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1 The Game with Privately Known Types

1.1 The basic model

We now introduce private information into two basic con�ict games. We
assume for simplicity that only the hostility parameters are private informa-
tion, while all other parameters are commonly known. Player i�s hostility
parameter is his type. Each player knows his own type, but not the oppo-
nent�s. The two parameters c and d are �xed and the same for both players.
The payo¤matrix is as follows. The row represents player i�s choice and the
column represents player j�s choice. Only player i�s payo¤s are indicated.

H D
H hi � c hi
D �d 0

(1)

We assume the hostility parameter hi has a �xed publicly observed com-
ponent ki as well as a random privately observed component �i. Thus, player
i�s type is hi = ki + �i: The game of incomplete information is played as fol-
lows. First �1 and �2 are drawn from a symmetric joint distribution with
support [�; ��] � [�; ��]. Then player 1 is informed about �1; but not about
�2: Similarly, player 2 is informed about �2 but not about �1: Finally, each
player makes his choice simultaneously (H or D).
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When the players make their choices, everything except �1 and �2 is
commonly known. In particular, there is no uncertainty about the �xed
parameters k1 and k2. The introduction of k1 and k2 is a convenient way to
allow for ex ante asymmetries in the distribution of hostilities. If k1 = k2
then the two players are ex ante symmetric (i.e., before �1 and �2 are drawn
there is nothing to distinguish them). If k1 6= k2 then there is a publicly
known ex ante asymmetry.
If �1 and �2 are correlated, then player i�s knowledge of �i can be used

to update his beliefs about �j. Formally, the cumulative distribution of
�j conditional on �i = y (where i 6= j) is denoted F (�jy): We assume F (xjy)
is continuously di¤erentiable, with partial derivatives F1(xjy) � @F (xjy)

@x
and

F2(xjy) � @F (xjy)
@y

: Notice that F1(�jy) is the density of �j conditional on
�i = y: Since player j�s hostility is hj = kj+�j; uncertainty about �j directly
translates into uncertainty about player j�s type. The types h1 and h2 are
correlated if and only if �1 and �2 are correlated. If player i�s type is hi = y;
then player i assigns probability F (x � kjjy � ki) to the event that hj � x.
Indeed, hi = y if and only if �i = y�ki; and hj � x if and only if �j � x�kj:
The least (resp. most) hostile type of player i has hostility parameter hi =
ki + � (resp. �hi = ki + ��).
We make the following assumption:

Assumption 1 (i) F1(xjy) > 0 for all x; y 2 [�; ��] and (ii) F2(xjy) � 0 for
all x; y 2 (�; ��).

Assumption 1 (i) says there is positive density. Assumption 1 (ii) says that
F (xjy) is not increasing in y: Therefore, as a player becomes more hostile,
he becomes no less pessimistic about his opponent�s hostility. This is true if
�1 and �2 are a¢ liated (Milgrom, Theorem 5.4.3). A¢ liation may occur if
con�ict concerns some resource such as oil. Of course, Assumption 1 (ii) also
holds if �1 and �2 are independent. Independence is a natural assumption
when the innate attitude of the two players towards hostility is uncertain.
For future reference, we note that Assumption 1 implies that if y > x then
F (yjx)� F (xjy) � F (yjy)� F (xjy) > 0:
We classify types into four categories.

De�nition 1 Player i is a dominant strategy hawk if H is a dominant
strategy (hi � c � �d and hi � 0 with at least one strict inequality). Player
i is a dominant strategy dove if D is a dominant strategy (hi � c � �d and
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hi � 0 with at least one strict inequality). Player i is a coordination type
if H is a best response to H and D a best response to D (c � d � hi � 0).
Player i is an opportunistic type if D is a best response to H and H a best
response to D (in this case, 0 � hi � c� d).

Notice that coordination types exist only in games with strategic com-
plements, and opportunistic types only in games with strategic substitutes.

1.2 Bayesian Nash Equilibrium

Suppose player i is of type hi; and thinks player j will choose D with prob-
ability �j(hi). His expected payo¤ from H is hi � (1 � �j(hi))c, while his
expected payo¤ from D is �(1� �j(hi))d: Thus, if type hi chooses H instead
of D; his net gain is

hi + (d� c)(1� �j(hi)) (2)

A strategy for player i is a function �i : [hi; �hi] ! fH;Dg which speci�es
an action �i(hi) 2 fH;Dg for each type hi 2 [hi; �hi]: In Bayesian Nash
equilibrium (BNE), all types maximize their expected payo¤. Therefore,
�i(hi) = H if the expression in (2) is positive, and �i(hi) = D if it is negative.
(If expression (2) is zero then type hi is indi¤erent and can choose either H
or D:) We say that player i uses a cuto¤ strategy if there is a cuto¤ point
x 2 [hi; �hi] such that �i(hi) = H for all hi > x and �i(hi) = D for all hi < x:
If player j uses a cuto¤ strategy with cuto¤ point x; then �j(y) = F (x�

kjjy� ki); so player i�s net gain from choosing H instead of D when his type
is hi = y is

	i(x; y) � y + (d� c) (1� F (x� kjjy � ki)) : (3)

For a cuto¤ strategy to be a best response, player i should be more
inclined to choose H the more hostile he is. That is, 	i(x; y) should be
increasing in y :

	i2(x; y) = 1� (d� c)F2(x� kjjy � ki) > 0 (4)

Figure 1 illustrates this property:
In view of Assumption 1, (4) holds if d > c: It also holds if d < c and the

two types are not too strongly correlated. If c is much bigger than d and the
two types are highly correlated, then (4) may be violated. The intuition is
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Figure 1: Ψi(x,y)
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Ψi(x,y) = 0

that, if types are strongly correlated and the opponent uses a cuto¤ strategy,
then a very hostile type thinks it is very likely that the opponent chooses
H: If in addition c is much bigger than d, then the (H;H) outcome is very
costly. In this situation, a very hostile type may be inclined to choose D,
which would eliminate the possibility of cuto¤ equilibria.
If condition (4) holds then player i�s best response to player j�s cuto¤ x

is to use a cuto¤ point denoted �i(x): The best-response function �i(x) is
de�ned as follows. (i) If 	i(x; hi) � 0 then �i(x) = hi (so player i plays
H with probability one). (ii) If 	i(x; �hi) � 0 then �i(x) = �hi (so player i
plays D with probability one). (iii) Otherwise, �i(x) 2

�
hi;
�hi
�
is the unique

solution to the equation 	i(x; �i(x)) = 0 (all types above �i(x) play H;
and all types below �i(x) play D). By the implicit function theorem, �i(x)
is a continuous function as long as 	i(x; y) is increasing in y: In this case,
the slope of the best response function is obtained by totally di¤erentiating
	i(x; �i(x)) = 0,

�0i(x) = �
	i1(x; �i(x))

	i2(x; �i(x))
= � (c� d)F1(x� kjj�i(x)� ki)

1� (d� c)F2(x� kjj�i(x)� ki)
: (5)

Notice that �0i(x) > 0 if d > c and �
0
i(x) < 0 if d < c.
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Proposition 2 If 	i(x; y) is increasing in y for each i 2 f1; 2g; then a cuto¤
equilibrium exists.

Proof. There are three possibilities:
(i) 	2(�1(h2); h2) � 0. In this case the cut-o¤ points (�1(h2); h2) form a

BNE;
(ii) 	2(�1(�h2); �h2) � 0: In this case the cut-o¤ points (�1(�h2); �h2) form a

BNE;
(iii) there is x 2 [h2; �h2] such that 	2(�1(x); x) = 0: In this case the

cut-o¤ points (�1(x); x) form a BNE.
Since the function 	2(�1(x); x) is continuous in x, one of the three cases

must always occur.

1.3 Strategic Complements

The underlying complete information game displays strategic complementar-
ity when d > c: In addition, it is a Stag Hunt game if c > 0: In this case,
(4) holds, so a cuto¤ equilibrium exists by Proposition 2. We now derive a
su¢ cient condition for this to be the unique BNE.

Theorem 3 Suppose d > c; and �hi > 0 and hi < c � d so each player has
dominant strategy hawks and doves. If for all s; t 2

�
�; ��
�
it holds that

F1(sjt) + F2(sjt) <
1

d� c (6)

then there is a unique BNE. This BNE is a cuto¤ equilibrium.

Verifying this result requires two steps. The �rst step, which is rather
technical and therefore relegated to the appendix, is to show that all BNE
must be cut-o¤ equilibria. The second step is to show that there cannot
be more than one cut-o¤ equilibrium. The second step is best explained
diagrammatically. The fact that both players have dominant strategy hawks
and doves means that for if player j uses cuto¤ x; �i(x) is interior. Then,
we must have 	i(x; �i(x)) = 0 and so the expression (5) implies that the
best response functions have a positive slope. A well-known condition for
uniqueness is that the slope is less than one. Mathematically, this condition
turns out to be F1(sjt) + F2(sjt) < 1

d�c : To see this, use (5) to obtain

�0i(x) =
(d� c)F1

1� (d� c)F2
= 1� 1� (d� c)(F1 + F2)

1� (d� c)F2
= 1� 1� (d� c)(F1 + F2)

	2(x; �(x))
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Figure 2: Equilibrium for Strategic Complements
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which is strictly less than one by (6). Therefore, 0 < �0i(x) < 1 for all x 2
[hi;

�hi]; and the two best-response functions can cross only once. Therefore,
there is only one cut-o¤ equilibrium, which completes the proof:1

When there is a cut-o¤ equilibrium, the reaction functions are upward
sloping and the incomplete information game is a supermodular game. Hence,
when there is a unique equilibrium, it can be obtained by iterated deletion
of dominated strategies (see Athey, Milgrom and Roberts and Vives).
INSERT FIGURE 2 HERE.
If (6) holds, then the unique equilibrium is easy to characterize. First,

if hi � c � d for i 2 f1; 2g then there are no dominant-strategy doves, and
it is certainly an equilibrium for each player to choose H regardless of type.
Thus, this is the unique BNE. In a sense, this case represents an extreme
case of the �Schelling dilemma�. Conversely, if �hi � c� d for i 2 f1; 2g then

1It is possible to show, generalizing the results in Baliga and Sjostrom, that another
su¢ cient condition for a unique equilibrium in cut o¤ strategies is that � is concave. To
prove this, de�ne the modi�ed best response function �̂ by using the function 	̂(x; y) �
y + (d � c) (1� �(x)) instead of the function 	: If � is concave, then �̂ intersects the 45
degree line exactly once. Moreover, � coincides with �̂ on the 45 degree line, so � intersects
the 45 degree line in a unique point.
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there are no dominant-strategy hawks, so the unique equilibrium is for each
player to choose D, regardless of type.
If there are both dominant strategy hawks and dominant strategy doves,

then certainly neither D nor H can be chosen by all types. Hence, the
unique equilibrium must be interior: each player i chooses a cut-o¤ point
h�i 2

�
hi;
�hi
�
which solves

h�i + (d� c)
�
1� F (h�j � kjjh�i � ki)

�
= 0: (7)

If in addition the players are symmetric, say k1 = k2 = k; then the
best response curves must intersect at the 45 degree line, and the unique
equilibrium is a symmetric cut-o¤ equilibrium, h�1 = h

�
2 = h

�: The symmetric
cut o¤ point is the unique solution in [hi; �hi] to the equation

h� + (d� c) (1� F (h� � kjh� � k)) = 0

The comparative statics are as expected. For example, an increase in d � c
will lead to more aggressive behavior (a reduction of h�).
The intuition behind Theorem 3 may be brought out by a standard �sta-

bility�argument. Suppose both players are at cuto¤ equilibrium (h�1; h
�
2) and

suppose both simultaneously reduce their cut-o¤ by " (so a few more types
use H). Then, consider type h�i � ". If type h�i � " now prefers D, the initial
equilibrium is stable, and this is what we want to verify. In fact there are two
opposing e¤ects. First, at the original cut-o¤h�i , type h

�
i�" strictly preferred

D, so there is reason to believe he still prefers D. However, the opponent has
now become more hostile. At the initial equilibrium, cuto¤ type h�i thought
that the opponent would chooseH with probability 1�F (h�j�kjjh�i�ki): But
after the perturbation, the new cuto¤ type h�i � " thinks that the opponent
will choose H with probability 1� F (h�j � kj � "jh�i � ki � "): If

F1(h
�
j � kjjh�i � ki) + F2(h�j � kjjh�i � ki) >

1

d� c

then this second e¤ect dominates, and type h�i �" will actually prefer H after
the perturbation. In this case, the original equilibrium is unstable. Hence,
stability requires (6).
An interesting special case occurs when types are independent, so F2(sjt) =

0 for all s; t 2 [�; ��]: In this case, (6) requires that the density of the random
variable �i is su¢ ciently spread out, i.e., that there is �enough uncertainty�
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about types. For example, suppose k1 = k2 = 0 and �1 and �2 are indepen-
dently drawn from a uniform distribution on [�; ��]: In this case, F (sjt) = s��

���� ;

so F1(sjt) + F2(sjt) = 1
���� <

1
d�c if and only if �� � � > d � c: Thus, with a

uniform distribution, there is a unique equilibrium if the support is not too
small.
We now argue that adding a¢ liation will, in general, have ambiguous

results. Consider, for simplicity, a symmetric case, where k1 = k2 = 0; and a
symmetric cut-o¤ equilibrium with cut-o¤ point h�: A¢ liation impacts the
stability of the equilibrium via the expression F1(h�jh�) + F2(h�jh�): There
are two contradictory e¤ects. On the one hand, a¢ liation causes type h� to
think the opponent is likely to be similar to himself, so F1(h�jh�) is large.
This e¤ect makes uniqueness less likely. On the other hand, a¢ liation causes
F2(h

�jh�) to be negative. This e¤ect makes uniqueness more likely. While
the �rst e¤ect is easy to understand, in terms of concentrating the density of
types in a smaller area, the second e¤ect is more subtle. Intuitively, in the
above stability argument, a¢ liation causes type h� � " to be less pessimistic
about the opponent�s hostility than type h�; making him more likely to prefer
D: That is, the best response curves are more likely to have the slopes that
guarantee stability and uniqueness.

Example: the uniform independent case Suppose the idiosyncratic
shocks �1 and �2 are independently drawn from a distribution which is uni-
form on [�; ��]: Moreover, suppose k1 = 0 and k2 = k � 0: The �atness
condition requires �su¢ cient uncertainty�: �� � � > d � c: Then, we are as-
sured that a unique equilibrium exists. We assume � < c � d: If this is not
the case then neither player can be a dominant strategy dove and the unique
equilibrium is for all types to play H: We also assume �� + k > 0; otherwise
both players cannot be dominant strategy hawks and the unique equilibrium
is for both to play D:
Let ~h1 and ~h2 be de�ned as solution to (7):

~h1 =
[��
�
�� � � + (d� c)

�
+ k

�
�� � �

�
] (c� d)�

�� � � � (d� c)
� �
�� � � + (d� c)

� < 0 and

~h2 =
[��
�
�� � � + (d� c)

�
� k] (c� d)�

�� � � � (d� c)
� �
�� � � + (d� c)

� > c� d:
Notice that as k � 0 and c� d < 0; ~h2 � ~h1:
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If ~hi 2 [c � d; 0] and ~hi 2 [� + ki; �� + ki]; then the unique equilibrium is
interior and has h�i = ~hi: Therefore, for an interior equilibrium, we require

[��
�
�� � � � (c� d)

�
+ k

�
�� � �

�
]�

�� � � + (c� d)
� �
�� � � � (c� d)

� < 1 and

[��
�
�� � � � (c� d)

�
� k]�

�� � � + (c� d)
� �
�� � � � (c� d)

� > 0:

This implies

k < ��
�
�� � � � (c� d)

�
and

k <

�
c� d� �

� �
�� � � � (c� d)

��
�� � �

� :

In other cases, there is a corner solution with either one or the other
player always playing the same action.

1.4 Strategic substitutes

In this case c > d: In addition if d > 0; the game is chicken. Our main result
for this case is the following.

Theorem 4 Suppose d < c; and �hi > c � d and hi < 0 so each player has
dominant strategy hawks and doves. If for all x; s; t 2 (�; ��) it holds that

F1(sjt)� F2(sjt) <
1

c� d and F1(sjx)� F2(xjt) <
1

c� d (8)

then there is a unique BNE. This BNE is a cuto¤ equilibrium.

Verifying this result again requires two steps. The �rst step, which shows
that all BNE must be cut-o¤ equilibria, is relegated to the appendix. The
second step is to show that there exists one and only one cut-o¤ equilibrium.
This is again best explained diagrammatically. Notice that the assumption
F1(sjx)� F2(xjt) < 1

c�d implies

(c� d)F2(xjt) > (c� d)F1(sjx)� 1 � �1:

Therefore, 	i2(x; y) > 0 so a cuto¤ equilibrium exists by Proposition 2.
The fact that both players have dominant strategy hawks and doves means
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Figure 3: Equilibrium for Strategic Substitutes
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that for if player j uses cuto¤ x; �i(x) is interior. Then, we must have
	i(x; �i(x)) = 0 and so we can use (5) to study the best-response function
�: Since 	i1(x; y) > 0; the best response functions are downward-sloping:
�0i(x) < 0. From (5), we can conclude

1 + �0i(x) = 1 +
(d� c)F1

1� (d� c)F2
=
1 + (c� d) (F2 � F1)

1� (d� c)F2
which is strictly positive as F1(sjt) � F2(sjt) < 1

c�d by hypothesis. This
implies �1 < �0i(x) < 0 for all x 2 [hj;

�hj]: This implies the two best-
response functions cannot cross more than once, so there can be only one
cuto¤ equilibrium:
The incomplete information game with strategic substitutes is a submod-

ular game. In the two player case, we can invert one player�s strategy set to
make the game supermodular. Hence, when there is a unique equilibrium,
we can again invoke the result that a supermodular game with a unique equi-
librium can be solved by iterated deletion of (interim) dominated strategies.
The su¢ cient condition for uniqueness with strategic substitutes contains

one inequality that is symmetric with strategic complements (upto two neg-
ative signs). But it also contains a second condition that is used to prove the
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non-existence of non-cut-o¤equilibria. The issue of non-cuto¤equilibria does
not arise in a complete information setting where there is a full equivalence
between two player supermodular and submodular games.
As in the case of strategic complements, it is easy to characterize the

unique equilibrium. If the unique equilibrium is interior, then player i chooses
the cut-o¤ point h�i 2

�
hi;
�hi
�
which solves

h�i + (d� c)
�
1� F (h�j � kjjh�i � ki)

�
= 0: (9)

In other cases, there are corner solutions.
The uniqueness conditions for the two classes of games, (8) and (6), can

be compared. If types are independent, then F (sjt) is independent of its
second argument, so (6) and (8) both reduce to the condition

F1(sjt) <
���� 1

d� c

����
for all s; t 2 (�; ��): If in addition �1 and �2 are independently drawn from
a uniform distribution with support [�; ��], then the su¢ cient condition for
uniqueness of equilibrium is

�� � � > jd� cj :

However, if types are a¢ liated, so that F2(sjt) < 0, then the uniqueness
conditions for strategic substitutes are more stringent than those for strategic
complements, becauseF2(sjt) enters with a negative sign in (8).
While stag hunt captured the idea of Schelling�s �reciprocal fear of sur-

prise attack,�chicken, a game with strategic substitutes captures a di¤erent
logic of �escalating fear of con�ict�. Coordination types in chicken want to
mis-coordinate with the opponent�s action, particularly if he plays H: Coor-
dination types with low a low hostility level h are near indi¤erent between
H and D if they are certain that the opponent plays D: But if there is posi-
tive probability that the opponent is a dominant strategy type, the �almost
dominant strategy doves�strictly prefer to back o¤ and play D: This in turn
emboldens coordination types who are almost dominant strategy hawks to
play H and the cycle continues. This escalation is more powerful if there
is negative correlation between types and dovish coordination types with
low h put high probability on hawkish coordination types with high h and
vice-versa. But it is more natural to assume independence, if there is no fun-
damental connection between the two players, or positive correlation, if they
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are both �ghting over a common resource. In the latter case, the uniqueness
condition for chicken is less likely to hold.

Example: the uniform independent case Suppose the idiosyncratic
shocks "1 and "2 are independently drawn from a distribution which is uni-
form on ["; �"]: The �atness condition requires �su¢ cient uncertainty�: �"�" >
c � d: Then, we are assured that a unique equilibrium exists. Notice that
the �atness condition implies that player 1 either must have dominant strat-
egy hawks or dominant strategy doves with positive probability. We assume
c � d > "; otherwise we have a trivial equilibrium where both players play
H whatever their type. We also assume �" > 0; otherwise there is a trivial
equilibrium where player 1 always plays D and player 2 plays h i¤ h2 � 0:
Let

~h1 =
[�" (�"� "� (c� d)) + k (�"� ")] (c� d)
(�"� "+ (c� d)) (�"� "� (c� d)) > 0 and

~h2 =
[�" (�"� "� (c� d))� k] (c� d)
(�"� "+ (c� d)) (�"� "� (c� d)) < c� d

where these equations solve (9). Notice that as k � 0; ~h1 � ~h2:
If ~hi 2 [0; c � d] and ~hi 2 [" + ki; �" + ki]; then the unique equilibrium is

interior and has h�i = ~hi: Therefore, for an interior equilibrium, we require

[�" (�"� "� (c� d)) + k (�"� ")]
(�"� "+ (c� d)) (�"� "� (c� d)) < 1 and

[�" (�"� "� (c� d))� k]
(�"� "+ (c� d)) (�"� "� (c� d)) > 0:

This implies

k < �" (�"� "� (c� d)) and

k <
(c� d� ") (�"� "� (c� d))

(�"� ") :

In other cases, there is a corner solution with either one or the other
player always playing the same action.
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1.5 Global games

We follow a key example in Carlsson and van Damme [1] and assume the
players�types are generated from an underlying parameter � as follows. First,
� is drawn from a uniform distribution on � � [�; ��] � R: Then, �1 and �2
are independently drawn from a uniform distribution on [�� "; �+ "]. Player
i knows his own draw �i but not the opponent�s draw �j: Neither player can
observe �. Conditional on �; �1 and �2 are independent random variables. If
player i draws �i 2 [� + "; �� � "]; then his posterior beliefs about � are given
by a uniform distribution on [�i�"; �i+"]. Therefore, player i�s beliefs about
�j are given by a symmetric, triangular distribution around �i with support
[�i � 2"; �i + 2"]: Notice that this triangular distribution is symmetric about
�i: If s; t 2 [� + "; �� � "] then

F (tjs) =

8>><>>:
1 if t � s+ 2"
1� 1

2

�
1� t�s

2"

�2
if s � t � s+ 2"

1
2

�
1� s�t

2"

�2
if s� 2" � t � s

0 if t � s� 2"

which implies
F (tjs) + F (sjt) = 1: (10)

We also compute

F1(tjs) =

8>><>>:
0 if t > s+ 2"
1
4"2
(s� t+ 2") if s � t � s+ 2"

1
4"2
(t� s+ 2") if s� 2" � t � s

0 if t � s� 2"
so

F2(tjs) = F2(sjt) = �F1(tjs) = �F1(sjt):
Assume d > c so we are in the case of strategic complements. Also assume

c� d > � + k + " and

0 < �� � ":

This guarantees both players have dominant strategy hawks and doves and
that we can use the triangular distribution above to determine the beliefs of
coordination types. Notice the structure of F implies

0 = F1(sjt) + F2(sjt) <
1

d� c

13



and the su¢ cient condition for uniqueness (6) is satis�ed. That is, there is
always a unique equilibrium for all ":
Now, assume c > d and we are in the case of strategic substitutes. For

js� tj < 2" we have

F1(sjt)� F2(sjt) = 2F1(sjt) =
1

2"2
(js� tj+ 2")

which reaches a maximum 2=" when js� tj = 2": Also,

F1(sjx)� F2(xjt) = F1(sjx) + F1(tjx)

which also reaches a maximum 2=": Therefore, our uniqueness condition (8)
is " > c�d

2
. This is the implication of �large idiosyncratic uncertainty�which

guarantees uniqueness. Also, we know that the game can be solved by iter-
ated deletion of (interim) dominated strategies.

Proposition 5 If " > c�d
2
then there is a unique equilibrium which can be

obtained by iterated deletion of dominated strategies.

When uniqueness obtains, it is a stark consequence of the dynamic trig-
gered by �deterrence by fear.�The chance of con�ict with dominant strat-
egy hawks triggers dovish behavior among the coordination types. When
2" > c � d; type 0 of player i puts positive probability on player j being
a dominant strategy hawk. This implies that type 0 and types just higher
play D: Similarly, type c� d of player i puts positive probability on player j
being a dominant strategy dove. This implies type c�d and types just below
play H: This process of iterated deletion of dominated strategies identi�es a
unique equilibrium.

However, the global games literature shows that a unique equilibrium
exists if the idiosyncratic uncertainty is su¢ ciently small. We will verify this
for our game.

Assume k1 = 0 and k2 = k > 0. Suppose

k + � + " < 0

�� � " > c� d

14



This implies that both dominant strategy hawks and doves exist for each
player and that we can use the triangular distribution to determine the beliefs
of opportunistic types.
Conditional on �; player 1�s type h1 = �1 is uniformly distributed on

[� � "; � + "], while player 2�s type h2 = k + �2 is uniformly distributed on
[k+��"; k+�+"]: A strategy �i : [h; �h]! fH;Dg for player i is a measurable
function which speci�es a choice �i(hi) 2 fH;Dg for each type hi. If player
i�s type hi thinks player j will choose D with probability �j(hi), then his net
gain from choosing H instead of D is

hi + (d� c)(1� �j(hi)): (11)

Remark 6 If �1 < �k � 2"; then player 1 knows that h2 = k + �2 < 0; so
player 2 must be a dominant strategy dove. If �1 > c�d�k+2"; then player
1 knows that h2 = k + �2 > c � d; so player 2 must be a dominant strategy
hawk. If �2 < �2"; then player 2 knows that h1 = �1 < 0; so player 1 must
be a dominant strategy dove. If �2 > c � d + 2"; then player 2 knows that
h1 = �1 > c� d; so player 1 must be a dominant strategy hawk.

Consider the process of eliminating (interim) dominated strategies. In
the �rst �round�of elimination, D is eliminated for dominant strategy hawks
(hi � c � d) and H for dominant strategy doves. Now consider the second
round.
Suppose " < k=2: This is the case of highly correlated types. When

c � d � k + 2" < �1 < c � d; player 1 knows that player 2 is a dominant
strategy hawk (by remark 6). Hence, H can be eliminated for player 1.
Indeed, even if �1 is slightly below c � d � k + 2"; H can be eliminated,
because player 2 is highly likely to be a dominant strategy hawk. Let �01
be the largest �1 such that H cannot be eliminated for player 1�s type �1 in
round 2. Notice that �01 < c�d�k+2": Now if h2 = �2+k is slightly below
c� d; then player 2 knows that player 1 has a positive probability of having
a type between �01 and c� d: Such types of player 1 had H removed in round
2 of the elimination of interim dominated strategies. Therefore, in round 3,
D must be eliminated for types of player 2 slightly below c � d: Let �02 be
the largest �2 such that D cannot be eliminated for player 2 in round 3. In
round 4, player 1�s types slightly below �01 will be able to remove D, etc.
We claim that this process must eventually eliminate H for all h1 2

(0; c�d); and D for all h2 2 (0; c�d). If this were not true, then the process
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cannot proceed below some h�1 > 0 and h�2 > 0: Now, h�2 > h�1 + k � 2";
otherwise type h�1 knows that h2 � h�2, and all such types have eliminated D,
but then H must be eliminated for types slightly below h�1:
Consider player 2�s type h�2; with private component �

�
2 = h�2 � k: He

knows that h1 = �1 � h�2� k+2" < c� d� k+2" � c� d: Now H has been
eliminated for all h1 2 (h�1; c� d); and according to type h�2; the probability
that player 1�s type lies in this interval is 1 � F (h�1jh�2 � k): Therefore, if D
cannot be eliminated for type h�2; it must be the case that type h

�
2 weakly

prefers D when the opponent uses H with probability at most F (h�1jh�2� k):
This implies

h�2 + (d� c)F (h�1jh�2 � k) � 0
By a similar argument, if H cannot be eliminated for type h�1; then type

h�1 must prefer H when the opponent uses H with probability at least 1 �
F (h�2 � kjh�1): That is,

h�1 + (d� c) (1� F (h�2 � kjh�1)) � 0

Subtracting the �rst inequality from the second yields

h�1 � h�2 � (c� d) (1� F (h�2 � kjh�1)� F (h�1jh�2 � k)) = 0

where the last equality uses 10. However, this contradicts h�2 > h
�
1 + k � 2":

We summarize the argument as follows.

Proposition 7 If " < k=2 then there is a unique BNE, which can be obtained
by the iterated elimination of dominated strategies. In this BNE, player 1
plays H i¤ h1 � c� d and player 2 plays H i¤ h2 � 0:

If " is small then the types are highly correlated. In this case, Proposi-
tion 7 shows that the process of iterated elimination of interim dominated
strategies selects a unique outcome, where all opportunistic types of player
1 �fold� and play D, and all opportunistic types of player 2 play H. The
process begins with the aggressive opportunistic types of player 1 backing o¤
as they put high probability on player 2 being a dominant strategy hawk and
the process continues. This is the reverse of the logic underlying Proposition
5. Finally, since (D;H) is the risk-dominant outcome for the complete infor-
mation game with " = 0 and k > 0, this result agrees with the conclusion of
Carlsson and van Damme [1].
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The previous two propositions show that a unique equilibrium exists for
su¢ ciently small and su¢ ciently large ": For intermediate "; multiple equi-
libria can exist, as we now show.
Suppose " > k=2: Here types are not highly correlated, and the process

of iterated elimination of dominated strategies cannot achieve anything after
the �rst �round�. Consider type h1 = c � d: In the second �round�, he
cannot rule out the possibility that player 2 will choose D when h2 < c� d:
Moreover, the event that h2 = �2 + k < c� d has positive probability when
�1 = h2 = c � d and k < 2": Therefore, we cannot eliminate H for type
h1 = c � d. Player 1�s type h1 = 0 cannot eliminate H; because H has not
been eliminated for h2 > 0: Since neither of the �boundary�opportunistic
types can eliminate H; no opportunistic type at all can eliminate H: Clearly,
they cannot eliminate D either. Thus, no opportunistic type of player 1 can
eliminate any action in round 2. A similar argument applies to player 2.
Let h� = (c�d)(2"�k)2

8"2
: Notice that

h�+k�2" = (c� d) (2"� k)2

8"2
�(2"�k) =

�
(c� d) (2"� k)

8"2
� 1
�
(2"�k) > 0

as long as
(c� d) (2"� k)

8"2
> 1

and

h� + k + 2" =
(c� d) (2"� k)2

8"2
+ k + 2" < c� d

as long as
(c� d) (2"� k)

8"2
<
c� d� (k + 2")

2"� k
Players�strategies are as follows: player 1 plays D i¤ h1 � h�; player 2

plays D i¤ h2 � 0 or h2 2 [h�; c� d] :
Consider player 1 �rst. For player 1 of type h�, the probability that player

2 plays H is F (h�jh� � k) = (2"�k)2
8"2

and he is indi¤erent between H and D:
Higher types are more aggressive and assess a lower probability that player 2
playsH: These types strictly prefer to playH and, by a symmetric argument,
lower types prefer to play D:
We must also show player 2�s strategy is at a best-response. Assume

k < 2"
�
1� 2"

c�d
�
: For player 2; if he is a dominant strategy type, the speci�ed

strategy is clearly optimal. For h2 2 [h� + k � 2"; h�]; Prfh1 < h�jh2g =
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Figure 4: Ψ2(h*,h2)

0
0

h*

Ψ(h*,h2)

Ψ(h*,h2) = 0

cd

h2

1 � 1
8"2
((h2 � k + 2")� h�)2 = �1(h2): Substituting this into (11), the net

gain from playing H rather than D becomes

h2 +
(d� c)
8"2

(h2 � h� � k + 2")2 : (12)

This is quadratic in h2 and equals zero when h2 = h�: It reaches a maximum
at

ĥ = h� + k � 2"+ 4"2

c� d
which is interior to the interval [h� + k � 2"; h�] as long as k < 2"

�
1� 2"

c�d
�
:

In fact, (12) is clearly strictly positive for h2 2 [h� + k � 2"; h�): For h2 2
[0; h� + k � 2"]; player 2 knows his opponent plays D and then it is optimal
to play H as (11) is equal to h2 � 0: There is a similar argument for h2 2
(h�; c� d] and so the entire 	2(h�; h2) picture is:
There is another equilibrium with the roles of players 1 and 2 reversed.2

2Let h� = (c� d)
�
1� (2"�k)2

8"2

�
: Notice that

h� � k � 2" = (c� d)
 
1� (2"� k)

2

8"2

!
� 2"� k > 0
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There is also an equilibrium where player 2 plays H when h2 � 0 and player
1 plays H when h1 � c� d:
Now suppose 2" > c � d: Then, the above argument fails as ĥ > h�:

Indeed, Proposition 5 shows that a unique equilibrium exists in this case.
Large " approximates independence and is the polar opposite of the �global
games�conclusion.
To summarize, deterrence by fear leads to a unique equilibrium in two

cases. The chance of con�ict with dominant strategy hawks triggers dovish

as long as

(c� d)
 
1� (2"� k)

2

8"2

!
> k + 2"

and

h� � k + 2" = (c� d)
 
1� (2"� k)

2

8"2

!
+ 2"� k < c� d

as long as

(c� d)
 
1� (2"� k)

2

8"2

!
< c� d� (2"� k)

Players� strategies are as follows: player 2 plays D i¤ h2 � h�; player 1 plays D i¤
h1 � 0 or h1 2 [h�; c� d] :
Consider player 2 �rst. For player 2 of type h�, the probability that player 1 plays H

is F (h�jh� � k) = 1 � (2"�k)2
8"2 and he is indi¤erent between H and D: Higher types are

more aggressive and assess a lower probability that player 1 plays H: These types strictly
prefer to play H and, by a symmetric argument, lower types prefer to play D:

We must also show player 1�s strategy is at a best-response. Assume k < 2"
�
1� 2"

c�d

�
:

For player 1; if he is a dominant strategy type, the speci�ed strategy is clearly optimal. For
h1 2 [h�; h� + 2"� k]; Prfh2 < h�jh1g = 1

8"2 (h
� � k � (h1 � 2"))2 = �2(h1): Substituting

this into (11), the net gain from playing H rather than D becomes

h1 + (d� c)
�
1� 1

8"2
(h� � k � (h1 � 2"))2

�
: (13)

This is quadratic in h1 and equals zero when h1 = h�: It reaches a minimum at

ĥ = h� � k + 2"� 4"2

c� d

which is interior to the interval [h�; h�+2"� k] as long as k < 2"
�
1� 2"

c�d

�
: In fact, (13)

is clearly strictly negative for h1 2 (h�; h� + 2"� k]: For h1 2 (h� + 2"� k; c� d]; player
1 knows his opponent plays H and then it is optimal to play D as (11) is negative: There
is a similar argument for h1 2 [0; h�):
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behavior among the opportunistic types. For this to occur, either types
must be independent and the prior di¤use or it must be common knowledge
that one player is inherently more aggressive than the other. This in turn
persuades opportunistic types to play H; as they put positive probability of
their opponent playing D; and the process continues.

2 Joint normal distribution

TBD

3 Appendix

Proofs of non-existence of non-cuto¤ equilibria. Since the proofs for chicken
and stag-hunt are parallel, it is convenient to combine them. If some player
uses a constant strategy, then each player must be using a cut-o¤ strategy.
Thus, we may assume neither player uses a constant strategy. Let

xi = inf fhi : �i(hi) = Hg

and
yi = sup fhi : �i(hi) = Dg

By de�nition, xi � yi:
Since player i�s type xi weakly prefers H, (2) implies

xi + (1� �j(xi))(d� c) � 0 (14)

By de�nition, �j(hj) = D for all hj < xj and �j(hj) = H for all hj > yj; so

Gi(xjjxi) � �j(xi) � Gi(yjjxi): (15)

We will show that one player must be using a cuto¤ strategy. Hence, as (4)
holds, so must the other.
Case 1: c < d: In this case, (14) and the �rst inequality of (15) imply

xi + (1�Gi(xjjxi))(d� c) � 0 or

xi + (1� F (xj � kjjxi � ki))(d� c) � 0 (16)
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By the same reasoning,

yi + (1�Gi(yjjyi))(d� c) � 0 or

yi + (1� F (yj � kjjyi � ki))(d� c) � 0 (17)

Combining the (16) and (17) expressions for players i and j respectively
yields

F (yj � kjjyi � ki)� F (xj � kjjxi � ki) � 1

d� c (yi � xi) and (18)

F (yi � kijyj � kj)� F (xi � kijxj � kj) � 1

d� c (yj � xj) (19)

Combining (16) for player i and (17) for player j; we obtain

F (yi � kijyj � kj)� F (xj � kjjxi � ki) �
1

d� c (yj � xi) : (20)

Combining (16) for player j and (17) for player i; we obtain

F (yj � kjjyi � ki)� F (xi � kijxj � kj) �
1

d� c (yi � xj) : (21)

Assume xi � ki � xj � kj w.l.o.g.
If yi � ki � yj � kj; (18) implies

F (yi � kijyi � ki)� F (xi � kijxi � ki) �
1

d� c (yi � xi) : (22)

By the mean value theorem, there is a z 2 [�; ��] such that (F1(zjz) + F2(zjz)) (yi�
xi) = F (yi � kijyi � ki) � F (xi � kijxi � ki): The hypothesis of Theorem 3
implies F1(zjz) + F2(zjz) < 1

d�c , so (22) can only hold if yi = xi and player i
uses a cuto¤ strategy.
Next, suppose yj � kj � yi � ki: Then, (20) implies

F (yi � kijyi � ki)� F (xi � kijxi � ki) �
1

d� c (yj � xi) . (23)

If yj � yi; (23) implies

F (yi � kijyi � ki)� F (xi � kijxi � ki) �
1

d� c (yi � xi) :
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But using the mean value theorem and the hypothesis of Theorem 3, we can
again show this implies yi = xi so player i uses a cuto¤ strategy.
If yj < yi; notice that our assumption yj � kj � yi � ki implies kj < ki:

There are two cases. First, suppose xj � xi: Then, substitutions in (21) yield

F (yi � kjjyi � ki)� F (xi � kjjxi � ki) �
1

d� c (yi � xi) :

By the mean value theorem, there is a z 2 [�; ��] such that

(F1(z + ki � kjjz) + F2(z + ki � kjjz)) (yi � xi) = F (yi�kjjyi�ki)�F (xi�kjjxi�ki):

The hypothesis of Theorem 3 implies F1(z+ki�kjjz)+F2(z+ki�kjjz) < 1
d�c

and this inequality only holds if xi = yi and so player i uses a cut-o¤ strategy.
Second, suppose xj < xi: Then, after substitutions (19) becomes

F (yi � kjjyi � ki)� F (xi � kjjxi � ki) �
1

d� c (yi � xi)

Again, using the mean value theorem and the hypothesis of Theorem 3, this
inequality only holds if yi = xi and player i uses a cut-o¤ strategy. This
completes the proof of Theorem 3.
Case 2: c > d: In this case, (14) and the second inequality of (15) imply

xi + (1�Gi(yjjxi))(d� c) � 0 or

xi + (1� F (yj � kjjxi � ki))(d� c) � 0 (24)

By the same reasoning,

yi + (1�Gi(xjjyi))(d� c) � 0 or

yi + (1� F (xj � kjjyi � ki))(d� c) � 0 (25)

Combining (24) and (25) for player i yields

F (yj � kjjxi � ki)� F (xj � kjjyi � ki) �
1

c� d (yi � xi) . (26)

Combining (24) for player i and (25) for player j yields

F (yj � kjjxi � ki)� F (xi � kijyj � kj) �
1

c� d (yj � xi) : (27)
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Combining (24) for player j and (25) for player i yields

F (yi � kijxj � kj)� F (xj � kjjyi � ki) �
1

c� d (yi � xj) : (28)

Assume xi � ki � xj � kj w.l.o.g.
If yi � ki � yj � kj; then (26) implies

F (yi � kijxi � ki)� F (xi � kijyi � ki) �
1

c� d (yi � xi) (29)

But by the mean value theorem,

F (yi � kijxi � ki)� F (xi � kijxi � ki) + F (xi � kijxi � ki)� F (xi � kijyi � ki)
= (F1(tjxi � ki)� F2(xi � kijs)) (yi � xi)

for some s; t 2 [�; ��]: By the hypothesis of Theorem 4 then (29) implies
xi = yi so player i uses a cut-o¤ strategy.
If yi � ki < yj � kj; then (28) implies

F (yj � kjjxj � kj)� F (xj � kjjyj � kj) �
1

c� d (yi � xj) . (30)

If yi � yj; then via the mean value theorem and (30), the hypothesis of
Theorem 4 implies yj = xj and player j uses a cut-o¤ strategy. If yj > yi;
there are two cases. First, if kj � ki; from (27) we obtain

F (yj � kijxi � ki)� F (xi � kijyj � ki) �
1

c� d (yj � xi)

and a now familiar argument implies that yj = xi: But this contradicts
yj > yi � xi: Second, if kj < ki; from (28), we obtain

F (yi � kijxj � ki)� F (xj � kijyi � ki) �
1

c� d (yi � xj)

and now a familiar argument implies yi = xj: Substituting this into (28), we
obtain

F (yi � kijyi � kj)� F (yi � kjjyi � ki) � 0:
But, as kj < ki and F2(xjy) � 0; the left-hand-side is negative, a contradic-
tion. This completes the proof of Theorem 4. QED
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