Sijt)
(i,j)∈NA×Nb
t=1,...,∞ assigning to each pair of agents

from opposite sides (i, j) ∈ NA × NB, each t ≥ 1, a score Sijt(θ0, θt, bt, xt−1) ∈ R that depends on

the pair’s period-0 and period-t membership status, current bids, and number of past interactions.

As mentioned above, each score Sijt depends only on information pertaining to the pair (i, j). The

conditioning of Sijt on the entire profile (θ0, θt, bt, x
t−1) is only to facilitate the notation.

Formally speaking, the matching auctions defined above correspond to a matching mechanism in

which the message spaces are given byMA
i0 = ΘA

i for t = 0, and, for any t ≥ 1, byMA
it = ΘA

i ×RNB ,
and where the matching rule χ matches in each period t ≥ 1 all pairs with the highest nonnegative

score Sijt(θ0, θt, bt, xt−1), up to capacity, with ties broken arbitrarily. Obviously, the history of past

matches xt−1 = χt−1(θt−1, bt−1) is itself determined by past bids and membership choices. With an

abuse of notation, whenever there is no risk of confusion, hereafter we drop the dependence of xt−1

on past bids and membership choices to ease the notation.

Now let

QSt (θ0, θt, bt, x
t−1) ≡

{
(i, j) ∈ NA ×NB s.t. (i) Sijt(θ0, θt, bt, xt−1) ≥ 0 and

(ii) #
{

(l,m) ∈ NA ×NB : Slmt(θ0, θt, bt, x
t−1) > Sijt(θ0, θt, bt, x

t−1)
}
< M

}

denote the set of period-t matches (i, j) ∈ NA×NB for which the period-t score is nonnegative and for

which there are at mostM−1 matches with a strictly higher score. The matching rule χ corresponding

to the scoring rule S then satisfies the following properties: (a) (i, j) ∈ QSt (θ0, θt, bt, x
t−1) whenever

χijt(θ0, θt, bt, x
t−1) = 1; (b) if Sijt(θ0, θt, bt, xt−1) > 0 and

#
{

(l,m) ∈ NA ×NB : Slmt(θ0, θt, bt, x
t−1) ≥ Sijt(θ0, θt, bt, xt−1)

}
≤M,

then χijt(θ0, θt, bt, x
t−1) = 1; and (c) if (i, j) ∈ QSt (θ0, θt, bt, x

t−1), Sijt(θ0, θt, bt, xt−1) > 0, and

χijt(θ0, θt, bt, x
t−1) = 0, then #

{
(l,m) ∈ NA ×NB : χlmt(θ0, θt, bt, x

t−1) = 1
}

= M . In words, if the

pair (i, j) is matched in period t, it must be that its period-t score is nonnegative and that there are at

most M −1 matches with a period-t score strictly higher than the one for (i, j). Furthermore, the pair

(i, j) is necessarily matched in period t if its period-t score is strictly positive, and there are at most

M matches with a period-t score weakly higher than that for (i, j). Lastly, condition (c) says that if

there are no more than M − 1 matches with a score strictly higher than that of (i, j), (i, j)’s score is

strictly positive, and the match (i, j) is not formed, then it must be that capacity is fully utilized and

that the platform is matching other pairs with a score identical to (i, j)’s.
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Importantly, agents’bids are allowed to be negative. An agent submitting a negative bid for a

potential partner may nonetheless be matched with that partner if the platform finds it optimal to

cross-subsidize the interaction. In considering the profitability of such cross-subsidization, the platform

may also take into account the value of generating information about the profitability of such a match,

which can be used in future periods.

We now introduce two scoring rules that play a central role in the analysis.

Definition 2 A myopic scoring rule Sm;β (with weights β) is one in which, for each t ≥ 1, each pair

(i, j) ∈ NA ×NB, the score is given by

Sm;βijt

(
θ0, θt, bt, x

t−1) ≡ βAi (θAi0) · bAijt + βBj (θBj0) · bBijt − cijt(xt−1), (3)

where β ≡ (βkl )l∈Nk,k=A,B are time-invariant, non-decreasing, strictly positive, and bounded functions

of the period-0 membership statuses. A myopic matching rule χm;β is a matching rule in which the

scoring rule is given by Sm;β.

A myopic score is thus a weighted average of the bids bAijt and b
B
ijt submitted by the pair (i, j) ∈

NA × NB in period t, t ≥ 1, where the weights are given by strictly positive and non-decreasing

functions of the agents’period-0 membership statuses, net of the platform’s period-t cost of matching

the pair. Note that myopic scores may depend on past bids only through the induced past allocations

xt−1, and are invariant in all membership choices except the period-0 ones. In the case of exogenous

processes, because costs do not depend on past allocations, the myopic scores are also invariant in

past bids.

The next scoring rule is a forward-looking one, where the scores take into account not only the

flow surpluses generated by the current interactions, but also the value of generating information that

can be used in future periods. Let λij |θt, bt, xt−1 denote the stochastic process over the pair (i, j)’s

current and future match values (uAijs, u
B
ijs) and costs cijs that one obtains under any matching rule

that matches the pair (i, j) at all periods s ≥ t, when the pair’s vertical types (θAi , θ
B
j ) are the ones

specified in the period-t vector θt, and when the horizontal types are given by

εkijt =


bkijt/θ

k
it if bkijt/θ

k
it ∈ Ekijt

arg min
ε̂kijt∈Ekijt

{
|bkijt/θkit − ε̂kijt|

}
otherwise, (4)

k = A,B.

Definition 3 An index scoring rule SI;β (with weights β) is one in which, for each t ≥ 1, each pair

(i, j) ∈ NA ×NB,

SI;βijt
(
θ0, θt, bt, x

t−1) ≡ max
τ

E
λij |θt,bt,xt−1

[∑τ
s=t δ

s−t
(
βAi (θAi0)u

A
ijs + βBj (θBj0)u

B
ijs − cijs

)]
Eλij |θt,bt,xt−1

[∑τ
s=t δ

s−t]
 , (5)

where τ denotes a stopping time, and where β ≡ (βkl )l∈Nk,k=A,B are time-invariant, non-decreasing,

strictly positive, and bounded functions of the period-0 membership statuses. An index matching rule

χI;β is a matching rule in which the scoring rule is given by SI;β.
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The score SI;βijt thus corresponds to a Gittins index for a process for which the “rewards”are given

by the weighted total surplus of the match (i, j), with the weights given by the functions β of the

agents’period-0 membership statuses. Note that, under our assumptions for endogenous processes,

each score SI;βijt depends on x
t−1 only through the total number of past interactions

∑t−1
s=1 xijs between

the pair (i, j). Also note that, contrary to the myopic scores, the indexes SIijt depend on the entire

history of past and current membership choices. However, while the dependence on the period-0 and

on the period-t choice is direct, the dependence on other periods’choices is only via the number of

past interactions.

3.2 Role of the membership status

Intuitively, each agent’s membership status determines the importance the platform assigns to the

agent’s bids, relative to those of others. Consider, for example, an environment with exogenous

processes, and suppose that matches are determined according to the myopic rule χm;β. Suppose, in

period t ≥ 1, agent i from side A submits a positive bid for agent j from side B, whereas agent j

submits a negative bid. For given bids (bAijt, b
B
ijt), a higher period-0 status of agent i implies a higher

score for the match (i, j), thus tilting the matching allocation in favor of agent i. Symmetrically, a

higher status for agent j reduces the score for the match (i, j), thus tilting the allocation in favor

of agent j. A higher period-0 status thus grants an agent preferential treatment in all subsequent

auctions, both with respect to the competition the agent faces with other agents from his own side

(when the capacity constraint is binding) and with respect to the competition the agent faces with

agents from the opposite side, shifting the length of each interaction to his benefit.

The role of the agents’status in subsequent periods (that is, θAit, with t ≥ 1), is somewhat different.

It permits the platform to decouple the agents’horizontal types εAijt from the agents’bids, which is

useful to form expectations about the agents’future match values. In fact, as we show below, while the

agents’bids convey information about the agents’total match values uAijt for each possible interaction,

they are not suffi cient statistics with respect to the agents’overall private information, when it comes

to predicting future values. For instance, a high bid bAijt by agent i for agent j may either reflect a

persistent high value for interacting with all agents from the opposite side (i.e., a high vertical type

θAi ), or a high temporary appreciation for interacting with agent j (i.e., a high horizontal type, εAijt).

Accordingly, when the evolution of the agents’match values is endogenous, the platform uses the

combination of the submitted bids with the membership statuses to trade off the value of current

matches with the value of generating information useful in future periods.

Finally, note that the reason why the platform allows the agents to revise their status over time,

despite the fact that, under the specification in (1), the vertical types are perfectly persistent, is

that this favors equilibria in which the agents bid myopically over time, irrespective of past bids and

membership selections, in the following sense:

Definition 4 A strategy profile σ = (σkl )
k=A,B
l∈Nk for the above matching auctions is truthful if for

all t ≥ 0, all private histories, the selection of the membership status is given by θklt = θkl , and the
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submitted bids are given by bkijt = ukijt = θkl ·εkijt, all (i, j) ∈ NA×NB, k = A,B. A truthful equilibrium

is an equilibrium in which the strategy profile is truthful.

That is, under truthful strategies, irrespective of the history, agents select a membership status

equal to their true vertical type, and then submit bids equal to the myopic match value they assign

to each interaction.

3.3 Payments

We now complete the description of the matching auctions by describing the associated payment rules.

Let χ be the matching rule corresponding to the scoring rule S. For any t ≥ 1, any (θ0, θt, bt, x
t−1),

any weights β ≡ (βkl )l∈Nk,k=A,B, let

Wt(θ0, θt, bt, x
t−1;β) ≡ Eλ[χ]|θt,bt,xt−1

 ∞∑
s=t

δs−t
∑
i∈NA

∑
j∈NB

Sm;βijs (θ0, θs, bs, x
s−1) · χijs(θ0, θs, bs, xs−1)


(6)

denote the continuation weighted surplus. Here λ[χ]|θt, bt, xt−1 denotes the stochastic process over
(θs, bs, x

s−1), s ≥ t, under the rule χ, when the selected period-t membership statuses are θt, the

period-t bids are bt, all agents follow truthful strategies from period s > t onwards, the true vertical

types are the ones corresponding to the selected period-t statuses (i.e., θkl = θklt, l ∈ Nk, k = A,B),

and the true period-t horizontal types are given by (4).17

Similarly, let W−l,kt (θ0, θt, bt, x
t−1;β) denote the continuation weighted surplus, as defined in (6),

when the myopic scores involving agent l from side k are identically equal to zero at all periods s ≥ t.
Next, let

Rklt(θ0, θt, bt, x
t−1;β) ≡Wt(θ0, θt, bt, x

t−1;β)−W−l,kt (θ0, θt, bt, x
t−1;β),

denote the contribution of agent l ∈ Nk to the continuation weighted surplus and

rklt(θ0, θt, bt, x
t−1;β) ≡ Rklt(θ0, θt, bt, xt−1;β)− δEλ[χ]|θt,bt,xt−1

[
Rklt+1(θ0, θt+1, bt+1, x

t;β)
]

(7)

the corresponding flow marginal contribution.

In each period t ≥ 1, the payment asked to each agent i ∈ NA (an analogous construction holds

for each agent from side B) is given by

ψAit(θ0, θt, bt, x
t−1;β) =

∑
j∈NB

bAijt · χijt(θ0, θt, bt, xt−1)−
1

βAi (θAi0)
rAit(θ0, θt, bt, x

t−1;β). (8)

In words, each agent i is asked to make a payment that equals the total flow value the agent derives

from all the matches implemented in period t in which the agent is involved, net of a discount that

is proportional to the agent’s flow marginal contribution to weighted surplus, with a coeffi cient of

proportionality given by 1/βAi (θAi0).

17Note that we are dropping the argument χ from the Wt functions, to ease the exposition.
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The description of the payments is then completed by the specification of the fees charged to the

agents in period zero, as a function of the profile of selected membership statuses. The latter are given

by

ψkl0(θ0;β) = θkl0D
k
l (θ0)−

∫ θkl0

θkl

Dk
l (θk−l, y)dy − Eλ[χ]|θ0

[ ∞∑
t=1

δtψklt(θ0, θt, bt, x
t−1;β)

]
− Lkl , (9)

where Lkl is a scalar whose role is to guarantee that the agent’s participation constraint is satisfied,

θk−l ≡ (θmj )
m∈{A,B}
j∈Nm,(m,j)6=(k,l) ∈ Θk

−l ≡
∏m∈{A,B}
j∈Nm,(m,j) 6=(k,l), Θ

m
j is a profile of vertical types excluding agent

l from side k, and

Dk
l (θ0) ≡

 Eλ[χ]|θ0
[∑∞

t=1 δ
t∑

h∈N−k ε
k
lhtχlht(θ0, θt, bt, x

t−1)
]
if k = A

Eλ[χ]|θ0
[∑∞

t=1 δ
t∑

h∈N−k ε
k
hltχhlt(θ0, θt, bt, x

t−1)
]
if k = B

(10)

is the “quality” of the matches agent l from side k expects from all subsequent auctions, when the

profile of selected period-0 membership statuses is θ0 (here λ[χ]|θ0 denotes the distribution over future
membership statuses, bids, and matches, under truthful strategies). Note that the reason we distin-

guish between the case in which k = A and the one in which k = B is that the order in the subscripts of

the allocations χijt, as well as the order in the subscripts in the horizontal types ε
k
ijt is not permutable:

the first index always refers to side A, while the second to side B. Also note that, according to (9), the

fee the platform charges to each agent depends on the entire profile of membership statuses selected by

all agents. In other words, the price for status depends on the aggregate demand of status from each

side of the market. Such dependence plays a role analogous to that of “insulating tariffs”in two-sided

markets (see, e.g., Weyl, 2010): it guarantees that all agents find it optimal to join the platform in

period zero, irrespective of their beliefs about the types of other agents. Such insulating tariffs can

always be replaced by (perhaps more familiar) tariffs in which membership fees depend only on each

agent’s own status, by taking expectations over the types of other agents.

The period-t payments, t ≥ 1, on the other hand, reflect the externalities the agents impose both

in the current and in future periods on all other agents (from both sides of the market), as well as the

costs they impose on the platform. Such externalities are calculated with respect to the “weighted

surplus”associated with each of the matches, with the weights determined by the period-0membership

statuses. Note that such externalities may be positive or negative, and therefore the payments may

be positive or negative. For example, if an agent is valued highly by the agents he is matched to, he

may receive a positive transfer from the platform —cross subsidization.

As for the membership fees, because higher status implies higher average match quality in all future

auctions (a property we establish formally below), higher status naturally comes with a higher fee. In

particular the period-0 membership fees are equal to the agent’s expected match quality, net of the

payments the agent expects to make in the subsequent auctions, and net of a discount
∫ θkl0
θkl

Dk
l (θk−l, y)dy

whose role is to incentivize the agent to select the status corresponding to his true vertical type.

Example 3 (payments - exogenous processes) To illustrate, suppose the processes are exoge-

nous. If i ∈ NA is not matched to any agent j ∈ NB in period t, he does not make any payments
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in that period. Otherwise, i’s payment depends on the total number of matches he secures in the

period-t auction. Specifically, if i is matched to K ≥ 1 agents from side B, his payment is equal to

ψAit(θ0, θt, bt, x
t−1;β) =

1

βAi (θAi0)

BAit(K) +
∑
j∈NB

(cijt − βBj (θBj0)b
B
ijt)χ

m
ijt

 ,

where BAit(K) is the sum of the K highest nonnegative myopic scores among the pairs that are un-

matched in period t and that do not include agent i. Similar payments apply to each side-B agent.

Note that, in this environment, the period-t payments depend only on the period-0 membership

choices, the period-t bids, and the platform’s costs. Interestingly, contrary to the payments in standard

Vickrey-type auctions such as the GSP auctions, multiple agents (from both sides of the market) may

be charged for the same externality they impose on others. �

The payments for the case of endogenous processes differ based on the capacity constraint in place.

When the capacity constraint is binding, payments take into account also the expected future external-

ities under the processes induced by the agent’s period-t matches. Notwithstanding this difference, the

period-t payments under endogenous processes are also independent of all past bids and membership

choices, except for the period-0 choices θ0 and for the effect of past bids and membership choices on

the number of past interactions.18

4 Equilibrium

We now turn to the equilibria of the matching auctions introduced above. We start by describing a

special class of environments that plays a role in case of endogenous processes. Let SI;β denote the

index scoring rule defined by the weights β. Then let

Sβijt(θ
t, ut, xt−1) ≡ infs≤t

{
SI;βijs (θ0, θs, us, x

s−1)
}

(11)

denote the historical infimum of the indexes for the pair (i, j), when the period-t history of bids is

given by bt = ut ≡ (us)
t
s=1.

19

Definition 5 (separability) The environment is separable under the rule SI;β if, for any t ≥ 1, any

two pairs of agents, (i, j), (i′, j′) ∈ NA ×NB, any (θt, ut, xt−1),

Sβijt(θ
t, ut, xt−1) > Sβi′j′t(θ

t, ut, xt−1) > 0⇒ Sβijt(θ
t, ut, xt−1) · (1− δ) ≥ Sβi′j′t(θ

t, ut, xt−1). (12)

Note that the definition imposes a restriction on the initial heterogeneity of the positive indexes as

well as on the way such indexes decrease over time. It imposes no restriction on the way the indexes

respond to positive shocks, or on the way they evolve once they turn negative.
18One might expect the payments under endogenous processes to be analogous to those under exogenous processes,

but with the indexes SI;βijt replacing the myopic scores S
m;β
ijt . However, this is not correct. In fact, such payments are

greater than those defined by the functions ψ above and would lead agents to shade their bids.
19Such auxiliary processes are also referred to as lower envelope processes (see, e.g., Mandelbaum 1986).
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Example 4 (bad news) Consider an environment in which the period-1 indexes SI;βij1 are suffi ciently

heterogeneous, in the sense of (12). Further assume that, for each pair of agents (i, j), in each period

t ≥ 2, either SI;βijt ≥ SI;βijt−1 or S
I;β
ijt < 0. The environment is then separable. The above structure

emerges, for example, in the familiar “no-news-is-good-news" class of environments considered in the

experimentation literature (e.g., Bonatti and Horner (2015), Keller and Rady (2015)).20 In such envi-

ronments, in each period, agents either receive no news or negative news revealing the unprofitability

of the match. In the absence of bad news, agents become increasingly more optimistic about the

profitability of their relationships.21 �

We then have the following result:

Theorem 1 (equilibrium) (i) Suppose the processes are exogenous. Any matching auction in which

(1) the scoring rule is myopic with weights β, and (2) the payments are given by (8) and (9), with

the same weights β as in the scoring rule, and with Lkl large enough, all l ∈ Nk, k = A,B, admits an

equilibrium in which all agents participate in each period and follow truthful strategies.

(ii) Suppose processes are endogenous and assume that either (a) M = 1, or (b) M ≥ nA · nB, or
(c) 1 < M < nA · nB and, in this latter case, the environment is separable under the rule SI;β. The
matching auction in which (1) the scoring rule is the index rule with weights β, and (2) the payments

are given by (8) and (9) with the same weights β as in the scoring rule, and with Lkl large enough,

all l ∈ Nk, k = A,B, admits an equilibrium in which all agents participate in each period and follow

truthful strategies.

(iii) The equilibria of the auctions in parts (i) and (ii) above are periodic ex-post; that is, the

agents’ strategies are sequentially rational, regardless of the agents’ beliefs about other agents’ past

and current types.

The formal proof is in the Appendix. Here we illustrate the key ideas in an heuristic way. We

organize the arguments in three steps. The first step shows that, in the continuation game that starts

with period t ≥ 1, independently of past behavior, when the agents follow truthful strategies, the

matches implemented under the myopic and the index rules maximize continuation weighted surplus,

as defined in (6), in the respective environments of Theorem 1. Step 2 in turn establishes that, when

the payments are the ones in (8) above, in the continuation game that starts with period t ≥ 1,

irrespective of past behavior, all agents have incentives to bid truthfully their myopic values ukijt. Step

3 completes the proof by showing that, when the period-0 membership fees are the ones in (9), all

20See Keller, Rady and Cripps (2005) for the opposite case of fully revealing “breakthroughs”and Horner and Skrzypacz

(2016) for a recent survey of the literature on experimentation in strategic environments.
21A similar structure obtains in environments in which, in each period and for each match, with some positive prob-

ability (possibly history dependent), the match is revealed to be unprofitable, in which case the index turns negative,

while with the complementary probability the index either increases or decreases by a small amount that does not violate

(12).
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agents find it optimal to join the platform in period zero, and select the period-0 membership status

corresponding to their true vertical types, again, regardless of their beliefs about other agents’types.

Step 1. When the processes are exogenous, that the matches implemented under truthful strategies

maximize continuation weighted surplus follows directly from the fact that a myopic rule (with weights

β) selects in each period the matches with the highest nonnegative myopic score.

The result for endogenous processes is more delicate. In this case, the problem of maximizing

continuation weighted surplus is a multiarmed bandit problem. Such a problem admits an index-policy

solution when either the capacity constraint is not binding (M ≥ nA · nB), or when the platform can

match at most one pair of agents in each period (M = 1). In both such cases, continuation weighted

surplus is maximized by selecting in each period the matches with the highest nonnegative index, up

to capacity.

For intermediate capacity constraints (1 < M < nA · nB), however, without further restrictions
on the environment, there is no guarantee that an index policy maximizes continuation weighted

surplus. This is because, in general, multiarmed bandit problems in which multiple arms can be

activated simultaneously fail to admit a simple index solution. The following example, in which the

separability condition in Definition 5 is violated, illustrates the problems in the context of our matching

environment.

Example 5 (suboptimality of χI;β for 1 < M < nA · nB) Suppose NA = {1, 2, 3}, NB = {1},
andM = 2. Assume that the myopic score Sm;βijt of each match (i, j) evolves according to the following

process, where n denotes here the number of past interactions:

n = 0 n = 1 n = 2 n ≥ 3

Sm;β11 3 3 3 -1

Sm;β21 4 2 2 -1

Sm;β31 5 1 1 -1

Since each Sm;βijt (n) decreases with n, the associated index rule (as defined in Definition 3) is myopic,

and hence implements the matches (2, 1) and (3, 1) in period 1, the matches (1, 1) and (2, 1) in period

2 and again in period 3, the matches (1, 1) and (3, 1) in period 4, the match (3, 1) in period 5, and no

match from period 6 onwards.22 Consider now an alternative rule, implementing the matches (1, 1)

and (3, 1) in period 1, the matches (1, 1) and (2, 1) in period 2 and again in period 3, the matches

(2, 1) and (3, 1) in period 4, the match (3, 1) in period 5, and no match thereafter. The difference

in the corresponding profits is 1 − 2δ + δ3, which is negative for δ >
√
5−1
2 . Thus, for all δ >

√
5−1
2 ,

22More generally, suppose processes are endogenous and match quality deteriorates over time, in the sense that, for

all t ≥ 1, (i, j) ∈ NA ×NB , k = A,B, xt−1 ∈ Xt−1, whenever xijt = 1, then εkijt+1 ≤ εkijt a.s. and cijt+1 ≥ cijt. In such
environment, irrespective of the weights β, for any pair (i, j) ∈ NA ×NB , any t ≥ 1, SI;βijt = Sm;βijt . This can be seen by

noting that the optimal stopping time in (5) satisfies the property τ ijt = inf{s > t | SI;βijs ≤ S
I;β
ijt }. That is, it is the first

time at which the process of Sm;βij reaches a state in which SI;βij drops (weakly) below its period-t value.

22



an index rule does not maximize weighted surplus. Finally, note that, in this example, separability is

violated for δ >
√
5−1
2 . �

In the case of intermediate capacity constraints, the result in Theorem 1 above thus assumes the

environment is separable under the rule SI;β, in the sense of Definition 5. As we show in the Appendix,

the role of the separability condition is to guarantee that the optimal rule is myopic in a fictitious

environment in which the reward processes are the auxiliary ones, Sβijt, as defined in (11). The proof

then proceeds by showing that, given any matching rule χ, continuation weighted surplus is weakly

higher when the rewards are given by the auxiliary processes (i.e., Sm;βijt ) than when the rewards are the

primitive ones (i.e., Sm;βijt ). Furthermore, in the special case in which the scoring rule is the index rule

(for the primitive environment), continuation weighted surplus is the same in the two environments.

We then show that, when the environment is separable, a myopic rule maximizes continuation

weighted surplus when the rewards are given by the auxiliary processes. Recall that such processes

drift downwards. The maximal continuation surplus that can be expected from each match is thus

equal to the “annuity”Sβijt/(1 − δ) of its current auxiliary value. Separability then implies that it is
always optimal to select the matches for which the current auxiliary reward is the highest.

That the matches implemented by the index rule maximize continuation weighted surplus in the

primitive environment then follows from the above properties along with the fact that the matches

implemented by such rule in the primitive environment coincide with those implemented by the myopic

rule in the fictitious environment.

Step 2. The second step of the proof shows that, when the payments are the ones specified in (8)

above, starting from each period t ≥ 1, and irrespective of past behavior, all agents have incentives

to bid truthfully their myopic values bkijt = ukijt in the continuation game that starts with period t.

This step combines arguments from Bergemann and Valimaki (2010) (see also Kakade et al. (2013))

with arguments from Pavan, Segal, and Toikka (2014). A notorious diffi culty in dynamic incentives

problems is the need to control for multi-period contingent deviations. In matching auctions, agents

who deviated from a truthful strategy in the past may wish to do so again at present and/or in

future periods. An additional diffi culty in the matching environment under consideration here is the

multi-dimensionality of the new private information each agent receives in each period.

Given the profile of period-0 membership choices, the payments in (8) are designed to make each

agent’s continuation payoff (net of the payments) proportional to his flow marginal contribution to

weighted surplus (with the latter defined as in (7), and with the coeffi cient of proportionality given by

1/βkl (θ
k
l0)). Because the matches under the proposed scoring rules maximize the continuation weighted

surplus after all histories (including those off the equilibrium path), agents have incentives to go back

to the truthful strategies (and remain in the mechanism) after all histories, and irrespective of the

beliefs they may have about past and current types of all other agents. In other words, participating

and then following truthful strategies constitutes a periodic ex-post continuation equilibrium, after any

history. Importantly, when processes are endogenous, it is important that agents have the possibility to

adjust their membership status at the beginning of any period. This helps establishing the sequential
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optimality of truthful strategies by guaranteeing that, irrespective of past behavior, the matches

implemented in the continuation game under truthful strategies maximize the continuation weighed

surplus, at all histories.23

Step 3. The final step completes the proof by showing that, when the membership fees are the

ones in (9), all agents find it optimal to join the platform in period zero, and select the membership

status designed for their true vertical type, regardless of the agents’beliefs about other agents’types.

Specifically, the period-0 payments are added to the payments in the subsequent periods so that

the payoff that each agent obtains in equilibrium satisfies a certain envelope condition, which relates

the agents’period-0 interim expected payoffs to a measure of their expected discounted future “match

quality,”as defined in (10). The proof then shows that the myopic and index rules satisfy an “average

monotonicity”property, according to which match quality increases both with each agent’s period-0

membership status (for fixed true vertical type) and with the agent’s true vertical type (under truthful

strategies). Along with the fact that the equilibrium payoffs satisfy the aforementioned envelope

formula, such “average monotonicity”property guarantees that truthful strategies are optimal also in

period zero.

Importantly, the quality of an agent’s interactions need not increase with his period-0 membership

status, or with his true vertical type, in each state of the world (if fact, it does not, under the index

rule24). It suffi ces that it increases, on average, where the averaging is across time and states.25 �

In environments in which agents have a fixed demand for interactions with each potential partner

(as in Example 2 above), the separability condition in part (ii) of the theorem can be relaxed. More

generally, separability is suffi cient for the index rule to maximize continuation weighted surplus, and

hence for the agents to find it optimal to follow truthful strategies in the proposed matching auctions,

but it is by no means necessary.26

Also, note that the periodic ex-post nature of the equilibria of Theorem 1 is what justifies making

the auctions fully transparent.

23A similar approach of enlarging the message space so as to give agents the possibility to reveal their true types after

possible deviations in previous periods is used in Doepke and Townsend (2006) and Kakade et al. (2013).
24This is because an increase, for example, in agent i’s period-0 membership status may lead to reversals in the ordering

of the agent’s indexes. Because these indexes are forward looking, such reversals, while optimal based on the period-t

information, might not be optimal ex-post. As a result, the monotonicity of an agent’s discounted sum of current and

future horizontal types under an index rule need not hold ex-post. That is, along certain paths, higher membership

status may result in lower match quality.
25The above condition can be viewed as the analog of Pavan, Segal and Toikka (2014)’s average monotonicity condition

in a setting, the present one, in which agents receive multi-dimensional new private information in each period. In fact,

in the present environment, the horizontal types εAit ≡ (εAijt)j∈NB correspond to the “impulse responses”of the period-t

match values uAit ≡ (uAijt)j∈NB to the vertical type θAi , as defined in Pavan, Segal, and Toikka (2014).
26To the best of our knowledge, a condition that is jointly necessary and suffi cient for the optimality of index policies

in multi-armed bandit problems in which an arbitrary number of arms is activated in each period remains elusive, except

in special environments.
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As the theorem illustrates, one of the appeals of the proposed auctions is that they admit simple

equilibria in which agents bid their myopic match values in each period. In other words, the agents do

not need to know how to solve complex dynamic-programming problems, or be able to compute the

indexes (although, nowadays, there is software that does so). Once the scoring and payments rules

are understood, it is in the agents’interest to bid “straight-forwardly” in all periods, irrespective of

the beliefs they may have about other agents’past and current types, and irrespective of their own, as

well as other agents’, past behavior. As in other market design settings, it is, however, important that

the market designer educates the bidders by carefully explaining them the structure of the scoring

and payment rules and why the proposed auctions admit such simple equilibria. Also note that the

proposed auctions are, in spirit, the analogs of the familiar second-price Vickrey auctions, but adapted

to control for the dynamic nature of the externalities the agents impose on one another, and for the

fact that the matches implemented in equilibrium need not maximize total surplus. In fact, as we

show in the next section, by properly selecting the weights β, the designer can guarantee that the

auctions maximize the platform’s profits as opposed to welfare.

5 Profit maximization

We now show that the class of matching auctions introduced above includes a subclass that maximizes

the platform’s profits across all possible mechanisms. We make the following additional assumption

on the distribution of the agents’vertical types.

Assumption 1 For all l ∈ Nk, k = A,B, the Mills ratio
[
1− F kl (θkl )

]
/fkl (θkl ) is non-increasing.

Furthermore, θkl · fkl (θkl ) > 1.

The first part of Assumption 1 is standard in mechanism design and guarantees that the agents’

“virtual” vertical types θkl −
[
1− F kl (θkl )

]
/fkl (θkl ) are non-decreasing in the true types. The second

part is added to guarantee that the virtual vertical types are strictly positive. Given the multiplica-

tive structure of the match values in (1), this assumption guarantees that the virtual match values[
θkl −

[
1− F kl (θkl )

]
/fkl (θkl )

]
εkijt respect the same ranking as the true ones, u

k
ijt = θkl ε

k
ijt, thus avoiding

confusion in the interpretation.

Because the myopic and the index rules are completely characterized by the weights β, hereafter, we

denote by Dk
l (θ0;m,β) and by Dk

l (θ0; I, β), respectively, the expected match quality under a myopic

and under an index rule, with weights β. We then have the following result:

Theorem 2 (profit maximization) Let β̂ be the weights of the period-0 membership statuses given

by27

β̂
k

l (θ
k
l0) ≡ 1− 1− F kl (θkl0)

fkl (θkl0)θ
k
l0

, all l ∈ Nk, k = A,B.

27Note that Assumption 1 guarantees that these weights are non-decreasing, strictly positive, and bounded, as required

by the scoring rules of Theorem 1.
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(i) Suppose processes are exogenous and Dk
l (θk−l, θ

k
l ;m, β̂) ≥ 0, all l ∈ Nk, k = A,B, θk−l ∈ Θk

−l.

The matching auctions in which (1) the scoring rule is the myopic rule with weights β̂, and (2) the

payments are given by (8) and (9) with weights β̂ and Lkl = 0, all l ∈ Nk, k = A,B, are profit-

maximizing.

(ii) Suppose processes are endogenous and Dk
l (θk−l, θ

k
l ; I, β̂) ≥ 0, all l ∈ Nk, k = A,B, θk−l ∈ Θk

−l.

In each of the three environments of part (ii) of Theorem 1, the matching auctions in which (1) the

scoring rule is the index rule with weights β̂, and (2) the payment are given by (8) and (9) with weights

β̂ and Lkl = 0, all l ∈ Nk, k = A,B, are profit-maximizing.28

(iii) The equilibria of the matching auctions in parts (i) and (ii) above that maximize the platform’s

profits are in truthful strategies, and are periodic ex-post.

The proof of Theorem 2, in the Appendix, is in three steps. First, using an approach similar to

the one in Pavan, Segal and Toikka (2014), we show that, given any matching mechanism Γ and any

Bayes Nash equilibrium (BNE) σ of the game induced by Γ, the period-0 interim expected payoff of

each agent l ∈ Nk, k = A,B must satisfy the envelope condition29

Ukl (θkl ) = Ukl (θkl ) +

∫ θkl

θkl

E
[
Dk
l (θ; χ̂)|y

]
dy, (13)

where the rule χ̂ =
(
χ̂t(θ, ε

t)
)∞
t=1

describes the state-contingent matches induced by the strategy profile

σ in Γ, and where the expectation in (13) is with respect to the entire profile of vertical types θ, given

the agent’s own vertical type.30

Next, we use the above representation of the agents’equilibrium interim expected payoffs to show

that, given any mechanism Γ and any BNE σ of Γ, the platform’s profits are given by the following

weighted surplus function:

Eλ[χ̂]
 ∞∑
t=1

δt
∑
i∈NA

∑
j∈NB

(
β̂
A

i (θAi )θAi ε
A
ijt + β̂

B

j (θBj )θBj ε
B
ijt − cijt(χ̂t−1(θ, εt−1)

)
χ̂ijt(θ, ε

t)


−
∑
k=A,B

∑
l∈Nk

Ukl (θkl ), (14)

for which the first term is only a function of the matching rule.

The optimality of the auctions in Theorem 2 is then established by showing that, under the

truthful equilibria of the proposed auctions, (a) the induced state-contingent matches maximize the

first component of the weighted surplus function (14), and (b) the participation constraints for the

28 If 1 < M < nA ·nB , the optimality of the proposed matching auctions requires the environment to be separable with
respect to the rule SI;β̂ corresponding to the weights β̂.
29By period-0 interim expected payoff, we mean the payoff the agent expects, under the equilibrium startegy profile

σ, in the game induced by Γ, when his period-0 vertical type is equal to θkl .
30 In case of endogenous processes, these functions are defined only for those histories that are consistent with equilib-

rium play in previous periods. To ease the exposition, hereafter we omit the formal specification of the domains of such

functions.

26



lowest vertical types are binding. That the lowest vertical type of each agent expects a nonnegative

match quality (formally, that Dk
l (θk−l, θ

k
l ; r, β̂) ≥ 0, r = m, I), together with the fact that match

quality Dk
l (θk−l, ·; r, β̂), r = m, I, is non-decreasing in the agent’s vertical type θkl under the equilibria

of Theorem 2 and that the interim expected payoffs satisfy the envelope conditions in (13), in turn

guarantees that participation in period zero is optimal for all agents. In fact, we show in the Appendix

that payoffs satisfy a stronger envelope condition, which guarantees the optimality of period zero

participation irrespective of the agents’beliefs about other agents’types.

Note that the conditions in Theorem 2 pertaining to expected match quality Dk
l can be relaxed

for standard PBE solution concepts, and are vacuously satisfied, for example, if horizontal types are

nonnegative, that is, if no agent ever dislikes interacting with any other agent. Furthermore, note that

the proof of Theorem 2 shows that the truthful equilibria of the proposed matching auctions (with

weights β̂) maximize profits over all BNE (not just PBE) of all indirect mechanisms.

6 Welfare vs profit maximization

We now turn to the distortions in the dynamics of the matches due to the fact that the platform

maximizes profits instead of welfare. Theorem 3 below identifies conditions under which the matching

auctions introduced in Section 3 above admit a subclass for which the matches sustained in equilibrium

are welfare maximizing.

Theorem 3 (welfare maximization) Let βW be the weights given by βk,Wl (θkl ) = 1, all θkl ∈ Θk
l ,

l ∈ Nk, k = A,B.

(i) Suppose processes are exogenous. The matching auctions in which (1) the scoring rule is the

myopic rule with weights βW , and (2) the payments are given by (8) and (9) with weights βW and

with Lkl large enough, all l ∈ Nk, k = A,B, are welfare-maximizing.

(ii) Suppose processes are endogenous. In each of the three environments of part (ii) of Theorem

1, the matching auctions in which (1) the scoring rule is the index rule with weights βW , and (2) the

payments are given by (8) and (9) with weights βW and with Lkl large enough, all l ∈ Nk, k = A,B,

are welfare-maximizing.31

(iii) Suppose (a) processes are exogenous and Dk
l (θk−l, θ

k
l ;m,β

W ) ≥ 0, all l ∈ Nk, k = A,B, θk−l ∈
Θk
−l, or (b) processes are endogenous and D

k
l (θk−l, θ

k
l ; I, β

W ) ≥ 0, all l ∈ Nk, k = A,B, θk−l ∈ Θk
−l. In

their respective environments of parts (i) and (ii) above, the matching auctions with payments given

by (8) and (9), with Lkl = 0, all l ∈ Nk, k = A,B, admit ex-post periodic equilibria in which agents

participate and follow truthful strategies at all histories. Furthermore, such auctions maximize the

platform’s profits over all mechanisms implementing welfare-maximizing matches and inducing the

agents to join the platform in period zero.

31 If 1 < M < nA · nB , the separability condition must hold with respect to the rule SI;β
W

with weights βW .
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The results in parts (i) and (ii) follow directly from Theorem 1 by noting that, when the weights

are given by βW , the matching allocations sustained under truthful strategies maximize welfare after

each history. The conditions in part (iii) of Theorem 3 in turn guarantee that, when the payments

are as in (8) and (9) with weights βW and with Lkl = 0, all l ∈ Nk, k = A,B, agents find it optimal

to participate and follow truthful strategies in each period, irrespective of their beliefs about other

agents’current and past types, and past matches. That the proposed auctions maximize the platform’s

profits among all mechanisms implementing welfare-maximizing matches and inducing the agents to

participate in period zero follows from arguments similar to those establishing the optimality of the

matching auctions in Theorem 2 above. Note that the conditions in part (iii), though, do not guarantee

that the platform’s profits be positive. In general, the government may thus need to subsidize the

platform to induce it to implement welfare-maximizing matching allocations, while also recouping its

costs.

We now turn to the distortions brought in by profit maximization. Let χP ≡
(
χPt (θ, ω)

)∞
t=1

and

χW ≡
(
χWt (θ, ω)

)∞
t=1

denote the state-contingent profit- and welfare-maximizing matching allocations,

under the equilibria of the auctions of Theorems 2 and 3, respectively. Because the period-t history of

horizontal types εt may differ in the two auctions (under endogenous processes), these allocations are

expressed as a function of the sequence ω ≡ (ωkijs)
s=1,...,∞
(i,j)∈NA×NB ,k∈{A,B} of exogenous random variables

that, together with the history of past matches (in case of endogenous processes), generate the sequence

of horizontal types ε.32 Because (θ, ω) are exogenous, we then drop them from the arguments of χP

and χW to ease the notation. We then have the following result:33

Theorem 4 (distortions) Suppose all agents derive a nonnegative utility from interacting with all

other agents from the opposite side (formally, εkijt ≥ 0, all (i, j) ∈ NA ×NB, k = A,B, t ≥ 1).

(1) If M ≥ nA ·nB, then under both exogenous and endogenous processes, for all (i, j) ∈ NA×NB,

all t ≥ 1,

χPijt = 1 ⇒ χWijt = 1.

(2) Suppose that either (a) the processes are exogenous and M < nA · nB, or (b) the processes are
endogenous and M = 1. Then, for all t ≥ 1:∑

(i,j)∈NA×NB

χWijt ≥
∑

(i,j)∈NA×NB

χPijt.

(3) Suppose processes are endogenous, the environment is separable under both SI;β̂ and SI;β
W
,

32 In case of exogenous processes, one can think of the horizontal types ε as coinciding with the random variables ω.

With endogenous processes, instead, the horizontal types ε are generated from the exogenous random variables ω and

the past decisions using the construction explained in Section 2.
33For this result, to facilitate the comparison between profit and welfare maximization, we assume that, in each period,

both the profit- and the welfare-maximizing rules match pairs for which the scores are zero. That is, both rules use all

the available M slots, unless the number of matches for which the score is nonnegative is strictly less than M .
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and 1 < M < nA · nB. If, under profit-maximization, matching stops in finite time, then:
∞∑
t=1

∑
(i,j)∈NA×NB

χWijt ≥
∞∑
t=1

∑
(i,j)∈NA×NB

χPijt.

As in other screening problems, distortions are introduced under profit maximization to reduce

the agents’ information rents (that is, the surplus the platform must leave to the agents to induce

them to reveal their private information). When all agents value positively interacting with all other

agents from the opposite side, a profit-maximizing platform induces fewer interactions than what is

effi cient. The precise nature of the ineffi ciency, however, depends on whether the processes governing

the evolution of the agents’match values are endogenous or exogenous, and on the platform’s capacity

constraint.

When the capacity constraint is not binding, irrespective of the nature of the processes, in each

period t ≥ 1, the set of matches accommodated by a profit-maximizing platform is a subset of those

maximizing welfare. In case of endogenous processes, when M ≥ nA · nB, once a match is severed, it
is never reactivated again. Therefore, matches are gradually broken over time both under profit and

under welfare maximization. In this case, all relationships are severed too early (weakly) under profit

maximization.

This last property, however, does not extend to environments with binding capacity constraints.

Suppose, for example, that M = 1 and that processes are endogenous. For any pair of agents (i, j) ∈
NA × NB and any history of past interactions between the pair, the index assigned to the pair in a

profit-maximizing auction is always smaller than the index in the corresponding welfare-maximizing

auction. Formally, this can be seen by noticing that the weights β̂ used to compute the indexes

under profit maximization are strictly smaller than the corresponding weights in a welfare-maximizing

auction. However, the ranking of the indexes across pairs of agents under profit maximization need

not coincide with the ranking under welfare maximization. As a result, certain interactions may last

longer under profit maximization than under welfare maximization. What remains true, though, is

that, if at a given point in time matching shuts down under welfare maximization, then, under profit

maximization, either matching shut down already in previous periods, or it shuts down in the present

period.

Similarly, when processes are exogenous, for any M , the aggregate level of interactions at any

period under profit maximization is always (weakly) lower than under welfare maximization, although

some individual interactions may last longer under profit maximization.

Interestingly, under endogenous processes, for intermediate capacity levels (that is, for 1 < M <

nA · nB), the above conclusions about the aggregate level of activity being too low under profit

maximization need not hold. Welfare maximization does not necessarily induce more aggregate activity

in each period than profit maximization. Nor is it necessarily the case that, intertemporally, more

matches are implemented under welfare maximization than under profit maximization. This latter

property is guaranteed only if matching terminates in finite time under profit maximization. Example
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6 illustrates.

Example 6 (endogenous processes with 1 < M < nA · nB) Suppose NA = {1, 2, 3}, NB =

{1} and M = 2. Consider the following deterministic processes governing the evolution of the myopic

scores, respectively under welfare maximization (left panel), and under profit maximization (right

panel):34

n = 0 n = 1 n = 2 n ≥ 3 n = 0 n = 1 n = 2 n ≥ 3

Sm;β
W

1,1 7 -1 -1 -1 Sm;β̂1,1 3 -1 -1 -1

Sm;β
W

2,1 4 2 2 2 Sm;β̂2,1 4 2 2 2

Sm;β
W

3,1 5 1 -1 -1 Sm;β̂3,1 5 1 -1 -1

As in Example 5 above, since the myopic scores decline over time, the indexes coincide with the

myopic scores, and hence both the profit-maximizing and the welfare-maximizing auctions simply

match the two pairs of agents with the highest myopic score.35 The welfare-maximizing auction

matches in period 1 the pairs (1, 1) and (3, 1), in period 2 the pairs (2, 1) and (3, 1), and in any

subsequent period only the pair (2, 1). The profit-maximizing auction matches in period 1 the pairs

(2, 1) and (3, 1), in period 2 the pairs (1, 1) and (2, 1), in period 3 the pairs (2, 1) and (3, 1), and from

period 4 onwards only the pair (2, 1). Thus, at any point in time, the total number of matches under

profit maximization is weakly higher than under welfare maximization (strictly higher in period 3).�

Interestingly, when certain agents may dislike certain interactions (formally, when horizontal types

may be negative for certain pairs), the conclusions in Theorem 4 need not hold, and profit maximization

may distort matching in the opposite direction. That is, profit-maximizing auctions may induce

an ineffi ciently high volume of matches within each period, and interactions may last longer under

profit maximization than under welfare maximization. Formally, when match values are negative,

a pair’s myopic score under profit maximization may be greater than its counterpart under welfare

maximization. As a result, the conclusions in the above theorem can be overturned. Intuitively, the

reason why a profit-maximizing platform may induce an ineffi ciently high volume of interactions is

34 In turn, these processes can be generated by the truthful-strategies equilibria of Theorems 2 and 3, in the following

environment. The vertical types are given by ΘA
2 = ΘA

3 = ΘB
1 = {1}, whereas ΘA

1 = [2, 3], with FA1 uniform over [2, 3].

The platform’s costs are such that c11t = c31t = 1, c21t = 0. Lastly, the horizontal types are such that εBi1t = 0, all

i = 1, 2, 3 all t ≥ 1. For the side-A agents, instead, the horizontal types evolve deterministically over time according to

the table below (with n indicating the number of previous interactions with agent 1 from side B). The processes in the

example then correspond to those for the realized vertical type θAi = 2.

n = 0 n = 1 n = 2 n ≥ 3

εA11 4 0 0 0

εA21 4 2 2 2

εA31 6 2 0 0

35Also note that, for suffi ciently low δ, the environment in this example is separable both under SI;β̂ and SI;β
W

.
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that this may permit it to economize on the informational rents that it must leave to the agents. By

locking those agents selecting a low membership status (equivalently, claiming to have a low vertical

type) into unpleasant interactions, the platform makes it costly for those agents with a high vertical

type to pretend to have a low type. In turn, this permits the platform to extract more surplus from

those high-type agents. The following example illustrates:

Example 7 (upward distortions under negative values) Consider the following environment where

processes are exogenous, NA = NB = {1}, M = 1, and c11t = 0, all t ≥ 1. The vertical types are

given by ΘB
1 = {1} and ΘA

1 = [1 + ς, 2 + ς], ς > 0, with FA1 uniform over ΘA
1 . At each period t ≥ 1,

regardless of past realizations, εB11t = 1, whereas εA11t is drawn uniformly from {−3,+3}. Suppose
the realized vertical type of agent 1 from side A is equal to 1 + ς, in which case the weights used

under profit maximization to scale the two agents’bids are given by β̂
A

1 (θA1 ) = ς and β̂
B

1 (θB1 ) = 1.

Furthermore, consider a realized sequence (εA11t)
∞
t=1 of horizontal types for agent 1 from side A such

that εA11t = −3, all t ≥ 1. Then, for suffi ciently small ς and δ, the pair is matched in each period under

profit maximization, despite matching being ineffi cient. �

Finally, note that the familiar result of “no distortion at the top”from standard mechanism design

does not apply to a matching environment. A profit-maximizing platform may distort the matches of

all agents, including those “at the top”of the distribution, for whom the vertical type is the highest.

The reason is that, contrary to standard screening problems in which the cost of procuring inputs

is exogenous, in a matching market, the cost of “procuring”agents-inputs from the opposite side of

the market is endogenous and is higher than under welfare maximization, due to the informational

rents that the platform must provide to such agents-inputs to induce them to reveal their private

information.

The above results have implications for the design of government intervention in matching markets.

The results in Theorem 3 indicate that, in many markets of interest, the government could simply

impose that the scoring rules be tilted by adopting the welfare-maximizing weights βW in lieu of the

profit-maximizing ones β̂. However, because the welfare-maximizing auctions need not yield positive

profits (even under the profit-maximizing payments of part (iii) in Theorem 3), the government may

need to subsidize the intermediary.

The results in Theorem 4, in turn, suggest that simple subsidies aimed at inducing platforms to

increase the volume of matches they accommodate in each period can be welfare-increasing in markets

with non-binding capacity constraints, but can be counterproductive when such constraints bind. In

this latter case, regulators may need to target the subsidizes to specific matches, which may be feasible

in markets with a small number of agents, but seems diffi cult in large anonymous markets.

Lastly, the above results indicate that, when certain agents dislike certain interactions, the gov-

ernment may want to tax certain interactions while subsidizing others. Again, whether this is at all

possible is likely to depend on how anonymous the interactions in such markets are.
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7 Conclusions

This paper introduces and then studies a class of auctions that platforms can use to match agents

from different sides of the market in environments in which agents’preferences for potential partners

evolve over time, either exogenously, or as a function of previous interactions.

The proposed auctions are fairly simple and can be used in a variety of markets including those for

scientific outsourcing, peer-to-peer lending, and organized events. Upon joining the platform, agents

select a membership status which determines the weight assigned to their bids in the subsequent

auctions. They then bid repeatedly for potential partners from the opposite side of the market. The

platform then computes bilateral scores for each match and implements the matches with the highest

nonnegative score, up to capacity.

In case the processes governing the evolution of the match values are exogenous, the scores are

myopic and reflect the flow values the agents assign to the matches, net of the platform’s costs of

providing all the auxiliary services necessary to implement the matches, and net of handicaps control-

ling for the agents’information rents. When, instead, the match values depend on past interactions,

the scores are forward-looking and take the form of indexes similar to those in the operation research

literature (e.g., Gittins, 1979), but adjusted to account for the costs of information rents.

The framework is flexible enough to admit as special cases such environments in which learning

occurs immediately upon matching, as well as such environments in which agents enjoy interacting at

most finitely many times with each partner. The results are then used to shed light on the ineffi ciencies

associated with the private provision of matching services, which in turn can be used to evaluate the

merits of certain government interventions.

Many extensions appear interesting. Certain results can be adapted to accommodate for the

possibility that agents’match values depend on the entire history of past interactions (e.g., agents

may care about their partners’previous partners). Extending the analysis to allow for more general

forms of correlation in the agents’preferences is challenging but also worth exploring. It also appears

interesting to study how the results specialize in markets in which payments cannot be collected from

one side of the market (as is the case with sponsored search).

In would also be interesting to consider a broader class of preferences and processes governing

the evolution of the match values. The ones considered in the present paper have the advantage of

maintaining tractability. As noticed above, no general solutions are known in the experimentation

literature for multi-armed bandit problems in which multiple arms can be activated simultaneously.

However, there are environments in which asymptotic results can be established for large markets.

For example, Bergemann and Valimaki (2001) show that an index policy is optimal for stationary

multi-armed bandit problems, in which there are countable infinitely many ex-ante identical arms

(and approximately optimal in the limit as the number of arms goes to infinity). For the more

general case of restless bandits (which involves arms that evolve and yield rewards even when they are

not activated), under the infinite-horizon average reward criterion, Weber and Weiss (1990) provide
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conditions guaranteeing that an index policy that selects in each period the arms with the highest

Whittle index is asymptotically optimal (see also Whittle (1988)).36 Such asymptotic results could

also be useful in designing scoring rules for large matching auctions.

We conclude by noting that, while matching dynamics in the present paper originate in changes in

agents’preferences for potential partners, another line of recent research explores matching dynamics

driven by the (stochastic) arrival or departure of agents to and from the market (see, for example,

Anderson et al. 2015, Baccara et al. 2015, and Akbarpour et al. 2016). Combining the two literatures,

for example by incorporating stochastic arrivals into the scores of the matching auctions introduced

in the present paper is another direction of future research that is expected to generate interesting

insights about matching dynamics under profit- and welfare-maximizing mechanisms.

Appendix

Proof of Theorem 1. The proof is in three steps. Step 1 shows that, when all agents follow truthful

strategies, in each of the respective environments of Theorem 1, the matches under the rules χm;β

and χI;β maximize the continuation weighted surplus, as defined in (6), starting from any period-t

history, any t ≥ 1. Step 2 shows that when, in addition, the period-t payments are as in (8), any

t ≥ 1, then participating in the auctions and following truthful strategies constitutes a periodic ex-post

continuation equilibrium, after any period-t history, any t ≥ 1. Finally, Step 3 completes the proof

by showing that the matching rules χm;β and χI;β satisfy a certain dynamic monotonicity condition

(defined below), which guarantees that when, in addition, the period-0 membership fees are as in (9),

then participating and following truthful strategies is a periodic ex-post equilibrium starting from

period zero.

Step 1. We first establish that, in each of the respective environments of Theorem 1, the matching

rules χm;β and χI;β maximize continuation weighted surplus (6). That is, irrespective of the particular

history that led to the selection of the period-0 membership statuses θ0 and of the past matches

xt−1, in the continuation game that starts with period t, t ≥ 1, when the true vertical type profile

is θt, the true profile of horizontal types is εt (with εt obtained from θt and bt using (4)), and when

agents follow truthful strategies from period t onwards, the matches under χm;β and χI;β maximize

Wt(θ0, θt, bt, x
t−1;β), over the entire set X of all feasible matching rules, with message spaces defined

as in the matching auctions (i.e.,Mk
l0 = Θk

l , andMk
lt = Θk

l × RN−k , l ∈ Nk, k = A,B, t ≥ 1).

Lemma 1 below considers the case of exogenous processes and the case of endogenous processes

with extreme capacity constraints (M = 1 and M ≥ nA · nB). Proposition 1 below considers the case
of endogenous processes with intermediate capacity constraints, under the separability assumption.

Lemma 1 (i) Suppose the processes are exogenous. Then χm;β maximizes continuation weighted

surplus at all histories. (ii) Suppose processes are endogenous and either M ≥ nA · nB, or M = 1.

Then χI;β maximizes continuation weighted surplus at all histories.

36 In the special case in which passive arms are static and yield no reward, this index reduces to the Gittins index.
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Proof of Lemma 1. Part (i) follows directly from the fact that χm;β maximizes (6) history by

history. For part (ii), note that the problem of maximizing (6) can be viewed as a multiarmed bandit

problem, with each arm corresponding to a potential match, and with the flow period-t reward of

activating each arm (i, j) given by the myopic score Sm;βijt . When M = 1, that χI;β maximizes (6)

at all histories is then immediate, as the score SI;βijt corresponds to the arm’s Gittins Index (see, for

example, Whittle (1982)). Similarly, when M ≥ nA · nB, since the capacity constraint never binds,
the platform’s problem can be viewed as a collection of nA · nB separate two-armed bandit problems,
one for each potential pair of agents, with the reward from matching the pair (i, j) given by Sm;βijt and

the reward from activating the “safe arm” identically equal to zero. In both cases, χI;β maximizes

continuation weighted surplus. �

Next, consider the case of endogenous processes and arbitrary capacity constraints, under the

separability assumption.

Proposition 1 Suppose processes are endogenous and the environment is separable under the rule

SI;β. For any M ∈ N, the matching rule χI;β maximizes continuation weighted surplus (6) starting
from any period-t history, any t ≥ 1.

Proof of Proposition 1. The proof follows from the four lemmas below. Consider a fictitious

environment in which the rewards are given by the auxiliary processes defined in (11). That is, for

any t ≥ 1, (i, j) ∈ NA ×NB, (θt, bt, xt−1), suppose the period-t reward from the match (i, j) is given

by Sβijt. Denote by χ
m;β the myopic matching rule that, in each period, matches the pairs with the

highest nonnegative auxiliary rewards Sβijt, subject to the platform’s capacity constraint (ties broken

arbitrarily). Formally, let

Qβ
t
(θt, bt, xt−1) ≡

 (i, j) ∈ NA ×NB s.t. (i) S
β
ijt(θ

t, bt, xt−1) ≥ 0 and

(ii) #
{

(l,m) ∈ NA ×NB : Sβlmt(θ
t, bt, xt−1) > Sβijt(θ

t, bt, xt−1)
}
< M

 .

Then (a) χm;β
ijt

(θt, bt, xt−1) = 1 only if (i, j) ∈ Qβ
t
(θt, bt, xt−1). Furthermore, (b) if Sβijt(θ

t, bt, xt−1) >

0 and #
{

(l,m) ∈ NA ×NB : Sβlmt(θ
t, bt, xt−1) ≥ Sβijt(θt, bt, xt−1)

}
≤ M, then χm;β

ijt
(θt, bt, xt−1) =

1. Finally, (c), if (i, j) ∈ Qβ
t
(θt, bt, xt−1), Sβijt(θ

t, bt, xt−1) > 0, and χm;β
ijt

(θt, bt, xt−1) = 0, then

#
{

(l,m) ∈ NA ×NB : χm;βlmt (θt, bt, xt−1) = 1
}

= M.

Lemma 2 Suppose processes are endogenous and the environment is separable under the rule SI;β.

Then in the corresponding fictitious environment in which the flow rewards are given by Sβ, the rule

χm;β maximizes the expected discounted sum of the auxiliary rewards starting from any period-t history,

any t ≥ 1.37

37The formula for the expected discounted sum of the auxiliary rewards is the same as the one in (6), but with Sijs
replacing Sijs, and each χijs defined over (θs, bs, xs−1) as opposed to (θ0, θs, bs, x

s−1), all (i, j) ∈ NA ×NB , s ≥ t. As in
the case of the formula in (6), the expectation over future values and types is under truthful strategies.
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Proof of Lemma 2. Suppose, towards a contradiction, that the claim is not true. This means

that there exists a period t ≥ 1, a history (θt, bt, xt−1), and a feasible rule χ 6= χm;β such that the

expected discounted sum of auxiliary rewards from period t onwards is higher under χ than under

χm;β. For this to be the case, there must exist a period s ≥ t, and a set of histories (θs, bs, xs−1) of

strictly positive probability under λ[χ]|θt, bt, xt−1, for which the matches under the two rules differ,
meaning that one of the following two properties (or both) must hold, for some (i, j) ∈ NA ×NB: (a)

either χ
ijs

(θs, bs, xs−1) = 1 and (i, j) /∈ Qβ
s
(θs, bs, xs−1), in which case χm

ijs
(θs, bs, xs−1) = 0; (b) or

χ
ijs

(θs, bs, xs−1) = 0, χm;β
ijs

(θs, bs, xs−1) = 1, Sβijs(θ
s, bs, xs−1) > 0, and

#
{

(l,m) ∈ NA ×NB : Sβlms(θ
s, bs, xs−1) ≥ Sβijs(θ

s, bs, xs−1), χ
lms

(θs, bs, xs−1) = 1
}
< M.

Note that any other case in which the two rules χm and χ implement different allocations for the

pair (i, j) and neither (a) nor (b) are satisfied is inconsequential for the difference in the expected

continuation weighted surplus under the two rules (in fact, the difference in the allocations in any such

other case simply reflects the way ties are broken).

First, consider case (a). Because (i, j) /∈ Qβ
s
(θs, bs, xs−1), either (a1) Sβijs(θ

s, bs, xs−1) < 0 or (a2)

#
{

(l,m) ∈ NA ×NB : Sβlms(θ
s, bs, xs−1) > Sβijs(θ

s, bs, xs−1)
}
≥M.

In the first case (case a1), given that the auxiliary rewards are non-increasing, it is immediate that

χm;β, by leaving the pair (i, j) unmatched in period s, improves upon χ. Thus consider the second

possibility, case (a2). There must exist another pair (i′, j′) ∈ NA ×NB such that S
β
i′j′s(θ

s, bs, xs−1) >

Sβijs(θ
s, bs, xs−1) ≥ 0, χ

i′j′s
(θs, bs, xs−1) = 0 and χm

i′j′s
(θs, bs, xs−1) = 1. Because the environment is

separable under the rule SI;β, this implies that Sβi′j′s(θ
s, bs, xs−1) ≥ Sβijs(θ

s, bs, xs−1)/(1 − δ). By

definition, the auxiliary processes are non-increasing. This means that the expected discounted sum

of the stream of auxiliary rewards that can be obtained by matching (i, j) in period s (and possibly

in some of the subsequent periods) is no greater than Sβijs(θ
s, bs, xs−1)/(1− δ), which is smaller than

the flow reward Sβi′j′s(θ
s, bs, xs−1) obtained by matching (i′, j′) in period s. Hence, by favoring (i′, j′)

over (i, j) in period t, χm;β again improves upon the rule χ.

Next, consider case (b). The myopic rule χm;β improves upon χ by either adding the match (i, j)

to the set of matches implemented under χ (in case χ matches fewer thanM pairs) or by matching the

pair (i, j) instead of another pair (i′, j′) that is matched under the rule χ but not under the rule χm;β

and for which the flow auxiliary reward is strictly smaller than (i, j)’s (in which case the separability

assumption again guarantees that such a change improves upon χ).

In either cases (a) and (b) above, χm;β thus improves upon χ. Applying the arguments above to

all histories and all pairs of agents yields a contradiction to the fact that χ strictly dominates χm;β.

�

The next two lemmas fix the matching rule and relate the expected discounted sum of the rewards

in the primitive environment (where the flow rewards are given by Sm;β) to the expected discounted
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sum of the rewards in the fictitious environment (where the rewards are the auxiliary ones, Sβ). The

proof of the next two lemmas follows from Ishikida and Varaiya (1994) (see also Mandelbaum, 1986,

and Pandelis and Teneketzis, 1999), adapted to the matching environment under examination.

Lemma 3 Suppose the agents follow truthful strategies. The (period-0) expected discounted sum of

the auxiliary rewards Sβ under any rule χ is weakly higher than the (period-0) expected discounted

sum of the primitive rewards Sm;β under the same rule χ.

To understand the result, note first that the auxiliary rewards are themselves Gittins indexes, and

are therefore defined selecting the stopping times that maximize the expected average discounted payoff

per unit of expected discounted time. Also note that the optimal stopping times coincide with the first

time at which the index drops weakly below its initial value. Therefore, under any arbitrary matching

rule where the stopping times are possibly different from the optimal ones, the expected discounted

sum of the true rewards Sm;β can never exceed the expected discounted sum of the auxiliary rewards

Sβ.

In the special case where the matching rule is the myopic rule for the auxiliary rewards, χm;β,

the stopping times implemented under such rule coincide with those under the Gittins policy for the

primitive rewards. As a result, the expected discounted sum of the primitive rewards is the same as

that for the auxiliary rewards.

Lemma 4 Suppose the agents follow truthful strategies. The (period-0) expected discounted sum of

the auxiliary rewards Sβ under the myopic rule χm;β for the auxiliary processes is the same as the

(period-0) expected discounted sum of the primitive rewards Sm;β under the same rule χm;β.

Finally, the following property is a direct consequence of the definition of the index rule χI;β for

the primitive environment.

Lemma 5 Suppose the agents follow truthful strategies. The dynamics of the matches under χm;β are

the same as under χI;β.

The proof of Proposition 1 then follows from combining the results in the above four lemmas. �

Step 2. Fix the weights β and denote by χ̃ a matching rule that maximizes the continuation

weighted surplus at all histories, and by χ̃k−l a matching rule that does so in the absence of agent l from

side k ∈ {A,B} (equivalently, that maximizes continuation weighted surplus when the myopic score of
any match that involves agent l from side k is identically equal to zero, in which case χ̃k−l can be assumed

to never implement any match involving agent l). The existence of such rules, in the corresponding

environments of Theorem 1, has been shown in Step 1 above.38 Denote by ψ̃t≥1 ≡ (ψ̃s)s≥1 the

collection of payment functions, given by (8), starting from period one, defined with respect to the

matching rule χ̃. Henceforth, the weighted surpluses Wt and W
−l,k
t , as well as the resulting marginal

38These rules correspond to the myopic and index rules for exogenous and endogenous processes, respectively.
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and flow contributions to weighted surplus, as defined in the main text, unless otherwise specified, are

with respect to the matching rules χ̃ and χ̃k−l, respectively. Note that, because the weights β are held

fixed, to ease the notation we drop them from all functions below, when there is no risk of confusion.

Lemma 6 Consider an auction in which the matching rule is χ̃ and the payments from period 1 on-

wards are given by ψ̃t≥1. In such an auction, participating and following truthful strategies constitutes

a periodic ex-post continuation equilibrium, after any period-t history, t ≥ 1.

Proof of Lemma 6. We show that, in the continuation game that starts in period t ≥ 1, irrespective

of the history of past play, of the true vertical type profile θ, and of the history of past and current

horizontal types εt ≡ (εs)
t
s=1, any agent l ∈ Nk, k = A,B, who expects all other agents to participate

and follow truthful strategies from period t (included) onwards, finds it optimal to do the same.

Consider agent l from side A (the problem for any agent from side B is similar). Suppose that the

true profile of vertical types is θ, the true profile of period-t match values is ut, the profile of period-0

membership choices is θ0, and the history of past matches is xt−1. Denote by

Eλ̃[χ̃]|θ,ut,x
t−1;(θ̂

A
lt ,b̂

A
lt)
[
RAlt+1(θ0, θt+1, bt+1, x

t)
]

the expected contribution of agent l to continuation weighted surplus from period t+1 onwards, when,

in period t, the agent selects the period-t membership status θ̂
A

lt , submits the period-t bids b̂
A
lt , follows

a truthful strategy from period t+1 onwards, and expects all other agents to follow truthful strategies

at all periods s ≥ t.39 Note that, when the agent follows the truthful strategy also in period t (i.e.,

when θ̂
A

lt = θAl and b̂
k
lt = uAlt), then

λ̃[χ̃]|θ, ut, xt−1; (θAl , u
A
lt) = λ[χ̃]|θ, ut, xt−1,

where the process λ[χ̃]|θ, ut, xt−1 is as defined in the main text.
Since the agent can adjust his membership status in any of the subsequent periods, any deviation

from the truthful strategy in period t can be corrected in period t+ 1. This means that, to prove the

result, it suffi ces to show that the agent prefers to follow the truthful strategy from period t onwards

than deviating in period t and then reverting to the truthful strategy from period t+ 1 onwards.

Under the proposed auction rules, when the agent follows the truthful strategy from period t+ 1

onwards, his continuation payoff from period t+ 1 onwards is given by

1

βAl (θAl0)
RAlt+1(θ0, θt+1, bt+1, x

t)

39The stochastic process λ̃[χ̃]|θ, εt, xt−1; (θ̂
A

lt , b̂
A
lt) is here over future matches, bids and membership choices, under the

rule χ̃, when agent l’s period-t choices are (θ̂
A

lt , b̂
A
lt), the profile of vertical types is θ, the true profile of period-t horizontal

types is εt, the history of past matches is xt−1, the agent plans to follow a truthful strategy from t+ 1 onwards and all

other agents follow truthful strategies from period t onwards.
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Therefore, it is enough to show that, for any period-t selection (θ̂
A

lt , b̂
A
lt),∑

j∈NB

uAljtχ̃ljt
(
θ0, (θ

A
l , θ

A
−l), (u

A
lt , u

A
−lt), x

t−1)− ψ̃Alt (θ0, (θAl , θA−l), (uAlt , uA−lt), xt−1)
+

δ

βAl (θAl0)
Eλ[χ̃]|θ

A
l ,θ

A
−l,u

A
lt ,u

A
−lt,x

t−1 [
RAlt+1(θ0, θt+1, bt+1, x

t)
]

≥
∑
j∈NB

uAljtχ̃ljt

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)
− ψ̃Alt

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)

+
δ

βAl (θAl0)
Eλ̃[χ̃]|θ

A
l ,θ

A
−l,u

A
lt ,u

A
−lt,x

t−1;(θ̂
A
lt ,b̂

A
lt)
[
RAlt+1(θ0, θt+1, bt+1, x

t)
]
. (15)

The left hand side of the above inequality can be rewritten in terms of the functionsWt andW
−l,A
t

as follows:

1

βAl (θAl0)

[
Wt

(
θ0, (θ

A
l , θ

A
−l), (u

A
lt , u

A
−lt), x

t−1)−W−l,At

(
θ0, (θ

A
l , θ

A
−l), (u

A
lt , u

A
−lt), x

t−1)] . (16)

That is, agent l’s expected continuation payoff when he follows the truthful strategy from period t

onward is equal to his expected contribution to the maximal continuation weighted surplus, scaled by

the weight βAl (θAl0). It then suffi ces to show that (16) is weakly greater than the right hand side of

(15).

Next, note that the flow contribution rklt can be rewritten as

rklt(θ0, θt, bt, x
t−1) =

∑
i∈NA

∑
j∈NB

Sm;βijt

(
θ0, θt, bt, x

t−1) · χ̃ijt(θ0, θt, bt, xt−1)
−
∑
i∈NA

∑
j∈NB

Sm;βijt

(
θ0, θt, bt, x

t−1) χ̃−l,kijt (θ0, θt, bt, x
t−1)

+ δEλ[χ̃]|θt,bt,x
t−1
[
W−l,kt+1 (θ0, θt+1, bt+1, x

t)
]

− δEλ[χ̃−l,k]|θt,bt,xt−1
[
W−l,kt+1 (θ0, θt+1, bt+1, x

t)
]
. (17)
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Using (17), we can rewrite the period-t payment in the right-hand side of (15) as follows:

ψ̃
A
lt

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)

=
∑
j∈NB

b̂Aljtχ̃ljt

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)
− 1

βAl (θAl0)
rAlt

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)

=
∑
j∈NB

b̂Aljtχ̃ljt

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)

− 1

βAl (θAl0)

∑
i∈NA

∑
j∈NB

Sm;βijt

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)
· χ̃ijt

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)

− δ

βAl (θAl0)
Eλ̃[χ̃]|θ̂

A
lt ,θ

A
−l,b̂

A
lt ,u

A
−lt,x

t−1
[
W−l,At+1 (θ0, θt+1, bt+1, x

t)
]

+
1

βAl (θAl0)
W−l,At

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)

= − 1

βAl (θAl0)

∑
i∈NA\{l}

∑
j∈NB

Sm;βijt

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)
· χ̃ijt

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)

− 1

βAl (θAl0)

∑
j∈NB

(
βBj (θBj0)u

B
ljt − cljt(xt−1)

)
· χ̃ljt

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)

− δ

βAl (θAl0)
Eλ̃[χ̃]|θ̂

A
lt ,θ

A
−l,b̂

A
lt ,u

A
−lt,x

t−1
[
W−l,At+1 (θ0, θt+1, bt+1, x

t)
]

+
1

βAl (θAl0)
W−l,At

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)
.

Furthermore, note that

Eλ̃[χ̃]|θ
A
l ,θ

A
−l,u

A
lt ,u

A
−lt,x

t−1;(θ̂
A
lt ,b̂

A
lt)
[
RAlt+1(θ0, θt+1, bt+1, x

t)
]

= Eλ̃[χ̃]|θ
A
l ,θ

A
−l,u

A
lt ,u

A
−lt,x

t−1;(θ̂
A
lt ,b̂

A
lt)
[
Wt+1(θ0, θt+1, bt+1, x

t)−W−l,At+1 (θ0, θt+1, bt+1, x
t)
]

= Eλ̃[χ̃]|θ
A
l ,θ

A
−l,u

A
lt ,u

A
−lt,x

t−1;(θ̂
A
lt ,b̂

A
lt)
[
Wt+1(θ0, θt+1, bt+1, x

t)
]

− Eλ[χ̃]|θ̂
A
lt ,θ

A
−l,b̂

A
lt ,u

A
−lt,x

t−1
[
W−l,At+1 (θ0, θt+1, bt+1, x

t)
]
,

where the last equality uses the fact that, given xt, W−l,At+1 (θ0, θt+1, bt+1, x
t) is invariant in agent l’s

period-t bids and that the period-t decisions xt are invariant in the agent’s true types. Therefore, the

right hand side of the inequality (15) is equal to

1

βAl (θAl0)

∑
i∈NA

∑
j∈NB

Sm;βijt

(
θ0, θ, ut, x

t−1) · χ̃ijt (θ0, (θ̂Alt , θA−l), (b̂Alt , uA−lt), xt−1)
+

δ

βAl (θAl0)
Eλ̃[χ̃]|θ

A
l ,θ

A
−l,u

A
lt ,u

A
−lt,x

t−1;(θ̂
A
lt ,b̂

A
lt)
[
Wt+1(θ0, θt+1, bt+1, x

t)
]

− 1

βAl (θAl0)
W−l,At

(
θ0, (θ̂

A

lt , θ
A
−l), (b̂

A
lt , u

A
−lt), x

t−1
)
.

Since, again, W−l,At is independent of agent l’s period-t bids, to establish that the inequality in
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(15) holds, it suffi ces to show that

Wt(θ0, θ, ut, x
t−1) ≥

∑
i∈NA

∑
j∈NB

Sm;βijt

(
θ0, θ, ut, x

t−1) · χ̃ijt (θ0, (θ̂Alt , θA−l), (b̂Alt , uA−lt), xt−1) (18)

+ Eλ̃[χ̃]|θ
A
l ,θ

A
−l,u

A
lt ,u

A
−lt,x

t−1;(θ̂
A
lt ,b̂

A
lt)
[
Wt+1(θ0, θt+1, bt+1, x

t)
]
.

The inequality in (18) follows from the definition of the matching rule χ̃.

That it is (periodic ex-post) optimal for each agent to participate at all periods t ≥ 1, and after all

histories, follows from the fact that each agent’s continuation payoff under truthful strategies coincides

with his expected contribution to continuation weighted surplus, which is always nonnegative, scaled

by a strictly positive weight.

The arguments above therefore establish that, when the matching rule is χ̃ and the payments from

period 1 onwards are ψ̃≥1, participating and following truthful strategies constitutes a periodic ex-post

continuation equilibrium, after any period-t history, t ≥ 1. �

Step 3. We now show that, when the period-0 membership fees are as in (9), participating in

period zero and then following a truthful strategy at all periods (including period zero) is a periodic

ex-post equilibrium.

Let

D̃k
l (θkl0, θ;χ) ≡

 Eλ[χ]|θ
[∑∞

t=1 δ
t∑

h∈N−k ε
k
lhtχlht(θ0, θt, bt, x

t−1)
]
if k = A

Eλ[χ]|θ
[∑∞

t=1 δ
t∑

h∈N−k ε
k
hltχhlt(θ0, θt, bt, x

t−1)
]
if k = B

,

denote the match quality that agent l ∈ Nk from side k = A,B expects under the rule χ when the

true profile of vertical types is θ ∈ Θ, the agent selects the membership status θkl0 in period zero

and then conforms to the truthful strategy from period t = 1 onwards, and all agents other than l

(from side k) follow truthful strategies at each period. Note that λ[χ]|θ denotes the stochastic process
over matches, bids, and membership choices, when the true vertical types are θ, and all agents follow

truthful strategies from period t = 1 onwards. Also note that D̃k
l (θkl , (θ

k
−l, θ

k
l );χ) = Dk

l (θ;χ), with the

function Dk
l (θ;χ) as defined in (10) – hereafter we highlight the dependence of the function Dk

l (θ;χ)

on the matching rule χ to avoid possible confusion.

For any agent i ∈ NA (the arguments for the side-B agents are analogous), let

ÛAi (θ) ≡ Eλ[χ]|θ
 ∞∑
t=1

δt
∑
j∈NB

θAi ε
A
ijtχijt(θ, θt, bt, x

t−1)

− Eλ[χ]|θ [ ∞∑
t=0

δtψAit(θ, θt, bt, x
t−1;β)

]
(19)

denote the payoff that the agent expects in the matching auctions defined by the rules (χ, ψ) when

the true vertical type profile is θ and all agents follow truthful strategies at all periods.40

Let χ̃ be a matching rule that maximizes continuation weighted surplus and ψ̃ = (ψ̃0, ψ̃≥1) the

associated payment rule, as defined in the main text. Note that, for each agent l ∈ Nk, each profile θ

40The dependence of the payoff on the mechanism (χ, ψ) is omitted for convenience.
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of true vertical types,

Eλ[χ̃]|θ
[
ψ̃
k
l0(θ;β) +

∞∑
t=1

δtψ̃
k
lt(θ, θt, bt, x

t−1;β)

]
= θklD

k
l (θ; χ̃)−

∫ θkl

θkl

Dk
l (θk−l, y; χ̃)dy − Lkl ,

which guarantees that, when all agents follow truthful strategies in each period, including period zero,

the period-zero expected payoffs, Ûkl (θ), are given by

Ûkl (θ) =

∫ θkl

θkl

Dk
l (θk−l, y; χ̃)dy + Lkl . (20)

The next lemma shows that any matching rule χ̃ that maximizes continuation weighted surplus

(6) at all histories satisfies a certain monotonicity condition which plays a central role in establishing

the optimality of the truthful strategies at period zero.

Lemma 7 Suppose χ̃ maximizes continuation weighted surplus (6) at all histories. For all l ∈ Nk,

k = A,B, the following monotonicities hold:

(i) Dk
l

(
(θk−l, θ

k
l ); χ̃

)
is non-decreasing in θkl , all θ

k
−l ∈ Θk

−l;

(ii) D̃k
l

(
θkl0, θ; χ̃

)
is non-decreasing in θkl0, all θ ∈ Θ.

Proof of Lemma 7. Consider an arbitrary agent i ∈ NA from side A (the arguments for the side-B

agents are analogous) and fix the profile of types θA−i for the other agents.

Part (i). Take any pair of types θAi , θ̂
A

i ∈ ΘA
i , with θ

A
i < θ̂

A

i . That χ̃ maximizes continuation
weighted surplus implies that41

Eλ[χ̃]|θ̂
A
i ,θ

A
−i

 ∞∑
t=1

δt
∑

r∈NA\{i}

∑
j∈NB

(
βAr (θAr )bArjt + βBj (θBj )bBrjt − crjt(xt−1)

)
χ̃rjt

(
(θA−i, θ̂

A

i ), (θA−i, θ̂
A

i ), bt, x
t−1
)

+ Eλ[χ̃]|θ̂
A
i ,θ

A
−i

 ∞∑
t=1

δt
∑
j∈NB

(
βAi (θ̂

A

i )bAijt + βBj (θBj )bBijt − cijt(xt−1)
)
χ̃ijt

(
(θA−i, θ̂

A

i ), (θA−i, θ̂
A

i ), bt, x
t−1
)

≥ Eλ[χ̃]|θ
A
i ,θ

A
−i

 ∞∑
t=1

δt
∑

r∈NA\{i}

∑
j∈NB

(
βAr (θAr )bArjt + βBr (θBr )bBrjt − crjt(xt−1)

)
χ̃rjt

(
(θA−i, θ

A
i ), (θA−i, θ

A
i ), bt, x

t−1
)

+ Eλ[χ̃]|θ
A
i ,θ

A
−i

 ∞∑
t=1

δt
∑
j∈NB

(
βAi (θ̂

A

i )bAijt
θ̂
A

i

θAi
+ βBj (θBj )bBijt − cijt(xt−1)

)
χ̃ijt

(
(θA−i, θ

A
i ), (θA−i, θ

A
i ), bt, x

t−1
) .

The left-hand side of the previous inequality is the expected weighted surplus when all agents follow

truthful strategies from period t = 0 onward and the true profile of vertical types is (θ̂
A

i , θ
A
−i). The

right-hand side is the expected weighted surplus when, under the same profile of true vertical types

(θ̂
A

i , θ
A
−i), all agents other than agent i from side A follow truthful strategies in all periods whereas

agent i follows the strategy of type θAi in all periods (that is, at each period he selects the membership

status θAit = θAi and then submits bids equal to b
A
ijt = θAi ε

A
ijt, where ε

A
ijt are the true horizontal types).

41Recall that λ[χ̃]|θAi , θA−i denotes the process over matches, bids, and membership choices from period t = 1 onwards,

when all agents follow truthful strategies from period zero onwards, and the true vertical types are (θAi , θ
A
−i).
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Similarly, inverting the role of θ̂
A

i and θ
A
i , we have that

Eλ[χ̃]|θ
A
i ,θ

A
−i

 ∞∑
t=1

δt
∑

r∈NA\{i}

∑
j∈NB

(
βAr (θAr )bArjt + βBj (θBj )bBrjt − crjt(xt−1)

)
χ̃rjt

(
(θA−i, θ

A
i ), (θA−i, θ

A
i ), bt, x

t−1
)

+ Eλ[χ̃]|θ
A
i ,θ

A
−i

 ∞∑
t=1

δt
∑
j∈NB

(
βAi (θAi )bAijt + βBj (θBj )bBijt − cijt(xt−1)

)
χ̃ijt

(
(θA−i, θ

A
i ), (θA−i, θ

A
i ), bt, x

t−1
)

≥ Eλ[χ̃]|θ̂
A
i ,θ

A
−i

 ∞∑
t=1

δt
∑

r∈NA\{i}

∑
j∈NB

(
βAr (θAr )bArjt + βBj (θBj )bBrjt − crjt(xt−1)

)
χ̃rjt

(
(θA−i, θ̂

A

i ), (θA−i, θ̂
A

i ), bt, x
t−1
)

+ Eλ[χ̃]|θ̂
A
i ,θ

A
−i

 ∞∑
t=1

δt
∑
j∈NB

(
βAi (θAi )bAijt

θAi

θ̂
A

i

+ βBj (θBj )bBijt − cijt(xt−1)
)
χ̃ijt

(
(θA−i, θ̂

A

i ), (θA−i, θ̂
A

i ), bt, x
t−1
) .

Combining the last two inequalities, and using the fact that horizontal and vertical types are indepen-

dent, and that vertical types are drawn independently across agents, we have that(
βAi (θ̂

A

i )θ̂
A

i − βAi (θAi )θAi

)
·
(
DA
i ((θA−i, θ̂

A

i ); χ̃)−DA
i ((θA−i, θ

A
i ); χ̃)

)
≥ 0.

Because βAi (·) is strictly positive and non-decreasing, it must be that

DA
i ((θA−i, θ̂

A

i ); χ̃) ≥ DA
i ((θA−i, θ

A
i ); χ̃).

Part (ii). Since χ̃ maximizes continuation weighted surplus after any history, arguments similar

to those used to establish part (i) above imply that, for any θ̂
A

i0, θ
A
i0 ∈ ΘA

i , θ ∈ Θ,(
βAi (θ̂

A

i0)− βAi (θAi0)
)
· θAi ·

(
D̃A
i (θ̂

A

i0, θ; χ̃)− D̃A
i (θAi0, θ; χ̃)

)
≥ 0,

Because θAi > 0 and βAi (·) is strictly positive and non-decreasing, it must be that42

D̃A
i (θ̂

A

i0, θ; χ̃) ≥ D̃A
i (θAi0, θ; χ̃).

�

Next, for any agent i ∈ NA (the arguments for the side-B agents are analogous), let

ŨAi (θAi0; θ) ≡ Eλ[χ]|θ
 ∞∑
t=1

δt
∑
j∈NB

θAi ε
A
ijtχijt((θ

A
−i, θ

A
i0), θt, bt, x

t−1)

−Eλ[χ]|θ [ ∞∑
t=0

δtψAit((θ
A
−i, θ

A
i0), θt, bt, x

t−1;β)

]

denote the payoff that the agent expects in the auctions defined by the rules (χ, ψ), when the true

vertical type profile is θ, the agent chooses the membership status θAi0 in period zero, he follows a

truthful strategy from period t = 1 onwards, and all other agents follow truthful strategies from

period t = 0 onwards.43 Note that ŨAi (θAi ; (θA−i, θ
A
i )) = ÛAi (θA−i, θ

A
i ), where Û is as in (20).

42Note that if βAi (θ̂
A

i0) = βAi (θAi0), then D̃
A
i (θ̂

A

i0, θ; χ̃) = D̃A
i (θAi0, θ; χ̃).

43The dependence of the payoff on the mechanism (χ, ψ) is omitted for convenience.

42



From Step 2, under the rules (χ̃, ψ̃), participating and following truthful strategies is a periodic

ex-post continuation equilibrium starting from any period-1 history (including those reached off path,

by deviations in period zero).44 Standard arguments can then be used to show that the following

envelope condition must be satisfied for all l ∈ Nk, k = A,B, all θkl0 ∈ Θk
l , all θ ∈ Θ,

Ũkl (θkl0; θ) = Ũkl (θkl0; (θk−l, θ
k
l )) +

∫ θkl

θkl

D̃k
l (θkl0, (θ

k
−l, y); χ̃)dy. (21)

The payoff that agent l ∈ Nk from side k = A,B obtains by selecting the membership θkl0 when

the true vertical type profile is θ is thus given by

Ũkl (θkl0; θ) = Ũkl (θkl0; (θk−l, θ
k
l0)) +

∫ θkl

θkl0

D̃k
l (θkl0, (θ

k
−l, y); χ̃)dy ≤ Ũkl (θkl0; (θk−l, θ

k
l0)) +

∫ θkl

θkl0

D̃k
l (y, (θk−l, y); χ̃)dy

= Ûkl (θk−l, θ
k
l0) +

∫ θkl

θkl0

Dk
l ((θk−l, y); χ̃)dy = Ûkl (θ),

where the first equality follows from (21), the inequality follows from part (ii) in Lemma 7, and the

other equalities follow from (20) and the definition of the interim expected payoffs. Hence, given θ,

the agent is better off following a truthful strategy from period zero onwards than deviating in period

zero and then following a truthful strategy from period one onwards.

Finally, note that, since for any l ∈ Nk, k = A,B, any θ ∈ Θ, Ûkl (θ) is bounded, participation

constraints can always be satisfied by choosing the constants Lkl appropriately.

Combining the results in Step 2 with those in Step 1, we thus have that, when the scoring rules and

the associated payment functions satisfy the conditions in the theorem, participating and following a

truthful strategy is a periodic ex-post equilibrium in the entire game. Q.E.D.

Proof of Theorem 2. Consider any feasible mechanism Γ and any BNE σ of the game induced by

Γ. Denote by χ̂ = (χ̂t(θ, ε
t))∞t=1 and ψ̂ = (ψ̂t(θ, ε

t))∞t=1 the matching and payment rules, as a function

of the true state, induced by σ in Γ. As mentioned in the main text, in case of endogenous processes,

these functions are defined only for histories that are consistent with equilibrium play in previous

periods. Also note that we are allowing here for any feasible mechanism; that is, the message and

signal spaces may be different than those in the matching auctions.

The platform’s profits under (Γ, σ) are equal to

Eλ[χ̂]
 ∑
k=A,B

∑
l∈Nk

∞∑
t=0

δtψ̂
k

lt(θ, ε
t)−

∞∑
t=1

δt
∑
i∈NA

∑
j∈NB

cijt(χ̂
t−1(θ, εt−1))χ̂ijt(θ, ε

t)

 , (22)

where λ[χ̂] denotes the process over vertical and horizontal types under the matching rule χ̂ induced

by the strategies σ in Γ. Alternatively, (22) can be rewritten as follows:

Eλ[χ̂]
 ∞∑
t=1

∑
i∈NA

∑
j∈NB

δt
((
θAi ε

A
ijt + θBj ε

B
ijt − cijt(χ̂t−1(θ, εt−1))

)
χ̂ijt(θ, ε

t)
)
−
∑
k=A,B

∑
l∈Nk

Ukl (θkl )

 , (23)
44Recall that χ̃ maximizes continuation weighted surplus and that the associated payment rule ψ̃ satisfies the conditions

in (8) and (9) in the main text. From Step 1, χ̃ coincides with either χm;β , or with χI;β , depending on whether the

environment is the one in part (i) or part (ii) in the theorem.
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where Ukl (θkl ) denotes the period-0 interim expected payoff of agent l ∈ Nk from side k = A,B when

his vertical type is θkl , under the equilibrium σ in the mechanism Γ. Note that we denote the interim

payoffs by Ukl do differentiate them from the interim payoff functions Ûkl in the auction (defined in

(19)), where the domain of these latter functions is the entire profile of vertical types.

The period-0 participation constraints are satisfied if for all l ∈ Nk, k = A,B, θkl ∈ Θk
l ,

Ukl (θkl ) ≥ 0.

Following an approach similar to the one in Pavan, Segal and Toikka (2014, Theorem 1), we can

show that the period-0 (interim) expected payoff of each agent l ∈ Nk, k = A,B must satisfy the

following envelope condition:

Ukl (θkl ) = Ukl (θkl ) +

∫ θkl

θkl

E
[
Dk
l (θ; χ̂)|y

]
dy, (24)

where the expectation is taken over the entire profile of vertical types θ given agent l’s own vertical

type. This envelope condition, together with integration by parts, yields the following representation

of the platform’s profits,

Eλ[χ̂]
[ ∞∑
t=1

δt
∑
i∈NA

∑
j∈NB

((
θAi −

1− FAi (θAi )

fAi (θAi )

)
εAijt +

(
θBj −

1− FBj (θBj )

fBj (θBj )

)
εBijt

− cijt(χ̂t−1(θ, εt−1)
)
χ̂ijt(θ, ε

t)

]
−
∑
k=A,B

∑
l∈Nk

Ukl (θkl ). (25)

The first term, which is only a function of the matching rule χ̂, is the expected dynamic virtual

surplus (DVS) generated by the matching rule χ̂. Clearly, because such a representation applies to the

matching rule generated by any BNE of any mechanism, the above representation applies also to the

state-contingent matching rules generated by the truthful strategies in the matching auctions.

Now observe that, when the weights are given by β̂ ≡ (β̂
k

l (·))l∈Nk,k=A,B, the state-contingent
matches implemented under the truthful equilibria of the auctions of Theorem 1 maximize DVS over

all feasible state-contingent rules χ̂. More precisely, when the processes are exogenous, the matches

implemented under a myopic scoring rule maximize DVS. Similarly, when the processes are endogenous

and eitherM = 1, orM ≥ nA·nB, or the environment is separable, the matches implemented under the
index rule maximize DVS. This is because (i) these matches have been shown to maximize the contin-

uation weighted surplus (6) for any strictly positive and non-decreasing weights β = (βkl (·))l∈Nk,k=A,B
(step 1 in the proof of Theorem 1), (ii) the ex-ante weighted surplus when the weights are given by β̂

coincides with DVS, and (iii) the weights β̂ are strictly positive and non-decreasing by Assumption 1.

Next, suppose the processes are exogenous. Let ψm;β̂ be the payment scheme associated with the

myopic scoring rule χm;β̂ with weights given by β̂ (as defined by (8) and (9) in the main text) and in

which Lkl = 0, all l ∈ Nk, k = A,B. From (8) and (9), it is easy to see that, under the equilibria in

truthful strategies of the matching auctions where (a) the scoring rule is the myopic one with weights
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given by β̂, and (b) the payments are ψm;β̂, the payoff expected by the lowest vertical type of each

agent is exactly equal to zero (that is, Ukl (θkl ) = 0, all l ∈ Nk, k = A,B). This means that the truthful

equilibria of the above matching auctions maximize both terms of (25). Provided all the period-0

participation constraints are satisfied (something we verify below), we then have that the platform’s

profits are maximized under the truthful equilibria of the proposed matching auctions.

Also note that, while we have restricted attention to deterministic mechanisms, the platform cannot

increase its profits by using a randomized mechanism. This is because any randomized mechanism

is equivalent to a deterministic one that conditions on the type realizations of a fictitious agent.

The platform’s profits under any equilibrium of such a mechanism thus continue to be given by the

expression in (25), but with the matching rule conditioning on the type realizations of such fictitious

agent. This means that the platform’s profits are equal to the weighted average of the platform’s

profits under the deterministic matching rules obtained by conditioning on the various types of the

fictitious agent. Because (25) is maximized over all possible deterministic rules under the equilibria in

truthful strategies of the proposed matching auctions, we thus have that stochastic mechanisms can

never improve upon the equilibria of the proposed auctions when it comes to the platform’s profits.

We now complete the proof by establishing that all period-0 participation constraints are satisfied

under the equilibria in truthful strategies of the proposed auctions. To see this, it suffi ces to observe

that, for all θk−l ∈ Θk
−l, l ∈ Nk, k = A,B, Dk

l ((θk−l, θ
k
l );m, β̂) is non-decreasing in θkl , as established in

Lemma 7 above. The assumption in the Theorem that Dk
l ((θk−l, θ

k
l );m, β̂) ≥ 0, all l ∈ Nk, k = A,B,

all θk−l ∈ Θk
−l then guarantees that D

k
l (θ;m, β̂) ≥ 0, all θ ∈ Θ, l ∈ Nk, k = A,B. Because the period-0

interim payoffs satisfy the envelope condition (20), we then have that Ûkl (θ) ≥ 0, all θ ∈ Θ, l ∈ Nk,

k = A,B, which means that all the period-0 participation constraints are satisfied (in a periodic

ex-post sense, i.e., for any θ, and not just in expectation over θk−l given θ
k
l ).

45

The optimality of the matching auctions with index rules in part (ii) of the theorem follow from

similar arguments. Q.E.D.

Proof of Theorem 3. As explained in the main text, parts (i) and (ii) follow from Theorem

1. Part (iii) follows from arguments similar to those establishing the optimality of the auctions of

Theorem 2. In particular, it follow from the fact that (a) the platform’s expected profits under any

BNE of any mechanism Γ implementing the welfare-maximizing matches satisfy the representation in

(25); (b) each agent’s period-0 expected payoff satisfies Condition (24); (c) in the proposed auctions,

Ukl (θkl ) = 0 if, and only if, the payments in (8) and (9) (for β = βW ) are such that Lkl = 0, all l ∈ Nk,

k = A,B, and (d) when the payments are given by (8) and (9) with β = βW and Lkl = 0, all l ∈ Nk,

k = A,B, all agents’period-0 participation constraints are satisfied, regardless of their beliefs over

other agents’types, if, and only if, Dk
l (θk−l, θ

k
l ;m,β

W ) ≥ 0, or Dk
l (θk−l, θ

k
l ; I, β

W ) ≥ 0 (under exogenous

or endogenous processes, respectively). The latter property is a result of the fact that the functions

Dk
l (θk−l, ·;m,βW ) and Dk

l (θk−l, ·; I, βW ) are non-decreasing, which follows from Lemma 7. Q.E.D.

45Note that, under ψm;β̂ , Ûkl (θk−l, θ
k
l ) = 0 all θk−l.
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Proof of Theorem 4. Let χPt (θ, ω) and χWt (θ, ω) denote the state-contingent matches implemented

in period t ≥ 1, under the truthful equilibria of, respectively, the profit-maximizing and the welfare-

maximizing auctions of Theorems 2 and 3. Note that the arguments of these functions are the exoge-

nous vertical types θ, and the sequences of exogenous innovations ω ≡ (ωkijs)
s=1,...,∞
(i,j)∈NA×NB ,k∈{A,B} that,

along with the matches implemented in previous periods (in case of endogenous processes), generate

the horizontal types ε. As explained in the main text, such a representation favors the comparison

of the matches sustained under the two auctions by making the “state”exogenous, thus eliminating

the confusion that may originate from the fact that the histories of horizontal types need not coincide

under the two auctions.

Similarly, let Sm;Pijt (θ, ω) and SI;Pijt (θ, ω) denote, respectively, the period-t state-contingent my-

opic and index scores under the truthful equilibria of the profit-maximizing auctions of Theorem 2.

Likewise, let Sm;Wijt (θ, ω) and SI;Wijt (θ, ω) be the counterparts of Sm;Pijt (θ, ω) and SI;Pijt (θ, ω) under the

truthful equilibria of the welfare-maximizing auctions of Theorem 3. Because (θ, ω) are exogenous and

time-invariant, they are dropped from all the functions χP , χW , Sm;P , Sm;W , SI;P , and SI;W below.

First, observe that, because β̂
k

l (θ
k
l ) ≤ 1 = βk,Wl (θkl ), all θ

k
l ∈ Θk

l , l ∈ Nk, k = A,B, and because

the horizontal types are nonnegative, when processes are exogenous, for any (i, j) ∈ NA×NB, S
m;P
ijt ≤

Sm;Wijt . Likewise, when processes are endogenous, for any (i, j) ∈ NA ×NB, any t, τ ≥ 1,∑t−1

s=1
χWijs =

∑τ−1

s=1
χPijs ⇒ SI;Wijt ≥ S

I;P
ijτ . (26)

Part 1. First, consider the case of exogenous processes. Because the capacity constraint is not

binding, in each period t ≥ 1, the matches implemented under the equilibria of the profit-maximizing

auctions (alternatively, of the welfare-maximizing auctions) are all those for which the myopic scores

Sm;Pijt ≥ 0 (alternatively, Sm;Wijt ≥ 0). The above property, along with the fact that, for any (i, j) ∈
NA ×NB, t ≥ 1, Sm;Wijt ≥ Sm;Pijt , then yields the result.

Next, consider the case of endogenous processes. Again, because the capacity constraint is not

binding, in each period t ≥ 1, the matches implemented under the equilibria of the profit-maximizing

auctions (alternatively, the welfare-maximizing auctions) are all those for which the index SI;Pijt ≥ 0

(alternatively, SI;Wijt ≥ 0). The result then follows from the fact that, for any (i, j) ∈ NA ×NB, t ≥ 1,

Sm;Wijt ≥ Sm;Pijt . The last property, in turn, follows by induction. First observe that the property is

necessarily true at t = 1, given (26) and the fact that, in period t = 1, the number of past interactions

is necessarily the same under profit and welfare maximization. Now suppose the result holds for all

1 ≤ s < t. Note that any match for which SI;Pijt ≥ 0 has been active at each preceding period s < t,

both under profit maximization and under welfare maximization. The result then follows again from

(26), which implies that SI;Wijt ≥ S
I;P
ijt .

Part 2. Consider first the case of exogenous processes andM < nA ·nB. The result follows directly
from the following two properties: (a) in each period t ≥ 1, the set of matches for which Sm;Pijt ≥ 0 is a

subset of the set of matches for which Sm;Wijt ≥ 0, (b) the cardinality of the set of matches implemented

in each period in a profit-maximizing auction (alternatively, in a welfare-maximizing auction) is the
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minimum between M and the cardinality of the set of matches for which Sm;Pijt ≥ 0 (alternatively,

SmWijt ≥ 0).

Next, consider the case of endogenous processes with M = 1. First observe that, under the

equilibria of the profit-maximizing auction, if at some period t ≥ 1, χPijt = 0, all (i, j) ∈ NA × NB,

then χPijs = 0, all s > t, all (i, j) ∈ NA ×NB. The same property holds for χW . Next, observe that,

if matching stops at period t under profit maximization (alternatively, welfare maximization), then

SI;Pijt < 0 all (i, j) ∈ NA×NB (alternatively, S
I;W
ijt < 0 all (i, j) ∈ NA×NB). Now suppose that, under

profit maximization, matching is still active in period t (meaning, there exists (i, j) ∈ NA ×NB such

that χPijt = 1). Then there are two cases. (1) Either
∑t−1

s=1 χ
W
ijs =

∑t−1
s=1 χ

P
ijs, all (i, j) ∈ NA × NB,

in which case (26) implies that SI;Wijt ≥ SI;Pijt for all (i, j) ∈ NA × NB, which implies the result. Or,

(2) there exists (i, j) ∈ NA × NB such that
∑t−1

s=1 χ
W
ijs <

∑t−1
s=1 χ

P
ijs. In this case, there must exist

τ < t such that
∑τ−1

s=1 χ
P
ijs =

∑t−1
s=1 χ

W
ijs, and χ

P
ijτ = 1. That χPijτ = 1 in turn implies SI;Pijτ ≥ 0. That∑τ−1

s=1 χ
P
ijs =

∑t−1
s=1 χ

W
ijs in turn implies that

SI;Wijt ≥ S
I;P
ijτ , (27)

where the result follows again from (26). From the discussion above, (27) in turn implies that matching

must be active in period t also under welfare maximization.

Part 3. Since, under profit maximization, matching terminates after a finite number of periods

T ∈ N, at period T + 1, the index SI;PijT+1 < 0 all (i, j) ∈ NA×NB. Take any pair (i, j) and denote the

number of times the match (i, j) has been active under profit maximization prior to period T+1 by RPij .

For any n ≤ RPij , the index S
I;P
ij at the n-th time the pair was matched must have been nonnegative.

The same must then be true for the index SI;Wij (this follows again from (26)). Therefore, matching

will not stop under welfare maximization until the pair (i, j) is matched at least RPij times. Since this

holds for each pair (i, j) ∈ NA ×NB, the result in Part (3) follows. Q.E.D.
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