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Abstract. We develop a network-flow approach for characterizing interim-allocation rules
that can be implemented by ex post allocations. The network method can be used to
characterize feasible interim allocations in general multi-unit auctions where agents face hi-
erarchical capacity constraints. We apply the method to solve for an optimal multi-object
auction mechanism when bidders are constrained in their capacities and budgets.
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1. Introduction

In the classical auction design problem, a bidder’s (Bayesian) incentive constraint is used
to express his payoff (and thus his payment) in terms of interim allocations—his expected
winning probabilities given his types. This allows one to eliminate the payment rule in the
seller’s objective function, thereby reducing the problem to that of optimizing solely over
allocation rules. This celebrated method works since in the last step the optimal allocation
can be searched point-wise, for each type profile (Myerson, 1981).

There are situations, however, in which the allocation rule cannot be optimized point-wise
for each type profile. For instance, agents may face constraints in their payments for a
variety of reasons.1 Given the envelope condition, such payment constraints can be readily
checked for an interim allocation, but not for an ex post allocation. A similar situation is
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1For instance, the agents may be financially constrained (Che and Gale, 1998, 2000; Laffont and Robert,
1996; Maskin, 2000; Pai and Vohra, 2008). In the context of collusion agreement, members of a cartel may
refrain from using monetary transfers, for fear of detection (McAfee and McMillan, 1992; Che et al., 2010).
Or monetary transfers may be simply unavailable for other reasons (Miralles, 2008; Che et al., 2011).
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GENERALIZED REDUCED-FORM AUCTIONS 2

encountered if agents have type-contingent outside options (Mierendorff, 2009). Again, this
constraint can be checked for agents’ interim allocations (via the envelope expression), but
not for ex post allocations. Consequently, these situations require maximizing directly over
interim allocation rules to find the optimal mechanism.2

For this approach to work, however, one must have a handle on the following issue: what
interim allocation rules are implementable (or so called reduced form auctions), in the sense
that there exists an ex post allocation rule generating the desired interim winning probabil-
ities? Proving a conjecture by Matthews (1984), Border (1991, 2007) characterized imple-
mentable interim allocations for the one-unit auctions case.3,4

The current note revisits implementability of reduced-form auctions using a network-flow
approach: We map the problem of existence of an ex-post allocation rule that implements
given interim winning probabilities, to the problem of the existence of a feasible flow on an
appropriately defined network. Gale’s demand theorem (Gale, 1957), which is based on the
Max-Flow-Min-Cut theorem (Ford and Fulkerson, 1956), provides a necessary and sufficient
condition for the existence of a feasible flow. We find that this condition boils down to
Border’s characterization for the single-unit auction setting. We thus provide a network-
flow interpretation of the well-known result, and in the process make the insight behind the
implementability condition more transparent.5

More importantly, our network-flow approach “unweds” the implementability of reduced-
form allocations from the single-unit auction setting, thus paving way to asking the imple-
mentability question in a much broader environment. Indeed, we characterize implementable
interim allocations in a general multi-unit environment in which subsets of agents may be
subject to capacity constraints, as long as these subsets are nested.6 For a single agent,
such a capacity constraint may arise from his limited ability to utilize the units he obtains.
For instance, firms can profitably utilize at most so many units (e.g., spectrum licenses).
Constraints on groups of agents may arise from the seller’s (e.g., the government’s) desire

2Maskin and Riley (1984) were the first to take such an approach. See also Armstrong (2000), Asker and
Cantillon (2010), and Parlane (2001). In different contexts, Border’s results have also been used by Brusco
and Lopomo (2002), Manelli and Vincent (2010), and Hörner and Samuelson (2011).
3For the case of asymmetric agents, Mierendorff (2011) and Che et al. (2010) offer a tighter characterization
than Border (2007).
4In the case of two buyers, the problem of implementing a given reduced form corresponds to the problem
of finding a two-dimensional distribution with given marginals. The classic papers on this problem are
Lorentz (1949), Kellerer (1961) and Strassen (1965). The characterization of asymmetric reduced forms for
the two-buyer case is a direct consequence of their results. These methods, however, are not applicable in
the case of more than two buyers. We thank Benny Moldovanu for pointing us to this literature (see also
Gershkov et al., 2011). Recently, Hart and Reny (2011) have shown that for symmetric buyers, Border’s
characterization is equivalent to a second-order stochastic dominance condition.
5Gershkov et al. (2011) point out a connection between implementability and a majorization condition found
in Gale (1957) (see also Ryser, 1957). Gale’s construction, however, only works for two buyers. Also, his
condition differs from Border’s and seems less tractable.
6That is, the subsets form a hierarchy: any two subsets are either disjoint, or one is a subset of the other.
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to nurture minority participation or to preserve a competitive (post-assignment) industry.
For instance, the government may want to limit the number of units allocated to large or
incumbent firms, “setting aside” some units for small firms or new entrants.

We begin in Section 2 with an example that illustrates the network-flow approach. In
Section 3, we present the general model with capacity constraints on hierarchical sets of
agents and give a characterization of implementable reduced forms. These generalized im-
plementability conditions are still very rich. In the spirit of Border (1991) and Mierendorff
(2011), we reduce the conditions to those defined over upper-contour sets in Section 4. We
also show how the conditions are further reduced in case of symmetry. In Section 5, we
provide an application where agents face both capacity and budget constraints, which fur-
ther illustrates the relevance of the reduced-form auction approach as well as the use of our
characterization.

2. Examples

2.1. The Network Approach. In this section, we illustrate by a simple example how the
problem of characterizing reduced form allocation rules can be mapped to a network flow
problem. Suppose that a seller has C = 3 units of a good and that there are two potential
buyers i = 1, 2. The type-space of each agent is binary, Θi = {θi, θ̄i}. The probability that
agent i has type θi is denoted pi(θi).7 An (ex-post) allocation rule is a pair of functions
Qi : Θ→ [0, C], i = 1, 2, where Θ = Θ1 ×Θ2, such that

∀θ ∈ Θ : Q1(θ) +Q2(θ) ≤ C. (2.1)

Qi(θ) describes the “fractional” assignment of units to agent i for a given type profile θ.
A given ex post allocation rule (Q1, Q2) induces an interim allocation rule, qi : Θi →

[0, C], i = 1, 2, representing i’s expected assignment given his type: for each i and θi,

qi(θi) = Qi(θi, θ−i)p−i(θ−i) +Qi(θi, θ̄−i)p−i(θ̄−i). (2.2)

Conversely, one could begin with an arbitrary interim allocation rule and ask whether it can
be implemented by an ex post allocation rule. As motivated in the introduction, such an
approach is necessary in certain situations. Formally, an interim allocation rule qi : Θi →
[0, C], i = 1, 2, is implementable if it is the reduced form of an ex-post allocation rule,
i.e., if there exist Qi satisfying (2.1) and (2.2).

For the case of one good, Border (2007) shows that (q1, q2) is implementable if and only if
for each T1 ⊂ Θ1 and T2 ⊂ Θ2, the probability that an agent i with type θi ∈ Ti wins is less
than or equal to the probability that there is such an agent. Formally, for all T1 ⊂ Θ1 and

7For the example, we assume independence but this is not necessary to apply the network approach.
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Figure 2.1. Illustration of the network (S = the set of shaded nodes).

T2 ⊂ Θ2, ∑
i=1,2

∑
θi∈Ti

qi(θi)pi(θi) ≤
∑

θ∈[T1×Θ2]∪[Θ1×T2]

p(θ) = 1−
∑

θ∈T c
1×T c

2

p(θ),

where p(θ) = p1(θ1)p2(θ2), and T ci = Θi \ Ti is the complement of Ti. For C units, the
condition becomes∑

i=1,2

∑
θi∈Ti

qi(θi)pi(θi) ≤ C
∑

θ∈[T1×Θ2]∪[Θ1×T2]

p(θ) = C

1−
∑

θ∈T c
1×T c

2

p(θ)

 . (2.3)

The left-hand side of this condition can be interpreted as the ex ante expected quantity that
is allocated to agents i with types θi ∈ Ti. The right-hand side can be interpreted as the
ex-ante expected supply that is available in states where at least one agent i has a type
θi ∈ Ti.

A network flow approach can be employed to show that this condition is necessary and
sufficient for implementability. To this end, we define a directed network as follows:

The network consists of nodes N and directed edges E defined over pairs of nodes. Figure
2.1 illustrates the network for our example. There are several types of nodes in N . “Demand
nodes” D = Θ1 ∪ Θ2(= {θ1, θ̄1, θ2, θ̄2}) are given by possible agent-type pairs θi.8 Demand
nodes are arranged on the left side of Figure 2.1. With each demand node we associate a
demand for the good given by d(θi) = pi(θi)qi(θi). Intuitively, interim expected quantities
(q1, q2) specify the expected units required by each agent-type pair. Hence, the demand di(θi)
represents the expected units that the agent type θi must receive so as to implement the
desired interim allocation rule. On the right side, there are “supply nodes” which correspond
to the set of type profiles, or more aptly the set of “states,” Θ. With each supply node θ ∈ Θ,
we associate a supply (negative demand) of the good given by d(θ) = −p(θ)C. Intuitively,
there is a total supply of C, and with probability p(θ), this supply is available in state θ.

An interim allocation rule is implementable if the supply available in each state can be
allocated to satisfy the demand given by that interim allocation rule. We shall check the
8For convenience of notation, we identify θi with the agent-type pair (i, θi).
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latter by asking if a sufficient flow can be sent from the supply nodes to the demand nodes
to fulfill the demand required by the interim quantities. Of course, the supply available at a
given state θ cannot be used to fulfill the demand at all demand nodes. For instance, in state
(θ1, θ2), units can be allocated to an agent i = 1, 2 with type θi but not to an agent i with
type θ̄i. Directed edges E ⊂ N ×N describe to which demand nodes the supply at different
states can be distributed. For instance, there are two edges from (θ1, θ2) to the demand
nodes θ1 and θ2, respectively, but no edges to the demand nodes θ̄1 and θ̄2. More generally,
supply at θ = (θ1, θ2) can only be used to satisfy demand at nodes θ̃i for which θ̃i = θi, so
there is a directed edge from θ to θ̃i if and only if θ̃i = θi. Each directed edge is associated
with a capacity c : E → R+. In the current example, the entire supply available at θ can be
allocated to any demand node θi that is connected to θ by a directed edge. Hence, we define
the capacity of the edges by c(θ, θi) = Cp(θ).

A flow on the network is a function f : E → R+, such that f(e) ≤ c(e). A flow is called
feasible given the demand d, if (a) for each supply node θ = (θ1, θ2), the sum of the flows on
the edges leaving θ is less than or equal to the supply at θ, i.e., f(θ, θ1) + f(θ, θ2) ≤ −d(θ),
and (b) for each demand node θi, the sum of the flows on the edges entering θi must be
greater than or equal to the demand at θi, i.e., f((θi, θ−i), θi) + f((θi, θ̄−i), θi) ≥ d(θi).

A flow f induces an allocation rule via Qi(θ) = f(θ, θi)/p(θ). Importantly, if there exists a
feasible flow given demand d, then the interim allocation rule associated with that demand
is implementable. To see this, fix an interim allocation rule qi(·) and define demand as
above. If there exists a feasible flow given demand d, then we must have f((θi, θ−i), θi) +

f((θi, θ̄−i), θi) ≥ q(θi)pi(θi). Moreover we can reduce the flow on some edges so that the
inequality holds with equality for all θi. For this reduced flow f̃ , define the allocation rule
Qi(θ) := f̃(θ, θi)/p(θ). Substituting this into the equation, we get

Qi(θi, θ−i)p−i(θ−i) +Qi(θi, θ̄−i)p−i(θ̄−i) = qi(θi).

Hence, the reduced flow f̃ induces an allocation rule that satisfies (2.2) and thus implements
the reduced form q.

Conversely, if we fix an allocation rule Q and define demand by the reduced form of Q,
then the flow given by f(θ, θi) = Qi(θ)p(θ) is feasible given demand d. Therefore, an interim
allocation rule (qi)i=1,2 is implementable if and only if there exists a feasible flow for the
corresponding network defined above.

Gale’s (1957) demand theorem gives conditions for the existence of a feasible flow.

Theorem 1 (Gale’s Demand Theorem). A feasible flow f exists if and only if for each
S ⊂ N ,

d(S) ≤ c(N \ S, S), (2.4)

where d(S) :=
∑

x∈S d(x) and c(S, S ′) :=
∑

(x,x′)∈(S×S′)∩E c(x, x
′).
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In words, a feasible flow exists if net demand at any subset of nodes S does not exceed
the sum of capacities on the edges that enter the nodes in S from the nodes outside S. For
example, fix S = {θ̄1, θ̄2, (θ̄1, θ̄2)}. This set consists of the shaded nodes in Figure 2.1. The
aggregate demand at these nodes is d(S) = q1(θ̄1)p1(θ̄1) + q2(θ̄2)p2(θ̄2) − C p(θ̄1, θ̄2). The
bold-faced edges enter S from outside, and the total capacity of these edges is c(N \S, S) =

C (p(θ̄1, θ2) + p(θ1, θ̄2)). Hence, d(S) ≤ c(N \ S, S) is equivalent to

q1(θ̄1)p1(θ̄1) + q2(θ̄2)p2(θ̄2) ≤ C(p(θ̄1, θ̄2) + p(θ̄1, θ2) + p(θ1, θ̄2)). (2.5)

Note that this corresponds to inequality (2.3) for T1 = {θ̄1} and T2 = {θ̄2}. It turns out that
the inequalities generated by adding additional supply nodes to S or by removing (θ̄1, θ̄2)

from S are all implied by (2.5). The inequalities (2.3) for other sets Ti can be derived
similarly by considering sets S ⊂ N that include the demand nodes θi ∈ T1 ∪ T2. The
set of non-redundant inequalities thus generated by Gale’s demand theorem is identical to
Border’s constraints. This proves that (2.3) is necessary and sufficient for the existence of
an allocation rule that implements a given interim allocation rule in our example.

2.2. Introducing additional constraints. The network approach illustrated above makes
transparent the insight associated with Border’s conditions. More importantly, it allows us
to study reduced-form auctions in a broader environment beyond the simple auction setting.
As will be illustrated here and shown more generally in the next section, it can accommodate
a fairly general form of capacity constraints on the part of the agents.

To illustrate, we modify the previous example by assuming that, ex post, each agent may
get at most two units. An allocation rule therefore has to satisfy the additional constraint
that Qi(θ) ≤ Ci = 2 for i = 1, 2 and all type profiles θ ∈ Θ. It turns out that the Border
constraints from the previous example are not sufficient for implementability under this
additional constraint. To see this, suppose that p1(θ̄1) = p2(θ̄2) = p > 2/3 and consider
the interim winning probabilities given by q1(θ̄1) = q2(θ̄2) = q̄ = 3 − (3/2)p and q1(θ1) =

q2(θ2) = q = (3/2)(1 − p)2. It is straightforward to check that these interim winning
probabilities satisfy the Border constraints. Yet, there is no allocation rule that implements
these winning probabilities and satisfies the additional constraint Qi(θ) ≤ 2. To see this,
note that Qi(θ̄1, θ̄2) ≤ 3/2 for at least one i, which follows from Q1(θ̄1, θ̄2) + Q2(θ̄1, θ̄2) ≤ 3.
Using this and Qi(θ̄i, θ−i) ≤ 2, we have

q̄ = pQi(θ̄i, θ̄−i) + (1− p)Qi(θ̄i, θ−i) ≤
3

2
p+ 2(1− p) = 2− 1

2
p < 3− 3

2
p,

which is a contradiction.
We need to modify the network defined for the unconstrained case in order to produce

the correct condition for implementability. To reflect the additional constraint, we reduce
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the capacity of each edge (θ, θi) to Cip(θ).9 A flow in this network now induces an alloca-
tion rule that satisfies the additional capacity constraints on the individual agents. Again,
we can invoke Gale’s demand theorem to derive a set of inequalities that characterize im-
plementable reduced forms. For example, for S = {θ̄1, θ̄2, (θ̄1, θ̄2)}, the demand at S is
d(S) = q1(θ̄1)p1(θ̄1) + q2(θ̄2)p2(θ̄2) − 3 p(θ̄1, θ̄2), just as before, but the total capacity of the
edges entering S is now c(N \ S, S) = 2 (p(θ̄1, θ2) + p(θ1, θ̄2)). The key observation here is
that, out of 3 units available at each supply node in N \ S, say (θ̄1, θ2), at most two units
can be distributed to satisfy demand in S, since at most one agent in S (agent 1 in this case)
is in a position to receive supply and each agent cannot receive more than two units.

As is easily verified, condition d(S) ≤ c(N \ S, S) is equivalent to

q1(θ̄1)p1(θ̄1) + q2(θ̄2)p2(θ̄2) ≤ 3p(θ̄1, θ̄2) + 2(p(θ̄1, θ2) + p(θ1, θ̄2)). (2.6)

Comparing (2.6) to the old constraint (2.5), we observe that the new constraint is more
demanding. In fact, (2.6) provides the right condition in this example. This will be seen
formally in the next section where we provide the full characterization of implementable
interim allocation rules in a general environment.

3. Reduced-Form Auctions with Capacity Constraints

Let I = {1, . . . , |I|} be the set of agents with typical elements i, j ∈ I. For each agent i,
there is a finite set of types Θi with typical element θi ∈ Θi. As usual, we define Θ = ×i∈IΘi

and Θ−i = ×j 6=iΘj. It will be convenient to identify θi with the agent-type pair (i, θi).
Hence, we define ΘD :=

⋃
i∈I Θi for all possible agent-type pairs, and ΘD

−i :=
⋃
j 6=i Θj for

all agent-type pairs not involving agent i. Note that a typical element of Θ is a type profile
θ = (θ1, . . . , θ|I|), whereas a typical element of ΘD or ΘD

−i is an agent-type pair θj, where
j ∈ I if θj ∈ ΘD and j 6= i if θj ∈ ΘD

−i. For θ ∈ Θ, p(θ) ∈ [0, 1] denotes the probability that
this type profile, or “state”, is realized. The marginal distribution of types of any agent i is
denoted by pi(θi) and the probability of a type profile (θi, θ−i) conditional on θi is denoted
by p−i(θ−i|θi) = p(θi, θ−i)/pi(θi).

We formulate capacity constraints as follows. Let H be a family of subsets of I that
includes I and all singleton sets, i.e., {i} ∈ H for all i ∈ I. For each G ∈ H, the total
number of units that can be allocated to agents i ∈ G is constrained to be less than CG,
i.e.,

∑
i∈GQi(θ) ≤ CG for all θ ∈ Θ. CI denotes the total number of units available to the

seller. To model the constraints in a network, we assume that the constraint structure is
hierarchical: for G,G′ ∈ H we require that either G ⊂ G′, or G′ ⊂ G, or G ∩ G′ = ∅.
9Note that this approach is quite flexible. For example we could have a different constraint for agent one
and agent two by setting different capacities on the edges pointing to demand nodes of agent one (θ, θ1) and
those pointing to demand nodes for agent two (θ, θ2). In the following section, we will also demonstrate how
constraints on the total number of objects that a subset of agents may obtain, can be incorporated in the
network approach.
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If G $ G′ and there exists no G′′ ∈ H, such that G $ G′′ $ G′, then G′ is called the
predecessor of G. Capacity constraints for individual agents are denoted by Ci. If there
is no constraint for some individual agent i, we define Ci to be the capacity constraint of
i’s predecessor. Without loss of generality, we assume CG to be less than or equal to CG′ ,
where G′ is G’s predecessor. Finally, let C := {CG}G∈H.

Several realistic situations are accommodated by the hierarchical capacity constraints. In
the example of Section 2.1, we have I = {1, 2} and this is the only set for which we have a
capacity constraint. Hence, H = {I, {1}, {2}} and CI = 3 (= Ci). In the example of Section
2.2, each agent faces an individual capacity constraint. In this case, the hierarchy of sets H
remains the same but we set Ci = 2 and CI = 3.

Another special case of hierarchical capacity constraints arises when the seller wants to
limit the number of units accruing to a certain groups of agents such as incumbents or foreign
firms. If there are K such groups with members Gk and Gk ∩ Gl = ∅ for k 6= l, the corre-
sponding hierarchy of constraints would be given by H = {I,G1, . . . , GK , {1}, . . . , {|I|}}.

We say an (ex-post) allocation rule Q : Θ→ ×i∈I [0, Ci] respects (H, C), if for each G ∈ H,∑
i∈GQi(θ) ≤ CG for all θ ∈ Θ. An interim allocation rule q = (q1, .., qn), qi : Θi → [0, Ci],

is implementable or a reduced form if there exists an allocation rule that respects (H, C) and
satisfies

qi(θi) =
∑

θ−i∈Θ−i

Qi(θi, θ−i) p−i(θ−i|θi),∀i ∈ I. (3.1)

For a given constraint structure (H, C), we define a network (N,E, c). The network is
defined slightly differently relative to the previous section to facilitate our proof of the char-
acterization theorem. The node set is now given by N = {(G, θ) |G ∈ H, θ ∈ Θ}∪ΘD∪{σ},
where each θi ∈ ΘD is called a demand node and σ is called super-source. Node (G, θ)

for G ∈ H is called a capacity node and we sometimes write (i, θ) instead of ({i}, θ). To
simplify notation, for each θ ∈ Θ, we introduce capacity node (I, θ) that replaces the supply
node θ in the example of Section 2.

Next, the network has the set E of directed edges defined over pairs of nodes. The edges
form a tree with the super source σ at its root. Specifically, for each θ ∈ Θ, there is a directed
edge (σ, (I, θ)) ∈ E with capacity c(σ, (I, θ)) = CIp(θ) that emanates from the super-source
and enters the capacity node (I, θ). The edge capacity CIp(θ) specifies the maximum ex
ante expected units that are available at state θ for all agents.10 Next, for each capacity
node (G, θ), G 6= I, there is a directed edge ((G′, θ), (G, θ)) ∈ E, if G′ is the predecessor
of G, with capacity c((G′, θ), (G, θ)) = CGp(θ). The capacity specifies the maximum ex

10In other words, the edges do not originate from supply nodes Θ but rather from the super source, unlike
the illustrative example in Section 2. For this reason, CIp(θ) is now encoded as the capacity of the edge
from σ to (I, θ), rather than a supply (or a negative demand) at the supply node θ.
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({1}, (θ1, θ2))

({2}, (θ1, θ2))
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Figure 3.1. Bold nodes constitute roots and shaded nodes constitute S(T ),
where Ti = {θi},∀i while capacity constraints are Ci = 2, ∀i and C{1,2} = 3.

ante units that group G can receive in state θ (in expectation). Finally, for each demand
node θi, and each θ−i ∈ Θ−i, there is a directed edge ((i, (θi, θ−i)), θi) ∈ E with capacity
c ((i, (θi, θ−i)), θi) = ∞. The unlimited capacity assumption is for analytical convenience,
and it does not preclude an individual capacity limit, which is encoded as the capacity of
the edge entering capacity node (i, θ). As before, ((i, (θ′i, θ−i)), θi) 6∈ E if θ′i 6= θi.

For a given interim allocation rule q = (qi : Θi → [0, Ci])i∈I , we define demand as d(θi) =

pi(θi)qi(θi) for demand nodes, d(G, θ) = 0 for capacity nodes, and d(σ) = −∞.11 Figure
3.1 illustrates this network for the example in Section 2.2. Note that in addition to the
super-source, we have also introduced an additional layer of capacity nodes preceding the
demand nodes. This simplifies the notation and the exposition of the proofs.

A flow on (N,E, c) is a function f : E → R+ such that for all e ∈ E, f(e) ≤ c(e), and for
each capacity node (G, θ) ∈ N , the flow entering (G, θ) equals the flow leaving it. Formally,
the following flow conservation condition must hold for any capacity node n:∑

n′′:(n,n′′)∈E

f(n, n′′) = f(n′, n), where (n′, n) ∈ E.

A flow is feasible for given demand d if for all demand nodes θi ∈ ΘD,12∑
θ−i∈Θ−i

f((i, (θi, θ−i)), θi) ≥ d(θi).

11The infinite supply at σ is assumed for analytical ease in the proof and has no consequence otherwise; the
capacities of the edges emanating from σ clearly constrain the number of units that can be allocated to the
agents.
12Since we define the supply of the super-source as d(σ) = −∞, the aggregate flow leaving σ cannot exceed
the available supply.
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The following lemma operationalizes our network flow framework.

Lemma 1. An interim allocation is implementable if and only if there exists a feasible flow
for the demand given by that interim allocation rule.

By Gale’s demand theorem, a feasible flow exists if and only if the network satisfies (2.4)
for each S ⊂ N . We exploit this result to characterize implementable reduced-form auctions.
Our goal is to derive a set of conditions for implementable reduced-forms, one for each profile
of type sets T = (T1, ..., T|I|), Ti ∈ Θi, much in the spirit of Border (1991, 2007). To this
end, it is natural to consider (2.4) for sets S that contain the demand nodes corresponding
to these types sets, i.e., TD = ∪iTi ⊂ ΘD. There are many sets S that satisfy S ∩ΘD = TD.
For each TD, we identify the set S that gives rise to the tightest condition. The associated
Gale conditions then yield the desired characterization.

To do so, we need some more definitions. In particular, for a given profile of type sets
T = (T1, ..., T|I|), Ti ⊂ Θi, we need to describe which agents can receive the good in each
state θ ∈ Θ, and what is the most they can collectively receive at that state, if their types
are in T . To begin, for any I ′ ⊂ I, let us call a family of sets H ⊂ H a cover of I ′ if
I ′ ⊂

⋃
G∈H G. The set of all covers of I ′ is denoted by P(I ′) :=

{
H ⊂ H

∣∣ I ′ ⊂ ⋃G∈H G
}
. If

we add up the capacities CG for all sets G ∈ H in a cover of I ′, we obtain an upper bound
for the total number of units that the agents in I ′ may obtain.

Again fix the profile of type sets T = (T1, . . . , T|I|). For any state θ ∈ Θ, we let I(θ, T ) :=

{i ∈ I | θi ∈ Ti} denote the set of agents who can receive the good at that state when their
types are in T .13 We then let

φ(θ, T ) := min
H∈P(I(θ,T ))

∑
G∈H

CG

be the maximal number of units the agents in I(θ, T ) can receive in state θ, and let

H(θ, T ) ∈ arg min
H∈P(I(θ,T ))

∑
G∈H

CG

be an associated cover, which we call a minimal cover.14

In terms of our network, φ(θ, T ) represents the maximal flow the demand nodes TD =

T1∪ . . .∪T|I| (those corresponding to the profile of type sets T ) can receive in state θ—more
precisely, from the super source via (I, θ) (i.e., the capacity node corresponding to state
θ). The minimal cover H(θ, T ) in turn represents the groups of agents whose total capacity
limits form a “bottleneck” on this flow.
13For instance, in the example of Section 2.2, suppose the state is (θ̄1, θ2). Then, when their types are in
T = ({θ̄1}, {θ̄2}), only agent 1 can receive the good, so I((θ̄1, θ2), ({θ̄1}, {θ̄2})) = {1}.
14Going back to the example, the covers of I((θ̄1, θ2), ({θ̄1}, {θ̄2})) = {1} are {1} and {1, 2} = I.
Since C1 = 2 < CI = 3, the minimal cover is {1} and the associated capacity is C1 = 2. Namely,
H((θ̄1, θ2), ({θ̄1}, {θ̄2})) = {1}, and φ((θ̄1, θ2), ({θ̄1}, {θ̄2})) = C1 = 2.
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Finally, we let Y (T ) := {θ ∈ Θ|I(θ, T ) 6= ∅} =
⋃
i∈I(Ti × Θ−i) denote the set of states at

which at least one agent i with type in Ti can receive the good. This means that the capacity
nodes {(I, θ)}θ∈Y (T ) are precisely those that can send flow to demand nodes TD. We now
present our main characterization:

Theorem 2. Let q = (qi : Θi → [0, Ci])i∈I be an interim allocation rule. Then q is the
reduced form of an allocation rule that respects the capacity constraints (H, C), if and only if
for all T = (T1, . . . , T|I|), where Ti ⊂ Θi,∑

i∈I

∑
θi∈Ti

qi(θi)pi(θi) ≤
∑

θ∈Y (T )

φ(θ, T )p(θ). (B)

We first illustrate the main idea of the proof. The formal proof can be found in the
Appendix.

Illustration of Proof. The key arguments for the proof are: (a) For each T = (T1, ..., T|I|),
Ti ⊂ Θi, Gale’s condition (2.4) for a certain set S = S(T ) is equivalent to (B) for T , and (b)
given these conditions, the conditions (2.4) for all other sets S satisfying S ∩ ΘD = TD are
redundant. We illustrate the construction of the sets S(T ) via the example of Section 2.2.

Suppose that T = ({θ1}, {θ2}). We then choose S(T ) containing demand nodes TD =

{θ1, θ2} such that the directed edges across from N\S(T ) into S(T ) are the most binding
bottlenecks. To do this, we first observe that only the capacities available in states Y (T ) =

{(θ1, θ2), (θ1, θ2), (θ1, θ2)} can be allocated to agent types in TD. For each state θ ∈ Y (T ), we
define “roots” given by the nodes associated with the minimal cover of the agents i ∈ I(θ, T ).
At state (θ1, θ2), both agents can receive flow at the maximum capacity of φ((θ1, θ2), T ) =

CI = 3, so the minimum cover is I with associated root (I, (θ1, θ2)). At state (θ1, θ2), only
agent 1 can receive flow at the maximum capacity of φ((θ1, θ2), T ) = C1 = 2, so the minimum
cover is {1} with associated root ({1}, (θ1, θ2)). Similarly, at state (θ1, θ2), the minimal cover
is {2} and the associated root is ({2}, (θ1, θ2)) and the capacity is φ((θ1, θ2), T ) = C2 = 2.
Roots are marked by bold-faced nodes in Figure 3.1. In addition to these three roots, all
the nodes that are on the path from these roots to the demand nodes TD = {θ1, θ2} are
included in S(T ). In Figure 3.1, the shaded nodes are the set S(T ). Notice that all edges
from N\S(T ) enter S(T ) only via these roots, and these edges (marked as thick arrows in
Figure 3.1) form the bottlenecks. The total capacity of the edges that enter the roots for
all θ ∈ Y (T ) is the maximum flow that can reach the set TD. It equals the sum of φ(θ, T )’s
weighted by p(θ)’s, thus giving the right-side of (2.6). Meanwhile, d(S(T )) is simply the
total demand at TD = {θ1, θ2}, which equals the left-side of (2.6). This shows that (2.6) is
given by (2.4) for S = S(T ).

Furthermore, (2.4) for any S 6= S(T ) such that S ∩ΘD = {θ1, θ2} is implied by (2.6). For
instance, consider S = S(T )\{(I, (θ1, θ2))}. The demand d(S) is the same as d(S(T )), giving
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rise to the same quantity on the left side of (2.4), but the total capacity of edges that enter
S exceeds the total capacity of edges that enter S(T ) by p(θ1, θ2) = (C1 +C2−CI)p(θ1, θ2),
so the right side gets bigger. �

In the standard one-unit auction, Ci = CG = 1 for all i ∈ I and G ∈ H, so that φ(θ, T ) = 1

for all θ ∈ Y (θ). Hence, our characterization simplifies to the familiar condition:

Corollary 1 (Border). In the standard auction, an interim allocation rule q is the reduced
form of an allocation rule if and only if for all T = (T1, . . . , T|I|), where Ti ⊂ Θi,∑

i∈I

∑
θi∈Ti

qi(θi)pi(θ) ≤
∑

θ∈Y (T )

p(θ).

Remark 1. The restriction that the constraint structure is hierarchical is crucial for our
approach. To illustrate the problem that arises with non-hierarchical constraints, let us
consider an example with three agents, I = {1, 2, 3} and H = {I,G = {1, 2}, G′ =

{2, 3}, {1}, {2}, {3}}. This constraint structure is not hierarchical because G and G′ are
not disjoint, and neither set is a subset of the other. In order to impose the capacity con-
straints for G in a network, the nodes in A := {({1}, θ), ({2}, θ)} would have to be connected
to the super-source through a single capacity node (G, θ). Similarly, in order to impose the
capacity constraints for G′ in the network, the nodes in B := {({2}, θ), ({3}, θ)} would have
to be connected to the super-source through a single capacity node (G′, θ). Since the con-
straint structure is not hierarchical, the node sets A and B overlap and it is impossible to
impose both constraints simultaneously.

Remark 2. The characterization results in this and the following sections generalize to the
case of continuous type distributios. The formal proof uses methods from Border (1991).
To be specific, given an interim allocation rule q satisfying a continuous type version of (B),
one can construct an approximation by simple functions, i.e., a sequence of finite interim
allocation rules that satisfy the continuous type version of (B) and converge to q. Each
finite allocation rule satisfies (B) in an appropriately discretized version of the continuous
type model and is therefore implementable by Theorem 2. Finally, the set of implementable
interim allocation rules is compact (given an appropriate topology). Therefore, the interim
allocation rule q, which is the limit of a sequence of implementable allocation rules, is also
implementable.

4. Reduction of Constraints

The characterization in the previous section involves
∏

i∈I |2Θi | inequalities. Since this
number grows very quickly with the cardinalities of the type spaces, the condition is not
very tractable. In this section, we derive two reductions that lead to more tractable char-
acterizations. First, we show that if types are independently distributed, it is sufficient to
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check (B) for the upper contour sets of the interim allocation functions, i.e., set of types
whose interim expected allocations are no smaller than a certain threshold. With this re-
duction, the number of inequalities that we need to check becomes much smaller,

∏
i∈I |Θi|

at most. Second, we show that when some group(s) of agents are symmetric, and if we
restrict attention to group-symmetric reduced forms, it suffices to check (B) only for those
T = (T1, . . . , T|I|) for which the Ti’s are identical for agents in the same group.

4.1. Independent Type Distribution. Consider the situation where agents’ types are
independently distributed, i.e. p(θ) =

∏
i∈I pi(θi), ∀θ ∈ Θ. The following result shows that

it is sufficient to check (B) for upper contour sets Ti.

Theorem 3. Suppose that the agents’ types are independently distributed. Then, q is the
reduced form of an allocation rule that respects (H, C), if and only if (B) holds for all T =

(Ti)i∈I , where Ti = {θi ∈ Θi | qi(θi) ≥ ei}, for some ei ∈ [0, Ci].

Bayesian incentive compatibility requires that interim allocations are monotonic, in which
case the theorem entails even simpler conditions. With monotonicity, an upper contour set
boils down to an interval of types above a threshold. Hence, we obtain the following familiar
characterization in the standard setup:

Corollary 2. Consider the standard single-unit setup and suppose that each Θi is linearly
ordered and qi is nondecreasing. Then, q is the reduced form of an allocation rule if and only
if for all (θ1, · · · , θ|I|) ∈ Θ, ∑

i∈N

∑
θ′i≥θi

qi(θ
′
i)pi(θ

′
i) ≤ 1−

∏
i∈I

Pi(θi),

where Pi(·) is the cdf of pi(·), i.e. Pi(θi) =
∑

θ′i<θi
pi(θ

′
i).

4.2. Generalized Symmetric Environments. In many environments, a set of agents
share similar characteristics. For instance, in procurement auctions, the incumbents and
entrants form two groups, and those within the same group have more in common in terms
of technologies and other factors than those outside that group. In such a circumstance,
it makes sense to view the agents within the same group as symmetric. This can be done
formally by considering a model in which the agents are partitioned into groups, and those in
the same group are ex ante identical. In such a model, it often suffices to search for an optimal
mechanism in the class of group-symmetric mechanisms, namely those that treat ex-ante
identical buyers identically. As will be seen, with such mechanisms, the task of identifying
reduced-forms can be reduced even further to checking (B) only for group-symmetric sets T .
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To be more specific, suppose that I can be partitioned into subsets, G1, . . . , GL. All agents
in each non-singleton set (or group) G` are symmetric in the following sense:15 First, for all
i, j ∈ G`, Θi = Θj =: Θ̂`. Second, p is invariant to the permutation of types for any pair of
agents i, j ∈ G`, i.e., p(θi, θj, θ−ij) = p(θj, θi, θ−ij) for all θi, θj ∈ Θ̂` and all θ−ij ∈ Θ−ij. This
implies that for each group, there exists a marginal distribution p̂` : Θ̂` → [0, 1], satisfying
pi(θ`) = p̂`(θ`) for all θ` ∈ Θ̂` and all i ∈ G`. Note that we do not require the type distribution
to be independent. Third, agents from the same group have identical capacity constraints;
i.e., for all G`, there is some Ĉ` with Ci = Ĉ` for all i ∈ G`. Fourth, we assume that there
is no non-singleton set G ( G` with G ∈ H, i.e., the sets G` are groups in the lowest tier of
the hierarchy (except for the singleton sets). We do not impose any restrictions on higher
tiers of the hierarchy.

We call the environment described so far a generalized symmetric environment and es-
tablish a reduction of our characterization that applies to group-symmetric reduced forms.
Formally, a reduced form is group-symmetric if for each group G`, there exists an interim
allocation rule q̂` : Θ̂` → R+ such that qi(θ`) = q̂`(θ`) for all i ∈ G` and all θ` ∈ Θ̂`.

Theorem 4. In the generalized symmetric environment, a group-symmetric interim alloca-
tion rule q is the reduced form of an allocation rule that respects (H, C) if and only if (B)
holds for all T satisfying Ti = Tj for all i, j ∈ G` and all ` = 1, . . . , L.

If types are independently distributed, the reductions in Theorems 3 and 4 can be com-
bined:

Corollary 3. Suppose the agents’ types are independently distributed. Then, in the general-
ized symmetric environment, q is the reduced form of an allocation rule that respects (H, C)
if and only if (B) holds for all group-symmetric T ’s where each Ti is an upper contour set
of qi.

The original characterization by Border (1991) and its extension by Mierendorff (2011) with-
out capacity constraint are special cases of this corollary.

Remark 3. Suppose that agents from two different groups are ex-ante identical but they
face two separate (but identical) capacity constraints. Even in such a case we can repeat the
argument in Theorem 4 to show that the set T can be made symmetric for all agents in those
groups. To be precise, consider the generalized symmetric environment and suppose that
two groups G1 and G2, are symmetric in the following sense: (i) |G1| = |G2|; (ii) Ĉ1 = Ĉ2

and CG1 = CG2 ; (iii) Θ̂1 = Θ̂2; and (iv) p(θG1 , θG2 , θ−(G1∪G2)) = p(θG2 , θG1 , θ−(G1∪G2)). Then,
it suffices to check (B) for all T = (T1, . . . , T|I|) such that Ti = Tj for all i, j ∈ G1 ∪G2.

15We do not exclude the possibility of singletons but symmetry does not impose any conditions on these
sets.
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Remark 4. A symmetric interim allocation rule q satisfying the conditions of Theorem 4
may be implemented by an allocation rule Q that is not symmetric. Note, however, that
we can uniformly randomize the identities of buyers that belong to the same group G`

before applying the allocation rule Q. We thereby construct a new allocation rule Q̂ that is
symmetric and has the same reduced form, i.e., it also implements q.

5. Application: Auctions with Budget- and Capacity-Constrained agents

This section applies our characterization of reduced-form auctions to solve a specific prob-
lem and in the process illustrates the relevance of the characterization—namely, how formu-
lating mechanisms in reduced form can make an otherwise intractable problem manageable.
To begin, suppose that n ≥ 2 units of a good are to be allocated to a set I of agents. The
seller wishes to maximize revenue subject to the constraint that each agent can receive at
most m units of the good and cannot pay more than his budget, which is common and equal
to w.

This kind of problem may arise in the sale of government-owned assets, such as radio
spectrum. A government sells many licenses, but the number of licenses that can be allocated
to a single firm is often limited. This may be because firms have diminishing marginal utilities
from licenses or limited abilities to profitably operate beyond certain units. Alternatively, a
government may limit the number of licenses accruing to a single firm in order to keep the
post-assignment market from being too concentrated. The limited budget reflects a firm’s
limited access to capital markets.16

Finally, revenue maximization is a good model of a government with sufficiently high
shadow costs of raising public funds. For simplicity, the agents are assumed to be symmetric.
The value of each unit of the good is equal to θ with probability p ∈ (0, 1) and θ ∈ (0, θ)

with probability 1 − p. We assume n
|I| < m < n; namely, the individual quota is binding

enough to prevent a sale of all units to one agent but leaves some scope for competition. We
also assume that w > θ n

|I| , which will ensure that the budget constraint is not binding for a
low-type agent. This model is stylized, but contains a new feature—“firm-specific capacity
constraints”—which is relevant in practice.

The seller’s problem can be formulated in a direct mechanism which specifies (Q, T ) :

{θ, θ}|I| → ∆ × R|I| where ∆ := {(x1, ..., x|I|) ∈ [0,m]|I||
∑

i∈I xi ≤ n}. Qi(θi, θ−i) is the
“fractional” quantity of the good agent i receives and Ti(θi, θ−i) is his expected payment,
when the agents report θ. By an argument similar to Remark 4, without loss we can focus
on a symmetric mechanism in which (Qi(θ, θ

′), Ti(θ, θ
′)) = (Qj(θ, θ

′), Tj(θ, θ
′)) for all i, j,

θ ∈ {θ, θ} and θ′ ∈ {θ, θ}|I|−1, and which is invariant to permutations of θ′. Let X be the
set of all such mechanisms.
16The relevance of budget constraints in spectrum auctions is well-documented. See Salant (1997) or Jehiel
and Moldovanu (2003, p. 296).
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The problem facing the seller is:

max
(Q,T )∈X

E

[∑
i∈I

Ti(θ̃i, θ̃−i)

]
subject to

θiEθ̃−i
[Qi(θi, θ̃−i)]−Eθ̃−i

[Ti(θi, θ̃−i)] ≥ θiEθ̃−i
[Qi(θ

′
i, θ̃−i)]−Eθ̃−i

[Ti(θ
′
i, θ̃−i)], ∀θi, θ′i ∈ {θ, θ}, i ∈ I,

(IC)

θiEθ̃−i
[Qi(θi, θ̃−i)]− Eθ̃−i

[Ti(θi, θ̃−i)] ≥ 0, ∀θi ∈ {θ, θ},∀i ∈ I, (IR)

Ti(θi, θ−i) ≤ w,∀θi ∈ {θ, θ}, ∀θ−i ∈ {θ, θ}|I|−1,∀i ∈ I. (BC)

The first two constraints are standard, requiring truthful reporting as a Bayes-Nash equi-
librium and voluntary participation of the agents. The last constraint reflects the agent’s
budget constraint. In the current context, the presence of this constraint makes the classic
Myerson approach inapplicable, since it is difficult to identify an optimal ex-post alloca-
tion point-wise, that satisfies this constraint. Instead, the problem is made tractable via
a reduced-form auction approach, i.e., by searching for the optimal mechanism directly in
“interim” allocations.

To begin, define interim quantity qi(θi) and interim payment ti(θi), respectively. Given
symmetry, let q := qi(θ), q := qi(θ), t := ti(θ), t := ti(θ),∀i ∈ I. We can then express the
objective as well as (IC) and (IR) using these variables. In particular, as is well known, the
incentive constraint implies monotonicity:

q ≥ q. (M)

and given monotonicity, the incentive constraint binds only for the high type and individual
rationality binds only for the low type:

θq − t = θq − t, (IC ′)

θq − t = 0. (IR′)

Hence, (IC) and (IR) can be replaced by (M), (IC ′) and (IR′). Further, we can replace
(BC) by

t ≤ w. (BC ′)

This can be seen as follows. First, t ≤ w is necessary for (BC) since, if Ti(·, ·) ≤ w, we must
have t = Eθ̃[Ti(θ, θ̃)] ≤ w. Second, (BC ′) is sufficient since we can simply set Ti(θ, ·) ≡ t and
Ti(θ, ·) ≡ t, which preserve all other constraints and (BC) given that (M) holds.

Finally, the interim allocations must be “reduced-form auctions,” or implementable. Corol-
lary 3 implies that (q, q), q ≥ q, is a reduced-form auction if and only if

|I| · (qp+ q(1− p)) ≤ n (B1)
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|I| · qp ≤
|I|∑
k=1

(min {n, km})
(
|I|
k

)
pk(1− p)|I|−k. (B2)

The first condition implies that the quantity assigned to the agents should not exceed the
total supply. (The individual cap of m is not binding since m > n

|I|). The second condition
requires that the expected quantity assigned to high-type agents does not exceed the expected
capacity limits they face.17 (Notice the expression min{·, ·} above corresponds to φ(θ, T ) in
our general characterization.) The feasible set is depicted as the dark shaded area in Figure
5.1. For later use, let qM be the highest q that satisfies (B2), and let qM be the highest q
satisfying (B1) given q = qM . Let η(q) be the highest q satisfying (B1) for any q ∈ [ n|I| , q

M ].
Summarizing the results so far, the problem [P ] simplifies to:

[P ′] max
(q,q)
|I| · (pt+ (1− p)t)

subject to
(M), (IC ′), (IR′), (BC ′), (B1), (B2).

Substituting (IC ′) and (IR′), [P ′] in turn simplifies to

[P ′′] max
(q,q)
|I| · (pθq + (1− p)J(θ)q)

subject to
(M), (B1), (B2) and

θq − (θ − θ)q ≤ w, (BC ′′)

where J(θ) := θ − p
1−p(θ − θ).

Problem [P ′′] is a simple linear program. In particular, the budget constraint is now
expressed in terms of interim allocations. Its optimal solution can be characterized in a
straightforward manner. The optimal interim allocation rule (q∗, q∗) is described as follows.

(1) If w ≥ θqM and p > θ/θ, then (q∗, q∗) = (0, qM), (a point denoted by A in Figure 5.1).
In this case, the budget w is sufficiently large so that it is never binding; in Figure
5.1, the budget constraint line representing (BC ′′) (not drawn) would lie above the
point A. The condition p > θ/θ means that the seller finds it optimal to exclude the
low type altogether. (p > θ/θ ⇐⇒ J(θ) < 0.)

(2) If w ≥ θqM − (θ − θ)qM and p ≤ θ/θ, then (q∗, q∗) = (qM , qM), (a point denoted
by C in Figure 5.1).18 In this case, the budget w is large enough so that the line

17There are k ≥ 1 high type agents with probability
(|I|
k

)
pk(1− p)|I|−k and each high type agent can never

get more than m units.
18We have qM ≥ qM since

qM =
1

p

|I|∑
k=1

(
min

{
n

|I|
,
km

|I|

})(
|I|
k

)
pk(1− p)|I|−k
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Figure 5.1

corresponding to (BC ′′) would lie above the point C. The condition p ≤ θ/θ means
that the seller wishes to maximize both q and q.

(3) If θqM > w ≥ θqM − (θ − θ)qM and p > θ/θ, then (q∗, q∗) =
(
θqM−w
θ−θ , qM

)
(a point

denoted by B in Figure 5.1).19 The condition p > θ/θ means that the seller would
exclude the low type, absent the budget constraint. This latter constraint is binding,
however, which limits the payment she can extract from the high type via exclusion.
This lessens the degree of exclusion of the low type.

(4) If θqM − (θ − θ)qM > w ≥ θ n
|I| , then (q∗, q∗) solves the equations q = η(q) and

θq− (θ− θ)q = w.20 This point is denoted by D in Figure 5.1. In this case, q∗ < qM ,
so the seller sells less to the high type and more to the low type than under the
efficient allocation.

=

|I|−1∑
j=0

(
min

{
n

j + 1
,m

})(
|I| − 1

j

)
pj(1− p)|I|−1−j

≥
|I|−1∑
j=0

(
min

{
n

|I|
,m

})(
|I| − 1

j

)
pj(1− p)|I|−1−j

=
n

|I|
= pqM + (1− p)qM .

19It is easily verified that the budget line is always steeper than the iso-profit line. Therefore q∗ = qM is
optimal (rather than q∗ = w/θ).
20q∗ < q∗ implies w < θqM = θq∗ < θq∗, which violates the budget constraint. Hence q∗ ≥ q∗.
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Two observations are worth making. First, the degree of exclusion is lessened by the
presence of budget constraints.21 The reason is that the rent that the seller can extract from
the high type by excluding the low type is limited by the budget constraint green. Second,
the optimal mechanism involves “random” allocation in Case 4. That is, the low type gets
some units with positive probability even when the high type is not fully assigned up to its
capacity; so the optimal mechanism “distorts” the high-type’s allocation downward, which
stands in contrast to the standard problem absent budget constraints. Indeed, these are
some features of optimal mechanisms when agents are financially constrained (see Laffont
and Robert (1996), Che and Gale (2000), Maskin (2000), and Pai and Vohra (2008)). The
current analysis, enabled by our new methodology, shows that they reemerge in the presence
of the “firm-specific capacity” constraint.

More interestingly, our new characterization allows us to study the effect of the firm’s
capacity constraint. Suppose the firm capacity rises from m to m′ > m. This means that
the feasible set expands to the light shaded area as depicted in Figure 5.1. Evidently, no
changes occur when the initial solution was at D in Case 4. Changes occur in the other
three cases. In all these cases, not surprisingly, q∗ rises since more units can be sold to the
high type now. It is also not surprising that in Case 2 this results in fewer units being sold
to the low type; i.e., q∗ falls as we move from C to E. Interestingly, more units can be sold
to the low type as well; in Case 3 (and possibly in Case 1), both q∗ and q∗ rise (for Case
3, this is depicted as a shift from B to E in the figure). The reason has to do with the
binding budget constraint in this case; selling more to the high type reduces the benefit from
“partially” excluding the low type further, making it profitable to sell more to the low type.
In this case, efficiency improves more than can be accounted for by the increased capacity.

Appendix A. Omitted Proofs

Proof of Lemma 1. (“If” part). Fix an interim allocation rule q, and let d be the associated
demand. Suppose there exists a feasible flow f for demand d in the network. Then,∑

θ−i∈Θ−i

f((i, (θi, θ−i)), θi) ≥ d(θi) = qi(θi)pi(θi).

Then, for each θi and θ−i, there exists f̃((i, (θi, θ−i)), θi) ∈ [0, f((i, (θi, θ−i)), θi)] such that∑
θ−i∈Θ−i

f̃((i, (θi, θ−i)), θi) = d(θi) = qi(θi)pi(θi).

21Suppose J(θ) < 0. When w is sufficiently high, the optimal solution is in Case 1. But as w falls, the
optimal solution shifts to Case 2 initially and finally to Case 4 when w falls even further. In the process, q∗
increases.
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We can extend f̃ to the entire set E of edges: For each capacity node (G, θ), define the
flow on edge (n, (G, θ)) ∈ E via the flow conservation law: f̃(n, (G, θ)) :=

∑
i∈G f̃((i, θ), θi).

Clearly, f̃ constructed in this way is a feasible flow for demand d.
Now define the allocation rule Q given by:

Qi(θ) :=
f̃((i, θ), θi)

p(θ)
.

This rule respects (H, C) since, for any G ∈ H,∑
i∈G

Qi(θ) =
∑
i∈G

f̃((i, θ), θi)

p(θ)
=
f̃((G′, θ), (G, θ))

p(θ)
≤ c((G′, θ), (G, θ))

p(θ)
= CG,

where G′ is the predecessor of G. Further, Q implements q since, for each θi,

qi(θi) =

∑
θ−i∈Θ−i

f̃((i, (θi, θ−i)), θi)

pi(θi)
=

∑
θ−i∈Θ−i

Qi(θi, θ−i)
p(θi, θ−i)

pi(θi)
=

∑
θ−i∈Θ−i

Qi(θi, θ−i)p−i(θ−i|θi),

satisfying (3.1).
(“Only if” part) Suppose an interim allocation rule q is implementable. Then, there exists

an allocation rule Q that respects (H, C) and satisfies (3.1). Define a mapping f : E → R|E|+

given by
f((i, (θi, θ−i)), θi) := Qi(θi, θ−i)p(θi, θ−i),∀i ∈ I,∀θi,∀θ−i,

and
f(n, (G, θ)) :=

∑
i∈G

Qi(θ)p(θ), for (n, (G, θ)) ∈ E,

which guarantees the flow conservation law. Further, since Q respects (H, C), for any n with
(n, (G, θ)) ∈ E,

f(n, (G, θ)) =
∑
i∈G

Qi(θ)p(θ) ≤ CGp(θ) = c(n, (G, θ)).

Hence, f is a flow on (N,E, c). Finally, since Q satisfies (3.1), for each θi,∑
θ−i∈Θ−i

f̃((θi, θ−i), θi) = qi(θi)pi(θi) = d(θi),

so f is a feasible flow for d. �

Proof of Theorem 2. Necessity.—For given T , we construct a node set S(T ) such that
Gale’s condition (2.4) for S = S(T ) implies (B). The set of demand nodes contained in S(T )

is given by TD :=
⋃
i∈I Ti. Next, for each θ ∈ Y (T ), S(T ) contains capacity nodes called

roots for (θ, T ) defined by R(θ, T ) := {(G, θ)|G ∈ H(θ, T )}. In words, roots for (θ, T ) consist
of capacity nodes (G, θ) associated with the minimal cover H(θ, T ).22 Finally, it contains

22We can select any minimal cover if the minimal cover is not unique.
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every capacity node (G, θ) that lies on a directed path from some node (G′, θ) ∈ R(θ, T ) to
some demand node θi ∈ TD:23

(G, θ) ∈ S(T ) ⇐⇒
{
∃G′ ∈ R(θ, T ) : G ⊂ G′ and θi ∈ TD for some i ∈ G

}
.

Since S(T ) contains exactly the demand nodes in TD and does not contain the super-
source, its demand is given by

d(S(T )) =
∑
θi∈TD

d(θi) =
∑
i∈I

∑
θi∈Ti

qi(θi)pi(θ), (A.1)

which equals the left side of (B).
Meanwhile,

c(N\S(T ), S(T )) = c

N\S(T ),
⋃

θ∈Y (T )

R(θ, T )


=
∑

θ∈Y (T )

 ∑
(G,θ)∈R(θ,T )

CG

 p(θ)
=
∑

θ∈Y (T )

 ∑
G∈H(θ,T )

CG

 p(θ)
=
∑

θ∈Y (T )

φ(θ, T )p(θ). (A.2)

The first equality holds since all edges fromN\S(T ) enter S(T ) only through
⋃
θ∈Y (T ) R(θ, T );

the second is obtained by summing up the capacities of those edges that enter from outside
S(T ) into the roots; the third follows from the definition of roots, and the last equality
follows from the fact that φ(θ, T ) is the capacity associated with the minimal cover H(θ, T ).
Note that the last line of (A.2) equals the right side of (B).

Therefore, given (A.1) and (A.2), (B) follows from (2.4) for S = S(T ).

Sufficiency.—We now prove that (2.4) is redundant unless S = S(T ) for some T =

(T1, . . . , T|I|). Fix an arbitrary S ⊂ N . If σ ∈ S, then d(S) = −∞. Likewise, if S ∩ΘD = ∅,
then d(S) ≤ 0. In these two cases, (2.4) is satisfied for all interim allocation rules. Hence,
it suffices to consider the case where S ∩ ΘD = TD =

⋃
i∈I Ti 6= ∅ for some T = (T1, ..., TI)

and σ 6∈ S. Furthermore, we can restrict attention to sets S for which (i, (θi, θ−i)) ∈ S for
all θi ∈ S. Otherwise S(N\S, S) = ∞ since c((i, θ), θi) = ∞ by our construction, so (2.4)
always holds.

23Excluding some (G, θ) on the path from (G′, θ) to θi would introduce an additional edge from N\S to S.
Therefore, if we do not include (G, θ) in S, the capacity c(N \ S, S) would not be the least upper bound for
the flow from (I, θ) to the nodes {θi | i ∈ I(θ, T )}.
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For such a set S, define “roots” RS(θ) ⊂ S for each θ ∈ Y (T ) such that: (G, θ) ∈ RS(θ)

if and only if either G = I or G 6= I and (G′, θ) /∈ S, where G′ is the predecessor of
G. Remember that for every θ and every i ∈ I(θ, T ), we have (i, θ) ∈ S. Since σ /∈ S,
there must be some (G, θ) on the path from σ to (i, θ) for each i ∈ I(θ, T ) such that
i ∈ G and (G, θ) ∈ RS(θ) (where we allow (G, θ) = (i, θ)). This means that the set
HS(θ) := {G ∈ H | (G, θ) ∈ RS(θ)} covers I(θ, T ). But if HS(θ) ∈ P(I(θ, T )), we have∑

(G,θ)∈RS(θ)

CG =
∑

G∈HS(θ)

CG ≥ min
H∈P(I(θ,T ))

∑
G∈H

CG = φ(θ, T ). (A.3)

Multiplying (A.3) by p(θ) and summing up over all θ ∈ Y (θ), we obtain c(N\S, S). Hence,
we have

c(N\S, S)− d(S) = c(N\S, S)− d(S ∩ΘD)

≥
∑

θ∈Y (T )

φ(θ, T )p(θ)− d(S ∩ΘD)

=
∑

θ∈Y (T )

φ(θ, T )p(θ)−
∑
i∈I

∑
θi∈Ti

qi(θi)pi(θ) ≥ 0.

The first equality holds since S does not contain the super-source. The first inequality holds
by (A.3). The second equality holds since d(S∩ΘD) = d(TD) =

∑
i∈I
∑

θi∈Ti qi(θi)pi(θ). The
last inequality follows from (B). The above string of inequalities gives the sufficiency. �

Proof of Theorem 3: The necessity part is obvious. To establish sufficiency, we fix one
agent i and arbitrary type sets T−i. Then, for any Ti ⊂ Θi, (B) becomes∑

j∈I

∑
θj∈Tj

qj(θj)pj(θ) ≤
∑

θ∈Y (T )

φ(θ, T )p(θ),

=
∑

θ∈
⋃

j 6=i(Tj×Θ−j)

φ(θ, T )p(θ)

︸ ︷︷ ︸
=αi(T )

+
∑

θ∈(Ti×Θ−i)\
⋃

j 6=i(Tj×Θ−j)

φ(θ, T )p(θ)

= αi(T ) +
∑
θi∈Ti

βi(T−i)Cipi(θi),

where βi(T−i) =
∏

j 6=i(1 − pj(Tj)) and Ci is the capacity constraint for agent i. To see
that the second equality in the above equation holds, note that in the second sum in the
second line, we have θi ∈ Ti and θj /∈ Tj for all j 6= i. But this implies that φ(θ, T ) = Ci,
independent of θ−i. Using independence of the type distribution, we get∑

θ∈(Ti×Θ−i)\
⋃

j 6=i(Tj×Θ−j)

Cip(θ) =
∑
θi∈Ti

βi(T−i)Ci pi(θi).
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We now rewrite (B) as

Φ(Ti, T−i) :=
∑
θi∈Ti

(qi(θi)− βi(T−i)Ci) pi(θi)− αi(T ) ≤ −
∑
j 6=i

∑
θj∈Tj

qj(θj)pj(θj). (A.4)

For the proof, it will then suffice to show that for given T−i, Φ(Ti, T−i) is maximized by a
set Ti that is an upper contour set of qi.24

To begin, we establish the following property of αi(·).

Claim 1. For any set Ti and any θ̃i ∈ Ti, let T̃i = Ti\{θ̃i} and T̃ = (T̃i, T−i). Then, there is
some γi(T−i) ≥ 0 such that

αi(T )− αi(T̃ ) = γi(T−i) pi(θ̃i).

Proof. Using the definition of αi(·), we have

αi(T )− αi(T̃ ) =
∑

θ∈
⋃

j 6=i(Tj×Θ−j)

[
φ(θ, T )− φ(θ, T̃ )

]
p(θ).

If θ is such that θi 6= θ̃i, P(θ, T ) = P(θ, T̃ ) because I(θ, T ) = I(θ, T̃ ). This implies that
φ(θ, T )− φ(θ, T̃ ) = 0 if θi 6= θ̃i and hence

αi(T )− αi(T̃ ) =
∑

θ∈
⋃

j 6=i(Tj×{θ̃i}×Θ−ij)

[
φ(θ, T )− φ(θ, T̃ )

]
p(θ)

=

( ∑
θ−i∈

⋃
j 6=i(Tj×Θ−ij)

[φ((θ̃i, θ−i), T )− φ((θ̃i, θ−i), T̃ )]p−i(θ−i)︸ ︷︷ ︸
=:γi(T−i)

)
pi(θ̃i), (A.5)

We now argue that the expression in the large parentheses is independent of Ti. It suffices to
show that φ((θ̃i, θ−i), T ) − φ((θ̃i, θ−i), T̃ ) is independent of Ti and θ̃i. Observe that P(θ, T )

depends on θ and T only though I(θ, T ). But I((θ̃i, θ−i), T ) = {j 6= i | θj ∈ Tj}∪{i} because
θ̃i ∈ Ti, independent of the particular choice of θ̃i and Ti. Similarly, and I((θ̃i, θ−i), T̃ ) =

I((θ̃i, θ−i), T )\{i} because θ̃i /∈ T̃i, independent of the particular choice of θ̃i and Ti. This
implies that P((θ̃i, θ−i), T ) and P((θ̃i, θ−i), T̃ ) and thus φ((θ̃i, θ−i), T ) and φ(θ̃i, θ−i), T̃ ) are
independent of Ti and θ̃i. �

The claim implies that

Φ(Ti, T−i) =
∑
θi∈Ti

[qi(θi)− βi(T−i)Ci − γi(T−i)] p(θi)− αi(∅, T−i).

Obviously, this expression is maximized by the upper contour set Ti = {θi ∈ Θi|qi(θi) ≥
βi(T−i)Ci + γi(T−i)}. �

24The original idea of this proof is from Theorem 4 in Gutmann et al. (1991).
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Proof of Theorem 4: Recalling that for any given set I ′ ⊂ I, P(I ′) is the set of all covers
of I ′, let us begin by introducing some notation:25

φ̃(I ′) := min
H∈P(I′)

∑
G∈H

CG and H̃(I ′) := arg min
H∈P(I′)

∑
G∈H

CG.

We first establish a couple of properties of the function φ̃:

Claim 2. For any I ′ ⊂ I, and any ` ∈ 1, . . . , L,

φ̃(I ′ ∪ {i}) = φ̃(I ′ ∪ {j}),∀i, j ∈ G`\I ′ (A.6)

φ̃(I ′ ∪ {i})− φ̃(I ′) ≥ φ̃(I ′ ∪ {i, j})− φ̃(I ′ ∪ {i}),∀i, j ∈ G`\I ′. (A.7)

Proof. Fix any I ′ ⊂ I and consider any i ∈ G`\I ′. Given the capacity structure, it must
be that either (i) H̃(I ′ ∪ {i}) = H̃(I ′) ∪ {{i}} or (ii) there is some G such that G` ⊂ G ∈
H̃(I ′ ∪ {i}). Also, in the case (ii), there is some G such that G` ⊂ G ∈ H̃(I ′ ∪ {i}) only if
G` ⊂ G ∈ H̃(I ′ ∪ {j}) for the same G, and vice versa, which we call property (ii′). We use
these properties to prove (A.6) and (A.7).

First, (A.6) is immediate in the case (ii) due to the property (ii′). It is also immediate in
the case (i) since then φ̃(I ′ ∪ {i}) =

∑
G̃∈H̃(I′) CG̃ + Ĉ` = φ̃(I ′ ∪ {j}).

To prove (A.7), we first note that there are two cases: for any given i, j ∈ G`, either (iii)
H̃(I ′∪{i, j}) = H̃(I ′)∪{{i}, {j}} or (iv) there is some G′ such that G` ⊂ G′ ∈ H̃(I ′∪{i, j}).
Observe that (iii) implies (i).26 In the case (iii), it is clear that H̃(I ′ ∪ {i}) = H̃(I ′) ∪ {{i}}
so φ̃(I ′ ∪ {i}) − φ̃(I ′) = Ĉ` = φ̃(I ′ ∪ {i, j}) − φ̃(I ′ ∪ {i}). In the case (iv), we consider two
sub cases depending on whether (i) or (ii) holds for H̃(I ′ ∪ {i}). In case (ii) holds, it is
clear that G = G′ (since both sets contain the entire set G`) and also H̃(I ′ ∪ {i, j})\{G′} =

H̃(I ′ ∪ {i})\{G}, which implies that the right side of (A.7) is equal to zero so (A.7) holds
trivially. In case (i) holds, note that φ̃(I ′ ∪ {i}) =

∑
G̃∈H̃(I′) CG̃ + Ĉ`. Note also that, due to

the definition of φ̃(·), the case (iv) can only hold when φ̃(I ′ ∪ {i, j}) ≤
∑

G̃∈H̃(I′) CG̃ + 2Ĉ`.
Thus, φ̃(I ′ ∪ {i})− φ̃(I ′) = Ĉ` ≥ φ̃(I ′ ∪ {i, j})− φ̃(I ′ ∪ {i}), as desired. �

We establish the desired result by fixing an arbitrary group G` ⊂ I and assuming (without
loss) that G` = {1, · · · , |G`|}. Our proof consists of three steps. For the first step, let us
define

Ψ(T ) :=
∑

θ∈Y (T )

φ(θ, T )p(θ) =
∑

θ∈Y (T )

φ̃(I(θ, T ))p(θ) =
∑

θ∈Y (T )

∑
G∈H̃(I(θ,T ))

CG.

25The functions φ̃ and H̃ are analogous to φ and H, respectively, except that the former are defined on a
set I ′ while the latter on a pair (θ, T ): φ(θ, T ) = φ̃(I(θ, T )) and H(θ, T ) = H̃(I(θ, T )).
26If (i) does not hold, there is some G′′ with G` ⊂ G′′ ∈ H̃(I ′ ∪ {i}) as in case (ii). Then, it must be that
G` ⊂ G′′ ∈ H̃(I ′ ∪ {i, j}), which corresponds to the case (iv).
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Note that Ψ(T ) corresponds to the ride side of (B) and, due to the group-symmetry, Ψ(T )

is invariant to the permutation of sets (Ti)i∈G`
.

Step 1. Consider any pair of agents i, j ∈ G`. Then, for any Ti, Tj ⊂ Θ̂` and T−ij,

2Ψ(Ti, Tj, T−ij) ≥ Ψ(Ti ∪ Tj, Ti ∪ Tj, T−ij) + Ψ(Ti ∩ Tj, Ti ∩ Tj, T−ij). (A.8)

Proof. To simplify notation, let I(θ−ij) := {h ∈ I | θh ∈ Th, h 6= i, j}. Observe first that for
any h ∈ I and any X ⊂ Y ⊂ Θh,

Ψ(Y, T−h)−Ψ(X,T−h) =
∑

θ∈(Y \X)×Θ−h

[
φ(θ, (Y, T−h))− φ(θ, (X,T−h))

]
p(θ).

Using this, (A.6), and the fact that for any sets X and Y , (X ∪ Y )\X = Y \X, one can
obtain27

Ψ(Ti ∪ Tj, Ti ∪ Tj, T−ij)−Ψ(Ti, Tj, T−ij)

=Ψ[(Ti ∪ Tj, Ti ∪ Tj, T−ij)−Ψ(Ti, Ti ∪ Tj, T−ij)] + [Ψ(Ti, Ti ∪ Tj, T−ij)−Ψ(Ti, Tj, T−ij)]

=
∑

θ∈(Tj\Ti)×Θj×Θ−ij

[
φ(θ, (Ti ∪ Tj, Ti ∪ Tj, T−ij))− φ(θ, (Ti, Ti ∪ Tj, T−ij))

]
p(θ)

+
∑

θ∈Θi×(Ti\Tj)×Θ−ij

[
φ(θ, (Ti, Ti ∪ Tj, T−ij))− φ(θ, (Ti, Tj, T−ij))

]
p(θ)

=
∑

θ∈(Tj\Ti)×(Ti∪Tj)×Θ−ij

[
φ(θ, (Ti ∪ Tj, Ti ∪ Tj, T−ij))− φ(θ, (Ti, Ti ∪ Tj, T−ij))

]
p(θ)

+
∑

θ∈(Tj\Ti)×(Ti∪Tj)c×Θ−ij

[
φ(θ, (Ti ∪ Tj, Ti ∪ Tj, T−ij))− φ(θ, (Ti, Ti ∪ Tj, T−ij))

]
p(θ)

+
∑

θ∈Ti×(Ti\Tj)×Θ−ij

[
φ(θ, (Ti, Ti ∪ Tj, T−ij))− φ(θ, (Ti, Tj, T−ij))

]
p(θ)

+
∑

θ∈T c
i ×(Ti\Tj)×Θ−ij

[
φ(θ, (Ti, Ti ∪ Tj, T−ij))− φ(θ, (Ti, Tj, T−ij))

]
p(θ)

=
∑

θ−ij∈Θ−ij

[
φ̃(I(θ−ij) ∪ {i, j})− φ̃(I(θ−ij) ∪ {i})

][
p(Tj\Ti, Ti ∪ Tj, θ−ij) + p(Ti, Ti\Tj, θ−ij)

]
+

∑
θ−ij∈Θ−ij

[
φ̃(I(θ−ij) ∪ {i})− φ̃(I(θ−ij))

][
p(Tj\Ti, (Ti ∪ Tj)c, θ−ij) + p(T ci , Ti\Tj, θ−ij)

]
.

Using a similar derivation, one can also obtain

Ψ(Ti, Tj, T−ij)−Ψ(Ti ∩ Tj, Ti ∩ Tj, T−ij)

=
∑

θ−ij∈Θ−ij

[
φ̃(I(θ−ij) ∪ {i, j})− φ̃(I(θ−ij) ∪ {i})

][
p(Ti, Tj\Ti, θ−ij) + p(Ti\Tj, Ti ∩ Tj, θ−ij)

]
27In the derivation below, p(X,Y, θ−ij) for any set X,Y ⊂ Θ̂` denotes the probability that agent i and j’s
types belong to X and Y , respectively, while other agents’ type profile is θ−ij .
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+
∑

θ−ij∈Θ−ij

[
φ̃(I(θ−ij) ∪ {i})− φ̃(I(θ−ij))

][
p(T ci , Tj\Ti, θ−ij) + p(Ti\Tj, (Ti ∩ Tj)c, θ−ij)

]
.

Combining the derivations so far, we get

Ψ(Ti ∪ Tj, Ti ∪ Tj, T−ij) + Ψ(Ti ∩ Tj, Ti ∩ Tj, T−ij)− 2Ψ(Ti, Tj, T−ij)

=[Ψ(Ti ∪ Tj, Ti ∪ Tj, T−ij)−Ψ(Ti, Tj, T−ij)]− [Ψ(Ti, Tj, T−ij)−Ψ(Ti ∩ Tj, Ti ∩ Tj, T−ij)]

=
∑

θ−ij∈Θ−ij

[
φ̃(I(θ−ij) ∪ {i, j})− φ̃(I(θ−ij) ∪ {i})

] [ p(Tj\Ti, Tj ∪ Ti, θ−ij) + p(Ti, Ti\Tj, θ−ij)
−p(Ti, Tj\Ti, θ−ij)− p(Ti\Tj, Ti ∩ Tj, θ−ij)

]
︸ ︷︷ ︸

=:A

+
∑

θ−ij∈Θ−ij

[
φ̃(I(θ−ij) ∪ {i})− φ̃(I(θ−ij))

] [ p(Tj\Ti, (Ti ∪ Tj)c, θ−ij) + p(T ci , Ti\Tj, θ−ij)
−p(T ci , Tj\Ti, θ−ij)− p(Ti\Tj, (Ti ∩ Tj)c, θ−ij)

]
︸ ︷︷ ︸

=:B

=
∑

θ−ij∈Θ−ij

[
φ̃(I(θ−ij) ∪ {i, j}) + φ̃(I(θ−ij))

−2φ̃(I(θ−ij) ∪ {i})

] [
p(Ti\Tj, Ti\Tj, θ−ij) + p(Tj\Ti, Tj\Ti, θ−ij)

]
≤ 0

as desired, where the third equality follows from the fact that given the invariance of p to the
permutation, A = −B = p(Ti\Tj, Ti\Tj, θ−ij) + p(Tj\Ti, Tj\Ti, θ−ij)28 while the inequality
follows from (A.7) with I ′ = I(θ−ij). �

For the next step, let us fix (Tk+2, · · · , T|I|) and define a function Ψ̃(·) as

(T1, · · · , Tk+1) 7→ Ψ̃(T1, · · · , Tk+1) = Ψ(T1, · · · , Tk+1, Tk+2, · · · , T|I|)

to simplify notation.

Step 2. For any sets T`, Tk+1 ⊂ Θ̂`,

(k + 1)Ψ̃(T k` , Tk+1) ≥ Ψ̃((T` ∪ Tk+1)k+1) + Ψ̃((T` ∩ Tk+1)k+1) + (k − 1)Ψ̃(T k+1
` ), (A.9)

where T k` , for instance, is an abbreviation of (T`, · · · , T`︸ ︷︷ ︸
k times

).

Proof. We prove this by a mathematical induction. Notice that the result in Step 1 takes
care of the inequality (A.9) for the case k = 1. Assuming now that (A.9) holds with k being
k− 1, we show that it also holds for k ≥ 2. Letting T := T` ∪ Tk+1 and T := T` ∩ Tk+1, note
that T ∪ T` = T , T ∩ T` = T , and T ∩ T` = T ∪ T` = T`.

28To see this, note for instance

p(Tj\Ti, Tj ∪ Ti, θ−ij)− p(Ti, Tj\Ti, θ−ij) = p(Tj\Ti, Tj ∪ Ti, θ−ij)− p(Tj\Ti, Ti, θ−ij)
= p(Tj\Ti, (Tj ∪ Ti)\Ti, θ−ij) = p(Tj\Ti, Tj\Ti, θ−ij),

where the first equality follows from the symmetry of p(·).
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Observe first

2kΨ̃(T`, T
k
) = 2kΨ̃(T`, T , T

k−1
) ≥ kΨ̃(T , T , T

k−1
) + kΨ̃(T`, T`, T

k−1︸ ︷︷ ︸
=T̃

)

≥ kΨ̃(T
k+1

) + Ψ̃(T`, T
k
) + Ψ̃(T`, T

k
` ) + (k − 2)Ψ̃(T`, T

k
)

= kΨ̃(T
k+1

) + Ψ̃(T k+1
` ) + (k − 1)Ψ̃(T`, T

k
)

where the first inequality follows from (A.8) by setting Ti = T` and Tj = Tk+1 while the
second inequality follows from applying the induction hypothesis for k − 1 to the set profile
T̃ . Rearranging this inequality yields

(k + 1)Ψ̃(T`, T
k
) ≥ kΨ̃(T

k+1
) + Ψ̃(T k+1

` ). (A.10)

A similar derivation can be employed to yield

(k + 1)Ψ̃(T`, T
k) ≥ kΨ̃(T k+1) + Ψ̃(T k+1

` ). (A.11)

Observe now

(k + 1)kΨ̃(T k` , Tk+1) = (k + 1)kΨ̃(T`, T
k−1
` , Tk+1︸ ︷︷ ︸

=T̂

) (A.12)

≥ (k + 1)
[
Ψ̃(T`, T

k
) + Ψ̃(T`, T

k) + (k − 2)Ψ̃(T`, T
k
` )
]

≥ kΨ̃(T
k+1

) + kΨ̃(T k+1) + 2Ψ̃(T k+1
` ) + (k + 1)(k − 2)Ψ̃(T k+1

` )

= kΨ̃(T
k+1

) + kΨ̃(T k+1) + k(k − 1)Ψ̃(T k+1
` ), (A.13)

where the first inequality follows from applying the induction hypothesis for k− 1 to the set
profile T̂ while the second inequality from (A.10) and (A.11). Divide (A.12) and (A.13) by
k to get (A.9) �

To state and prove the last step, define Tk := {(T1, · · · , T|I|) |Ti = Tj ⊂ Θ̂`,∀i, j ∈
{1, · · · , k} ⊂ G` = {1, 2, · · · , |G`|}}.

Step 3. For k, k + 1 ∈ G`, (B) holds for all sets in Tk if and only if it holds for all sets in
Tk+1.

Proof. The only if part is immediate since Tk+1 ⊂ Tk. To show the if part, letK := {1, · · · , k}
and K + 1 := {1, · · · , k + 1} with some abuse of notation. Also define

Λ(T ) :=
∑
i∈I

∑
θi∈Ti

qi(θi)pi(θi) and Λ̃(T−(K+1)) :=
∑
i/∈K+1

∑
θi∈Ti

qi(θi)pi(θi).

Notice that Λ(T ) is the same as the left side of the inequality (B), which can then be simply
written as Λ(T ) ≤ Ψ(T ). Supposing now that (B) holds for all T ∈ Tk+1, we show that it
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also holds for any T ∈ Tk. Observe first that for any (T k` , T−K) ∈ Tk,

(k + 1)Λ(T k` , Tk+1, T−(K+1))

=(k + 1)
[
k
∑
θ`∈T`

q̂`(θ`)p̂`(θ`) +
∑

θk+1∈Tk+1

q̂`(θk+1)p̂`(θk+1) + Λ̃(T−(K+1))
]

=(k + 1)
[
(k − 1)

∑
θ`∈T`

q̂`(θ`)p̂`(θ`) +
∑

θ`∈T`∪Tk+1

q̂`(θ`)p̂`(θ`) +
∑

θ`∈T`∩Tk+1

q̂`(θ`)p̂`(θ`) + Λ̃(T−(K+1))
]

=
[
(k + 1)

∑
θ`∈T`∪Tk+1

q̂`(θ`)p̂`(θ`) + Λ̃(T−(K+1))
]

+
[
(k + 1)

∑
θ`∈T`∩Tk+1

q̂`(θ`)p̂`(θ`) + Λ̃(T−(K+1))
]

+ (k − 1)
[
(k + 1)

∑
θ`∈T`

q̂`(θ`)p̂`(θ`) + Λ̃(T−(K+1))
]

=Λ((T` ∪ Tk+1)k+1, T−(K+1)) + Λ((T` ∩ Tk+1)k+1, T−(K+1)) + (k − 1)Λ(T k+1
` , T−(K+1)),

where the second equality holds since∑
θ`∈T`∪Tk+1

q̂`(θ`)p̂`(θ`) +
∑

θ`∈T`∩Tk+1

q̂`(θ`)p̂`(θ`) =
∑
θ`∈T`

q̂`(θ`)p̂`(θ`) +
∑

θ`∈Tk+1

q̂`(θ`)p̂`(θ`).

Then, we obtain the desired result since

(k + 1)Λ(T k` , Tk+1, T−(K+1))

=Λ((T` ∪ Tk+1)k+1, T−(K+1)) + Λ((T` ∩ Tk+1)k+1, T−(K+1)) + (k − 1)Λ(T k+1
` , T−(K+1))

≤Ψ((T` ∪ Tk+1)k+1, T−(K+1)) + Ψ((T` ∩ Tk+1)k+1, T−(K+1)) + (k − 1)Ψ(T k+1
` , T−(K+1))

≤(k + 1)Ψ(T k` , Tk+1, T−(K+1)),

where the first inequality follows from the assumption that (B) holds for all T ∈ Tk+1, while
the second inequality from Step 2 along with the definition of Ψ̃(·). �

Notice now that T1 is the set of all possible T ’s while T|G`| is the set of all group-symmetric
T ’s in which Ti’s are identical for all agents in G`. Applying Step 3 recursively, we conclude
that (B) holds for all T if and only if it holds for all-group symmetric T . We can apply the
same argument to other groups in order to reach the desired conclusion. �

Proof of Corollary 3: Let TU := {(T1, · · · , T|I|) | each Ti is an upper contour subset of Θi}.
Then, from Theorem 3, we know that (B) holds for all T if and only if it holds for all T ∈ TU .
Noting that if X and Y ⊂ Θ̂` are upper contour sets, then so are X ∪ Y and X ∩ Y , one
can apply the Step 3 in the proof of Theorem 4 to the collections TU ∩ Tk and TU ∩ Tk+1 to
prove that (B) holds for all T ∈ TU ∩ Tk if and only if it holds for all T ∈ TU ∩ Tk+1, which
gives us the desired result since TU = TU ∩ T1 and since TU ∩ T|G`| is the collection of sets T
that are both upper-contour and group-symmetric. �
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