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Abstract

Limit cycles play very little role in the modern theory of business cycles. In this pa-
per we present a general structure, a particular model and a DSGE extension with the
hope of giving new life to this mostly dismissed view of fluctuations. In particular, we
begin by showing why models with demand complementarities, which are quite ubiq-
uitous in macroeconomics, can give rise to limit cycle under rather simple conditions.
The key elements that induce limit cycles are the presence of a demand complementar-
ity related to an accumulable good and that the demand complementarities be locally
strong but globally limited. We then present a fully specified model dynamic equi-
librium model where unemployment risk and precautionary savings interact to induce
a limit cycle driven by the type of forces outlined in our general structure. In this
model, the economy goes through expansion periods where agents accumulate durable
goods and/or housing more quickly when unemployment is low because borrowing is
perceived as being less risky. Subsequently the economy goes though a recession phase
when agents pull back on their purchases because unemployment increases thereby
causing borrowing to become more risky. While this process is shown to be recurring
and compatible with rational expectation, it does not involve any indeterminacy: fun-
damentals fully pin-down equilibrium behavior. We then show that in macroeconomic
U.S. data, there is non trivial variability at frequencies which are lower than the ones
traditionally looked at by the business cycle literature, that could well be interpreted
as a medium frequency limit cycle perturbed with shocks. We complete the analysis
by showing how a DSGE version of our model can be estimated to have a limit cycle,
and how it can shed new light on interesting features of the data once it is augmented
to include some randomness.
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Introduction

In most modern business cycle models, the underlying economic system is very stable. In
particular, in the absence of shocks, the variables in these systems tend to converge either
to a steady state or to a balanced growth path. In such frameworks business cycles are
viewed as emerging from shocks – which could be either fundamental or non-fundamental
– that disturb an otherwise stable system. However, it is well known that this is not the
only framework that could give rise to to business cycles. In particular, it may well be that
economic forces naturally give rise to cyclical phenomena, that is, in the absence of any
shocks (including belief shocks) economic forces by themselves may favor recurrent periods
of high economic activity followed by periods of low economic activity . This type of outcome
will arise for example if the underlying economic system is characterized by a limit cycle. In
such a framework irregular business cycles can emerge from these underlying regular forces
combined with shocks that move the system away from an attracting orbit.

The idea of self-sustaining trade cycles, to use the terminology of the early years of
macroeconomics, can be found, although not explicitly formalized, in the dynamic version
of the Keynesian theory proposed by Kalecki [1937], and more formally latter on in the
nonlinear versions of Samuelson’s [1939] accelerator proposed by Kaldor [1940], Hicks [1950]
and Goodwin [1951] 1. Those first models were not microfounded general equilibrium models.
In the 1970s and 1980s, a large literature emerged that examined the conditions under which
qualitatively and quantitatively reasonable economic fluctuations might occur in a purely
deterministic setting (see, e.g., Benhabib and Nishimura [1979], [1985], Day [1982], [1983],
Grandmont [1985], Boldrin and Montrucchio [1986], Day and Shafer [1987]; for surveys of
the literature, see Boldrin and Woodford [1990] and Scheinkman [1990]). By the early 1990s,
however, this literature seemed to have largely gone dormant.

There appear to be several key reasons why interest in deterministic fluctuations may
have waned, each of which are addressed in the present paper. First, the earlier literature
on deterministic fluctuations can be broadly sub-divided into two categories: models with
and without fully-microfounded, forward-looking agents.2 The latter category, which were
generally more capable of producing reasonable deterministic fluctuations than the former,
likely fell out of favor as macro in general moved toward more microfounded models.

Second, in the category of models featuring forward-looking agents, the primary focus
was on models with a neoclassical, competitive-equilibrium structure.3 Such models were
often found to require relatively extreme parameter values in order to generate deterministic
fluctuations. For example, the Turnpike Theorem of Scheinkman [1976] establishes that,

1An earlier mention of self-sustained cycles as an interesting modeling of economic fluctuations is found
in Le Corbeiller [1933], in the first volume of Econometrica.

2The first category includes, e.g., Benhabib and Nishimura [1979], [1985] and Boldrin and Montrucchio
[1986], while the latter includes, e.g., Day [1982], [1983].

3While there are some exceptions, they are comparatively rare. Perhaps the clearest example is Ham-
mour [1989], chapter 1, which is focused on deterministic fluctuations in an environment of increasing returns.
Other exceptions include models in the search literature that are capable of generating deterministic fluctu-
ations, such as Diamond and Fudenberg [1989], Boldrin, Kiyotaki, and Wright [1993], and Coles and Wright
[1998]. Note however that these search papers were mainly concerned with characterizing the set of possible
equilibria for a particular model (which for some parameterizations included deterministic cycles), rather
than being focused on deterministic cycles directly.
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under certain basic conditions met by these models, for a sufficiently high discount factor—
i.e., for agents that are “forward-looking” enough—the steady state of the model is globally
attractive, so that persistent deterministic fluctuations cannot appear.4 While in principle
this does not rule out deterministic fluctuations completely, in practice the size of the discount
factor needed to generate them was often implausibly low. For example, in a survey of
deterministic-flucutuations models by Boldrin and Woodford [1990], discount factors for
several of the models they discuss were on the order of 0.3 or less.5 As the present paper
illustrates, however, if one departs from the assumptions of a neoclassical, competitive-
equilibrium environment—for example, if there is a demand externality as in the model
presented in section 2—then a discount factor arbitrarily close to one can relatively easily
support deterministic fluctuations in equilibrium.

Third, as suggested above, models producing periodic cycles—that is, cycles which ex-
actly repeat themselves every k periods—are clearly at odds with the data, where such
consistenly regular cycles cannot be found. 6 This can be observed by looking at the spec-
trum of data generated by such a model, which will generally feature one or more large spikes
at frequencies associated with k-period cycles. Spectra estimated on actual data generally
lack such spikes,7 which suggests less regularity in real-world cycles. To address this issue,
papers from the earlier literature largely sought to establish conditions under which such
irregular cycles could emerge in a purely deterministic setting (i.e., via chaotic dynamics8).
While in a number of cases this was found to be possible, the conditions appear to have been
significantly more restrictive even than those required to generate simple periodic cycles.
In constrast, rather than restricting attention to a purely deterministic setting, this paper
embeds deterministic (but highly regular) cyclical mechanisms into a stochastic environment
for which irregularity emerges naturally.

Finally, being inherently highly non-linear, economic models that are capable of gener-
ating deterministic fluctuations are often difficult to work with analytically beyond the very
simplest of settings, and quantitative results often require computationally-expensive solu-
tion algorithms. Prior to relatively recent advances in computing technology, obtaining these
quantitative results may have been infeasible and, as a result, a number of potentially fruit-
ful areas of research—such as, for example, combining deterministic and stochastic cyclical
forces—may have gone unexplored.

In this paper, we re-examine the issue of limit cycles as a foundation to a theory of busi-
ness cycles by building on models with demand externalities. Our first goal is to show that

4See the discussion in section 2.3 for further details.
5It is possible in principle to rationalize such low discount factors by choosing a longer period length for

the model. However, if households discount the future with a quarterly discount factor of 0.99 or greater—as
is frequently the case in the business-cycle literature—a factor of 0.3 would be associated with a period
length of 120+ quarters (30+ years). Since the minimum period length of a cycle is two periods, this would
generate cycles on the order of 60+ years, well outside of what is normally thought of as the business cycle.

6In Boldrin and Woodford [1990], the authors mention that in private communication with Sir John
Hicks, he has indicated that the fact that actual business cycles are far from being regular periodic motions
was the reason for his loss of interest in endogenous cycle models.

7See Figure 14.
8Informally, chaotic fluctuations are deterministic fluctuations that do not converge to periodic cycles and

for which the paths emanating from two different initial points cannot be made arbitrarily close by choosing
those initial points sufficiently close together. See, e.g., Glendinning [1994] for a formal definition.
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limit cycles tend to arise quite naturally in the presence of demand complementarity. In par-
ticular, we will clarify why demand complementarities, when they relate to an accumulable
good, are more likely give rise to local instability and limit cycles as opposed to multiple
equilibrium. To make this point we present a simple but rather general reduced form setup.
On second goal is to present a specific, but fully specified model, where limit cycles arise as
the result of an interplay between unemployment risk and precautionary savings. We use a
DSGE version of this model to show how it can explain interesting features of the data.

The outline of the paper is as follows: In the first section we present our reduced form
dynamic model with demand externalities to highlight the forces that will give rise to limit
cycles. In particular, we show how when a Hopf birfurcation will arise in such an environment
and when it will give rise to a super-critical limit cycle. In the second section, we introduce
a microfounded model that builds on Beaudry, Galizia, and Portier [2014]. We will use this
setting to illustrate an intuitive economic mechanism based on demand complementarities
that can give rise to limit cycles. The third section will be quantitative. We will first show
that in macroeconomic U.S. data, there is non trivial variability at frequencies which are
lower than the ones traditionally looked at by the business cycle literature, that could well
be interpreted as a medium frequency limit cycle perturbed with shocks. We the present a
fully specified dynamic general equilibrium model that incorporates our reduced form model
as a special case. Using our structural model we show when how conditions for limit cycles
are likely to met in an explicit dynamic general equilibrium environment. Moreover, in the
fully specified model we will be able to explore the extent to which the model is capable for
reproducing features of the data. In the last section we offer concluding comments.

1 Demand complementarities and limit cycles: a re-

duced form model

In this section we present a simple reduced form model aimed at illustrating how and when
limit cycles emerge in environment with demand complementarities. We choose to begin
by presenting this reduced form model as to highlight the generality of the mechanism,
regardless of the source of precise micro-foundation for the demand complementarity. In the
later sections we will present a structural model that can rationalize our reduced form setup.
An important aspect of the analysis is to show that, even when we restrict the strength of the
demand complementarities to be too weak to create static multiple equilibrium, the model
will nonetheless give rise to limit cycles under fairly general conditions. We will see that the
key mechanism generating limit cycles is the interplay of the demand complementaries and
the dynamics associated with the fact that the good can be accumulated. That framework is
more likely to give rise to limit cycles than to the type of multiple equilibria often stressed in
the demand complementarity literature since the strength of the demand complementarity
needed for limit cycles is less than that needed for multiple equilibrium.

1.1 The environment

The environment we want to consider is one with a large number N of agents index by i,
where each agent can accumulate a good Xit and where Xit can represent either physical
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capital or a durable consumption good. The accumulation equation is given by

Xit+1 = (1− δ)Xit + Iit 0 < δ < 1 (1)

where Iit is agents i’s investment in the good. Suppose initially that there is no market
interactions and that the decision rule for agent i’s investment is given by

Iit = α0 − α1Xit + α2Iit−1 (2)

where all parameters are positive and 0 < α1 < 1, 0 < α2 < 1. In this decision rule,
the effect of Xit on investment is assumed to be negative as to reflect some underlying
decreasing returns to capital accumulation and the effect of past investment is positive as to
reflect sluggish response due for example to adjustment costs.

When all agent behave symmetrically, The aggregate dynamics of the economy is given
by the linear system:(

It
Xt

)
=

(
α2 − α1 −α1(1− δ)

1 1− δ

)
︸ ︷︷ ︸

ML

(
It−1

Xt−1

)
+

(
α0

0

)
(3)

The stability property of that system is established in the following proposition:

Proposition 1 Both eigenvalues of the matrix ML lie within the unit circle. Therefore, the
system is stable.

The proof of this proposition (as well as the other ones) is given in the appendix. According
to proposition 1, the dynamics is extreme simple, with the system converging to it steady
state for any starting values of Xit = Xt and Iit−1 = It−1. We now add demand complemen-
tarities to the model and study how is the dynamics affected.

1.2 Adding demand complementarities

We extend the previous setup to allow for interactions between individuals by having the
investment rule be given instead

Iit = α0 − α1Xit + α2Iit−1 + F

(∑
Ijt
N

)
(4)

while the law of motion of X (equation (1)) is kept unchanged. We assume that the function
F (·) is continuous and differentiable at least three times, that F (0) = 0 and that F ′(·) < 1.
That function represents how the actions of others, summarized but the average level of
investment

∑
Ijt
N

, affect agent i investment decision Iit. For example, the function F (·) could
capture price effects of inputs if F ′(·) < 0 or can capture demand complementarities if
F ′(·) > 0. In this formulation we are assuming that agents are taking the average actions in
the economy as given, so that (4) can be interpreted as a best response rule of an individual
to the average action.

Figure 2 illustrates this best response rule for two values of the intercept, one where

the equilibrium determination of investment arises with F ′
(∑

Ijt
N

)
< 0, and one that arises
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Figure 1: Phase diagram in the model without demand complementarities

Xt

It

∆It = 0

∆Xt = 0

Xs

Is

This figure represent the phase diagram of the dynamic system (3), in which
there are no demand complementarities. For the sake of exposition, we have
arbitrary assumed that both eigenvalues were real and positive in this graph.
Note that the use of a phase diagram is only illustrative; as we are working
in discrete time, the system could converge with oscillation when close to the
steady state even in that configuration of the eigenvalues.
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Figure 2: Best response rule for two different histories

∑
Ijt
N

Iit
Iit=

∑
Ijt
N

αt

Iit = αt + F
(∑

Ijt
N

)
αt′

Iit′ = αt′ + F
(∑

Ijt′
N

)

This figure plots the best response rule (equation (4)): Iit = αt+F
(∑

Ijt
N

)
, with

αt = α0−α1
∑∞

0 (1−δ)τIit−1−τ +α2Iit−1. The intercepts αt and αt′ correspond
to two different histories of the model.
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with 0 < F ′
(∑

Ijt
N

)
< 1. Note that in this diagram we have represented the intercept by

αt = α0−α1

∑∞
j (1− δ)jIit−1−j +α2Iit−1 as to make clear its dependence on past investment

behavior. The dynamics of the system is induced by the fact that past investment decision
determine the location of the best response rule, which in turn determines the current level
of investment. Therefore today’s decision feeds into the determination of next period’s
intercept.9 In order to rule out static multiple equilibrium, that is multiple solutions for Iit

for given values of Iit−1 and Xit, we assume that F ′
(∑

Ijt
N

)
< 1. Hence, we are restricting

attention to cases where demand complementarities, if they are present, are not strong
enough to produce static multiple equilibrium.

In the following, we will restrict to symmetrical equilibria, allowing us to drop the sub-
script i. In order to ensure the existence of a steady state, we will assume that for large
enough values of I, the interaction effect becomes negative, that is, limI−>∞ F (I) < 0.
Combining this assumption with the restrictions that the slope of F (·) be always less than
1 and that F (0) = 0 ensures the existence of a unique steady state. We denote the steady
state value of I and X by Is and Xs. The condition limI−>∞ F (I) < 0 is reasonable in
most economic environments due to resource constraints. In fact, it may be appropriate in
many environments to impose a stronger condition of the form limI−>Ī F (I) = −∞ which
imposes the upper bound Ī on the feasible level of investment in this system. Note that
when F ′(Is) = 0, the model dynamics is locally the one of the model without demand
complementarities, and is therefore stable.

Our goal is to use this framework to examine how the dynamics of this system are affected
by the properties of the interaction effects, and especially under what conditions on F (·) will
give rise to limit cycles.

1.3 The local dynamics of the model with demand externalities

We now consider the dynamics given by (1) and (4). The first order approximation of this
dynamic system is given by(

It
Xt

)
=

(
α2−α1

1−F ′(Is) −
α1(1−δ)
1−F ′(Is)

1 1− δ

)
︸ ︷︷ ︸

M

(
It−1

Xt−1

)

+

( (
1− α2−α1

1−F ′(Is)

)
Is +

(
α1(1−δ)
1−F ′(Is)

)
Xs

0

)
(5)

In order to understand the dynamics of this system, it is informative to first look at local
dynamics in the neighborhood of the steady state. The eigenvalues of the M matrix are the
solutions of the second order equation given by

Q(λ) = λ2 − Tλ+D = 0 (6)

9Under the condition F ′
(∑

Ijt
N

)
< 1, the static equilibrium depicted in Figure 2 is generally viewed as

stable under a tâtonnement type adjustment process. This stability property is not the focus of the current
paper. Instead we are interested in the explicit dynamics induced by the system (1) and (4).
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where T is the trace of the M matrix (and also the sum of its eigenvalues) and D is the
determinant of the M matrix (and also the product of its eigenvalues). The two eigenvalues
are

λ, λ =
T

2
±

√(
T

2

)2

−D (7)

where

T =

(
α2 − α1

1− F ′(Is)
+ (1− δ)

)
(8)

and

D =
α2((1− δ)
1− F ′(Is)

. (9)

As noted above, when there is no social interaction (F ′(Is) = 0), the roots of this system
lie within the unit circle. Now consider that the F function is parametrized by F ′(Is), that
is allowed to go from −∞ to 1.

Geometric analysis : It is useful to give a geometric analysis of the location of the
two eigenvalues of the system. This is done in Figure 3, which represents the plane (T,D).
A point in this plane is couple (Trace, Determinant) of matrix M that corresponds to a
particular configuration of the model parameters, including F ′(Is). We have drawn three
lines and a parabola in that plane. The line (B,C) corresponds to D = 1, the line (B,A)
to the equation Q(−1) = 0 (⇔ D = −T − 1) and the line (A,C) to the equation Q(1) = 1

(⇔ D = T − 1). On the triangle ÂBC perimeter, at least one eigenvalue has a modulus of
1. We show in the appendix that both eigenvalues of the system are inside the unit circle

when (T,D) is inside the triangle ÂBC, while at least one is outside the unit circle when

(T,D) is outside the triangle ÂBC. Whether eigenvalues are really complex depends on

the sign of the discriminant of the equation Q(λ) = 0, which is given by ∆ =
(
T
2

)2 − D.
The parabola on Figure 3 correspond to the equation ∆ = 0 (which is D = T 2/4). Above
the parabola, eigenvalues are complex and conjugate while they are real below. It is then
possible to picture the possible configurations of local dynamics. As shown on Figure 3, the
steady state can be locally stable, unstable or a saddle, with real or complex eigenvalues.
Proposition 1 proves that when F ′(Is) = 0, the steady state corresponds to a point E that

is inside the triangle ÂBC. As an example, we have put E in the region of stability with
complex eigenvalues in Figure 3.

As F ′(Is) varies, the eigenvalues of the system will vary, implying changes to the dynamic
behavior of I and X. From equations (8) and (9), we obtain the following relation between
the trace and determinant of matrix M :

D =
α2(1− δ)
α2 − α1

T − α2(1− δ)2

α2 − α1

(10)

Therefore, when F ′(IS) varies, T and D move along the line (10) in the plane (T,D), which
allows for an easy characterization of the impact of F ′(IS) on the location of the eigenvalues,
and therefore the stability of the steady state. We need to systematically consider the two
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Figure 3: Possible configurations of the local dynamics

T

D

A

CB

1 2-1-2

-1

1

E

Saddle, real eigenvalues

Unstable, complex eigenvalues

Unstable, real eigenvalues

Stable, real eigenvalues

Stable, complex eigenvalues

This figure shows the plane (T,D), where T is the trace and D the determinant
of matrix M . The point E correspond to the model without demand externalites.
It is arbitrarily placed in the zone where the two eigenvalues are complex and of
modulus smaller than 1. According to proposition 1, E belongs to the interior
of the triangle ÂBC.

9



cases α2 > α1 and α2 < α1, as the line (10) slopes positively in the former case and negatively
in the later. 10

Let us consider the case where F ′(IS) is negative, that is where the investment decisions
of others have a negative effect on one own decision. In that case, it is clear from equations
(8) and (9) that

lim
F ′(Is)→−∞

T = 1− δ

and
lim

F ′(Is)→−∞
D = 0

which corresponds to E1 on Figure 4 (when α2 > α1) and on Figure 5 (when α2 < α1). Note

that E1 belongs to the triangle ÂBC, so that the steady state is locally stable in this case.
When F ′(Is) goes from 0 to −∞, the economy moves from E to E1 following the line

(10). This movement corresponds to the half-line denoted (a) on Figures 4 and 5. As E and

E1 belong to the interior of the triangle ÂBC and because the interior of the triangle ÂBC
is a convex set, any point of the segment [E,E1] also belongs to the interior of the triangle

ÂBC.

Figure 4: Local stability when F ′(Is) ∈]−∞, 1] and α2 > α1

T

D

A

CB

1 2-1-2

-1

1

1-δ

E1

E
(a)

(b)

E′

See Figure 3 for the legend.

Therefore, the following proposition holds:

10The case α1 = α2 is studied in the appendix.
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Figure 5: Local stability when F ′(Is) ∈]−∞, 1] and α2 < α1

T

D

A

CB

1 2-1-2

-1

1

1-δ

E1

E
(a)

(b)

E′

See Figure 3 for the legend.
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Proposition 2 As F ′(IS) varies from 0 to −∞, the eigenvalues of M always stay within
the unit circle and therefore the system remains locally stable.

Proposition 2 indicates that when the actions of others play the role of strategic substi-
tutes with one own action, this favors stability of the system. A strategic substitute property
is one that often arises in Walrasian setting, and this is one reason why dynamic Walrasian
environment are most often stable.

We now turn to exploring how the presence strategic complementarities affect the dy-
namic of the system. Considering Figures 4 and 5 an assuming that the steady state without
demand externalities correspond to E, the economy will take the path (b) moving away from
E as F ′(Is) gets closer to one. As we see it in Figures 4 and 5, the economy will cross the

perimeter of triangle ÂBC: the steady state will change from being locally stable to being
unstable or saddle. In the case of half-line (b), the steady state will switch from being stable
with complex eigenvalues to being unstable with complex eigenvalue again. This is one of
two possible configurations. Parameters can be such that the steady state is in E ′ rather
that in E. In that case, as shown in Figures 4 and 5, the steady state will switch from
being stable with real eigenvalues to being unstable with one real eigenvalue greater that
one and one smaller than one. If α2 > α1, both eigenvalues will be positive, while they will
be negative if α2 > α1.

This shows that the presence of demand complementarities can radically change the
dynamics of the system. In particular, if the demand complementarity is strong enough, it
will cause the system to be unstable, even though the system would be stable in the absence
of the complementarity. The instability arises because agents have an incentive to bunch
their actions while simultaneous having an incentive exhibit some inertia due to the fact that
α2 > 0.

1.4 Bifurcations and the occurrence of limit cycles

Such a change of local stability when a parameter varies is referred to as a bifurcation in the
theory of dynamical systems. It is of particular interest since in the case of a bifurcation,
limit cycles can occur in the global dynamics of the system. We formally state the occurence
of a bifurcation in proposition 3.

Proposition 3 As F ′(Is) varies from 0 towards 1, the dynamic system given by (1) and (4)
will become unstable and will experience

− a Neimark-Sacker or Hopf bifurcation if α2 ∈
[

α1

(2−δ)2 ,
α1

δ2

]
,

− a flip bifurcation if α2 <
α1

(2−δ)2 ,

− a fold or saddle-node bifurcation if α2 >
α1

δ2

A fold bifurcation occurs with the appearance of an eigenvalue equal to 1, a flip bifur-
cation with the appearance of an eigenvalue equal to -1 and a Hopf bifurcation with the
appearance of two complex conjugate eigenvalues of modulus 1. The proof of the proposi-
tion is given in the appendix, and consist in checking conditions for the the economy to be in
the configuration E or E ′. In the case of flip and Hopf bifurcation, the system dynamics will
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exhibit limit cycles. In the case of the flip bifurcation, that limit cycle will be of order two,
oscillating around the steady state. Such extreme fluctuations are unlikely to be relevant
for macroeconomic analysis, as fluctuations are persistent. The most interesting case from
our point of view is the case where the system experience a Hopf bifurcation, as in such
a case the steady state is surrounded by an isolated closed invariant curve that is unique.
Contrarily to the case of the flip bifurcation, it is possible for such a limit cycle to evolve
smoothly with time.

The conditions on α2 stated in Proposition 3 under which a Hopf bifurcation will arise
may at first past look rather restrictive, or at least hard to grasp. These conditions are quite
restrictive when δ is very large, however they are not if δ is small. In fact, as δ approaches
zero, these conditions reduce to the simple condition that α2 > α1

4
, that is α2 can’t be

too small. In other words, Proposition 2 could be loosely re-stated as indicating that if
depreciation is not too fast, and α2 not too small, then the system will experience a Hopf
bifurcation as F ′(IS) increases from 0 towards 1.

Once the existence of limit cycle is obtained, we need to check that the economy is indeed
converging towards such an orbit. This orbit can be attractive, when the Hopf bifurcation is
supercritical, or repulsive, when the Hopf bifurcation is subcritical. As shown on Figure 6,
when the bifurcation is super critical, all orbits starting outside or inside the closed invariant
curve, except at the origin, tend to the curve. The alternative case is shown on Figure 7,
where the orbits that do not start from the limit cycle move away from it.

From our point of view, the emergence of a limit cycle is only of interests if it is attractive
(supercritical), as in such a case, departures from the steady state will be attracted to
the limit cycle. The conditions governing whether a Hopf bifurcation is supercritical or
subcritical are often hard to state. However, in our setup, a simple condition can be given
to ensure that the Hopf bifurcation is supercritical. This is stated in Proposition 4 where
we make use of the Wan theorem..

Proposition 4 If F ′′′(Is) is sufficiency negative, then the Hopf bifurcation noted in Propo-
sition 3 will be supercritical. Therefore, the limit cycle is attractive.

The economics for why increasing F ′(Is) will cause the system to become unstable are
rather clear. A high value for F ′(Is) implies that agents have an incentive to accumulate
all the same time. Hence people will make decision which will cause the system to go
through periods of high accumulation followed by periods of low accumulation, and this will
be recurrent even in the absence of any shocks. Such a behavior contrasts a steady flow
of I over time which would be the natural point of rest of the system in the absence of
complementarities.

The requirement that F ′′′(Is) be sufficiently negative for the emergence of a attrac-
tive limit cycle can also be associated with economic forces. The easiest way to interpret
this condition is in terms of an S-shaped reaction function. If the reaction curve near the
steady state is both positively sloped and F ′′′(Is) is negative, it will generally take an S-
shaped form.11 Note that Figure 2 was drawn with this features. The intuition for why an

11A parametric example of such an S-shaped function is the sigmoid function f(x) = 1
1+e−x for x on the

real line.
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Figure 6: An attractive limit cycle when the Hopf bifurcation is supercritical

Xt

It

Xs

Is

This figure illustrates the model dynamics when the Hopf bifurcation is super-
critical. The dark orbit corresponds to the limit cycle and the grey dot is the
steady state of the model. Trajectories converge to the limit cycle from outside
and inside.
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Figure 7: An repulsive limit cycle when the Hopf bifurcation is subcritical

Xt

It

Xs

Is

This figure illustrates the model dynamics when the Hopf bifurcation is subcrit-
ical. The dark orbit corresponds to the limit cycle and the grey dot is the steady
state of the model. Trajectories diverges away from the limit cycle from outside
and inside.
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S-shaped reaction function will likely create a supercritical limit cycles is that, when the
system moves into the unstable region, any perturbation from the steady state will induce
explosive behavior because the strong demand complementarities close to the steady state.
However, as the system gets far enough away from the steady state, the S-shaped property of
the reaction function implies that the strength of the demand complementarities are fading
out. Hence, as it system moves away from the steady state, the forces that were creating
explosive behavior die out and instead start to favor implosive behavior. This is why an
S-shaped reaction function, that is one where F ′′′(Is) is sufficiently negative, will favor the
emergence of a supercritical limit cycle, as the limit cycle is balancing out the unstable force
near the steady state, with the more stabilizing forces away from the steady state. Such a
configuration is illustrated on Figure 8.

If instead, agents’ reaction functions have F ′′′(Is) positive, then the reaction function
would take the form of a flipped S, with the demand complementarities growing in strength
as one moves away from the steady state.12 This configuration is illustrated in Figure 9. In
this case, when F ′(Is) pushes the system to instability, the Wan theorem (reference) about
Hopf bifurcations in discrete systems implies the emergence of a subcritical limit cycle,
according to the dynamics shown in Figure 7.

The general insight we take away from the Wan theorem regarding Hopf bifurcations is
that limit cycles are likely to emerge in our setting if demand complemenatrities are strong
and create instability near the steady state, but tend to die out as one moves away from the
steady state. We will refer to such a set up as one with strong local demand complemen-
tarities. In an economic environment, it is quite reasonable to expect that positive demand
externalities are likely to die out if activity gets very large. For example, if investment de-
mand gets sufficient large some resource constraint are likely to become binding, causing
incentives akin to strategic substitutes to emerge instead of complementarities. Similarly,
physical constraints, such as a non-negatively restrictions on investment or capital, are rea-
sonable consideration in economic environments which will limit systems from diverging to
zero or negative activity. Such forces will general favor the emergence of attractive limit
cycles in the presence of demand complementarities. Since the Wan Theorem relates only to
local behavior, it would be interesting to also examine global conditions that would ensure
that the limit cycle is not nan arbitrarily small neighborhood of the steady state. This type
of global analysis is much easier to carry out in a continuous time set up. Accordingly, in
the appendix, we discuss global stability issues in a continuous time extension of our system
(1) and (4). As is shown in this appendix, global forces that ensure that complementarities
die out when activity is either very high or very low will guarantee the emergence of limit
cycles in the continuous time version of the system when strong demand complementarities
are present near the steady state.

12A parametric example of such a flipped S-shaped function is the logit function, which is the reciprocal

of the sigmoid, and takes the form g(y) = log
(

y
1−y

)
for y ∈]0, 1[.
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Figure 8: Best response rule when F ′′′(Is) < 0, causing the limit cycle to be supercritical
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Figure 9: Best response rule in the case where F ′′′(Is) > 0, causing the limit cycle to be
subcritical
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1.5 Numerical simulation

We conclude this section by sowing some numerical simulations of the model with demand
complementarities. The objective here is not to calibrate the model, as it is a reduced form
one with no explicit microfoundations. We aim to show that once perturbed with shocks,
the limit cycle of such a model is producing realistic fluctuations. We assume that the F
function is given by

F (It, ut) = β0 + β1It + β2I
2
t + β3I

3
t + β4I

4
t + ut.

ut is an exogenous random variable, that we assume to be AR(1) :

ut = ρut−1 + εt, (11)

where ε is iid normally distributed with mean zero and variance σ2. Parameters are restricted
such that the symmetric linear model has a globally stable equilibrium, the steady state level
of I is one, F (1) = 0 and that there exist a stable limit cycle in the non linear model. This
leads to the following choice of parameters: α0 = 0.75, α1 = 0.025, α2 = 0.50, δ = .1 and for
the nonlinear model β0 = −0.50, β1 = 0.10, β2 = 0.20, β3 = 0.50, β4 = −0.30.

We first perform a deterministic simulation of the model, assuming that X0 = .8Xs and
I−1 = Is. Panel (a) of Figure 10 shows that the economy converges too a supercritical limit
cycle in the (X, I) plane (each cross corresponds to one period). Panel (b) shows that invest-
ment goes though a deterministic cycle of booms and busts driven by endogenous economics
forces. Although this cycle might share some features with economic date, it is far too reg-
ular to be an accurate description of reality. This is illustrated by the estimation of spectral
density of investment and autocorrelogram of investment growth on data generated from a
deterministic simulation. In the spirit of Cogley-Nason, we consider those two statistics as
nicely summarizing the dynamics features of the business cycle. Results are displayed in
panels (c) and (d). Although the autocorrelogram shows a lot of persistence, the spectral
density is quite degenerated, with all the mass at the frequency of the limit cycle.

We then perform stochastic simulations of the model. Figure 11 shows in panels (a) and
(b) one simulation of length 250. of the two models. In that simulations, I goes through
periods of booms, with brutal bursts and even a period of protracted recession. It is of
interest to notice that fluctuations now look quite different from the deterministic limit
cycle. Panel(c) displays estimates of the spectral density, for 10000 simulations of length
250. The shocks “spread” the spectral density of investment, while they have little effect on
autocorrelogram of investment growth.

2 A microfounded model with limit cycles

In this section we present a simple economic model that is capable of generating limit cycles.
The model is an extension of the model Beaudry, Galizia, and Portier [2014]. In a nutshell,
the model can be described as follows.

Households begin each period with a stock of durable goods and must decide how many
additional goods to purchase in the goods market. Abstracting for the moment from forward-
looking behavior, there are two key static factors that affect this decision. First, household
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Figure 10: Deterministic simulation
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This figure plots the deterministic transitional dynamics of the reduced form model in panel (a)
and (b). The initial values are X0 = .8Xs and I−1 = Is. Note that Xs = 10 and Is = 1. In
panels (b), one cross correspond to one period. For panels (c) and (d), the estimation is done
10000 times over 250 periods. The dark line shows the median estimates and the grey zone
is delimited by the 18th and 82th percentiles, so that the gray band contains two-third of the
simulations. This figure plots, for the numerical linear and nonlinear models, the deterministic
transition from initial values X0 = .8Xs and I−1 = Is. Note that Xs = 10 and Is = 1. I
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Figure 11: Stochastic simulations
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This figure plots one simulation of the reduced form model in panel (a) and (b). Note that
Xs = 10 and Is = 1. In panels (b), one cross correspond to one period. For panels (c) and
(d), the estimation is done 10000 times over 250 periods. The dark line shows the median
estimates and the grey zone is delimited by the 18th and 82th percentiles, so that the gray band
contains two-third of the simulations.
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demand is decreasing in the size of the current stock of durables: when their existing stock
of durables is low, households want to purchase more, and vice versa. Second, because of
a self-insurance motive, household demand is decreasing in the unemployment rate. There
are two imperfections in the model that cause this self-insurance behavior to emerge. First,
there is a matching friction in the spirit of Diamond-Mortensen-Pissarides, which creates
the possibility that a household may not find employment when looking for a job. Second,
households are unable to perfectly insure against this idiosyncratic unemployment risk. The
upshot is that an increase in the unemployment rate causes them to reduce their demand
for new goods.

The combination of these two factors produces the following mechanism by which deter-
ministic fluctuations emerge in the model: if households have a large stock of durables, they
reduce their demand for new goods. This fall in demand then increases the unemployment
rate, which causes households to further reduce their demand, further increasing the unem-
ployment rate, and so on, so that, in equilibrium, output falls by significantly more than
the initial fall in demand. This multiplier mechanism—which occurs because of strategic
complementarity in households’ purchasing decisions—drives the excess sensitivity in the
dynamic system which is a pre-condition for local instability. Once the economy reaches full
or zero employment, however, the self-insurance mechanism is not operative, and thus the
excessive sensitivity that creates instability disappears. In its place, inward forces—arising
because of strategic substitutability, which in turn operates through the price of newly pro-
duced goods—emerge that prevent the economy from exploding. The combination of these
locally-outward and globally-inward forces creates the conditions for a limit cycle to occur.

2.1 Static version

Before presenting the full dynamic model in detail, we begin by briefly presenting a simpler
version of the model that is static in nature, highlighting the key properties that will be
important in generating limit cycles in a dynamic setting. Further details and in-depth
analysis of this static model can be found in Beaudry, Galizia, and Portier [2014].

Consider an environment populated by a mass one of households. In this economy there
are two sub-periods. In the first sub-period, households purchase consumption goods and
try to find employment. As there is no money in this economy, when the household buys
consumption goods its bank account is debited, and when (and if) it receives employment
income its bank account is credited. As we shall see, households will in general end the
first sub-period with a non-zero bank account balance. Thus, in the second sub-period,
households resolve their net asset positions by repaying any outstanding debts or receiving
a payment for any surplus. These payments are made in terms of a second good, referred to
here for simplicity as household services. Household services are also the numéraire in this
economy.

Preferences for the first sub-period are represented by

U (c)− ν (`)

where c represents consumption and ` ∈
[
0, ¯̀
]

is the labor supplied by households in the
production of goods, with ¯̀ the agent’s total time endowment. U is assumed to be strictly
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increasing and strictly concave, while the dis-utility of work function ν is assumed to be
strictly increasing and strictly convex, with ν(0) = 0. Households are initially endowed with
the same amount X of consumption goods, which they can either consume or trade. In
the dynamic version of the model, X will represent a stock of durable goods and will be
endogenous. Trade in consumption goods is subject to a coordination problem because of
frictions in the labor market. At the beginning of the first sub-period, the household splits up
responsibilities between two members. The first member, called the buyer, goes to the goods
market to make purchases. The second member searches for employment opportunities in
the labor market. The goods market functions in a Walrasian fashion, with both buyers
and firms taking the price of these goods p (in units of household services) as given. The
market for labor in this first sub-period is subject to a matching friction, with sellers of
labor searching for employers and employers searching for labor. The important information
assumption is that buyers do not know, when choosing how much to buy, whether the worker
member of the household has secured a match. This assumption implies that buyers make
purchase decisions in the presence of unemployment risk.

There is a large set of potential consumption goods firms in the economy who can decide
to search for workers in view of supplying goods to the market. Each firm can hire one
worker and has access to a decreasing-returns-to-scale production function F (`), where ` is
the number of hours worked for the firm.13 Being matched with a worked requires to post
a vacancy at fixed cost k in terms of the output good, so that the net production of a firm
hiring ` hours of labor is F (`)−k. Firms search for workers and, upon finding a worker, they
jointly decide on the number of hours worked and on the wage to be paid. Upon a match,
the determination of the wage and hours worked within a firm is done efficiently though a
competitive bargaining process,14 so that in equilibrium pF ′ (`) = w, where w is the wage,
expressed in terms of household services.15

The labor market operates as follows. All workers are assumed to search for employment.
Letting n represent the vacancies, the number of matches φ is then given by the short side
of the market, i.e., φ = min {n, 1}. The equilibrium condition for the goods market is then
given by

c−X = φF (`)− nk

where the left-hand side is total purchases of consumption goods and the right-hand side
is the total available supply after subtracting firms’ vacancy posting costs. Firms enter the

13It is also assumed that F is such that both F ′ (`) ` and [F (`)− F ′ (`) `] are strictly increasing functions
of `. This property is exhibited, for example, by the Cobb-Douglas function F (`) = A`α.

14By “competitive bargaining”, We mean any bargaining process such that the equilibrium outcome satis-
fies (1) that workers are paid their marginal product in a match, and (2) that, conditional on being matched,
workers supply and firms hire the individually-optimal number of hours at the equilibrium wage. This can
be microfounded by assuming, for example, that all “matched” firms and workers meet in a secondary labor
market, and that this secondary market operates in a Walrasian fashion.

15As discussed in Beaudry, Galizia, and Portier [2014], the assumption of a competitive bargaining process
is for simplicity. The main mechanisms are robust to alternative bargaining protocols.
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market up to the point where expected profits are zero. This condition can be written as16

φ

n

[
F (`)− w

p
`

]
= k

At the end of the first sub-period, a household’s net asset position a, expressed in units
of household services, is given by a = w` − p (c−X) if the worker was employed, and
a = −p (c−X) if the worker was unemployed. Rather than explicitly modeling the second
sub-period, for simplicity assume that the continuation value function for the second sub-
period, V , is given by17

V (a) =

{
va if a ≥ 0

(1 + τ) va if a < 0

where v, τ > 0 are parameters. This function is piecewise linear and concave, with a kink at
a = 0.18 Here, the marginal value of assets is given by v when assets are positive and (1 + τ) v
when assets are negative. Since buyers in general face unemployment risk when making their
purchase decisions, the wedge between the marginal value of assets when in deficit and that
when in surplus generates self-insurance behavior, whereby a fall in the employment rate
causes buyers to reduce their purchases out of increased concern that they will end up in
the costly unemployment state. This mechanism is central to the strategic complementarity
that emerges in the model, which in turn is what will allow the dynamic version of the model
to generate limit-cycle behavior. The strength of this mechanism, meanwhile, is governed
by the parameter τ . Given the above value function V , the buyer’s problem is to choose e
to maximize

U (X + e) + φ [−ν (`) + v (w`− pe)]− (1− φ) (1 + τ) vpe

subject to e ≥ 0, where e ≡ c − X is purchases of new goods. The worker’s problem,
meanwhile, is to choose ` to maximize −ν (`) + v (w`− pe).

2.1.1 Equilibrium

Letting ej denote purchases by household j and e the average level of purchases in the econ-
omy, one may show that household j’s optimal consumption-choice decision is characterized
by19

U ′ (X + ej) = p (e) v [1 + τ − τφ (e)] (12)

where p (·) and φ (·) are the price of consumption goods and the employment rate, respec-
tively, expressed as functions of aggregate purchases. The left-hand side of (12) is simply
household j’s marginal utility of consumption. The right-hand side, meanwhile, captures
buyer j’s expected marginal-utility cost of funds. When the economy is at full employment

16As in Beaudry, Galizia, and Portier [2014], assume that searching firms pool their ex-post profits and
losses so that they each make exactly zero profits in equilibrium, regardless of whether they are matched
with a worker.

17See Section 2.2 in Beaudry, Galizia, and Portier [2014] for a discussion of how to microfound such a
value function.

18As noted in Beaudry, Galizia, and Portier [2014], what matters here is that the marginal value of assets
be smaller in surplus than in deficit. The piecewise linearity property is assumed only for tractability.

19See Beaudry, Galizia, and Portier [2014].
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(φ (e) = 1), this is simply equal to the price p (e) of consumption goods in terms of household
services, times the marginal value v of those services when assets are non-negative. When
there is unemployment, however, the buyer faces some positive probability of ending up
in the negative-asset state, which is associated with a higher marginal value of assets (i.e.,
(1 + τ) v). As a result, the expected marginal-utility cost of funds is higher and, all else
equal, household j would choose a lower level of purchases.

An equilibrium for this economy is given by a solution to (12) with the additional re-
striction that ej = e. To understand how the equilibrium is affected by shifts in X, note the
following properties of the equilibrium functions p (·) and φ (·). First, one may show that
φ (e) = min {e/e∗, 1}, where e∗ is the output (net of fixed costs) produced per firm when
there is a positive level of unemployment.20 Second, one may show that p (·) is a continuous
function of e, with p′ (e) = 0 for e < e∗, and p′ (e) > 0 for e > e∗.21 The consequences of these
two properties for the marginal-utility cost of funds (i.e., the right-hand side of (12)) are
illustrated by the curve labelled “cost of funds” in panel (a) of Figure 12. For e sufficiently
small, the curve is downward-sloping: as e rises, output is increased along the extensive
labor margin, lowering the unemployment rate and making purchases feel less expensive to
households. Once e reaches the full-employment level e∗, however, additional increases in
output come via the intensive labor margin, which is associated with a rising price and thus
an increased cost of funds.

The two regimes—unemployment and full employment—are associated with different
equilibrium responses to a rise in the endowment X.22 Panel (a) of Figure 12 shows the
case for the unemployment regime. The economy is initially in equilibrium at the level e1 of
purchases, which occurs at the intersection of the cost of funds curve and the solid marginal-
utility function U ′ (X + e). A rise in the endowment by ∆X then shifts this marginal-utility
function to the left by ∆X units, as represented by the dashed curve in the figure. We see
that the equilibrium level of purchases falls as a result of the rise in X, and furthermore
that it falls by more than ∆X (so that total consumption c = X + e falls). This amplified
response is due to the strategic complementarity that exists in the unemployment regime:
a rise in the endowment causes households to reduce their demand for new goods which,
via an extensive labor margin adjustment, lowers the employment rate φ, which in turn
raises the cost of funds, causing households to reduce purchases further, further lowering the
employment rate, etc.

In contrast, panel (b) of Figure 12 shows the same experiment but beginning from the
full-employment regime. In this case, we again see that a rise in X is associated with a fall in

20When there is unemployment, the “min” matching function and the firm’s zero-profit condition together
imply F (`)− F ′ (`) ` = k. Since k is a constant, conditional on there being unemployment this implies that
` = `∗, where `∗ solves this equation. Output net of fixed costs is then e∗ ≡ F (`∗)− k.

21Combining the household’s labor supply condition and the firm’s labor demand condition, one may
obtain p = ν′ (`) / [vF ′ (`)]. As pointed out in footnote 20, when e < e∗ we have ` = `∗, so that p = p∗ ≡
ν′ (`∗) / [vF ′ (`∗)]. Further, once the economy achieves full employment, a rise in output must come through
the intensive margin of labor (i.e., through a rise in `), which causes p (·) to be increasing in e on e > e∗.

22As shown in Beaudry, Galizia, and Portier [2014], if τ is sufficiently large there may be more than one
equilibrium. While this is an interesting theoretical possibility, the evidence obtained from the quantitative
exercise of section 3, though not conclusive, gives no indication that multiple equilibria are of concern. We
therefore restrict attention throughout this paper to the case where the equilibrium is unique, i.e., where τ
is not too large.
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Figure 12: Static Equilibrium Determination

(a) Unemployment regime (b) Full-employment regime
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equilibrium purchases, but in this case the fall is by less than ∆X (so that total consumption
rises). This damped response occurs as a result of the strategic substitutability that exists
when the economy is at full employment: a rise in the endowment causes households to
reduce their demand for new goods which, via an intensive labor margin adjustment, lowers
hours-per-worker, which lowers the price p, in turn lowering the cost of funds and causing
households to increase their purchases.

The sensitivity of purchases to changes in X in the unemployment regime because of
strategic complementarity, and the corresponding insensitivity in the full-employment regime
because of strategic substitutability, will play a crucial part in generating limit cycles in the
dynamic version of the model. Note also that the sensitivity of e to X in the unemployment
regime is increasing in the steepness of the slope of the cost of funds schedule in that regime.
Since this steepness in turn depends positively on the parameter τ , we see that τ captures
the degree of strategic complementarity in the unemployment regime.

2.2 Baseline dynamic model

Consider now a dynamic version of the above economy. Time is discrete, and each period is
divided into two sub-periods, with the economy operating in each such sub-period as in the
static case. The principal difference from the static model is that the stock of durable goods
brought into a period is now endogenous, accumulating according to

Xt+1 = (1− δ) (Xt + γet) (13)

where Xt is the stock of durables brought into period t and et is quantity of consumption-
goods purchases in period t. For simplicity, we assume that a constant fraction γ ∈ (0, 1] of
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these purchases are durable.23 δ ∈ (0, 1] is the depreciation rate.
The household’s labor supply decision is entirely static and therefore the same as in

the previous subsection (i.e., `t is chosen each period to maximize −ν (`t) + v (wt`t − ptet)).
Buyers, meanwhile, face a dynamic optimization problem, choosing ct and et to maximize
the objective function

∞∑
t=0

βt {U (ct) + φt [−ν (`t) + v (wt`t − ptet)]− (1− φt) (1 + τ) vptet} (14)

subject to ct = Xt + et and the accumulation equation (13), and taking `t as given.24

We restrict the parameter space to cases where a steady state for this economy exists
and is unique. As is the case in the static model, it can be verified that this is true as long
as τ is not too large.25 We further restrict parameters such that this steady state satisfies
` < ¯̀, so that the household’s time constraint is not binding at the steady state.

2.3 Limit cycles in the dynamic model

2.3.1 The myopic case

Conditions under which limit cycles may appear in this model can be understood most
easily in the myopic case where β = 0. In this case, we simply have a repeated sequence of
the static economy discussed in section 2.1, with the only linkage between them being the
inherited stock of durable goods. We may characterize the equilibrium evolution of the stock
of durables over time as

Xt+1 = (1− δ) [Xt + γe (Xt)] ≡ g (Xt)

where e (Xt) expresses the equilibrium level of purchases at date t as a function of the only
state variable, Xt. This equilibrium is determined entirely as it was in Figure 12, with the
unemployment regime characterized by strategic complementarity and the full-employment
regime by strategic substitutability.

Recall the two basic conditions discussed in section 1 which are required to generate a sta-
ble limit cycle: (1) a locally unstable steady state, and (2) global non-explosiveness. Letting
X̄ denote the steady state level of durables, these two conditions correspond mathematically
to (1)

∣∣g′ (X̄)∣∣ > 1, and (2) |g′ (X)| < 1 for
∣∣X − X̄∣∣ sufficiently large, where

g′ (X) = (1− δ) [1 + γe′ (X)]

23In the quantitative exercise below, we will interpret “durables” as including both conventional durable
goods as well as residential investment, which is conceptually similar.

24In order to avoid expanding heterogeneity between individuals over time, individuals are assumed to
borrow and lend via their bank account balances only within a period but not across periods. In other
words, households are allowed to spend more than their income in the first sub-period of a period, but must
repay any resulting debt in the second sub-period. Similar assumptions were used in Lagos and Wright
[2005] and Rocheteau and Wright [2005], and more recently in Kaplan and Menzio [2014], in order to avoid
having to track the asset positions of all agents in the economy over time.

25See Beaudry, Galizia, and Portier [2014].
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It is straightforward to verify that the second condition necessarily holds here, as follows.
Suppose X is sufficiently small so that the economy is in the full-employment regime. As
was shown earlier, a rise in X in this regime is associated with a fall in e, but by less than
the rise in X, i.e., −1 < e′ (X) < 0. Thus, (1− δ) (1− γ) < g′ (X) < 1 − δ, and therefore
|g′ (X)| < 1 clearly holds.26 Suppose instead that X is very large. In this case it can be
verified that the non-negativity constraint e ≥ 0 binds, so that e′ (X) = 0 and therefore
g′ (X) = 1− δ, and thus again |g′ (X)| < 1 holds.

Next, suppose the steady state of the system is in the unemployment regime. Then
from the analysis for the static model, we know that e′

(
X̄
)
< −1, i.e., a rise in the stock of

durables leads to a more than one-for-one fall in purchases. Whether or not e falls sufficiently
so that the first condition for a stable limit cycle holds will depend on the strength of the
complementarity in this regime, i.e., on τ . For smaller values of τ , i.e., those for which

e′
(
X̄
)
> − 2− δ

γ (1− δ)
≡ κ

the complementarity is relatively weak, and thus g′
(
X̄
)
> −1. In this case, the steady state

is stable, so that a limit cycle will not appear. On the other hand, for larger values of τ
(i.e., those for which e′

(
X̄
)
< κ), we will have g′

(
X̄
)
< −1, and thus the steady state is

unstable. In combination with the fact that the system is non-explosive (as argued above),
we see that in general a stable limit cycle will emerge in this case.

Figure 13 shows the formal similarity of the model determination with the one of the
reduced form model. In effect, it is possible to express the expenditures ejt of household j as
a function of aggregate expenditures et and the stock of durable goods Xt−1, that summarizes
the model history. As shown in Beaudry, Galizia, and Portier [2014], this reaction function
writes

ej = Z(e)−X (15)

with
Z(e) ≡ U ′−1 (Q(e))

and

Q (e) ≡


ν′(`?)
F ′(`?)

(
1 + τ − τ e

e?

)
if 0 < e < e?

ν′(Ω−1(e))
F ′(Ω−1(e))

if e ≥ e?

Here, Ω(`) ≡ F ′(`)` is output net of search costs per employed worker and e? ≡ Ω(`?) is
the level of output (net of firms’ search costs) that would be produced if all workers were
employed, with hours per employed worker equal to `?.

Figure 13 is similar to Figure 2 of the reduced form model: the model has a regime
of strategic complementaries and a regime of strategic substitutability, with the location of
household j optimal expenditure function (her “best restponse function”) depending on the
model history.

26It is worth emphasizing that strategic substitutability in the full-employment regime is the key property
generating this relative insensitivity of e to changes in X.
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Figure 13: Equilibrium determination for two different histories
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This figure plots the optimal spending of household j as a function of total spendings

(equation (15)): ejt = Z
(∫ 1

0 eitdi
)
− Xt. The intercepts correspond to two different

histories of the model as Xt = (1− δ)(Xt−1 + γet−1) =
∑∞

1 (1− δ)jγet−j
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2.3.2 The general case

The previous subsection showed that, when β = 0, limit cycles can emerge in the unemploy-
ment risk model. While the myopic case was useful for building intuition, of more general
interest is whether limit cycles may occur for an arbitrary β. It is not immediately obvious
that this should hold, and indeed, as a “Turnpike Theorem” (due to Scheinkman [1976])
below highlights, in a class of models widely used in the literature, for β sufficiently close to
one limit cycles cannot occur.

In particular, consider a general deterministic dynamic economy with date-t state vector
zt ∈ Rn. LetW (zt, zt+1) denote the period-t return function when the current state is zt and
the subsequent period’s state is zt+1.27 The following theorem characterizes the solution to
the problem of maximizing lifetime utility

∑
βtW (zt, zt+1), where β is the discount factor.

Turnpike Theorem (Scheinkman [1976]) If W is concave, then there exists a β̄ < 1
such that if β̄ ≤ β ≤ 1 then the steady state is unique and globally stable.28

The key property that ensures global stability in this theorem is the assumption that W
is concave. Since, all else equal, fluctuations are sub-optimal when W is concave, when β
is sufficiently close to one it is in general optimal to take temporarily costly action in the
present in order to avoid permanent fluctuations in the future. This in turn implies global
convergence to the steady state, so that limit cycles cannot occur. Concavity of W is a
property that holds in a wide variety of economic models that have become standard in the
literature, including nearly all quantitative models of the business cycle. As we shall see,
however, in the unemployment-risk model discussed above, concavity ofW may be violated,
in which case global stability may not obtain.

As a first step in establishing the potential for limit cycles in the unemployment-risk
model, the following proposition verifies that the system satisfies the second condition needed
for a stable limit cycle (i.e., non-explosiveness).

Proposition 5 Given any initial endowment of durables X0, lim supt→∞ |Xt| <∞.

Proposition 5 ensures that in the limit the system either exhibits deterministic fluctua-
tions (such as a limit cycle) or converges to a fixed point. The following proposition estab-
lishes that, in contrast to models for which the Turnpike Theorem applies, local instability
is possible in this model for an arbitrarily high discount factor.

Proposition 6 There exists parameter values and functional forms such that, for some
β̄ < 1, if β̄ ≤ β < 1 then the (unique) steady state is locally unstable.

In combination with Proposition 5, Proposition 6 confirms that there are parameter
values and functional forms for which the model will generate deterministic fluctuations
even if β is arbitrarily close to one. The reasons for the failure of the Turnpike Theorem to

27Note that, in this formulation, W implicitly incorporates any constraints and static-equilibrium out-
comes, so that W (zt, zt+1) is the equilibrium period-t return conditional on the current and next-period
state being zt and zt+1, respectively.

28For a proof and more formal statement of the theorem, see Scheinkman [1976] Theorem 3.
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hold for this model can be clarified as follows. Suppose the steady state of the model is in
the unemployment regime, and let W (Xt, Xt+1) be a period-t return function such that the
solution to the problem

max
{Xt+1}

∞∑
t=0

βtW (Xt, Xt+1) (16)

implements the equilibrium of the model in a neighborhood of this steady state.29 If it
turns out that W is concave, then the Turnpike Theorem implies that the model cannot
generate limit-cycle dynamics. The following proposition establishes that in factW may not
be concave.

Proposition 7 There exists parameter values and functional forms such that, in the neigh-
borhood of an unemployment-regime steady state, W is not concave.

Intuitively, non-concavity of W can arise as a result of a “bunching” mechanism in the
model: because unemployment risk is low, when other agents are purchasing lots of goods
it is a good time for an individual agent to purchase goods. Similarly, when other agents
are purchasing few goods, it is a bad time for an individual agent to buy goods. If suf-
ficiently strong, this bunching mechanism—which arises precisely because of the strategic
complementarity in the unemployment regime—leads to a tendency to have periods of high
durables accumulation alternating with periods of low durables accumulation, i.e., determin-
istic fluctuations.

The final proposition of this section clarifies the importance of the parameter τ in con-
trolling the strength of this bunching mechanism, and therefore in influencing whether or
not the economy will be able to generate limit-cycle dynamics.

Proposition 8 For τ sufficiently close to zero, the steady state is stable.

Proposition 8 thus confirms that, if τ is not sufficiently large, the degree of strategic
complementarity is too small to produce an unstable steady state.

3 A DSGE model with limit cycles

This section presents the main quantitative results of the paper. We estimate an augmented
version of the dynamic model discussed above, with the primary goal of establishing that
it is capable of matching the key quantitative features of the hours data. We first present
the data properties we are aiming to match, before describing the DSGE model and the
estimation results.

3.1 Data

As our objective is to assess the possibility of a model with shocks and limit cycle to be a
good approximation of the data generating process, it seems natural to look at the data in the

29An example of such a W is found in the proof of Proposition 7.
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frequency domain. As discussed before, one of the main criticisms of earlier deterministic-
fluctuations models was that they produced cycles that were far too regular. This regularity
shows up clearly as a large spike in the spectrum. The ability for the model to match a much
flatter spectrum as the one we will show is found in the data will thus be an important test
of its ability to generate realistic data.

In order to remove non-stationarity before estimating spectral densities, we first use a
band pass filter that keeps cycles with periods 2 to 100 quarters. We then display only
spectral density for periods 80 to 4 quarters, so as to remove seasonality, high frequency
noise and cycle above 20 years. 30 On those spectral density figures, the light gray zone
corresponds to the traditional measure of the business cycle (8 to 32 quarters) while the
dark gray zone corresponds to periods 32 to 60 quarters. The picture that emerges from
Figure 14 is that much of the business cycle variability in main macroecomic aggregates is
not at periods 8 to 32 quarters, but rather above, mainly between periods 32 to 60 quarters.
31 In the business cycle literature, in order to account for fluctuations at lower frequencies
than the ones isolated by the BP(8,32) of the Hoddrick-Precott(1600) filters, models are
needing either very persistent shocks or a lot of propagation mechanism. We will show in
this section that presence of a limit cycle can be an alternative explanation for this. Before
we present the quantitative model, it is useful to show that the comovements between the
main macroeconomic aggregates are not different at lower frequencies that those generally
considered. As a check, we have computed the coherence between hours on the one side
and output, consumption and investment on the there side. Coherence is analogous to a
regression R2, giving the proportion of the variance of hours that can be linearly predicted
by output at a given periodicity. A coherence of one would thus indicate that hours and
output are perfectly correlated at that periodicity, while a coherence of zero would indicate
that hours and output are orthogonal. The results displayed in Figure 15 show indeed that
the same business cycle pattern of correlations is present at all periodes between 8 and 80
quarters.

In order to mainly focus on the endogenous fluctuations when estimating the model, we
will focus on hours spectrum in the estimation procedure. As compared with other data
series, hours is arguably less likely to be directly impacted by various exogenous shocks. For
example, while GDP is directly affected by things like shocks to total factor productivity,
over the business cycle we may expect hours to largely respond only indirectly to exogenous
shocks. To the extent that this is true, variation in hours is more likely to be caused by the
endogenous mechanisms that are the primary focus of this paper. Figure 16 displays the
time series of filtered hours. Visual inspection confirms spectral analysis. For example, since
the beginning of the eighties, one observes three cycles of similar amplitude and of length
round 40 quarters.

3.2 The quantitative model

The baseline dynamic model presented in section 2 was constructed with an eye toward
analytical tractability. As a result, that model lacks many of the features which are known

30Note that this spectral density measure is robust to changes in the bandpass filters with higher (120,
150 of lower (80) upper limit.

31See Comin and Gertler [2006] and Pancrazi [2015] for similar observations.
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Figure 14: Spectral density for the main macroeconomic aggregates
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All series are first detrended with a BP filter to remove fluctuations with periods greater than 100
quarters. Raw spectrum in obtained as the squared modulus of the discrete Fourier transform of the
data series (scaled so that the integral with respect to angular frequency over the interval [−π, π]
equals the variance of the series). Spectrum in figure is kernel-smoothed raw spectrum. Kernel is a
Hamming window with bandwidth parameter 11.
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Figure 15: Coherence with hours for the main macroeconomic aggregates
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All series are first detrended with a BP filter to remove fluctuations with periods greater than 100
quarters. Raw coherence at a periodicity p is given by |sL,x (p)|2 / [sL (p) sx (p)], where sL is the
spectrum of hours, sx is the spectrum of the other series, and sL,x is the cross-spectrum. Coherence
was then kernel-smoothed using a Hamming window with bandwidth parameter 51.
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Figure 16: Hours Worked Data
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Notes: Hours Worked series is the log of BLS nonfarm hours worked
divided by population, detrended with a BP filter to remove fluctua-
tions with periods greater than 100 quarters. Shaded areas are NBER-
dated recessions. The sample runs from 1960Q1 to 2012Q4.
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to be helpful in quantitatively matching the data, and includes several others which, while
not central to the key mechanisms, turn out to be restrictive in a quantitative setting. Since
the main purpose of the exercise in this section is quantitative in nature, we make several
adjustments to the model designed to help it in that regard.

First, as is well known, dynamic systems with a single state variable have considerable
difficulty in producing deterministic fluctuations with the basic qualitative properties that
we observe in macroeconomic aggregates. In particular, deterministic fluctuations in such
models tend to be erratic, with the system often jumping back and forth from one side of the
steady state to the other every few periods or less. Thus, if the unemployment-risk model
is to have any chance of successfully replicating key features of the data, it will require
the addition of at least one other state variable. To this end, and following much of the
quantitative business cycle literature, we now assume that the household exhibits internal
habit-formation in consumption,32 so that its period utility for consumption is now given by

U (ct − hct−1)

Here, h ∈ [0, 1) is a parameter controlling the degree of habit persistence.
Second, the relatively simple structure of the baseline model produces a stark dichotomy,

whereby in the unemployment regime all output adjustments occur along the extensive
labor margin, while in the full-employment regime all adjustments occur along the intensive
margin. In order to relax this stark dichotomy, in the quantitative version of the model we
allow firms to be heterogeneous in terms of their fixed costs. That is, rather than assuming
that all firms have fixed cost k, we assume that the n-th firm has fixed cost k (n) ≥ 0, where
k (·) is a non-decreasing function. This will allow for the possibility of there being regions
where both extensive and intensive labor margin adjustments may occur.33,34

Third, as discussed earlier and in contrast to what is observed in the data, purely deter-
ministic models of economic fluctuations tend to yield cycles of a constant length. This can
be observed either as a very regular pattern in a plot of time series data generated from the
model, or as one or more large spikes in the spectrum estimated from that data.35 One of
the key contributions of this paper is to show that by introducing a relatively small amount

32The key desirable property for a second state variable here is that it introduces momentum into the
dynamics of X, so that movements from a high to a low level of X and back are gradual, rather than rapid
as they are when X is the only state variable. Consumption habit exhibits this property by reducing period-
to-period fluctuations in household demand, with the added advantages that it maintains tractability and
keeps the model as close as possible to the baseline version discussed earlier. Nonetheless, there are likely a
number of other choices (e.g., adjustment costs in investment or employment) that could have been made
instead and that would have delivered similar qualitative dynamics.

33To see this, note that the marginal firm entrant must earn zero expected profit, which in the unem-
ployment regime is equivalent to the condition F (`)− F ′ (`) ` = k(n), where n is the index of the marginal
entrant. A rise in the employment rate is associated with a rise in n, which (weakly) increases the right-hand
side of this expression. Since the left-hand side of this expression is strictly increasing in `, this then implies
that a rise in the emploment rate is in general also associated with a rise in hours-per-worker, i.e., both
extensive and intensive labor margin adjustments occur.

34The functional form chosen for this k (·) (discussed below) will nest the baseline case of a constant fixed
cost. Since the parameters of this function will be estimated, the data will ultimately choose the degree to
which k (·) is non-constant.

35One may show that the spectrum associated with any limit cycle is infinitely high at a countable number
of points (i.e., a countable sum of Dirac delta functions), and zero everywhere else.
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of randomness into a limit-cycle model it becomes possible to produce realistically irregular
fluctuations. To this end, we also include in the model an exogenous random TFP process,
θ̃t.

36

3.3 Functional forms, calibration and estimation

Production is assumed to be of the Cobb-Douglas form

F (`) = A`α

Utility over consumption (net of habit) is assumed to be of the form

U (C) = aC − b

2
C2

while disutility of labor is taken to be of the form

ν (`) =
ν1

1 + ω
`1+ω

The fixed cost of the n-th firm is assumed to be given by

k (n) =


0 n ≤ n0

n−n0

η
k̄ n0 < n < n0 + η

k̄ n ≥ n0 + η

where n0, η and k̄ are parameters. This function is piecewise linear with three regimes: low-n
firms have fixed cost zero, high-n firms have fixed cost k̄, and over the intermediate range k
rises linearly from zero to k̄.37 Finally, we assume the TFP process is given by

θt ≡ log
(
θ̃t

)
= ρθt−1 + εt, εt ∼ N

(
0,
( σ

100

)2
)

Several of the model parameters were directly calibrated. In particular, we set the labor
share at a standard value of α = 2/3. The inverse Frisch elasticity was calibrated at the
widely used level ω = 1. We set the depreciation rate and discount factor at standard values
of δ = 0.025 and β = 0.99, respectively, and normalize the maximum fixed cost at k̄ = 1.
Finally, the fraction of purchases entering the durables stock was calibrated at γ = 0.192,
which is the average ratio of durables to total consumption in the National Income and
Product Accounts data.38 The remaining parameters were estimated.

36For convenience, in order to retain certain analytical properties that are helpful in a computational
setting, we assume that firms’ fixed costs and households’ second-sub-period value functions also fluctuate
with the TFP process. Output, fixed costs, and the value function are thus given by θ̃tF (·), θ̃tk (·), and
θ̃−1t V (·), respectively.

37Quadratic utility and the piecewise-linear form for k(·) were assumed for tractability and computational
efficiency. None of the key properties of the model rely on these assumptions.

38As noted above, we include the conceptually-similar residential investment under the heading of
“durables”. The figure of 0.192 can thus be obtained from NIPA data as the average of (Durable goods +
Residential investment)/(Consumption + Residential investment) over the sample period 1960Q1-2012Q4.
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Solving the model for a particular parameterization was done using the parameterized
expectations (PE) approach.39 Given this solution, a large data set (T = 100, 000 periods
in length) was simulated and, after taking logs of the resulting hours series and detrending
it with the same BP filter as used for the data, the spectrum of log-hours was estimated.
The non-calibrated parameters were then estimated so as to minimize the average squared
difference between the model spectrum and the spectrum estimated from the data. Further
details of the solution and estimation procedure are presented in Appendix C.

Estimated parameter values are reported in Table 1. Several things should be noted.
First, the TFP process is close to the process that would be estimated directly from pro-
ductivity data. For example, using John Fernald’s [2014] measure of business-sector labor
productivity growth over the sample period (1960Q1-2012Q4),40 after cumulating, linearly
detrending, and fitting an AR(1) process, one obtains a persistence estimate of 0.974 and an
innovation standard deviation of 0.713%, yielding an unconditional productivity standard
deviation of 3.16%.41 The corresponding parameters estimated for the unemployment-risk
model, meanwhile, are ρ = 0.969 and σ = 0.570, respectively, which yields an unconditional
standard deviation of 2.30%. The fact that the model only features a single shock, and
that the variance of that shock in the model is, if anything, smaller than its data counter-
part highlights the more general observation that models featuring deterministic fluctuations
may not require the presence of large amounts of exogenous variation in order to generate
empirically reasonable business cycles.

The only other parameter with a clear comparator in the data or literature is habit
persistence, which is estimated here to be h = 0.76, well within the range of standard
estimates obtained elsewhere in the literature. For example, Smets and Wouters [2007]
report a 90% confidence interval for habit of (0.64, 0.78), while Justiniano, Primiceri, and
Tambalotti [2010] report a 90% confidence interval of (0.72, 0.84).

The remaining parameters in Table 1 are composed mainly of uninteresting scale parame-
ters, and parameters for which few if any precedents exist. The parameter τ , which captures
the strength of the household’s desire to reduce spending in response to a rise in unemploy-
ment risk, falls into the latter category. Given its central role in the model, however, it
deserves some comment. If interpreted narrowly as a one-period financial premium on debt
vis-à-vis saving, the estimate of τ = 0.27, or 27%, clearly exceeds typical borrowing-lending
spreads as reported in the literature. However, there are several reasons to think this view
of τ may be overly restrictive. First, in order to avoid significantly complicating the model,
conditional on the employment rate an individual worker’s probability of being employed is
assumed to be independent from quarter to quarter. If the actual employment state of an in-
dividual exhibits persistence, then considering only one-period financial costs may understate
households’ desire to reduce spending in response to an increase in unemployment. Second,
borrowing-lending spreads that reflect average borrowing rates faced by all households may
not accurately reflect rates faced by unemployed individuals, which are likely to be higher.

39See, for example, den Haan and Marcet [1990] and Marcet and Marshall [1994]. Details can be found in
Appendix C.

40Available at http://www.frbsf.org/economic-research/economists/jfernald/quarterly_tfp.

xls.
41Similar values are obtained when using Fernald’s TFP or utilization-adjusted TFP measures instead of

labor productivity.
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Table 1: Parameter Values

Parameter Value Description

Estimated Parameters
a 12.535 Marginal utility of consumption, intercept
b 2.247 Maginal utility of consumption, slope
h 0.761 Habit persistence
ν1 13.274 Labor disutility scaling factor
τ 0.270 Premium on debt
A 3.199 Constant productivity factor
n0 0.843 Measure of firms with zero fixed cost
η 0.091 Measure of firms over which fixed cost is rising
ρ 0.969 Persistence of TFP
σ 0.570 100 × s.d. of innnovation to TFP

Calibrated Parameters
α 0.667 Labor share
ω 1 Inverse Frisch elasticity
δ 0.025 Depreciation of durables
β 0.99 Discount factor
k̄ 1 Maximum firm fixed cost
γ 0.192 Fraction of purchases entering durables stock

Third, many unemployed individuals may in fact be unable to access financial markets at all,
instead being forced to rely on costly asset liquidations and/or reduced consumption levels
in order to meet their obligations, the potential for either of which may cause households to
strongly reduce their desired spending. To the extent that any or all of these factors should
be subsumed into τ , the value estimated here may not be unreasonable.

3.4 Main Results

To illustrate the deterministic mechanisms, we first report results obtained when shutting
down the TFP shock (i.e., setting σ = 0).42 Panel (a) of Figure 17 plots a simulated 212-
quarter sample43 of log-hours generated from this deterministic model. Two key properties
should be noted. First, the model is clearly capable of generating cycles of a reasonable
length, which in this case is approximately 30 quarters. The apparent inability of models of
deterministic flutcutations to generate cycles of quantitatively reasonable lengths appears to
have been one of the factors leading to the abandonment of this literature. As this exercise

42In particular, we first obtained the PE coefficients from the full stochastic model. The simulation results
for the deterministic model were then generated using these stochastic PE coefficients, but feeding in a
constant value θt = 0 for the TFP process. In other words, agents in the deterministic model implicitly
behave as though they live in the stochastic world. As a result, any differences between the deterministic
and the stochastic results in this section are due exclusively to differences in the realized sequence of TFP
shocks, rather than differences in, say, agents’ beliefs about the underlying data-generating process.

43This is equal to the length of the sample period of the data.
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demonstrates, however, unreasonable cycle lengths are by no means an unavoidable property
of these models. Second, notwithstanding the reasonable cycle length, it is clear when com-
paring the simulated data in Figure 17 to the actual data in Figure 16 that the fluctuations
in the deterministic unemployment-risk model are far too regular,44 a shortcoming shared
by many earlier models of deterministic fluctuations.

Figure 17: Deterministic Model

(a) Sample of Simulated Hours Worked (b) Spectrum of Hours Worked
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Note: Panel (a) shows 212-quarter simulated sample (same size as data set) of BP-filtered log(hours
worked) (φt`t) generated from the deterministic model. Initial simulated series was 252 quarters
long, with first and last 20 quarters discarded after BP-filtering. Details for computation of model
spectrum in panel (b) can be found in Appendix C.

These properties of the deterministic model—i.e., a highly regular 30-quarter cycle—can
also be seen clearly in the frequency domain. Panel (b) of Figure 17 plots the spectrum for
the deterministic model (dashed line), along with the spectrum for the data (solid line) for
comparison.45 Consistent with the pattern in the time domain, the spectrum exhibits a peak

44Note that the cycles clearly do not exactly repeat themselves. This is a technical issue here that we
sidestep throughout this paper. Certain types of deterministic fluctuations share many of the basic qualitative
features of a limit cycle, but never exactly repeat themselves. For example, in a bivariate discrete-time system
characterized by rotation around the unit circle by θ radians per period, if θ/π is irrational then the system
will never return to the same point twice. This property is due to the discrete-time formulation of the
model. In a continuous-time version of the model, the cycles would necessarily repeat themselves, a direct
consequence of the Poincaré-Bendixson Theorem (see, e.g., Guckenheimer and Holmes [2002], p. 44).

45Note that the model was not re-estimated after shutting down the TFP shock. As such, there may be
alternative parameterizations of the deterministic model that are better able to match the spectrum in the
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at around 30 quarters. Further, the regularity of the cycle is manifested as a large spike in
the spectrum. In contrast, the spectrum estimated from the data is much flatter.

Re-introducing the TFP shock into the model, we see a markedly different picture in both
the time and frequency domains. Panel (a) of Figure 18 plots a 212-quarter sample of log-
hours generated from the stochastic model. While clear cyclical patterns are evident in the
figure, it is immediately obvious that the inclusion of the TFP shock results in fluctuations
that are significantly less regular than those generated in the deterministic model, appearing
qualitatively quite similar to the fluctuations found in Figure 16 for actual data. This is
confirmed by the spectrum, which is plotted in panel (b) of Figure 18 alongside the data
spectrum. Also plotted is a pointwise 90% simulated confidence interval from the model
for data sets of the same length as the data (i.e., 212 quarters).46 The stochastic model
clearly matches the data quite well in this dimension, including possessing a peak near 40
quarters and, as compared to the deterministic model, lacking any large spike. The good fit
of the model can also be seen by looking at the autocovariance function (ACF) of hours, i.e.,
Cov (Lt, Lt−k), where k is the lag (in quarters). Panel (a) of Figure 19 plots the result for
the first 40 lags for both the data and model, along with pointwise 90% confidence intervals.
As the figure shows, the curves lie nearly on top of one another, indicating that the model
matches the data very well in this dimension also.47

To verify that the good fit of the spectrum is not driven by the choice of filter, Figure 20
plots the data and model spectra for hours under four alternative filtering choices.48 Panels
(a)-(c) present results for three alternative band-pass filters with different upper bounds (100,
60, and 40 quarters, respectively), while panel (d) plots spectra using a Hodrick-Prescott
filter with parameter 1600. As the figure shows, the model fits the data very well in all cases.

Next, it should be emphasized that the exogenous shock process in this model primarily
accelerates and decelerates the endogenous cyclical dynamics, causing significant random
fluctuations in the length of the cycle while only modestly affecting its amplitude. For
example, in the deterministic version of the model the standard deviation of log-hours is
0.026, while in the stochastic model it is 0.033, implying that 79% of the standard deviation
of hours is due to deterministic mechanisms. In contrast, if this TFP process were the only
shock process operating in the widely-cited model of Smets and Wouters [2007], for example,
it would generate a standard deviation of log-hours of only 0.005. This again suggests the
more general point that, if one is willing to consider the class of models capable of generating
deterministic fluctuations, then a very parsimonious set of shocks that are small in magnitude
can potentially yield qualitatively and quantitatively reasonable fluctuations.

As a final exercise in this section, it is worth briefly further comparing the above results to
those of Smets and Wouters [2007]. Their model has received much attention in the literature
for its ability to fit well a number of key macroeconomic data series. Panel (a) of Figure 21
shows the spectrum for hours worked as generated by the Smets and Wouters [2007] model

data.
46That is, if the model were the true data-generating process, then at each periodicity the spectrum

estimated from the data would lie inside the confidence interval 90% of the time.
47Note that the ACF is simply the inverse Fourier transform of the spectrum. Since the spectrum of the

model and data are similar, we would expect the ACF to be similar as well, a property clearly verified in
Figure 19.

48Note that the model spectra were obtained using the baseline model parameters as reported in Table 1.
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Figure 18: Stochastic Model

(a) Sample of Simulated Hours Worked (b) Spectrum of Hours Worked
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Note: Panel (a) shows 212-quarter simulated sample (same size as data set) of BP-filtered log(hours
worked) (φt`t) generated from the stochastic model. Initial simulated series was 252 quarters long,
with first and last 20 quarters discarded after BP-filtering. Details for computation of model spec-
trum in panel (b) can be found in Appendix C. Dotted lines show a pointwise 90% confidence interval
for the spectrum that would be estimated from a model-generated data set of the same length as the
actual data set (i.e., 212 quarters).
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Figure 19: Autocovariance: Hours Worked (L) and Output (y)
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Note: Figure shows autocovariances of BP(2,80)-filtered hours and output in the data
and stochastic model. k is the lag in quarters. Data series for output is the log of nominal
GDP, deflated by population and the GDP deflator. Output in the model is the sum of
wage earnings and firm profits, which is equal to total production net of fixed costs, i.e.,
θ̃t
[
φtF (`t)−

∫ nt
0 k (x) dx

]
, where nt is the number of firm entrants at date t. Dotted lines

show pointwise 90% confidence intervals for the autocovariance functions that would be
estimated from a model-generated data set of the same length as the actual data set (i.e.,
212 quarters).
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Figure 20: Spectrum: Hours Worked (Alternative Filters)
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Note: Each panel plots corresponding data (solid) and model (dashed) spectrum using
the reported filter instead of the baseline BP(2,80) filter. Dotted lines show pointwise 90%
confidence intervals for the spectrum that would be estimated from a model-generated
data set of the same length as the actual data set (i.e., 212 quarters).
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at the reported median posterior parameter values. As suggested by the relatively close fit,

Figure 21: Hours Worked in Smets-Wouters (SW)

(a) Data and SW Spectrum (b) Decomposition of spectrum (SW)

4 6 8 12 16 24 32 40 64 80
0

0.5

1

1.5

2

x 10
−3

Period of component (quarters)

 

 

Data

Smets−Wouters

Period of component (quarters)

 

 

4 6 8 12 16 24 32 40 64 80
0

1

2

3

4

5

6

7

x 10
−4

Mark−up

Bond premium

Technology

Monetary policy

Gov’t spending

Notes: Data spectrum is as in Figure 16. Spectrum for Smets-Wouters (SW) obtained by simulating
10,000 data sets of the same size as the actual data series. For each simulation, the data was de-
trended and the spectrum estimated using the same procedures as for the actual data. A point-wise
average was taken across all simulated spectra. Because the hours series used by SW for their
estimation differs somewhat from the series used here, for purposes of comparability, in panel (a)
the SW spectrum was scaled by a constant so that the total variance is the same as in the data.
Panel (b) shows portion of variance at each periodicity attributable to each of the following shock
groupings: “Mark-up” – price and wage mark-up shocks; “Bond Premium” – bond premium shock;
“Technology” – TFP and investment-specific technology shocks; “Monetary policy” – monetary
policy shock; “Gov’t spending” – government spending shock.

their model also matches patterns in the hours data reasonably well, though not quite as
well as the unemployment-risk model.49

More insight into the drivers of fluctuations in the Smets and Wouters [2007] model can
be obtained by looking at a spectral variance decomposition; that is, by decomposing the
total variance at each individual periodicity into the portions that are attributable to each
of the shocks in that model. Panel (b) of Figure 21 presents such a decomposition. It is

49This should not be too surprising, as the unemployment-risk model was estimated to match only the
hours series, while the Smets and Wouters [2007] was estimated to simultaneously match seven different data
series (including hours).
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clear from the figure that, in the range of periodicities reponsible for the bulk of the variance
of hours, the two mark-up shocks (price and wage) in the Smets and Wouters [2007] model
account for by far the largest portion. In fact, the proportion of the total hours variance that
is explained by the mark-up shocks rises monotonically with periodicity, explaining around
a third of the variance of hours by the 24-quarter periodicity and over half by the 36-quarter
periodicity.50 In contrast, the unemployment-risk model presented here is equally capable of
matching the spectrum in hours, but does so with only a reasonably-sized TFP shock and
without relying on poorly motivated mark-up shocks.

3.5 Additional Results

To this point, we have focused on the fit of the model with respect to the target series,
hours worked. In this subsection, we evaluate how well the model performs in several other
dimensions that were not directly targeted.

Panel (a) of Figure 22 compares the spectrum of output for the data and the stochastic
model.51 As shown in the figure, the model spectrum matches the data reasonably well,
though it is somewhat too large (indicating too much output variance in the model), and the
average periodicity is somewhat too low. The second observation should not be too surpris-
ing, as the model does not include capital as a factor of production. Since productive capital
tends to exhibit lower-frequency fluctuations than labor (the other factor of production), all
else equal its omission from the model will cause the average periodicity of output to be too
small. Panel (d) of Figure 19, meanwhile, plots the ACF for output, which confirms the
first observation: the variance of output in the model (i.e., the autocovariance at lag k = 0)
is slightly larger than in the data. Notwithstanding this, however, the spectrum and ACF
for output in the data lies well within a 90% confidence interval for the model, suggesting a
relatively good overall fit.

Next, panel (b) of Figure 22 plots the coherence between hours and output for the
data and for the stochastic model.52 Coherence is analogous to a regression R2, giving the
proportion of the variance of hours that can be linearly predicted by output at a given
periodicity. A coherence of one would thus indicate that hours and output are perfectly
correlated at that periodicity, while a coherence of zero would indicate that hours and output
are orthogonal. In the data (solid line in the figure), we see that at the lowest periodicities
hours and output are modestly correlated, with coherence around 0.4-0.5. As the periodicity
rises, the coherence initially increases relatively rapidly, reaching a peak of 0.87 at around 13
quarters. Over this range, as indicated by the dashed line in the figure the model coherence
matches the data very well. Beyond the 13-quarter periodicity, however, the data and model
begin to diverge somewhat. The data coherence largely flattens out, with a gradual downward

50The importance of the mark-up shocks is not exclusive to hours within the Smets and Wouters [2007]
model. For example, as reported in that paper, at a 40-quarter horizon the mark-up shocks together account
for over half of the forecast-error variance (FEV) of output and over 80% of the FEV of inflation.

51Data series for output is the log of nominal GDP, deflated by population and the GDP deflator, then
de-trended using a BP(2,80) filter using the same procedure as with hours worked. Output in the model
is the sum of wage earnings and firm profits, which is equal to total production net of fixed costs, i.e.,
θ̃t
[
φtF (`t)−

∫ nt

0
k (x) dx

]
, where nt is the number of firm entrants at date t.

52The coherence at a periodicity P is given by |sL,y (P )|2 / [sL (P ) sy (P )], where sL is the spectrum of
hours, sy is the spectrum of output, and sL,y is the cross-spectrum.
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Figure 22: Spectrum: Output (Data and Stochastic Model)
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Notes: Data series for output is the log of nominal GDP, deflated by population and
the GDP deflator. Data series for the employment rate is the log of the BLS’s index of
nonfarm business employment divided by population. Data series for hours-per-worker
is the log of nonfarm business hours divided by nonfarm business employment. All series
were de-trended using a BP(2,80) filter using the same procedure as with hours worked.
Output in the model is the sum of wage earnings and firm profits, which is equal to total
production net of fixed costs, i.e., θ̃t

[
φtF (`t)−

∫ nt
0 k (x) dx

]
, where nt is the number

of firm entrants at date t. Spectrum for data and model computed as with hours. Raw
coherence at a periodicity p is given by |sL,y (p)|2 / [sL (p) sy (p)], where sL is the spectrum
of hours, sy is the spectrum of output, and sL,y is the cross-spectrum. Coherence was
then kernel-smoothed using a Hamming window with bandwidth parameter 51. In panels
(a) and (b), dotted lines show pointwise 90% confidence intervals for the spectrum and
coherence, respectively, that would be estimated from a model-generated data set of the
same length as the actual data set (i.e., 212 quarters).
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slope, reaching 0.82 at the 80-quarter periodicity. The model coherence, meanwhile, rises
somewhat over this range. As with the spectrum of output, the discrepancy between the
data and model coherences at higher periodicities can be explained by the lack of productive
capital in the model.53 Notwithstanding this discrepancy, however, the basic qualitative
properties of the relationship between hours and output in the data—namely, moderate
correlation at higher frequencies but significant correlation at medium-to-low frequencies
(including the range of frequencies in which the bulk of variation occurs)—are well-captured
by the model.

While coherence measures the strength of the relationship between two series at a given
periodicity, it provides no information about the sign of this relationship or whether one
series tends to lead the other. To address how well the model fits in these dimensions, panels
(b) and (c) of Figure 19 plot the cross-covariance function (CCF) for hours and output. Two
things should be noted from these plots. First, hours and output are positively correlated
in both the model and data. Second, in the model hours and output are in phase (i.e., the
peak of the CCF occurs at a lag of k = 0), while in the data the peak occurs at the point
where output leads hours by one quarter. Nonetheless, the CCF is close to flat in the data
between its peak and k = 0,54 suggesting that any lead of output is weak at best. Further,
as suggested by the reported 90% confidence intervals, over all the cross-covariance between
output and hours is well-captured by the model.

Finally, while we have established that the model does a good job of matching patterns in
total hours, consider the model’s implications for its two component parts, the employment
rate, φt, and hours-per-worker, `t. Panel (c) of Figure 22 shows spectra for the data and
stochastic model for these two series.55 From the figure, we see that the spectrum of the
employment rate from the model matches fairly well the one from the data, and in particular
the employment rate exhibits an overall level of volatility that is close to the volatility in
the data. Thus, this model addresses one of the frequent criticisms of many models of
unemployment in the literature, which is that they generate too little employment volatility.56

On the other hand, the model does a relatively poor job of matching behavior in hours-
per-worker. In particular, while the basic pattern of the model spectrum is close to that
in the data, the model spectrum is in most places too small, especially beyond the lowest
periodicities. This suggests that the model features too little in the way of movements
along the intensive labor margin.57 To understand why, recall that when the economy moves

53Including capital would tend to reduce the coherence between output and hours by introducing another
factor of production which is imperfectly correlated with hours. Since fluctuations in capital tend to be
much more important at higher periodicities, the coherence would tend to fall by more at the upper end of
the range of periodicities.

54The peak of the data CCF is only 0.28% greater than it is at k = 0.
55Data series for the employment rate is the log of the BLS’s index of nonfarm business employment

divided by population. Data series for hours-per-worker is the log of nonfarm business hours divided by
nonfarm business employment. Both series were de-trended using a BP(2,80) filter using the same procedure
as with hours worked.

56See for example Shimer [2005].
57As Figure 22 shows, extensive-margin fluctuations are an order of magnitude larger than intensive-margin

fluctuations in both the model and the data. As a result, even though the model does not capture well the
intensive-margin fluctuations, this has little impact on the fit of total hours, which is driven primarily by
extensive-margin fluctuations.
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into a region where the fixed-cost function k (·) is increasing, forces come into play which
cause output fluctuations to occur on both intensive and extensive labor margins. Recall
also that the former are associated with strategic substitutability (through changes in the
price of goods), while the latter are associated with strategic complementarity (through
changes in unemployment risk). If a given change in output occurs too much along the
intensive margin (as is the case for this parameterization of the model), the associated
strategic substitutability tends to push the economy back towards the steady state quickly,
so that any change in hours-per-worker is relatively small and short-lived.58

3.6 Multiple Equilibria and Indeterminacy

In the estimation exercise conducted above, we only considered parameter combinations for
which (a) there exists a unique steady state, and (b) the probability of having multiple static
equilibria (i.e., multiple equilibria in a period, conditional on the current state and on agents’
beliefs about the future) was negligible. As mentioned briefly above, these two constraints
can be expressed as upper bounds on τ . Intuitively, multiple steady states and multiple
equilibria may arise in this model if the strategic complementarity between agents’ actions
is too strong. Since τ governs the strength of this complementarity, ruling out multiple
equilibria is equivalent to limiting the size of τ .

In particular, define

τ ∗ ≡ αk̄b

(1− α) vp∗

τ̄ ≡ [1− β (1− γ) (1− δ)] [(1− δ) γ + δ] (1− βh) (1− h)

[1− β (1− δ)] δ
τ ∗

The following proposition characterizes sufficient (though not necessary) conditions under
which the steady state and static equilibria are unique.

Proposition 9 The steady state of the unemployment-risk model is unique if τ < τ̄ . The
period-t static equilibrium is unique if τ < θ̃2

t τ
∗.

Ex ante, it is not clear whether imposing the constraints on τ from Proposition 9 is
restrictive in practice. The results from the estimation reported above, however, give no
indication that these constraints are binding. In particular, at the parameter values reported
in Table 1, we have τ̄ = 2.61 and τ ∗ = 0.82, both well above the value of τ = 0.27. Clearly,
the constraint ensuring a unique steady state is not binding at the optimal parameter values.
The constraint ensuring a static equilibrium, meanwhile, depends on the level of productivity
θ̃t, which can in principle be arbitrarily small, and thus the constraint may be violated with
strictly positive probability. Nonetheless, given the size of the estimated TFP shock, this
probability is negligible in practice. For example, in 100,000 simulated periods, the smallest
value of θ̃2

t τ
∗ that occurred was 0.69, still more than twice the value of τ .

58One way to increase the variance of hours-per-worker is thus to have the upward-sloping part of the fixed-
cost function be less steep. Since hours-per-worker was not a target of the estimation algorithm, however,
there is no reason why it should have favored a flatter k (·). Improving the fit of the model in this dimension
by including hours-per-worker information as part of the estimation objective function is a task for future
work.
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While there are relatively simple analytical conditions that can be obtained to ensure
uniqueness of the steady state and of static equilibrium, verifying dynamic determinacy—
that is, the presence of a unique path converging to the limit cycle for a given initial state—
is more challenging, since no analytical results are available in general. Nonetheless, in
numerical simulations we were unable to find any evidence of indeterminacy. In particular,
given initial values for the state variables and arbitrary initial values for the jump variables
(chosen in practice from some neighborhood of the PE solution), one may simulate a non-
stochastic version of the model forward.59 If, for a given initial state, the system were to
converge to the limit cycle for multiple combinations of initial jump variables, this would
indicate the presence of indeterminacy. However, performing this experiment many times
beginning from different initial conditions, in all cases the system eventually exploded, which
suggests to me that indeterminacy is not likely to be an issue here.

Conclusion

The objective of this paper was to show that the limit cycle few of the business cycle was
neither a theoretical curiosity nor an quantitatively implausible theory of macroeconomic
fluctuations. To that end, we proposed in a first section a general reduced form framework
with strategic complementarities between agents decisions. In this framework, we have shown
that limit cycles emerge, not as a knife-edge case but quite generally under mild conditions
on the degree of strategic complementarities. In particular, we show that the strength fo
strategic complementarities that is needed is less than what is needed to generate multiple
equilibria and sunspot fluctuations. Then we have proposed in a second section a general
equilibrium model that builds on Beaudry, Galizia, and Portier [2014]. In that model,
unemployment risk and precautionary savings interact to induce a limit cycle driven by the
type of forces outlined in our general structure. In a third section, we have highlighted some
interesting properties of data spectral density. First, the spectral density is not singular
with all its mass at a given frequency, as would suggest a purely deterministic limit cycle
model. Second, there is a non negligible mass in the spectrum at medium frequencies that
are lower than the ones generally considered by the business cycle literature. Given theses
observations, we propose a DSGE version of our model that introduces habit persistence and
shocks to total factor productivity. The model is estimated to fit the spectral density of hours
worked. Estimation favors a syncretic view according to which the data generating process
are well approximated with a limit cycle perturbed by TFP shocks. That model is then
showed to also fit the spectral density of output. We believe that those results convincingly
show that the limit cycle view of the business cycle is a worth pursuing avenue for future
quantitative research.

59See Appendix D for details.
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Appendix

A Proofs of section 1

A.1 Proposition 1

The two eigenvalues of matrix ML are the solution the equation

Q(λ) = λ2 − Tλ+D = 0 (A.1)

where T is the trace of the ML matrix (and also the sum of its eigenvalues) and D is the
determinant of the ML matrix (and also the product of its eigenvalues). The two eigenvalues
are therefore given by

λ, λ =
T

2
±

√(
T

2

)2

−D (7)

where
T = (α2 − α1 + (1− δ)) (A.2)

and
D = α2((1− δ). (A.3)

From (A.3), we have that λλ ∈]0, 1[. Therefore, if the eigenvalues are complex, their modulus
is in between zero and one so that they are both inside the unit circle. If the two eigenvalues
are real, they have the same sign. From (A.2), we have that λ + λ ∈] − 1, 2[. Therefore, if
eigenvalues are negative, they are both inside the unit circle. If they are both positive, let’s
assume that λ is the largest eigenvalue. If λ > 1, then λ < 1 because λ+ λ = T < 2. Given
that λλ > 1, we have λ < 1

λ
so that λ + 1

λ
< 2 which implies (1 − λ)2 < 0. This is not

possible and hence, λ < 1. As λ is the largest eigenvalue and that both are real and positive,
both eigenvalues are inside the unit circle.

A.2 Proposition 2

With demand complementaries, the trace and determinants of matrix M are given by

T =

(
α2 − α1

1− F ′(Is)
+ (1− δ)

)
(A.4)

and

D =
α2((1− δ)
1− F ′(Is)

. (A.5)

From equations (A.4) and (A.5), we have the following relation between the trace and de-
terminant of matrix M :

D =
α2(1− δ)
α2 − α1

T − α2(1− δ)2

α2 − α1

(A.6)

Therefore, when F ′(IS) varies, T and D move along the line (A.6) in the plane (T,D).

We have shown that when F ′(Is) = 0, (T,D) belongs to the triangle ÂBC, meaning that
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both eigenvalues of M are inside the unit circle. This corresponds to point E or point E ′

(depending of the configuration of parameters) on Figure 4.
When F ′(Is) tends to −∞, D tends to 0 and T tends to 1 − δ, which corresponds to

point E1 on Figure 4. As this point is inside the triangle ÂBC, both eigenvalues are inside
the unit circle. When F ′(Is) goes from 0 to −∞, (T,D) moves along the segment [E,E1]

or [E ′, E1]. Because both belongs to ÂBC and because the interior of triangle ÂBC is a
convex set, both eigenvalues of matrix M stay inside the unit circle when F ′(Is) goes from
0 to −∞.

A.3 Proposition 3

A fold bifurcation occurs with the appearance of an eigenvalue equal to 1, a flip bifur- cation
with the appearance of an eigenvalue equal to -1 and a Hopf bifurcation with the appearance
of two complex conjugate eigenvalues of modulus 1. From (A.5) and (A.4), we see that when
F ′(Is) tends to 1 from below, D tends to +∞ and T tends to ±∞ depending on the sign
of α2 − α1. Therefore, starting from point E or E ′ for which F ′(Is) = 0, (T,D) will exit

the triangle ÂBC, so that at least on eigenvalue will have a modulus one when the half-line

(A.6) that starts at E (or E ′) will cross the triangle ÂBC, as shown in Figures 4 and 5.
Consider first the case α2 > α1. This corresponds to Figure 4. In that case, the line

(A.6) has a positive slope, and will cross either segment [AC] ((a) on the Figure) or segment
[BC] ((b) on the Figure). In case (a), we will have a fold bifurcation has eigenvalues are

real and one will be equal to 1 when crossing the triangle ÂBC. In cas (b), both eigenvalues

are complex, and will both have modulus 1 when crossing ÂBC, so that we will have a
Hopf bifurcation. We will be in case (b) when D = 1 and T < 2. D = 1 implies F ′(Is) =
1−α2(1−δ). Plugging into the expression of T , the condition T < 2 writes 1−δ+ α2−α1

α2(1−δ) < 2
which can be simplified to α2 <

α1

δ2
. Therefore, if α1 < α2 <

α1

δ2
, we have a Hopf bifurcation

and if α2 >
α1

δ2
, we have a fold bifurcation.

Consider now the case α2 < α1. This corresponds to Figure 5. In that case, the line
(A.6) has a negative slope, and will cross either segment [AB] ((a) on the Figure) or segment
[BC] ((b) on the Figure). In case (a), we will have a flip bifurcation has eigenvalues are real

and one will be equal to -1 when crossing the triangle ÂBC. In cas (b), both eigenvalues

are complex, and will both have modulus 1 when crossing ÂBC, so that we will have a
Hopf bifurcation. We will be in case (b) when D = 1 and T > −22. D = 1 implies
F ′(Is) = 1 − α2(1 − δ). Plugging into the expression of T , the condition T > −2 writes
1 − δ + α2−α1

α2(1−δ) > −2 which can be simplified to α2 >
α1

(2−δ)2 . Therefore, if α2 <
α1

(2−δ)2 , we
have a flip bifurcation and if α1 > α2 >

α1

(2−δ)2 , we have a Hopf bifurcation.

Finally, in the case α1 = α2, we always have T = 1− δ, so that D increases with F ′(Is)
along a vertical line that necessarily crosses the segment [BC], so that we have a Hopf
bifurcation.

Putting all those results together gives the conditions stated in Proposition 3.
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A.4 Proposition 4

For this proposition, we make use of Wan’s [1978] theorem and of the formulation given by
Wikran [2013]. For symetric allocations, our non-linear dynamical system is given by(

It − F (It)
Xt

)
=

(
α2 − α1 −α1(1− δ)

1 1− δ

)(
It−1

Xt−1

)
+

(
α0

0

)
(A.7)

To study the stability of the limit cycle in case this system goes through a Hopf bifurcation,
we need to write the system in the following “standard form”(

y1t

y2t

)
=

(
cos θ − sin θ
sin θ cos θ

)(
y1t−1

y2t−1

)
+

(
f(y2t−1, y2t−1)
g(y1t−1, y2t−1)

)
(A.8)

where y1 and t2 are functions of I and X. . Let µ be the bifurcation parameter (µ = F ′(Is)
in our case) and µ0 the value for which the Hopf bifurcation occurs. Define

d =
d|λ(µ0)|

dµ

and

a = −Re

(
(1− 2λ)λ

2

1− λ
ξ11ξ20

)
− 1

2
|ξ11|2 − |ξ02|2 + Re(λξ21)

where

ξ20 =
1

8
((f11 − f22 + 2g12) + i(g11 − g22 − 2f12))

ξ11 =
1

4
((f11 + f22) + i(g11 + g22))

ξ02 =
1

8
((f11 − f22 − 2g12) + i(g11 − g22 + 2f12))

ξ21 =
1

16
((f111 + f122 + g112 + g222) + i(g111 + g122 − f112 − f222))

According to Wan [1978], the Hopf bifurcation is supercritical id d > 0 and a < 0.
We first write (A.7) under the standard form (A.8). Denoting it = It−Is and xt = Xt−Xs

and F̂ (it) = F (it + Is), and recalling that F (Is) = F̂ (0) = 0, we can rewrite (A.7) as(
it − F̂ (it)

xt

)
=

(
α2 − α1 −α1(1− δ)

1 1− δ

)(
it−1

xt−1

)
(A.9)

Define H(it) = it − F̂ (it). Under the restriction F ′(·) < 1, H is a monotonous increasing
function, and is therefore invertible. Denote G(·) = H−1(·). Adding and subtracting to the
right hand side of the first equation of (A.9) a first order approximation of G around zero,
we obtain(

it − F̂ (it)
xt

)
=

(
α2−α1

1−F ′(Is) −
α1(1−δ)
1−F ′(Is)

1 1− δ

)
︸ ︷︷ ︸

M

(
it−1

xt−1

)
+

(
m(it−1, xt−1)

0

)
, (A.10)
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with

m(it−1, xt−1) = G
(
α1(1− δ)xt−1 + (α2 − α1)it−1

)
+

α1(1− δ)
1− F ′(Is)

xt−1 −
α2 − α1

1− F ′(Is)
it−1.

The eigenvalues of M are the solution of equation

Q(λ) = λ2 − Tλ+D = 0

where T is the trace of the M matrix and D its determinant, with T =
(

α2−α1

1−F ′(Is) + (1− δ)
)

and D = α2((1−δ)
1−F ′(Is) . At the Hopf bifurcation, D = 1 and the two eigenvalues are λ = cos θ ±

i sin θ with θ = arctan

(√
(T/2)2−1

T/2

)
. Let λ be the eigenvalue with positive imaginary part

and λ its conjugate, and denote D and C the two matrices

D =

(
λ 0

0 λ

)
and

C =

(
cos θ − sin θ
sin θ cos θ

)
.

By construction, λ and λ are the eigenvalues of C. We introduce matrices VC and VA which
are such that C = VCDV

−1
C and M = VMDV

−1
M . Those matrices can be computed to be

VC =

(
sin θ sin θ
−i sin θ i sin θ

)
and

VM =

(
λ+ δ − 1 λ+ δ − 1

1 1

)
We therefore have C = VCDV

−1
C = VCV

−1
M MVMV

−1
C = BMB−1 with

B = VCV
−1
M =

(
0 sin θ
−1 cos θ − (1− δ)

)
Let make the change of variable (y1t, y2t)

′ = B × (it, xt)
′ to obtain the “standard form” of

(A.7) (
y1t

y2t

)
=

(
cos θ − sin θ
sin θ cos θ

)(
y1t−1

y2t−1

)
+

(
f(y2t−1, y2t−1)
g(y1t−1, y2t−1)

)
(A.8)

with

f(y2t−1, y2t−1) = 0

g(y1t−1, y2t−1) = −G
( γ1

sin θ
y1t−1 − γ2y2t−1

)
+

1

1− F ′(Is)

( γ1

sin θ
y1t−1 − γ2y2t−1

)
and γ1 = −α2(1− δ) + (α2 − α1) cos θ, γ2 = α2 − α1.
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We can now check the conditions for the Hopf bifurcation to be supercritical, namely

d =
d|λ(µ0)|

dµ
< 0

and

a = −Re

(
(1− 2λ)λ

2

1− λ
ξ11ξ20

)
− 1

2
|ξ11|2 − |ξ02|2 + Re(λξ21) < 0

Denote µ = F ′(Is) the bifurcation parameter. |λ| = det(M) = α2(1−δ)
1−µ , so that

d =
d|λ|
dµ

=
(1− µ) + α2(1− δ)

(1− µ)2
> 0

as µ = F ′(Is) < 1.
Consider now the expression for a. As G(I) is the reciprocal function of I − F (I), we

have

G′′′ =
F ′′′(1− F ′)2 + 2F ′′2(1− F ′)

(1− F ′)4
,

with F ′ < 1. This shows that G′′′ is an increasing function of F ′′′. When F ′′′ becomes large
in absolute terms and negative, so does G′′′. In the expression for a, the first three terms,

−Re
(

(1−2λ)λ
2

1−λ ξ11ξ20

)
− 1

2
|ξ11|2 − |ξ02|2, are not function of F ′′′. The last term is

Re(λξ21) =
α2(1− δ)

16

(
γ2

1

sin2 θ
+ γ2

2

)
G′′′

= κG′′′

with κ > 0. If F ′′′ is sufficiently negative, then will be G′′′, and therefore Re(λξ21) and a.

Therefore, d > 0 and under the condition F ′′′ << 0, we have a < 0. By Wan’s [1978]
theorem, the limit cycle is supercritical.

A.5 Global analysis of reduced form dynamics in continuous time

TO BE WORKED
In order to get a sense of the forces that drive the global dynamics in a system with

demand complementarities, it is easiest to consider a continuous time setup. To this end, we
generalize here our discrete time setup so as to be able to easily move it to its continuous
time analogue. In particular, let us consider the following discrete time generalization of our
previous system given by 1 and 4

Ht = h · It + (1− δH)Ht−1, 0 < δH ≤ 1 (A.11)

and

Xt+1 = It + (1− δ)Xt−1 (A.12)
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It = α0 − α1Xt + α2Ht−1 + F (It), F (′I) < 1 (A.13)

In this system, we now have two accumulation equation for two state variables Xt and
Ht−1. We also have the the decision variable It that effects the accumulation of both state
variables. Once again the potential for demand complementaritities arise in the determina-
tion of It. Note that our previous set up corresponds to the special case where h = δI = 1,
that is, the case where the second state variable depreciates fully after one period. We in-
troduce this more general specification as to be able to extend it to continuous time while
maintaining two state variables. In the structural example given later, It will represent the
purchase of a durable good, Xt will be the stock of the durable good, and Ht will present a
habit term that affects agents utility for the goods. Alternatively, this type of system can
be derived in an environment where there are intertemporal linkages in the production of
the durable due to something akin to ajustment costs to investment. The continuous time
analogue to A.11 and A.12 is given by

Ḣ = h · It − δHIt, 0 < δI (A.14)

and

Ẋ = It − δXt (A.15)

For our analysis of the system given by A.13, A.14 and A.15, we will restrict attention
to the case where α2 <

1
h

min[α1 + δH + δ, (α1 + δ)δH ] as this guarantees that the system is
stable when F (I) = 0. It is relevant to note that this continuous time system should mimic
quite closely to our discrete time system when δI is sufficiently large. For the system given
by A.13, A.14 and A.15, we could again analyze local dynamics and explore what happens
as we vary F ′(Is). Analogues to Prop 1 2 and 3 can be derived in such a case. 60However,
what interests us here is the global behavior of this system. In particular, we want use the
Poincarre-Bendixson Theorem to help us understand when limit cycles are likely to arise in
this set-up. This theorem states, in loose terms, that there are only three possible outcome
configurations in a two dimensional system of differential equations: either the system is
globally stable, the system is globally unstable, or the system exhibit at least one attracting
limit cycle. Moreover, an important aspect of the Poincarre-Bendixson Theorem is the use
of bounded sets to show the existence of limit cycles. In particular, if it can be shown
that there exists a bounded open set from which the system will never leave, and in this
set there is a unstable steady state, then the system exhibits at least one limit cycle. As
noted above, in economic environments there are often forces that may create bounds for
investment decisions. For example, there may be an upper bound on the number of workers
who can work in the sector. Suppose this upper bound on available work creates an upper
bound on I denoted Ī. This upper bound can be captured in our framework by assuming
the social interact term has the following property.

limI−>Ī F (I) = −∞
60 The condition for a Hopf bifurcation to arise in this continuous time system as F ′(Is) moves towards

one is that α2 ∈ [α1

h ,
α1δ

2
H

hδ2 ].
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This condition can be interpreted as reflecting the fact at as aggregate investment goes
towards the upper bound, prices are going to infinity creating a strong dis-incentive for
any one individual to to invest. This condition will thereby ensure that it will not be an
equilibrium outcome to chose an level of investment greater or equal to that ē. Once we
have an upper bound on investment, we immediately get as a by product an upper bound
on the two stock variables Xt and Ht−1

In terms of a lower bound on I, in economic environments this may come for at least
two sources. First, it may the case that as investment gets sufficiently low or negative, then
some prices fall to zero creating a strong incentive for people to invest even if other are
not investing. If the lower bound is given by I, then the condition limI−>I F (I) = ∞ will
guarantee that the equilibrium choice of investment at any point in time will be above e.

Proposition A.1 If interaction effect F (·) is such that the system given by A.13, A.14 and
A.15 is locally unstable, and both limit conditions limI−>Ī F (I) = −∞ and that It ≥ 0 hold,
then the system will have at least one attracting limit cycle.

Proposition A.1 is a direct application of the the Bendixson-Poincarre theorem. The
important element we want to emphasize from this Proposition is it conceptual similarity
with our previous interpretation of Proposition 4. Recall that Proposition 4 indicated that a
key element for the emergence of a (local) limit cycles was the S-shaped form of the function
F (·) near the steady state. Proposition A.1 can be loosely interpreted as indicating that a
limit cycle will emerge when the function F (·) looks s-shaped when looking from a global
perspective.

While we believe that a the upper bound condition limI−>Ī F (I) = −∞ is quite natural
in many economic applications, the existence of a lower bound driven by the condition
limI−>I F (I) =∞ is not as easy to justify. An alternative source of lower bound I is simply
be that it may be physically impossible to have negative investment. This type of constraint
can be added to our system A.13, A.14 and A.15 by including the constraint that whenever
α0 + α2It − α1Xt < 0, then It = 0, İ = −δ1 and Ẋ = −δ.

B Proofs of section 2

B.1 Proposition 5

Recall that
Xt+1 = (1− δ) (Xt + et)

Since et ≥ 0, if lim supt→∞ |Xt| =∞ then lim supt→∞Xt =∞. Suppose then that

lim sup
t→∞

Xt =∞

Since δ ∈ (0, 1], this necessarily implies that lim supt→∞ et =∞. But et is bounded above by
the level of output, the maximum feasible level of which occurs when φt = 1 and `t = ¯̀, in
which case total output is given by F

(
¯̀
)
<∞. Thus we clearly cannot have lim supt→∞ et =

∞, and thus we cannot have lim supt→∞ |Xt| =∞.
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B.2 Proposition 6

The proof proceeds by example, showing that, for the case where γ = 1 and U (c) = ac− b
2
c2,

there exists parameter values and functional forms such that for β close enough to one the
steady state is unstable.

With γ = 1 and U (c) = ac − b
2
c2, we may characterize the evolution of this system by

the conditions

a− b (Xt + et) = vp (et) [1 + τ − τφ (et)]− β (1− δ) vp (et+1) [1 + τ − τφ (et+1)] (B.16)

Xt+1 = (1− δ) (Xt + et) (B.17)

where p (·) and φ (·) are as in the static model. For a given state Xt and a given anticipated
level of et+1, a sufficient condition to ensure that (B.16) has a unique solution is given by

b > vp∗
τ

e∗
≡ b0 (B.18)

where e∗ is output per firm (net of fixed costs) when the economy is in the unemployment
regime and p∗ is the price in the unemployment regime, as described in section 2.1 for the
static model (see footnote 21 regarding p∗). I henceforth assume that (B.18) holds.

Next, the steady-state level of e is given by the solution ē to

a− b

δ
ē = [1− β (1− δ)] vp (ē) [1 + τ − τφ (ē)]

with the steady-state level of X then given by

X̄ =
1− δ
δ

ē

Note that a sufficient condition for the steady state to be unique is given by

b > δ [1− β (1− δ)] b0

which is clearly implied by (B.18).
Next, note that, for any e ∈ (0, e∗) (i.e., in the unemployment regime), the level of a that

implements ē = e is given by

b

δ
e+ [1− β (1− δ)] vp∗

(
1 + τ − τ e

e∗

)
Note also that ē is continuous in β. Thus, choose some ē1 ∈ (0, e∗), and let a = a1, where a1

is the value of a that would implement ē = ē1 when β = 1, i.e.,

a1 ≡
b

δ
ē1 + δvp∗

(
1 + τ − τ ē1

e∗

)
Thus, if β = 1 the steady state is in the unemployment regime by construction, and by
continuity of ē in β the steady state is also necessarily in the unemployment regime for β
sufficiently close to one. This implies the existence of a β < 1 such that the steady state is
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in the unemployment regime when β > β. Assume henceforth that β ∈
(
β, 1
)

and note that
this implies that p′ (ē) = 0 and φ′ (ē) = 1/e∗.

Next, linearizing equations (B.17)-(B.18) around this steady state and solving, we may
obtain in matrix form(

X̂t+1

êt+1

)
=

(
1− δ 1− δ
− b
β(1−δ)b0 −

b−b0
β(1−δ)b0

)(
X̂t

êt

)
≡ A

(
X̂t

êt

)
Thus, the steady state is locally stable if and only if at least one of the two eigenvalues of A
lies inside the complex unit circle. These eigenvalues are given by

λi =

[
1− δ − b−b0

β(1−δ)b0

]
±
√[

1− δ − b−b0
β(1−δ)b0

]2

− 4β−1

2

Note that λ1λ2 = β−1 > 1, so that if the eigenvalues are complex then both must lie outside
the unit circle. Suppose

b =
[
1 + q (1− δ)2] b0 (B.19)

for some q > 0, and note that as long as δ < 1, which I henceforth assume, such a value of b
satisfies (B.18). One may then show that the eigenvalues are complex as long as

(1− δ)2 (β − q)2 < 4β

Clearly, for β close enough to q this condition necessarily holds, and thus, if q is close enough
to one (e.g., if q = 1), then for β arbitrarily close to one the eigenvalues are complex and
therefore outside the unit circle, in which case the steady state is unstable.

B.3 Proposition 7

Let

V (et;Xt) ≡ U (Xt + et)− vp∗
[
(1 + τ) et −

1

2
τ
e2
t

e∗

]
where e∗ is output per firm (net of fixed costs) when the economy is in the unemployment
regime and p∗ is the price in the unemployment regime, as described in section 2.1 for the
static model (see footnote 21 regarding p∗). It can be verified that maximizing

∞∑
t=0

βtV (et;Xt)

subject to (13) implements the de-centralized equilibrium outcome in the neighborhood of
an unemployment-regime steady state. Thus, using

W (Xt, Xt+1) ≡ V
(

1

γ (1− δ)
Xt+1 −

1

γ
Xt;Xt

)
in problem (16) satisfies the desired properties. Next, we may obtain

W11

(
X̄, X̄

)
=

(1− γ)2

γ2
U ′′
(
X̄ + ē

)
+

1

γ2

vp∗τ

e∗
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Thus, W11

(
X̄, X̄

)
> 0 if

vp∗τ

e∗
> − (1− γ)2 U ′′

(
X̄ + ē

)
This condition can clearly hold for certain parameter values (e.g., for γ sufficiently close to
one), in which case W is not concave.

B.4 Proposition 8

We show that the steady state is locally stable when τ = 0. By continuity of all relevant
functions, it then follows that the steady state is locally stable for τ > 0 sufficiently small.

When τ = 0, equilibrium is characterized by the equations

U ′ (Xt + et)− vp (et) = β (1− δ) (1− γ)U ′ (Xt+1 + et+1)− β (1− δ) vp (et+1)

Xt+1 = (1− δ) (Xt + γet)

Assume the steady state is in the unemployment regime, so that p (et) = p∗ in a neighborhood
of the steady state.61 Linearizing around this steady state, assuming β (1− δ) (1− γ) > 0
we may obtain in matrix form(

X̂t+1

êt+1

)
=

(
1− δ (1− δ) γ

[1−β(1−δ)2(1−γ)]
β(1−δ)(1−γ)

[1−β(1−δ)2(1−γ)γ]
β(1−δ)(1−γ)

)(
X̂t

êt

)
≡ A

(
X̂t

êt

)
The steady state is locally stable if at least one of the eigenvalues of A lies inside the
unit circle. It is straightforward to show that the smallest eigenvalue of A is given by
λ1 = (1− δ) (1− γ), which is clearly less than one in modulus. Thus, the steady state is
locally stable. If instead β (1− δ) (1− γ) = 0, then êt = −X̂t and thus X̂t+1 = λ1X̂t, which
is clearly a stable system as well.

C Solution and estimation

C.1 Solution

To solve the model for a given parameterization, letting ẽt ≡ et/θ̃t equilibrium in the economy
is characterized by the following equations:

a− b
(
Xt + θ̃tẽt − hct−1

)
+ (1− δ) γλt = θ̃−1

t

ν1

αA
[` (ẽt)]

ω+1−α [1 + τ − τφ (ẽt)] + µt (C.20)

µt = Et
{
βh
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)]}
(C.21)

λt = Et
{
β
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)
+ (1− δ)λt+1 − µt+1

]}
(C.22)

ct = Xt + θ̃tẽt (C.23)

61It is straightforward to verify that a full-employment-regime steady state must be stable.
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Xt+1 = (1− δ)
(
Xt + γθ̃tẽt

)
(C.24)

Here, φ (ẽ) and ` (ẽ) are the equlibrium levels of the employment rate and hours-per-worker
conditional on total purchases ẽ, and are given by

φ (ẽ) ≡


1
2

(
n0 +

√
n2

0 + 4η ẽ
ẽ∗

)
if 0 < ẽ ≤ ē

ẽ
ẽ∗

if ē < ẽ < e∗

1 if ẽ ≥ e∗

` (ẽ) ≡



[
2ẽ

αA
(
n0+
√
n2
0+4η ẽ

ẽ∗

)
] 1
α

if 0 < ẽ ≤ ē(
e∗

αA

) 1
α if ē < ẽ < e∗(

ẽ
αA

) 1
α if ẽ ≥ e∗

where e∗ ≡ α
1−α k̄ and ē ≡ (n0 + η) e∗. Meanwhile, µt and λt are the Lagrange multipliers on

the definition of consumption and the durables accumulation equations ((C.23) and (C.24)),
respectively.

Conditional on the state variables Xt, ct−1 and θt, and on values of the Lagrange multi-
pliers µt and λt, equation (C.20) can be solved for ẽt. To obtain values of µt and λt, I employ
the method of parameterized expectations as follows. Let Yt ≡

(
Xt − X̄, ct−1 − c̄, θt

)′
denote

the vector of state variables (expressed as deviations from steady state). The expectations
in equations (C.21) and (C.22) are assumed to be functions only of Yt, i.e.,

Et
{
βh
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)]}
= gµ (Yt)

Et
{
β
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)
+ (1− δ)λt+1 − µt+1

]}
= gλ (Yt)

I parameterize the functions gj (·) by assuming that they are well-approximated by N -th-

degree multivariate polynomials in the state variables. In particular, let Y
(N)
t denote the

vector whose first element is 1 and whose remaining elements are obtained by collecting all
multivariate polynomial terms in Yt (e.g., Xt, ct−1, θt, X

2
t , Xtct−1, Xtθt, c

2
t , ctθt, etc.) up to

degree N . I assume that
gj (Yt) = Θ′jY

(N)
t

where Θj is a vector of coefficients on the polynomial terms. Thus, given Θµ, Θλ and the
state Yt, µt and λt are obtained as

µt = Θ′jY
(N)
t

λt = Θ′jY
(N)
t

These values and values for the state variables can be plugged into (C.20) to yield a solution
for ẽt, which can then be replaced in (C.23) and (C.24) to obtain values for the subsequent
period’s state. In practice, I use N = 2.62

62I experimented with larger values of N and found that it resulted in a substantial increase in computa-
tional time without significantly affecting the results.
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To obtain Θµ and Θλ, I proceed iteratively as follows. Begin with some initial guesses
Θµ,0 and Θλ,0,63 and generate a sample of length T = 100, 000 of the exogenous process

θt. Next, given Θµ,i and Θλ,i, assume that gj (Yt) = Θ′j,iY
(N)
t and simulate the path of the

economy for T periods. Given this simulated path, let Y(N) denote the matrix whose t-th
row is given by Y

(N)′
t , and construct T -vectors g̃µ and g̃λ, the t-th elements of which are

given respectively by

βh
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)]
and

β
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)
+ (1− δ)λt+1 − µt+1

]
i.e., the terms inside the conditional-expectation operators in equations (C.21) and (C.22).
Then update the guesses of Θj via

Θj,i+1 =
(
Y(N)′Y(N)

)−1
Y(N)′g̃j

and iterate until convergence.

C.2 Estimation

As discussed in section 3.3, estimation was done by searching for parameters to minimize
S2, the average squared difference between the model spectrum and the spectrum estimated
from the data.

To obtain S2 given a solution to the model for a parameterization, T = 100, 000 periods
of data were simulated. This simulated sample was then subdivided into Nsim = 1, 000
overlapping subsamples. For each subsample, the log of hours was BP-filtered, after which
20 quarters from either end of the subsample were removed, leaving a series of the same
length as the actual data sample. The spectrum was then estimated on each individual
subsample in the same way as for the actual data, and the results then averaged across all
subsamples to yield the spectrum for the model.

D Solving the model forward

In the non-stochastic case, we may re-arrange equation (C.20) to yield

a− bXt + bhct−1 + (1− δ) γλt − µt =
ν1

αA
[l (et)]

ω+1−α [1 + τ − τφ (et)] + bet ≡ H (et)

Thus, given the state variables Xt and ct−1 and current values of µt and λt, we may obtain

et = H−1 (a− bXt + bhct−1 + (1− δ) γλt − µt)
63In practice, I set the first elements of Θµ,0 and Θλ,0 to the steady-state values µ̄ and λ̄, respectively, and

the remaining elements to zero. This corresponds to an initial belief that the gj ’s are constant and equal to
their steady-state levels.
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where the conditions in Proposition 9 ensure that H is an invertible function. This value
of et then gives ct and Xt+1 via equations (C.23) and (C.24), respectively. From equations
(C.21) and (C.22) we can then solve for µt+1 and λt+1 as

µt+1 =
a− bXt+1 + bhct −H

(
1
b

(
a− bXt+1 + bhct − 1

βh
µt

))
− γ

(
1
βh
µt − 1

β
λt

)
1− γ

λt+1 =
a− bXt+1 + bhct −H

(
1
b

(
a− bXt+1 + bhct − 1

βh
µt

))
−
(

1
βh
µt − 1

β
λt

)
(1− δ) (1− γ)
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