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Abstract

When members of large communities transact with each other and players change rivals over

time, players may not recognize each other or may have limited information about past play.

Can players cooperate in such anonymous transactions? I analyze an infinitely repeated random

matching game between members of two communities. Players’ identities are unobservable and

players only observe the outcomes of their own matches. Players may send an unverifiable mes-

sage (a name) before playing each game. I show that for any such game, all feasible individually

rational payoffs can be sustained in equilibrium if players are sufficiently patient. Cooperation is

achieved not by the standard route of community enforcement or third-party punishments, but

by “community responsibility”. If a player deviates, her entire community is held responsible

and punished by the victim.
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1 Introduction

Would you lend a complete stranger $10,000? How would you get your money back?

Trusting people you don’t know . . . may sound like the height of foolishness. But a

modern economy depends on exactly such impersonal exchange. Every day, people

lend . . . to strangers with every expectation that they’ll be repaid. Vendors supply

goods and services, trusting that they’ll be compensated within a reasonable time.

How does it all work?

From “Even Without Law, Contracts Have a Way of Being Enforced”

New York Times, October 10, 2002

Impersonal exchange lies at the heart of this paper. The main question I ask is whether it is pos-

sible to foster trust or cooperation between strangers, in the absence of contractual enforcement.

In particular, I am interested in analyzing economic transactions where the participants also

have very little information about each other. For instance, they do not know each other, cannot

easily verify each other’s identities, and have little information about past conduct. Think of two

communities of buyers and sellers where the members of the communities interact repeatedly to

trade. If the communities are large, members may not recognize each other or may be unable to

observe everyone else’s transactions. In such situations, how can cheating be prevented without

contractual enforcement? Can players achieve cooperative outcomes in essentially anonymous

transactions?

Internet commerce provides an important example of transactions with limited information

availability. Trading via computer networks allows traders to choose online identities which are

essentially unverifiable. There is limited information about the true identity and past play of

one’s trading partners. It is relatively easy to change one’s identity or impersonate someone.

Another setting where identity authentication is a concern is in trading through third-parties.

Imagine a group of institutional buyers and sellers who regularly transact with each other.

However, they send agents to deal on behalf of themselves. In such a situation, authenticating

the identity of the transacting agent is important, but opportunistic behavior and impersonation

are easy. There are also historical examples of impersonal exchange like the inter-regional trading

fairs in medieval Europe where merchants from different regions met and traded with people

they knew litle about. They did not know about the past dealings of their trading partners and

moreover could not easily share information about dishonest dealings with future traders.

One well-known way of sustaining cooperation in the absence of contractual enforcement

is through repeated interaction. The Folk Theorem tells us that when two players interact
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repeatedly, any feasible and individually rational payoff can be sustained in equilibrium, provided

players are sufficiently patient. The Folk Theorem also extends (under appropriate conditions)

to games with N players and to different monitoring structures. Any feasible and individually

rational payoff can be achieved using a mechanism of “personalized punishment”. If a player

deviates, her rival can credibly retaliate and punish her in the future. The threat of future

punishment deters patient players from deviating. However, the standard Folk Theorems require

that players recognize their rivals and receive ‘enough’ information about past play, so that

cooperation can be sustained through personalized punishments. They do not apply to the

interactions I am interested in, where players are anonymous or have little information about

each other’s past. In my setting, in every period, players are randomly matched (anonymously)

into pairs to play a two-player stage-game. Achieving a cooperative outcome1 in this setting is

particularly challenging because imposing personalized punishments may not be feasible. Since

players change partners over time and do not know each other’s true identities, it is not possible

for a player who faces a deviation to accurately identify and punish the culprit. If cooperation

is to be sustained with anonymity, punishments must be of a different form.

A form of punishment that has been used as an alternative to personalized punishment is

“community enforcement” or “contagion”. In community enforcement a player who deviates is

punished not necessarily by the victim but by other players who become aware of the deviation.

For instance, in a prisoner’s dilemma (PD) game if a player ever faces a defection, she punishes

any rival in the future by switching to defection forever. By starting to defect, she spreads the

information that someone has defected. The defection action spreads (“contagion”) throughout

the population, and cooperation eventually breaks down. The credible threat of such a break-

down of cooperation can deter players from defecting in the first place. Earlier literature (e.g.

Kandori (1992), Ellison (1994)) studied the PD in the repeated random matching setting and

showed that community enforcement can be used to achieve efficiency. However, the equilib-

rium construction critically relies on specific properties of the PD - in particular on symmetry

and on the existence of a Nash equilibrium in strictly dominant strategies. The argument does

not work in general. In an arbitrary game, on observing a deviation for the first time, players

may not want to punish and spread the information about a deviation, and so the threat of

punishment may not be credible. This is because punishing not only lowers the continuation

payoff (by spreading the contagion) but may also entail a short-term loss in that period. Note

that in the PD, the punishment action is dominant and so gives a current gain even if it reduces

1Sustaining “cooperation” or a “cooperative outcome” refers to any feasible and individually rational payoff that

is not a static Nash equilibrium outcome of the stage-game.

3



continuation payoffs.

So far, little is known on cooperation in the anonymous random matching environment with

any stage-game other than the Prisoner’s Dilemma. This is the gap the current paper addresses.

I consider a general two-player stage-game being played by two communities in an infinitely

repeated random matching environment. In every period, members of one community are ran-

domly matched to members of the rival community.2 Each player plays the stage-game with the

opponent she is randomly matched to. Players cannot observe the pattern of play within the

communities. Indeed, I impose the strong informational restriction that players observe only

the transactions they are personally engaged in. Further, players do not recognize each other.

There is limited communication - I allow players to introduce themselves (announce a name)

before they play in each period. However, names are not verifiable, and the true identity of

a player cannot be known through her announced name. Players cannot communicate in any

other way within their community or communicate the identity of their past opponents. Within

this setting of limited information, I examine the payoffs that can be achieved in equilibrium.3

The main result I obtain is a possibility result - a Folk Theorem - which states that for

any two-player game played between two communities, it is possible to sustain all feasible

individually rational payoffs in a sequential equilibrium, provided players are sufficiently patient

and can announce names before playing the stage-game.4 In a departure from the literature,

cooperation is sustained neither by personalized punishments nor by contagion or community

enforcement. A deviator is not punished by third-parties in her victim’s community. On the

contrary, if a player deviates, she is punished only by her victim, but her entire community is

held responsible and everyone in her community is punished by her victim. As I show in an

extension, the Folk Theorem also extends to K-player games played by K > 2 communities,

where players from each community are randomly matched in each period to form groups to

play the K-player stage-game. To the best of my knowledge, this is the first paper to obtain a

general folk theorem in the random matching setting without adding any verifiable information.5

2The results also hold if there is one community of agents instead of two. See Section 3.4 for more on this.

3The same payoffs could also be achieved in environments where more information can be transmitted.

4I consider identical payoffs within a community. Refer Remark 2 in Section 3.3.

5Papers that go beyond the PD add verifiable information about past play to sustain cooperation. Kandori (1992)

introduces a mechanism that assigns labels to players based on their history of play. Players who have deviated or

seen a deviation can be distinguished from those who have not, by their labels. This naturally enables transmission

of information and cooperation is sustained through community enforcement in a specific class of games. Takahashi

(2007) assumes availability of first-order information, and achieves cooperation in a restricted class of games.
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What enables cooperation in this paper? Three main ideas serve as the building blocks of

cooperation - “signatures”, “community responsibility” and “block strategies”.

The first novel feature is that though the names are unverifiable, I devise a way to convert

this soft information into “harder” information. I use a device called “signatures”. Consider

any pair of players (say Jack and Jill). On equilibrium path, all players report their names

truthfully. Jack and Jill designate their second interaction as a “signature period”, in which

they play actions that serve as their “signatures”. The signatures are different pure actions

depending on the action realized in their last interaction with each other. If Jack and Jill played

mixed actions in their last interaction, no player outside this pair knows what action was realized,

and so no one can know what the appropriate signature action is. If some player impersonates

Jack, he can end up getting matched with Jill and if it were Jack and Jill’s signature period, he

can end up playing the wrong signature. In this case, Jill would know that a deviation has taken

place. The signatures thus enable players to become aware with positive probability that play is

no longer on the equilibrium path, in case someone misreports his name. This is done without

enriching players’ communication possibilities, but just through the actions in the underlying

game. The knowledge of one’s own past action profiles acts like a private key or signature for

authentication.6

If a player observes an incorrect signature in a signature period, she knows that a deviation

has occurred, but does not know whom to punish. This is where the second building block of

“community responsibility” comes in. If a player observes an incorrect signature, she holds her

entire rival community responsible and punishes them all.7 This solves the problem of anonymity

since the victim punishes everyone. Also, since punishment does not involve third parties, the

victim does not need to transmit any information to others about a deviation. Notice that

here punishment does not spread contagiously. If a deviation occurs, only the deviator and her

victim are aware of this.

Community responsibility requires that the player who detects a deviation punish the devi-

ator’s entire community. However, the detector may not want to punish if punishing involves

6Similar ideas are seen in computer science in knowledge-based authentication and other authentication protocols.

7The idea of communal liability has been observed in reality. The term “community responsibility” is inspired

by the community responsibility system, an institution prevalent in medieval Europe (See Greif (2006)). Under this

system, if a member of a village community defaulted on a loan, all members of the village were held legally liable for

the default. The property of any member of the village could be confiscated. Greif (2006) writes “Communal liability

. . . supported intercommunity impersonal exchange. Exchange did not require that the interacting merchants have knowledge

about past conduct, share expectations about trading in the future, have the ability to transmit information about a merchant’s

conduct to future trading partners, or know a priori the personal identity of each other.”
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a short-term cost, or lowers her continuation payoff. In the strategies I construct, punishing

is not costly in either of these ways. When a player has to punish, she is indifferent between

punishing and not punishing. Further, a player starts punishing only in periods when she is

supposed to mix between all her actions on the equilibrium path. Her rival cannot distinguish

a punishment action from equilibrium play. So punishing cannot lower continuation payoffs.

How is this done? This is where the last idea of “block strategies” comes in. Here, I work with

ideas from the recent literature on repeated games with imperfect private monitoring8, and in

particular, I build on the block strategies of Hörner-Olszewski.

Suppose there are M players in each community. On the equilibrium path, it is as if each

player plays M separate games, one with each rival name. In each period, each player hears

the name of her rival and conditions play on the name she is matched to. Play with each

name proceeds in blocks of length T (i.e. T pair-wise interactions). Players keep track of the

blocks separately for each name. Within a block, each player plays one of two strategies of

the T -fold repeated stage-game - one strategy ensures a low payoff for her opponent and the

other a high payoff. At the start of every block, each player is indifferent between her own

two strategies, and so can mix between them (this is not to suggest that she is indifferent to

her rival’s actions). The realized action in the first period of the block serves as a coordination

device and indicates how play proceeds in that block. If a player plays certain actions, she is said

to send a “good” (“bad”) plan and play in that block proceeds according to the strategy that is

favorable (unfavorable) for the opponent. At the start of the next block, each player adjusts her

rival’s continuation payoff, by mixing appropriately between her two strategies. Here, players

can control the continuation payoffs of their rivals, irrespective of what the rival plays. The

target equilibrium payoff is achieved by mixing appropriately between the two strategies at

the start of the game. If players announced their names truthfully, then each player would be

able to track her M different games accurately and guarantee each rival the target payoff in

equilibrium. The block structure turns out to be very useful because each player has infinitely

many periods of indifference, and I can use these periods of indifference to start punishments. If

a player observes an incorrect signature, she can wait till the beginning of the next block with

8Ely-Hörner-Olszewski (2005) study belief-free equilibria in repeated games with imperfect private monitoring,

where strategies are such that in infinitely many periods, each player is indifferent between several of her actions.

But her actions give different continuation payoffs to her opponent - some ensure a high payoff and others a low payoff.

In equilibrium, each player mixes actions based on her opponent’s past play. Hörner-Olszewski (2006) generalize the

idea with “block strategies”. Block strategies treat blocks of T consecutive periods of the stage-game as a single unit

and the belief-free approach is applied with respect to the blocks.
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each rival and then play the strategy that is unfavorable for her rival. This allows her to punish

all her rivals without affecting her own payoff.

How do these three building blocks tie up? In the anonymous random matching setting, I

introduce cheap talk and allow players to announce their unverifiable names before they play in

each period. Conditional on truthful announcement of names, block strategies can be used to

achieve any individually rational and feasible payoff. The signatures and community responsi-

bility together enforce truthful announcement. Each player designates the second interaction of

any block with any rival to be the signature period. If a player observes an incorrect signature,

she punishes all her rivals by switching to the unfavorable strategy at the start of the next block.

This threat of punishment deters misreporting of names, and closes the loop.

The paper is organized as follows. Section 2 presents the model. In Section 3, I establish the

Folk Theorem and discuss its key features. In Section 4, I extend the result to K > 2 communities

and multilateral matching. Section 5 concludes. The appendix contains the proofs.

2 Model and Notation

Players: The game is played by two communities of players. Each community I, I ∈ {1, 2}
comprises M > 2 players9, say I := {I1, . . . , IM}. To save notation, I will often denote a generic

element of any community of players I by i.

Random Matching and Timing of Game: In each period t ∈ {1, 2, . . .}, players are ran-

domly matched into pairs with each member l of Community 1 facing a member l′ := mt(l)

of Community 2. The matches are made independently and uniformly over time, i.e. for all

histories, for all l, l′, Pr[l′ = mt(l)] = 1
M

.10 After being matched, each member of a pair simul-

taneously announces a message (“her name”). Then, they play a two-player finite stage-game.

The timing of the game is represented in Figure 1.

Message Sets: Each community I has a set of messages NI , I ∈ {1, 2}. Let NI be the set of

names of players in community I (i.e. NI = {I1, . . . , IM}).11 For any pair of matched players,

the pair of announced messages (names) is denoted by ν ∈ N := N1×N2. For any I, let ∆(NI)

9See Section 3.5 for the case M = 2.

10Unlike in earlier literature, the result does not depend on the matching being uniform or independent over time.

See Remark 1 in Section 3.3, for a discussion on how this assumption can be relaxed.

11An implicit assumption is that the sets of messages NI contain finite and at least M distinct messages each. For

instance, we can allow players to be silent by interpreting some message as silence. In the exposition, I use exactly

M messages as this is the coarsest information that suffices. See Remark 3 in Section 3.3 for more on this.
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t t+1

Players matched

randomly.

Simultaneous name

announcement.

Play of

stage-game.

New match

occurs.

Figure 1: Timing of Events

denote the set of mixtures over messages in NI . Messages are not verifiable, in the sense that

a player cannot verify if her rival is actually announcing her name. So, the true identity of a

player cannot be known from her announced name. “Truthful reporting” by any player i means

that player i announces name i. Any other announcement by player i is called “misreporting”

or “impersonating”.

Stage-Game: The stage-game Γ has finite action sets AI , I ∈ {1, 2}. Denote an action profile

by a ∈ A := A1 × A2. For each I, let ∆(AI), I ∈ {1, 2} denote the set of mixtures of actions in

AI . Stage-game payoffs are given by a function u : A → R
2. Define F to be the convex hull

of the payoff profiles that can be achieved by pure action profiles in the stage-game. Formally,

F := conv ({(u(a) : a ∈ A}). Let v∗
i denote the mixed action minmax value for any player i. For

i ∈ I, v∗
i := minα−i∈∆(A−I) maxai∈AI

ui(ai, α−i). Let F ∗ denote the individually rational and

feasible payoff set, i.e. F ∗ := {v ∈ F : vi > v∗
i ∀i}. I consider games where F ∗ has non-empty

interior (IntF ∗ 6= ∅).12 Let γ := maxi,a,a′{|ui(a) − ui(a
′)|}.

All players have a common discount factor δ ∈ (0, 1). No public randomization device is

assumed. All primitives of the model are common knowledge.

Information Assumptions: Players can observe only the transactions they are personally

engaged in, i.e. each player knows the names that she encountered in the past and the action

profiles played with each of these names. Since names are not verifiable, she does not know the

true identity of the players she meets. She does not know what the other realized matches are

and does not observe play between other pairs of players.

12Observe that this restriction is not required in standard Folk Theorems for two-player games (e.g. Fudenberg and

Maskin (1986)). It is however used in the literature on imperfect private monitoring (See Hörner-Olszewski (2006)).

Note also that this restriction implies that |Ai| ≥ 2 ∀i.
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Histories, Strategies and Payoffs: I define histories and strategies as follows.

Definition 1. A complete private t-period history for a player i is given by ht
i := {(ν1, a1), . . . ,

(νt, at)}, where (ντ , aτ ), τ ∈ {1, . . . , t} represent the name profile and action profile observed by

player i in period τ . The set of complete private t-period histories is given by H t
i := (N ×A)t.

The set of all possible complete private histories for player i is Hi :=
⋃∞

t=0 H t
i (H 0

i := ∅).

Definition 2. An interim private t-period history for player i is given by kt
i := {(ν1, a1), . . . ,

(νt−1, at−1), νt} where ντ and aτ , τ ∈ {1, . . . , t} represent respectively the name profile and ac-

tion profile observed by player i in period τ . The set of interim private t-period histories is

given by K t
i := H

t−1
i × N . The set of all possible interim private histories for player i is

Ki :=
⋃∞

t=1 K t
i .

Definition 3. A strategy for a player i in community I ∈ {1, 2} is a mapping σi such that,

for any i ∈ I, σi : Hi ∪ Ki → ∆(NI) ∪ ∆(AI) such that







σi(x) ∈ ∆(NI) if x ∈ Hi,

σi(x) ∈ ∆(AI) if x ∈ Ki.

Σi is the set of i’s strategies. A strategy profile σ specifies strategies for all players (i.e. σ ∈
×iΣi).

In some abuse of notation, for ki ∈ Ki and hi ∈ Hi let σi(ai|ki) and σi(νi|hi) denote the

probability with which i plays ai and νi conditional on history ki and hi respectively, if she is

using strategy σi. Denote equilibrium strategies by σ∗.

A player’s payoff from a given strategy profile σ in the infinitely repeated random matching

game is denoted by Ui(σ). It is the normalized sum of discounted payoffs from the stage-games

that the player plays in each period, i.e. Ui(σ) := (1 − δ)
∑∞

t=1 δt−1ui(a
t
i, a

t
−i).

Beliefs: Given any strategy profile σ, after any private history, one can compute the beliefs

that each player has over all the possible histories that are consistent with her observed private

history. Denote such a system of beliefs by ξ.

Definition 4. A strategy profile σ together with an associated system of beliefs ξ is said to be

an assessment. The set of all assessments is denoted by Ψ.

Solution Concept: The solution concept used is sequential equilibrium. Since sequential

equilibrium (Kreps & Wilson (1982)) is defined for finite extensive form games, I extend the

notion to this setting and define it formally below. Let Σ0 denote the set of totally mixed

strategies, i.e. Σ0 := {σ : ∀i,∀ki ∈ Ki,∀ai, σi(ai|ki) > 0 and ∀i,∀hi ∈ Hi,∀νi, σi(νi|hi) > 0}.
In other words, strategy profiles in Σ0 specify that in every period, players announce all the

names with a strictly positive probability and play all feasible actions with strictly positive
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probability. If strategies belong to Σ0 all possible histories are reached with positive probability.

Players’ beliefs can be computed using Bayes’ Rule at all histories. Let Ψ0 denote the set of all

assessments (σ, ξ) such that σ ∈ Σ0 and ξ is derived from σ using Bayes’ Rule. A sequential

equilibrium is defined as follows.

Definition 5. An assessment (σ∗, ξ∗) is said to constitute a sequential equilibrium if the

assessment is

(i) sequentially rational,

∀i,∀t,∀ht
i ∈ H t

i ,∀σ′
i, Ui(σ

∗|ht
i, ξ

∗
i [ht

i]) ≥ Ui(σ
′
i, σ

∗
−i|ht

i, ξ
∗
i [ht

i]),

∀i,∀t,∀kt
i ∈ K t

i ,∀σ′
i, Ui(σ

∗|kt
i , ξ

∗
i [kt

i ]) ≥ Ui(σ
′
i, σ

∗
−i|kt

i , ξ
∗
i [kt

i ]),

and

(ii) consistent in the sense that there exists a sequence of assessments {σn, ξn} ∈ Ψ0 such

that for every player, and every interim and complete private history, the sequence converges to

(σ∗, ξ∗) uniformly in t.

Later, I use the T -fold finitely repeated stage-game as well. To avoid confusing T -period

strategies with the supergame strategies, I define the following.

Definition 6. Consider the T -fold finitely repeated stage-game (ignoring the round of name

announcements). Define an action plan to be a strategy of this finitely repeated game in the

standard sense. Denote the set of all action plans by ST
i .

3 The Main Result

Theorem 1. (Folk Theorem for Random Matching Games) Consider a finite two-player game

and any (v1, v2) ∈ IntF ∗. There exists a sequential equilibrium that achieves payoffs (v1, v2)

in the corresponding infinitely repeated random matching game with names with 2M players, if

players are sufficiently patient.

Before formally constructing the equilibrium, I first describe the overall structure to provide

some insight into how the equilibrium works.

3.1 Structure of Equilibrium

Each player plays M different but identical games, one with each of the M names in the rival

community. Players report their names truthfully. So, on the equilibrium path, players really

play separate games with each of the M possible opponents, and condition their play against

any opponent only on the history of play against the same name.
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3.1.1 T -period Blocks

Let (v1, v2) ∈ IntF ∗ be the target payoff profile. Play between any pair of names proceeds

in blocks of T periods in which they meet. (An appropriate integer T will be chosen later.)

Note that a block of length T for any pair of players refers to T interactions between them,

and so typically takes more than T periods in calendar time. In any block of T interactions,

players use one of two action plans of the T -fold finitely repeated game. One of the action plans

(bad plan) used by a player i ensures that rival name −i cannot get on average more than v−i,

independently of what player −i plays. The other action plan (good plan) ensures that rival

name −i gets on average at least v−i. At the start of each block (“plan period”) each player

is indifferent between these two action plans and prefers them to any other. So, each player

can mix between these plans appropriately to control the continuation payoffs of her rival. How

are players indifferent between their two plans at the start of each block? Each player makes

her rival ex-ante indifferent at the beginning of each block by appropriately mixing between the

good and bad plans at the start of the next block. The target payoff (v1, v2) is achieved by

playing appropriately mixing between the two plans at the beginning of the first block.

Conditional on truthful reporting of names, players can monitor each of their pairwise games

accurately and so this form of strategies can be shown to be a sequential equilibrium. However,

to ensure that players announce names truthfully, I need a device that enables players to detect

impersonations and provides incentives to a detector to punish them.

3.1.2 Detecting Impersonations

I use a device called signatures to detect impersonations. Every pair of players designates their

second interaction in each block as the “signature period” and in this interaction, members of a

pair play actions that serve as their “signatures”. The signature depends on the action profile

realized in the plan period of that block. Players use different pure actions depending on what

action profile was realized in the plan period. No player outside the pair can observe the realized

action in the plan period. Consequently, no one outside a pair knows what the correct signature

for that pair is. To illustrate, suppose player i impersonates someone (say player j) and is

matched to player k. The real player j could be in a signature period with k. In this case, with

positive probability, player i will play the wrong signature and get detected. When her rival

(player k) observes the wrong signature, she knows that play is not on equilibrium path (though

she does not know who deviated).

In this paper, “detection” means that if a player impersonates, then with positive probability

a player in the rival community will become aware in the current period or in the future that some
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deviation from equilibrium has occurred. This weak form of detection along with appropriate

incentives for the detector to punish impersonations is enough enable cooperation.

3.1.3 Community Responsibility

If a player observes an incorrect signature in a signature period with any rival, she knows that

someone has deviated. The nature of the deviation or the identity of the deviator is unknown -

it is possible that her current rival reported her name truthfully but played the wrong signature

or that she met an impersonator now or previously. She holds all the members of her rival

community responsible for the deviation, and punishes them by switching to the bad action plan

(with arbitrarily high probability) with each of her rivals in their next plan period. Note that

she is indifferent between her two action plans at the start of any block. But the continuation

payoffs her rivals get are different for these two action plans, with one plan being strictly better

than the other for her rivals. Consequently, she can punish the entire rival community without

affecting her own payoff adversely.

3.1.4 Role of Names

It may be useful to clarify here the precise role of the names in the equilibrium play. Each player

uses the names on equilibrium path to fine-tune continuation payoffs of her opponents in each

of her pair-wise games. The names are used to keep track of each pair-wise game separately.

Note that names are not used to punish impersonations off-path.

3.2 Construction of Equilibrium Strategies

Consider any payoff profile (v1, v2) ∈ IntF ∗. Pick payoff profiles wGG, wGB , wBG, wBB such

that the following conditions hold.

1. wGG
i > vi > wBB

i ∀i ∈ {1, 2}.

2. wGB
1 > v1 > wBG

1 .

3. wBG
2 > v2 > wGB

2 .

These inequalities imply that there exists vi and v̄i with v∗
i < vi < vi < v̄i such that the rect-

angle [v1, v̄1] × [v2, v̄2] is completely contained in the interior of conv({wGG, wGB , wBG, wBB})
and further v̄1 < min{wGG

1 , wGB
1 }, v̄2 < min{wGG

1 , wBG
1 }, v1 > max{wBB

1 , wBG
1 } and v2 >

max{wBB
1 , wGB

1 }. See Figure 2 below for a pictorial representation.

Clearly, there may not exist pure action profiles whose payoffs satisfy these relationships, but

there exist correlated actions that achieve exactly these payoffs wGG, wGB , wBG, wBB . These
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Figure 2: Payoff Profiles

correlated actions can be approximated using long enough sequences of different pure action

profiles. In fact, there exist finite sequences of action profiles {aGG
1 , . . . , aGG

N }, {aGB
1 , . . . , aGB

N },
{aBG

1 , . . . , aBG
N }, {aBB

1 , . . . , aBB
N } such that the average discounted payoff vector over the se-

quence {aXY
1 , . . . , aXY

N } (denoted by wXY ), satisfies the above relationships if δ is large enough.

Further, there exists ǫ ∈ (0, 1) small so that v∗
i < (1 − ǫ)vi + ǫv̄i < vi < (1 − ǫ)v̄i + ǫvi. In

the equilibrium construction that follows, when I refer to an action profile aXY , I actually refer

to the finite sequence of action profiles {aXY
1 , . . . , aXY

N } described above.

3.2.1 Defining Strategies at Complete Histories: Name Announcements

At any complete private history, players announce their names truthfully.

∀i,∀t,∀ht
i ∈ H

t
i , σ∗

i [ht
i] = i.

3.2.2 Defining Strategies at Interim Histories: Actions

Partitioning of Histories: Now think of each player playing M separate games, one against

each rival. Since players truthfully report names in equilibrium, players can condition play on

the announced name.

Definition 7. A pairwise game denoted by Γi,−i is the “game” player i plays against name

−i. Player i’s private history of length t in this pairwise game is denoted by ĥt
i,−i and comprises

the last t interactions in the supergame for player i in which she faced name −i.
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Now, at any interim private history of the supergame, each player i partitions her history

into M separate pairwise histories ĥt
i,−i, for each −i ∈ {1, . . . ,M} corresponding to each of her

pairwise games Γi,−i. If her current rival name is j, she plays game Γi,j , i.e. for any interim

history kt
i = {(ν1, a1), . . . , (νt−1, at−1), νt}, if νt

−i = j, player i plays her pairwise game Γi,j .

Since equilibrium strategies prescribe truthful name announcement, a description of how

Γi,−i is played will complete the specification of strategies on path for the supergame.

Play of Pairwise Game Γi,−i:

For ease of exposition, fix player i and a rival name −i. Play is specified in an identical manner

for each rival name. For the rest of the section (since rival name −i is fixed), to save on notation

I denote player i’s private histories ĥt
i,−i in the pairwise game Γi,−i by ĥt

i. Recall that a t-period

history denoted by ĥt
i specifies the action profiles played in the last t periods of this game Γi,−i,

and not in the last t calendar time periods.13 Since in equilibrium, any history ĥt
i of Γi,−i has

the same name profile in each period, we can ignore the names while specifying how Γi,−i is

played on the equilibrium path.

The pairwise game Γi,−i proceeds in blocks of T periods (T is defined later).

Plans for a Block: In the first period of every block (plan period), the action profile used

by players i and −i serves as a coordination device to determine play for the rest of the block.

Partition the set of i’s actions into two non-empty subsets Gi and Bi. Let ∆(Gi) and ∆(Bi)

denote the set of mixtures of actions in Gi and Bi respectively. In the plan period of a block,

if player i chooses an action from set Gi, she is said to send plan Pi = G. Otherwise she is said

to send plan Pi = B. The actions realized in the first period of a block are called plans because

- as we will see later - this action profile determines how play proceeds for the rest of the block.

Signatures: Further, choose any four pure action profiles g, b, x, y ∈ A such that gi 6= bi ∀i ∈
{1, 2}. Define a function ψ : A → {g, b, x, y} (the signature) mapping one-period histories (or a

pair of plans) to one of the action profiles as follows.

ψ(a) =



























g if a ∈ G1 × G2,

b if a ∈ B1 × B2,

x if a ∈ G1 × B2,

y if a ∈ B1 × G2.

As I will describe later, the signature function is used to authenticate one’s identity. In the

second stage of a block with any rival, each player plays the signature based on the observed

13A period in Γi,−i is really an interaction between player i and name −i. So, when I refer to Γi,−i, I use

“interaction” and “period” interchangeably.
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action profile in the last interaction with this particular rival.

Action Plans Used: Suppose the observed plans are (P1, P2). Define a set of action plans as

follows.

Si :=
{

si ∈ ST
i : ∀ĥt

i =
(

a, ψ(a), (aP2,P1

i , a
P2,P1

−i ), . . . , (aP2,P1

i , a
P2,P1

−i )
)

, a ∈ Pi × G,

si[ĥ
1
i ] = ψi([ĥ

1
i ]) and si[ĥ

t
i] = a

P2,P1

i , t ≥ 2
}

.

Note that the set of action plans in Si restricts player i’s actions if her rival announced plan G.

In particular, action plans in Si prescribe that player i use the correct signature and play a
P2,P1

i

if the announced plans were (P1, P2). Si does not restrict the plan that player i can announce

in the plan period or her play if her rival announced a B plan or her play after any deviations.

In equilibrium, in any T -period block of a pairwise game, players will choose action plans

from Si. Players will use in fact one of two actions plans from Si, a favorable one which I

denote by sG
i and an unfavorable one which I denote by sB

i . These are defined below.

Define partially a favorable action plan sG
i such that

sG
i [∅] ∈ ∆(Gi),

sG
i [ĥ1

i ] = ψi([ĥ
1
i ]), and

∀ĥt
i =

(

a, ψ(a), (aP2,P1

i , a
P2,P1

−i ), . . . , (aP2,P1

i , a
P2,P1

−i )
)

, a ∈ Pi × P−i, t ≥ 1, sG
i [ĥt

i] = a
P2,P1

i .

In other words, sG
i is an action plan in Si that prescribes sending a G plan at the start of a

block, playing the correct signature and then playing according to the announced plans for the

rest of the block. Similarly, partially define an unfavorable action plan sB
i such that

sB
i [∅] ∈ ∆(Bi),

sB
i [ĥ1

i ] = ψi([ĥ
1
i ]),

∀ĥt
i =

(

a, ψ(a), (aP2,P1

i , a
P2,P1

−i ), . . . , (aP2,P1

i , a
P2,P1

−i )
)

, a ∈ Pi × P−i, t ≥ 1, sB
i [ĥt

i] = a
P2,P1

i ,

∀t ≥ r > 1, if ĥr
i =

(

a, ψ(a), (aP2,P1

i , a
P2,P1

−i ), . . . , (aP2,P1

i , a
P2,P1

−i ), (aP1,P2

i , a′
−i)

)

, a ∈ Pi×P−i, a
′
−i 6= a

P2,P1

−i

, then sB
i [ĥt

i] = α∗
i , and

∀t > 2, if ĥ2
i =

(

a, (ψi(a), a′
−i)

)

, a ∈ Pi × P−i, a
′
−i 6= ψ−i(a), then sB

i [ĥt
i] = α∗

i .

In other words, sB
i prescribes sending plan B at the start of a block, playing the appropriate

signature and playing as per the announced plans for the rest of the block. It also prescribes

minmaxing when i’s rival is the first to deviate from the plan proposed in the plan period. For
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any history not included in the definitions of sG
i and sB

i above, prescribe the actions arbitrarily.

Note that both action plans sG
i and sB

i belong to Si.

Why is sG
i favorable and sB

i unfavorable? A favorable plan guarantees a rival a minimum

payoff strictly higher than the target equilibrium payoff, while an unfavorable plan places an

upper bound on a rival’s payoff that is strictly lower than the target payoff. To see why, suppose

player 1 uses action plan sG
1 . Notice that her rival, player 2 gets a payoff strictly higher than

v̄2 in each period, except possibly in the first two periods - the plan period and the signature

period. This is because as long as player 1 plays sG
1 , the payoff to player 2 that is realized in

any period except the first two is approximately wBG
2 or wGG

2 both of which are higher than v̄2.

Similarly, if player 1 plays sB
1 , player 2 gets a payoff strictly lower than v2 in all except at most

three periods. Player 2 can get a higher payoff in the plan period, the signature period or the

first period where player 2 decides to deviate. In all other periods, she receives wGB
2 , wBB

2 or

v∗
2 , all of which are strictly lower than v2. If T is large enough the payoff consequences of the

first few interactions of a block can become insignificant. Formally, it is possible to choose T

large enough so that there exists some δ < 1 such that for all δ > δ, i’s average payoff within

a block from any action plan si ∈ Si against sG
−i strictly exceeds v̄1 and that from using any

action plan si ∈ ST
i against sB

−i is strictly below v1. Choose such a T and assume from here on

that δ > δ.

Benchmark Action Plans: Finally, define two benchmark action plans that are used to

compute continuation payoffs for all possible histories within a block. Define rG
i ∈ Si to be an

action plan such that for any history ĥt
i, rG

i |ĥt
i gives the lowest payoffs against sG

−i among all

action plans in Si. Define rB
i ∈ ST

i to be an action plan such that given any history ĥt
i, rB

i |ĥt
i

gives the highest payoffs against sB
−i among all action plans in ST

i . Redefine v̄ and v so that

v̄i := UT
i (rG

i , sG
−i) and vi := UT

i (rB
i , sB

−i), where UT
i : ST

i × ST
−i → R is the payoff function in

the T -fold finitely repeated game, and UT (·) is the discounted, normalized sum of stage-game

payoffs. Now we are equipped to specify how player i plays her pairwise game Γi,−i. This is

called i’s “partial strategy”.

Partial Strategies: Specification of Play in Γi,−i

• Initial Period of Γi,−i: In the first ever period when player i meets player −i, player i

plays sG
i with probability µ0 and sB

i with probability (1 − µ0) where µ0 solves

v−i = µ0v̄−i + (1 − µ0)v−i.

Note that since (1− ǫ)v−i + ǫv̄−i < v−i < ǫv−i + (1− ǫ)v̄−i, it follows that µ0, 1− µ0 ≥ ǫ.

• Plan Period of a Non-Initial Block of Γi,−i:
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– On Equilibrium Path: Suppose player i has never observed a deviation. Player i plays

strategy sG
i with probability µ and sB

i with probability (1 − µ) where the mixing

probability µ is chosen to tailor rival −i’s continuation payoff. Player i specifies

continuation payoffs for rival −i in such a way that −i is indifferent between all her

action plans in ST
−i when player i plays sB

i and indifferent between all action plans

in S−i when player i plays sG
i . The average payoff from playing any action plan in

ST
−i against the opponent’s play of sB

i is adjusted to be exactly v−i. Similarly, the

average payoff from playing any action plan in S−i against the opponent’s play of sG
i

is adjusted to be exactly v̄−i. This is done as follows.

Let c denote the current calendar time period, and let c(τ), τ ∈ {1, . . . , T} denote

the calendar time period of the τ th stage of the most recently elapsed block in the

pairwise game Γi,−i.

For any history ĥT
i observed (at calendar period c) by i in the most recently elapsed

block, if sB
i was played in the last block, player i will adjust payoffs such that player

−i gets exactly the payoff she would get from playing the benchmark action plan rB
−i.

She will reward player −i if necessary based on the play in the most recently elapsed

block to guarantee this benchmark payoff in expectation. So, define rewards ωB
−i(·)

as

ωB
−i(ĥ

T
i ) :=

T
∑

τ=1

πB
τ

where,

πB
τ :=







1
δT+1−τ θB

τ MT−τ+1 if c − c(τ) = T + 1 − τ

0 otherwise,

and θB
τ is the difference between −i’s continuation payoff in the last block from playing

rB
−i from period τ on and −i’s continuation payoff from playing the action observed

by i at τ followed by reversion to rB
−i from (τ + 1) on. Since rB

−i gives i maximal

payoffs, θB
τ ≥ 0.

Player i chooses µ ∈ (0, 1) to solve µv̄−i + (1 − µ)v−i = v−i + (1 − δ)ωB
−i(ĥ

T
i ). Since

T is fixed, (1 − δ)ωB
−i(ĥ

T
i ) can be made arbitrarily small, for large enough δ, and so

the above continuation payoff will be feasible.

It is worthwhile to note how these rewards make player −i indifferent between all

action plans in ST
−i when her opponent plays sB

i . Suppose at some stage τ of a block,

player −i plays an action that gives her a payoff in the current period that is lower

than that from playing rB
−i. With probability ( 1

M
)T+1−τ her next plan period with

player i will be exactly T + 1 − τ calendar periods later (i.e. if she is matched to
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player i for the next T + 1− τ consecutive periods), and in that case, she will receive

a proportionately high reward θB
τ MT+1−τ . If her next plan period is not exactly

T + 1 − τ periods later, she does not get compensated. However, in expectation,

for any action that she may choose, the loss she will suffer today (compared to the

benchmark action plan rB
−i) is exactly compensated by the reward she will get in the

future.

If sG
i was played in the last block, punishments ωG

−i(·) must be specified so that in

expectation, player −i is guaranteed the payoff she would get from playing benchmark

action plan rG
i .

ωG
−i(ĥ

T
i ) :=

T
∑

τ=1

πG
τ

where,

πG
τ :=







1
δT+1−τ min{0, θG

τ }MT−τ+1 if c − c(τ) = T + 1 − τ

0 otherwise,

and θG
τ is the difference between −i’s continuation payoff within the last block from

playing rG
−i from time τ on and −i’s continuation payoff from playing the action

observed by i at period τ followed by reversion to rG
−i from τ + 1 on. Since rG

−i gives

−i minimal payoffs, θG
τ ≤ 0 for all actions are used by strategies in S−i.

Player i chooses µ ∈ (0, 1) to solve µv̄−i + (1− µ)v−i = v̄−i + (1− δ)ωG
−i(ĥ

T
i ). Again,

since T is fixed, (1 − δ)ωG
−i(ĥ

T
i ) can be made arbitrarily small, for large enough δ.

Restrict attention to δ close enough to 1 so that

(1−δ)ωB
−i(ĥ

T
i ) < ǫv−i +(1− ǫ)v̄−i−v−i and (1−δ)ωG

−i(ĥ
T
i ) > (1− ǫ)v−i + ǫv̄−i− v̄−i.

– Off Equilibrium Path: If player i became aware of an impersonation in a signature

period of an earlier block in any pairwise game, she plays strategy sB
i with probability

(1 − βl) where l is the number of deviations she has seen so far (β > 0 small).

• Signature Period and other Non-initial Periods: Players use the designated sig-

nature ψ(a) if a was the profile realized in the plan period of the block. For the rest of

the block, they play according to the announced plan (i.e. if the announced plans were

(P1, P2), then they play action profile aP2,P1).

3.2.3 Beliefs of Players

At any private history, each player believes that in every period, she met the true owner of the

name she encountered, and that no player has ever misreported her name.
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3.3 Proof of Theorem 1

In this section, I show that the above strategies and beliefs constitute a sequential equilibrium.

Here I prove sequential rationality of strategies on the equilibrium path. This is done in two

steps. First, conditional on truthful reporting of names, the actions prescribed are shown to be

optimal. Second, I show that it is incentive compatible to report one’s name truthfully. The

proof of sequential rationality off the equilibrium path and consistency of beliefs is relegated to

the appendix.

As before, fix a player i and a rival −i. The partial strategy for player i in pairwise game

Γi,−i can be represented by an automaton that revises actions and states in every plan period

of Γi,−i.

Set of States: The set of states of a player i is the set of continuation payoffs for her rival −i

and is the interval [(1 − ǫ)v−i + ǫv̄−i, ǫv−i + (1 − ǫ)v̄−i].

Initial State: Player i’s initial state is the target payoff for her rival v−i.

Decision Function: When player i is in state u, she uses strategy sG
i with probability µ and

sB
i with probability (1 − µ) where µ solves

u = µ
[

ǫv−i + (1 − ǫ)v̄−i

]

+ (1 − µ)
[

(1 − ǫ)v−i + ǫv̄−i

]

.

Transition Function: For any history ĥT
i in the last T -period block for player i, if the action

played was sG
i then at the end of the block, the state transits to v̄−i + (1 − δ)ωG

−i(ĥ
T
i ). If

the realized action was sB
i the new state is v−i + (1 − δ)ωB

−i(ĥ
T
i ). Recall that for δ large

enough, (1 − δ)ωB
−i(ĥ

T
i ) and (1 − δ)ωG

−i(ĥ
T
i ) can be made arbitrarily small, which ensures that

the continuation payoff always lies within the interval [(1 − ǫ)v−i + ǫv̄−i, ǫv−i + (1 − ǫ)v̄−i].

It can be easily seen that given i’s strategy, any strategy of player −i whose restriction

belongs to S−i is a best response. The average payoff within a block from playing rG
−i against

sG
i is exactly v̄−i, and that from playing rB

−i against sB
i is v−i. Moreover, the continuation

payoffs are also v̄−i and v−i respectively. Any player’s payoff is therefore µ0v̄−i + (1 − µ0)v−i.

Note also that each player is indifferent between all action plans in ST
i when her opponent plays

sB
−i.

It remains to verify that players will truthfully report their names in equilibrium. First I

show that if a player impersonates someone else in her community, irrespective of what action

she chooses to play, she can get detected (i.e. with positive probability, someone in her rival

community will become aware that some deviation has occurred). Then, the detector will punish

the whole community of the impersonator. For sufficiently patient players, this threat is enough

to deter impersonation.
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At any calendar time t, define the state of play between any pair of players to be k ∈
{1, . . . , T} where k is the stage of the current block they are playing in their pairwise game (e.g.

for a plan period, k = 1). At time (t+1), they will either transit to state k +1 with probability

1
M

, if they happen to meet again in the next calendar time period or remain in state k. Suppose

at time t, player i1 decides to impersonate i2. Player i1 can form beliefs over the possible states

of each of her rivals j, j ∈ {1, . . . ,M} with respect to i2, conditional on her own private history.

Denote player i1’s beliefs over the states of any pair of players by a vector (p1, . . . , pn).

Fix a member j of the rival community, whom player i1 can be matched to in the next

period. Suppose player i1 has met the sequence of names {j1, . . . , jt−1}. For any t ≥ 2, her

belief over states of j and i2 is given by

t−1
∑

τ=1

(1 − Ij=jτ )

(

M − 2

M − 1

)

Pτ−1

l=1 (1−I
j=jl) 1

M − 1
(1, 0, . . . , 0)

t−1
∏

k=τ

[

Ij=jkI + (1 − Ij=jk)H
]

, (1)

where H =















M−2
M−1

1
M−1 0 0 . . . 0

0 M−2
M−1

1
M−1 0 . . . 0

...

1
M−1 0 0 0 . . . M−2

M−1















I is the T × T identity matrix, and Ij=jτ =







1 if j = jτ ,

0 otherwise.

To see how the above expression is obtained, note that player i1 knows that in periods when

she met rival j, it is not possible that player i2 also met j. Hence, she knows with certainty

that in these periods the state of play between players i2 and j did not change. She believes

that in other periods, the state of play would have changed according the transition matrix H.

This gives the product term in the above expression. For any given calendar period τ , player

i1 can also use this information to compute the expected state of players i2 and j conditioning

on the event that i2 and j met for the first time ever in period τ . For any τ , the probability

that players i2 and j met for the first time at period τ is given by
(

M−2
M−1

)

Pτ−1

l=1 (1−I
j=jl)

1
M−1 .

Finally, player i1 knows that the pair i2 and j could not have met for the first time in a period

that she met j herself, and so needs to condition only on such periods when she did not meet j.

Notice that the transition matrix H is irreducible and

lim
q→∞

(1, 0, . . . , 0) · Hq =

(

1

T
, . . . ,

1

T

)

. (2)
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Further it can be easily shown that the following is true.

∀q ≥ 1, [(1, 0, . . . , 0) · Hq]2 > 0, (3)

where [(1, 0, . . . , 0) · Hq]2 represents the 2nd component of (1, 0, . . . , 0) · Hq

It follows from (2) and (3) that for any rival j whom i1 has not met at least in one period,

there exists a lower bound φ > 0 such that the probability of j being in state 2 with i2 is at

least φ.

Now, when player i1 announces name i2, she does not know which rival she will end up

meeting that period. It follows that at t ≥ 2, player i1 assigns probability at least φ
M(M−1) to

the event that the rival she meets is in state 2 with i2. (To see why, pick a rival j′ whom i1 did

not meet in the first calendar time period (t = 1). With probability 1
M

, at time t, i1 will meet

this j′ and with probability 1
M−1 this j′ would have met i2 at t = 1 and period t could be their

signature period.)

Consequently, if player i1 announces her name to be i2, there is a minimal strictly positive

probability ǫ2 φ
M(M−1) that her impersonation gets detected. This is because if the rival she

meets is supposed to be in a signature period with i2, they should play one of the signatures

g, b, x, y depending on the realized plan in their plan period. Since players mix with probability

at least ǫ on both Plans G and B, player i1 will play the wrong signature with probability at

least ǫ2 irrespective of the action she chooses. Player i1’s rival will realize that some deviation

has occurred, and she will switch to the bad plan B with each of the players in i1’s community

in their next plan period.

Player i1 will not misreport her name if her maximal potential gain from deviating is not

greater than the minimal expected loss in continuation payoff from detection.

Player i1’s maximal current gain from misreporting =

(

1 − δ

δ + M(1 − δ)

)

γ.

Note that because of the random matching process, the effective discount factor for any player

in her pairwise games is not δ, but higher, i.e. δ
δ+M(1−δ) .

Player i1’s minimal expected loss in continuation payoff from impersonation is given by

Minimal loss from deviation ≥ φ

M(M − 1)
ǫ2(1 − β)

(

δ

δ + M(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)] .

To derive the above expression, observe that there is a minimal probability φ
M(M−1) that

players j and i2 are in a signature period. Conditional on this event, irrespective of the action

i1 plays, there is a minimal probability ǫ2 that her deviation gets detected by her rival, j. Con-

ditional on detection, player j will switch to playing the unfavorable strategy with probability
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(1 − β) in the next plan period with i1. At best, i1 and j’s plan period is (T − 1) periods

away, after which i1’s payoff in her pairwise game with j will drop from the target payoff vi to

(1 − ǫ)vi + ǫv̄i.

i1 will not impersonate if her maximal current gain is outweighed by her loss in continuation

payoff i.e. if the following inequality holds.
(

1 − δ

δ + M(1 − δ)

)

γ ≤ φ

M(M − 1)
ǫ2(1 − β)

(

δ

δ + M(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)] .

For δ close enough to 1, this inequality is satisfied, and so misreporting one’s name is not a

profitable deviation at any t ≥ 2.

Now consider incentives for truth-telling in the first period of the supergame. Suppose i1

impersonates i2 and meets rival j. In the next period, with probability ǫ2

M
, i2 will meet j and

use the wrong signature, thus informing j that someone has deviated. By a similar argument

as above, if δ is high enough, i1’s potential current gain will be outweighed by the future loss in

continuation payoff. ¤

The interested reader may refer to the appendix for a formal proof of the consistency of

beliefs and sequential rationality off the equilibrium path.

Remark 1. General Matching Technologies: A distinguishing feature of this result is that

unlike earlier literature, it does not depend on the matching being independent or uniform. The

assumption of uniform independent matching is made only for convenience. The construction

continues to work for more general matching technologies. For instance it is enough to assume

that for each player, the probability of being matched to each rival is strictly positive and the

expected time until she meets each of her rivals again is bounded.

Remark 2. Generalizable to Asymmetric Payoffs: In this result, I restrict attention to the

case where all members of a specific community get identical payoffs. With the same equilibrium

strategies, it is possible to also achieve other asymmetric payoff profiles (vi1 , . . . , viM
, vj1 , . . . , vjM

)

with the property that for all possible pairs of rivals i and j, (vi, vj) ∈ int(F ∗). Clearly, the

feasibility of asymmetric payoff profiles does depend on the specifics of the matching process, in

particular on the probability of meeting each rival.

Remark 3. Richer Communication Possibilities: This paper is motivated by the question

of whether cooperation is sustainable with little information about past play. This drives the

choice of a parsimonious message space and limited communication possibilities. The size of

the message space is chosen to be precisely M because it affords the natural interpretation of

“names”. Moreover, this is the coarsest message space that suffices for this equilibrium construc-

tion. However, it may be interesting to investigate the equilibria and set of payoffs if players had
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richer message spaces or greater communication possibilities. In some settings, (e.g. allowing

public communication) it is more straightforward to sustain cooperation.

Remark 4. Asymmetric Discount Factors: Unlike in earlier work (e.g. Ellison (1994)),

the assumption of a common discount factor for all players is not necessary for the construction.

Remark 5. Robustness or Stability of Equilibrium: A desirable feature of equilibrium may

be global stability. A globally stable equilibrium is one where after any finite history play finally

reverts to cooperative play (See Kandori(1992)). This notion is appealing because it implies that

a single mistake (deviation) does not entail permanent reversion to a punishment phase. The

equilibrium constructed here is not globally stable. However, this stability can be obtained if a

public randomization device is introduced.14

Remark 6. Monitoring Imperfections: In this setting, there is perfect monitoring within

any given pair of players, i.e. name announcements and actions are observed perfectly by each

pair. We may ask if the equilibrium survives in the presence of some monitoring imperfection.

It is not hard to show that the with some modification to the equilibrium strategies, we can allow

for small monitoring imperfections in actions. However, it is not clear that the equilibrium is

robust to the introduction of noise is observing name announcements.

3.4 Cooperation within a Single Community

In many applications, it may be reasonable to assume that there is only one large community

of players who interact repeatedly with each other, possibly in different roles. For example,

consider a large community of traders over the internet, where people are repeatedly involved in

a two-player game between a buyer and a seller. It is conceivable that no player is just a seller

or just a buyer. Players switch roles in the trading relationship in each period, but each time

play a trading game against another trader in the community. Can cooperation be sustained in

this slightly altered environment?

It turns out that the same equilibrium construction works for a single community of agents.

Any feasible and individually rational payoff can be sustained in equilibrium within a single

community of players in the same way, using the idea of community responsibility. To see

how, consider a community of M players, being randomly matched in every period and playing

a two-player stage-game. For ease of exposition, think of a two-player trading game played

between a buyer and a seller. Suppose players are paired randomly each period, and a public

14This is similar to the situation in Ellison (1994), where the construction using a public randomization device is

globally stable, while the equilibrium without any public randomization does not have this stability property.
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randomization device determines the roles within each pair. (Say, players are designated buyers

and sellers with equal probability).

Each player now plays one set of games as a buyer against (M − 1) sellers and another set

of games as a seller against (M − 1) buyers. She tracks continuation payoffs separately for each

possible opponent in exactly the same way as before. Now she treats the same name in a buyer

role and a seller role separately. If a player detects a deviation as a seller (or buyer), she switches

to a bad mood against all buyers (or sellers) at the earliest possible opportunity (i.e. at the

start of a new T -period block with each opponent).

An interesting observation is that a single community actually facilitates detection of imper-

sonations. If a player misreports her name, with positive probability she will meet the real owner

of her reported name, and in this case her rival will know with certainty that an impersonation

has occurred. This feature can be used to simplify the equilibrium strategies, and eliminate the

need for special signature periods.

3.5 Small Communities (M = 2)

An important feature of the equilibrium is that at any time, each player is uncertain about

the states that the other players are in with respect to each other. This source of uncertainty

ensures that if a player wants to impersonate somebody, she believes that she will get detected.

This is no longer the case if the communities have just two members each. Since each players

knows the sequence of names she has met, she knows the sequence of names her rivals have met

(conditional on truthful revelation). So, each player knows with certainty which period of a

block any pair of her rivals is in. Since the states of one’s opponents’ play are no longer random,

the above construction does not apply. In this section, I show that with some modification to

the strategies, every feasible and individually rational payoff is still achievable.

3.5.1 Equilibrium Construction

As before, play proceeds in blocks of T interactions between any pair of players, but now each

block starts with “initiation periods”. The first ever interaction between any two players is

called their “game initiation period”. In this period, the players play a coordination game.

They each play two given actions (say a1 and a2 for player 1 and b1 and b2 for player 2) with

equal probability. If the realized action profile is not (a1, b1), the game is said to be initiated

and players continue to play as described below. If the realized action profile is (a1, b1), players

replay the game initiation period. Once the pairwise game is initiated, it proceeds as before in

blocks of T periods. Any new block of play also starts with similar initiation periods. In a block

24



initiation period, players play as described above. If the realized profile is not (a1, b1), they

start playing their block action plans from the next period. Otherwise, they play the initiation

period again. Once a block is initiated, play within the block proceeds exactly as in the earlier

construction, i.e. players start the block with a plan period followed by a signature period and

then play according to the announced plan of the block. Since the pairwise game after initiation

is exactly the same as in the earlier construction, I omit a detailed description here.

The initiation periods ensure that no player can know precisely what state her rivals are in

with respect to each other. In particular, no player knows whether a given period is a signature

period for any pair of her rivals. Further, no player outside a pair can observe the action

realized in the plan period, and so is unaware of the sequence of actions that is being played.

Consequently, if anyone outside a pair tries to impersonate one of the members of the pair, she

can end up playing the wrong action in case it is a signature period and thus get detected. If

a deviation is detected, the detector punishes the entire rival community by switching to the

unfavorable strategy with every rival in the next plan period. This threat is enough to deter

deviation if players are sufficiently patient.

Since the construction is quite similar, the details of the proof are relegated to the appendix.

4 Community Responsibility with Multiple Communities

So far, I have analyzed the interaction between two communities of agents who repeatedly play

a two-player game and shown that a Folk Theorem holds if players are sufficiently patient. This

section establishes that the result generalizes to situations with random multilateral match-

ing where K > 2 communities interact repeatedly. Agents from K different communities are

randomly matched to form groups of K players each (called “playgroups”). Players first simul-

taneously introduce themselves, and then play a simultaneous move K-player stage-game. It

turns out it is still possible to achieve any individually rational feasible interior payoff through

community responsibility.

How does community responsibility work when there are multiple communities? In the

two-player case, each player keeps track of her rival’s continuation payoff. Her own strategy is

independent of her own continuation payoff, which is controlled by her rival. With K players, the

challenge is in ensuring that each player can control the payoffs of all her rivals simultaneously.

This problem is resolved by making each community keep track of exactly one other community.

The construction can be summarized as follows.

Every player tracks separately her play with every possible K player group she could be
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in. Play within any playgroup proceeds in blocks of T periods. Each community k acts as the

monitor of one other community, say its successor community k + 1 (community K’s successor

is community 1). At the beginning of each block, each player uses one of two continuation

strategies. She is indifferent between them, but the strategy she chooses determines whether

the continuation payoff of the player of her successor community in that playgroup is high or

low. So, each player’s payoff is tracked by her monitor in a playgroup. The monitor randomizes

between her two strategies at the start of each block in a way to ensure that the target payoff of

her successor is achieved. As before, conditional on truthful announcement of names, these types

of strategies can be used to attain cooperative outcomes. As in the case of two communities,

community responsibility is used to ensure truthful announcement of names. If any player

deviates from the equilibrium strategies, she can be punished in two ways. First, the members

of her specific playgroup can minmax her. Second, her monitor can hold her whole community

responsible and punish the community by switching to the unfavorable strategy with all her

playgroups at the start of the next block.

4.1 Model and Result

Multilateral Matching: There are K communities of agents with M > 2 members in each

community I, I ∈ {1, . . . ,K}. In each time period t ∈ {1, 2, . . .}, agents are randomly matched

into groups of K members each, with one member from each community. Let G−k denote

a group of (K − 1) players with members from all except the kth community. Let mt(G−k)

denote the member of the kth community who is matched to the group G−k. Matches are made

independently and uniformly over time, i.e. ∀ histories, ∀j ∈ community k,Pr[j = mt(G−k)] =

1
M

. For any player i, the set of rivals she is matched with (say G−i) is said to constitute

her playgroup. After being matched, players announce their names. However, names are not

verifiable. Then, they play the K-player stage-game.

Stage-Game and Message Sets: As in the model with two communities, each community

has a directory of names NI : I ∈ {1, . . . ,K} with M names each. A name profile of a

playgroup is denoted by ν ∈ N := N1 × . . . × NK . Let ∆(NI) denote the set of mixtures

of messages in NI . The stage-game Γ has finite action sets AI , I ∈ {1, . . . ,K}. Denote an

action profile by a ∈ A :=
∏

I AI . The set of mixtures of actions in AI is denoted by ∆(AI).

Stage-game payoffs are given by a function u : A → R
K . Define F to be the convex hull of

the payoff profiles that can be achieved by pure action profiles in the stage-game. Formally,

F := conv ({u(a) : a ∈ A}). As before, denote the feasible and individually rational payoff set

by F ∗ := {v ∈ F : vi > v∗
i ∀i}, where v∗

i is the mixed action minmax value for player i. I
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consider games where F ∗ has non-empty interior (IntF ∗ 6= ∅). Let γ be also defined as before.

All players have a common discount factor δ ∈ (0, 1).

Information Assumption: Players observe only the transactions they are personally engaged

in. So each player knows the names that she encountered in her playgroup in each period and

the action profiles played in that playgroup. She does not know the true identity of her partners.

She does not know the composition of other playgroups or how play proceeds in them.

The definitions of histories, strategies, action plans and sequential equilibrium can be easily

extended to this setting in a way analogous to Section 2.

Theorem 2. (Folk Theorem for Random Multilateral Matching Games) Consider a finite K-

player game being played by K > 2 communities of M members each in a random matching

setting. For any (v1, . . . , vK) ∈ Int(F ∗), there exists a sequential equilibrium that achieves

payoffs (v1, . . . , vK) in the infinitely repeated random matching game with names with KM

players, if players are sufficiently patient.

The equilibrium construction in the K-community case is similar to the two community case.

The interested reader may refer to the appendix for the formal proof of Theorem 2.

5 Conclusion and Extensions

In games where members of large communities transact with each other, it is reasonable to

assume that players change partners over time, they do not recognize each other or have very

limited information about each other’s actions. This paper investigates whether it is possible

to achieve all individually rational and feasible payoffs in equilibrium in such anonymous trans-

actions. To answer this question, I consider a repeated two-player game being played by two

communities of agents. In every period, each player is randomly matched to another player from

the rival community and the pair plays the two-player stage-game. Players do not recognize each

other. Further, they observe only the transactions they are personally involved in. I examine

what payoffs can be sustained in equilibrium in this setting of limited information availability.

I obtain a strong possibility result by allowing players to announce unverifiable messages in

every period. The main result is a Folk Theorem which states that for any two-player game

played between two communities, it is possible to sustain all feasible individually rational payoffs

in a sequential equilibrium, provided players are sufficiently patient. Though cooperation in

anonymous random matching games has been studied before, little was known about games

other than the prisoner’s dilemma. This paper is an attempt to fill this gap in the literature.

Earlier literature has shown that though efficiency can be achieved in a repeated PD with
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no information transmission, with any other game, transmission of hard information seems

necessary. Kandori (1992) assumes the existence of labels - players who have deviated or faced

deviation can be distinguished from those who have not, by their labels. Takahashi (2007)

assumes that players know the full history of past actions of her rival. To the best of my

knowledge, this paper is the first to obtain a general Folk Theorem without adding any hard

information in the model. Though players can announce names, it is unverifiable cheap talk.

An interesting feature of the strategies is that cooperation is not achieved by the customary

community enforcement. In most anonymous settings, cooperation is sustained by implementing

third-party sanctions. A player who deviates is punished by other people in the society, not

necessarily by the victim. Here, cooperation is sustained by community responsibility. A player

who deviates is punished only by the victim, but the victim holds the deviator’s entire community

responsible and punishes the whole community. It is this alternate form of punishment that

allows us to obtain the Folk Theorem in a setting with such limited information.

An appealing feature of the equilibrium in this paper is that unlike earlier work, the construc-

tion applies to quite general matching technologies, and does not require uniform or independent

matching. I also show that the Folk Theorem extends to a setting with multiple communities

playing a K-player stage-game.

There are some related questions that I do not address in this paper. An interesting line of

investigation is to ask what happens if richer message spaces were allowed. While this paper

shows that a full folk theorem obtains even with a very coarse message set, it may be interesting

to see if a richer message space makes cooperation easier in some sense (e.g. larger set of

achievable payoffs for lower discount factors)?

The construction in this paper relies on players knowing the size of the community. In large

communities, it is possible that players are not exactly aware of the number of people in each

community. This issue is not addressed here, but I conjecture that cooperation would still be

sustainable if there were a commonly known upper bound on the number of players.

A bigger question that remains unanswered in this paper is whether cooperation can be

achieved in a general game with even less information than is used here. Can efficiency (and a

Folk Theorem) be obtained for general games without any transmission of information? If not,

what is the minimal information transmission which will enable impersonal exchange between

two large communities? This is the subject of future work.
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6 Appendix

6.1 Sequential Equilibrium

Section 3.3 establishes optimality of strategies on the equilibrium path. Below, I prove sequential

rationality off the equilibrium path and the consistency of beliefs. Strategies on the equilibrium

path were specified in Section 3.2. Off-equilibrium strategies are defined as follows.

• ∀i,∀t,∀ht
i ∈ H t

i , σ∗
i [ht

i] = i.

In other words, after any complete private history including those in which they observed

a deviation (own or other), players report their name truthfully.

• ∀kt
i = {(ν1, a1), . . . , (νt−1, at−1), νt} ∈ K t

i with νt
i = i and ντ

i 6= i for some τ , player i

plays the partial strategy for pairwise game Γi,j where νt
−i = j.

In other words, at any t-period interim private history in which a player has misreported

her name in at least one period, but has reported truthfully in the current period, she

plays game Γi,−i according to the partial strategy against the current rival name.

• ∀kt
i = {(ν1, a1), . . . , (νt−1, at−1), νt} ∈ K t

i with νt
i 6= i, σ∗[kt

i ] = argmaxai∈Ai
Ui(ai, σ

∗
−i|ξi[k

t
i ]).

In other words, at any t-period interim private history in which a player has misreported

her name in the current period, she plays the action that maximizes her expected utility

given her beliefs and her rivals’ equilibrium strategies.

• At any t-period interim private history in which a player has deviated by playing the wrong

action, i.e. ∀kt
i = {(ν1, a1), . . . , (νt−1, at−1), νt} ∈ K t

i with aτ
i 6= σ∗

i [kτ
i ] for some τ, σ∗[kt

i ]

prescribes the following.

– If ντ
−i was in the unfavorable state (playing sB

−i), player i should play her best response

to the minmax strategy of her opponent for the rest of the block, and then revert to

playing her partial strategy for her game Γi,−i against this rival.

– If ντ
−i was in the favorable state (playing sG

−i), player i should continue playing sG
−i

for the rest of the block and revert to playing her partial strategy for her game Γi,−i

against this rival.

Optimality of Actions:

Lemma 1. For any player i, misreporting ones name is not optimal after any history.

Proof: Fix a player i. The proof of the Folk Theorem establishes optimality on the equilib-

rium path. So now consider any information set of player i reached off the equilibrium path,
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possibly after one or more deviations (impersonations or deviations in action) by player i her-

self or others. I compare i’s payoffs if she truthfully reports her name to her payoffs if she

impersonates someone.

Consider the play between i and any rival name j who has observed d deviations so far. By

misreporting and claiming to be i′, i can potentially get a short-term gain in the pairwise game

with j.

Maximal Gain ≤
(

1 − δ

δ + M(1 − δ)

)

γ.

However, by impersonating i′, player i increases the probability with which j will punish in

case her deviation is detected. Player i’s minimal expected loss in continuation payoff from the

deviation is given by the following.

Minimal expected loss ≥ φ

M(M − 1)
ǫ2

(

δ

δ + M(1 − δ)

)T

(βd − βd+1)[vi − ((1 − ǫ)vi + ǫv̄i)].

To see how this expression is obtained, note that there is a minimal probability φ
M(M−1)

that j and i′ are supposed to be in a signature period. Conditional on this event, irrespective of

what action i plays, there is a minimal probability ǫ2 that her rival j will learn of a deviation.

Conditional on detection, player j will switch to the unfavorable action plan with probability

(1− βd+1) in the next plan period, instead of (1− βd). At best, i and j’s plan period is (T − 1)

periods away, after which i’s payoff in her pairwise game with j will drop from the target payoff

vi to (1 − ǫ)vi + ǫv̄i. (As before, in the pairwise game between i and j, the effective discount

factor is not δ but higher, i.e. δ
δ+M(1−δ) .)

So, player i will not misreport her name if the maximal gain from deviating is outweighed

by the minimal expected loss in continuation payoff, i.e. if the following inequality holds.

γ

(

1 − δ

δ + M(1 − δ)

)

≤ φ

M(M − 1)
ǫ2

(

δ

δ + M(1 − δ)

)T

βd(1 − β)[vi − ((1 − ǫ)vi + ǫv̄i)].

It can be seen that the above inequality holds for sufficiently large δ. Hence, at any information

set off the equilibrium path, i does not find it profitable to misreport her name. ¤

This establishes that the strategies are optimal, since conditional on truthful reporting of

names, it is optimal to play the specified actions.

Consistency of Beliefs:

For any player i, perturb the strategies as follows. (Fix η > 0 small.)

• At any t-period complete private history, player i announces her name truthfully with

probability (1 − η2

et ) and announces an incorrect name with complementary probability

(randomizing uniformly between other possible names).
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• At any interim t-period private history, player i plays the equilibrium action with prob-

ability (1 − η
1

2t ). She plays other actions with complementary probability (randomizing

uniformly across the other possible actions).

Now, consider any t-period complete private history of player i. I will show that as the

perturbations vanish, player i believes with probability 1 that there have been no impersonations

in the past.

Any observed history off equilibrium path is consistent with a sequence of events where there

have been no impersonations but only deviations in action. Consider such a sequence of events

of no impersonations and t deviations in action. If this sequence is consistent with the observed

history, the probability that player i assigns to this sequence of events is given by

t
∏

s=1

(

1 − η2

es

)

η
1
2s .

Since
∑k

n=1
1
2n is bounded above by 1, it follows that the probability of any number of deviations

in action is bounded below by η(1− η). Hence any sequence of events with no name deviations

and some action deviations will be assigned probability that is greater than

η(1 − η)

t
∏

s=1

(1 − η2

es
).

Further, it can be shown that the above expression is bounded below by a constant κ uniformly

in t. To see how, note that

η(1 − η)
t

∏

s=1

(1 − η2

es
) ≥ η(1 − η)

t
∏

s=1

(1 − 1

es
)

≥ η(1 − η)

∞
∏

s=1

(1 − 1

es
)

The series
∑∞

s=1
1
es converges, which implies that the infinite product

∏∞
s=1(1 − 1

es ) con-

verges.15 Since the infinite product converges, there exists a constant κ such that

∀t, η(1 − η)

t
∏

s=1

(1 − η2

es
) ≥ η(1 − η)κ.

Now I analyze sequences of events which are consistent with the observed history and which

involve at least one impersonation.

15This follows from the result that for un ∈ [0, 1),
Q

∞

n=1(1 − un) > 0 ⇐⇒
P

∞

n=1 un < ∞. (See Rudin: Real and

Complex Analysis)
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Consider sequences with only one impersonation. The probability of this set of events is

given by

p(1) =
t

∑

r=1

η2

er

∏

q 6=r

(

1 − η2

eq

)

.

The probability of the set of events with exactly two impersonations is given by

p(2) =
t

∑

τ=1

η2

eτ





∑

r>τ

η2

er

∏

q 6=r,q 6=τ

(

1 − η2

eq

)



 .

Similarly for sequences of events with l impersonations,

p(l) =
t

∑

τ1=1

η2

eτ1

∑

τ2>τ1

η2

eτ2
. . .

∑

τl−1>τl−2

η2

eτl−1

∑

τl>τl−1

η2

eτl

∏

q 6=τi,i∈{1,...,l}

(

1 − η2

eq

)

.

Hence the probability of the sequences of events that are consistent with the observed history

and involve any impersonations is given by P :=
∑t

l=1 P (l). Collecting terms differently (in

powers of e), we have that for any t,

P ≤
t

∑

m=1

η2 1

em

√
2m

∑

i

mi (4)

≤
∞
∑

m=1

η2 1

em

√
2m

∑

i

mi

= η2
∞
∑

m=1

1

em

m(−1 + m
√

2m)

(−1 +
√

m)(1 +
√

m)
. (5)

The first inequality follows from two observations. First, any term with a given power of e, say

em, can belong to a sequence of events with at most
√

2m impersonations. Second, if there i

impersonations in m periods, there are less than mi ways in which this can occur.

The series
∑

am in expression (5) is convergent. Denote the limit by Λ. Convergence follows

from the observation that

lim
m→∞

am+1

am

=
1

e
< 1.

Hence, for any t, P < η2Λ.

Given any observed history ht
i of player i, by Bayes’ Rule, the probability i assigns to a

consistent sequence of events with no impersonations is given by

Pr(Consistent events with no impersonations)

Pr(All consistent events)

≥ η(1 − η)κ

η(1 − η)κ + η2Λ
.
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As η → 0, the above expression approaches 1 uniformly for all t. In other words, as perturbations

vanish, after any history player i believes that with probability 1 there were no impersonations

in the past. ¤

6.2 Proof of Folk Theorem for Small Communities (M = 2)

Consider any payoff profile (v1, v2) ∈ IntF ∗. I proceed just as in the equilibrium construction of

Theorem 1. The notation is unaltered, unless indicated. Pick payoff profiles wGG, wGB , wBG, wBB

such that the following conditions hold

1. wGG
i > vi > wBB

i ∀i ∈ {1, 2}.

2. wGB
1 > v1 > wBG

1 .

3. wBG
2 > v2 > wGB

2 .

These inequalities imply that there exists vi and v̄i with v∗
i < vi < vi < v̄i such that the rect-

angle [v1, v̄1] × [v2, v̄2] is completely contained in the interior of conv({wGG, wGB , wBG, wBB})
and further v̄1 < min{wGG

1 , wGB
1 }, v̄2 < min{wGG

1 , wBG
1 }, v1 > max{wBB

1 , wBG
1 } and v2 >

max{wBB
1 , wGB

1 }.
There exist finite sequences of action profiles {aGG

1 , . . . , aGG
N }, {aGB

1 , . . . , aGB
N }, {aBG

1 , . . . , aBG
N },

{aBB
1 , . . . , aBB

N } such that each vector wXY , the average discounted payoff vector over the se-

quence {aXY
1 , . . . , aXY

N } satisfies the above relationships if δ is large enough.

Further, there exists ǫ ∈ (0, 1) small so that v∗
i < (1 − ǫ)vi + ǫv̄i < vi < (1 − ǫ)v̄i + ǫvi. In

what follows, when I refer to an action profile aXY , I actually refer to the finite sequence of

action profiles {aXY
1 , . . . , aXY

N } described above.

6.2.1 Defining Strategies at Complete Histories: Name Announcements

At complete private histories, players report names truthfully, (i.e. ∀i,∀t,∀ht
i ∈ H t

i , σ∗
i [ht

i] = i).

6.2.2 Defining Strategies at Interim Histories: Actions

Partitioning of Histories:

At any interim private history, each player i partitions her history into M separate histories

corresponding to each of her pairwise games Γi,−i. If her current rival name is j, she plays game

Γi,j . Since equilibrium strategies prescribe truthful name announcement, a description of Γi,j

will complete the specification of strategies on the equilibrium path for the supergame.

Play of Game Γi,−i:

33



Fix player i and a name −i in i’s rival community. Play is specified in an identical manner for

each possible rival name. As before, I denote player i’s history in this pairwise game by ĥt
i. The

game Γi,−i between i and −i proceeds in blocks of T interactions, but with each block starting

with “initiation periods”.

Initiation Periods of Game Γi,−i: The first ever interaction between two player i and −i

is called the “game initiation period”. In this period, player 1 (from community 1) plays two

given actions (say a1 and a2) with equal probability and player 2 (from community 2) plays

two actions (say b1 and b2) with equal probability. If the realized action profile is not (a1, b1),

the game is said to be initiated and players continue to play as described below. If the realized

action profile is (a1, b1), players replay the game initiation period. Once the game is initiated,

the game proceeds in blocks of T interactions. Any non-initial block of play also starts with

similar initiation periods. In a block initiation period, players play as described above. If the

realized profile is not (a1, b1), they start playing their block action plans from the next period.

Otherwise, they play the initiation period again.

T -period Blocks in Γi,j: Once a block is initiated, players use block action plans just like

in the construction with M > 2 players. In the first period (plan period) of a block, players i

and −i take actions which inform each other about the plan of play for the rest of the block.

Partition the set of i’s actions into two non-empty subsets Gi and Bi. If player i chooses an

action from set Gi, she is said to send plan Pi = G. Otherwise she is said to send plan Pi = B.

Further, choose any four pure action profiles g, b, x, y ∈ A such that gi 6= bi ∀i ∈ {1, 2}.
Define the signature function ψ : A → {g, b, x, y} mapping one-period histories to one of the

action profiles as follows.

ψ(a) =



























g if a ∈ G1 × G2,

b if a ∈ B1 × B2,

x if a ∈ G1 × B2,

y if a ∈ B1 × G2.

Suppose the observed plans are (P1, P2).

Define a set of action plans of the standard T -period finitely repeated stage-game as follows.

Si :=
{

si ∈ ST
i : ∀ĥt

i =
(

a, ψ(a), (aP2,P1

i , a
P2,P1

−i ), . . . , (aP2,P1

i , a
P2,P1

−i )
)

, a ∈ Pi × G,

si[ĥ
1
i ] = ψi([ĥ

1
i ]) and si[ĥ

t
i] = a

P2,P1

i , t ≥ 2
}

.

As before, in equilibrium, players will use actions plans from the above set. Each player uses

one of two actions plans sG
i and sB

I , just as before.
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Define partially a favorable action plan sG
i such that

sG
i [∅] ∈ ∆(Gi),

sG
i [ĥ1

i ] = ψi([ĥ
1
i ]), and

∀ĥt
i =

(

a, ψ(a), (aP2,P1

i , a
P2,P1

−i ), . . . , (aP2,P1

i , a
P2,P1

−i )
)

, a ∈ Pi × P−i, t ≥ 1, sG
i [ĥt

i] = a
P2,P1

i .

Similarly, partially define an unfavorable action plan sB
i such that

sB
i [∅] ∈ ∆(Bi),

sB
i [ĥ1

i ] = ψi([ĥ
1
i ]),

∀ĥt
i =

(

a, ψ(a), (aP2,P1

i , a
P2,P1

−i ), . . . , (aP2,P1

i , a
P2,P1

−i )
)

, a ∈ Pi × P−i, t ≥ 1, sB
i [ĥt

i] = a
P2,P1

i ,

∀t ≥ r > 1,∀ĥt
i after ĥr

i =
(

a, ψ(a), (aP2,P1

i , a
P2,P1

−i ), . . . , (aP2,P1

i , a
P2,P1

−i ), (aP1,P2

i , a′
−i)

)

,

a ∈ Pi × P−i, a
′
−i 6= a

P2,P1

−i , sB
i [ĥt

i] = α∗
i , and

∀ĥt
i after ĥ2

i =
(

a, (ψi(a), a′
−i)

)

, a ∈ Pi × P−i, a
′
−i 6= ψ−i(a), t > 2, sB

i [ĥt
i] = α∗

i .

As before, it is possible to choose T large enough so that for some δ < 1, ∀δ > δ, i’s average

payoff within the block from any action plan si ∈ Si against sG
−i strictly exceeds v̄1 and her

average payoff from using any action plan si ∈ ST
i against sB

−i is strictly below v1. Assume from

here on that δ > δ.

Define the two benchmark action plans used to compute continuation payoffs. Let rG
i ∈ Si

be an action plan such that given any history ĥt
i, rG

i |ĥt
i gives the lowest payoffs against sG

−i

among all action plans in Si. Define rB
i ∈ ST

i to be an action plan such that given any history

ĥt
i, rB

i |ĥt
i gives the highest payoffs against sB

−i among all action plans in ST
i . Redefine v̄ and v

so that Ui(r
G
i , sG

−i) = v̄i and Ui(r
B
i , sB

−i) = vi.

Partial Strategies: Specification of Play in Γi,−i

The following describes how player i plays in the game Γi,−i. I call this i’s “partial strategy”.

• Game Initiation Period: Player i plays actions a1 and a2 and Player −i plays actions

b1 and b2 with equal probability.

• Period following Game Initiation Period: If the realized action profile is not (a1, b1),

the game is said to be initiated and players continue to play as described below. If the

realized action profile is (a1, b1), players replay the initiation period in their next meeting.

• First Plan Period of Γi,−i: In the first ever period that player i meets player −i after

their game is initiated, player i mixes between sG
i and sB

i in the following way.
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– If the first plan period of game Γi,−i occurs in the calendar period immediately fol-

lowing the first initiation period of the game, and action profile a was realized in the

initiation period, then player i plays sG
i with probability µ0 and sB

i with probability

(1 − µ0) where µ0 solves

v−i +
1 − δ

δ

8

3
ρ(a) = µ0v̄−i + (1 − µ0)v−i,

where ρ is the difference in player −i’s payoff from the action profile (a1, b1) and the

profile a.

– Otherwise, player i plays sG
i with probability µ0 and sB

i with probability (1 − µ0),

where µ0 solves

v−i = µ0v̄−i + (1 − µ0)v−i,

For discount factor δ close enough to 1, the payoffs v−i and v−i + 1−δ
δ

4ρ both lie in the

interval [(1 − ǫ)v−i + ǫv̄−i,ǫv−i + (1 − ǫ)v̄−i]. Henceforth, assume that δ is large enough.

Further, in both the above cases, µ0, 1 − µ0 ≥ ǫ.

• Block Initiation Period: In the initiation period of a non-initial block, player i plays

actions a1 and a2 and Player −i plays actions b1 and b2 with equal probability.

• Period following Block Initiation Period: If the realized action profile in the last

interaction was not (a1, b1), the next block is said to be initiated and players continue

to play as described below. If the realized action profile is (a1, b1), players replay the

initiation period.

• Plan Period of a Non-Initial Block of Γi,−i: If player i ever observed a deviation in a

signature period of an earlier block, she plays strategy sB
i with probability (1− βl) where

l is the number of deviations she has seen so far and β > 0 is small.

Otherwise, she plays strategy sG
i with probability µ and sB

i with probability (1−µ) where

the mixing probability µ is used to tailor player −i’s continuation payoff, as shown below.

Let c be the current calendar time period, and c(τ), τ ∈ {1, . . . , T} denote the calendar

time period of the τ th period of the most recently elapsed block. For any history ĥT
i

observed (at calendar period c) by i in the most recently elapsed block, if sB
i was played

in the last block, I define rewards ωB
−i(·) as

ωB
−i(ĥ

T
i ) :=

T
∑

τ=1

πB
τ

where

πB
τ =







1
δT+2−τ θB

τ
4
32T+2−τ + 1

δ
8
3ρB(a) if c − c(τ) = T + 2 − τ

0 otherwise.
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θB
τ is the difference between −i’s continuation payoff in the last block from playing rB

−i

from time τ on and −i’s continuation payoff from playing the action observed by i at

period τ followed by reversion to rB
−i from (τ + 1) on, and ρB(a) is the difference between

the maximum possible one-period payoff in the stage-game and player −i’s payoff from

profile a. Since rB
−i gives i maximal payoffs, θB

τ ≥ 0. Also by definition, ρB(a) ≥ 0.

Player i chooses µ ∈ (0, 1) to solve µv̄−i + (1 − µ)v−i = v−i + (1 − δ)ωB
−i(ĥ

T
i ).

If sG
i was played in the last block, I specify punishments ωG

−i(·) as

ωG
−i(ĥ

T
i ) :=

T
∑

τ=1

πG
τ

where,

πG
τ =







1
δT+2−τ min{0, θG

τ } 4
32T+2−τ + 1

δ
8
3ρG(a) if c − c(τ) = T + 1 − τ

0 otherwise,

θG
τ is the difference between −i’s continuation payoff within the last block from playing

rG
−i from time τ on and −i’s continuation payoff from playing the action observed by i at

period τ followed by reversion to rG
−i from τ +1 on and ρG(a) is the difference between the

minimum possible one-period payoff in the stage-game and player −i’s payoff from profile

a. Since rG
−i gives −i minimal payoffs, θG

τ ≤ 0 for all actions are used by strategies in S−i.

By definition, ρG(a) ≥ 0.

Player i chooses µ ∈ (0, 1) to solve µv̄−i + (1 − µ)v−i = v̄−i + (1 − δ)ωG
−i(ĥ

T
i ).

Note that since T is fixed, I can make (1− δ)ωG
−i(ĥ

T
i ) and (1− δ)ωB

−i(ĥ
T
i ) arbitrarily small,

for large enough δ. Restrict attention to δ close enough to 1 so that

(1 − δ)ωB
−i(ĥ

T
i ) < ǫv−i + (1 − ǫ)v̄−i − v−i and (1 − δ)ωG

−i(ĥ
T
i ) > (1 − ǫ)v−i + ǫv̄−i − v̄−i.

For such δ, the continuation payoff at every period always lies within the interval [(1 −
ǫ)v−i + ǫv̄−i, ǫv−i + (1 − ǫ)v̄−i].

• Signature Period and other Non-initial Periods: Players use the designated signa-

ture ψ(a) if a was the profile realized in the plan period of the block. For the rest of the

block, they play according to the announced plan.

This completes the specification of strategies on the equilibrium path.

6.2.3 Beliefs of Players

At any private history, each player believes that in every period, she met the true owners of the

names she encountered, and that no player ever misreported her name.
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6.2.4 Proof of Equilibrium

First I show that conditional on truthful reporting of names, these strategies constitute an

equilibrium.

Note that any player i is indifferent across her actions in the initiation period of a game

against any rival −i. This is because any gain that player i can get over her payoff from profile

a in the initiation period will be wiped out in expectation. With probability 3
8 , she expects

to meet player −i again in the next calendar time period and initiate the game. In this case,

player −i will adjust her continuation payoff to exactly offset any gain or loss she made in the

initiation period.

Once the game is initiated, the strategies of any pair of players can be represented by an

automaton which revises actions and states in every plan period. The following describes the

automaton for any player −i.

Set of states: The set of states of a player −i is the set of continuation payoffs for her rival i

and is the interval [(1 − ǫ)vi + ǫv̄i, ǫvi + (1 − ǫ)v̄i].

Initial State: Player −i’s initial state is the target payoff for her rival vi.

Decision Function: When −i is in state u, she uses sG
−i with probability µ and sB

−i with

probability (1 − µ) where µ solves u = µ [ǫvi + (1 − ǫ)v̄i] + (1 − µ) [(1 − ǫ)vi + ǫv̄i]

Transition Function: For any history ĥT
−i for player −i, if the realized action plan is sG

−i then

at the end of the block, the state transits to v̄i + (1 − δ)ωG
i (ĥT

−i). If the realized action plan is

sB
−i the new state is vi + (1 − δ)ωB

i (ĥT
−i).

It can be easily seen that given −i’s action plan, any action plan of player i whose restriction

belongs to Si is a best response. The average payoff within a block from playing rG
i against sG

−i

is exactly v̄i, and that from playing rB
i against sB

−i is vi. Moreover, the continuation payoffs are

also v̄i and vi respectively. Any player’s payoff is therefore µ0v̄i + (1 − µ0)vi.

Note that each player is indifferent between all action plans in ST
i when her rival plays sB

−i.

At any stage τ of a block, player i believes that with probability 3
4 ( 1

2 )T+2−τ , her next plan period

with −i is exactly (T + 2 − τ) periods away, and in that case, for any action she chooses now

she will receive a proportionately high reward 4
3θB

τ 2T+2−τ . In expectation, any loss she suffers

today is exactly compensated for in the future. Similarly, in an initiation period of any block,

player i believes that with probability 3
8 that she will initiate the block in the next calendar

time period, and again for any action that she chooses now, she gets a proportionate reward /

punishment.

It remains to check if players will truthfully report their names. At any calendar time t,

define the state of play between any pair of players to be k ∈ {0, 1 . . . , T}, where k is the stage of
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the current block they are in (with k=0 for the initiation period). Suppose at period t, player i1

impersonates i2 and meets rival j. Player i1 can form beliefs over the possible states that each

of her rivals j1 and j2 are in with respect to player i2, conditional on her own private history.

Based on her own history, i1 knows how many times her rivals have met. Suppose player i1

knows that player i2 has met rival j1 J1 times and met the other rival J2 times. Player i1 has

a belief over the possible states that j1 and i2 are in. Represent a player’s beliefs by a vector

(p0, . . . , pT ).

For any t ≥ 2, player i1’s belief over the states of j1 and i2 is given by:

(1, 0, . . . , 0) · HJ1 , where H =



























1
4

3
4 0 0 0 . . . 0

0 0 1 0 0 . . . 0

0 0 0 1 0 . . . 0
...

0 0 0 0 0 . . . 1

1 0 0 0 0 . . . 0



























To obtain the above expression, note that for any pair of players, conditional on meeting, if they

are in stage k = 0, they transit to state 1 with probability 3
4 and stay in the same state with

probability 1
4 . Otherwise, in every meeting, they move to the next state. The transition matrix

HJ1 is irreducible, and the limiting distribution is

lim
q→∞

(1, 0, . . . , 0) · Hq = (
4

3T + 4
,

3

3T + 4
,

3

3T + 4
, . . . ,

3

3T + 4
).

Further, it can be easily shown that

∀q ≥ 3, [(1, 0, . . . , 0)·Hq]3 > 0 where [(1, 0, . . . , 0)·Hq]3 is the 3rd component of (1, 0, . . . , 0)·Hq

It follows that for any rival j whom player i1 has not met in at least three periods in the past,

there is a lower bound φ > 0 such that the probability of j being in the signature period with

player i2 is at least φ. Now, when i1 announces the name i2, she does not know which rival she

will end up meeting. However, for any t ≥ 5, player i1 must assign probability at least φ to the

event that her rival is supposed to be in a signature period with i2. This is because at any t ≥ 5

there is at least one rival whom i1 has not met for three periods in the past. Consequently, if

she impersonates, there is a minimal strictly positive probability φǫ2 that her lie gets detected.

i1 will not impersonate i2 if her maximal gain is outweighed by the minimal expected loss from

deviation.

Player i1’s maximal current gain from impersonation =

(

1 − δ

δ + 2(1 − δ)

)

γ.
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Her expected loss in continuation payoff is given by the following expression.

Minimal loss from deviation ≥ φǫ2(1 − β)

(

δ

δ + 2(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)].

So player i1 will not impersonate if the following inequality holds.

(

1 − δ

δ + 2(1 − δ)

)

γ ≤ φǫ2(1 − β)

(

δ

δ + 2(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)].

For δ close enough to 1, this inequality is satisfied and misreporting ones name is not a

profitable deviation.

Now consider incentives for truthtelling at t ≤ 4. Suppose player i1 wants to impersonate

player i2 at t = 1. She believes that with probability 3
4 the game will get initiated in the current

period and with probability 1
4 the rival she meets now (say player j) will meet the true i2 in the

next two calendar time periods. In this case, irrespective of what player i2 plays at t = 3, with

probability ǫ, player j will become aware that a deviation occurred. In other words, at t = 1,

player i1 believes that with probability 3ǫ
16 her deviation will be detected at t = 3, and one of

her rivals will switch to her unfavorable strategy forever. By a similar argument as above, if δ

is high enough, player i1’s potential current gain from impersonation will be outweighed by the

long-term loss in continuation payoff. Similar arguments apply for t = 2, 3, 4. ¤

6.3 Proof of Folk Theorem for Multilateral Matching

This section contains the formal equilibrium construction for the case of multiple communities.

6.3.1 Structure of Equilibrium

In equilibrium, players all report their names truthfully. Each player plays the prescribed

equilibrium strategies separately against each possible playgroup that she can be matched to.

On the equilibrium path, players condition play with a particular playgroup only on the history

of play vis-à-vis that group of names. It is as if each player is playing separate but identical

games with MK−1 different playgroups.

T -period Blocks: For any target payoff profile (v1, . . . , vK) ∈ int(F ∗), I choose an appropriate

positive integer T . Play between members of any group of K players proceeds in blocks of T

periods. In a block each player i uses one of two action plans of the T -period finitely repeated

game. One of the action plans used by a player i ensures that player (i + 1) in that playgroup

cannot get more than vi+1, the target payoff for i + 1. The other action plan ensures that i + 1

gets atleast vi+1. I call i the monitor of her successor (i + 1). (Player M monitors player 1.)
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In the plan period of a block, each player randomizes between the two action plans so as to

achieve the target payoff of her successor in this playgroup. The action profile played in the

plan period acts as a coordination device that informs the players of the plan of play for the

rest of the block for this group. At the next plan period, each player’s continuation payoff is

again adjusted by her monitor based on the action profiles played in the last block with that

playgroup. Conditional on players reporting their names truthfully I show that the above form

of strategies constitute an equilibrium. Impersonations are detected and punished in a similar

way as before.

Detecting Impersonations: The second period of a block is designated as the signature

period and all players play actions that serve as their signatures. The signature used depends

on the action profile realized in the plan period of the block. No player outside the specific

K-player group can observe the action in the plan period. Consequently, if anyone outside the

playgroup tries to impersonate one of the members, she can end up playing the wrong signature

in case it is a signature period, and so get detected.

Community Responsibility: If a player sees an incorrect action or signature, she knows

that someone has deviated, though the identity of the deviator or the nature of the deviation

is unknown. (In fact every player in the playgroup knows that a deviation has occured.) The

deviator’s entire community can be punished by the relevant monitor. The monitor just switches

to the bad action plan with every playgroup in their next plan period. Since every player is

indifferent between her two action plans at the start of any block, the relevant monitor can

punish her successor’s entire community without adversely affecting her own payoff.

6.3.2 Preliminaries

Consider any payoff profile (v1, . . . , vK) ∈ Int(F ∗). There exist 2K payoff profiles wP such that

the following conditions hold.

1. wP
i > vi if Pi = G.

2. wP
i < vi if Pi = B.

These conditions imply that there exists vi and v̄i with v∗
i < vi < vi < v̄i such that the rectangle

[v1, v̄1]×. . .×[vK , v̄K ] is contained in the interior of conv
({

wP : P = (P1, . . . , PK), Pi ∈ {G,B}
})

and further, for all i, v̄i < min{wP
i : Pi = G} and vi > max{wP

i : Pi = B}.
Now there exist finite sequences of pure action profiles {aP

1 , . . . , aP
N}, with P = (P1, . . . , PK),

Pi ∈ {G,B}, so that the vectors wP , the payoffs (average discounted) from the sequence of

action profiles {aP
n }N

n=1 for any plan profile P satisfy the above relationships. As before, choose

41



ǫ ∈ (0, 1) small so that v∗
i < (1 − ǫ)vi + ǫv̄i < vi < (1 − ǫ)v̄i + ǫvi

Henceforth, when I refer to an action profile aP , I actually refer to the finite sequence of

action profiles {aP
1 , . . . , aP

N}.

6.3.3 Name Announcements at Complete Histories

After any complete history (and the null history), players report their names truthfully.

6.3.4 Actions at Interim Histories

Partitioning of Histories:

At any interim private history, each player i partitions her history into MK−1 separate histories

corresponding to different games (denoted by Γi,G−i
) with each possible playgroup G−i. If her

current playgroup’s name profile is G−i, she plays game Γi,G−i
. Fix a player i and a playgroup

G−i. Below, I describe how game Γi,G−i
is played. Let ĥt

i denote a t-period history in the game

ΓG−i
. It specifies the action profiles played in the last t interactions of i with the playgroup G−i.

Play of Game Γi,G−i
:

The game Γi,G−i
between i and playgroup G−i proceeds in blocks of T periods. In the first

period (the plan period) of a block, players take actions which inform their rivals about the

plan of play for the rest of the block. Partition the set of player i’s actions into two non-empty

subsets Gi and Bi. If player i chooses an action from set Gi, she is said to send plan Pi = G.

Otherwise she is said to send plan Pi = B.

Further, choose any two pure action profiles g, b ∈ A such that gi 6= bi ∀i ∈ {1, . . . ,K}.
Define the signature function ψ : A → A mapping one-period histories to action profiles such

that,

ψ(a) =







g if ai ∈ Gi ∀i,

b if ai ∈ Bi ∀i.

Define ψ(.) arbitrarily otherwise. Suppose the observed plans are (P1, . . . , PK). Let P̃ =

(PK , P1, . . . , PK−1).

Define a set of action plans of a T -period finitely repeated game as follows.

Si :=
{

si ∈ ST
i : ∀ĥt

i =
(

a, ψ(a), aP̃ , . . . , aP̃
)

, ai−1 ∈ Gi−1, si[ĥ
1
i ] = ψ([ĥ1

i ]) and si[ĥ
t
i] = aP̃

i ∀t ≥ 1
}

.

Si includes action plans that prescribe playing the correct signature and playing according

to the plan announced in the plan period if ones monitor announced a favorable plan G, and

everyone in the playgroup used the correct signature and played as per the plan so far. In
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equilibrium, players use action plans from the above set. Within a block, they use one of two

plans sG
i and sB

i which are defined below.

Define partially a favorable action plan sG
i such that

sG
i [∅] ∈ ∆(Gi),

sG
i [ĥ1

i ] = ψi([ĥ
1
i ]), and

∀ĥt
i =

(

a, ψ(a), aP̃ , . . . , aP̃
)

, t ≥ 1, sG
i [ĥt

i] = aP̃
i .

I partially define an unfavorable action plan sB
i such that

sB
i [∅] ∈ ∆(Bi),

sB
i [ĥ1

i ] = ψi([ĥ
1
i ]),

∀ĥt
i =

(

a, ψi(a), aP̃ , . . . , aP̃
)

, t ≥ 1, sB
i [ĥt

i] = aP̃
i ,

∀ĥt
i after ĥr

i =
(

a, ψ(a), aP̃ , . . . , aP̃ , . . . , aP̃ , a′
)

, with j : a′
j 6= aP̃

j , a′
k = aP̃

j ∀k 6= j, t ≥ r > 1,

sB
i [ĥt

i] = α∗
ji, where α∗

ji is i’s action in action profile α∗
j which minmaxes player j, and

∀ĥt
i after ĥ2

i = (a, a′) , with j : a′
j 6= ψj(a), a′

k = ψk(a)∀k 6= j, t > 2,

sB
i [ĥt

i] = α∗
ji, where α∗

ji is i’s action in action profile α∗
j which minmaxes player j.

For any history not included in the definitions of sG
i and sB

i above, prescribe the actions

arbitrarily. Given a plan profile P̃ , these strategies specify ψ(a) and aP̃ until the first unilateral

deviation. (In case of simultaneous deviations, these strategies also specify ψ(a) and aP̃ .) If

a player j unilaterally deviates, then strategy sB
i specifies that other players in her playgroup

minmax her.

Notice that if player i’s monitor (i− 1) uses strategy sG
i−1, i gets a payoff strictly more than

v̄i in each period, except possibly the first two periods. Further, if i’s monitor plays sB
i−1, player

i gets a payoff strictly lower than vi in all except at most two periods. It is therefore possible

to choose T large enough so that for some δ < 1, ∀δ > δ, i’s average payoff within the block

from any strategy si ∈ Si against sG
−i strictly exceeds v̄1 and her average payoff from using any

strategy si ∈ ST
i against sB

−i is strictly below v1.

Now I define two benchmark action plans which are used to compute continuation payoffs.

For any sj ∈ {sG
j , sB

j } define rG
i+1 ∈ Si to be an action plan such that given any history ĥt

i+1,

rG
i+1|ĥt

i+1 gives player i + 1 the lowest payoffs against sG
i and sj for j 6= i, i + 1 among all

action plans in Si+1. Define rB
i+1 ∈ ST

i to be an action plan such that given any history ĥt
i+1,
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rB
i+1|ĥt

i+1 gives the highest payoffs against sB
i and sj for j 6= i, i + 1 among all action plans in

ST
i+1. Redefine v̄ and v so that Ui+1(r

G
i+1, s

G
i ) = v̄i+1 and Ui+1(r

B
i+1, s

B
i ) = vi+1.

In other words, v̄i is the lowest payoff player i can get if she uses an action plan in Si and

her monitor plays her favorable action plan, while vi represents the highest payoff that player i

can get irrespective of what she plays when her monitor plays her unfavorable plan.

Partial Strategies: Specifying Play in Γi,G−i

Players play the following strategies in the pairwise games Γi,G−i
.

• Players always report their names truthfully.

• Each player plays the following strategies separately against each possible playgroup that

she could be in.

– Initial Period of Γi,G−i
: Player i plays sG

i with probability µ0 and sB
i with prob-

ability (1 − µ0) where µ0 solves vi+1 = µ0v̄i+1 + (1 − µ0)vi+1. Note that since

(1 − ǫ)vi + ǫv̄i < vi < ǫvi + (1 − ǫ)v̄i ∀i, we have µ0, 1 − µ0 ≥ ǫ.

– Plan Period of a Non-Initial Block: If player i ever observed a deviation in the

signature period of an earlier block with any playgroup, she plays sB
i with probability

(1 − βl), where l is the number of deviations she has seen so far and β > 0 is small.

Otherwise, she plays sG
i with probability µ and sB

i with probability (1−µ) where the

mixing probability µ is used to tailor (i + 1)’s continuation payoff.

For any history ĥT
i observed (at calendar time c) by i in the last block, specify (i+1)’s

continuation payoff as follows. Let c denote the current calendar time period, and

let c(t), t ∈ {1, . . . , T} denote the calendar time period of the tth period of the most

recently elapsed block.

If sB
i was played in the last block, I specify the reward ωB

i+1(·) as

ωB
i+1(ĥ

T
i ) :=

T
∑

τ=1

πB
τ

where,

πB
τ =







1
δT+1−τ θB

τ M (K−1)(T+1−τ) if c − c(τ) = T + 1 − τ

0 otherwise,

and θB
t is the difference between (i + 1)’s continuation payoff within the last block

from playing rB
i+1 from time t on and (i + 1)’s continuation payoff from playing the

action observed by i at period t as in history ht
i followed by reversion to rB

i+1 from

t + 1 on. Notice that θB
t ≥ 0. If sB

i was played in the last block, player i chooses

µ ∈ (0, 1) to solve µv̄i+1 + (1 − µ)vi+1 = vi+1 + (1 − δ)ωB
i+1(ĥ

T
i ).
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If sG
i was played in the last block, I specify punishments ωG

i+1(·) as

ωG
i+1(ĥ

T
i ) :=

T
∑

τ=1

πG
τ

where,

πG
τ =







1
δT+1−τ min{0, θB

τ }M (K−1)(T+1−τ) if c − c(τ) = T + 1 − τ

0 otherwise,

and θG
t is the difference between (i + 1)’s continuation payoff within the last block

from playing rG
i+1 from time t on and (i + 1)’s continuation payoff from playing the

action observed by i at period t as in history ĥt
i followed by reversion to rG

i+1 from

t + 1 on. Note that θG
t ≤ 0 for all actions that are used by strategies in Si+1. If sG

i

was played in the last block, player i chooses µ ∈ (0, 1) to solve µv̄i+1 +(1−µ)vi+1 =

v̄i+1 + (1 − δ)ωG
i+1(ĥ

T
−i).

Restrict attention to δ close enough to 1 so that

(1 − δ)ωB
i+1(ĥ

T
i ) < ǫvi+1 + (1 − ǫ)v̄i+1 − vi+1 and

(1 − δ)ωG
i+1(ĥ

T
i ) > (1 − ǫ)vi+1 + ǫv̄i+1 − v̄i+1.

Then, continuation payoffs lie within the interval [(1 − ǫ)vi+1 + ǫv̄i+1, ǫvi+1 + (1 −
ǫ)v̄i+1].

– Signature Periods and other Non-initial Periods: In signature periods, players

use the designated signature ψi(a) if a was the profile realized in the plan period. For

the rest of the block, they play as per the announced plan.

6.3.5 Beliefs of Players

After every history, players believe that in every period so far, they met the true owners of the

names they encountered.

6.3.6 Proof of Theorem 2

Here, I prove optimality on the equilibrium path. Since the proof for consistency of beliefs and

sequential rationality off the equilibrium path are identical to the two community case, these

proofs are omitted. First I show that conditional on truthful reporting of names, these strategies

constitute an equilibrium.

45



Fix a player i and a rival playgroup G−i. The partial strategy for player i in her game Γi,G−i

can be represented by an automaton that revises actions and states in every plan period. The

following describes the automaton for any player i.

Set of States: The set of states of a player i in a game with a particular playgroup is the set

of continuation payoffs for her successor i + 1 in that playgroup and is the interval [(1 − ǫ)vi +

ǫv̄i, ǫvi + (1 − ǫ)v̄i].

Initial State: Player i’s initial state is the target payoff for her successor vi+1.

Decision Function: When i is in state u, she uses action plan sG
i with probability µ and sB

i

with probability (1−µ) where µ solves u = µ
[

ǫvi+1 + (1 − ǫ)v̄i+1

]

+(1−µ)
[

(1 − ǫ)vi+1 + ǫv̄i+1

]

Transition Function: For any history ĥT
i in the last T -period block for player i, if the realized

action plan is sG
i then at the end of the block, the state transits to v̄i+1 + (1 − δ)ωG

i+1(ĥ
T
i ). If

the realized action is sB
i the new state is vi+1 + (1 − δ)ωB

i+1(ĥ
T
i ).

It can be easily seen that given i’s strategy, any strategy of player i + 1 whose restriction

belongs to Si+1 is a best response. The average payoff within a block from playing rG
i+1 against

sG
i is exactly v̄i+1, and that from playing rB

i+1 against sB
i is vi. Moreover, the continuation

payoffs are also v̄i+1 and vi+1 respectively. Any player’s payoff is therefore µ0v̄i + (1 − µ0)vi.

Further, as in the case of two communities, each player is indifferent between all possible

action plans when her monitor plays the unfavorable action plan. At any stage τ of a block, she

believes that with probability
(

1
MK−1

)T+1−τ
her next plan period with this playgroup is exactly

T + 1− τ calendar time periods away, and in that case, for any action she chooses now she will

receive a proportionate reward θB
τ M (K−1)(T+1−τ). This makes her indifferent across all action

plans in expectation.

It remains to verify that players will truthfully report their names in equilibrium. I show

below that if a player impersonates someone else in her community, irrespective of the action

she plays, there is a positive probability that her playgroup will become aware that a deviation

has occurred. Further, if a deviation is detected, her monitor will punish her whole community

(which includes her in particular). For sufficiently patient players this threat is enough to deter

impersonation.

At any calendar time t, define the state of play between any player i and any rival playgroup

G−i to be k ∈ {1, . . . , T} where k is the period of the current block they are playing in. At time

(t + 1), they will either transit to state k + 1 with probability 1
MK−1 (if i happens to meet the

same playgroup again in the next calendar time period) or remain in state k.

Suppose at time t player i1 decides to impersonate i2. Conditional on her private history, i1

can form beliefs over the possible states that each of her possible playgroups is in with respect
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to i2. Suppose i1 has met the sequence of playgroups {G 1
−i, . . . ,G

t−1
−i }. She knows that the

playgroup she meets in any period remains in the same state with i2 in that period. Fix any

playgroup G−i whom i1 can be matched to. Player i1 has a belief over the possible states G−i

is in with respect to i2. Represent i1’s beliefs over the states by a vector (p1, . . . , pn).

For any t ≥ 2, her belief over states of G−i and i2 is given by

t−1
∑

τ=1

(

1 − IG−i=G τ
−i

)

(

M − 2

M − 1

)

Pτ−1

l=1

„

1−I
G
−i=G l

−i

«

1

M − 1
(1, 0, . . . , 0)

t−1
∏

k=τ

[

Ij=jkI + (1 − Ij=jk)H
]

,

(6)

where H =















M−2
M−1

1
M−1 0 0 . . . 0

0 M−2
M−1

1
M−1 0 . . . 0

...

1
M−1 0 0 0 . . . M−2

M−1















I is the T × T identity matrix, and IG−i=G τ
−i

=







1 if G−i = G τ
−i,

0 otherwise.

To derive the above expression, note that player i1 knows that in periods when she met playgroup

G−i it is not possible that i2 met the same playgroup. Hence in these periods, the state of play

between i2 and G−i did not change. In other periods the state changed according to the transition

matrix H. This leads to the last product term. Now for any calendar period τ , player i1 can

use this information to compute the state of play between i2 and G−i conditioning on the event

that they met for the first time ever in period τ . For any τ , the probability that i2 and G−i

met for the first time at period τ is given by (M−2
M−1 )

Pτ−1

l=1

„

1−I
G
−i=G l

−i

«

1
M−1 . Finally player i1

knows that i2 and G−i could not have met for the first time in a period when she herself met

playgroup G−i, and so does not need to condition on such periods.

Notice that the initial state (1, 0, . . . , 0) and H form an irreducible Markov chain with

lim
q→∞

(1, 0, . . . , 0) · Hq = (
1

T
, . . . ,

1

T
). (7)

Further it can be easily shown that the following is true.

∀q ≥ 1, [(1, 0, . . . , 0) · Hq]2 > 0, (8)

where [(1, 0, . . . , 0) · Hq]2 represents the 2nd component of (1, 0, . . . , 0) · Hq.
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It follows from (7) and (8) that for any playgroup G−i whom i1 has not met at least in one

period, there exists a lower bound φ > 0 such that the probability of G−i being in state 2 with

i2 is at least φ.

Now, when i1 announces name i2, she does not know which playgroup she will end up meeting

that period. It follows that at t ≥ 2, player i1 assigns probability at least φ
MK−1(M−1)

to the

event that the rival she meets is in state 2 with i2. (To see why, pick a playgroup G ′
−i whom

i1 did not meet in the first calendar time period (t = 1). With probability 1
MK−1 , at time t, i1

will meet this G ′
−i and with probability 1

M−1 this G ′
−i would have met i2 at t = 1 and period t

could be their signature period.)

Consequently, if player i1 impersonates i2, there is a strictly positive probability ǫK φ
MK−1(M−1)

that the impersonation will get detected. This is because if the playgroup she meets is supposed

to be in a signature period with i2, they should play one of the actions profiles g, b, x, y depend-

ing on the realized plan in their plan period. Since players mix with probability at least ǫ on

both Plans G and B, with probability at least ǫK , i1 will play the wrong action irrespective of

what action she chooses. Her playgroup will be informed of a deviation, and her monitor will

switch to the bad plan B with all playgroups in the next respective plan period.

i1 will not impersonate any other player if her maximal potential gain from deviating is not

greater than the minimal expected loss in continuation payoff from detection.16

i1’s maximal current gain from misreporting =

(

1 − δ

δ + MK−1(1 − δ)

)

γ.

Loss in continuation payoff ≥ φ

MK−1(M − 1)
ǫK(1−β)

(

δ

δ + MK−1(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)] .

To derive the expected loss in continuation payoff, note that there is a minimal probability
φ

MK−1(M−1)
that i2 and playgroup G−i are in a signature period. Conditional on this event,

irrespective of the action played, there is a minimal probability ǫK that player i1’s deviation is

detected by playgroup G−i. Conditional on detection, the relevant monitor will switch to the

unfavorable strategy with probability (1−β) in the next plan period with i1. At best, this plan

period is T − 1 periods away, after which player i1’s payoff will drop from v1 to (1 − ǫ)vi + ǫv̄i.

i1 will not impersonate if the following inequality holds.

(

1 − δ

δ + MK−1(1 − δ)

)

γ ≤ φ

MK−1(M − 1)
ǫK(1−β)

(

δ

δ + MK−1(1 − δ)

)T

[vi − ((1 − ǫ)vi + ǫv̄i)] .

16As before, because of the random matching process, the effective discount factor for any player in her pairwise

game is not δ, but δ

δ+MK−1(1−δ)
.
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For δ close enough to 1, this inequality is satisfied, and so misreporting ones name is not a prof-

itable deviation. Now consider incentives for truth-telling in the first period of the supergame.

Suppose i1 impersonates i2 at t = 1 and meets playgroup G−i. In the next period, with probabil-

ity ǫK

MK−1 , i2 will meet the same playgroup G−i and use the wrong signature, thus informing G−i

that someone has deviated. By a similar argument as above, if δ is high enough, i1’s potential

current gain will be outweighed by the future loss in continuation payoff caused by her monitor’s

punishment. ¤
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