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Abstract

Other regarding preferences pose a challenge to existing theories of decision mak-

ing under risk as they may violate the property of stochastic dominance. We intro-

duce a parsimonious decision model (consisting of a set of axioms on behavior and an

equivalent utility representation) of such preferences that accommodates violations of

stochastic dominace. The key innovation that our theory introduces is a concern for

counterfactuals in the decision maker’s evaluation of others’ outcomes. That is, in eval-

uating others’ outcomes in any given event, the decision maker may care not just about

what others actually get in that event (the ex-post risk faced by others conditional on

that event), but also about what they could have got had other possible events realized

instead (the ex-ante risk that the others were initially faced with). In our representa-

tion, we separate a self regarding component of the decision maker’s preferences (her

tastes) from an other regarding component (her values). The self-regarding component

is represented by a ‘vonNeumann-Morgenstern utility function’. The other regarding

component is a weighted average of the decision maker’s evaluation of the ex-post and

ex-ante risk faced by others, where the weights are subjective. We provide two al-

ternative representations corresponding to two different approaches that the decision

maker may take in evaluating the risk faced by others. In the first, the decision maker’s

preferences over lotteries faced by others is linear in probabilities, and represented by

a ‘vonNeumann-Morgenstern utility function’, whereas in the second, her preferences

may be non-linear in probabilities and represented by a ‘biseparable utility function’.
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1 Introduction

A decision maker has other regarding preferences if her choices are influenced by a concern

not just about her own outcomes, but others’ outcomes as well. Over the last couple of

decades, economists have collected an impressive body of experimental evidence that strongly

suggests that such concerns matter for many decision makers. 1 At the same time they have

shown that introducing such concerns into economic models produce novel insights that

are of qualitative and quantitative significance. For instance, economists have appealed

to other regarding preferences to deepen their understanding of such issues as Ricardian

equivalence (Andreoni, 1989), the equity premium puzzle (Abel, 1990), the difference in

redistribution policy between United States and Western Europe (Alesina and Angeletos,

2005), amongst others. This body of work suggests that other regarding preferences are an

important phenomenon whose theoretical properties deserves thorough study.

In this paper we introduce a decision model, consisting of a set of axioms on behavior

and an equivalent ‘utility representation’, of other regarding preferences in environments of

risk. In order to understand the motivation behind proposing a new representation, consider

the following example that has been taken from recent experimental work.

Example 1. Consider a decision maker who has to choose between allocating 20 euros either

to herself or to some other person. Faced with this decision problem most decision makers,

even altruistic ones, would perhaps prefer to keep the money. Let us assume that this is

the case. 2 Now consider introducing risk in the environment. In particular, the decision

maker is given the option of assigning some probability � to the other person getting the

20 euros, while retaining the complimentary probability 1−� of getting the money herself.

Will the decision maker choose � equal to 0, or will she choose a positive value of �? Recent

experiments conducted by Krawczyk and Le Lec (2008) provide us with an answer to the

question. They report that faced with such a choice problem, a non-trivial number of their

subjects (about 30%) choose to assign positive probability to the other person getting the

20 euros. On average, these subjects were willing to give a probability of about 0.09 to the

other person getting the money.

Models of decision making under risk that economists typically use (for instance, Ex-

pected Utility, Rank Dependent Utility, ‘Betweenness’ based theories, Weighted Utility The-

1For a recent survey of the experimental evidence see Cooper and Kagel (2009).
2The argument that we make below does not depend on this assumption.
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ory, Generalized Expected Utility, Generalized Prospect Theory) cannot explain the choices

in the example. The reason they can not is because the choices in the example violate a

basic property that all these theories share – stochastic dominance. Stochastic dominance

requires that if a decision maker prefers one outcome over another, then replacing the inferior

outcome with the superior outcome in a lottery (keeping everything else the same) should

make her better off. Formally, suppose x and y are two outcomes from some underlying

space of outcomes, and l is a lottery over that space. Stochastic dominance requires that if

the decision maker prefers outcome x to outcome y, then she must prefer the (compound)

lottery that gives outcome x with some positive probability � and lottery l with complimen-

tary probability 1 − � to the (compound) lottery that gives y with probability � and l with

probability 1 − �. For instance, in Example 1 if a decision maker prefers the outcome that

she, rather than the other person, gets the 20 euros then stochastic dominance demands that

when she is given the option of assigning some probability � to the other person getting the

money, she should choose � equal to 0. 3

Stochastic dominance is central to how economists think about modeling environments

featuring risk. In such environments, one of the goals that economists have considered

analytically and normatively desirable is the separation of a decision maker’s tastes (how

desirable does she find an outcome) from her beliefs (how likely does she consider an event).

Stochastic dominance, by requiring that in any given event, only realized outcomes in that

event matter for the decision maker, is necessary to engender that separation.4 Conversely,

decision makers, like the ones in the example above, whose preferences violate stochastic

dominance, may, when assessing their well being in any given event, care about things other

than realized outcomes in that event. What are these other things that the decision makers

of our example care about?

In order to answer the last question, consider a decision theorist who approaches the

decision maker of Example 1, and points out to her the violation of stochastic dominance.

How would this decision maker respond? In our opinion, she may defend her choice as

follows: “I understand the logic of what you are saying. However, what you fail to see is

3Alternatively, if she prefers that the other person get the 20 euros, then stochastic dominance requires
that she should choose � = 1.

4In that sense, stochastic dominance is a much more fundamental assumption than the famous Inde-
pendence condition of Expected Utility Theory. Violation of stochastic dominance implies a violation of
Independence, but not vice versa. For instance, Allais’ famous example violates Independence but not
stochastic dominance. Models like Machina’s Generalized Expected Utility and Quiggin’s Rank Dependent
Utility, for instance, have given up the Independence condition, but retained stochastic dominance. These
models can separate a decision maker’s tastes or risk attitudes from her beliefs.
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that the impact that the other person’s outcomes has on my well being, in any event, is

not limited to what he gets in that event only, but extends over to considerations about

the counterfactual, that is, what he could have got had other possible events realized instead.

That is the reason why I do not consider my well being in the event that I get the 20 euros in

the certain environment to be the same as that in the risky environment. In the latter, given

that I care about fairness, I am much better off because, even though the final allocation

is unequal, I know that the other person at least had some chance of getting the money,

whereas in the former, he had none.” In other words, in any given event (in this case, the

event that she gets the 20 euros), when this decision maker assesses the impact that the other

person’s outcomes has on her well being, she cares not just about the ex-post prospects that

he (other person) is faced with conditional on being in this event, but also about the ex-ante

prospects that he was faced with originally. Counterfactuals matter for this decision maker

precisely because she cares about the ex-ante prospects faced by the other person, even when

an event under consideration has ruled out some of the possibilities implied by it.

The experiments of Krawczyk and Le Lec (2008) lend support to the hypothesis that ex-

ante and ex-post concerns about the prospects of others may constitute distinct and separate

rationales of choice for a decision maker with other regarding preferences. In Example 1 the

events of the decision maker getting the money and the other person getting the money are

mutually exclusive. Krawczyk and Le Lec consider an alternative treatment in which this is

not the case. Under this treatment if the decision maker chose to assign a probability � to

the other person getting the money, then, like before, the former would have a probability

� of getting the money and the latter 1− �, but now two independent randomizing devices

would be used to determine the outcomes. Krawczyk and Le Lec find that decision makers

with other regarding concerns behave differently in the independent treatment than in the

correlated one; in particular, in the former they choose higher values of � than in the latter.

It is worth noting that for the independent treatment, in either of the events in which the

decision maker gets the 20 euros or nothing, the ex-post and ex-ante prospects facing the

other person are the same. Hence, if behavior in this setting differs from the correlated

setting, then it naturally follows that both a concern for the ex-ante prospects and ex-post

prospects of the other person influence the decision maker’s choices. The question then

naturally arises: What is the relative importance of each of these concerns for the decision

makers, and how do they interact with the concern that she has for her own outcomes?

The decision model that we propose in this paper addresses this question from behavioral
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Figure 1: DM’s relevant set of consequences
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primitives. We now provide a brief sketch of this model.

1.1 The Representation and its Interpretation

Assume that there are n individuals, denoted 1, . . . , n, about whose outcomes our

decision maker (DM) may care. Denote the set of DM’s outcomes by the set Z, individual

i’s outcomes by the set Ai, i = 1, . . . , n, and let A =
∏n

i=1Ai. Let p be a simple lottery

on the allocation space Z × A. Let pZ and pA denote the marginal probability measures

of p on Z and A respectively. Further, let pA,z denote the conditional probability measure

on A with respect to the event that DM gets some outcome z ∈ Z. Under our proposed

representation, DM evaluates the lottery p by the function:

U(p) =
∑

z∈ZpZ(z)[u(z) + �vz(pA,z) + (1 − �)vz(pA)],

where � ∈ [0, 1].

In order to understand the representation, refer to Figure 1 which lists down the relevant

set of consequences for DM when she is faced with the lottery p. Consider the event in

which DM gets some outcome z in the support of pZ . In this event three things constitute

her relevant set of consequences. First, she cares about her own outcome z. Second, given

that she has other regarding concerns, and that her outcomes may be correlated with others’

outcomes, she cares about what the others get conditional on her getting outcome z. This

concern is specified by the conditional probability measure pA,z over others’ outcomes, and

we refer to it as the ex-post risk facing the others in the event that DM gets z. Finally,
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given that counterfactuals may matter to her, she cares about the overall prospects that

the others were initially faced with. This concern is specified by the marginal probability

measure pA over others’ outcomes, and we refer to it as the ex-ante risk faced by the others.

Under our representation, there is a function u which provides DM’s subjective evaluation

of her own outcomes. Further, for any outcome z that she gets, there is a function vz that

provides her subjective evaluation of the ex-post and ex-ante risks faced by the others (Note

that the domain of the function u is the set of outcomes that DM may get, whereas the

domain of the function vz is the set of lotteries over others’ outcomes). Finally, there is a

constant � ∈ [0, 1] that measures the relative importance of the ex-post concern vis-a-vis the

ex-ante concern. Accordingly, the term,

u(z) + �vz(pA,z) + (1 − �)vz(pA)

gives DM’s composite payoffs in the event that she gets outcome z. Once we have accounted

for all of her relevant consequences in each such event that is possible under pZ , we do an

‘expected utility’ evaluation. That is, the payoffs in each of these events is linearly aggregated

using the probability measure pZ , to arrive at,

U(p) =
∑

z∈ZpZ(z)[u(z) + �vz(pA,z) + (1 − �)vz(pA)],

We would like to point out here that in one of our representations we allow for the possibility

that the weight � may depend on the outcome that DM gets. In that case we have:

U(p) =
∑

z∈ZpZ(z)[u(z) + �zvz(pA,z) + (1 − �z)vz(pA)],

The family of functions vz, z ∈ Z, are the basic building blocks of our theory. We make

a few observations here about their key properties. First consider lotteries p and q in which

DM gets some outcome z for sure, while the others are faced with a risky prospect. For such

lotteries the ex-post and ex-ante risk faced by the others in the event that DM gets outcome

z are the same, and our representation implies that

U(p) = u(z) + vz(pA), and U(q) = u(z) + vz(qA).

That is,

U(p) ≥ U(q) if and only if vz(pA) ≥ vz(qA).
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Accordingly, the function vz captures DM’s subjective ranking over lotteries faced by the

others when she is guaranteed outcome z. Let us denote this ranking by ≽z. We provide

two alternative representations corresponding to two different sets of properties that ≽z may

satisfy. In the first we require ≽z to satisfy the Independence condition, and the function

vz is linear in probabilities. In the second we allow vz to be non-linear in probabilities. In

this case, we require vz to satisfy two properties. First, the function vz is strictly increasing

with respect to stochastic dominance; that is, if a lottery pA over the others’ outcomes

stochastically dominates another such lottery qA (with respect to ≽z), then vz assigns a

higher value to the former lottery than the latter. Second, vz satisfies a weak separability

property called biseparability, which requires that vz takes a ‘generalized expected utility’

form on lotteries whose support have cardinality equal to 2. That is, let a, a′ ∈ A be

outcomes for the others such that a ≽z a′, and pA be a lottery that assigns probability � to

a and 1−� to a′. Then, there exists a probability weighting function 'z (formally, a strictly

increasing bijection from [0, 1] to [0, 1] satisfying 'z(0) = 0, 'z(1) = 1) such that

vz(pA) = 'z(�)vz(�a) + (1− 'z(�))vz(�a′),

where �a and �a′ denotes degenerate lotteries that give a and a′ respectively with probability

1. The probability weighting function transforms the objective probabilities over others’

outcomes into decision weights. These decision weights reflect the decision maker’s attitude

towards the chance or risk faced by the others.

A few brief comments about the interpretation of the objects that we characterize in the

representation are due. We think of the function u which provides DM’s subjective ranking

of the outcomes that she may get (independent of any consideration of what the others get)

as reflecting DM’s tastes. On the other hand, the family of functions vz are reflective of

DM’s values or morals. 5 Note that DM’s value’s are of a contingent rather than an absolute

nature, that is, how she feels about what others get may depend on what she gets herself.

This contingency in values makes our decision model flexible enough to incorporate both

‘positive’ emotions like altruism, fairness and sympathy and ‘negative’ ones like spite and

envy. Finally, the weight � is a measure of the importance that the decision maker puts

5The distinction between tastes and values is motivated by the following quote from Ken Arrow in ‘Social
Choice and Individual Values’: “In general, there will, then be a difference between the ordering of social
states according to the direct consumption of the individual and the ordering when the individual adds his
general standards of equity. We may refer to the former ordering as reflecting the tastes of the individual
and the latter as reflecting his values. The distinction between the two is by no means clear cut...no sharp
line can be drawn between tastes and values.”
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on the actual risk faced by the others relative to the potential risk that they could have

faced. The larger � is, the smaller is the concern for counterfactuals in the decision maker’s

evaluation of other’s outcomes.

1.2 A Brief Review of the Literature

The fact that ‘rational’ economic agents can have other regarding concerns has long been

acknowledged by economists, starting with Adam Smith who delved deep into the subject

in his Theory of Moral Sentiments. Despite this interest in other regarding preferences, the

question of whether other regarding preferences pose any peculiar challenges to theories of

decision making under risk or uncertainty has not been looked at in any great detail in the

literature. For most parts, it has been assumed that theories of decision making under risk

or uncertainty that work well in other areas are effective ways of modeling other regarding

preferences as well. Harsanyi (1955) is an influential early contribution to the literature. In

this paper Harsanyi postulated that an individual’s social or moral preference that represents

his moral value judgments about allocations in society satisfies the Independence axiom of

Expected Utility Theory. Is this a reasonable axiom for social or moral preferences? The

question has yielded a spirited debate that has involved many distinguished participants;

amongst others, Strotz (1958, 1961), Diamond (1967), Keeney (1980), Broome (1982, 1984),

Sen (1985), and Harsanyi (1975, 1978) himself.

One of the most articulate and well known critique of Harsanyi’s axiom has been presented

by Machina (1989), whose counter example has come to be known as Machina’s Mom in the

literature. The example goes as follows. A mom has a ticket to a movie that she could give

either to her son or her daughter. She is indifferent between the daughter getting the ticket or

the son getting the ticket, but in a violation of the independence axiom (as indeed stochastic

dominance) she strictly prefers a coin flip over each of the sure outcomes. When viewed from

the perspective of decision making under uncertainty, Machina’s Mom presents a particularly

interesting challenge. Mom’s choices violate Savage’s Event-wise Monotonicity axiom, which

is the key axiom in deriving a decision maker’s probabilistic beliefs over uncertain events

from her choice behavior. It then begs the question: Are such agent’s probabilistically

sophisticated? Grant (1995) shows that this question can be answered in the affirmative.

Karni and Safra (2002) work in an an environment featuring risk in which the decision

maker’s preferences may violate stochastic dominance. They look at a problem of dividing

one unit of an indivisible good amongst n possible claimants. The objects of choice in
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their set up are allocation mechanisms which are lotteries over the set of possible ex-post

allocations (An ex-post allocation specifies who amongst the n individuals receives the single

unit of the indivisible good). The decision maker in their set up has two primitive preference

relations over the set of allocation mechanisms – one that represents her choice behavior, and

another that represents her notion of fairness. The choice behavior of the decision maker

is influenced both by a concern for fairness as well as selfish concerns. Their axiomatic

structure allows them to derive the decision makers ‘selfish preference relation’. In addition

they provide a utility representation for both the fair and selfish preference relations, and the

decision maker’s choices are represented by a real-valued function defined on the component

utilities. The critical axiom in their set up is the one which allows the fair preference relation

to be convex in probabilities; that is, if the decision maker finds two allocation mechanisms

equally fair, then she finds the allocation mechanism featuring a ‘50− 50 randomization’ of

these mechanisms to be strictly fairer.

Maccheroni et al (2008) work in an environment featuring uncertainty, and they focus

on decision makers who care about the relative position of their outcomes with respect to

their peers’ outcomes. They provide representation results in which the decision maker

judges her ex-post outcomes based on their intrinsic value to her and how they compare

with the distribution of her peers’ outcomes. Their representation allows them to establish

that behavior may differ significantly based on whether decision makers are more sensitive

to social losses (a situation where they do worse then their peers) or social gains (a situation

in which they do better then their peers). The preferences of the decision makers in their

set up respects Event-wise Monotonicity.

2 The Decision Model

2.1 Preliminaries

We assume that our stylized society comprises of a decision maker (DM) and n other indi-

viduals, denoted 1, . . . , n. Denote the set of DM’s outcomes by the set Z, individual i’s

outcomes by the set Ai, i = 1, . . . , n, and let A =
∏n

i=1 Ai. We assume that A has at least

three elements. We will refer to elements of the sets Z × A as allocations. We denote the

set of simple probability measures (simple lotteries, or just, lotteries, for short) on the sets

Z × A, Z and A by Δ, ΔZ and ΔA respectively. We will denote elements of Δ by p, q etc.,
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those of ΔZ by pZ , qZ etc., those of ΔA by pA, qA etc. We will often refer to elements of

Δ as ‘allocation lotteries’. We define convex combination of lotteries in any of these sets in

the standard way. 6 For any p in Δ we will denote the marginal probability measures on Z

and A by pZ and pA respectively; 7 further, we denote the conditional probability measure

on A with respect to the event that DM gets z ∈ Z by pA,z. We refer to pA,z as the ex-post

risk faced by the others when DM gets outcome z, and pA as the ex-ante risk faced by the

others. For any p in Δ we will refer to the set

{(z, pA,z, pA) : z is in the support of pZ}.

as the collection of risk profiles under p, and for any particular z in the support of pZ ,

we will refer to (z, pA,z, pA) as the risk-profile at z under p. A special class of allocation

lotteries are those p ∈ Δ in which DM gets some outcome z ∈ Z for sure, i.e., pZ(z) = 1 for

some z ∈ Z. We will represent such a lottery (with a slight abuse of notation) by p = (z,

pA) and refer to it as a DM-degenerate lottery.

2.2 Preference and Axioms

DM’s preferences are given by a preference relation (weak order) ≽ on the set,

Δ+ = Δ ∪ ΔZ .

[A1] Weak Order

≽ is complete and transitive.

We will denote the restriction of the preference relation to the sets Δ and ΔZ respectively

by ≽Δ and ≽ΔZ
. The symmetric and asymmetric components of ≽ are defined in the usual

way and denoted by ∼ and ≻ respectively. For any z ∈ Z, we use the primitive preference

relation ≽ to define the preference relation ≽z ⊆ ΔA × ΔA as follows: for any pA, qA ∈ ΔA,

pA ≽z qA if (z, pA) ≽ (z, qA).

The preference relation ≽z tells us how DM ranks lotteries over the others’ outcomes, when

she gets the outcome z for sure. The family of preference relations (≽z)z∈Z are the basic

6For instance, if p1Z , . . . , pKZ ∈ ΔZ , and �1, . . . , �K are constants in [0, 1] that sum to 1, then∑K
k=1 �

kpkZ denotes an element in ΔZ that gives the outcome z ∈ Z with probability
∑K

k=1 �
kpkZ(z).

7When we reference lotteries like pZ ∈ ΔZ and pA ∈ ΔA, it will be clear from the context whether we
refer to them in the sense of marginal distributions of a lottery p ∈ Δ, or ‘simply’ as elements of ΔZ and
ΔA.
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building blocks of our decision model. For any allocation lottery p ∈ Δ, our decision maker,

in the event that she gets the outcome z in the support of pZ , evaluates the ex-ante and

ex-post risk faced by the others according to ≽z. Clearly, ≽z is a weak order, and its

symmetric and asymmetric components are defined in the usual way and denoted by ∼z and

≻z respectively. For any pA ∈ ΔA, the indifference class of pA under ≽z will be denoted by

[pA]z = {qA ∈ ΔA : qA ∼z pA}

The following binary relations defined on Δ using indifference classes of ≽z, z ∈ Z, are a

compact way of relating elements in Δ based on properties of their risk profile. Let p, q ∈
Δ be such that pZ(z), qZ(z) > 0, z ∈ Z. Then we will write,

∙ p =RP
z q if ([pA,z]z, [pA]z) = ([qA,z]z, [qA]z)

∙ p =RP
−z q if pZ and qZ have the same support, and ([pA,z′ ]z′ , [pA]z′) = ([qA,z′ ]z′ , [qA]z′),

for all z′ ∕= z in the common support.

That is, p =RP
z q denotes that the ex-post and ex-ante risk at z under p belong respectively

to the same indifference classes of ≽z as the ex-post and ex-ante risk at z under q. From a

preference perspective therefore the risk profile under p and q at z may be considered the

same.

On the other hand, p =RP
−z q indicates that pZ and qZ have a common support, and for all

outcomes z′ other than z in the common support, the ex-post and ex-ante risk at z′ under

p belong respectively to the same indifference classes of ≽z′ as the ex-post and ex-ante risk

at z under q. Accordingly, from a preference perspective, such p and q may be considered

identical in the events that DM gets any outcome z′ other than z in the common support.

In addition, if it is the case that pZ = qZ then, the the only place p and q may ‘differ’ is in

the risk profiles at z. Accordingly, we will say that p, q ∈ Δ are comparable at z, if pZ =

qZ and p =RP
−z q.

Definition 1. l, l′ ∈ Δ+ are comparable if either:

1. l, l′ ∈ ΔZ, or

2. l, l′ ∈ Δ, and there exists z ∈ Z such that l and l′ are comparable at z.

We apply the classical axioms of continuity and independence to elements in Δ+ that are

comparable.
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[A2] Continuity

Let l, l′, l′′ ∈ Δ+ be such that l, l′′ are comparable and l ≻ l′ ≻ l′′. Then there exists �, �′

∈ (0, 1) such that

�l + (1 − �)l′′ ≻ l′ ≻ �′l + (1 − �′)l′′

Further, for all p in Δ, there exists qZ, q′Z ∈ ΔZ, such that qZ ≽ p ≽ q′Z.

[A3] Comparable Independence

Let l1, l2, l′1, l′2 in Δ+ be such that l1, l2 are comparable, as are l′1, l′2. Then, for all � ∈
(0, 1],

[l1 ≻ l′1, l2 ∼ l′2] ⇒ �l1 + (1− �)l2 ≻ �l′1 + (1− �)l′2.

Comparable Independence identifies the correct domain over which the implication of the

classical Independence condition of Expected Utility theory holds. We now briefly highlight

the content of this axiom. Comparable Independence implies that ≽ΔZ
(the restriction of ≽

to ΔZ) satisfies the classical Independence condition. That is, if pZ , p′Z and p′′Z ∈ ΔZ , and

pZ ≻ p′Z , then for any � ∈ (0, 1],

�pZ + (1− �)p′′Z ≻ �p′Z + (1− �)p′′Z .

Further, Comparable Independence also implies that if p, p′ and p′′ ∈ Δ are pairwise com-

parable at some z ∈ Z, and p ≻ p′, then for any � ∈ (0, 1],

�p+ (1− �)p′′ ≻ �p′ + (1− �)p′′

In particular, since any two DM-degenerate lotteries, (z, qA) and (z, q′A), are comparable ay

z, it follows that ≽z satisfies the vN-M Independence condition as well. An implication of

this is the following.

Lemma 1. If p, p′ ∈ Δ are comparable at z, then for any � ∈ [0, 1], p, p′ and �p + (1−�)p′

are pairwise comparable at z.

Accordingly, if p, p′ and p′′ ∈ Δ are pairwise comparable at z then so are �p + (1− �)p′′

and �p′ + (1− �)p′′. That is, the only place �p + (1− �)p′′ and �p′ + (1− �)p′′ differ is in

the event that the decision maker gets the outcome z. Further, the ex-post and ex-ante risks

faced by the others at z under �p + (1−�)p′′ are respectively a �:1−� mixture of the ex-post
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and ex-ante risks at z under p and p′′. A corresponding statement holds for the ex-post and

ex-ante risks faced by others at z under �p′ + (1−�)p′′. Accordingly, �p + (1−�)p′′ can be

interpreted as a �:1−� preference mixture of p, p′′, and �p′ + (1−�)p′′ can be interpreted as

a �:1− � preference mixture of p′, p′′. Given this interpretation, Comparable Independence

conveys the same message as the classical Independence condition.

[A4] Comparable Monotonicity

Suppose p, q ∈ Δ are comparable at z ∈ Z. If pA,z ≽z qA,z and pA ≽z qA, then p ≽ q.

Comparable Monotonicity says that the decision maker should evaluate the ex-post and ex-

ante risk facing the others in the event that she gets outcome z ∈ Z by the same criterion.

In particular, this criterion is given by the preference relation ≽z, which tells us how DM

ranks lotteries faced by others when she is guaranteed outcome z.

We now formalize a way of deriving DM’s ranking over risk profiles. Consider lotteries

p, q ∈ Δ that are comparable at some z ∈ Z. As indicated above, the ‘tie breaker’ as far as

her preference ranking over p and q goes are the respective risk profiles at z. Thus, if DM,

say, prefers p over q, we are naturally lead to the conclusion that the risk profile (z, pA,z,

pA) is revealed preferred to the risk profile (z, qA,z, qA). Further, suppose that there exists

p′, q′ ∈ Δ that reveal a preference for the risk profile (z, p′A,z, p
′
A) over the risk profile (z,

q′A,z, q
′
A) (in the above sense), and that the risk profiles at z under q and p′ are identical

up to indifference class, i.e., q =RP
z p′. Then between the pair of choices (i.e., p preferred

to q and p′ preferred to q′), it seems natural to suggest on grounds of consistency that the

risk profile (z, pA,z, pA) is revealed preferred to the risk profile (z, q′A,z, q
′
A) by our decision

maker. There is no reason why the ‘choice chain’ or ‘choice sequence’ has to stop at two.

More generally, we have the following definition.

Definition 2. For any p, q ∈ Δ, z in the support of pZ, qZ, the risk profile (z, pA,z, pA) is

weakly revealed preferred (resp. strictly revealed preferred) to the risk profile (z, qA,z, qA) if

there exists a finite sequence (pk, qk)Kk=1 ⊆ Δ × Δ satisfying,

(i) p1 = p, qK = q,

(ii) pk and qk are comparable at z ∈ Z, for all k = 1, . . . ,K, and

(iii) qk =RP
z pk+1, for all k = 1, . . . ,K − 1,

such that pk ≽ qk for all k = 1, . . . ,K (resp., pk ≽ qk for all k = 1, . . . ,K, with strict

preference for some k).

Further, (z, pA,z, pA) is revealed indifferent to (z, qA,z, qA) if pk ∼ qk, for all k.
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The following axiom which is in the spirit of the Weak Axiom of Revealed Preference,

can be thought of as a consistency axiom on DM’s behavior. It says that if a particular

sequence of choices reveals a preference for one risk profile over another, then it should not

be the case that some other choice sequence reveals a contradictory implication. If this

consistency requirement were not to be satisfied by our decision maker, there will be little

sense in talking about DM’s revealed preference relation over risk profiles.

[A5] Revealed Consistency

For any p, q ∈ Δ if the risk profile (z, pA,z, pA) is weakly revealed preferred to the risk profile

(z, qA,z, qA), then (z, qA,z, qA) is not strictly revealed preferred to (z, pA,z, pA).

Our last axiom provides restrictions on DM’s preferences between lotteries in Δ and those

in ΔZ . In particular, it requires that preferences across these two sets have to respect an

event8 wise dominance restriction.

[A6] Dominance

Suppose p ∈ Δ is such that for each z in the support of pZ,

(a) the risk profile (z, pA,z, pA) is revealed indifferent to a risk profile (z, qzA, qzA), for some

qzA ∈ ΔA, and

(b) there exists qzZ ∈ ΔZ such that qzZ ≽ (resp. ≼) (z, qzA) ∈ Δ, holding with strict preference

for some z. Then, ∑
z∈ZpZ(z).qzZ ≻ (resp. ≺) p.

The Dominance Axiom incorporates two ideas. First, it says that a risk profile like (z,

qzA, qzA) which has the same ex-post and ex-ante risk should be evaluated the same as the

DM-degenerate lottery (z, qzA). Second, it requires that once, all the risk profiles have been

equated to DM degenerate lotteries, dominance should hold in the usual sense. That is, once

it is established (via DM-degenerate lotteries) that for each z in the support of pZ , the risk

profile (z, pA,z, pA) is dominated by a self lottery qzZ ∈ ΔZ , then it should be the case that

the compound lottery
∑

z∈ZpZ(z).qzZ ∈ ΔZ is strictly preferred to p.

The following assumption on the structure of the family of preference relations (≽z)z∈Z

plays an important role in our analysis. In particular, it guarantees that we can identify

DM’s revealed preferences over risk profiles; if this condition were not to hold, then there

does not exist allocation lotteries p, q ∈ Δ such that p =RP
−z q and p ∕=RP

z q.

8Event here refer to the event of DM getting a particular outcome.
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[CV.1] Contingent Values

If ≽z such that ≻z ∕= ∅, then there exists ≽z′ ∕= ≽z, with ≻z′ ∕= ∅ that satisfies the following

condition: For all pA ∈ ΔA, there exists qA, q′A, q′′A ∈ ΔA such that pA ∼z qA, and

(a) qA ∼z′ q
′
A ∼z′ q

′′
A,

(b) q′A ≽z qA ≽z q
′′
A.

Further if pA is not a maximal (resp. minimal) element of ≽z, then q′A ≻z qA (resp. qA ≻z
q′′A).

3 Representation

3.1 Linear Other Regarding Preferences.

We can now state our first representation theorem.

Theorem 1. Suppose [CV.1] holds. Then the following statements are equivalent:

1. Axioms [A1] - [A6] holds.

2. There exists a function u : Z → ℝ, functions vz : ΔA → ℝ, z ∈ Z, and constants �z

∈ [0, 1], z ∈ Z, such that the function U : Δ+ → ℝ defined by

∙ U(pZ) =
∑

z∈Z pZ(z)u(z), ∀ pZ ∈ ΔZ, and

∙ U(p) =
∑

z∈ZpZ(z)[u(z) + �zvz(pA,z) + (1 − �z)vz(pA)], ∀ p ∈ Δ

represents ≽.

In addition, any triple (ũ, (ṽz)z∈Z, (�̃z)z∈Z) represents ≽ in the above sense if and only if

there exists constants � > 0 and � such that ũ = �u + �, ṽz = �vz, for all z ∈ Z, and �̃z

= �z for all z ∈ Z such that ≻z ∕= ∅.

Note that each function vz is a vNM representation of the preference relation ≽z. The

proof of the Theorem is available in the Appendix.

3.2 Linear Other Regarding Preferences with Independent Weights

In Theorem 1 the weights �z are a function of the outcome z that DM receives. We now

provide a representation where there is a unique weight for all z. It should be intuitively

clear that to axiomatize this case we need to impose some form of symmetry condition on
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DM’s preferences. We now make precise this notion of symmetry. In the way of notation,

if p ∈ Δ is such that the outcomes that DM gets are uncorrelated with the outcomes that

others’ get, then we shall denote it as a pair: p = (pZ , pA).

Definition 3. pA, p′A ∈ ΔA is equal gains for z and z′ in Z if for any qA ∈ [pA]z′ ∩ [p′A]z,

q′A ∈ [pA]z ∩ [p′A]z′,

([z, 1/2; z′, 1/2], qA) ∼ ([z, 1/2; z′, 1/2], q′A), 9

p, q ∈ Δ are symmetric with respect to z, z′ ∈ Z if

(a) pZ = qZ, with pZ(z) = pZ(z′) = 1
2
, and pA = qA,

(b) pA,z = qA,z′, pA,z′ = qA,z, and

(c) pA,z, pA,z′ is equal gains for z, z′.

The equal gains definition gives us a condition under which the ‘subjective difference’

between two lotteries, pA and p′A in ΔA, is considered the same by the decision maker under

both ≽z and ≽z′ . To see this, consider changing the allocation lottery from ([z, 1/2; z′, 1/2],

q′A) to ([z, 1/2; z′, 1/2], qA), and suppose that p′A ≻z pA. The only thing that changes for

the decision maker is in the other regarding component of her consequences. In particular,

in the event that she gets z, the change (under the assumption that p′A ≻z pA) makes her

better off. Since the change leaves her indifferent overall, it must be that in the event that

she gets z′, the change makes her worse-off, and this ‘negative change’ must be of the same

magnitude as the positive one. In other words, the improvement under ≽z when the lottery

facing the others is changed from q′A to qA (or equivalently, from pA to p′A) is of the same

magnitude as the improvement under ≽z′ when the lottery facing the others is changed from

qA to q′A (or equivalently, from pA to p′A).

The axiom that we need to ensure that the weights �z that we derived in the represen-

tation result above are all the same requires that if two allocation lotteries p, q ∈ Δ are

symmetric, then the decision maker is indifferent between them.

[A7] Symmetry

If p, q ∈ Δ are symmetric, then p ∼ q.

We then have the following representation result:

Theorem 2. Suppose [CV.1] holds. Then the following statements are equivalent:

9Following standard notation, [z, 1/2; z′, 1/2] ∈ ΔZ denotes the lottery that gives DM the outcome z
with probability 1

2 , and z′ with probability 1
2 .

16



1. Axioms [A1] - [A7] holds.

2. There exists a function u : Z → ℝ, functions vz : ΔA → ℝ, z ∈ Z, and a constant �

∈ [0, 1] such that the function U : Δ+ → ℝ defined by

∙ U(pZ) =
∑

z∈Z pZ(z)u(z), ∀ pZ ∈ ΔZ, and

∙ U(p) =
∑

z∈ZpZ(z)[u(z) + �vz(pA,z) + (1 − �)vz(pA)], ∀ p ∈ Δ

represents ≽.

In addition, any triple (ũ, (ṽz)z∈Z, �̃) represents ≽ in the above sense if and only if there

exists constants � > 0 and � such that ũ = �u + �, ṽz = �vz, for all z ∈ Z, and �̃ = �,

whenever there exists z ∈ Z such that ≻z ∕= ∅.

The proof is available in the appendix.

4 Non-linear other regarding preferences

In this section we introduce our most general representation result. So far in the analysis we

have assumed that the preference relations ≽z satisfies the vN-M Independence condition.

This condition implies that the decision maker’s preferences for the risk faced by others,

when she is guaranteed some outcome z, is linear in probabilities. Here we want to allow

for the possibility that these preferences may be non-linear in probabilities. Our motivation

behind doing this comes from existing models of decision making under risk (for example,

Rank Dependent Utility and Generalized Prospect Theory) which emphasize the distinction

that decision makers may make between raw probabilities and subjective decision weights.

For instance, in this literature it has been highlighted that a decision maker may overweight

small chances of receiving a ‘good outcome’, and underweight larger chances. Such subjective

probability weighting has been used to explain phenomenon like the Allais Paradox. We think

that subjective weighting of probabilities may play a role when a decision maker with other

regarding preferences evaluates the risk faced by others. For instance, it may well be the

case that an altruistic decision maker may overweight a small chance that someone she cares

about has of getting a good outcome. We want our theory to be rich enough to account for

such phenomenon.

Before we make precise the structure we shall impose on ≽z, we introduce a topological

assumption, and a continuity condition. Note that we will abuse notation here by not
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distinguishing between an outcome like a ∈ A, and a lottery in ΔA that gives the outcome

a with probability 1.

Topological Assumption: A is a connected topological space. Further, for any ≽z, and

for any a ∈ A, {a′ ∈ A : a′ ∼z a} is a connected subset of A.

The topology on A induces the product topology on A× A. As is well known, in this topology

a sequence (ak, a′k)k∈ℤ+ ⊆ A× A converges to (a, a′) ∈ A× A if and only if (ak)k∈ℤ+ converges

to a and (a′k)k∈ℤ+ converges to a′. We now propose the following continuity condition for

≽Δ.

[B2.1] Bicontinuity of ≽Δ

Let z, z′ ∈ Z, A′ × A′′ ⊆ A × A, and � ∈ (0, 1], and let

Δ̃ = {[(z, a), �; (z′, a′), 1− �] ∈ Δ : (a, a′) ∈ A′ × A′′}

be such that for any p, p′ ∈ Δ̃, p and p′ are comparable at z. Then for any q ∈ Δ, the sets

{(a, a′) ∈ A′ × A′′ : [(z, a), �; (z′, a′), 1− �] ≽ q},

and,

{(a, a′) ∈ A′ × A′′ : q ≽ [(z, a), �; (z′, a′), 1− �]}

are closed in A′ × A′′.

Note that a special case of the above continuity condition is when � = 1. This case implies

that the preference relation ≽z restricted to A is continuous. That is, for any pA ∈ ΔA, the

sets

{a ∈ A : a ≽z pA} and {a ∈ A : pA ≽z a}

are closed in A. This conclusion along with the assumption that ≽z satisfies stochastic

dominance, and the topological assumption on A implies that every pA ∈ ΔA has a certainty

equivalent in A with respect to the preference relation ≽z; that is for any pA ∈ ΔA, there

exists apA ∈ A such that pA ∼z apA . We shall continue to use the notation apA to denote

the certainty equivalent of pA ∈ ΔA with respect to ≽z. Finally, note that the continuity

condition [B2.1] does not preclude the possibility that z = z′ and � ∈ (0, 1).

We now adapt to our environment of risk a definition that Ghirardato and Marinacci

(2001) have provided in the context of uncertainty.
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Definition 4. The preference relation ≽z is bi-separable if it satisfies stochastic dominance,

and admits a representation Vz : ΔA → ℝ that is unique up to positive affine transformation,

for which there exists a strictly increasing bijection 'z: [0, 1] → [0, 1] that satisfies 'z(0) =

0, 'z(1) = 1, such that, if we let vz(a) = Vz(a) for all a ∈ A, then for all a′, a′′ ∈ A, a′ ≽z

a′′, and all � ∈ [0, 1],

Vz([a
′, �; a′′, 1− �]) = 'z(�)vz(a

′) + (1− 'z(�))vz(a
′′).

As the name suggests, biseparable preferences introduce event-wise separability in a very

limited sense, viz. lotteries that put positive probability on only two outcomes (for the others)

are evaluated by the decision maker in the spirit of generalized expected utility. Other than

that the only restriction on ≽z is that it respects stochastic dominance. The function 'z is

referred to as a probability weighting function. The probability weighting function has the

interpretation that it transforms ‘raw’ or objective probabilities into decision weights that

capture the attitude that DM has towards the chance or risk faced by others.

[B0] Biseparability

For any ≽z (z ∈ Z) such that ≻z ∕= ∅, ≽z is a biseparable preference.

In the subsequent analysis, we shall not distinguish between the functions Vz and vz, and

use the latter to denote both. Further, we will call vz a biseparable representation of the

biseparable preference ≽z. Some prominent examples of biseparable preferences include

Expected Utility, Rank Dependent Utility, and Gul’s ‘Disappointment Averse’ preferences.

Ghirardato et al. (2003) have shown how the structure of biseparable preferences can be

used to define ‘subjective mixtures’ or ‘preference averages’. That is, for any two outcomes

a, a′ ∈ A, we can identify an outcome a ∈ A that can be considered as the mid-point on

DM’s ‘preference scale’ between a and a′. Given that the biseparable representation vz of

≽z is unique up to positive affine transformation, such a a is characterized by the equation,

vz(a) =
1

2
vz(a) +

1

2
vz(a

′).

Ghirardato et al. (2003) have shown, in the context of uncertainty, that the notion of a

preference average can be equivalently defined from behavioral primitives. We now provide

a similar definition in our setting of risk.

Definition 5. For any a, a′ ∈ A, if a ≽z a′, we say that a ∈ A is a preference average of
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a and a′ with respect to ≽z, denoted 1
2
a ⊕z 1

2
a′, if for all � ∈ [0, 1],

[a, �; a′, 1− �] ∼z [a[a,�;a,1−�], �; a[a,�;a′,1−�], 1− �].

If a′ ≽z a, a is said to be a preference average of a and a′ if it is a preference average of a′

and a.

For a discussion of why the criterion above constitutes a meaningful definition of prefer-

ence average, the reader is encouraged to refer to the lucid commentary in Ghirardato et al.

(2003). Couple of comments are in order. The first is that preference average of any a, a′ ∈
A need not be unique; there may be multiple elements in A that are a preference average of

such a and a′. All such preference averages form an indifference class of ≽z (see Lemma 2

below), and by 1
2
a ⊕z 1

2
a′ we shall denote a representative of the indifference class. Second,

stochastic dominance implies that if a is a preference average of a and a′, then a ≽z a ≽z

a′, and this holds with strict preference if a ≻z a′. The next Lemma ties down the behav-

ioral and utility approaches of defining preference averages by showing that for biseparable

preferences they coincide. (The proof of the Lemma mimics the proof of Proposition 1 in

Ghirardato et al. (2003), and the details are omitted).

Lemma 2. Let vz be a biseparable representation of (the biseparable preference) ≽z. For

any a, a′ ∈ A, a ∈ A is a preference average of a and a′ if and only if

vz(a) =
1

2
vz(a) +

1

2
vz(a

′).

Further, preference average of a and a′ exist for any a, a′ in A, and they form an indifference

class. That is, if a and â are both preference averages of a and a′, then a ∼z â.

Note that we can now easily define iterated averages like 1
2
a ⊕z [1

2
a ⊕z 1

2
a′] which is

equivalent to a 3
4

: 1
4

mixture of a and a′, and denoted 3
4
a ⊕z 1

4
a′. More generally, continuity

makes it possible to identify from behavior a � : 1− � mixture of a and a′ for any � ∈ [0, 1].

In addition, we can extend the notion of subjective mixtures to the whole of ΔA. For any

pA, p′A ∈ Δ, if pA ≽z p
′
A, we say that pA is a � : 1− � mixture of pA and p′A with respect to

z, denoted �pA⊕z(1− �)p′A, if

apA = �apA ⊕z (1− �)ap′A .
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Further, for any p, q ∈ Δ that are comparable at z, and for any � ∈ [0, 1], �p ⊕z (1 − �)q ∈
Δ shall denote an element that is comparable with p (and hence with q) at z, and satisfies,

(�p⊕z (1− �)q)A,z = �pA,z ⊕z (1− �)qA,z, (�p⊕z (1− �)q)A = �pA ⊕z (1− �)qA.

Definition 6. l, l′ ∈ Δ+ are mixture comparable if either

1. l, l′ ∈ ΔZ, or

2. l = p, l′ = q ∈ Δ, are comparable at some z ∈ Z, and, for all � ∈ [0, 1] there exists

�p ⊕z (1− �)q ∈ Δ.

In the way of notation, note that for any l, l′ ∈ X+ that are mixture comparable, we

shall write �l ⊕ (1 − �)l′ to denote the relevant mixture operation. For instance, for any

pZ , qZ ∈ ΔZ , � ∈ [0, 1], �pZ ⊕ (1− �)qZ will stand for �pZ + (1− �)qZ . Having stated this

terminology, we shall now reformulate the Continuity and Strong Independence Axiom for

the current setting. In particular, we break down the continuity axiom into two parts.

[B2.2] Archimedean Continuity of ≽X0

Let pZ, qZ ∈ ΔZ, l ∈ Δ+ be such that pZ ≻ l ≻ qZ. Then there exists �, �′ ∈ (0, 1) such

that

�pZ ⊕ (1 − �)qZ ≻ l ≻ �′pZ ⊕ (1 − �′)qZ

Further, for all p in Δ, there exists qZ, q′Z ∈ ΔZ, such that qZ ≽ p ≽ q′Z.

[B2] Continuity

≽Δ is bicontinuous and ≽ΔZ
is Archimedean continuous.

[B3] Comparable Independence

Let l1, l2, l′1, l′2 in X+ be such that l1, l2 are mixture comparable, as are l′1 and l′2. Then, for

all � ∈ (0, 1],

[l1 ≻ l′1 and l2 ∼ l′2] ⇒ �l1 ⊕ (1− �)l2 ≻ �l′1 ⊕ (1− �)l′2.

In addition, we make the following regularity assumption on the family of preference

relations (≽z)z∈Z .

[CV.2] Contingent Values

If ≽z such that ≻z ∕= ∅, then there exists ≽z′ ∕= ≽z, with ≻z′ ∕= ∅, such that the following
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holds: for all ã ∈ A, there exists a, a′, a′′ ∈ A, such that ã ∼z a, and

(a) a′ ∼z′ a ∼z′ a′′,

(b) a′ ≽z a ≽z a′′.

Further, if a is not a maximal (resp. minimal) element of ≽z, then a′ ≻z a (resp. a ≻z a′′).

Theorem 3. Suppose [CV.2] holds. Then the following statements are equivalent:

1. Axioms [B0], [A1], [B2], [B3], [A4] - [A7] holds.

2. There exists a function u : Z → ℝ, functions vz : ΔA → ℝ, z ∈ Z, and a constant �

∈ [0, 1] such that the function U : Δ+ → ℝ defined by

∙ U(pZ) =
∑

z∈Z pZ(z)u(z), ∀ pZ ∈ ΔZ, and

∙ U(p) =
∑

z∈ZpZ(z)[u(z) + �vz(pA,z) + (1 − �)vz(pA)], ∀ p ∈ Δ

represents ≽.

In addition, any triple (ũ, (ṽz)z∈Z, �̃) represents ≽ in the above sense if and only if there

exists constants � > 0 and � such that ũ = �u + �, ṽz = �vz, for all z ∈ Z, and �̃ = �,

whenever there exists z ∈ Z such that ≻z ∕= ∅.

Note that vz is a biseparable representation of ≽z. Further, vz restricted to A is continu-

ous. Like before Axiom [A7] (Symmetry) plays a role only in establishing that the weights �z

are same for all z ∈ Z with ≻z ∕= ∅. The proof of the Theorem is available in the appendix.

5 Application

In this section we use our decision model to address an issue that has been at the center of

American electoral politics in recent years, namely, the issue of voters voting against their

economic self-interest. Because our decision model makes a separation between tastes and

values, it allows us to introduce two distinct rationales that voters may use while making

voting decisions. Before introducing the voting model, we would like to highlight some

experimental evidence from a recent paper by Feddersen, Gailmard and Sandroni (2009)

that supports the hypothesis that voters may indeed vote against their economic interest,

but shows that the rationale behind such voting behavior may not be captured by the simple

argument that moral issues are more important to voters than economic ones. Their basic

hypothesis is that large elections may exhibit a moral bias, viz., alternatives understood by
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voters to be morally superior are more likely to win in large elections than in small ones.

To make this point, they conduct an experimental election with two options – call these A

and B. The basic details of their experiment were as follows. First, subjects were broken up

into two groups, one consisting of voters and the other of non-voters. Then the voters cast

their votes for A or B. Finally, after all voters had cast their vote, one voter was randomly

picked, whose choice became the group choice. The number of eligible voters was determined

by the experimenters and was varied across different trials of the experiment. Accordingly,

the probability of a voter being pivotal (the reciprocal of the number of voters) was directly

controlled as a treatment variable in these experiment. As far as payoffs went, option B gave

a higher monetary reward to the voters than option A. On the other hand option A was

better for the non-voters than option B. One may therefore think of option B as a selfish

option for the voters, and option A as a moral option. An interesting pattern of choice that

was exhibited by a non-trivial number of voters is the following. When the probability of

their vote being pivotal was high, in particular when it was 1, these voters chose option B.

On the other hand when the pivot probability was low, they voted for option A. Observe

that such voters voted for option A (when pivot probability was low) even though they prefer

option B to A. Accordingly, their choices violate stochastic dominance.

We now introduce a theoretical model that addresses the issue. Our primary goal here is

to highlight the workings of our decision model and to explain how it differs from standard

models. To that end we are going to make the specification of the electoral process extremely

simple. For a more detailed treatment of the problem, refer to Borah (2009). Consider an

election with two options, 1 and 2, in a society consisting of n voters. We treat n as a

parameter of the model. We assume that there are no costs to voting. This will ensure that

everyone votes in the election. Further the result of the election will be determined by the

following mechanism, which mimic the one used by Feddersen et. al. First, all voters cast

their votes. After all voters have reported their choice, one voter is drawn at random, and the

choice she reported determines the outcome of the election. Accordingly, pivot probabilities

will be a parameter in our model.

We make the extreme assumption that all voters are identical. This greatly simplifies

the analysis as it allows us to conduct it in the context of a ‘representative voter’. Let us

now describe what the problem looks like when viewed from the perspective of one such

representative voter (RV). As mentioned above, she can vote for either option 1 or option 2.

If option 1 is the group choice, the resulting allocation is (z1, a1) ∈ Z × A, where z1 refers to
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the outcome for RV, and a the outcomes for everyone else. Similarly, if option 2 is the group

choice, the resulting allocation is (z2, a2) ∈ Z × A, where again z2 refers to the outcome for

RV, and a2 the outcomes for everyone else.

Note that the probability that RV is pivotal is given by � = 1/n. Further, let  denote the

probability that option 1 is the outcome of the election when RV is not pivotal (Of course,  is

an ‘endogenous object’). Then the probability distributions over final allocations generated

by RV choosing 1 is given by:

p1 = [(z1, a1), �+ (1− �); (z2, a2), 1− �− (1− �)],

and that by her choosing 2 is given by:

p2 = [(z1, a1), (1− �); (z2, a2), 1 − (1− �)]

Note that if RV’s preferences satisfy stochastic dominance, then her vote choice is inde-

pendent of pivot probabilities, or equivalently, of the number of voters. To understand this

claim, suppose, she prefers the allocation (z2, a2) to (z1, a1). Consider any situation in which

she is pivotal with probability � = 1/n. In this case, taking the other voters’ choices as given

(that is, taking  as given), her vote for options 1 and 2 generates respectively the lotteries

p1 and p2 over final allocations (listed above). Since she prefers the allocation (z2, a2) to

(z1, a1), stochastic dominance requires that she must prefer the lottery p2 to the lottery p1,

and hence must vote for option 2 irrespective of what � and  are. Accordingly, we have:

Proposition 1. If voters preferences satisfy stochastic dominance, then there exists a unique

Nash equilibrium (in dominant strategies) that is independent of n in which either everyone

votes for option 1 or everyone votes for option 2.

We now contrast this result with one that is implied by our decision model where voters

have other regarding preferences that may violate stochastic dominance. We will consider

option 1 to be a ‘value choice’ or ‘moral choice’, and 2 to be a ‘selfish choice’, and further

that values matter to our voters. In terms of our decision model, we translate this to mean

that

uH = u(z2) > u(z1) = uL,

and

vH = vz(a
1) > vz(a

2) = vL,
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for z = z1, z2. We will further assume that the preference relations ≽z, z = z1, z2, are iden-

tical and bi-separable. This means that there there exists a probability weighting function,

that is, a strictly increasing bijection ' : [0, 1]→ [0, 1] that satisfies '(0) = 0, '(1) = 1 such

that a lottery of the type [a1, r; a2, 1 − r] is evaluated as,

vz([a
1, r; a2, 1− r]) = '(r)vz(a

1) + (1− '(r))vz(a
2).

As stated above the probability weighting function has the interpretation that it transforms

objective probabilities into decision weights. These decision weights capture the attitude

that DM has towards the chance or risk faced by others. We will assume that �, the weight

that DM puts on the ex-post concern, is equal to 1
2
. Further, define,

� = uH−uL
vH−vL

and assume that:

∙ [V 1] � > 1.

∙ [V 2] There exists �, � ∈ (0, 1), such that for all �̃ ∈ (0,�) ∪ (�, 1), ' is differentiable,

and '′(�̃) > 2� − 1 . Further, ' is concave on the interval [0,�).

[V1] can be rewritten as

uH + vL > uL + vH

The left hand side gives RV’s payoffs under our decision model from the allocation (zB, aB),

whereas the right hand side gives her payoffs from the allocation (z1, a1). This condition

therefore states that RV prefers the allocation (z2, a2) to the allocation (z1, a1).

Assumptions [V1] and [V2] together imply that for all �̃ ∈ (0,�) ∪ (�, 1), '′(�̃) > 1. It fol-

lows that there exists a neighborhood of 0 in which '(�̃) > �̃, and there exists a neighborhood

of 1 in which '(�̃) < �̃. This implies that the representative voter tends to over-weigh small

probabilities and under-weigh large probabilities of her morally superior outcome, a1, realiz-

ing. This phenomenon of over-weighing small probabilities, and under-weighing large ones,

which is referred to as regressive probability weighting, has been extensively documented

in the literature on decision making under risk starting with the important contribution of

Kahneman and Tversky (1979). In that literature regressiveness of probability weighting

pertains to a decision maker’s attitude to the chances that she is faced with as regards her

own outcomes. In our set up this regressiveness pertains to the decision maker’s attitude to

the chances faced by others.
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Figure 2: Payoff difference between voting for options 1 and 2.
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Proposition 2. Under assumptions [V1] and [V2], there exists positive integers n and n,

n < n, such that for all n ≤ n, everyone voting for option 2 is the unique symmetric Nash

equilibrium (in pure strategies), and for all n ≥ n, everyone voting for option 1 is the unique

symmetric Nash equilibrium (in pure strategies).

The proof is available in the appendix. Here, we briefly go over the reasoning that drives

the result. Consider Figure 2 that has been constructed by taking particular values of uH ,

uL, vH , vL and functional form for the probability weighting function that is consistent with

assumptions [V1] and [V2]. The figure shows the payoff difference for our representative

voter from voting for options 1 and 2 as a function of �, the pivot probability, and , the

probability that option 1 will be chosen when RV is not pivotal. The shaded area represents

those values of � and  for which the payoff of voting for 1 exceeds that of voting for 2.

The incentives that RV has for voting for option 2 for high values of � is quite apparent

given that she prefers option 2 to option 1. The interesting feature of our model is that for

low values of �, and for suitable values of , her vote choice shifts from option 2 to 1. In

particular, there are two regions in the �- box of the Figure in which the payoff of voting

for option 1 exceeds that of voting for 2. This vote switch is brought about by the role that

counterfactuals play in her evaluation of others’ outcomes.

Consider first the lower south-west region where both � and  are small, which together

imply that with high probability option 2 shall be the outcome of the election. In this

scenario, RV prefers to add her (small) marginal probability � of influencing the outcome

of the election towards option 1 rather than option 2 –the question is why so? She knows
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that in all likelihood she will get z2 the more desirable outcome by here selfish preferences,

but this rules out the possibility of the others getting the outcome a1, the more desirable

outcome by her moral preferences. However, given that counterfactuals matter to her, she

would still be better off in the event that she get z2 if the outcome a1 had a greater chance

of realizing in an ex-ante sense. So the relevant tradeoff for her is the following: Does she

improve even more the chance of option 2 realizing which shall make her better off via her

selfish preferences, or does she improve the chance of option 1 realizing which shall make

her better off via the counterfactual consideration (in the event that option 2 is the realized

outcome) that a1 at least had some ex-ante chance of realizing . If she votes for option 1 the

ex-ante chance of outcome a1 realizing is (given by the lottery)

[a1, �+ (1− �); a2, 1− �+ (1− �)]

Her payoffs from this lottery is evaluated as:

'(�+ (1− �))vH + (1− '(�+ (1− �)))vL

Given that both � and  are small, � + (1− �) is small. For small probabilities, regressive

probability weighting implies that '(� + (1− �)) > � + (1− �). This makes increasing

the ex-ante probability of a1 realizing more attractive to her than increasing the probability

of z2 realizing, and determines her choice of option 1. We think of this as a warm glow

effect – given that she is very likely to get a good personal outcome (z2), our ‘values voter’

is willing to forego a small chance of improving her selfish goals for a better ex-ante chance

of realizing her moral goals.

Now consider the north-west corner of the �- box, where the payoff of voting for option

1 exceeds that of voting for 2. Given that  is large, and � is small in this region, option

1 is very likely to be the outcome of the election. Once again her choice of option 1 in this

scenario is driven by her concern for the counterfactual. She knows that in all likelihood the

event in which she gets z1 will realize. Given that this event occurs, the others get a1. If she

were to vote for option 2, it would reduce the ex-ante chance that others have of getting a1

by �. Given that the chance of a1 realizing is close to 1, the regressive nature of probability

weighting close to 1, viz., '(r) < r, makes the reduction in ex-ante chance unattractive for

her. So she prefers adding her marginal probability of � towards furthering her moral goals

than selfish goals. We think of this as a sacrifice for certainty effect – given that she is very
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likely to get the bad personal outcome, our ‘values voter’ is willing to sacrifice a small chance

of improving her personal outcome for the ex-ante certainty of the desirable moral outcome

realizing.

Given the structure of payoff differences, it should now be obvious why our result follows.

In particular, note that when everyone else is voting for option 1 ( = 1), for small pivot

probabilities, RV’s best response is to vote for option 1.

6 Concluding Remarks

In this paper, we identified a serious challenge that other regarding preferences pose to exist-

ing theories of decision making under risk, namely, such preferences may violate the property

of stochastic dominance. We argued that such violations are brought about by a concern for

counterfactuals that decision makers with other regarding preferences exhibit while evaluat-

ing others’ outcomes. We provided a parsimonious decision model that accommodates such

concerns for counterfactuals. In our representation we separated a self regarding component

of preferences from an other regarding component. As far as the other regarding component

goes, we showed that this concern can be broken up into a concern for the ex-post risk and

the ex-ante risk faced by others. The ex-post risk corresponds to a concern that the deci-

sion maker has for the actual outcomes of others whereas the ex-ante risk corresponds to a

concern for the process by which others’ outcomes are determined.

We applied our decision model to a simple voting problem, and showed that when ex-ante

concerns are present the resulting allocation may vary dramatically from when such concerns

are absent. At an empirical level our decision model may have implications regarding the

distribution of final goods in an economy. For instance, public economists have looked

at the question of why there is greater redistribution in some societies than in others, for

instance, between Western Europe and United States. One of the explanations that has been

advanced for such differences is that individual preferences as it pertains to the outcomes

or opportunities of others may vary across societies. A natural question to ask would then

be the following: Do differences in attitude amongst decision makers about the ex-ante risk

faced by others have an explanatory power in accounting for differences in redistribution

policy across societies? Our decision model would provide a simple test of this hypothesis,

namely, a test of whether the parameter � statistically differs across such societies.

At a theoretical level, there are two questions that may be explored in future work.
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First, it may be a useful exercise to generalize our representation to allow for the decision

maker’s preferences over own outcomes to be non-linear in probabilities. That is, we may

want to explore a representation in which the u function of our representation, is say, Rank

Dependent, instead of being Expected Utility. Second, we would like to see our decision

model extended to an environment with uncertainty in which no objective probabilities are

available.

7 Appendix

7.1 Preliminaries

In this subsection, we provide some preliminary results, as well as introduce some definitions

that we shall make use of in proving our representation results. Note that we will abuse

notation throughout the Appendix by not distinguishing between an outcome in the set Z

or A, and a degenerate lottery that gives that outcome with probability 1.

7.1.1 Preliminary Results

Proof of Lemma 1

Since p and p′ are comparable at z ∈ Z, pZ = p′Z , and so

(�p + (1− �)p′)Z = �pZ + (1− �)p′Z = pZ = p′Z .

Further pZ = p′Z implies that for all z′ in the support of pZ ,

(�p + (1− �)p′)A,z′ = �pA,z′ + (1− �)p′A,z′ .

Further for all z′ in the support of pZ , z′ ∕= z, pA,z′ ∼z′ p
′
A,z′ , and ≽z satisfying Independence

implies that

�pA,z′ + (1− �)p′A,z′ ∼z′ pA,z′ ∼z′ p
′
A,z′ .

That is,

(�p + (1− �)p′)A,z′ ∼z′ pA,z′ ∼z′ p
′
A,z′ .

Similarly, it also follows that

(�p + (1− �)p′)A = �pA + (1− �)p′A ∼z′ pA ∼z′ p
′
A. □
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Lemma 3. For each p ∈ Δ, there exists q∗Z(p) ∈ ΔZ such that p ∼ q∗Z(p).

Proof. By the Continuity axiom, for any p ∈ Δ, there exists qZ , q′Z ∈ ΔZ such that qZ ≽ p

≽ q′Z . If either of those preferences is an indifference, then we are done. So assume that qZ

≻ p ≻ q′Z . Then, by Continuity, there exists �′, �′′ ∈ (0, 1), �′ > �′′, such that �′qZ + (1 −
�′)q′Z ≻ p ≻ �′′qZ + (1 − �′′)q′Z . Let,

Λ = {� ∈ [0, 1] : p ≻ �qZ + (1 − �)q′Z}

and let �∗ = sup Λ. We claim that p ∼ �∗qZ + (1 − �∗)q′Z . To see this, suppose otherwise.

First, suppose that p ≻ �∗qZ + (1 − �∗)q′Z . This implies that �∗ ∈ Λ. Note that,

�′qZ + (1 − �′)q′Z ≻ p ≻ �∗qZ + (1 − �∗)q′Z

This implies that there exists � ∈ (0, 1), such that letting �̃ = ��′ + (1 − �)�∗, we have by

Continuity that

p ≻ �̃qZ + (1 − �̃)q′Z .

But note that �′ > �∗, and hence �̃ > �∗. But at the same time �̃ ∈ Λ, which contradicts

the fact that �∗ = sup Λ

Next, suppose that �∗qZ + (1 − �∗)q′Z ≻ p. Then by Continuity, there exists � ∈ (0, 1)

such that letting �̂ = ��∗ + (1 − �)�′′,

�̂qZ + (1 − �̂)q′Z ≻ p

It follows that �̂ is an upper bound of Λ. But at the same time, since �∗ > �′′, �∗ > �̂, which

contradicts the fact that �∗ = sup Λ.

In the subsequent analysis, for any p ∈ Δ, we shall denote an element of ΔZ that is

indifferent to it by q∗Z(p).

Lemma 4. Suppose ≽z satisfies stochastic dominance and vN-M continuity. If ≻z ∕= ∅, then

there does not exist p ∈ Δ such that (a) pA ≻z pA,z and pA is the maximal element of ≽z,

or (b) pA,z ≻z pA and pA is the minimal element of ≽z.

Proof. Consider any qA ∈ ΔA. Note the following mutually exclusive possibilities:

[A] a ∼z a′ for all a, a′ in the support of qA: In this case it must be that qA ∼z a for any

a in the support of qA. To see this assume otherwise – say qA ≻z a. Given that ≻z ∕= ∅, it

follows that there exists a′′ satisfying a′′ ≻z a or a ≻z a′′. Assume it is the former.10 Note

10The latter case is dealt analogously
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that a′′ first order stochastically dominates qA; hence we have: a′′ ≻ qA ≻z a. But then by

vN-M Continuity, there exists � ∈ (0, 1), such that qA ≻z �a′′ + (1− �)a′. But the lottery

�a′′ + (1− �)a′ first order stochastically dominates qA!

[B] a ≻z a′ for some a, a′ in the support of qA: In this case there exists a, a in the support

of qA such that a ≻z qA ≻z a. This claim is again easily established by appealing to the fact

that ≽z satisfies stochastic dominance; so we omit the details here.

Now we proceed to prove the Lemma. Suppose there exists p ∈ Δ such that pA ≻z pA,z
and pA is the maximal element of ≽z. Then we know from above that there exists a in the

support of pA,z such that pA,z ≽z a. Hence, pA ≻z a. Clearly, a is in the support of pA. This

implies (following Case B above) that there exists a′ in the support of pA such that a′ ≻z
pA. But this contradicts that pA is the maximal element of ≽z. The case of pA,z ≻z pA and

pA is the minimal element of ≽z not being possible can be handled analogously.

It should be obvious that both in the case where ≽z is a vNM preference, as well as when

it is biseparable, the assumptions of the last Lemma holds.

7.1.2 A Binary Relation

We define here a binary relation that we shall make use of in proving our representation

results. Recall the following notation that we introduced in the text. For any pA ∈ ΔA and

z ∈ Z, the indifference class of pA under ≽z is denoted by

[pA]z = {qA ∈ ΔA : qA ∼z pA}

Further, ΔA/ ∼z shall denote the set of all such indifference classes. We define the binary

relations, ≽̂z, ≻̂z, ∼̂z ⊆ [ΔA/∼z]
2 × [ΔA/∼z]

2 as follows:

Definition 7. ([pA]z, [qA]z) ≽̂z (resp. ≻̂z) ([p′A]z, [q′A]z) if there exists a finite sequence

(pk, qk)Kk=1 ⊆ Δ × Δ that reveals a weak (resp. strict) preference for the risk profile (z, p1
A,z,

p1
A) over the risk profile (z, qKA,z, q

K
A ), and ([p1

A,z]z, [p1
A]z) = ([pA]z, [qA]z), ([qKA,z]z, [qKA ]z) =

([p′A]z, [q′A]z).

Further, ([pA]z, [qA]z) ∼̂z ([p′A]z, [q′A]z) if there exists a finite sequence (pk, qk)Kk=1 ⊆ Δ ×
Δ that reveals an indifference between the risk profiles (z, p1

A,z, p
1
A) and (z, qKA,z, q

K
A ), and

([p1
A,z]z, [p1

A]z) = ([pA]z, [qA]z), ([qKA,z]z, [qKA ]z) = ([p′A]z, [q′A]z).
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The Revealed Consistency axiom guarantees that ∼̂z and ≻̂z are respectively the sym-

metric and asymmetric components of ≽̂z. That is,

([pA]z,[qA]z) ∼̂z ([p′A]z,[q
′
A]z) iff ([pA]z,[qA]z) ≽̂z ([p′A]z,[q

′
A]z) & ([p′A]z,[q

′
A]z) ≽̂z ([pA]z, [qA]z).

and,

([pA]z,[qA]z)≻̂z([p′A]z,[q
′
A]z) iff ([pA]z,[qA]z) ≽̂z ([p′A]z,[q

′
A]z) & ¬ ([p′A]z,[q

′
A]z)≽̂z ([pA]z,[qA]z).

The next definition uses the binary relation ≽̂z to formalize a way of associating a risk profile

with a 0-degenerate lottery.

Definition 8. We will say that (z, pA) ∈ Δ is a DM-degenerate equivalent of the risk

profile (z, pA, qA) if ([pA], [qA]) ∼̂z ([pA], [pA]).

7.1.3 A Topological Structure on ΔA/∼z

We next endow the set ΔA/∼z with a topology. For any [p′A]z, [p′′A]z ∈ ΔA/∼z, let,

∙ ][p′A]z, [p′′A]z[ = {[pA]z ∈ ΔA/∼z : p′A ≻z pA ≻z p′′A},

∙ ][p′A]z, → [ = {[pA]z ∈ ΔA/∼z : pA ≻z p′A}, and

∙ ]←, [p′A]z[ = {[pA]z ∈ ΔA/∼z : p′A ≻z pA}.

Since ≽z is a preference relation, it is natural to interpret these sets as preference intervals.

Let [q∗∗A ]z and [q∗A]z denote the maximal and minimal indifference classes respectively of ≽z

in ΔA/∼z, if such elements exist. That is,

[q∗∗A ]z = {pA ∈ ΔA : pA ≽z p
′
A, for all p′A ∈ ΔA},

and

[q∗A]z = {pA ∈ ΔA : p′A ≽z pA, for all p′A ∈ ΔA},

If [q∗∗A ]z and/or [q∗A]z exist, we shall write,

][p′A]z, → [ = ][p′A]z, [q∗∗A ]z], and ]←, [p′A]z[ = [[q∗A]z, [p′A]z[
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We endow the set ΔA/∼z with the order topology of ≽z, i.e., the coarsest topology containing

all sets of the form ][p′A]z, → [ and ] ←, [p′A]z[, thus all sets of the form ][p′A]z, [p′′A]z[. We

endow [ΔA/∼z]
2 with the product topology. A set of the type C = I × I ′ ⊆ [ΔA/∼z]

2,

where I and I ′ are of the form ][p′A]z, [p′′A]z[, or ][p′A]z, → [, or ]←, [p′A]z[ shall be referred to

as a cube in [ΔA/∼z]
2. Our strategy in the proof of the representation results below shall

be to first establish that ≽̂z is a weak order ‘locally’ on such cubes, and then to extend this

‘globally’ by tying together these cubes. To that end note that if C, C ′ ⊆ [ΔA/∼z]
2 are

cubes, then so is C ∩ C ′, if the intersection happens to be non-empty. Further, if we can

establish that ≽̂z is a weak order on C and C ′, then Revealed consistency implies that the

derived rankings must coincide on C ∩ C ′.

7.2 Representation Results

In this subsection we prove our three representation results.

7.2.1 Proof of Theorem 1

The proof of Theorem 1 proceeds through several Lemmas. Before we move to these we

define mixture operations on ΔA/∼z and [ΔA/∼z]
2. For any [pA]z, [qA]z ∈ ΔA/∼z, and � ∈

[0, 1], define

�[pA]z ⊕̂z (1− �)[qA]z = [�pA + (1− �)qA]z

Similarly, for any ([pA]z, [qA]z), ([p′A]z, [q′A]z) ∈ [ΔA/∼z]
2, and � ∈ [0, 1], define

�([pA]z, [qA]z) ⊕̂z (1− �)([p′A]z, [q′A]z) = (�[pA]z ⊕̂z (1− �)[p′A]z, �[qA]z ⊕̂z (1− �)[q′A]z)

That is,

�([pA]z, [qA]z) ⊕̂z (1− �)([p′A]z, [q′A]z) = ([�pA + (1− �)p′A]z, [�qA + (1− �)q′A]z)

Any subset of [ΔA/∼z]
2 that is itself a mixture set shall be referred to as a mixture subset

of [ΔA/∼z]
2. Note that because ≽z satisfies the vN-M Independence condition, any cube C

⊆ [ΔA/∼z]
2 is a mixture subset of [ΔA/∼z]

2. We state the following Lemma about mixture

subsets of [ΔA/∼z]
2. The proof is omitted.

Lemma 5. Every mixture subset of [ΔA/∼z]
2, in particular [ΔA/∼z]

2 itself, is connected.
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We shall now collect some useful notation to aid the exposition of the next Lemma. We

shall denote the restriction of ≽̂z to any set Λ in [ΔA/∼z]
2 by (≽̂z)Λ. Further, let

int(ΔA/∼z) = {[pA]z ∈ ΔA/∼z : [pA]z ∕= [q∗∗A ]z, [q∗A]z}

D∗ = {([qA]z, [qA]z) ∈ [ΔA/∼z]
2 : [qA]z ∈ ΔA/∼z}

D = {([qA]z, [qA]z) ∈ [ΔA/∼z]
2 : [qA]z ∈ int(ΔA/∼z)}

Ω = ΔA/∼z × int(ΔA/∼z), and Ω∗ = Ω ∪ D∗.

Note that if ≽̂z does not have any extremal elements then, ΔA/∼z = int(ΔA/∼z) and D∗ =

D. In that case D∗ ⊆ int(ΔA/∼z) and it follows that Ω∗ = Ω. The following lemma is the

most important one in establishing our representation.

Lemma 6. (≽̂z)Ω∗ is a weak order. Further, there exists

(i) a function wz : ΔA → ℝ that represents ≽z and satisfies: for all � ∈ [0, 1], pA, qA ∈ ΔA

wz(�pA + (1 − �)qA) = �wz(pA) + (1 − �)wz(qA), and

(ii) a constant �z ∈ [0, 1],

such that the function Wz : Ω∗ → ℝ given by

Wz([pA]z, [qA]z) = �zwz(pA) + (1 − �z)wz(qA)

represents (≽̂z)Ω∗. Further, another pair (w̃z, �̃z) represents (≽̂z)Ω∗ in the above sense iff

w̃z is a positive affine transformation of wz and �̃z = �z, for all z ∈ Z such that ≻z ∕= ∅.

Proof. We first consider those z ∈ Z such that ≻z ∕= ∅. We break the argument for such z

into three main steps.

Step 1: For any ([pA]z, [qA]z) ∈ Ω there exists a cube C containing ([pA]z, [qA]z) such that

(≽̂z)C satisfies the three vN-M axioms on the mixture space (C, ⊕̂z).

Take any ([pA]z, [qA]z) ∈ Ω. Note that by the definition of Ω, [qA]z ∕= [q∗∗A ]z, [q∗A]z. We will

first do the proof under the assumption that [pA]z ∕= [q∗∗A ]z, [q∗A]z. The proof for the case

when [pA]z is equal to either [q∗∗A ]z or [q∗A]z is similar, and we shall make a few brief comments

about this case below. Note that there are two possibilities; first that pA ≁z qA, and second

that pA ∼z qA. Of course if pA ∼z qA, then [pA]z ∕= [q∗∗A ]z, [q∗A]z.
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In the first case assume without loss of generality that pA ≻z qA. Accordingly, there

exists p′A ∈ ΔA such that pA ≻z qA ≻z p′A. Further, by the Contingent Values assumption

(CV.1) there exists ≽z′ ∕= ≽z, with ≻z′ ∕= ∅, and we can pick appropriate pA, p′A for which

there exists pA, pA ∈ [pA]z′ , p
′
A, p′A ∈ [p′A]z′ such that pA ≻z pA ≻z pA, and p′A ≻z p′A ≻z p′A.

By Continuity, there exists �∗ ∈ (0, 1), such that

qA ∼z �
∗pA + (1 − �∗)p′A.

Without loss of generality, let qA = �∗pA + (1 − �∗)p′A.

Similarly, in the second case as well pick pA, p′A ∈ [pA]z for which there exists pA, pA

∈ [pA]z′ , p
′
A, p′A ∈ [p′A]z′ such that pA ≻z pA ≻z pA, and p′A ≻z p′A ≻z p′A. Note that it is

possible that pA = p′A. Now for any � ∈ (0, 1),

qA ∼z �pA + (1 − �)p′A.

Pick a positive �∗, and once again let qA = �∗pA + (1 − �∗)p′A.

Continuity of ≽z allows us to pick pA, pA, p′A, p′A such that,

qA ≡ �∗pA + (1− �∗)p′A ≻z qA ≻z �∗pA + (1− �∗)p′A ≡ qA.

We can now define the cube C ⊆ Ω that the statement of Step 1 requires us to do. Let,

C = ] [pA]z, [pA]z [ × ][qA]z, [qA]z[.

Further, let

IpA = {p′′A ∈ [pA]z′ : p′′A = �pA + (1− �)pA, � ∈ [0, 1]},

and,

Ip′A = {p′′A ∈ [p′A]z′ : p′′A = �pA
′ + (1− �)pA

′, � ∈ [0, 1]}.

We can now define a subset M of Δ as follows:

M = {q ∈ Δ : qZ(z) = �∗, qZ(z′) = 1− �∗, qA,z ∈ IpA , qA,z′ ∈ Ip′A , and ([qA,z]z, [qA]z) ∈ C}

Since ≽z′ satisfies the vN-M Independence condition, it follows that for any p̂A ∈ IpA ⊆
[pA]z′ , p̂A

′ ∈ Ip′A ⊆ [p′A]z′ ,

�∗p̂A + (1 − �∗)p̂A
′ ∈ [qA]z′ .

Accordingly, any q, q′ ∈ M , are comparable at z. Hence,

q ≻ q′ ⇒ ([qA,z]z, [qA]z) ≻̂z ([q′A,z]z, [q
′
A]z),

and,
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q ∼ q′ ⇒ ([qA,z]z, [qA]z) ∼̂z ([q′A,z]z, [q
′
A]z).

Further, it is straightforward to verify that for any ([p̂A]z,[q̂A]z) ∈ C, there exists p̂A ∈ IpA ,

p̂A
′ ∈ Ip′A , such that

q̂A ∼z �
∗p̂A + (1 − �∗)p̂A

′.

That is, for any ([p̂A]z, [q̂A]z) ∈ C, there exists q ∈ M such that [p̂A]z = [qA,z]z, and [q̂A]z =

[qA]z. Accordingly, ≽̂z is a weak order on C.

Next, we show that (≽̂z)C satisfies the vN-M Independence axiom. First, note that M

is a convex set. That is for any q, q′ ∈ M , �q + (1 − �)q′ ∈ M . Let ([p1
A]z, [q1

A]z), ([p2
A]z,

[q2
A]z), ([p3

A]z, [q3
A]z) ∈ C be such that ([p1

A]z, [q1
A]z) ≻̂z ([p2

A]z, [q2
A]z). Then, there exists q,

q′, q′′ ∈ M such that ([qA,z]z ,[qA]z) = ([p1
A]z, [q1

A]z), ([q′A,z]z, [q′A]z) = ([p2
A]z, [q2

A]z), ([q′′A,z]z,

[q′′A]z) = ([p3
A]z, [q3

A]z), and q ≻ q′. By Comparable Independence, it follows that

�q + (1− �)q′′ ≻ �q′ + (1− �)q′′

Accordingly, it follows that

([(�q + (1− �)q′′)A,z]z, [(�q + (1− �)q′′)A]z) ≻̂z [(�q′ + (1− �)q′′)A,z]z, [(�q′ + (1− �)q′′)A]z)

That is,

([�[qA,z]z ⊕̂z (1− �)[q′′A,z]z, �[qA]z ⊕̂z (1− �)[q′′A]z) ≻̂z ([�[q′A,z]z ⊕̂z (1− �)[q′′A,z]z, �[q′A]z ⊕̂z
(1− �)[q′′A]z)

or,

(�[p1
A]z ⊕̂z (1−�)[p3

A]z, �[q1
A]z ⊕̂z (1−�)[q3

A]z) ≻̂z (�[p2
A]z ⊕̂z (1−�)[p3

A]z, �[q2
A]z ⊕̂z (1−�)[q3

A]z)

or,

�(p1
A]z, [q1

A]z) ⊕̂z (1− �)([p3
A]z, [q3

A]z) ≻̂z �([p2
A]z, [q2

A]z) ⊕̂z (1− �)([p3
A]z, [q3

A]z)

Hence, (≽̂z)C satisfies the vN-M Independence axiom. It is also straightforward to establish

that (≽̂z)C satisfies the vN-M Continuity axiom; the details are omitted.

The proof for the case when [pA]z is equal to either [q∗∗A ]z, [q∗A]z is exactly along similar

lines. When [pA]z = [q∗∗A ]z, take pA = pA in the above proof, and define the cube C as follows:

C = ][pA]z, [q∗∗A ]z] × ][qA]z, [pA]z[ .

The rest of the details are exactly identical. Similarly, when [pA]z = [q∗A]z, take pA = pA in

the above proof, and define

C = [[q∗A]z, [pA]z[ × ][qA]z, [qA]z[ .
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Step 2: There exists a set O ⊆ [ΔA/∼z]
2 containing the set,

D∗ = {([qA]z, [qA]z) ∈ [ΔA/∼z]
2 : [qA]z ∈ ΔA/∼z}

such that (≽̂z)O is a weak order. Further, there exists

(i) a function wz : ΔA/∼z → ℝ that is unique up to affine transformation and satisfies:

wz(�[qA]z ⊕̂z (1 − �)[pA]z) = �wz([qA]z) + (1 − �)wz([pA]z), for any � ∈ [0, 1], and

(ii) a constant �z ∈ [0, 1] that is unique,

such that the function W 0
z : O → ℝ given by

W 0
z (([qA]z, [pA]z)) = �zwz([qA]z) + (1 − �z)wz([pA]z)

represents (≽̂z)O.

We know from Step 1 that for any ([qA]z, [qA]z) ∈ D, there exists a cube containing ([qA]z,

[qA]z), which we can take to be C[qA]z = [[qA]z, [qA]z] × [[qA]z, [qA]z] ⊆ [ΔA/∼z]
2 such that

(≽̂z)C[qA]z
satisfies the three vN-M axioms. Further, Comparable Monotonicity implies the

following: for any ([p′A]z, [q′A]z), ([p′′A]z, [q′′A]z) ∈ C[qA]z ,

[p′A]z ≽̂z [p′′A]z and [q′A]z ≽̂z [q′′A]z ⇒ ([p′A]z, [q′A]z) ≽̂z ([p′′A]z, [q′′A]z).

where [p′A]z ≽̂z [p′′A]z means ([p′A]z, [p′A]z) ≽̂z ([p′′A]z, [p′′A]z) (same for [q′A]z ≽̂z [q′′A]z). Accord-

ingly, (≽̂z)C[qA]
satisfies all the axioms of the Anscombe Aumann Theorem (for finite states)

– Weak Order, Archimedean Continuity, vN-M Independence, Monotonicity and Non De-

generacy. It follows that there exists a function wqAz : ][qA]z, [qA]z[ → ℝ that is unique up to

positive affine transformation, and a constant �qAz ∈ [0, 1] that is unique, such that for all

([p′A]z, [q′A]z), ([q′′A]z, [q′′A]z) ∈ C[qA]z ,

([p′A]z, [q′A]z) ≽̂z ([p′′A]z, [q′′A]z) ⇔ �qAz w
qA
z ([p′A]z) + (1 − �qAz )wqAz ([q′A]z) ≥ �qAz w

qA
z ([p′′A]z) + (1

− �qAz )wqAz ([q′′A]z).

Further note that the function wz satisfies: for all � ∈ [0, 1], [pA]z, [p′A]z ∈ ][qA]z, [qA]z[.

wz(�[pA]z ⊕̂z (1 − �)[p′A]z) = �wz([pA]z) + (1 − �)wz([p
′
A]z).

In addition, for any ([p′A]z, [q′A]z) ∈ C[qA]z , there exists [q̂A]z ∈ [[qA]z, [qA]z] such that ([p′A]z,

[q′A]z) ∼̂z ([q̂A]z, [q̂A]z).

Note that ≽̂z restricted to D∗ is complete. This follows since, any two 0-degenerate

lotteries (z, pA) and (z, p′A) are comparable at z, and accordingly

([pA]z, [pA]z) ≻̂z ([p′A]z, [p′A]z) if (z, pA) ≻z (z, p′A),
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or,

([pA]z, [pA]z) ∼̂z ([p′A]z, [p′A]z) if (z, pA) ∼z (z, p′A),

Now define O = (∪[qA]z∈D C[qA]z) ∪ D∗. We will show that ≽̂z restricted to O is a weak order.

Pick any ([p′A]z, [q′A]z) ∈ C[qA]z , ([p′′A]z, [q′′A]z) ∈ C[pA]z . We know that there exists [q̂A]z, [p̂A]z

∈ ΔA/ ∼z such that

([p′A]z, [q′A]z) ∼̂z ([q̂A]z, [q̂A]z) and ([p′′A]z, [q′′A]z) ∼̂z ([p̂A]z, [p̂A]z).

Accordingly, it follows that

([p′A]z, [q′A]z) ≻̂z ([p′′A]z, [q′′A]z) if ([q̂A]z, [q̂A]z) ≻̂z ([p̂A]z, [p̂A]z),

or,

([p′A]z, [q′A]z) ∼̂z ([p′′A]z, [q′′A]z) if ([q̂A]z, [q̂A]z) ∼̂z ([p̂A]z, [p̂A]z).

Hence, (≽̂z)O is a weak order.

Now consider any two cubes C[qA]z and C[pA]z that intersect. Pick ([q′A]z, [q′A]z), ([q′′A]z,

[q′′A]z) ∈ C[qA]z ∩ C[pA]z , [q′A]z ∕= [q′′A]z, and recalibrate the function wpAz by setting

wpAz ([q′A]z) = wqAz ([q′A]z) and wpAz ([q′′A]z) = wqAz ([q′′A]z)

Note that by the uniqueness result of the Anscombe Aumann Theorem, the pair (wpAz , �pAz )

continues to represent (≽̂z)C[pA]
. Further, wpAz = wqAz on ][pA]z, [pA]z[ ∩ ][qA]z, [qA]z[. Hence

it follows that �pAz = �qAz . Next consider [qA]z, [pA]z such that cubes C[qA]z and C[pA]z do

not intersect. Since the set D is connected, ([qA]z, [qA]z) and ([pA]z, [pA]z) can be linked by

finitely many cubes; that is there are finitely many cubes C[p1A]z , . . . , C[pmA ]z , such that C[p1A]z

= C[qA]z , C[pmA ]z = C[pA]z , and each subsequent pairs of C[pjA]z
’s intersect. Further, we can take

C[pjA]z
∩ C[pj−k

A ]z
= ∅ for every k ≥ 2. We can then repeat the above re-calibration exercise

over pairs of intersecting cubes in the link. This exercise allows us to define a function wz

on int(ΔA/ ∼z), as well as establish �qAz = �pAz , for all qA ∕= pA, [qA]z, [pA]z ∈ int(ΔA/ ∼z).

Finally, for [pA]z = [q∗∗A ]z, or [q∗A]z define

wz([pA]z) = lim
�→1

wz(�[pA]z⊕̂z(1− �)[pA]z),

where pA is any element of int(ΔA/ ∼z). This then establishes the claim of Step 2.

Step 3: (≽̂z)Ω∗ is a weak order, and can be represented as in the statement of the Lemma.
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We establish the following claim: for any ([pA]z, [qA]z) ∈ Ω∗ there exists ([p′A]z, [p′A]z) in D∗

such that ([pA]z, [qA]z) ∼̂z ([p′A]z, [p′A]z). To that end, define the function Wz : Ω∗ → ℝ by

Wz([pA]z, [qA]z) = �zwz([pA]z) + (1− �z)wz([qA]z)

where wz and �z are as in Step 2. For any [q̂A]z ∈ int(ΔA/ ∼z), let

Jq̂A = {([pA]z, [qA]z) ∈ Ω : Wz([pA]z, [qA]z) = Wz([q̂A]z, [q̂A]z)}

We claim that for all ([pA]z, [qA]z), ([p′A]z, [q′A]z) ∈ Jq̂A , ([pA]z, [qA]z) ∼̂z ([p′A]z, [q′A]z). To

see this note that, Step 1 guarantees that for any ([pA]z, [qA]z) ∈ Jq̂A , there exists a cube

C containing ([pA]z, [qA]z) such that (≽̂z)C satisfies the three vN-M axioms on the mixture

set (C, ⊕̂z). Accordingly (≽̂z)C can be represented by a vonNeumann-Morgenstern utility

function. Consider two such cubes C1 and C2 that intersect. Because of the Revealed

Consistency Axiom, it follows that for any ([qA]z, [pA]z), ([q′A]z, [p′A]z) ∈ C1 ∩ C2, ([qA]z,

[pA]z) (≽̂z)C1 ([q′A]z, [p′A]z) iff ([qA]z, [pA]z) (≽̂z)C2 ([q′A]z, [p′A]z). Further note that if WC1

and WC2 are two vN-M utility functions that represent (≽̂z)C1 and (≽̂z)C2 respectively, these

functions can be re-calibrated (in a manner similar to that used in Step 2) and set equal on

C1 ∩ C2.

Now, consider the cube C[q̂A]z around ([q̂A]z, [q̂A]z). We have already established in Step

2 that (≽̂z)C[q̂A]z
is represented by the function Wz. Further, Jq̂A is connected. Accordingly,

([q̂A], [q̂A]) can be linked to any ([pA], [qA]) ∈ Jq̂A using a finite number of cubes. On each

pair of intersecting cubes ≽̂z must coincide as suggested in the last paragraph. Furthermore

the vN-M representations of ≽̂z on these cubes can be re-calibrated and brought in line with

Wz. Hence, we may conclude that for all ([qA]z, [pA]z), ([q′A]z, [p′A]z) ∈ Jq̂A , ([qA]z, [pA]z) ∼̂z

([q′A]z, [p′A]z).

Note that if �z ∕= 1, or if [q∗∗A ]z and [q∗A]z do not exist, then we are done establishing our

claim. However, if �z = 1, and either [q∗∗A ]z or [q∗A]z exists then members of the set

B = {([pA]z, [qA]z) ∈ Ω : [pA]z = [q∗∗A ]z or [q∗A]z}

are not indifferent to any element of D. In this case it is straightforward to verify that for

any ([q∗∗A ]z, [qA]z) ∈ B, ([q∗∗A ]z, [qA]z) ∼̂z ([q∗∗A ]z, [q∗∗A ]z). Similarly, for any ([q∗A]z, [qA]z) ∈ B,

([q∗A]z, [qA]z) ∼̂z ([q∗A]z, [q∗A]z).

Now consider any ([qA]z, [pA]z), ([q′A]z, [p′A]z) ∈ Ω∗. From the argument just made, we
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know that there exists ([q̂A]z, [q̂A]z), ([q̃A]z, [q̃A]z) ∈ D∗, such that ([qA]z, [pA]z) ∼̂z ([q̂A]z,

[q̂A]z) and ([q′A]z, [p′A]z) ∼̂z ([q̃A]z, [q̃A]z). Hence, ([qA]z, [pA]z) ≽̂z ([q′A]z, [p′A]z) iff ([q̂A]z,

[q̂A]z) ≽̂z ([q̃A]z, [q̃A]z). Clearly it also follows that,

([qA]z, [pA]z)≽̂z([q
′
A]z, [p

′
A]z)⇔ Wz(([qA]z, [pA]z)) ≥ Wz(([q

′
A]z, [p

′
A]z))

Now note that we may ‘extend’ the domain of the function wz to ΔA by simply giving all

elements of an equivalence class, say [pA]z, the value wz([pA]z). It then follows that for all �

∈ [0, 1], pA, qA ∈ ΔA,

wz(�pA + (1 − �)qA) = �wz(pA) + (1 − �)wz(qA).

The uniqueness statement is simply a re-statement of the essential uniqueness result in Step

2. This then completes the proof for those z ∈ Z for which ≻z ∕= ∅.
The proof for those z ∈ Z for which ≻z = ∅ is trivial. Note that for this case [ΔA/∼z

× ΔA/∼z] is a singleton. We can take wz to be any constant function, and �z to be any

number in [0, 1].

Remark 1. Note that the function wz : ΔA → ℝ in a ‘von-Neumann Morgenstern utility

representation’ of the preference relation ≽z. We know that if there is some other function

vz that also happens to be a vN-M utility representation of ≽z, then wz and vz must be

positive affine transformations of one another. This is a fact that we shall draw on below.

The last Lemma together with Lemma 4 allow us to conclude:

Corollary 1. For any p ∈ Δ, and z in the support of pZ , the risk profile (z,pA,z,pA) has

a DM -degenerate equivalent (z, �z(pA,z, pA)) ∈ Δ that is unique in the following sense: if

(z, qA) is another DM -degenerate equivalent of (z,pA,z,pA), then �z(pA,z, pA) ∼z qA. Further,

there exists a function wz : ΔA → ℝ, and a constant �z ∈ [0, 1] such that

wz(�z(pA,z, pA)) = �zwz(pA,z) + (1− �z)wz(pA)

The function wz is unique up to positive affine transformation, and the constant �z is unique

for all z such that ≻z ∕= ∅.

In the subsequent analysis, for any p ∈ Δ, and z in the support of pZ , (z, �z(pA,z, pA)) ∈
Δ shall denote the 0-degenerate equivalent of the risk profile (z,pA,z,pA).
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Lemma 7. For all p ∈ Δ,

p ∼
∑

z∈ZpZ(z).q∗Z(z, �z(pA,z, pA)),

where q∗Z(z, �z(pA,z, pA)) ∈ ΔZ is such that (z, �z(pA,z, pA)) ∼ q∗Z(z, �z(pA,z, pA)).

Proof. (Note on notation: We shall abuse notation here by not distinguishing between a

degenerate lottery in ΔZ that gives some outcome z for sure, and the outcome itself. That

is z shall itself stand for the degenerate lottery)

Note that if the support of pZ is singleton, that is p is a DM -degenerate lottery, then the

conclusion follows immediately from Lemma 3. So assume otherwise. Further, denote

qZ ≡
∑

z∈ZpZ(z).q∗Z(z, �z(pA,z, pA)),

and suppose towards a contradiction that p ≁ qZ – say p ≻ qZ (The case of qZ ≻ p is treated

analogously). Suppose first that there exists z, z′ in the support of qZ , denoted S[qZ ], such

that z ≻ z′. Let z′′ ∈ S[qZ ] be such that z′′ ≽ z for all z ∈ S[qZ ]. By Dominance, it follows

that z′′ ≻ p, and so z′′ ≻ p ≻ qZ . By Continuity it follows that there exists � ∈ (0, 1) such

that p ≻ �z′′ + (1 − �)qZ . Finally, by Dominance �z′′ + (1 − �)qZ ≻ p, which is absurd.

Next consider the case where z ∼ z′ for all z, z′ ∈ S[qZ ]. We know (from Continuity) that

for any p ∈ Δ there exists z′′ ∈ Z such that z′′ ≽ p ≻ qZ . It follows that there exists � ∈
(0, 1) such that p ≻ �z′′ + (1 − �)qZ . But by Dominance �z′′ + (1 − �)qZ ≻ p, which is

absurd.

Lemma 8. Let (z, pA), (z, qA) ∈ Δ. Then, for any � ∈ [0, 1],

�(z, pA) + (1− �)(z, qA) ∼ �q∗Z(z, pA) + (1− �)q∗Z(z, qA),

where q∗Z(z, pA), q∗Z(z, qA) ∈ ΔZ are such that q∗Z(z, pA) ∼ (z, pA) and q∗Z(z, qA) ∼ (z, qA).

Proof. Note that q∗Z(z, pA) and q∗Z(z, qA) are comparable as are (z, pA) and (z, qA). The result

follows immediately from Comparable Independence. The details are omitted.

We can now complete the proof of Theorem 1. Since ≽ΔZ
satisfies all the three vN-M

axioms it follows from the vN-M Theorem, that there exists a function u : Z → ℝ such that

the expected utility functional, Eu → ℝ, defined for any pZ ∈ ΔZ by

Eu(pZ) =
∑
z∈Z

pZ(z)u(z)
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represents the preference relation ≽ΔZ
. Next, following Lemma 3 define a function U : Δ

→ ℝ as U(p) = u(q∗Z(p)), where p ∼ q∗Z(p). Clearly, the function U represents ≽. Further,

applying Lemma 7 gives us that

U(p) =
∑
z

pZ(z).u(q∗Z((z, �z(pA,z, pA)))) =
∑
z

pZ(z)U((z, �z(pA,z, pA)))

For each z ∈ Z, define the functions v̂z : ΔA → ℝ as v̂z(pA) = U((z, pA)). Note that Lemma

8 establishes that for any pA, qA ∈ ΔA, � ∈ [0, 1],

(z, �pA + (1− �)qA) = �(z, pA) + (1− �)(z, qA) ∼ �q∗Z(z, pA) + (1− �)q∗Z(z, qA)

That is,

q∗Z(z, �pA + (1− �)qA) = �q∗Z((z, pA)) + (1− �)q∗Z((z, qA))

Accordingly, it follows that,

v̂z(�qA + (1− �)pA) = �v̂z(qA) + (1− �)v̂z(pA)

Hence, as argued in Remark 1, the function v̂z must be a positive affine transformation of

the function wz that we derived in Lemma 6. From the uniqueness result there, it follows

that the pair (v̂z, �z) represents ≽̂z. So it follows that

U(p) =
∑
z

pZ(z)[�zv̂z(pA,z) + (1− �z)v̂z(pA)]

Finally, define vz : ΔA → ℝ to be vz(qA) = v̂z(qA) − u(z). It then follows that

U(p) =
∑
z

pZ(z)[u(z) + �zvz(pA,z) + (1− �z)vz(pA)]

This completes the proof of sufficiency of the axioms. Necessity of the axioms is obvious and

we do not provide the details here.

The proof of the uniqueness statement is straightforward as well. First note that if we

have a triple (ũ, (ṽz)z∈Z , (�̃z)z∈Z) and constants � > 0, � such that ũ = �u + �, ṽz = �vz,

for all z ∈ Z and �̃z = �z, for all z such that ≻z ∕= ∅, then clearly this triple represents ≽.

Now, consider the converse statement. Suppose the triple (ũ, (ṽz)z∈Z , (�̃z)z∈Z) represents ≽.

From the uniqueness result of the vN-M Theorem, it follows that there exists constants � >
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0 and � such that ũ = �u + �. Consider any (z, qA) ∈ Δ. We know that there exists pZ ∈
ΔZ such that (z, qA) ∼ pZ . Accordingly,

ũ(z) + ṽz(qA) = ũ(pZ)

and hence,

ṽz(qA) = ũ(pZ)− ũ(z) = �[u(pZ)− u(z)] = �vz(qA)

Finally, note that the uniqueness of �z follows from the uniqueness result in Lemma 6.

THIS COMPLETES THE PROOF OF THEOREM 1.

7.2.2 Proof of Theorem 2

Note that to simplify on notation for this proof, we use , � etc. to denote elements of the

set ΔA. Begin with a triple (u, (vz)z∈Z , (�z)z∈Z) that represents ≽ in the sense of Theorem

1. Consider any z, z′ ∈ Z with ≻z, ≻z′ ∕= ∅. There are two cases to consider.

Case I : There exists � ∈ ΔA such that [�]∼z ∕= [�]∼z′
.

In this case, there exists  ∈ [�]∼z′
, and ′ ∈ [�]∼z such that  ≻z � and ′ ≻z′ �. In order to

establish that �z = �z′ , all we need to do is find p, q ∈ Δ such that p and q are symmetric

with respect to z, z′, for once we do that, the result follows immediately from the Symmetry

Axiom. We now proceed to establish that there exists such p and q.

We first show that there exists �̃ ∈ ΔA such that the pair �, �̃ is equal gains with respect

to z and z′. Consider p′, q′ ∈ Δ, where

p′ = ([z, 1
2
; z′, 1

2
], ) and q′ = ([z, 1

2
; z′, 1

2
), ′).

In case p′ ∼ q′, pick any �̃ ∈ []z ∩ [′]z′ . Then, the pair �, �̃ is equal gains with respect to z

and z′. On the other hand suppose p′ ≁ q′, and without loss of generality, suppose p′ ≻ q′.

Then we have that p′ ≻ q′ ≻ ([z, 1
2
; z′, 1

2
], �) ≡ p′′, where the final strict preference follows

from Comparable Monotonicity. Note that p′ and p′′ are comparable; so by Continuity it

follows that there exists some � ∈ (0, 1) such that

�p′ + (1 - �)p′′ = ([z, 1
2
; z′, 1

2
), � + (1 - �)�) ∼ q′

Now pick any �̃ ∈ [� + (1 − �)�]z ∩ [′]z′ . It follows that �, �̃ is equal gains with respect

to z and z′. Now define p, q as follows: pZ = qZ with pZ(z) = pZ(z′) = 1
2
; pA,z = �, pA,z′ =

�̃ and qA,z = �̃, qA,z′ = �. Clearly, p and q are symmetric with respect to z and z′.
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Case II : [�]∼z = [�]∼z′
for all � ∈ ΔA.

In this case, by the Contingent Values assumption (CV.1), we know that there exists ≽z′′ ,

with ≻z′′ ∕= ∅ for which there exists � ∈ ΔA such that [�]∼z ∕= [�]∼z′′
and [�]∼z′

∕= [�]∼z′′
.

Based on the analysis in Case I it follows that �z = �z′′ , and �z′ = �z′′ , and hence �z = �z′ .

THIS COMPLETES THE PROOF OF THEOREM 2.

7.2.3 Proof of Theorem 3

The proof of Theorem 3 proceeds along similar lines as the proof of Theorem 1. First, we

define the appropriate mixture operator on the sets ΔA/∼z and [ΔA/∼z]
2. For any [pA]z,

[qA]z ∈ ΔA/∼z, and � ∈ [0, 1], define

�[pA]z ⊕̂z (1− �)[qA]z = [�pA ⊕z (1− �)qA]z

Similarly, for any ([pA]z, [qA]z), ([p′A]z, [q′A]z) ∈ [ΔA/∼z]
2, and � ∈ [0, 1], define

�([pA]z, [qA]z) ⊕̂z (1− �)([p′A]z, [q′A]z) = (�[pA]z ⊕̂z (1− �)[p′A]z, �[qA]z ⊕̂z (1− �)[q′A]z)

That is,

�([pA]z, [qA]z) ⊕̂z (1− �)([p′A]z, [q′A]z) = ([�pA ⊕z (1− �)p′A]z, [�qA ⊕z (1− �)q′A]z)

Note that for any cube C ⊆ [ΔA/∼z]
2, C endowed with the mixture operator ⊕̂z, denoted

(C, ⊕̂z), is a mixture set. The following Lemma is along the lines of Lemma 6, and constitutes

the back bone of the proof of the Theorem.

Lemma 9. (≽̂z)Ω∗ is a weak order. Further, there exists

(i) a function wz : ΔA → ℝ that satisfies for all � ∈ [0, 1], pA, qA ∈ ΔA,

wz(�pA ⊕z (1 − �)qA) = �wz(pA) + (1 − �)wz(qA), and

(ii) a constant �z ∈ [0, 1],

such that the function Wz : Ω∗ → ℝ given by

Wz([pA]z, [qA]z) = �zwz(pA) + (1 − �z)wz(qA)

represents (≽̂z)Ω∗. Further, another pair (w̃z, �̃z) represents (≽̂z)Ω∗ in the above sense iff

w̃z is a positive affine transformation of wz and �̃z = �z, for all z ∈ Z such that ≻z ∕= ∅.

44



Proof. Just like in Lemma 6, the case where ≻z = ∅ is trivial, and hence ignored here. For

those z with ≻z ∕= ∅, the proof can once again be broken down to three steps. The second

and third steps are essentially the same. The first step, though similar in spirit, is different

in terms of some of its details, and that is what the proof will focus on.

∙ Step 1: For any ([pA], [qA]) ∈ Ω there exists a cube C containing ([pA]z, [qA]z) such

that (≽̂z)C satisfies the three vN-M axioms on the mixture set (C, ⊕̂z).

Pick any ([pA]z, [qA]z) ∈ Ω. There may be two possibilities. First, pA ≁z qA, and second pA

∼z qA. For the first case assume, without loss of generality that, pA ≻z qA, and note that

there exists a, a′ ∈ A such that a ∼z pA ≻z qA ≻z a′. The fact that we may find a as specified

follows from the fact that any lottery in ΔA has a certainty equivalent with respect to ≽z;

a′ exists as specified because qA /∈ [q∗∗A ]z or [q∗A]z, and that ≽z satisfies stochastic dominance.

Furthermore, biseparability of ≽z implies that there exists �∗ ∈ (0, 1) such that,

[a, �∗; a′, 1− �∗] ∼z qA
11

Now consider the case where, pA ∼z qA. In this case pick a, a′ ∈ [qA]z. It is possible that a

= a′. Then for any � ∈ [0, 1], since ≽z satisfies stochastic dominance, we have that

[a, �; a′, 1− �] ∼z qA

In this case take any �∗ ∈ (0, 1). In either case therefore we can find a, a′ ∈ A, and some �∗

∈ (0, 1) such that the above preference indifference condition holds. Henceforth, without loss

of generality, we shall consider qA = [a, �∗; a′, 1 − �∗]. Further, like in the proof of Lemma

6, we will consider the case where [pA]z ∕= [q∗∗A ]z or [q∗A]z. The other cases can be dealt along

similar lines.

We know by the assumption of Contingent Values (CV.1) that there exists ≽z′ ∕= ≽z,

with ≻z′ ∕= ∅, such that for an appropriate choice of a, a′, there exists a, a and a′, a′ that

satisfy,

11Recall from the definition of a biseparable preference that such preferences are characterized by a utility
function vz : ΔA → ℝ, and a probability weighting function (formally a strictly increasing bijection) ' : [0, 1]
→ [0, 1]. It follows that vz(a) > vz(qA) > vz(a′). Let r ∈ [0, 1] be such that vz(qA) = rvz(a) + (1− r)vz(a′).
Because ' is surjective, there exists �∗ ∈ (0, 1) such that '(�∗) = r. Hence

vz(qA) = '(�∗)vz(a) + (1− '(�∗))vz(a′),

and,

[a, �∗; a′, 1− �∗] ∼z qA.
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a ∼z′ a ∼z′ a and a ≻z a ≻z a,

a′ ∼z′ a′ ∼z′ a′ and a′ ≻z a′ ≻z a′

In particular, Bicontinuity of ≽Δ allows us to choose a, a and a′, a′ in such a way that:

qA = [a, �∗; a′, 1− �∗] ≻z � ≻z [a, �∗; a′, 1− �∗] = qA.

We can now define the cube C ⊆ Ω that the statement of Step 1 requires us to do. Define,

C =][a]z, [a]z[×][qA]z, [qA]z[

Further, let,

Ia = {â ∈ [a]z′ : a ≽z â ≽z a},

and

Ia′ = {â′ ∈ [a′]z′ : a′ ≽z â′ ≽z a′}.

Note that for any a1, a2 ∈ Ia, �a1 ⊕z (1− �)a2 ∈ Ia, for all � ∈ [0, 1]. 12 Similarly, for any

a′1, a′2 ∈ I ′a, �a′1 ⊕z (1 − �)a′2 ∈ Ia′ , for all � ∈ [0, 1]. We can now define a subset M of Δ

as follows:

M = {p = [(z, â), �∗; (z′, â′), 1− �∗] ∈ Δ : â ∈ Ia, â′ ∈ Ia′ , and ([pA,z]z, [pA]z) ∈ C}.

Note that for any p = [(z, â), �∗; (z′, â′), 1− �∗] ∈ M ,

[pA,z]z = [â]z and [pA]z = [[â, p; â′, 1− p]]z

Since, ≽z′ is a bi-separable preference, it follows that for any â ∈ Ia ⊆ [a]z′ , â′ ∈ Ia′ ⊆ [a′]z′ ,

[â, �∗; â′, 1− �∗] ∼z′ qA = [a, �∗; a′, 1− �∗]

Accordingly, any p, p′ ∈ M are comparable at z, and

p ≻ p′ ⇒ ([pA,z]z, [pA]z)≻̂z([p′A,z]z, [p′A]z)

12This follows since [a]z′ is a connected subset of A. Note that any a1, a2 ∈ Ia, � ∈ [0, 1],

W1 = {â ∈ [a]z′ : â ≽z �a1 ⊕z (1− �)a2},

and,

W2 = {â ∈ [a]z′ : �a1 ⊕z (1− �)a2 ≽z â}

form a separation of [a]z′ , and hence their intersection must be nonempty.
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p ∼ p′ ⇒ ([pA,z]z, [pA]z)∼̂z([p
′
A,z]z, [p

′
A]z)

It is straightforward to verify (using Bicontinuity) that for any ([p̂A]z, [q̂A]z) ∈ C, there exists

â ∈ Ia, â′ ∈ Ia′ , such that â ∼z p̂A, and q̂A ∼z [â, �∗; â′, 1− �∗]. That is for any ([p̂A], [q̂A])

∈ C, there exists p ∈ M such that [pA,z]z = [p̂A]z, and [pA]z = [q̂A]z. Accordingly, ≽̂z is a

weak order on C.

Next, we show that (≽̂z)C satisfies the vN-M Independence axiom. First we establish

that for any p, q ∈ M , any � ∈ [0, 1], �p ⊕z (1− �)q ∈ M . Let

p = [(z, ã), �∗; (z′, ã′), 1− �∗]

q = [(z, â), �∗; (z′, â′), 1− �∗]

Further let a� ∈ Ia be such that,

a� = �ã ⊕z (1− �)â.

We need to show that there exists, a′� ∈ Ia′ , such that

[a�, �
∗; a′�, 1− �∗] = �[ã, �∗; ã′, 1− �∗] ⊕z (1− �)[â, �∗; â′, 1− �∗]

In that case we will have proven that

[(z, a�), �
∗; (z′, a′�), 1− �∗] = �[(z, ã), �∗; (z′, ã′), 1− �∗] ⊕z (1− �)[(z, â), �∗; (z′, â′),

1− �∗],

our desired conclusion. By Stochastic Dominance it follows that

[a�, �
∗; a′, 1− �∗] ≽z qA ≽z �[ã, �∗; ã′, 1− �∗] ⊕z (1− �)[â, �∗; â′, 1− �∗] ≽z qA ≽z [a�,

�∗; a′, 1− �∗],
with strict preference holding at least somewhere. Bicontinuity in conjunction with the fact

the [a′]z′ is a connected subset of A immediately implies the desired conclusion.

Now, let ([p1
A]z, [q1

A]z), ([p2
A]z, [q2

A]z), ([p3
A]z, [q3

A]z) ∈ C be such that ([p1
A]z, [q1

A]z) ≻̂z
([p2

A]z, [q2
A]z). Then, there exists p, p′, p′′ ∈ M such that ([pA,z]z, [pA]z) = ([p1

A]z, [q1
A]z),

([p′A,z]z, [p′A]) = ([p2
A]z, [q2

A]z), ([p′′A,z]z ,[p′′A]z) = ([p3
A]z, [q3

A]z), and p ≻ p′. By Comparable

Independence, it follows that

�p⊕z (1− �)p′′ ≻ �p′ ⊕z (1− �)p′′

Accordingly, it follows that
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([(�p⊕z (1− �)p′′)A,z]z, [(�p⊕z (1− �)p′′)A]z) ≻̂z
([(�p′ ⊕z (1− �)p′′)A,z]z, [(�p

′ ⊕z (1− �)p′′)A]z)

Or,

([�pA,z ⊕z (1− �)p′′A,z]z, [�pA⊕z (1− �)p′′A]z) ≻̂z ([�p′A,z ⊕z (1− �)p′′A,z]z, [�p
′
A⊕z (1− �)p′′A]z)

That is,

(�[pA,z]z⊕̂z(1− �)[p′′A,z]z, �[pA]z⊕̂z(1− �)[p′′A]z) ≻̂z
([�[p′A,z]z⊕̂z(1− �)[p′′A,z]z, �[p′A]z⊕̂z(1− �)[p′′A]z)

or,

(�[p1
A]z⊕̂z(1− �)[p3

A]z, �[q1
A]z⊕̂z(1− �)[q3

A]z) ≻̂z (�[p2
A]z⊕̂z(1− �)[p3

A]z, �[q2
A]z⊕̂z(1− �)[q3

A]z)

or,

�([p1
A]z, [q

1
A]z) ⊕̂z (1− �)([p3

A]z, [q
3
A]z) ≻̂z �([p2

A]z, [q
2
A]z) ⊕̂z (1− �)([p3

A]z, [q
3
A]z)

Hence, (≽̂z)C satisfies the vN-M Independence axiom.

We now establish that (≽̂z)C satisfies the vN-M Continuity axiom. Note that this is

equivalent to proving the following: For any p, p′, p′′ ∈M such that p ≻ p′ ≻ p′′, there exists

�, �′ ∈ (0, 1), such that:

� p ⊕z (1− �) p′′ ≻ p′ ≻ �′ p ⊕z (1− �′) p′′

Suppose otherwise – say that p′ ≽ �p ⊕z (1− �)p′′ for all � ∈ (0, 1). We proved above that

for all � ∈ [0, 1] there exists a� ∈ Ia, a′� ∈ Ia′ such that,

[(z, a�), �
∗; (z′, a′�); 1− �∗] = �p ⊕z (1− �)p′′.

Denote,

p = [(z, ã), �∗; (z′, ã′), 1− �∗]

We may then construct a sequence (a�k , a′�k)k∈ℤ+ ⊆ Ia × Ia′ converging to (ã, ã′) ∈ Ia ×
Ia′ , such that for all k ∈ ℤ+,

p′ ≽ �kp ⊕z (1− �k)p′′ = [(z, a�k), �∗; (z′, a′�k); 1− �∗]

Let

Ξ = {(a�k , a′�k) ∈ Ia × Ia′ : p′ ≽ [(z, a�k), �∗; (z′, a′�k); 1− �∗]}
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By Bicontinuity the set Ξ is closed in Ia × Ia′ . It then follows that (ã, ã′) ∈ Ξ, that is p′ ≽

p = [(z, ã), �∗; (z′, ã′), 1− �∗], which is absurd.

Steps 2 and 3 of Lemma 6 can be replicated here to complete the proof.

The rest of the steps in proving Theorem 3 replicate those in Theorem 1. Therefore we

do not repeat them here. The only other step that needs elaboration is proving that the

weights �z that we get by replicating the steps in Theorem 1 are indeed equal. Consider any

≽z, ≽z′ with ≻z, ≻z′ ∕= ∅. Like in the proof of Theorem 2, there are two cases to consider.

First suppose that there exists â ∈ A such that

{a ∈ A : a ∼z â} ∕= {a ∈ A : a ∼z′ â}

In this case, there exists a ∈ [â]z′ , a′ ∈ [â]z satisfying a ≻z â and a′ ≻z′ â. Like in the proof

of Theorem 2 the key is to find a pair p, q ∈ Δ such that p and q are symmetric with respect

to z and z′.

We will now show that there exists ã ∈ A such that the pair â, ã is equal gains with

respect to z and z′. Consider p′, q′ ∈ Δ, where

p′ = ([z, 1
2
; z′, 1

2
], a) and q′ = ([z, 1

2
; z′, 1

2
], a′).

In case p′ ∼ q′, pick any ã ∈ [a]z ∩ [a′]z′ . Then, the pair â, ã is equal gains with respect to

z and z′. On the other hand suppose p′ ≁ q′, and without loss of generality, suppose p′ ≻ q′.

Then we have that p′ ≻ q′ ≻ ([z, 1
2
; z′, 1

2
], â) ≡ p′′, where the final strict preference follows

from Comparable Monotonicity. Note that p′ and p′′ are comparable. So by Bicontinuity it

follows that there exists some � ∈ (0, 1), such that

�p′ ⊕z (1 - �)p′′ = ([z, 1
2
; z′, 1

2
], �a⊕z (1− �)â) ∼ q′.

Now pick any ã ∈ [a′′]z ∩ [a′]z′ . It follows that â, ã is equal gains with respect to z and z′.

Now define p, q as follows: pZ = qZ with pZ(z) = pZ(z′) = 1
2
; pA,z = â, pA,z′ = ã and qA,z =

ã, qA,z′ = â. Clearly, p and q are symmetric with respect to z and z′.

On the other hand if

{a ∈ A : a ∼z â} = {a ∈ A : a ∼z′ â}

for all â ∈ A, then by the Contingent Values assumption (CV.2), there exists ≽z′′ , with ≻z′′
∕= ∅ for which there exists â ∈ Z−0 such that

{a ∈ A : a ∼z â} ∕= {a ∈ A : a ∼z′′ â}
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and,

{a ∈ A : a ∼z′ â} ∕= {a ∈ A : a ∼z′′ â}.

Based on the argument in the last paragraph, we can then conclude that �z = �z′′ , and �z′

= �z′′ , and hence �z = �z′ .

THIS COMPLETES THE PROOF OF THEOREM 3.

7.2.4 Proof of Proposition 2

Recall that the representative voter is pivotal with probability � = 1
n
, and  denotes the

probability that option 1 is the outcome when she is not pivotal. Then the probability

distributions over final allocations generated by the representative voter choosing 1 and 2

are respectively,

p1 = [(z1, a1), �+ (1− �); (z2, a2), 1− �− (1− �)],

p2 = [(z1, a1), (1− �); (z2, a2), 1 − (1− �)]

Under out representation these two lotteries are evaluated as:

U(p1) = uH+
vL
2
−(�+(1−�))[uH−uL−

1

2
(vH−vL)]+

1

2
['(�+(1−�))vH+(1−'(�+(1−�)))vL]

and,

U(p2) = uH +
vL
2
− (1−�)[uH −uL−

1

2
(vH − vL)] +

1

2
['((1−�))vH + (1−'((1−�)))vL]

Subtracting the two gives,

U(p2)− U(p1) = �[uH − uL −
1

2
(vH − vL)]− 1

2
(vH − vL)['(�+ (1− �))− '((1− �))]

Accordingly,

U(p2)− U(p1) ≥ 0⇔ g(�) = �(2� − 1)− ('(�+ (1− �))− '((1− �))) ≥ 0

Now suppose everyone other than RV votes for option 1; i.e.,  = 1. Then,

g(�) = �(2� − 1)− (1− '(1− �))
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and, for � ∈ (0, 1− �),

g′(�) = 2� − 1− '′(1− �)

Let �′ = min{1− �, �}. Then for all � ∈ (0, �′), g′(�) < 0. Further, g(0) = 0. Hence, g(�)

< 0 for all � ∈ (0, �′). Let n be any integer greater than 1
�′

. Then,for all n > n, everyone

voting for option 2 is a Nash equilibrium.

Now consider the case when everyone other than RV votes for option 2. That is  = 0.

Then,

g(�) = �(2� − 1)− '(�) = �[2� − 1− '(�)

�
]

Note that, for � < �′, '′(�) > 2� − 1, and since ' is concave over this range, '(�)
�

> '′(�).

Accordingly, for � < �′, g(�) < 0, and everyone voting for option 2 can not be a Nash

equilibrium. Hence, for all n ≥ n, everyone voting for option 2 is the unique symmetric Nash

equilibrium (in pure strategies).

Further, note that when  = 0, g(1) = 2� > 0. By continuity of g, there exists an interval

(�1, 1], such that for all � ∈ (�1, 1], g(�) > 0, and accordingly everyone voting for option 2

is a Nash equilibrium.

Finally, note that when  = 1, g(1) = 2� − 2 > 0. Once again by the continuity of g, there

exists an interval (�2, 1], such that for all � ∈ (�2, 1], g(�) > 0, and accordingly everyone

voting for option 1 is not a Nash equilibrium. Let, �′′ = max{�1, �2}, and n be any integer

less than 1
n′′

. It follows that for all n≤ n, everyone voting for option 2 is the unique symmetric

Nash equilibrium (in pure strategies). □
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