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Abstract

In many instances, a long-run player is influenced not only by considerations of its
future but also by actions it has taken in the past. For example, the quality of a firm’s
product may depend on past as well as current investments. This paper studies a new
class of stochastic games in which the actions of a long-run player have a persistent
effect on payoffs. The setting is a continuous time game of imperfect monitoring be-
tween a long-run and a representative myopic player. The main result of this paper
is to establish general conditions for the existence of Markovian equilibria and condi-
tions for the uniqueness of a Markovian equilibrium in the class of all Perfect Public
Equilibria. The existence proof is constructive and characterizes, for any discount rate,
the explicit form of equilibrium payoffs, continuation values, and actions in Markovian
equilibria as a solution to a second order ODE. Action persistence creates a channel to
provide intertemporal incentives, and offers a new and different framework for thinking
about the reputations of firms, governments, and other long-run agents.
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1 Introduction

A rich and growing literature on repeated games and reputation has studied how the shadow
of the future affects the present. Yet, in many instances, a long-run player is influenced
not only by considerations of its future but also by decisions it has made in the past. For
example, a firm’s ability to make high quality products is a function of not only its effort
today but also its past investments in developing technology and training its workforce. A
government’s ability to offer efficient and effective public services to its citizens depends on
its past investments in improving its public services. A university cannot educate students
through instantaneous effort alone, but needs to have made past costly investments in hiring
faculty and building research infrastructure. In all of these settings, and many others, a long-
run player is directly influenced by choices it has made in the past: past actions influence
key characteristics of the long-run player’s environment, such as the quality of a firm’s
product or the level of a policy instrument; in turn, these characteristics play a central role
in determining current and future profitability. This paper studies a new class of stochastic
games in which the actions of a long-run player have a persistent effect on payoffs, and
studies how its incentives are shaped by its past and future.

In analyzing this class of stochastic games, the paper develops a new understanding of
reputational dynamics. Since Kreps, Milgrom, Roberts, and Wilson (1982), the canonical
framework has modeled a long-run player’s reputation as the belief that others have that the
firm is a behavioral type that takes a fixed action in each period. This framework has been
very influential and led to a number of insights across the gamut of economics. Nevertheless,
it is unclear across many settings that reputational incentives are driven exclusively by the
possibility that players may be non-strategic and are absent when there is common knowledge
that the long-run player is rationally motivated by standard incentives. In contrast, my
environment returns to a different notion of reputation as an asset (Klein and Leffler 1981)
in which a firm’s reputation is shaped by its present and past actions. Persistent actions not
only capture an intuitive notion of reputation as a type of capital, but also connect reputation
to the aspects of a firm’s choices that are empirically identifiable. This environment provides
insights on important questions about the dynamics of reputation formation, including: when
does a firm build its reputation and when does it allow it to decay; when do reputation effects
persist in the long-run, and when are they temporary; how does behavior relate to underlying
parameters such as the cost and depreciation rate of investment or the volatility of quality.

I study a continuous-time model with persistent actions and imperfect monitoring be-
tween a single long-run player and a continuum of small anonymous players. At each instant,
each player chooses an action, which is not observed by others; instead, the long-run player’s
action generates a noisy public signal, and the long-run player observes the aggregate behav-
ior of the short-run players. The stage game varies across time through its dependence on a
state variable, whose evolution depends on the long run player’s action through the public
signal. This state variable determines the payoff structure of the associated stage game, and
captures the current value of past investments by the long-run player.

When the long-run player chooses an action, it considers both the impact that this
action has on its current payoff and its continuation value via the evolution of the state
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variable. For example, a firm may bear the cost of investment today, while reaping the
rewards through higher sales and prices tomorrow. This link between current play and
future outcomes creates intertemporal incentives for the long-run player. From Faingold
and Sannikov (2011) and Fudenberg and Levine (2007), we know that in the absence of
this state variable, intertemporal incentives fail: the long-run player cannot attain payoffs
beyond those of its best stage game equilibrium. I am interested in determining when
action persistence leads the firm to choose an action apart from that which maximizes its
instantaneous payoff, and thus investigate whether persistent actions can be used to provide
non-trivial intertemporal incentives in settings where those from standard repeated games
fail. Figure 1 illustrates the link between current and future periods created by action
persistence. The blue arrow indicates the effect of the long-run player’s action on payoffs
today, while the red arrows illustrate the channels through which today’s action may impact
future payoffs.

The key contributions of this paper are along three dimensions. The theoretical con-
tribution is to establish general conditions for the existence of Markovian equilibria, and
conditions for the uniqueness of a Markovian equilibrium in the class of all Perfect Pub-
lic Equilibria. An explicit characterization of the form of equilibrium payoffs, continuation
values and actions, for any discount rate, yields insights into the relationship between the
structure of persistence and the decisions of the long-run player. An application of the exis-
tence and uniqueness results to a stochastic game without action persistence shows that the
long-run player acts myopically in the unique Perfect Public Equilibria of this setting. Lastly,
I use these results to describe several interesting properties relating equilibrium payoffs of
the stochastic game to the structure of the underlying stage game.

The conceptual contribution of this paper is to illustrate that action persistence creates a
channel for effective intertemporal incentive provision in a setting where this is not possible
in the absence of such persistence. A stochastic game has two potential channels through
which intertemporal incentives can be used to guide behavior. First, the stage game varies
across time in response to players’ actions, and thus a long run player’s actions directly
impact payoffs in future periods as well as the current period. Second, as in repeated games,
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players can be rewarded or punished based on the public signal: actions today can affect,
in equilibrium, how others behave in the future. In a Markovian equilibrium, intertemporal
incentives can only flow through this first channel, as the public signal is ignored. When the
unique Perfect Public Equilibria is Markovian, it precludes the existence of any equilibria
that use the public signal to generate intertemporal incentives via punishments and rewards.
As such, the ability to generate effective intertemporal incentives in a stochastic game of
imperfect monitoring stems entirely from the impact that action persistence has on future
feasible payoffs.

Lastly, the results of this paper have practical implications for equilibrium analysis in
a wide range of applied settings known to exhibit persistence and rigidities, ranging from
industrial organization to political economy to macroeconomics. Markovian equilibria are a
popular concept in applied work. Advantages of Markovian equilibria include their simplicity
and their dependence on payoff relevant variables to specify incentives. Establishing that
non-Markovian equilibria do not exist offers a strong justification for focusing on this more
tractable class of equilibria. Additionally, this paper derives a tractable expression to con-
struct Markovian equilibria, which can be used to formulate empirically testable predictions
about equilibrium behavior. Equilibrium continuation values are specified by the solution to
a nonstochastic differential equation defined over the state space, while the long-run player’s
action is determined by the sensitivity of its future payoffs to changes in the state variable
(the first derivative of this solution). This result provides a tool that can be utilized for
equilibrium analysis in applications. Once functional forms are specified for the underly-
ing game, it is straightforward to derive the relevant differential equation, calibrate it with
realistic parameters, and use numerical methods to estimate its solution. This solution is
used to explicitly calculate equilibrium payoffs and actions, as a function of the state vari-
able. Note these numerical methods are used for estimation in an equilibrium that has been
characterized analytically, and not to simulate an approximate equilibrium; an important
distinction.

It may be helpful to describe the contributions of this paper and its relationship to the
existing literature using one application that can be studied with the tools developed in
this paper: the canonical product choice game. Consider a long-run firm interacting with
a sequence of short-run consumers. The firm has a dominant strategy to invest low effort,
but would have greater payoffs if it could somehow commit to high quality (its “Stackel-
berg payoff”). Repeated interaction in discrete time with imperfect monitoring generates
a folk theorem (Fudenberg and Levine 1994), but the striking implication from Faingold
and Sannikov (2011) and Fudenberg and Levine (2007) is that such intertemporal incen-
tives disappear as the period length becomes small. Since Fudenberg and Levine (1992), we
know that if the firm could build a reputation for being a commitment type that produces
only high quality products, a patient normal firm can approach these payoffs in every equilib-
rium. Faingold and Sannikov (2011) shows that this logic remains in continuous-time games,
but that as in discrete-time, these reputation effects are temporary: eventually, consumers
learn the firm’s type, and reputation effects disappear in the long-run (Cripps, Mailath,
and Samuelson 2007).1. Departing from standard repeated and reputational games, consider

1Mailath and Samuelson (2001) show that reputational incentives can also come from a firm’s desire to

4



a simple and realistic modification in which the firm’s current product quality is a noisy
function of past investment. Recent investment has a larger impact on current quality than
investment further in the past, which is captured by a parameter θ that can be viewed as
the rate at which past investment decays. Product quality, Xt, is modeled as a stochastic
process:

Xt = X0e
−θt + θ

∫ t

0

e−θ(t−s) (asds+ dZs)

given some initial value X0, investment path (as)s≤t and Brownian motion (Zs)s≤t. The
evolution of product quality can be derived using this stochastic process, and takes the
form:

dXt = θ (at −Xt) dt+ σdZt

When investment exceeds the current product quality, the firm is in a reputation building
phase, and the product quality drifts upward (perturbed by a Brownian motion). When
product quality is high and the firm chooses a lower investment level, it enters a period of
reputational decay characterized by declining product quality. Applying the results of this
paper to this product choice setting shows that there is a unique Perfect Public Equilibrium,
which is Markovian in product quality. The firm’s reputation for quality will follow a cyclical
pattern, characterized by phases of reputation building and decay. Importantly, this cyclical
pattern does not dissipate with time and reputation effects are permanent; this contrasts
with the temporary reputation effects observed in behavioral types models. The product
choice game is one of the many settings that can utilize the tools and techniques of this
paper to shed light on the relationship between persistent actions and equilibrium behavior.

In terms of techniques, this paper makes an important modeling choice by employing a
continuous-time framework. Recent work has shown that the continuous time framework
often allows for an explicit characterization of equilibrium payoffs, for any discount rate
(Sannikov 2007); this contrasts with the folk-theorem results that typify the discrete time
repeated games literature, and characterize the equilibrium payoff set as agents become
arbitrarily patient (Fudenberg and Levine 1994). Additionally, continuous time allows for
an explicit characterization of equilibrium behavior; an important feature if one wishes to use
the model to generate empirical predictions and relate the model to observable behavior. In
discrete time, results in similar settings have generally been limited to identifying equilibrium
payoffs.

Related Literature: This paper uses tools developed by Faingold and Sannikov (2011),
and so I comment on how I generalize their insights. Their setting can be viewed as a
stochastic game in which the state variable is the belief that the firm is a commitment type,
and the transition function follows Bayes rule. Faingold and Sannikov (2011) characterize
the unique Markov equilibrium of this incomplete information game using an ordinary differ-
ential equation. This paper extends these tools to establish conditions for the existence and
uniqueness of Markov equilibria in a setting with an arbitrary transition function between

separate itself from an incompetent type. Yet, these reputation effects are also temporary unless the type of
the firm is replaced over time.
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states, which can have a stochastic component independent of the public signal, where the
long run player’s payoffs may also depend on the state variable and the state space may be
unbounded or have endpoints that are not absorbing states.

My work is also conceptually related to Board and Meyer-ter-Vehn (2011). They model
a setting in which product quality takes on high or low values and is replaced via a Poisson
arrival process; when a replacement occurs, the firm’s current effort determines the new
quality value. Consumers learn about product quality through noisy signals, and reputation
is defined as the consumers’ belief that the current product quality is high. Realized product
quality in their setting is therefore discontinuous (jumping between low and high), and this
discontinuity plays an important role in determining intertemporal incentives. In the product
choice application of my setting, the quality of a firm’s product is a smooth function of past
investments and its investment today, and thus, the analysis is very different.

The role of persistence in intertemporal incentives can also be contrasted with our under-
standing of other continuous-time repeated games. Sannikov and Skrzypacz (2010) show that
burning value through punishments that affect all players is not effective for incentives in
settings with imperfect monitoring and Brownian signals, and that in these cases, it is more
effective to punish by transferring value from some players to others. But in many settings,
including those between long-run and myopic players, it would be impossible to avoid burn-
ing value and so intertemporal incentives collapse.2. Fudenberg and Levine (2007) examine
a product choice game between a long-run and short-run player and demonstrate that it is
not possible to earn equilibrium payoffs above the payoffs corresponding to repeated play of
the static Nash equilibrium when the volatility of the Brownian component is independent
of the long-run player’s action. Thus, the intertemporal incentives that persistent actions
induce could not emerge with standard continuous-time repeated games.

The organization of this paper proceeds as follows. Section 2 explores two simple examples
to illustrate the main results of the model. Section 3 sets up the model. Section 4.4 analyzes
equilibrium behavior and payoffs, while the final section concludes. All proofs are in the
Appendix.

2 Examples

2.1 Persistent Investment as a Source of Reputation

Suppose a single long-run firm seeks to provide a continuum of small, anonymous consumers
with a service. At each instant t, the firm chooses an unobservable investment level at ∈ [0, a].
Consumers observe a noisy public signal of the firm’s investment each instant, which can be
represented as a stochastic process with a drift term that depends on the firm’s action and
a volatility term that depends on Brownian noise

dYt = θatdt+ σdZt.

2Sannikov and Skrzypacz (2007) show how this issue also arises in games between multiple long-run
players in which deviations between individual players are indistinguishable.
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Investment is costly for the firm, but increases the likelihood of producing a high quality
product. The stock quality of a product at time t, represented as Xt, captures the link
between past investment levels and current product quality. This stock evolves according to
a mean-reverting stochastic process where the change in stock quality at time t is

dXt = θdYt − θXtdt

= θ (at −Xt) dt+ σdZt.

Stock quality is publicly observed. The expected change in quality is increasing when invest-
ment exceeds the current quality level, and decreasing when investment is below the current
quality level. The parameter θ captures the persistence of investment: recent investment has
a larger impact on current quality than investment further in the past. Thus, θ embodies the
rate at which past investment decays: as it increases, more recent investments play a larger
role in determining current product quality relative to investments further in the past. This
stochastic process, known as the Ornstein-Uhlenbeck process, has a closed form that gives
an insightful illustration of how past investments of the firm determine the current product
quality. Given a history of investment choices (as)s≤t, the current value of product quality
is

Xt = X0e
−θt + θ

∫ t

0

e−θ(t−s)asds+ σ

∫ t

0

e−θ(t−s)dZs,

given some initial value of product quality X0. As shown in this expression, the impact of
past investments decays at a rate proportional to the persistence parameter θ and the time
that has elapsed since the investment was made.

Consumers simultaneously choose a purchase level bit ∈ [0, 10]. The aggregate action of
consumers, bt, is publicly observable, while individual purchase decisions are not. The firm’s
payoffs are increasing in the aggregate level of purchases by consumers, and decreasing in
the level of investment. Average payoffs are represented as

r

∫ ∞
0

e−rt(bt − ca2
t )dt

where r is the common discount rate and c < 1 captures the cost of investment.
Consumers’ payoffs depend on the stock quality, the firm’s current investment level and

their individual purchase decisions. As is standard in games of imperfect monitoring, payoffs
can only depend on the firm’s unobserved action through the public signal. Consumers are
anonymous and their purchase decisions have a negligible impact on the aggregate purchase
level. In equilibrium, they choose a purchase level that myopically optimizes their expected
flow payoffs of the current stage game, represented as

E
[
min

{
bi, 10

}1/2
[(1− λ)dY + λX]− bi

]
Marginal utility from an additional unit of product is decreasing in the current purchase level,
with a saturation point at 10, and is increasing in current investment and stock quality. The
parameter λ captures the importance of current investment relative to stock investment.
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This product choice game can be viewed as a stochastic game with current product quality
X as the state variable and the change in product quality dX as the transition function,
which depends on the investment of the firm. I am interested in characterizing equilibrium
payoffs and actions in a Markov perfect public equilibrium.

The firm is subject to binding moral hazard in that it would like to commit to a higher
level of investment in order to entice consumers to choose a higher purchase level. How-
ever, in the absence of such a commitment device, the firm is tempted to deviate to lower
investment. This example seeks to characterize when intertemporal incentives, particularly
incentives created by the dependence of future feasible payoffs on current investment through
persistent quality, can provide the firm with endogenous incentives to choose a positive level
of investment. Note that in the absence of intertemporal incentives, the firm always chooses
an investment level of a = 0.

In a Markov perfect equilibrium, the continuation value can be expressed as an ordinary
differential equation that depends on the stock quality. Let U(X) represent the continuation
value of the firm when Xt = X. Then, given equilibrium action profile

(
a, b
)

U(X) = b− ca2 +
1

r

[
θ (a−X)U ′(X) +

1

2
σ2U ′′(X)

]
describes the relationship between U and its first and second derivatives. The continuation
value can be expressed as the sum of the payoff that the firm earns today, b− ca2, and the
expected change in the continuation value, weighted by the discount rate. The expected
change in the continuation value has two components. First, the drift of quality determines
whether quality is increasing or decreasing in expectation. Given that the firm’s payoffs
are increasing in quality (U ′ > 0), positive quality drift increases the expected change in
the continuation value, while negative quality drift decreases this expected change. Second,
the volatility of quality determines how the concavity of the continuation value relates to
its expected change. If the value of quality is concave (U ′′ < 0), then volatility of quality
hurts the firm. The firm is more sensitive to negative quality shocks than positive quality
shocks, and has a higher continuation value at the expected quality relative to the expected
continuation value of quality; in simple terms, the firm is “risk averse” in quality. Positive
and negative shocks are equally likely with Brownian noise; thus, volatility has a net negative
impact on the continuation value. If the value of quality is convex (U ′′ > 0), then volatility
of quality helps the firm: the firm benefits more from positive quality shocks than it is hurt
by negative quality shocks. The continuation value is graphed in Figure 1.

The firm faces a trade-off when choosing its investment level: the cost of investment is
borne in the current period, but yields a benefit in future periods through higher expected
purchase levels by consumers. The impact of investment on future payoffs is captured by the
slope of the continuation value, U ′(X), which measures the sensitivity of the continuation
value to changes in stock quality. In equilibrium, investment in chosen to equate the marginal
cost of investment with its future expected benefit:

a(Xt) = min

{
θ

2cr
U ′(Xt), a

}
.
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Figure 1: Equilibrium Payoffs

Marginal cost is captured by 2c,while the marginal future benefit depends on the ratio of
persistence to the discount rate. When θ is high, current investment will have a larger imme-
diate impact on future quality, and the firm is willing to choose higher investment. Likewise,
when the firm becomes more patient, it cares more about the impact investment today con-
tinues to have in future periods, and is willing to choose higher investment. It is interesting
to note the trade-off between persistence and the discount rate. When investment decays at
the same rate as the firm discounts future payoffs, these two parameters cancel. Thus, only
the ratio of persistence to the discount rate is relevant for determining investment; as such,
doubling θ has the same impact as halving the discount rate. Investment also depends on
the sensitivity of the continuation value to changes in quality; when the continuation value
is more sensitive to changes (captured by a steeper slope), the firm chooses a higher level
of investment. As θ approaches 0, stock quality is almost entirely determined by its initial
level and the intertemporal link between investment and payoffs is very small.

The boundary conditions that characterize the solution to U(X) dictate that the slope of
the continuation value converges to 0 as the stock quality approaches positive and negative
infinity. Thus, the firm has the strongest incentive to invest at intermediate quality levels -
a “reputation building” phase. When quality is very high, the firm’s continuation value is
less sensitive to changes in quality and the firm has a weaker incentive to invest. In effect,
the firm is “riding” its good reputation for quality. The incentive to invest is also weak when
quality is very low, and a firm may wait out a very bad reputation shock before beginning
to rebuild its reputation - “reputation recovery”. For interior values of X, the slope of the
continuation value is positive, and thus the intertemporal incentives created by persistent
actions allows the firm to choose a positive level of investment level.

In equilibrium, consumers myopically optimize flow payoffs by choosing a purchase level
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Figure 2: Firm Equilibrium Behavior

such that the marginal utility of an additional unit of product is zero:

bi(a(X), X) =


0 if (1− λ)a(X) + λX ≤ 0
1
4

[(1− λ)a(X) + λX]2 if (1− λ)a(X) + λX ∈
[
0, 2
√

10
]

10 if (1− λ)a(X) + λX > 2
√
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I show that there is a unique Perfect Public Equilibrium, which is Markovian in Xt; as such,
a(Xt) and bi(Xt), are uniquely determined by Xt, and are also continuous.

Note that (a(Xt), b
i(Xt)) is uniquely specified by and continuous in (Xt). Figures 2 and

3 graph equilibrium actions for the firm and consumers, respectively.
In this model, reputation effects are present in the long-run. Product quality is cyclical,

with periods of high quality characterized by lower investment and negative drift, and periods
of intermediate quality, where the firm chooses high investment and builds up its product
quality. Very negative shocks can lead to periods where the firm chooses low investment
and waits for its product quality to recover. Figure 4 illustrates the cycles of product
quality across time. This contrasts with models in which reputations come from behavioral
types: as Cripps et al. (2007) and Faingold and Sannikov (2011) show, reputation effects are
temporary insofar as consumers eventually learn the firm’s type, and so asymptotically, a
firm’s incentives to build reputation disappear. Additionally, conditional on the firm being
strategic, reputation in these types models has negative drift.

Lastly, I compare the firm’s payoffs in the stochastic game with action persistence to the
benchmark without action persistence. The static Nash payoff depends on the value of stock
quality. Let

v(X) = min

{
10,

1

4
λ2 max {0, X}2

}
represent the static Nash payoff of the firm when the stock quality is at level X. This payoff
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Figure 3: Consumer Equilibrium Behavior

is increasing in the stock quality. In the absence of investment persistence (this corresponds
to θ = 0), the unique equilibrium of the stochastic game is to play the static Nash equilibrium
each period, which yields an expected continuation value at time t of

V (Xt) = r

∫ ∞
t

e−rsEt [v(Xs)] ds

Note that this expected continuation value may be above or below the static Nash equilibrium
payoff of the current stage game, v(Xt), depending on whether Xt is increasing or decreasing
in expectation.

The firm achieves higher equilibrium payoffs when its actions are persistent, i.e. U(Xt) ≥
V (Xt) for all Xt. There are two complementary channels by which action persistence en-
hances the firm’s payoffs. First, the firm chooses an investment level that equates the
marginal cost of investment today with the marginal future benefit. Thus, in order for the
firm to be willing to choose a positive level of investment, the future benefit of doing so must
exceed the future benefit of choosing zero investment and must also exceed the current cost
of this level of investment. Second, the link with future payoffs allows the firm to commit to
a positive level of investment in the current period, which increases the equilibrium purchase
level of consumers in the current period.

2.2 Policy Targeting

Elected officials and governing bodies often play a role in formulating and implementing
policy targets. For example, the Federal Reserve targets interest rates, a board of directors
sets growth and return targets for its company, and the housing authority targets home
ownership rates. Achieving such targets requires costly effort on behalf of officials, and
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Figure 4: Product Quality Cycles

moral hazard issues arise because the preferences of the officials are not aligned with the
population they serve. This example explores when a governing body can be provided with
incentives to undertake a costly action in order to implement a target policy when the current
level of the policy depends on the history of actions undertaken by the governing body.

Consider a setting where constituents elect a governing body to implement a policy
target. The current policy takes on value Xt ∈ [0, 2], and a policy target of Xt = 1 is
optimal for constituents. In the absence of intervention, the policy drifts towards its natural
level d. Each instant, the governing body chooses an action at ∈ [−1, 1], where a negative
action decreases the policy variable and a positive action increases the policy variable, in
expectation. The policy evolves over time according to the stochastic process

dXt = Xt(2−Xt) [atdt+ θ(d−Xt)dt+ dZt]

Constituents also choose an action bit each period, which represent their campaign con-
tributions or support for the governing body. Constituents pledge higher support to the
governing body when the policy is closer to their optimal target and when the governing
body is exerting higher effort to achieve this target. I model the reduced form of the aggre-
gate best response of constituents as

b (at, Xt) = 1 + λa2
t − (1−Xt)

2

in which λ captures the value that constituents place on the governing body’s effort to achieve
the policy target.

The governing body has no direct preference over the policy target; its payoffs are in-
creasing in the support it receives from the constituents, and decreasing in the effort level it
exerts.

g(a, bt, Xt) = bt − ca2
t
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Figure 5: Equilibrium Payoffs

The unique Nash equilibrium of the static game is for the governing body to set a = 0 i.e. not
intervene in reaching the desired policy, and for the constituents to support the governing
body based on the difference between the desired and current policy level, b = 1− (1−X)2.
Given the current policy level is X, this yields a stage game Nash equilibrium payoff of

v(X) = 1− (1−Xt)
2

for the governing body. This payoff is concave in the state variable, and therefore the highest
PPE payoff in the stochastic game occurs at the value of the state variable that maximizes
the stage game Nash equilibrium payoff, X = 1, which yields a stage game payoff of v(1) = 1.
The highest PPE payoff is strictly less than the highest static game Nash equilibrium payoff.
Figure 4 plots the PPE payoff of the governing body, as a function of the current policy
level. This payoff is increasing in the policy level for levels below the optimal target, and
decreasing in the policy level for levels above the optimal target.

The characterization of a unique Markovian equilibrium can be used to determine the
equilibrium effort level of the governing body. Let U(X) represent the continuation value as
a function of the policy level in such an equilibrium, which is plotted in figure 5

The optimal effort choice of the governing body depends on the slope of the continuation
value, the sensitivity of the change in the policy level to the effort level, and the cost of
effort.

at(X) =
Xt(2−Xt)

2rc
U ′(Xt)

When the current policy level is very far from its optimal target, the effort of the governing
body has a smaller impact on the policy level, and the governing body has a lower incentive to
undertake costly effort. When the policy level is close to the optimal target, the continuation
value approaches its maximum, and the slope of the continuation value approaches zero.
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Figure 6: Government Equilibrium Behavior

Thus, the governing body also has a lower incentive to undertake costly effort when the
policy is close to its target. Figure 6 plots the equilibrium effort choice of the governing body
as a function of the policy level. As illustrated in the figure, the governing body exerts the
highest effort when the policy variable is an intermediate distance from the optimal target.
Figure 7 shows the equilibrium constituent support, which is highest when the policy level
is closest to its optimal target.

3 Model

I study a stochastic game of imperfect monitoring between a single long run player and
a continuum of small, anonymous short-run players. I refer to the long run player as the
agency and the small, anonymous players I = [0, 1] as members of the collective, with each
individual indexed by i. Time t ∈ [0,∞) is continuous.

The Stage Game: At each instant t, the agency and collective members simultaneously
choose actions at from A and bit from B, respectively, where A and B are compact sets of a
Euclidean space. Individual actions privately observed. Rather, the aggregate distribution of
the collective’s action, bt ∈ ∆B and a public signal of the agency’s action, dYt , are publicly
observed. The public signal evolves according to the stochastic differential equation

dYt = µY (at, bt)dt+ σY dZ
Y
t

where
(
ZY
t

)
t≥0

is a Brownian motion, µY : A × B → R is the drift and σY ∈ R is the
volatility. Assume µY is a Lipschitz continuous function. The drift term provides a signal
of the agency’s action and can also depend on the aggregate action of the collective, but is
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Figure 7: Constituent Equilibrium Behavior

independent of the individual actions of the collective to preserve anonymity. The volatility
is independent of players’ actions.

The Stochastic Game: The stage game varies across time through its dependence
on a state variable (Xt)t≥0 ,, which takes on values in the state space Ξ ⊂ R and evolves
stochastically as a function of the current state and players’ actions. The path of the state
variable is publicly observable. As the state variable is not intended to provide any additional
signal of players’ actions, its evolution depends on actions solely through the available public
information The transition of the state variable is governed by the stochastic differential
equation:

dXt = f1(bt, Xt)µY (at, bt)dt+ f2(bt, Xt)dt+ f1(bt, Xt)σY dZ
Y
t + σX(Xt)dZ

X
t

where f1 : B × Ξ→ R, f2 : B × Ξ→ R and σ2
X : Ξ→ R are Lipschitz continuous functions,

and
(
ZX
t

)
t≥0

is a Brownian motion which is assumed to be orthogonal to
(
ZY
t

)
t≥0

. The drift

of the state variable has two components: the first component, f1(bt, Xt)µY (at, bt), specifies
how the agency’s action influences the transition of the state, while the second component,
f2(bt, Xt), is independent of the firm’s action and allows the model to capture other channels
that influence the transition of the state variable. The volatility of the state variable depends
on the volatility of the public signal, f1(bt, Xt)σY dZ

Y
t , as well as a volatility term that is

independent of the public signal, σX(Xt)dZ
X
t . Note that the same function multiplies the

drift and volatility of the public signal; this ensures that no additional information about
the agency’s action is revealed by the evolution of the state variable. Let {Ft}t≥0 represent
the filtration generated by the public information, (Yt, Xt)t≥0.3

3The state space may or may not be bounded. It is bounded if (i) there exists an upper bound X at

15



I assume that the volatility of the state variable is positive at all interior points of the
state space. This ensures that the future path of the state variable is always stochastic.
Brownian noise can take on any value in R, and as such, this assumption means that any
future path of the state variable, (Xs)s>t can be reached from the current state Xt ∈ Ξ. This
assumption is analogous to a strong form of irreducibility, since any state Xs ∈ Ξ can be
reached from the current state Xt at all times s > t.

Assumption 1. For any compact proper subset I ⊂ Ξ, there exists a c such that

σI = inf
b∈B,X∈I

[
f1(b,X)2σ2

Y + σ2
X(X)

]
> c

Note that this assumption does not preclude the possibility that the state variable evolves
independently of the public signal, which corresponds to f1 = 0.

Define a state X as an absorbing state if the drift and volatility of the transition func-
tion are both zero. The following definition formalizes the conditions that characterize an
absorbing state.

Definition 1. X ∈ Ξ is an absorbing state if there exists an action profile b ∈ B such that
f1(b,X) = 0, f2(b,X) = 0 and σX(X) = 0.

Remark 1. The assumption that the volatility of the state variable is positive at all interior
points of the state space precludes the existence of interior absorbing points. Given that
Brownian motion is continuous, this is without loss of generality. To see why, suppose that
Ξ = [X,X] and there is an interior absorbing point X∗, and the initial state is X0 < X∗.
Then states X > X∗ are never reached under any strategy profile, and the game can be
redefined on the state space Ξ = [X,X∗].

Payoffs: The state variable determines the set of feasible payoffs in a given instant.
Given an action profile (a, b) and a state X, the agency receives an expected flow payoff of
g(a, b,X). The agency seeks to maximize its expected normalized discounted payoff,

r

∫ ∞
0

e−rtg(at, bt, Xt)dt

where r is the discount rate. Assume g is Lipschitz continuous and bounded for all a ∈ A,
b ∈ ∆B and X ∈ Ξ. The dependence of payoffs on the state variable creates a form of action
persistence for the firm, since the state variable is a function of prior actions.

Collective members’ have identical preferences, and each member seeks to maximize its
expected flow payoff at time t,

h(at, b
i
t, bt, Xt)

which is a continuous function. Ex post payoffs can only depend on at through the public
signal, dYt, as is standard in games of imperfect monitoring.

which the volatility is zero and the drift is weakly negative, i.e. f1(b,X) = 0; σX(X) = 0, and f2(b,X) ≤ 0
for all b ∈ B; and (ii) there exists a lower bound X < X such that the volatility is zero and the drift is
weakly positive, i.e. f1(b,X) = 0; σX(X) = 0 and f2(b,X) ≥ 0 for all b ∈ B.
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Thus, in the stochastic game, at each instant t, given the current state Xt, players choose
actions, and then nature stochastically determines payoffs, the public signal and next state
as a function of the current state and action profile. The game defined here includes several
subclasses of games, including a game where the state variable evolves independently of the
agency’s action (f1(b,X) = 0), the state variable evolves deterministically given the public
signal (σX(X) = 0), or the agency’s payoffs only depend on the state indirectly through the
actions of the collective (g(a, b,X) = g(a, b)).

Strategies: A public strategy for the agency is a stochastic process (at)t≥0 with values
at ∈ A and progressively measurable with respect to {Ft}t≥0. Likewise, a public strategy
for a member of the collective is an action bit ∈ B progressively measurable with respect to
{Ft}t≥0.

3.1 Equilibrium Structure

Perfect Public Equilibria: I restrict attention to pure strategy perfect public equilibria
(PPE). A public strategy profile is a PPE if after any public history and for all t, no player
wants to deviate given the strategy profile of its opponents.

In any PPE, collective members choose bit to myopically optimize expected flow payoffs
each instant.4 Let B : A × ∆B × Ξ ⇒ B represent the best response correspondence that
maps an action profile and a state to the set of collective member actions that maximize
payoffs in the current stage game, and B : A×Ξ ⇒ ∆B represent the aggregate best response
function. In many applications, it will be sufficient to specify the aggregate best response
function as a reduced form for the collective’s behavior.

Define the agency’s continuation value as the expected discounted payoff at time t, given
the public information contained in {Ft}t≥0 and strategy profile S = (at, b

i
t)t≥0:

Wt(S) := Et

[
r

∫ ∞
t

e−r(s−t)g(as, bs, Xs)ds

]
The agency’s action at time t can impact its continuation value through two channels:

(1) future equilibrium play and (2) the set of future feasible flow payoffs. It is well known
that the public signal can be used to punish or reward the agency in future periods by
allowing continuation play to depend on the realization of the public signal. A stochastic
game adds a second link between current play and future payoffs: the agency’s action affects
the evolution of the state variable, which in turn determines the set of future feasible stage
payoffs. Each channel provides a potential source of intertemporal incentives.

This paper applies recursive techniques for continuous time games with imperfect mon-
itoring to characterize the evolution of the continuation value and the agency’s incentive
constraint in a PPE. Fix an initial value for the state variable, X0.

4The individual actions of a collective member, bit, has a negligible impact on the aggregate action bt (and
therefore Xt) and is not observable by the agency. Therefore, the model could also allow for long-run small,
anonymous players.
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Lemma 1. A public strategy profile S = (at, b
i
t)t≥0 is a PPE with continuation values (Wt)t≥0

if and only if for some {Ft} −measurable process (βt)t≥0 in L

1. (Wt)t≥0 is a bounded process and satisfies:

dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt

+rβ1t

[
dYt − µY (at, bt)dt

]
+rβ2tσX(Xt)dZ

X
t

given (βt)t≥0

2. Strategies (at, b
i
t)t≥0 are sequentially rational given (βt)t≥0. For all t, (at, b

i
t) satisfy:

at ∈ arg max g(a′, bt, Xt) + β1tµY (a′, bt)

bit ∈ B (at, Xt)

The continuation value of the agency is a stochastic process that is measurable with re-
spect to public information, {Ft}t≥0. Two components govern the motion of the continuation
value, a drift term that captures the difference between the current continuation value and
the current flow payoff. This is the expected change in the continuation value. A volatil-
ity term β1t determines the sensitivity of the continuation value to the public signal: the
agency’s future payoffs are more sensitive to good or bad signal realizations when the volatil-
ity of the continuation value is larger. A second volatility term β2t captures the sensitivity
of the continuation value to the stochastic element of the state variable that is independent
of the public signal.

The condition for sequential rationality depends on the process (βt)t≥0, which specifies
how the continuation value changes with respect to the public information. Today’s action
impacts future payoffs through the drift of the public signal, µY (a, b), and the sensitivity of
the continuation value to the public signal, β1, while it impacts current payoffs through the
flow payoff of the agency, g(a, b,X). A strategy for the agency is sequentially rational if it
maximizes the sum of flow payoffs today and the expected impact of today’s action on future
payoffs. This condition is analogous to the one-shot deviation principle in discrete time.

A key feature of this characterization is the linearity of the continuation value and incen-
tive constraint with respect to the Brownian information. Brownian information can only
be used linearly to provide effective incentives in continuous time (Sannikov and Skrzypacz
2010). Therefore, the agency’s incentive constraint takes a very tractable linear form, in
which the process (βt)t≥0 captures all potential channels through which the agency’s current
action may impact future payoffs, including coordination of equilibrium play and the set of
future feasible payoffs that depend on the state variable.

Remark 2. The key aspect of this model that allows for this tractable characterization of
the agency’s incentive constraint is the assumption that the volatility of the state variable
is always positive (except at the boundary of the state space), which ensures that any future
path of states can be reached from the current state. This assumption, coupled with the linear
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incentive structure of Brownian information, ensures the condition for sequential rationality
takes the form in Lemma 1. To see this, consider a deviation from at to ãt at time t. This
deviation impacts future payoffs by inducing a different probability measure over the future
path of the state variable, (Xs)s>t, but doesn’t affect the set of feasible sample paths. Given
that all paths of the state variable are feasible under at and ãt, the continuation value under
both strategies is a non-degenerate expectation with respect to the future path of the state
variable. Thus, the change in the continuation value when the agency deviates from at to
ãt depends solely on the different measures at and ãt induce over future sample paths, and,
given the requirement that Brownian information is used linearly, this change is linear with
respect to the difference in the drift of the public signal, µY

(
ãt, bt

)
− µY

(
at, bt

)
.

Remark 3. It is of interest to note that it is precisely this linear structure with respect
to the Brownian information, coupled with the inability to transfer continuation payoffs be-
tween players, that precludes the effective provision of intertemporal incentives in a standard
repeated game between a long-run and short-run player. The short-run player acts myopi-
cally, so it is not possible to tangentially transfer continuation values between players. Using
Brownian information linearly, but non-tangentially, results in the continuation value escap-
ing the boundary of the payoff set with positive probability, and Brownian information cannot
be used effectively in a non-linear manner. This paper will illustrate that a stochastic game
permits the provision of intertemporal incentives by introducing the possibility of linearly
using Brownian information for some values of the state variable.

The sequential rationality condition can be used to specify an auxiliary stage game pa-
rameterized by the state variable and the process linking current play to the continuation
value. Let S∗(X, β1) =

{(
a, b
)}

represent the correspondence of static Nash equilibrium
action profiles in this auxiliary game, defined as:

Definition 2. Define S∗(X, β1) = Ξ × R ⇒ A × ∆B as the correspondence that describes
the Nash equilibrium of the static game parameterized by (X, β1) ∈ Ξ×R:

S∗(X, β) =

{
a ∈ arg maxa′ g(a′, b,X) + β1µY (a′, b)

b ∈ B(a,X)

}
In any PPE strategy profile (at, bt)t≥0 of the stochastic game, given some processes (Xt)t>0

and (β1t)t>0, the action profile at each instant must be a static Nash equilibrium of the

auxiliary game i.e. (at, bt) ∈ S∗(Xt, β1t) for all t. I assume that this auxiliary stage game
has a unique static Nash equilibrium with an atomic distribution over small players’ actions.
While this assumption is somewhat restrictive, it still allows for a broad class of games,
including those discussed in the previous examples.

Assumption 2. Assume S∗(X, β) is non-empty and single-valued for all (X, β) ∈ Ξ × R,
Lipschitz continuous on any subset of Ξ×R, and the small players choose identical actions
bi = b.

Note that S∗(X, 0) corresponds to the Nash equilibrium of the stage game in the current
model when the state variable is equal to X.
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Static Equilibria Payoffs: The feasible payoffs of the current stage game depend on the
state variable, as do stage game Nash equilibrium payoffs. The presence of myopic players
imposes restrictions on the payoffs that can be achieved by the long-run player, given that
the myopic players must play a static best response.

Define v : Ξ→ R as the payoff to the agency in the Nash equilibrium of the stage game,
parameterized by the state variable, where v(X) := g(S∗(X, 0), X). The assumption that
the Nash equilibrium correspondence of the stage game is Lipschitz continuous, non-empty
and single-valued guarantees v(X) is a Lipschitz continuous function. When the state space
is bounded, Ξ = [X,X], v(X) has a well-defined limit as it approaches the highest and lowest
state. If the state space is unbounded, an additional assumption is necessary to guarantee
that v(X) has well-defined limits.

Assumption 3. If the state space is unbounded, Ξ = R, then there exists a δ such that for
|X| > δ, v(X) is monotonic in X.

This assumption ensures that v(X) doesn’t oscillate as it approaches infinity, a technical
assumption that is necessary for the equilibrium uniqueness result. Represent the highest
and lowest stage Nash equilibrium payoffs across all states as:

v∗ = sup
X∈Ξ

v(X)

v∗ = inf
X∈Ξ

v(X)

These values are well-defined given that g is bounded.

This subsection illustrates the model and definitions introduced above.

Example 1. Pricing Quality: Consider a setting where a firm invests in developing a
product, and consumers choose the price they are willing to pay to purchase this product.
Each instant, a firm chooses an investment level at ∈ [0, 1] and consumers choose a price
bi ∈

[
0, B

]
. A public signal provides information about the firm’s instantaneous investment

through the process
dYt = atdt+ dZY

t

The state variable is product quality, which is a function of past investments and takes
on values in the bounded support Ξ = [0, X]. The change in product quality is governed by
the process

dXt = Xt(X −Xt)
(
atdt+ dZY

t

)
−Xtdt

which is increasing in the firm’s investment, and decreasing in the current product quality.
Note this corresponds to µY = at, σY = 1, f1 = Xt(X −Xt), f2 = −Xt and σ2

X = 0. At the
upper bound of product quality, investment no longer impacts product quality and the process
has negative drift. At the lower bound, investment also no longer impacts product quality,
and the process has zero drift. As such, X = 0 is an absorbing state but X = X is not.
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The firm earns the price the consumers are willing to pay for the product, and pays a cost
of c(a) for an investment level of a, with c(0) = 0, c′ > 0 and c′′ > 0. Its payoff function is

g(a, b,X) = b− c(a)

which is independent of product quality.
Consumers receive an instantaneous value of X+a from purchasing a unit of the product.

Their flow payoff is the difference between the purchase price and the value of the product,

h(a, bi, b,X) = −
(
bi −X − a

)2

In equilibrium, consumers myopically optimize flow payoffs, and thus pay a price equal to
their expected utility from purchasing the product, which is increasing in the stock quality
and investment of the firm.5 The aggregate consumer best response function takes the form

b (a,X) = X + a

In the static game, given a product quality of X, the unique Nash equilibrium is for the firm
to choose an investment level of a∗ = 0 and the consumers to pay a price of b

∗
(0, X) = X

for the good. This yields a stage game Nash equilibrium payoff of v(X) = X for the firm, a
maximum stage NE payoff of v∗ = X at X = X and a minimum stage NE payoff of v∗ = 0
at X = 0.

In the stochastic game, the firm also considers the impact that current investment has on
future product quality. Using the condition for sequential rationality specified in Lemma 1,
the firm chooses an investment level to maximize

a ∈ arg max
a′

X + a− c(a′) + βa′

which yields an equilibrium action

a∗(X, β) = (c′)
−1

(β)

Equilibrium investment is strictly positive in the stochastic game when β > 0. Thus, persis-
tent investment allows the firm to overcome the binding moral hazard present in the static
game and earn a higher price for its product.

Note that
S∗(X, β) =

(
(c′)

−1
(β), X + (c′)

−1
(β)
)

which is non-empty, single-valued, unique and Lipschitz continuous for each (X, β).

5While it may seem unusual that the consumer receives negative utility when they pay a price lower than
the value of the product, this setting can be interpreted as the reduced for for a monopolistic market in which
the firm captures all of the surplus from the product quality. Such a setting would yield the same aggregate
best response function, which is the only relevant aspect of consumer behavior for equilibrium analysis.
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4 Equilibrium Analysis

This section presents the main results of the paper, and proceeds as follows. First, I con-
struct a Markovian equilibrium in the state variable, which simultaneously establishes the
existence of at least one Markovian equilibria and characterizes equilibrium behavior and
payoffs in such an equilibrium. Next, I establish conditions for a Markovian equilibrium
to be the unique equilibrium in the class of all Perfect Public Equilibria. Following is a
brief discussion on the role action persistence plays in using Brownian information to create
effective intertemporal incentives. An application of the existence and uniqueness results to
a stochastic game without action persistence shows that the agency acts myopically in the
unique Perfect Public Equilibria of this setting. Finally, I use the equilibrium characteri-
zation to describe several interesting properties relating the agency’s equilibrium payoffs to
the structure of the underlying stage game.

4.1 Existence of Markov Perfect Equilibria

The first main result of the paper establishes the existence of a Markovian equilibrium in the
state variable. The existence proof is constructive, and as such, characterizes the explicit
form of equilibrium continuation values and actions in Markovian equilibria. This result
applies to a general setting in which:

� The state space may be bounded or unbounded.

� The transition function governing the law of motion of the state variable is stochastic
and depends on the agency’s action through a public signal, as well as the aggregate
action of the collective and the current value of the state.

� There may or may not be absorbing states at the endpoints of the state space.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then given an initial state X0 and ac-
tion profile (a, b) = S∗(X,U ′(X)f1(b,X)), any bounded solution U(X) to the second order
differential equation:

U ′′(X) =
2r
[
U(X)− g(a, b,X)

]
f1(b,X)2σ2

Y + σ2
X(X)

−
2
[
f1(b,X)µY (a, b) + f2(b,X)

]
f1(b,X)2σ2

Y + σ2
X(X)

U ′(X)

referred to as the optimality equation, characterizes a Markovian equilibrium in the state
variable (Xt)t≥0 with

1. Equilibrium payoffs U(X0)

2. Continuation values (Wt)t≥0 = (U(Xt))t≥0

3. Equilibrium actions (at, bt)t≥0 uniquely specified by

S∗(X,U ′(X)f1(b,X)) =

{
a = arg maxa′ rg(a′, b,X) + U ′(X)f1(b,X)µ(a′, b)

b = B(a,X)

}
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The optimality equation has at least one solution U ∈ C2(R) that lies in the range of feasible
payoffs for the agency U(X) ∈

[
g, g
]

for all states X ∈ Ξ. Thus, there exists at least one
Markovian equilibrium.

Theorem 1 shows that the stochastic game has at least one Markovian equilibrium. Con-
tinuation values in this equilibrium are represented by a second order ordinary differential
equation. Rearranging the optimality equation as:

U(X) = g(a, b,X)+
1

r

[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)+

1

2r
U ′′(X)

[
f1(b,X)2σ2

Y + σ2
X(X)

]
lends insight into the relationship between the continuation value and the transition of state
variable. The continuation value is equal to the sum of the flow payoff today, g(a, b,X), and
the expected change in the continuation value, weighted by the discount rate. The second
term captures how the continuation value changes with respect to the drift of the state
variable. For example, if the state variable has positive drift (f1(b,X)µY (a, b)+f2(b,X) > 0),
and the continuation value is increasing in the state variable (U ′ > 0), then this increases the
expected change in the continuation value. The third term captures how the continuation
value changes with respect to the volatility of the state variable. If U is concave (U ′′ < 0),
it is more sensitive to negative shocks than positive shocks. Positive and negative shocks
are equally likely, and therefore, the continuation value is decreasing in the volatility of the
state variable. If U is linear (U ′′ = 0), then the continuation value is equally sensitive to
positive and negative shocks, and the volatility of the state variable does not impact the
continuation value.

Now consider a value of the state variable that yields a local maximum U(X∗) (note this
implies U ′ = 0). Since the continuation value is at a local maximum, it must be decreasing
as X moves away from X∗ in either direction. This is captured by the fact that U ′′(X) < 0.
Larger volatility of the state variable or a more concave function lead to a larger expected
decrease in the continuation value.

I now outline the intuition behind the proof of Theorem 1. The first step in proving this
existence is to show that if a Markovian equilibrium exists, then continuation values must
be characterized by the solution to the optimality equation. In a Markovian equilibrium,
continuation values take the form Wt = U(Xt) for some function U . Using Ito’s formula
to differentiate U(Xt) with respect to Xt yields an expression for the law of motion of the
continuation value in any Markovian equilibrium dWt = dU(Xt), as a function of the law of
motion for the state variable:

dU(Xt) = U ′(Xt)
[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
dt

+
1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]
dt

+U ′(Xt)
[
f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

]
In order for this to be an equilibrium, continuation values must also follow the law of motion
specified in Lemma 1, with drift

r
(
U(Xt)− g(at, bt, Xt)

)
dt
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Matching the drifts of these two laws of motion yields the optimality equation, a second
order ordinary differential equation that specifies continuation payoffs as a function of the
state variable.

The next step in the existence proof is to show that this ODE has at least one solution
that lies in the range of feasible payoffs for the agency. The technical condition to guarantee
the existence of a solution is that the second derivative of U is bounded with respect the first
derivative of U on any bounded interval of the state space. The denominator of the optimality
equation depends on the volatility of the state variable. Thus, the assumption that the
volatility of the state variable is positive on any open interval of the state space (Assumption
1) is crucial to ensure this condition is satisfied. The numerator of the optimality equation
depends on the drift of the state variable, and the agency’s flow payoff. Lipschitz continuity
of these functions ensures that they are bounded on any bounded interval of the state space.
These conditions are sufficient to guarantee the optimality equation has at least one bounded
solution that lies in the range of feasible payoffs for the agency.

The final step of the existence proof is to construct a Markovian equilibrium that satisfies
the conditions of a PPE established in Lemma 1. The incentive constraint for the agency
is constructed by matching the volatility of the laws of motion for the continuation value
established in Lemma 1 with the volatility of the law of motion for the continuation value
as a function of the state variable, dU(Xt). Lemma 1 established that the volatility of the
continuation value must be

rβ1tσY dZ
Y
t + rβ2tσX(Xt)dZ

X
t

in any PPE. Thus, in a Markovian equilibrium

rβ1tσY = U ′(Xt)f1(bt, Xt)σY

rβ2tσX(Xt) = U ′(Xt)σX(Xt)

This characterizes the process (βt)t≥0 governing incentives, and as such, the incentive con-
straint for the agency. This incentive constraint takes an intuitive form. The impact of the
current action on future payoffs is captured by the impact the current action has on the
state variable, f1(b,X)µ(a′, b), as well as the slope of the continuation value, U ′(Xt),which
captures how the continuation value changes with respect to the state variable.

Theorem 1 also establishes that each solution U to the optimality equation characterizes
a single Markovian equilibrium. This is a direct consequence of the assumption that the Nash
equilibrium correspondence of the auxiliary stage game S∗(X, β) is single-valued, Assumption
2, which guarantees that U uniquely determines equilibrium actions. Note that if there
are multiple solutions to the optimality equation, then each solution characterizes a single
Markovian equilibrium. The formal proof of Theorem 1 is presented in the Appendix.

Markovian equilibria have an intuitive appeal in stochastic games. Advantages of Marko-
vian equilibria include their simplicity and their dependence on payoff relevant variables to
specify incentives. Theorem 1 yields a tractable expression that can be used to construct
equilibrium behavior and payoffs in a Markovian equilibrium. The continuation value of
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the agency is specified by the solution to a second order differential equation defined over
the state space. The agency’s incentives are governed by the slope of this solution, which
determines how the continuation value changes with the state variable. As such, this result
provides a tool to analyze equilibrium behavior in a broad range of applied settings. Once
functional forms are specified for the agency’s payoffs and the transition function of the state
variable, it is straightforward to use Theorem 1 to characterize the optimality equation and
incentive constraint for the agency, as a function of the state variable. This constructs a
Markovian equilibrium. Numerical methods for ordinary differential equations can then be
used to estimate a solution to the optimality equation and explicitly calculate equilibrium
payoffs and actions. These calculations yield empirically testable predictions about equilib-
rium behavior. Note that numerical methods are used for estimation in an equilibrium that
has been characterized analytically, and not to simulate an approximate equilibrium. This
is an important distinction.

4.1.1 Example to illustrate Theorem 1

The following example illustrates how to use Theorem 1 to construct equilibrium behavior.

Example 2. Consider the persistent investment model presented in Section 2.1. The state
variable evolves according to:

dXt = θ (at −Xt) dt+ σdZt

which corresponds to f1 = 1, µY = θa, f2 = −θX, σY = σ and σX = 0, and the firm’s flow
payoff is:

g(a, b,X) = b− ca2

Using Theorem 1 to characterize the optimality equation yields

U ′′(X) =
2r

σ2

(
U(X)− b∗ + c (a∗)2

)
− 2θ

σ2
(a∗ −X)U ′(X)

The sequential rationality condition for the firm is

a = arg max
a′

b− ca2 + U ′(X)θa′

In equilibrium, the firm chooses action

a∗(X,U ′(X)) = min

{
σθ

2cr
U ′(Xt), a

}
This constructs equilibrium behavior and payoffs as a function of the current product quality
X and the solution to the optimality equation, U . Numerical methods can now be used
to estimate a solution U to the optimality equation. Calibrating the model with a set of
parameters will then fully determine equilibrium actions and payoffs as a function of the
current product quality. As discussed in 2.1, the empirical predictions of this application are:

1. The firm’s continuation value is increasing in the current product quality
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2. The firm’s incentives to invest in quality are highest when the current product quality is
at an intermediate level. As such, the firm goes through phases of ”reputation building”,
during which the firm chooses high investment levels and product quality increases in
expectation, and ”reputation riding”, during which the firm chooses low investment
levels and reaps the benefits of having a high product quality.

The firm’s equilibrium payoff captures the future value of owning a product of a given quality
level, and as such, can be interpreted as the asset value of the firm.

4.2 Uniqueness of Markovian Equilibrium

The second main result of the paper establishes conditions under which there is a unique
Markovian equilibrium, which is also the unique equilibrium in the class of all Perfect Public
Equilibria. The first step of this result is to establish when the optimality equation has a
unique bounded solution. Recall that each solution to the optimality equation characterized
in Theorem 1 characterizes a single Markovian equilibrium. Thus, when the optimality
equation has a unique solution, there is a unique Markovian equilibrium. The second step
of the result is to prove that there are no non-Markovian PPE, and as such, this unique
Markovian equilibrium is the unique PPE.

The optimality equation will have a unique solution when its solution satisfies certain
boundary conditions as the state variable approaches its upper and lower bound (in the case
of an unbounded state space, as the state variable converges to positive or negative infinity).
The boundary conditions for the optimality equation depend on the rate at which the drift
and volatility of the state variable converge as the state variable approaches its upper and
lower bound. As such, the key condition that ensures a unique solution to the optimality
equation is an assumption on the limiting behavior of the drift and volatility of the state
variable.

Assumption 4. 1. If the state space is bounded, Ξ = [X,X], then as X approaches its
upper and lower bound

{
X,X

}
, the functions governing the transition of the state

variable satisfy the following limiting behavior:

(a) The drift of the state variable converges to zero at a linear rate, or faster: f2(b,X)
and f1(b,X) are O(X∗ −X) as X → X∗ ∈

{
X,X

}
.

(b) The volatility of the state variable converges to zero at a linear rate, or faster:
1/f1(b,X)σY (b) + σX(X) is O(1/ (X∗ −X)) as X → X∗ ∈

{
X,X

}
.

2. If the state space is unbounded, Ξ = R, then as X approaches positive and negative
infinity, the functions governing the transition of the state variable satisfy the following
limiting behavior:

(a) The drift of the state variable grows linearly, or slower: f2(b,X) and f1(b,X) are
O(X) as X → {−∞,∞}.
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(b) The volatility of the state variable is bounded: f1(b,X)σY (b) + σX(X) is O(1) as
X → {−∞,∞}.

When the support is bounded, this assumption requires that the upper and lower bounds
of the state space are absorbing points. The drift and volatility of the state variable must
converge to zero at a linear rate, or faster, as the state variable approaches its boundary.
When the support is unbounded, these assumptions require that the drift of the state variable
grows at a linear rate, or slower, as the magnitude of the state becomes arbitrarily large, and
that the volatility of the state variable is uniformly bounded. The role this assumption plays
in establishing equilibrium uniqueness is discussed following the presentation of the result.

Remark 4. When the endpoints of the state space are absorbing points, whether the state
variable actually converges to one of its absorbing points with positive probability will depend
on the relationship between the drift and the volatility as the state variable approaches its
boundary points. It is possible that the state variable converges to an absorbing point with
probability zero.

The following theorem establishes the uniqueness of a Markovian equilibrium in the class
of all Perfect Public Equilibria.

Theorem 2. Suppose Assumptions 1, 2, 3 and 4 hold. Then, for each initial value of the
state variable X0 ∈ Ξ, there exists a unique perfect public equilibrium, which is Markovian,
with continuation values characterized by the unique bounded solution U of the optimality
equation, yielding equilibrium payoff U(X0).

1. When the state space is bounded, Ξ = [X,X], then the solution satisfies the following
boundary conditions:

lim
X→X

U(X) = v(X) and lim
X→X

U(X) = v (X)

lim
X→X

(X −X)U ′(X) = lim
X→X

(X −X)U ′(X) = 0

2. When the state space is unbounded, Ξ = R, then the solution satisfies the following
boundary conditions:

lim
X→∞

U(X) = v∞ and lim
X→−∞

U(X) = v−∞

lim
X→∞

XU ′(X) = lim
X→−∞

XU ′(X) = 0

I briefly relate the boundary conditions characterized in Theorem 2 to equilibrium behav-
ior and payoffs, and then outline the intuition behind the uniqueness result. These boundary
conditions have several implications for equilibrium play. Recall the incentive constraint for
the agency from Theorem 1. The link between the agency’s action and future payoffs is
proportional to the slope of the continuation value and the drift component of the state
variable that depends on the public signal, U ′(X)f1(b,X). The assumption on the growth
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rate of f1(b,X) ensures that U ′(X)f1(b,X) converges to zero at the boundary points (in the
unbounded case, as the state variable approaches positive or negative infinity). When this
is the case, the agency’s incentive constraint is reduced to the myopic optimization of its
instantaneous flow payoff at the boundary points. Thus, at the upper and lower bound of
the state space (in the limit for an unbounded state space), the agency plays a static Nash
equilibrium action. Additionally, continuation payoffs are equal to the Nash equilibrium
payoff of the static game at the boundary points.

I next provide a sketch of the proof for the existence of a unique PPE, which is Markovian.
The first step in proving this result is establishing that the optimality equation has a unique
solution. This is done so in two parts: (i) showing that any solution to the optimality
equation must satisfy the same boundary conditions, and (ii) showing that it is not possible
for two different solutions to the optimality equation to satisfy the same boundary conditions.

I discuss the boundary conditions for an unbounded state space; the case of a bounded
state space is analogous. Suppose U is a bounded solution to the optimality equation. The
U , and its first and second derivative, must satisfy the following set of boundary conditions.
U will have a well-defined limit at the boundary points when the static Nash equilibrium
payoff function has a well-defined limit, which is guaranteed given the Lipschitz continuity of
the Nash equilibrium correspondence and the agency’s payoff function. The boundedness of
U coupled with the assumption that the static Nash equilibrium payoff function is monotonic
for large X ensures that the first derivative of U converges to zero, and does so faster than
1/X.6 This establishes the boundary condition on U ′ presented in Theorem 2,

lim
X→∞

XU ′(X) = lim
X→−∞

XU ′(X) = 0

The boundedness of U also ensures that the second derivative, U ′′, doesn’t converge to a
constant.7 The optimality equation in Theorem 1 specifies the relationship between U and
its first and second derivative. This relationship, coupled with Assumption 4 is used to
establish the boundary condition for U . From the optimality equation,(
f1(b,X)2σ2

Y + σ2
X(X)

)
U ′′(X) = 2r

[
U(X)− g(a, b,X)

]
−2
[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)

Consider the limit of the optimality equation as the state variable approaches positive infinity.
Under the assumption that the drift of the state variable has linear growth (f1 and f2), the
second term on the right hand side converges to zero, and the flow payoff g(a, b,X) converges
to v∞. (Recall that the agency plays a myopic best response at the boundaries, which yields
a flow payoff equal to the static Nash equilibrium payoff v∞). Then when the volatility of
the state variable, f1(b,X)2σ2

Y +σ2
X(X), is bounded, as is assumed in Assumption 4, U must

also converge to v∞ to prevent the U ′′ from converging to a constant. This establishes the

6The monotonicity assumption on the static Nash equilibrium payoff function, v(X), (Assumption 3) plays
a key role in ensuring the limit of the first derivative exists. It is possible for a bounded function to converge
to a finite limit, but have a derivative that oscillates. This assumption guarantees that U is monotonic for
large X, and prevents U ′ from oscillating. A similar assumption is not necessary in the bounded state space
case, as the Lipschitz continuity of v is sufficient to ensure the limit of U ′ is well-defined.

7The boundedness of U ensures that U ′′ either converges to zero, or oscillates around zero.
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boundary condition on U presented in Theorem 2,

lim
X→∞

U(X) = v∞ and lim
X→−∞

U(X) = v−∞

Given Assumption 4, any solution to the optimality equation must satisfy these boundary
conditions. Showing that it is not possible for two different solutions U1 and U2 to both satisfy
these boundary conditions concludes the proof that the optimality equation has a unique
solution. This establishes the existence of a unique Markovian equilibrium.

The second step in proving the existence of a unique PPE is showing that there are no
non-Markovian PPE, and as such, this unique Markovian equilibrium is the unique PPE.
The intuition behind this result, and its relationship with the continuous time literature, is
discussed in depth following an example to illustrate Theorem 2.

4.2.1 Example to illustrate Theorem 2

I next illustrate that the persistent investment example satisfies the assumptions for Theorem
2 and has a unique PPE, which is Markovian.

Example 3. In the persistent investment model, the state variable evolves according to:

dXt = θ (at −Xt) dt+ σdZt

The drift of the state variable is θ (at −Xt), which grows linearly as |X| approaches infinity.
The volatility of the state variable is σ, which is bounded uniformly with respect to X, since
it is constant. This example satisfies Assumption 4. As characterized in Section 2.1, the
unique stage game Nash equilibrium is for the firm to choose zero investment, and consumers
to choose a purchase level of b = 3 when X > 3/λ. This ensures the monotonicity assumption
of the static Nash payoffs, Assumption 3, is satisfied. Section 4.1 established that this example
satisfies the other required assumptions for Theorem 2. Therefore, this example has a unique
Markovian equilibrium that satisfies the following boundary conditions:

lim
X→∞

U(X) = 3 and lim
X→−∞

U(X) = 0

lim
X→∞

XU ′(X) = lim
X→−∞

XU ′(X) = 0

In this equilibrium, the firm’s action converges to the static Nash best response of zero in-
vestment as the product quality becomes large, and the firm receives an equilibrium payoff of
3, the highest feasible payoff for the firm.

4.2.2 Intertemporal Incentives in Stochastic Games

The fact that the unique PPE is Markovian yields an important insight on the role action
persistence plays in generating intertemporal incentives. In a stochastic game of imperfect
monitoring, intertemporal incentives can be generated through two potential channels: (1)
conditioning future equilibrium play on the public signal and (2) the effect of the current
action on the set of future feasible payoffs via the state variable. Equilibrium play in a
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Markovian equilibrium is completely specified by the current value of the state variable,
and the public signal is ignored. As such, the sole source of intertemporal incentives in a
Markovian equilibrium is from the impact that the current action has on the set of future
feasible payoffs. When this equilibrium is unique, it precludes the existence of any equilibria
that use the public signal to generate intertemporal incentives via continuation play. As such,
the ability to generate effective intertemporal incentives in a stochastic game of imperfect
monitoring stems entirely from the effect of the current action on the set of future feasible
payoffs via the state variable.

This insight relates to equilibrium degeneracy results from the continuous time repeated
games literature, which show that it is not possible to provide effective intertemporal in-
centives in an imperfect monitoring game between a long-run and short-run player. In a
standard repeated game, conditioning future equilibrium play on the public signal is the
only potential channel for generating intertemporal incentives, and, as is the case in the
stochastic game, this is not an effective channel for incentive provision. Thus, the introduc-
tion of action persistence creates an essential avenue for intertemporal incentive provision,
and the ability to create effective intertemporal incentives in the stochastic game is entirely
due to this additional this channel.

I next comment on the features of a stochastic game that allow Brownian information to
be used to effectively provide intertemporal incentives. First consider the intuition behind
why coordinating future equilibrium play is not an effective channel for incentive provision in
a game between a short-run and long-run player. As discussed following lemma 1, Brownian
information must be used linearly. Given this restriction, consider what happens when the
long-run player’s continuation value is at its upper bound. Using Brownian information
linearly in a direction that is non-tangential to the boundary of the equilibrium payoff set
will result in the continuation value escaping its upper bound with positive probability, a
contradiction. Using Brownian information linearly in a tangential manner is precluded by
the presence of myopic short-run players. Thus, it is not possible to linearly use Brownian
information to structure incentives at the long-run player’s highest continuation payoff, and
both the long-run player and short-run player will play a myopic best response at this point.
But this is precisely the definition of a static Nash equilibrium, and therefore long-run player’s
highest continuation payoff is bounded above by the highest static Nash equilibrium payoff.

Now consider the introduction of action persistence. The firm’s incentive constraint
and the evolution of the continuation value is still linear with respect to the Brownian
information, as captured by the process (βt)t≥0 that governs incentives and the volatility
of the continuation value. However, it is possible to characterize this process in a manner
that depends on the state variable, and ensures the continuation value has zero volatility
at states that yield the highest continuation payoff. This prevents the continuation value
from escaping its upper bound with positive probability. Note this also implies that the
long-run player must be playing a myopic best response at the state that yields the highest
continuation payoff. However, for other states, it is possible to structure incentives such that
the firm plays a non-myopic action.

Recall the characterization of (βt)t≥0 in Theorem 1, where βt is the volatility of the
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agency’s continuation value and also governs the agency’s incentive constraint:

β1t = U ′(Xt)f1(bt, Xt)

Suppose an interior state yields the highest continuation value. Then the slope of the contin-
uation value is zero at this point, U ′(Xt) = 0, which ensures the volatility of the continuation
value is zero at its upper bound. Suppose that a boundary of the state space yields the high-
est continuation value. Then the boundary conditions characterized in Theorem 2 ensure
that β1t converges to zero at this boundary, and therefore the continuation value has zero
volatility at its upper bound. However, for states that do not yield the highest or lowest
continuation value, it is possible for |β1t| > 0, which allows intertemporal to be structured
in a manner such that the agency plays a nonmyopic action.

4.3 Stochastic Games without Action Persistence

Suppose that the state variable evolves independently of the public signal. This removes the
link between the agency’s action and evolution of the state variable, creating a stochastic
game without action persistence. This section establishes that the unique PPE in this setting
is one in which the firm acts myopically and plays the static Nash equilibrium of the current
stage game.

Given an initial state X0, define the average discounted payoff from playing the static
Nash equilibrium action profile in each state as:

VNE(X0) = E

[
r

∫ ∞
0

e−rtv(Xt)dt

]
and the expected continuation payoff from playing a static Nash equilibrium action profile
as:

WNE(Xt) = Et

[
r

∫ ∞
t

e−rsv(Xs)dt

]
where these expectations are taken with respect to the state variable, given that the state
evolves according to the measure generated by the static Nash equilibrium action profile
S∗(X, 0) = (a(X, 0), b(X, 0))X∈Ξ. This expression defines the stochastic game payoff that
the agency will earn if it myopically optimizes flow payoffs each instant. It is important to
note that repeated play of the static Nash action profile is not necessarily an equilibrium
strategy profile of the stochastic game; this is a general property of stochastic games.

The following Corollary establishes that in a stochastic game without action persistence,
repeated play of the static Nash action profile is an equilibrium strategy profile; in fact, it is
the unique equilibrium strategy profile, and yields the firm an equilibrium payoff of VNE(X0).
The corollary also directly characterizes VNE(X0) as the solution to a non-stochastic second
order differential equation (recall that VNE(X0) is an expectation with respect to the state
variable).

Corollary 1. Suppose that the transition function of the state variable is independent of
the public signal, f1 = 0, for all X, and suppose Assumptions 1 and 2 hold. Then, given

31



an initial state X0, there is a unique perfect public equilibrium characterized by the unique
bounded U(X) solution to:

U ′′(X) =
2r
[
U(X)− g(a, b,X)− f2(b,X)U ′(X)

]
σ2
X(X)

This solution characterizes a Markovian equilibrium with:

1. Equilibrium payoff U(X0)

2. Continuation values (Wt)t≥0 = (U(Xt))t≥0

3. Equilibrium actions (at, bt)t≥0 uniquely specified by the static Nash equilibrium action
profile, for each X:

S∗(X, 0) =

{
a = arg maxa′ g(a′, b,X)

b = B(a,X)

}
Additionally, this equilibrium payoff and the continuation values correspond to the ex-
pected payoff from playing the static Nash equilibrium action profile, U(X0) = VNE(X0)
and (U(Xt))t≥0 = (WNE(Xt))t≥0.

This result is a direct application of Theorem 1. The equilibrium characterization in
Theorem 1 is used to characterize the optimality equation and incentive constraint for the
firm when f1 = 0. In the absence of a link between the agency’s action and the state variable,
the firm plays a static best response each instant.

It is interesting to note that the uniqueness result in a game without action persistence
stems directly from the existence characterization in Theorem 1, and does not require the
additional assumptions (Assumptions 3 and 4) necessary for Theorem 2. To see why, note
that the incentive constraint is independent of the solution U to the optimality equation.
As such, any solution to the optimality equation yields the same equilibrium action profile
- namely, the action profile in which the agency plays a static best response each instant.
Thus, all Markovian equilibrium action profiles induce the same measure over the path of the
state variable. When a static best response is played each period, the continuation value in
any Markovian equilibrium evolves according to the expected payoff from playing the static
Nash equilibrium action profile in each state:

Wt = Et

[
r

∫ ∞
t

e−rsv(Xs)ds

]
= WNE(Xt)

where the expectation is taken with respect to the measure over the state variable. Given that
this measure over the state variable is the same in any Markovian equilibrium, any solution to
the optimality equation must yield the same continuation values (U(Xt))t≥0 = (WNE(Xt))t≥0

for all X ∈ Ξ. Therefore, this solution must be unique. The solution to the optimality
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equation in Corollary 1 can be used to explicitly characterize the expectation VNE(X0) and
.WNE(Xt).

The existence of a solution to the optimality equation requires that the volatility of the
state variable is bounded away from zero at interior points (Assumption 1). Note that when
the state variable does not depend on the public signal, this assumption requires σ2

X(Xt) to
be bounded away from zero to ensure that the state variable evolves stochastically.

Although Assumption 4 and 3 are not required to establish the existence of a unique
PPE in the stochastic game without action persistence, if they do hold, then Theorem 2 can
be used to characterize continuation payoffs at the boundary points of the state space. As
established in Theorem 2, as the state variable approaches its boundary points (when the
state space is unbounded, positive and negative infinity), then continuation payoffs approach
the static Nash equilibrium payoff at the boundary points. Thus, the expected payoff from
repeated play of the static game Nash equilibrium action profile approaches the payoff of the
static Nash equilibrium at the boundary point of the state space.

Corollary 2. Suppose Assumptions 3 and 4 also hold. Then if the state space is bounded,

lim
X→X

WNE(X) = v(X) and lim
X→X

WNE(X) = v (X)

and if the state space is unbounded

lim
X→∞

WNE(X) = v∞ and lim
X→−∞

WNE(X) = v−∞

This result is a direct implication of Theorem 2.
The degeneracy result of this section relates to the discussion of intertemporal incentive

provision in Section 4.2.2. When the state variable evolves independently of the agency’s
action, this removes the second channel for intertemporal incentives that links the agency’s
action to the set of future feasible payoffs. Therefore, the only potential channel for in-
tertemporal incentive provision is the coordination of equilibrium play, and, as discussed in
4.2.2, it is not possible to effectively structure incentives via this channel. The agency plays
myopically in the unique equilibrium of this setting.

4.4 Properties of Equilibrium Payoffs

This section uses Theorem 1 and 2 to describe several interesting properties relating the
agency’s equilibrium payoffs to the structure of the underlying stage game. The main results
of this section are to provide an upper and lower bound on the PPE payoffs of the stochastic
game across all states and characterize how the PPE payoff of the agency varies with the
state variable

First, I examine properties of the highest and lowest PPE payoffs across all states, rep-
resented by W and W , respectively. Incentives for agency to choose a non-myopic action in
the current period are provided through the link between the agency’s action, the transition
of the state variable and future feasible payoffs. When the continuation value is at its upper
or lower bound, then the continuation value must have zero volatility so as not to escape
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its bound. The volatility of the continuation value is proportional to βt, which also deter-
mines the incentive constraint for the agency. If the continuation value doesn’t respond to
the public signal, then the agency will myopically best respond by choosing the action that
maximizes current flow payoffs. Therefore, the action profile at the set of states that yield
the highest and lowest PPE payoffs across all states must be a Nash equilibrium of the stage
game at that state.

At its upper bound, the drift of the continuation value must be negative. Using the
law of motion for the continuation value characterized above, this means that the current
flow payoff must exceed the continuation value. The current flow payoff in any stage Nash
equilibrium is bounded above by v∗, the highest stage Nash equilibrium payoff across all
states. Thus, the highest PPE payoff across all states is bounded above by the highest static
Nash equilibrium payoff across all states. Similar reasoning applies to showing that the
lowest PPE payoff across all states is bounded below by the lowest static Nash equilibrium
payoff.

Theorem 3. W ≤ v∗ and W ≥ v∗

If there is an absorbing state X in the set of states that yields the highest stage Nash
equilibrium payoff, then it is possible to remain in this state once it is reached. Thus, the
highest PPE payoff across all states arises from repeated play of this stage Nash equilibrium,
and yields a continuation value of W = v∗. By construction, this continuation value occurs
at the state X that yields the highest static payoff. An analogous result holds for the lowest
PPE payoff.

This result has an intuitive relation to reputation models of incomplete information.
Recall that the state variable in this model is the consumers’ beliefs about the firm’s type.
Therefore, X = 0 and X = 1 are absorbing states. When X = 0, consumers place probability
one on the firm being a normal type, and it is not possible for the firm to earn payoffs above
the static Nash equilibrium payoff of the game with complete information. Provided the
firm’s payoffs are increasing in the belief it is a behavioral type, the lowest PPE payoff
occurs at X = 0 and is equal to the Nash equilibrium payoff of the complete information
game, v∗. Conditional on the firm being a normal type, the transition function governing
beliefs has negative drift, and beliefs converge to the absorbing state X = 0. This captures
the temporary reputation phenomenon associated with reputation models of incomplete
information. Once consumers learn the firm’s type, it is not possible to return to a state
X > 0. Note that although X = 1 is also an absorbing state, but conditional on the firm
being the normal type, the state variable never converges to X = 1

In the current model, if either endpoint is an absorbing state, and the state variable
converges to this endpoint, then the intertemporal incentives created by the stochastic game
will be temporary. Once this absorbing state is reached, the dynamic game is reduced to
a standard repeated game and the unique equilibrium involves repeated play of the static
Nash equilibrium. On the other hand, if neither endpoint is an absorbing state, or if the
state variable doesn’t converge to its absorbing states with positive probability, then the
intertemporal incentives created by the stochastic game are permanent. As noted in the
above discussion, it is possible to have an absorbing state that the state variable converges
to with probability zero.
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The second main result on PPE payoffs relates how the continuation value of the agency
changes with the state variable to how the stage Nash equilibrium of the underlying stage
game varies with the state variable.

Theorem 4. Assume 1, 2, 3 and 4. The following properties show how PPE payoffs change
with the state variable:

1. Suppose v(X) is increasing (decreasing) in X.Then U(X) is also increasing (decreasing)
in X. The state that yields the highest static Nash payoff also yields the highest PPE
payoff; likewise, the state that yields the lowest static Nash payoff also yields the lowest
PPE payoff.

2. Suppose v(X) has a unique interior maximum X∗, and v is monotonically increasing
(decreasing) for X < X∗ (X > X∗). Then U(X) has a unique interior maximum at
X∗,and U is monotonically increasing (decreasing) for X < X∗ (X > X∗). The state
that yields the highest static Nash payoff also yields the highest PPE payoff, whereas
and the state that yields the lowest PPE payoff is a boundary point.

3. Suppose v(X) has a unique interior minimum X∗, and v is monotonically decreasing
(increasing) for X < X∗ (X > X∗). Then U(X) has a unique interior minimum at
X∗,and U is monotonically decreasing (increasing) for X < X∗ (X > X∗). The state
that yields the lowest static Nash payoff also yields the lowest PPE payoff, whereas and
the state that yields the highest PPE payoff is a boundary point.

If the stage Nash equilibrium payoff of the agency is increasing in the state variable,
then the PPE payoff to the agency is also increasing in the the state variable. The state
that yields the highest PPE payoff to the agency corresponds to the state that yields the
highest stage Nash equilibrium payoff, and the state that yields the lowest PPE payoff to the
agency corresponds to the state that yields the lowest PPE payoff. Stochastic games differ
from standard repeated games in that it is not necessarily possible to achieve an equilibrium
payoff of the stochastic game that is equal to the stage Nash equilibrium payoff. Thus, for
intermediate values of the state variable, the PPE payoff may lie above or below the static
Nash equilibrium payoff. A symmetric result holds if the stage Nash equilibrium payoff of
the agency is decreasing in the state variable.

If the stage Nash equilibrium payoff of the agency is concave in the state variable, then
the PPE payoff will be increasing over the region that the stage Nash equilibrium payoff
is increasing, and decreasing over the region that the stage Nash equilibrium payoff is de-
creasing. The maximum PPE payoff will occur at the state that yields the maximum Nash
equilibrium payoff of the stage game, and this PPE payoff will lie below maximum stage
Nash equilibrium payoff, W < v∗. The state that yields the lowest PPE payoff will occur at
either endpoint of the state space. If the endpoint that yields the lowest stage Nash equi-
librium payoff is an absorbing state, then this state also yields the lowest PPE payoff and
W = v∗. Otherwise, the endpoint that yields the lowest stage Nash equilibrium payoff will
depend on the transition function. A symmetric result holds if the stage Nash equilibrium
payoff of the agency is convex in the state variable.
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This result characterizes properties of the PPE payoff as a function of the state variable
for several relevant classes of games. More generally, if the stage game Nash equilibrium
payoff is not monotonic or single-peaked in the state variable, then the highest and lowest
PPE payoffs of the stochastic game may not coincide with the states that yield the maximum
or minimum stage game Nash equilibrium payoffs.

5 Conclusion

Persistence and rigidities are pervasive in economics. There are many situations in which a
payoff-relevant stock variable is determined not only by actions chosen today, but also by
the history of past actions. This paper shows that this realistic departure from a standard
repeated game provides a new channel for intertemporal incentives. The long-run player
realizes that the impact of the action it chooses today will continue to be felt tomorrow, and
incorporates the future value of this action into its decision. Persistence is a particularly
important source of intertemporal incentives in the class of games examined in this paper;
in the absence of such persistence, the long-run player cannot earn payoffs higher than those
earned by playing a myopic best response.

The main results of this paper are to establish conditions on the structure of the game that
guarantee existence of Markovian equilibria, and uniqueness of a perfect public equilibria,
which is Markovian. Markovian equilibria have attractive features for use in applied work.
These results not only provide a theoretical justification for restricting attention to such
equilibria, but also develop a tractable method to characterize equilibrium behavior and
payoffs in a Markovian equilibrium. The equilibrium dynamics can be directly related to
observable features of a firm, or other long-run player, and used to generate empirically
testable predictions.

This paper leaves open several interesting avenues for future research. Continuous time
provides a tractable framework for studying games of imperfect monitoring. Ideally, equilib-
ria of the continuous time will be robust in the sense that nearby discrete time games will
exhibit similar equilibrium properties, as the period length becomes small. Faingold (2008)
establishes such a robustness property in the context of a reputation game with commitment
types. Whether the current setting is robust to the period length remains an open question.

Often, multiple long-run players may compete for the support of a fixed population of
small players. For instance, rival firms may strive for a larger consumer base, political
parties may contend for office, or universities may vie for the brightest students. These
examples describe a setting in which each long-run player takes an action that persistently
affects its state variable. Analyzing a setting with multiple state variables is technically
challenging; if one could reduce such a game to a setting with a single payoff-relevant state,
this simplification could yield a tractable characterization of equilibrium dynamics. For
example, perhaps it is only the difference between two firms’ product qualities that guide
consumers’ purchase behavior, or the difference between the platform of two political parties
that determines constituents voting behavior.

Additionally, examining other classes of stochastic games, such as games between two
long-run players whose actions jointly determine a stock variable, or games with different
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information structures governing the state transitions, remain unexplored.

References

Board, S. and M. Meyer-ter-Vehn (2011): “Reputation for Quality,” Tech. rep.,
UCLA.

Cripps, M. W., G. J. Mailath, and L. Samuelson (2007): “Disappearing private
reputations in long-run relationships,” Journal of Economic Theory, 134, 287 – 316.

Faingold, E. (2008): “Building a Reputation under Frequent Decisions,” Tech. rep.

Faingold, E. and Y. Sannikov (2011): “Reputation in Continuous-Time Games,”
Econometrica, 79, 773–876.

Fudenberg, D. and D. Levine (2007): “Continuous Time Limits of Repeated Games
with Imperfect Public Monitoring,” Review of Economic Dynamics, 10, 173–192.

Fudenberg, D. and D. K. Levine (1992): “Maintaining a Reputation When Strategies
Are Imperfectly Observed,” Review of Economic Studies, 59, 561–79.

——— (1994): “Efficiency and Observability with Long-Run and Short-Run Players,” Jour-
nal of Economic Theory, 62, 103–135.

Klein, B. and K. B. Leffler (1981): “The Role of Market Forces in Assuring Contractual
Performance,” Journal of Political Economy, 89, 615–41.

Kreps, D. M., P. Milgrom, J. Roberts, and R. Wilson (1982): “Rational coop-
eration in the finitely repeated prisoners’ dilemma,” Journal of Economic Theory, 27,
245–252.

Mailath, G. J. and L. Samuelson (2001): “Who Wants a Good Reputation?” Review
of Economic Studies, 68, 415–41.

Sannikov, Y. (2007): “Games with Imperfectly Observable Actions in Continuous Time,”
Econometrica, 75, 1285–1329.

Sannikov, Y. and A. Skrzypacz (2007): “Impossibility of Collusion under Imperfect
Monitoring with Flexible Production,” American Economic Review, 97, 1794–1823.

——— (2010): “The Role of Information in Repeated Games With Frequent Actions,”
Econometrica, 78, 847–882.

37



6 Appendix

6.1 Proof of Lemma 1

This Lemma extends recursive techniques in continuous time games to the current setting
of a stochastic game.

6.1.1 Evolution of the continuation value

Let Wt(S) be the firm’s continuation value at time t, given Xt = X and strategy profile
S = (at, bt)t≥0, and let Vt(S) be the average discounted payoff conditional on info at time t.

Vt(S) : = Et

[
r

∫ ∞
0

e−rsg(as, bs, Xs)ds

]
= r

∫ t

0

e−rsg(as, bs, Xs)ds+ e−rtWt(S)

Lemma 2. The average discounted payoff at time t, Vt(S), is a martingale.

Et[Vt+k(S)] = Et

[
r

∫ t+k

0

e−rsg(as, bs, Xs)ds+ e−r(t+k)Wt+k(S)

]
= r

∫ t

0

e−rsg(as, bs, Xs)ds

+Et

[
r

∫ t+k

t

e−rsg(as, bs, Xs)ds+ e−r(t+k)Et+k

[
r

∫ ∞
t+k

e−r(s−(t+k))g(as, bs, Xs)ds

]]
= r

∫ t

0

e−rsg(as, bs, Xs)ds

+e−rtEt

[
r

∫ t+k

t

e−r(s−t)g(as, bs, Xs)ds+ r

∫ ∞
t+k

e−r(s−t)g(as, bs, Xs)ds

]
= r

∫ t

0

e−rsg(as, bs, Xs)ds+ e−rtWt(S) = Vt(S)

Lemma 3. In any PPE, the continuation value evolves according to the stochastic differential
equation

dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt+ rβ1t

[
dYt − µY (at, bt)dt

]
+ rβ2tσX(Xt)dZ

X
t

Take the derivative of Vt(S) wrt t :

dVt(S) = re−rtg(at, bt, Xt)dt− re−rtWt(S)dt+ e−rtdWt(S)

By the martingale representation theorem, there exists a progressively measurable process
(βt)t≥0 such that Vt can be represented as:

dVt(S) = re−rt
[
β1tσY dZ

Y
t + β2tσX(Xt)dZ

X
t

]
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Combining these two expressions for dVt(S) yields the law of motion for the continuation
value:

re−rtg(at, bt, Xt)dt− re−rtWt(S)dt+ e−rtdWt(S) = re−rt
[
β1tσY dZ

Y
t + β2tσX(Xt)dZ

X
t

]
⇒ dWt(S) = rWt(S)dt− rg(at, bt, Xt)dt+ rβ1tσY dZ

Y
t + rβ2tσX(Xt)dZ

X
t

⇒ dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt+ rβ1t

[
dYt − µY (at, bt)dt

]
+ rβ2tσX(Xt)dZ

X
t

Q.E.D.

6.1.2 Sequential Rationality

Lemma 4. A strategy (at)t≥0 is sequentially rational for the agency if, given (βt)t≥0, for all
t:

at ∈ arg max g(a′, bt, Xt) + β1tµY (a′, bt)

Consider strategy profile (at, bt)t≥0 played from period τ onwards and alternative strategy
(ãt, bt)t≥0 played up to time τ . Recall that all values of Xt are possible under both strategies,
but that each strategy induces a different measure over sample paths (Xt)t≥0.

At time τ , the state variable is equal to Xτ . Action aτ will induce dYτ = µY (aτ , bτ )dτ +

σY dZ
Y
τ whereas action ãτ will induce dYτ = µY (ãτ , bτ )dτ + σY dZ

Y
τ . Let Ṽτ be is expected

average payoff conditional on info at time τ when follows ã up to τ and a afterwards, and
let Wτ be the continuation value when the firm follows strategy (at)t≥0 starting at time τ .

Ṽτ = r

∫ τ

0

e−rsg(ãs, bs, Xs)ds+ e−rτWτ

Consider changing τ so that firm plays strategy (ãt, bt) for another instant: dṼτ is the change
in average expected payoffs when the firm switches to (at)t≥0 at τ + dτ instead of τ . Note

dWτ = r
(
Wτ − g(aτ , bτ , Xτ )

)
dτ

+rβ1t

[
dYτ − µY (aτ , bτ )dτ

]
+rβ2τσX(bτ , Xτ )dZ

X
τ

when firm switches strategies at time τ .

dṼτ = re−rτ
[
g(ãτ , bτ , Xτ )−Wτ

]
dτ + e−rτdWτ

= re−rτ
[
g(ãτ , bτ , Xτ )− g(aτ , bτ , Xτ )

]
dτ

+re−rτβ1τ

[
dYτ − µY (aτ , bτ )dτ

]
+re−rτβ2τσX(bτ , Xτ )dZ

X
τ

= re−rτ


[
g(ãτ , bτ , Xτ )− g(aτ , bτ , Xτ )

]
dτ

+re−rτrβ1τ

[
µY (ãτ , bτ )dτ − µY (aτ , bτ )dτ + σY dZ

Y
τ .
]

+re−rτβ2τσX(bτ , Xτ )dZ
X
τ
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There are two components to this strategy change: how it affects the immediate flow payoff
and how it affects future public signals Yt, which impacts the continuation value (captured
in process β). The profile (ãt, bt)t≥0 yields the firm a payoff of:

W̃0 = E0

[
Ṽ∞

]
= E0

[
Ṽ0 +

∫ ∞
0

dṼt

]
= W0 + E0

[
r

∫ ∞
0

e−rt
{

g(ãt, bt, Xt) + β1tµY (ãt, bt)

−g(at, bt, Xt)− βtµY (at, bt)

}
dt

]
If

g(at, bt, Xt) + β1tµY (at, bt) ≥ g(ãt, bt, Xt) + β1tµY (ãt, bt)

holds for all t ≥ 0, Then W0 ≥ W̃0 and deviating to S = (ãt, bt) is not a profitable deviation.
This yields the condition for sequential rationality for the firm.

Q.E.D.

6.2 Proof of Theorem 1: Characterization of Markovian Equilib-
rium

Theorem 5. Suppose Assumptions 1 and 2 hold. Then given X0, any solution U(X) to the
second order differential equation,

U ′′(X) =
2r
[
U(X)− g(a, b,X)

]
f 2

1 (b,X)σ2
Y + σ2

X(X)
−

2
[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)

f 2
1 (b,X)σ2

Y + σ2
X(X)

referred to as the optimality equation, characterizes a unique Markovian equilibrium in the
state variable (Xt)t≥0 with

1. Equilibrium payoffs U(X0)

2. Continuation values (Wt)t≥0 = (U(Xt))t≥0

3. Equilibrium actions (at, bt)t≥0 =
(
a∗(Xt), b

∗
(Xt)

)
t≥0

uniquely specified by

S∗(X,U ′(X)f1(b,X)) =

{
a = arg maxa′ rg(a′, b,X) + U ′(X)f1(b,X)µ(a′, b)

b = B(a,X)

}
The optimality equation has at least one solution U ∈ C2(R) that lies in the range of
feasible payoffs for the agency U(X) ∈

[
g, g
]

for all X ∈ Ξ. Thus, there exists at least
on e Markovian equilibrium.
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6.2.1 Proof of form of Optimality Equation:

Lemma 5. If a Markovian equilibrium exists, it takes the following form:

1. Continuation values are characterized by a solution U(X) to the optimality equation:

U ′′(X) =
2r
(
U(X)− g(a, b,X)

)[
f1(b,X)2σ2

Y + σ2
X(X)

] − 2
[
f1(b,X)µY (a, b) + f2(b,X)

][
f1(b,X)2σ2

Y + σ2
X(X)

] U ′(X)

2. Given solution U(X), the process governing incentives for the agency is characterized
by:

rβ1 = U ′(X)f1(b,X)

rβ2 = U ′(X)

Look for a Markovian equilibrium in the state variable Xt. In a Markovian equilibrium,
the continuation value and equilibrium actions are characterized as a function of the state
variable as Wt = U(Xt), at = a(Xt) and bt = b(Xt). Note that ZY

t and ZX
t are orthogonal.

By Ito’s formula, in a Markovian equilibrium, the continuation value will evolve according
to

dWt = U ′(Xt)dXt +
1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]
dt

= U ′(Xt)
[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
dt

+
1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]
dt

+U ′(Xt)
[
f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

]
Also, given players are playing strategy

(
at, bt

)
t≥0

and the state variable evolves according
to the transition function dXt, the continuation value evolves according to:

dWt = r
(
Wt − g(at, bt, Xt)

)
dt+ rβ1tσY dZ

Y
t + rβ2tσX(Xt)dZ

X
t

We can match the drift of these two characterizations to obtain the optimality equation:

r
(
U(X)− g(a, b,X)

)
= U ′(X)

[
f1(b,X)µY (a, b) + f2(b,X)

]
+

1

2
U ′′(X)

[
f1(b,X)2σ2

Y + σ2
X(X)

]
⇒ U ′′(X) =

2r
(
U(X)− g(a, b,X)

)[
f1(b,X)2σ2

Y + σ2
X(X)

] − 2
[
f1(b,X)µY (a, b) + f2(b,X)

][
f1(b,X)2σ2

Y + σ2
X(X)

] U ′(X)

for strategy profile (a, b) = (a(X), b(X)), which is a second order non-homogenous differential
equation. Matching the volatility characterizes the process governing incentives:

rβ1t = U ′(Xt)f1(bt, Xt)

rβ2τ = U ′(Xt)
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Plugging these into the constraints for sequential rationality yields

S∗(X,U ′(X)f1(bt, Xt)) = (a, b) s.t.

a = arg max rg(a′, b,X) + U ′(X)f1(b,X)µ(a, b)

b = B(a,X)

which are unique by Assumption 2.
Q.E.D.

6.2.2 Prove existence of bounded solution to optimality equation

Linear Growth

Lemma 6. The optimality equation has linear growth. Suppose Assumption 1 holds. For
all M > 0 and compact intervals I ⊂ Ξ, there exists a KI > 0 such that for all X ∈ I,(
a, b
)
∈ A×B, u ∈ [−M,M ] and u′ ∈ R,

u′′ =
r
[
u− g(a, b,X)

]
−
[
f1(b,X)µY (a, b) + f2(b,X)

]
u′[

f1(b,X)2σ2
Y + σX(X)2

] ≤ K (1 + |u′|)

Follows directly from the fact that u ∈ [−M,M ], g, f1, µY and f2 are Lipschitz continuous,
the bound on f1(b,X)2σ2

Y + σ2
X(X), and X ∈ I.

Q.E.D.

Existence for Unbounded support

Theorem 6. The optimality equation has at least one solution U ∈ C2(R) that lies in the
range of feasible payoffs for the agency i.e. for all X ∈ R

inf g(a, b,X) ≤ U(X) ≤ sup g(a, b,X)

The existence proof uses the following theorem from Schmitt, which gives sufficient con-
ditions for the existence of a bounded solution to a second order differential equation defined
on R3. The Theorem is reproduced below.

Theorem 7. Let α, β ∈ R be such that α ≤ β, E = {(t, u, v) ∈ R3|α ≤ u ≤ β} and f : E →
R be continuous. Assume that α and β are such that for all t ∈ R

f(t, α, 0) ≤ 0

f(t, β, 0) ≥ 0

Assume that for any bounded interval I, there exists a positive continuous function φI :
R+ → R that satisfies ∫ ∞

0

sds

φI(s)
=∞
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and for all t ∈ I, (u, v) ∈ R2 with α ≤ u ≤ β,

|f (t, u, v)| ≤ φI(|v|)

Then the equation u′′ = f (t, u, v) has at least one solution on u ∈ C2(R) such that for all
t ∈ R,

α ≤ u(t) ≤ β

Let g = sup g(a, b,X) and g = inf g(a, b,X), which are well defined since g is bounded.
Applying the above theorem with α = g and β = g to h(X,U(X), U ′(X)) yields

h(X, g, 0) =
2r[

f1(b,X)2σ2
Y + σ2

X(X)
] (g − g(a, b,X)

)
≤ 0

h(X, g, 0) =
2r[

f1(b,X)2σ2
Y + σ2

X(X)
] (g − g(a, b,X)

)
≥ 0

for all X. For any bounded interval I, define

φI(v) =
2r

σ2
I

(
g − g

)
− 2µI

σ2
I

v

where σI = infb∈B,X∈I
[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]

which is positive by assumption.and µI =

supb∈B,X∈I f1(b,X)µY (a, b) + f2(b,X), which are well-defined given f1, f2, µY , σY and σX are
Lipschitz continuous and B is compact. Note∫ ∞

0

sds

φI(s)
=∞

and for all X ∈ I, (u, v) ∈ R2 with g ≤ u ≤ g

|h(X, u, v)| =

∣∣∣∣∣∣
2r

f1(b,X)2σ2
Y +σ2

X(X)

(
u− g(a(X), b(X), X)

)
−2[f1(b,X)µY (a,b)+f2(b,X)]

f1(b,X)2σ2
Y +σ2

X(X)
v

∣∣∣∣∣∣
≤ φI(|v|)

Additionally, h(Xt, U(Xt), U
′(Xt)) is continuous given that f1, f2, µY , σY and σX are Lip-

schitz continuous and g(a(X), b(X), X) is continuous. Thus, h(X,U(X), U ′(X)) has at least
one solution on U ∈ C2(R) such that for all X ∈ R,

g ≤ U(X) ≤ g

Q.E.D.
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Existence for Bounded support

Theorem 8. The optimality equation has at least one solution U ∈ C2(R) that lies in the
range of feasible payoffs for the agency i.e. for all X ∈ Ξ

inf g(a, b,X) ≤ U(X) ≤ sup g(a, b,X)

The existence proof utilizes standard existence results from de Coster and Habets (2006)
and an extension in Faingold and Sannikov (2011), applied to the current setting. The
optimality equation is undefined at X and X, since the volatility of X is zero. Therefore, an
extension of standard existence results for second order ODEs is necessary. The main idea
is to show that the boundary value problem has a solution Un on X ∈

[
X + 1/n,X − 1/n

]
for every n ∈ N, and then to show that this sequence of solutions converges pointwise to a
continuously differentiable function U defined on

(
X,X

)
.

Given the boundary value problem has a solution Un for every n ∈ N, with X = 0 and
X = 1, Faingold and Sannikov (2011) show that when the second derivative of the ODE
has quadratic growth, then a subsequence of (Un)n≥0 converges pointwise to a continuously
differentiable function U defined on (0, 1).

In this model, the second order derivative has linear growth, and therefore a similar
argument shows existence of a continuously differentiable function U defined on

(
X,X

)
.

The existence results that are relevant for the current context are reproduced below:

Lemma 7. Let E = {(t, u, v) ∈ Ξ×R2} and f : E → R be continuous. Assume that for
any interval I ⊂ Ξ,there exists a KI > 0 such that for all t ∈ I, (u, v) ∈ R2 with α ≤ u ≤ β,

|f (t, u, v)| ≤ KI (1 + |v|)

Then the equation u′′ = f (t, u, v) has at least one solution on u ∈ C2(R) such that for all
t ∈ Ξ,

α ≤ u(t) ≤ β

Consider the optimality equation h(X,U(X), U ′(X)). Let g = sup g(a, b,X) and g =

inf g(a, b,X), which are well defined since g is bounded. By 6, for any bounded interval I
and u ∈

[
g, g
]
, there exists a KI such that

|f (t, u, v)| ≤ KI (1 + |v|)

Additionally, h(Xt, U(Xt), U
′(Xt)) is continuous given that f1, f2, µY , σY and σX are Lip-

schitz continuous and g(a(X), b(X), X) is continuous. Let α = g and β = g. Then
h(X,U(X), U ′(X)) has at least one solution on U ∈ C2(R) such that for all X ∈ Ξ,

g ≤ U(X) ≤ g

Q.E.D.
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6.2.3 Construct a Markovian equilibrium

Suppose the state variable initially starts at X0 and U is a bounded solution to the optimality
equation. The action profile satisfying (a, b) = S∗(X,U ′(X)f1(b,X)) is unique and Lipschitz
continuous in X and U . Thus, given X0, U and (at, bt)t≥0 =

[
S∗(Xt, U

′(Xt)f1(bt, Xt))
]
t≥0

,
the state variable uniquely evolves according to the stochastic differential equation

dXt =
[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
dt+ f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

yielding unique path (Xt)t≥0 given initial state X0. Given that U(Xt) is a bounded process
that satisfies

dU(Xt) = U ′(Xt)
[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
dt

+
1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]
dt

+U ′(Xt)
[
f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

]
= r

(
U(Xt)− g(at, bt, Xt)

)
+ U ′(Xt)

[
f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

]
this process satisfies the conditions for the continuation value in a PPE characterized in
Lemma 1. Additionally, (at, bt)t≥0 satisfies the condition for sequential rationality given
process (βt)t≥0 =

(
U ′(Xt)f1(bt, Xt), U

′(Xt)
)
t≥0

. Thus, the strategy profile (at, bt)t≥0 is a

PPE yielding equilibrium payoff U(X0).
Q.E.D.

6.3 Proof of Theorem 2: Characterize Unique Markovian Equi-
librium

Theorem 9. Suppose 4, 2 and 1 hold. Then, for each X0 ∈ Ξ, there exists a unique perfect
public equilibrium with continuation values characterized by the unique bounded solution U
of the optimality equation, yielding equilibrium payoff U(X0).

1. If Ξ = [X,X] then the solution satisfies the following boundary conditions:

lim
X→X

U(X) = v(X) and lim
X→X

U(X) = v (X)

lim
X→X

(X −X)U ′(X) = lim
X→X

(X −X)U ′(X) = 0

2. If Ξ = R then the solution satisfies the following boundary conditions:

lim
X→∞

U(X) = v∞ and lim
X→−∞

U(X) = v−∞

lim
X→∞

XU ′(X) = lim
X→−∞

XU ′(X) = 0
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6.3.1 Boundary Conditions

Boundary Conditions for Unbounded Support

Theorem 10. Any bounded solution U of the optimality equation satisfies the following
boundary conditions

lim
X→∞

U(X) = v∞ and lim
X→−∞

U(X) = v−∞

lim
X→∞

XU ′(X) = lim
X→−∞

XU ′(X) = 0

lim
X→∞

(
f1(b,X)2σ2

Y + σ2
X(X)

)
U ′′(X) = 0

lim
X→−∞

(
f1(b,X)2σ2

Y + σ2
X(X)

)
U ′′(X) = 0

The proof proceeds by a series of lemmas.

Lemma 8. If U is a bounded solution of the optimality equation, then limX→∞ U(X) and
limX→−∞ U(X) are well-defined.

Proof: Assume Assumption 3. This guarantees limX→∞ v(X) exists. U is bounded, and
therefore limX→∞ supU(X) and limX→∞ inf U(X) are well-defined. Suppose limX→∞ supU(X)
6= limX→∞ inf U(X). Then there exists a sequence (Xn)n∈N that correspond to local maxima
of U , so U ′(Xn) = 0 and U ′′(Xn) ≤ 0. Given the incentives for the agency, a stage nash equi-
libria is played when U ′(X) = 0, yielding flow payoff v(X). From the optimality equation,
this implies v(Xn) ≥ U(Xn). Likewise, there exists a sequence (Xm)m∈N that correspond
to local minima of U , so U ′(Xm) = 0 and U ′′(Xm) ≥ 0. This implies v(Xm) ≤ U(Xm).
Thus, limX→∞ sup v(X) 6= limX→∞ inf v(X). This is a contradiction, as limX→∞ v(X) is
well-defined. Thus, limX→∞ U(X) exists. The case of limX→−∞ U(X) is similar. Q.E.D.

Lemma 9. If U(X) is a bounded solution of the optimality equation, then there exists a δ
such that for |X| > δ, U(X) is monotonic.

Proof: Assume Assumption 3. Suppose that there does not exist a δ such that for X > δ,
U is monotonic. Then for all δ > 0, there exists a Xn > δ that corresponds to a local
maxima of U , so U ′(Xn) = 0 and U ′′(Xn) ≤ 0 and there exists a Xm > δ that corresponds
to a local minima of U , so U ′(Xm) = 0 and U ′′(Xm) ≥ 0, by the continuity of U . Given the
incentives for the agency, a stage nash equilibria is played when U ′(X) = 0, yielding flow
payoff v(X). From the optimality equation, this implies v(Xn) ≥ U(Xn) at the maximum
and v(Xm) ≤ U(Xm) at the minimum. Thus, the oscillation of v(X) is at least as large as
the oscillation of U(X). This is a contradiction, as there exists a δ such that for X > δ,
v(X) is monotonic.The case of −X > δ is similar. Q.E.D.

Lemma 10. Given a function f(X) that is O(X) as X → {−∞,∞}, then any bounded
solution U of the optimality equation satisfies

1.

lim
X→∞

inf f(X)U ′(X) ≤ 0 ≤ lim
X→∞

sup f(X)U ′(X)

lim
X→−∞

inf f(X)U ′(X) ≤ 0 ≤ lim
X→−∞

sup f(X)U ′(X)
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2.

lim
X→∞

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→∞

sup f(X)2U ′′(X)

lim
X→−∞

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→−∞

sup f(X)2U ′′(X)

Note this is trivially satisfied if f(X) is O(1).

1. Suppose f(X) is O(X) and limX→∞ inf |f(X)U ′(X)| > 0. Given f(X) is O(X), there
exists an M ∈ R and a δ1 ∈ R such that when X > δ1, |f(X)| ≤ M |X| Given
limX→∞ inf |f(X)U ′(X)| > 0 , there exists a δ2 ∈ R and an ε > 0 such that when
X > δ2, |f(X)U ′(X)| > ε. Take δ = max {δ1, δ2}. Then for X > δ, |U ′(X)| > ε

|f(X)| ≥
ε

MX
. Then the antiderivative of ε

MX
is ε

M
lnX which converges to ∞ as X →∞. This

violates the boundedness of U . Therefore limX→∞ inf f(X)U ′(X) ≤ 0. The proof is
analogous for the other cases.

2. Suppose f(X) is O(X) and limX→∞ inf |f(X)2U ′′(X)| > 0. Given f(X) is O(X), there
exists an M ∈ R and a δ1 ∈ R such that when X > δ1, |f(X)| ≤ MX and therefore,
f(X)2 ≤ M2X2. There also exists a δ2 ∈ R and an ε > 0 such that when X > δ2,
|f(X)2U ′′(X)| > ε. Take δ = max {δ1, δ2}. Then for X > δ, |U ′′(X)| > ε

f(X)2
> ε

M2X2 .

Then the antiderivative of ε
M2X2 is −ε

M2 lnX which converges to −∞ as X →∞. This
violates the boundedness of U . Therefore limX→∞ inf |f(X)2U ′′(X)| ≤ 0. The proof is
analogous for the other cases.

Q.E.D.

Lemma 11. Given a function f(X) that is O(X) as X → {−∞,∞}, then any bounded
solution U of the optimality equation satisfies

lim
X→∞

f(X)U ′(X) = lim
X→−∞

f(X)U ′(X) = 0

Assume Assumption 3. By Lemma 10, limX→∞ inf XU ′(X) ≤ 0 ≤ limX→∞ supXU ′(X).
Suppose, without loss of generality, that limX→∞ supXU ′(X) > 0. By Lemma 9, there
exists a δ > 0 such that U(X) is monotonic for X > δ. Then for X > δ, U ′(X) doesn’t
change sign and therefore, XU ′(X) doesn’t change sign. Therefore, if limX→∞ supXU ′(X) >
0, then limX→∞ inf XU ′(X) > 0. This is a contradiction. Thus, limX→∞ supXU ′(X) =
0. By similar reasoning, limX→∞ inf XU ′(X) = 0, and therefore limX→∞XU

′(X) = 0.
Suppose f(X) is O(X). Then there exists an M ∈ R and a δ1 ∈ R such that when
X > δ1, |f(X)| ≤ M |X|. Thus, for X > δ1, |f(X)U ′(X)| ≤ M |XU ′(X)| → 0. The
case for limX→−∞ f(X)U ′(X) = 0 is analogous. Note this result also implies that

lim
X→∞

U ′(X) = lim
X→−∞

U ′(X) = 0

Q.E.D.
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Lemma 12. Let U be a bounded solution of the optimality equation. Then the limit of U
converges to the limit of the stage Nash equilibrium payoffs as X → {−∞,∞}

lim
X→∞

U(X) = v∞

lim
X→−∞

U(X) = v−∞

Proof: Assume Assumption 2, 3, and 4. By 8, limX→∞ U(X) = U∞ exists. Suppose
U∞ < v∞, where v∞ is the limit of the stage game Nash equilibrium payoff at positive
infinity. The function f1 is O(X), and therefore by Lemma 11, limX→∞ U

′(X)f1(b,X) = 0

and S∗(X,U ′(X)f1(b,X)) →
(
aN∞, b

N

∞

)
which is the stage Nash equilibrium as X → ∞.

Thus, limX→∞ g(a(X), b(X), X) = v∞.
By Lemma 11 and the assumption that (f1µY + f2) is O(X)

lim
X→∞

[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X) = 0

By the assumption that f1σY + σX is O(1), there exists an M > 0 and a δ such that when
X > δ1, then f1(b,X)2σ2

Y + σ2
X(X) ≤M .

Plugging the above conditions in to the optimality equation yields

lim sup
X→∞

U ′′(X) = lim sup
X→∞

[
2r
(
U(X)− g(a, b,X)

)
f1(b,X)2σ2

Y + σ2
X(X)

−
2
[
f1(b,X)µY (a, b) + f2(b,X)

]
f1(b,X)2σ2

Y + σ2
X(X)

U ′(X)

]

≤ 2r (U∞ − v∞)

M
< 0

which violates Lemma 10, and therefore U is unbounded. This is a contradiction. Thus,
U∞ = v∞. The proof for the other cases is analogous.

Q.E.D.

Lemma 13. Any bounded solution U of the optimality equation satisfies

lim
X→∞

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣ = 0

lim
X→−∞

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣ = 0

Note this also implies U ′′(X)→ 0.

Applying the squeeze theorem to the optimality equation yields

lim
X→∞

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣
= lim

X→∞

∣∣2r (U(X)− g(a, b,X)
)
− 2

[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)

∣∣
= 0

by applying Lemmas 11 and 12 and the assumption that
[
f1(b,X)µY (a, b) + f2(b,X)

]
is

O(X).
Q.E.D.
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Boundary Conditions for Bounded Support

Theorem 11. Any bounded solution U of the optimality equation satisfies the following
boundary conditions:

lim
X→X

U(X) = v(X) and lim
X→X

U(X) = v (X)

lim
X→X

(X −X)U ′(X) = lim
X→X

(X −X)U ′(X) = 0

lim
X→X

(
f1(b,X)2σ2

Y + σ2
X(X)

)
U ′′(X) = 0

lim
X→X

(
f1(b,X)2σ2

Y + σ2
X(X)

)
U ′′(X) = 0

The proof proceeds by a series of lemmas.

Lemma 14. Any bounded solution U of the optimality equation has bounded variation.

Suppose not. Then there exists a sequence (Xn)n∈N that correspond to local maxima of U ,
so U ′(Xn) = 0 and U ′′(Xn) ≤ 0. Given the incentives for the agency, a stage nash equilibria
is played when U ′(X) = 0, yielding flow payoff v(X). From the optimality equation, this
implies v(Xn) ≥ U(Xn). Likewise, there exists a sequence (Xm)m∈N that correspond to local
minima of U , so U ′(Xm) = 0 and U ′′(Xm) ≥ 0. This implies v(Xm) ≤ U(Xm). Thus, v also
has unbounded variation. This is a contradiction, since v is Lipschitz continuous.

Q.E.D.

Lemma 15. Given a function f(X) that is O(a−X) as X → a ∈
{
X,X

}
, then any bounded

solution U of the optimality equation satisfies

1.

lim
X→X

inf f(X)U ′(X) ≤ 0 ≤ lim
X→X

sup f(X)U ′(X)

lim
X→X

inf f(X)U ′(X) ≤ 0 ≤ lim
X→X

sup f(X)U ′(X)

2.

lim
X→X

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→X

sup f(X)2U ′′(X)

lim
X→X

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→X

sup f(X)2U ′′(X)

Note this is trivially satisfied if f(X) is O(1).

1. Suppose f(X) is O(X − X) as X → X and limX→X inf |f(X)U ′(X)| > 0. There
exists an M ∈ R and a δ1 > 0 such that when

∣∣X −X∣∣ < δ1, |f(X)| ≤ M
∣∣X −X∣∣.

Given limX→X inf |f(X)U ′(X)| > 0 , there exists a δ2 ∈ R and an ε > 0 such that
when

∣∣X −X∣∣ < δ2, |f(X)U ′(X)| > ε. Take δ = min {δ1, δ2}. Then for
∣∣X −X∣∣ <

δ, |U ′(X)| > ε
|f(X)| ≥

ε

M|X−X| . Then the antiderivative of ε

M|X−X| is ε
M

ln
∣∣X −X∣∣

which diverges to −∞ as X → X. This violates the boundedness of U . Therefore
limX→X inf f(X)U ′(X) ≤ 0. The proof is analogous for the other cases.

49



2. Suppose f(X) is O(X−X) and limX→∞ inf |f(X)2U ′′(X)| > 0. There exists an M ∈ R
and a δ1 > 0 such that when

∣∣X −X∣∣ < δ1, |f(X)| ≤ M
∣∣X −X∣∣.and therefore,

f(X)2 ≤ M2
(
X −X

)2
. There also exists a δ2 ∈ R and an ε > 0 such that when∣∣X −X∣∣ < δ2, |f(X)2U ′′(X)| > ε. Take δ = min {δ1, δ2}. Then for

∣∣X −X∣∣ <
δ, |U ′′(X)| > ε

f(X)2
> ε

M2(X−X)
2 . Then the second antiderivative of ε

M2(X−X)
2 is

−ε
M2 ln

(
X −X

)
which converges to∞ as X → X. This violates the boundedness of U .

Therefore limX→∞ inf |f(X)2U ′′(X)| ≤ 0. The proof is analogous for the other cases.

Q.E.D.

Lemma 16. Given a differentiable function f(X) that is O(X∗−X) as X →
{
X,X

}
, then

any bounded solution U of the optimality equation satisfies

lim
X→X

f(X)U ′(X) = lim
X→X

f(X)U ′(X) = 0

By Lemma 15, limX→X inf(X − X)U ′(X) ≤ 0 ≤ limX→X sup(X − X)U ′(X). Suppose,
without loss of generality, that limX→X sup(X−X)U ′(X) > 0. Then there exist constants k
and K such that (X−X)U ′ crosses the interval (k,K) infinitely many times as X approaches
X. Additionally, there exists an L > 0 such that

|U ′′(X)| =

∣∣∣∣∣2r
[
U(X)− g(a, b,X)

]
− 2

[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)

f1(b,X)2σ2
Y + σ2

X(X)

∣∣∣∣∣
≤

∣∣∣∣∣L1 − L2

(
X −X

)
U ′(X)(

X −X
)2

∣∣∣∣∣
≤

∣∣∣∣∣ L1 − L2k(
X −X

)2

∣∣∣∣∣ =
L(

X −X
)2

Therefore, ∣∣∣[(X −X)U ′(X)
]′∣∣∣ ≤ |U ′(X)|+

∣∣(X −X)U ′′(X)
∣∣

=

(
1 +

∣∣∣∣(X −X)
U ′′(X)

U ′(X)

∣∣∣∣) |U ′(X)|

≤
(

1 +
L

k

)
|U ′(X)|

where the first line follows from differentiating
(
X −X

)
U ′(X) and the subadditivity of the

absolute value function, the next line follows from rearranging terms, the third line follows
from the bound on |U ′′(X)| and (X −X)U ′(X) ∈ (k,K). Then

|U ′(X)| ≥

∣∣∣[(X −X)U ′(X)
]′∣∣∣(

1 + L
k

)
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Therefore, the total variation of U is at least K−k
(1+L

k )
on the interval (X −X)U ′(X) ∈ (k,K),

which implies that U has unbounded variation near X. This is a contradiction. Thus,
limX→X sup(X − X)U ′(X) = 0. Likewise, limX→X inf(X − X)U ′(X) = 0, and therefore
limX→X(X −X)U ′(X) = 0. Then for any function f(X) that is O(X −X), |f(X)U ′(X)| ≤
M1

∣∣(X −X)U ′(X)
∣∣→ 0, and therefore limX→X f(X)U ′(X) = 0

Q.E.D.

Lemma 17. Let U be a bounded solution of the optimality equation. Then the limit of U
converges to the limit of the stage Nash equilibrium payoffs as X →

{
X,X

}
lim
X→X

U(X) = v(X)

lim
X→X

U(X) = v (X)

Suppose not. By 14, limX→X U(X) = U
(
X
)

exists. Suppose U
(
X
)
< v(X), where v(X)

is the limit of the stage game Nash equilibrium payoff at X. The function f1 is O(X−X), and

therefore by Lemma 16, limX→X U
′(X)f1(b,X) = 0 and S∗(X,U ′(X)f1(b,X)) →

(
aN
X
, b
N

X

)
which is the stage Nash equilibrium as X → X. Thus, limX→X g(a(X), b(X), X) = v(X).

By Lemma 16 and the assumption that f1µY + f2 is O(X −X)

lim
X→∞

(
f1(b,X)µY (a, b) + f2(b,X)

)
U ′(X) = 0

By the assumption that 1/ (f1σY + σX) is O(1/(X − X)), there exists an M > 0 and a δ
such that when

∣∣X −X∣∣ < δ1, then 1/ (f1σY + σX) ≤M/(X −X)
Plugging the above conditions in to the optimality equation yields

lim sup
X→X

U ′′(X) = lim sup
X→X

[
2r
(
U(X)− g(a, b,X)

)
f1(b,X)2σ2

Y + σ2
X(X)

−
2
[
f1(b,X)µY (a, b) + f2(b,X)

]
f1(b,X)2σ2

Y + σ2
X(X)

U ′(X)

]

≤
2r
(
U
(
X
)
− v(X)

)
M(X −X)2

< 0

which violates Lemma 15, and therefore U is unbounded. This is a contradiction. Thus,
U
(
X
)

= v(X). The proof for the other cases is analogous.
Q.E.D.

Lemma 18. Any bounded solution U of the optimality equation satisfies

lim
X→X

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣ = 0

lim
X→X

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣ = 0

Applying the squeeze theorem to the optimality equation yields

lim
X→X

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣
= lim

X→X

∣∣2r (U(X)− g(a, b,X)
)
− 2

[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)

∣∣
= 0
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by applying Lemmas 16 and 17.
Q.E.D.

6.3.2 Uniqueness of Solution to Optimality Equation

This proof builds on a result from Faingold and Sannikov (2011). They prove that the
optimality equation characterizing a Markovian equilibrium in a repeated game of incomplete
information over the type of the long-run player has a unique solution. The key element
of this proof is that all solutions have the same boundary conditions when beliefs place
probability 1 on the long-run player being a normal or behavioral type. This result also
applies to the optimality equation characterized in this paper, given that all solutions have
the same boundary conditions. An extension of this result is necessary for the case of an
unbounded state space. The proof proceeds by two lemmas.

The first lemma follows directly from Lemma C.7 in Faingold and Sannikov (2011).

Lemma 19. If two bounded solutions of the optimality equation, U and V , satisfy U(X0) ≤
V (X0) and U ′(X0) ≤ V ′(X0), with at least one strict inequality, then U(X) ≤ V (X) and
U ′(X) ≤ V ′(X) for all X > X0. Similarly if U(X0) ≤ V (X0) and U ′(X0) ≥ V ′(X0), with at
least one strict inequality, then U(X) < V (X) and U ′(X) > V ′(X) for all X < X0.

The proof is analogous to the proof in Faingold and Sannikov (2011), defining

X1 = inf
{
X ∈ [X0, X) : U ′(X) ≥ V ′(X)

}
for Ξ = [X,X], and

X1 = inf {X ∈ [X0,∞) : U ′(X) ≥ V ′(X)}

for Ξ = R.
Q.E.D.

Lemma 20. There exists a unique solution U to the optimality equation.

Suppose U and V are both bounded solutions to the optimality equation, and assume
U(X)− V (X) > 0 for some X ∈ Ξ.

First consider Ξ = R. Given that limX→∞ U(X) = limX→∞ V (X) = v∞, for all ε > 0,
there exists a δ such that for X ≥ δ, |U(X)− v∞| < ε/2 and |V (X)− v∞| < ε/2. Then for
X ≥ δ, |U(X)− V (X)| < ε.

Take an interval X ∈ [X1, X2], and suppose U(X) > V (X) for some X ∈ [X1, X2].
Let X∗ be the point where U − V is maximized, which is well-defined given U and V are
continuous functions on a compact interval. Suppose the maximum occurs at an interior
point X∗ ∈ (X1, X2). Then U ′(X∗) = V ′(X∗). By Lemma 19, U ′(X) ≥ V ′(X) for all
X > X∗, and this difference is strictly increasing, a contradiction. Suppose the maximum
occurs at an endpoint, X∗ = X2, and let U(X2) − V (X2) = M > 0. Then it must be
the case that U ′(X2) ≥ V ′(X2). By Lemma 19, U ′(X) ≥ V ′(X) for all X > X2, and this
difference is strictly increasing for X > X2. But then for ε < M , there does not exists a
δ such that |U(X)− V (X)| < ε when X > δ. This violates the boundary condition. The
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argument is analogous if the maximum occurs at X∗ = X1. Thus, it is not possible to have
U(X) > V (X).

The proof forΞ = [X,X] is similar, using [X1, X2] = [X,X], and the fact that the
boundary conditions at [X,X] ensure the point where U − V is maximized is an interior
point.

Q.E.D.

6.3.3 Uniqueness of Markovian Equilibrium in class of PPE

Let X0 be the initial state, and let U be a bounded solution to the optimality equation.
Suppose there is a PPE (at, bt)t≥0 that yields an equilibrium payoff W0 > U(Xo). The
continuation value in this equilibrium must evolve according to

dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt

+rβ1t

[
dYt − µY (at, bt)dt

]
+rβ2tσX(Xt)dZ

X
t

for some process (βt)t≥0 and by sequential rationality, (at, bt) = S∗(Xt, βt) for all t. The
process U(Xt) evolves according to

dU(Xt) = U ′(X)
[
f1(b,X)µY (a, b) + f2(b,X)

]
dt+

1

2
U ′′(X)

[
f1(b,X)2σ2

Y + σ2
X(X)

]
dt

+U ′(Xt)
[
f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

]
Define a process Dt = Wt − U(Xt) with initial condition D0 = W0 − U(Xo) > 0. Then
dDt evolves with drift

r
[
Wt − g(at, bt, Xt)

]
− U ′(Xt)

[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
−1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]

= rDt + r
[
U(Xt)− g(at, bt, Xt)

]
− U ′(Xt)

[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
−1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]

= rDt + d(at, bt, Xt)

and volatility

f(b,X, β) =
rβ1tσY

rβ2tσX(Xt)
− U ′(Xt)f1(bt, Xt)σY

U ′(Xt)σX(Xt)

Lemma 21. For every ε > 0, there exists a δ > 0 such that for all
(
a, b,X, β

)
satisfying the

condition for sequential rationality

a ∈ arg max rg(a′, b,X) + rβ1µY (a, b)

b ∈ B(a,X)

either d(at, bt, Xt) > −ε or
∣∣f(b,X, β)

∣∣ > δ.
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Proof:
Suppose the state space is unbounded, Ξ = R.
Step 1: Show that if

∣∣f(b,X, β)
∣∣ = 0, then d(a, b,X) = 0. (i.e. when the volatility of Dt

is 0, the Markovian action profile is used in both equilibria)
Let

∣∣f(b,X, β1)
∣∣ = 0. Then rβ1 = U ′(X)f1(b,X) and for each X, there is a unique action(

a, b
)

profile that satisfies

a ∈ arg max rg(a′, b,X) + U ′(X)f1(b,X)µY (a, b)

b ∈ B(a,X)

This action profile corresponds to the actions played in a Markovian equilibrium, and there-
fore d(at, bt, Xt) = 0, by the optimality equation.

Step 2: Fix ε. Show if d(at, bt, Xt) ≤ −ε, then there exists a δ > 0 such that
∣∣f(b,X, β1)

∣∣ >
δ for all

(
a, b,X, β

)
such that the sequential rationality condition is satisfied.

Step 2a: Show there exists an M > 0 such that this is true for(
a, b,X, β

)
∈ {A×B × Ξ×R : |β| > M }

U ′(X)f1(b,X) and U ′(X) are bounded, so there exists an M > 0 and m > 0 such that∣∣f(b,X, β)
∣∣ > m for all |β| > M .

Step 2b: Show that there exists an X∗ such that this is true for(
a, b,X, β

)
∈ {A×B × Ξ×R : |β| ≤M and |X| > X∗}

Show if r
(
v∞ − g∞(a, b)

)
≤ −γ then there exists a η2 > 0 such that |β| > η2. Let

limX→∞ g(a, b,X) := g∞(a, b) be the limit flow payoff for actions (a, b), and limX→∞ B(a,X) :=
B∞(a). These limits exist, since g and B(a) are Lipschitz continuous and bounded. Consider
the set Φ =

(
a, b, β

)
that satisfies

a ∈ arg max rg∞(a′, b) + rβ1µY (a, b)

b ∈ B∞(a)

with |β| < M . Suppose r
(
v∞ − g∞(a, b)

)
≤ −γ. Then there exists a η2 > 0 such that

|β| > η2. Thus, limX→∞
∣∣f(b,X, β)

∣∣ = r |β| > rη2.

Note limX→∞ d(a, b,X) = r
[
g(a, b)− g(aN , b

N
)
]
. Then there exists an X1 such that for

X > X1,
∣∣∣d(a, b,X)− r

[
g(a, b)− g(aN , b

N
)
]∣∣∣ < ε/2. Consider the set Φ =

(
a, b,X, β

)
that

satisfy the condition for sequential rationality, with |β| ≤M and |X| ≥ X1, and d(a, b,X) ≤
−ε. For X > X1,

∣∣∣d(a, b,X)− r
[
g(a, b)− g(aN , b

N
)
]∣∣∣ < ε/2. Then r

(
v∞ − g∞(a, b)

)
≤

−ε/2. Then there exists a η2 such that |β| > η2. Thus, limX→∞
∣∣f(b,X, β)

∣∣ = r |β| >
rη2. Then there exists an X2 such that for X > X2,

∣∣f(b,X, β)− rβ
∣∣ < rη2/2. Then∣∣f(b,X, β)

∣∣ > rη2/2 := δ2. Take X∗ = max {X1, X2}. Then on the set
(
a, b,X, β

)
∈

{A×B × Ξ×R : |β| ≤M and |X| > X∗}, if d(at, bt, Xt) ≤ −ε then
∣∣f(b,X, β)

∣∣ > δ2.
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Step 2c: Show this is true for
(
a, b,X, β

)
∈ {A×B × Ξ×R : |β| ≤M and |X| ≤ X∗}

Consider the set Φ =
(
a, b,X, β

)
that satisfy the condition for sequential rationality,

with |β| ≤ M and |X| ≤ X∗, and d(a, b,X) ≤ −ε. The function d is continuous and
{A×B × Ξ×R : |β| ≤M and |X| ≤ X∗} is compact, so Φ is compact. f is also continu-
ous, and therefore achieves a minimum on Φ.This minimum η1 > 0 since d(at, bt, Xt) < −ε.
Thus,

∣∣f(b,X, β)
∣∣ > η1 for all

(
a, b,X, β

)
∈ Φ.

Take δ = min {η1, δ2,m}. Then when d(a, b,X) ≤ −ε,
∣∣f(b,X, β)

∣∣ > δ.
The proof for a bounded state space is analogous, omitting step 2b.
Q.E.D.
This lemma implies that whenever the drift of Dt is less than rDt − ε, the volatility is

greater than δ. Take ε = rD0/4 and suppose Dt ≥ D0/2. Then whenever the drift is less
than rDt − ε > rD0/2 − rD0/4 = rD0/4 > 0, there exists a δ such that

∣∣f(b,X, β)
∣∣ > δ.

Thus, whenever Dt ≥ D0/2 > 0, it has either positive drift or positive volatility, and grows
arbitrarily large with positive probability. This is a contradiction, since Dt is the difference
of two bounded processes. Thus, it cannot be that D0 > 0. Likewise, it is not possible to
have D0 < 0. Thus, in any PPE with continuation values (Wt)t≥0, it must be the case that

Wt = U(Xt) for all t. Therefore, it must be that
∣∣f(b,X, β)

∣∣ = 0, and actions are uniquely

specified by S∗(X,U ′(X)f1(bt, Xt)).
Q.E.D.

6.4 Proofs: Equilibrium Payoffs

Theorem 12. The highest PPE payoff across all states is bounded above by the highest static
Nash equilibrium payoff across states, W ≤ v∗ and the lowest PPE payoff across all states
is bounded below by the lowest static Nash equilibrium payoff across states W ≥ v∗.

Let W = supΞ U(X) be the highest PPE payoff across all states. Suppose W = U(X)
occurs at an interior point. Then U ′(X) = 0 and U ′′(X) ≤ 0. From the optimality equation,

U ′′(X) =
2r
[
W − v(X)

]
f1(b,X)2σ2

Y + σ2
X(X)

≤ 0

and therefore W ≤ v(X) ≤ v∗. Suppose the state space is bounded and W = U(X) occurs at
an endpoint. Suppose, without loss of generality, that W occurs at X. Then by the boundary
conditions, W = v(X) ≤ v∗. Suppose the state space is unbounded and there is no interior
maximum with U(X) = W . Then U(X) must converge to W at either ∞ or −∞. Suppose
limX→∞ U(X) = W . Then W = v∞ ≤ v∗. The proof for W ≥ v∗ is analogous.

Q.E.D.

Theorem 13. Assume 1, 2, 3 and 4. The following properties show how PPE payoffs change
with the state variable:

1. Suppose v(X) is increasing (decreasing) in X.Then U(X) is also increasing (decreasing)
in X. The state that yields the highest static Nash payoff also yields the highest PPE
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payoff; likewise, the state that yields the lowest static Nash payoff also yields the lowest
PPE payoff.

2. Suppose v(X) has a unique interior maximum X∗, and v is monotonically increasing
(decreasing) for X < X∗ (X > X∗). Then U(X) has a unique interior maximum at
X∗,and U is monotonically increasing (decreasing) for X < X∗ (X > X∗). The state
that yields the highest static Nash payoff also yields the highest PPE payoff, whereas
and the state that yields the lowest PPE payoff is a boundary point.

3. Suppose v(X) has a unique interior minimum X∗, and v is monotonically decreasing
(increasing) for X < X∗ (X > X∗). Then U(X) has a unique interior minimum at
X∗,and U is monotonically decreasing (increasing) for X < X∗ (X > X∗). The state
that yields the lowest static Nash payoff also yields the lowest PPE payoff, whereas and
the state that yields the highest PPE payoff is a boundary point.

1. Suppose v(X) is increasing in X, but U(X) is not increasing in X. Thus, U ′(X) < 0
for some X ∈ Ξ. Let (X1, X2) ⊂ Ξ be a maximal subinterval such that U ′(X) < 0
for all X ∈ (X1, X2). Note limX→−∞ U(X) = v∗ ≤ limX→∞ U(X) = v∗ since v is
increasing in X, so U ′(X) is not strictly decreasing on Ξ. Without loss of generality,
assume U(X) is increasing on (−∞, X1). Then X1 is an interior local maximum with
U ′(X1) = 0 and U ′′(X1) ≤ 0. Then by the optimality equation,

U ′′(X1) =
2r[

f1(b,X1)2σ2
Y + σ2

X(b,X1)
] (U(X1)− v(X1)) ≤ 0

which implies U(X1) ≤ v(X1). Then

lim
X→X2

U(X2) < U(X1) ≤ v(X1) ≤ v∗ = lim
X→∞

U(X)

Thus, since U(X2) < U(X1) by definition, it must be that X2 < ∞ and X2 is a local
minimum with U ′(X2) = 0 and U ′′(X2) ≤ 0. Then by the optimality equation,

U ′′(X2) =
2r[

f1(b,X2)2σ2
Y + σ2

X(b,X2)
] (U(X2)− v(X2))

≤ 2r[
f1(b,X2)2σ2

Y + σ2
X(b,X2)

] (U(X2)− v(X1)) < 0

which implies X2 is a local maximum. This is a contradiction. The proof for U(X)
decreasing is analogous.

2. If v(X) has a unique interior maximum X̂ such that v′(X) > 0 for X < X̂ and

v′(X) < 0 for X > X̂. Assume U ′(X) < 0 for some X < X̂. Let (X1, X2) ⊂ (−∞, X̂)
be a maximal subinterval such that U ′(X) < 0 for all X ∈ (X1, X2). First suppose

X1 >∞ and X2 < X̂. Then X1 is a local maximum with U ′(X1) = 0 and U ′′(X1) ≤ 0,
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and by the optimality equation, U(X1) ≤ v(X1). Also, X2 is a local minimum with
U ′(X2) = 0 and U ′′(X2) ≥ 0, and by the optimality equation, U(X2) ≥ v(X2). This
implies:

U(X1) ≤ v(X1) ≤ v(X2) ≤ U(X2)

which is a contradiction. Thus, (X1, X2) must include a boundary point of (−∞, X̂).

Next suppose U is decreasing over (−∞, X2) and X2 < X̂. Thus, X2 is a local maxi-
mum. Given that limX→−∞ U(X) = limX→−∞ v(X), this implies:

lim
X→−∞

U(X) = lim
X→−∞

v(X) ≤ v(X2) ≤ U(X2)

which is a contradiction. Thus, it can only be that (X1, X2) = (−∞, X̂). Likewise, if

U ′(X) > 0 for some X > X̂, then it must be the case that any maximal subinterval

(X1, X2) on which U ′(X) > 0 is (X1, X2) = (X̂,∞).

Suppose U ′(X) < 0 on (−∞, X̂) and U ′(X) > 0 on (X1, X2) = (X̂,∞). Then X̂ is a
global minimum, which implies:

U(X) > U(X̂) ≥ v(X̂) = v∗

But this is a contradiction, since U(X) ≤ v∗ for all X.

3. The proof is analogous to part 2.

Q.E.D.
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