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1 Introduction

Many competitions are characterized by asymmetries among competitors. One example is the

competition for promotions. Promotion decisions are often based on employees’ productivity

and effort, as well as on tenure and quality of relationships with superiors. Thus, differences

in employees’ abilities, social skills, and costs of effort translate to asymmetries in competition.

Another example is the competition for rents in a regulated market. Since firms often compete by

engaging in lobbying activities, firm-specific attributes such as quality and quantity of political

connections, cost of capital, and geographic location frequently affect competition. A third

example is research and development (R&D) races. The outcome of such races depends on

firms’ research technologies, past R&D investments, and access to human capital, all of which

may vary across firms.

In addition to the asymmetries among competitors, competitions are also characterized by

an “all-pay” feature: irreversible investments are made before the outcome of the competition is

known. In some settings, competitors may also commit to investments conditional on winning.

In an R&D race, for example, a better prototype not only costs more and improves a firm’s

chances of winning, but also commits the firm to higher expenditures conditional on winning.

A large literature has modeled competitions using the complete-information all-pay auction

(henceforth: all-pay auction) or its variants.1 The assumption of complete information helps

interpret players’ payoffs as “economic rents”, in contrast to “information rents” that arise in

models of competition with private information.2 Other models of competition postulate a

probabilistic relation between competitors’ efforts and prize allocation.3 For a comprehensive

treatment of the literature on competitions with sunk investments see Shmuel Nitzan (1994) and

Kai Konrad (2007).

This literature has produced important insights. Often, however, tractability required sim-

plifying assumptions that are at odds with important features of real-world competitions. In

particular, most existing models accommodate only a limited degree of asymmetry among com-

petitors, and do not allow for a combination of conditional and unconditional investments. Many

models are limited to a single prize and two competitors.

The “all-pay contests” of Siegel (2008) overcome many of these limitations. In an all-pay

1Examples include rent-seeking and lobbying activities (Hillman & Samet (1987), Hillman & Riley (1989),

Baye, Kovenock & de Vries (1993), González-Díaz (2007)), competitions for a monopoly position (Ellingsen

(1991)), waiting in line (Clark & Riis (1998)), sales (Varian (1980)), and R&D races (Dasgupta (1986)), competi-

tions for multiple prizes (Clark & Riis (1998) and Barut & Kovenock (1998)), the effect of lobbying caps (Che &

Gale (1998, 2006) and Kaplan & Wettstein (2006)), and R&D races with endogenous prizes (Che & Gale (2003)).

2For example, Moldovanu & Sela (2001, 2006), Kaplan, Luski, Sela, & Wettstein (2002)), and Parreiras &

Rubinchik (2006).

3See the seminal papers by Edward Lazear and Sherwin Rosen (1981) and Gordon Tullock (1980) .
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contest (henceforth: contest), each player chooses a costly “score”, and the players with the

highest scores obtain one prize each (relevant ties can be resolved using any tie-breaking rule).

Conditional on winning or losing, a player’s payoff decreases weakly and continuously with

his chosen score. The primitives of the contest are commonly known. This captures players’

knowledge of the asymmetries among them.

The generality of players’ cost functions allows for a wide degree of heterogeneity among play-

ers, including differing production technologies, costs of capital, and prior investments. Different

players may also be disadvantaged relative to others in different regions of the competition.4 In

addition, the difference in a player’s payoff between winning and losing may depend on his cho-

sen score. This feature accommodates both sunk and conditional investments, player-specific

risk attitudes, and player- and score-dependent valuations for a prize.

When all investments are unconditional, each player is characterized by his valuation for

a prize, which is the payoff difference between winning and losing, and a weakly increasing,

continuous cost function that determines his cost of choosing a score independently of whether

he wins or loses. Such contests are separable. Single- and multiprize all-pay auctions are separable

contests with linear costs.5

Siegel (2008) provides a closed-form formula for players’ equilibrium payoffs in contests that

meet certain Generic Conditions, without solving for an equilibrium. In such “generic” contests,

a player’s payoff in any equilibrium is the most he can guarantee himself provided no player

chooses a score that gives him a negative payoff conditional on winning. This result is useful for

understanding the effects of changes in competition structure, such as adding players, adding

prizes, and changing prizes’ values, and for computing players’ aggregate expenditures, or rent

dissipation, when all players’ valuations are identical (as is the case, for example, when prizes

are monetary). The payoff result can also be used to provide a sufficient condition for the

participation of precisely one more player than the number of prizes.

The payoff result is, however, silent on the number and structure of equilibria. Many inter-

esting questions regarding equilibrium uniqueness, allocations, scores, individual expenditures,

and aggregate expenditures when valuations are different cannot be deduced from the payoff

characterization alone. For example, the payoff result implies that a player’s expected payoff

does not depend on his cost when he loses, so that a player’s expected payoff in a modified

complete-information first-price auction in which he pays a positive fraction of his bid if he loses

does not depend on the size of the fraction. In contrast, equilibrium strategies and, consequently,

allocations, scores, and expenditures, do depend on the size of the fraction (as shown in Section

4).

4See the example of Section 1.1 in Siegel (2008).

5Thus, contests generalize multiprize all-pay auctions by allowing for non-linear, asymmetric costs, and ac-

commodating both sunk and conditional investments.
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This paper provides an algorithm that constructs the unique equilibrium for a large class of

contests. This class nests single- and multiprize generic all-pay auctions. Theorem 4 shows that

when costs are strictly increasing and piecewise analytical, an (m+1)-player contest form prizes

has a unique equilibrium. To obtain this result, I first construct the unique equilibrium consisting

of “well-behaved” strategies. The construction relies on knowledge of players’ payoffs, which is

provided by the payoff result. Identifying players’ best-response sets (or strategy supports) is

the main difficulty in the construction, since a player’s best-response set may consist of several

disjoint intervals. Once existence and uniqueness of a well-behaved equilibrium are established,

Theorem 3 rules out the existence of equilibria that are not well behaved. This step is not

straightforward, since little can be assumed about the structure of such equilibria, if they exist.

Theorem 4 implies that under the same analyticity assumption an n-player contest has at most

one equilibrium in which precisely m+ 1 players participate. The participation result of Siegel

(2008) provides a sufficient condition for preciselym+1 players to participate in any equilibrium,

and therefore for the equilibrium constructed by the algorithm to be the unique equilibrium of

an n-player contest.

As an application of the algorithm, I investigate the class of simple contests. In a simple

contest, a positive fraction α ≤ 1 of each competitor’s costs is sunk, and the remaining 1 − α

is paid only by the winners of the m ≥ 1 prizes. When α 6= 1 the contest is not separable.

Competitors have access to the same underlying technology for producing “score”, but may

differ in how efficiently they employ it. This difference in efficiency is captured by player-specific

cost coefficients, which are multiplied by a common cost function representing the common

production technology. Competitors may also differ in their valuations for a prize. I show that

simple contests have a unique equilibrium, in which the best-response set of every player is an

interval. Moreover, after normalizing each player’s efficiency by dividing his cost coefficient by

his valuation for a prize, I show that the equilibrium strategies of more efficient players first-order

stochastically dominate those of less efficient players, and that more efficient players win prizes

more often than less efficient players. As α approaches 0, the most efficient players obtain a prize

with near certainty. When players differ only in their valuations for a prize, as α approaches 0

the contest becomes efficient and expenditures are maximized, since the prizes are allocated to

the players with the highest valuations and equilibrium payoffs are independent of α.

The limit of the equilibria as α approaches 0 is an equilibrium of the corresponding “first-

price contest”. In this equilibrium, players’ payoffs are given by the payoff result and no player

chooses weakly dominated strategies with positive probability. The equilibrium is robust to the

tie-breaking rule. This provides a selection criterion among the continuum of equilibria of the

first-price contest, which are not payoff equivalent.

When α = 1, all investments are sunk, so the contest is separable. I provide a closed-form

formula for players’ equilibrium strategies. If, in addition, the common production technology
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is linear, we have an all-pay auction. 6

The rest of the paper is organized as follows. Contests are defined and results from Siegel

(2008) are stated in Section 2. Section 3 describes the equilibrium construction algorithm and

establishes uniqueness. Section 4 analyzes simple contests. Examples 1 and 2 are detailed in

Appendix A. The proofs of the results of Section 3 are in Appendix B. The proofs of the results

of Section 4 are in Appendix C.

2 The Model and Previous Results

In a contest, n players compete for m homogeneous prizes, 0 < m < n. The set of players

{1, . . . , n} is denoted by N . Players compete by each choosing a score, simultaneously and

independently. Player i chooses a score si ∈ Si = [0,∞).7 Each of the m players with the

highest scores wins one prize. In case of a relevant tie, any procedure may be used to allocate

the tie-related prizes among the tied players.

Given scores s = (s1, . . . , sn), one for each player, player i’s payoff is

ui (s) = Pi (s) vi (si)− (1− Pi (s)) ci (si)

where vi : Si → R is player i’s valuation for winning, ci : Si → R is player i’s cost of losing, and
Pi : ×j∈NSj → [0, 1] is player i’s probability of winning, which satisfies

Pi (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if sj > si for m or more players j 6= i

1 if sj < si for N −m or more players j 6= i

any value in [0, 1] otherwise

such that
Pn

j=1 Pj (s) = m.

Note that a player’s probability of winning depends on all players’ scores, but his valuation for

winning and cost of losing depend only on his chosen score. The primitives of the contest are

commonly known.

I make the following assumptions, which are depicted in Figure 1.

A1 vi and −ci are continuous and non-increasing.

A2 vi (0) > 0 and limsi→∞ vi (si) < ci (0) = 0.

6This result generalizes and corrects that of Clark & Riis (1998). They constructed an equilibrium for the

multiprize all-pay auction and claimed it was unique. Their proof of uniqueness relied on showing that in any

equilibrium the best response set of each player is an interval. Their proof of this latter claim was incorrect.

7Siegel (2008) allowed for player-specific, non-negative lower bounds on the strategy space. Since this paper

focuses on strictly increasing costs, I have set all lower bounds to 0.
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A3 ci (si) > 0 if vi (si) = 0.

vi(0)

0
0

Difference in payoff between 
winning and losing may change as 
a function of score

-ci

vi

Score

vi(0)

0
0

Difference in payoff between 
winning and losing may change as 
a function of score

-ci

vi

Score

Figure 1: Assumptions A1-A3

Assumption A3 stresses the all-pay nature of contests. It is not satisfied by complete-

information first-price auctions, for example, since a player pays nothing if he loses, and is

therefore indifferent between losing and winning with a bid that equals his valuation for the

prize. But the condition is met when an all-pay element is introduced, e.g., when every bidder

pays some positive fraction of his bid whether he wins or not, and only the winner pays the

balance of his bid.8 As Figure 1 shows, a player’s valuation for a prize, which is the payoff

difference between winning and losing, may depend on the player’s chosen score.

In a separable contest, this difference is constant, so vi (si) = Vi−ci (si) and ui (s) = Pi (s)Vi−
ci (si), where Vi = vi (0) > 0. The value ci (si) can be thought of as player i’s cost of choosing

score si, which does not depend on whether he wins or loses, and Vi could be thought of as

player i’s valuation for a prize, which does not depend on his chosen score. If a given score

can be achieved in different ways, ci (si) corresponds to the least costly way of achieving it.

All expenditures are unconditional, and players are risk neutral. Separable contests with linear

costs are single- and multi-prize complete-information all-pay auctions (Hillman & Samet (1987),

Hillman & Riley (1989), Clark & Riis (1998)).9

The following concepts are key in characterizing the payoffs of players in equilibrium.

8For a further discussion of the model and the assumptions see Siegel (2008).

9Formally, vi (si) = Vi − si, ci (si) = si, ai = 0, and ties are resolved by randomizing uniformly, where Vi is

bidder i’s valuation for a prize.
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Definition (i) Player i’s reach ri is the highest score at which his valuation for winning is 0.

That is, ri = max {si ∈ Si|vi (si) = 0}. Re-index players in (any) decreasing order of their reach,
so that r1 ≥ r2 ≥ . . . ≥ rn.

(ii) Player m+ 1 is the marginal player.

(iii) The threshold T of the contest is the reach of the marginal player: T = rm+1.

(iv) Players i’s power wi is his valuation for winning at the threshold. That is, wi = vi (T ). In

particular, the marginal player’s power is 0.

In a separable contest, a player’s reach is the highest score he can choose by expending no

more than his valuation for a prize. For example, in an all-pay auction a player’s reach is his

valuation for a prize.

Theorem 1 in Siegel (2008), which is stated below, characterizes players’ equilibrium payoffs

in contests that meet the following two conditions.

Generic Conditions (i) Power Condition - The marginal player is the only player with power

0. (ii) Cost Condition - The marginal player’s valuation for winning is strictly decreasing at the

threshold, i.e., for every x ∈ [am+1, T ), vm+1 (x) > vm+1 (T ) = 0.10.

I refer to a contest that meets the Generic Conditions as a generic contest. In an m-prize

all-pay auction, the Cost Condition is met trivially, because costs are strictly increasing. If the

Power Condition is met, i.e., the valuation Vm+1 of player m + 1 is different from those of all

other players, the all-pay auction is generic.11

Theorem 1 In any equilibrium of a generic contest, the expected payoff of every player equals

the maximum of his power and 0.

Theorem 1 shows that players in NW = {1, . . .m} (“winning players”) have strictly positive
expected payoffs, and players in NL = {m+ 1, . . . , n} (“losing players”) have expected payoffs
of 0. A player participates in an equilibrium of a contest if with strictly positive probability he

chooses scores associated with strictly positive costs of losing. The following result provides a

sufficient condition for players in NL:\ {m+ 1} not to participate in any equilibrium.

Theorem 2 In a generic contest, if the normalized costs of losing and valuations for winning
for the marginal player are, respectively, strictly lower and weakly higher than those of player

10In a separable contest, because vm+1 (x) = Vm+1−cm+1 (x), the cost condition is that for every x ∈ [am+1, T ),
cm+1 (x) < cm+1 (T ) = Vm+1.

11Contests that do not meet the Generic Conditions can be perturbed slightly to meet them. Perturbing the

marginal player’s valuation for winning around the threshold leads to a contest that meets the Cost Condition.

Doing the same for all players with zero power generates a contest that meets the Power Condition.
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i > m+ 1, that is
cm+1 (x)

vm+1 (0)
<

ci (x)

vi (0)
for all x ≥ 0 such that ci (x) > 0

and
vm+1 (x)

vm+1 (0)
≥ vi (x)

vi (0)
for all x ≥ 0

then player i does not participate in any equilibrium. In particular, if these conditions hold for

all players in NL\ {m+ 1}, then in any equilibrium only the m + 1 players in NW ∪ {m+ 1}
may participate.

3 Solving for Equilibrium

Recall that a player’s strategy is a probability distribution over [0,∞), and an equilibrium is a

profile of strategies, one for each player, such that each player’s strategy assigns probability 1 to

the player’s best-responses.

Identifying players’ best-response sets, or strategy supports, is a key step in solving for equi-

librium. The difficulty is that with more than two players best-response sets are not necessarily

intervals, and may in fact be quite “pathological”.12 It is therefore not immediately obvious

how to (1) guarantee the existence of and solve for a “well-behaved” equilibrium and (2) rule

out “pathological” equilibria. I do both for a large class of contests, which nests single- and

multiprize all-pay auctions. To this end, I consider regular contests, defined as follows.

Definition 1 An n-player, m-prize contest is a regular contest if it is generic and meets the

following two regularity conditions:

R1 The valuation for winning is strictly decreasing and the cost of losing is strictly increasing

for all players.

R2 The valuation for winning and the cost of losing are piecewise analytical on [0, T ] for players

1, . . . ,m+ 1.13

Condition R1 and the proof of the Threshold Lemma in Siegel (2008) imply that in every

equilibrium of a regular contest players 1, . . . ,m+1 participate, i.e., choose positive scores with

positive probability. In what follows, using the payoff result, I solve for the unique, well-behaved

12Example 2 depicts an equilibrium in which a player’s best-response set is the Cantor set.

13A function f is piecewise analytical on [0, T ] if [0, T ] can be divided into a finite number of closed intervals

such that the restriction of f to each interval is analytical. Analytical functions include polynomials, the ex-

ponent function, trigonometric functions, and power functions. Sums, products, compositions, reciprocals, and

derivatives of analytical functions are analytical (see, for example, Chapman (2002)).
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equilibrium of (m+ 1)-player regular contests. This also shows that n-player regular contests

have at most one equilibrium in which precisely m+ 1 players participate.

Consider the unique equilibrium of the three-player, two-prize, separable regular contest

depicted in Figure 2.14 Figure 3 depicts players’ equilibrium strategies, drawn as cumulative

probability distributions (CDFs). In the equilibrium, player 2’s best-response set is (0, x1] ∪
[x2, 1], and that of player 3 is [0, x3] ∪ [x4, 1]. Each player is defined as being “active” on his
best-response set, with the possible inclusion of 0.15

The algorithm described in Section 3.2 constructs the equilibrium by identifying the players

active on each interval (denoted in curly brackets), and the “switching points” above which the

14Players’ cost functions are given in Appendix B.8.

15In the equilibria of Baye et al. (1993), who considered a non-generic single-prize all-pay auction, a player’s

best-response set may be the union of 0 and a single interval whose lower endpoint is strictly positive. All such

equilibria disappear when players’ valuations are perturbed slightly to produce unique players with the first-

and second-highest valuations (so a single player has power 0). This leaves a single equilibrium, in which the

best-response set of each player is an interval (or the singleton 0). A similar perturbation produces a single

equilibrium, in which the best-response set of each player is an interval, in González-Díaz (2007). In contrast, the

non-interval property that arises here is “fundamental” in nature: it is robust to perturbations in the contest’s

specification, and, moreover, a player’s best-response set may consist of several disjoint intervals of positive

length.
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set of active players changes (xk, 1 ≤ k ≤ 4, and 1).16
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Figure 2: Player’s costs, reaches, and powers
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0
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x1 x2 x3 x4

Player 2 Player 3Player 1

Figure 3: The unique equilibrium

For such a construction to be possible, the equilibrium must be “well-behaved”, in that for

16The problem of solving for an equilibrium can be formulated as an optimal control problem with linear

control, in which the state variables are players’ CDFs. The objective is to minimize the sum of players’ expected

payoffs, subject to the constraints that CDFs are non-decreasing and that no player obtains more than his

power. This latter constraint is a state constraint, which precludes the application of Pontryagin’s Maximization

Principle in its standard form (see Hestenes (1966) and Seierstad & Sydsaeter (1977)). Thus, the standard

“pasting conditions” cannot be used, and the same difficulties remain in determining the switching points and

sets of active players.
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every x < T the set of players active immediately to the right of x must remain constant. This

is formalized by the following definition.

Definition 2 An equilibrium is constructible if for every score x < T there exists some x̄ > x

such that for each player either every score in (x, x̄) is a best response, or no score in (x, x̄) is

a best response. I refer to equilibria that are not constructible as non-constructible.

The algorithm of Section 3.2 solves for a constructible equilibrium G = (G1, . . . , Gm+1) of an

(m+ 1)-player regular contest, where Gi (x) is player i’s CDF, i.e., the probability that player i

chooses a score lower than or equal to x. This is done by using three properties of constructible

equilibria to generate a profile of CDFs, and then showing that these CDFs form a constructible

equilibrium. The properties are derived in Section 3.1. I begin with an informal overview of

these properties and the algorithm.

The first property is that only player m + 1 has an atom at 0 and the size of the atom is

determined by players’ payoffs (which are the same in all equilibria). This determines G (0).

The second property is that for every x < T the value of G on some right-neighborhood of x is

uniquely determined from G (x) and the set of players active immediately to the right of x. This

value coincides with the solution to a set of simultaneous equations derived from the condition

that active players obtain their equilibrium payoff and inactive players’ CDFs do not increase.

The third property is that the set of players active to the right of x < T is uniquely determined

by G (x), and the first switching point above x can be uniquely determined as well. This is seen

by showing that G (x), players’ costs in a right-neighborhood of x, and players’ payoffs jointly

define a “supply function” for hazard rates whose unique positive fixed point identifies the set of

players active to the right of x. This uses Condition R2. The first switching point above x is the

first point that violates one of the following two equilibrium conditions when G is defined to the

right of x as described in the second element above. First, no player should be able to obtain

more than his equilibrium payoff. Thus, an inactive player becomes active when other players’

CDFs, and therefore his probability of winning, become sufficiently high. Second, players’ CDFs

must be non-decreasing. Thus, an active player becomes inactive if his CDF would otherwise

decrease.

Combining these three properties, the algorithm constructs G by proceeding from 0 to T .17

Beginning at 0, the set of active players to the right of 0 is determined from G (0), and G is

defined up to and including the first switching point above 0. The process is repeated until T

is reached. The number of switching points that result is finite, and the resulting G is indeed

a constructible equilibrium. In the course of the construction, a player may become active and

inactive several times, leading to non-interval supports. This is what happens to players 2 and

17Condition R1, the Threshold Lemma of Siegel (2008), and the payoff characterization imply that all players

choose scores precisely up to the threshold. It therefore suffices to specify G on [0, T ].
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3 in the equilibrium of Figure 3 (the construction of this equilibrium is described at the end of

Section 3.2 as an application of the algorithm).

Because the local conditions combined with players’ payoffs uniquely determine G at every

point, the algorithm constructs the unique constructible equilibrium. Theorem 3 in Section

3.3 rules out the existence of non-constructible equilibria using the fact that a constructible

equilibrium exists. The remainder of Section 3.3 considers implications for n-player contests.

Section 3.4 discusses the much simpler case of two-player contests.

3.1 Properties of a Constructible Equilibrium

Suppose that G is a constructible equilibrium of an (m+ 1)-player regular contest. The value

of G at 0 is given by the following lemma, which doesn’t rely on constructibility.

Lemma 1 Gi (0) = 0 for i < m+ 1, and Gm+1 (0) = mini≤m
wi
vi(0)

< 1.

Now, choose y in (0, T ) and suppose y is a best response for player i. Since there are m+ 1

players, payoffs equal powers. Thus, y is a best response for player i if and only if

Pi (y) vi (y)− (1− Pi (y)) ci (y) = wi,

where Pi (y) is the probability that i wins a prize when other players choose scores according to

G. Equivalently,

1− Pi (y) = 1−
wi + ci (y)

vi (y) + ci (y)
. (1)

Since there are m prizes, if G is continuous at y the expression on on left-hand side equals

Πj∈N\{i} (1−Gj (y)), i.e., the probability that all other players choose scores higher than y. In

fact, G is continuous on (0, T ).18 Since vi (y)+ci (y) is the gain from winning relative to losing, I

refer to the right-hand side of Equation (1) as player i’s normalized excess payoff at y, denoted

qi (y) = 1−
wi + ci (y)

vi (y) + ci (y)
=

vi (y)− vi (T )

vi (y) + ci (y)
> 0.

Thus,

Πj∈N\{i} (1−Gj (y)) = qi (y) (2)

if and only if y in (0, T ) is a best response for player i.

Let x be a score in [0, T ). Considering scores y slightly higher than x, I denote the set of

players for whom all such scores are best responses by A+ (x), and refer to it as the set of players

active to the right of x:

A+ (x) = {i ∈ N : Equation (2) holds for all y ∈ (x, z) for some z > x} .

18This follows from condition R1 (see Lemma 5 in Appendix B).
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That A+ (x) is well defined follows from constructibility of G. Let

x̄ = sup
©
z ∈ (x, T ) : A+ (y) = A+ (x) for all y ∈ [x, z)

ª
.

I refer to x̄ as the first switching point above x, i.e., the first score higher than x at which the

set of players active to the right of x changes.

I now show that G (x) and A+ (x) determine the value of G on [x, x̄]. By constructibility

and continuity of G, if j /∈ A+ (x), then Gj does not increase on [x, x̄]. Thus, given G (x) and

A+ (x), Equation (2) for players j in A+ (x) and score y in (x, x̄] \T leads to a system of |A+ (x)|
equations (where |A| denotes the cardinality of a set A) in |A+ (x)| unknowns (1−Gj (y)). The

unique solution is given by the following lemma (the proof of this and other results in this section

is found in Appendix B):19

Lemma 2 Let D = Πj 6∈A+(x) (1−Gj (x)) (if A+ (x) = N , then D = 1). For every y ∈ [x, x̄] ∩
[x, T ),

Gi (y) =

⎧⎪⎪⎨⎪⎪⎩
1− Πj∈A+(x)qj(y)

1
|A+(x)|−1

qi(y)D

1
|A+(x)|−1

if i ∈ A+ (x)

Gi (x) if i /∈ A+ (x)

(3)

and Gi (T ) = 1.

I now show that G (x) uniquely determines A+ (x), and then show that x̄ is uniquely deter-

mined as well. For every x in [0, T ), let

A (x) = {i ∈ N : Equation (2) holds with x in place of y} . (4)

I refer to A (x) as the set of players active at x. For any x in (0, T ), these are the players for

whom x is a best response. By right-continuity of qi and G at every x in [0, T ), A+ (x) ⊆ A (x).

This inclusion provides an upper bound on A+ (x): players who are active to the right of x

must be active at x. But this bound is not tight, i.e., A+ (x) may be a strict subset of A (x).20

Nevertheless, A (x) uniquely determines A+ (x). To see this, I rewrite Equation (2) in terms of

marginal percentage changes as follows.

Denote by εi (y) = −q0i(y)
qi(y)

> 0 player i’s semi-elasticity at y < T , and by hj (y) = − (1−Gj(y))
0

1−Gj(y)

player j’s hazard rate at y, where all derivatives denote right-derivatives.21 For i in A+ (x), by

19 |A+ (x)| ≥ 2 is guaranteed by condition R1 (Lemma 5 in Appendix B).
20This is the case at x1 in Figure 3, since A (x1) = {1, 2, 3} and A+ (x1) = {1, 3}. The correspondence

x ⇒ A (x) can be thought of as “right upper-hemi continuous”. In general, however, it is not “right lower

hemi-continuous”.

21By condition R2, and since G is given by Equation (3), qi and G are right-continuously differentiable. q0i (y)

is strictly negative since q0i (y) =
³
vi(y)−vi(T )
vi(y)+ci(y)

´0
=

N eg a t iv ez }| {
v0i (y)

Po s i t iv ez }| {
(ci (y) + vi (T ))+

Po s it iv ez }| {
c0i (y)

N eg a t iv ez }| {
(vi (T )− vi (y))

(vi(y)+ci(y))
2
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Equation (2), player i’s normalized excess payoff at y > x equals the product of the other players’

probabilities of choosing scores higher than y, for y sufficiently close to x. Thus, taking natural

logs and differentiating Equation (2), εi (y) equals the sum
P

j∈N\{i} hj (y) of the other players’

hazard rates at y. Since players who are not in A+ (x) have hazard rates of 0 at y,

∀i ∈ A+ (x) : εi (y) =
X

j∈A+(x)\{i}

hj (y) (5)

By right-continuity, Equation (5) holds at x. In addition, since no player can obtain more

than his power on a right-neighborhood of x,

∀i ∈ A (x) : εi (x) ≥
X

j∈A+(x)\{i}

hj (x) with equality for i ∈ A+ (x) (6)

Letting H (x) =
P

j∈A+(x) hj (x), Equation (5) and Inequality (6) can be combined as

∀i ∈ A (x) : hi (x) = max {H (x)− εi (x) , 0} (7)

Equation (7) pins down players’ hazard rates at x. To see this, think of the right-hand side of

Equation (7) with H in place of H (x) as player i’s “supply curve” of “hazard rate” as a function

of “price”H. Then Sx (H) =
P

i∈A(x)max {H − εi (x) , 0} is the aggregate supply of hazard rates
at x given H. In equilibrium, by adding up Equation (7) for i ∈ A (x), the aggregate “hazard

rates” supplied must equal the actual aggregate hazard rate H (x). Thus, H (x) must satisfy

Sx (H (x)) = H (x). To determine H (x) from Sx, note that Sx is a piecewise linear function,

whose slope increases by 1 every time H exceeds the semi-elasticity of a player in A (x). Since

all semi-elasticities are positive and |A (x)| ≥ 2,22 S0x (0) = 0 and H (x) 6= 0. So, Sx is a convex
function that starts below the diagonal and reaches a slope of at least 2. Therefore, it intersects

the diagonal precisely once above 0, at H (x) (see Figure 4 below).

Since players with a positive hazard rate at x are in A+ (x), if εi (x) < H (x) for a player i

in A (x), then i is in A+ (x).23 Since a player l in A (x) must obtain his power immediately to

the right of x to be in A+ (x), if εl (x) > H (x), then l /∈ A+ (x). This is depicted in Figure 4:

A (x) = {i, j, l}, and A+ (x) = {i, j}, since εi (x) < H (x) , εj (x) < H (x) , and εl (x) > H (x).

Also, S0x does not increase at εk (x), since player k is not active at x (k /∈ A (x)).

22Lemma 5 in Appendix B.

23By definition of H (x) as the fixed point of Sx (H), there are at least two such players, so |A+ (x)| ≥ 2.
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0
0

H

Sx(H)

εl(x)εi(x) εj(x) H(x)εk(x)

hj(x)

hi(x)

0
0

H

Sx(H)

εl(x)εi(x) εj(x) H(x)εk(x)

hj(x)

hi(x)

Figure 4: The function Sx and its fixed point H (x)

A complication arises when εi (x) = H (x) for a player i in A (x). The correct assignment

of such a player is important, since his semi-elasticity slightly above x may differ from the

aggregate hazard rate, so he may or may not be active to the right of x, which in turn influences

the aggregate hazard rate. That this assignment can be determined unambiguously follows

from the assumption of piecewise analytical costs. This is shown in Lemma 6 in Appendix B,

which provides the following procedure for deciding whether a player i in A (x) is in A+ (x).

Compare εi (x) and H (x); if they are equal, compare their first right-derivatives, etc. (This will

“generically” stop at the first derivatives.) The lowest order derivatives of εi (x) and H (x) that

differ determine whether player i is in A+ (x) (<: in A+ (x), >: not in A+ (x)). If all derivatives

are equal, i is in A+ (x).

Now consider the first switching point x̄ < T above x. This is the first score for which

A+ (x) 6= A+ (x̄). If j ∈ A+ (x̄) \A+ (x), then j ∈ A (x̄) \A+ (x), so j obtains his power at x̄. If,
on the other hand, j ∈ A+ (x) \A+ (x̄), then hj (x̄) = 0. Thus, to identify x̄ consider the first

point y > x such that Equation (2) holds for a player j /∈ A+ (x), or hj (y) = 0 for a player

j ∈ A+ (x), or y is a concatenation point of the cost function of a player in A+ (x) (recall that

costs are piecewise-defined functions), or y = T . If y 6= T , using Equation (4) determine A (y)

fromG (y), and useH (y) to determine A+ (y) fromA (y) as described above. If A+ (y) 6= A+ (x),

then x̄ = y. If A+ (y) = A+ (x), then y is not a true switching point, and the search continues

above y for the next candidate switching point. This can only repeat a finite number of times

before x̄ is identified.24

24Finiteness can be shown using analyticity, as in the proof of Lemma 6. Players j ∈ A+ (x) for whom

ε
(k)
i (x) = H(k) (x) for all k ≥ 0 are ignored in the search for the first candidate switching point, etc.
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3.2 The Algorithm

The properties derived in the previous subsection suggest the following algorithm for constructing

a candidate constructible equilibrium G on [0, T ] First, define G (0) as in Lemma 1. Set x = 0.

Define A (x) from G (x) using Equation (4). Determine A+ (x) from A (x) via Sx and its unique

fixed point as described above.25 Identify x̄, the first switching point higher than x, as described

above. Define G on [x, x̄] using Equation (3). If x̄ 6= T , set x = x̄ and go to Step 2.

For every score x in (0, T ) which has been reached in this process, the following points are

true.

1. G is continuous and non-decreasing on (0, x) by construction.

2.
¡
1−Πj∈N\{i} (1−Gj (x))

¢
vi (x)−

¡
Πj∈N\{i} (1−Gj (x))

¢
ci (x) ≤ wi, with equality if hi (x) >

0, by construction.

3. G (x) ∈ (0, 1). This follows from the continuity and monotonicity of G up to y, since

G (0) < 1 (Lemma 1), and if Gi (x) ≥ 1, then every player j 6= i would obtain strictly more

than his power by choosing a score slightly lower than x, violating Point 2.

4. |A (x)| ≥ 2. This can be seen by induction on the number of switching points up to y, since
(i) |A (0)| ≥ 2 (A (0) =

n
i ∈ N : wi ≤ minj<m+1 wj

vj(0)

o
), (ii)if |A (y)| ≥ 2 then |A+ (y)| ≥ 2

for any y < x (see footnote 23), and (iii) A+ (y) ⊆ A (ȳ) for any y < x by construction.

Points 3 and 4 show that the algorithm can proceed from any score y < T that has been

reached. To show that the algorithm terminates, it suffices to show that the number of switching

points is finite.

Lemma 3 The number of switching points in [0, T ] identified by the algorithm is finite. In

addition, A (x) = N for all x sufficiently close to T .

The construction will therefore reach T by applying the steps above a finite number of times.

Thus, the output G is characterized by a partition into a finite number of intervals of positive

length, on the interior of which the set of active players remains constant. The value of G on

each interval is given by Equation (3). To show that G is an equilibrium, it remains to show

that Gi (T ) = 1.

Lemma 4 For every player i, limx→T Gi (x) = Gi (T ) = 1.

Proposition 1 G is a constructible equilibrium, which is continuous above 0.

25This requires |A (x)| ≥ 2, which is shown below. And |A (x)| ≥ 2 implies |A+ (x)| ≥ 2 (footnote 23).
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Proof. G is a profile of probability distribution functions, since it is right-continuous on [0, T ],

weakly increasing, and G (T ) = 1 (Point 1 and Lemma 4). It is continuous above 0 (Point 1 and

Lemma 4). No player can obtain more than his power and Gi is strictly increasing only where

player i obtains precisely his power (Point 2). Thus, best responses are chosen with probability

1, so G is an equilibrium. By the construction procedure, G is constructible (for every x < T ,

every score in (x, x̄) is a best response for players in A+ (x) and no score in (x, x̄) is a best

response for players in N\A+ (x)).

For an illustration, consider the supply function Sx and its positive fixed point H (x) in the

context of Figure 3 above. A (0) = A+ (0) = {2, 3}. As x increases from 0 to T , the set of active
players changes. At the switching point x1, player 1 becomes active since he obtains his power.

This changes Sx and H (x) discontinuously. As a result, H (x1) falls below player 2’s hazard

rate, and he becomes inactive immediately above x1. At x2, player 2 rejoins the set of active

players, and all three players are active up to x3. Thus, the addition of an active player may

or may not cause another to become inactive. At x3, player 3’s hazard rate reaches 0, and he

becomes inactive immediately above x3. Player 3 rejoins the set of active players at x4, and all

three players remain active up to the threshold.26

3.3 Equilibrium Uniqueness and Implications

Since the value of G at 0, the switching points, and the corresponding sets of active players are

uniquely determined, we have the following.

Corollary 1 G is the unique constructible equilibrium of an (m+ 1)-player regular contest.

Proof. Consider a constructible equilibrium G̃, and denote by x̃ the supremum of the scores on

which G̃ coincides withG. Since G̃ (0) = G (0) (Lemma 1), both G̃ andG are continuous on (0, T )

(Lemma 5 in Appendix B), and G̃ (T ) = G (T ) = 1 (by Condition R1), we have G̃ (x̃) = G (x̃).

By constructibility of G̃ and the construction of G, G̃ (y) = G (y) on a right-neighborhood of x̃,

for x̃ < T . Thus, x̃ = T .

Corollary 1 does not apply to non-constructible equilibria, since it assumes that for every

x ∈ [0, T ) the set of active players remains constant on (x, y) for some y ∈ (x, T ). To show
that the output of the algorithm is the unique equilibrium, the existence of equilibria that are

26Bulow & Levin (2006) constructed the equilibrium of a game in which players have linear costs and compete

for heterogeneous prizes. Their construction proceeds from the top, without first identifying players’ equilibrium

payoffs. This is possible because each player’s best-response set is an interval and players’ marginal costs are

identical. Such a procedure does not work here, as the set of players active to the left of x cannot be uniquely

determined from G (x) and players’ powers using local conditions.
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not constructible must be ruled out. Theorem 3 does this, using the fact that a constructible

equilibrium exists.27

Theorem 3 If a generic (m+ 1)-player contest that meets Condition R1 has a constructible

equilibrium G, then G is the unique equilibrium of the contest.

Since a regular contest has a constructible equilibrium, and the existence of a constructible

equilibrium guarantees uniqueness, combining Lemma 3, Proposition 1, and Theorem 3 we have

the following.

Theorem 4 An (m+ 1)-player regular contest has a unique equilibrium, which is constructible.

It is characterized by a partition of [0, T ] into a finite number of closed intervals with disjoint

interiors of positive length, such that the set of active players is constant on the interior of each

interval. Thus, each player’s best-response set is a finite union of intervals. All players are

active on the last interval.

Proof. Immediate.

Example 2 shows that when players’ costs are not piecewise analytical, so the contest is not

regular, non-constructible equilibria may exist.

An immediate implication of Theorem 4 is that equivalent players play identical strategies.

Corollary 2 In an (m+ 1)-player regular contest, if vi = γvj and ci = γcj on [0, T ] for some

γ > 0, then players i and j play identical strategies.

Proof. Multiplying a player’s Bernoulli utility function by a positive constant does not affect
his strategic behavior, and so does not change the set of equilibria of the contest. Thus, if the

strategies of players i and j were different, switching them would lead to a second equilibrium,

contradicting uniqueness.

I now turn to regular contests with any number of players.

Corollary 3 Regular contests have at most one equilibrium in which m+ 1 players participate.

The candidate for this equilibrium is the unique equilibrium of the reduced contest with players

1, . . . ,m+1. It is an equilibrium of the original contest if and only if players m+2, . . . , n cannot

obtain strictly positive payoffs by participating. If they can, then in every equilibrium at least

m+ 2 players participate.

27Clark & Riis (1998) and, to the best of my reading, Bulow & Levin (2006), who constructed equilibria of

similar games with a continuum of pure strategies in which more than two players participate, did not rule out

the existence of equilibria that are not constructible. Such equilibria do not arise in Baye et al. (1996), but are

not ruled out in the setting of González-Díaz (2007), who extends the analysis of Baye et al. (1996) to more

general costs.
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Proof. Since valuations for winning are strictly decreasing, players 1, . . . ,m+ 1 participate in

every equilibrium (see the proof of the Threshold Lemma in Siegel (2008)). Thus, an equilibrium

in which precisely m + 1 players participate must coincide with the unique equilibrium of the

reduced contest that involves players 1, . . . ,m+ 1.

In some regular contests, only players 1, . . . ,m+1 participate in any equilibrium. A sufficient

condition, which is met by generic all-pay auctions, is given in Theorem 2. By Corollary 3, such

contests have a unique equilibrium, given by the algorithm.

3.4 Two-Player Contests

Two-player, single-prize contests are relatively simple to solve because equilibrium strategies

exist such that every positive score up to the threshold is a best response for both players. This

is shown in Theorem 5.

Theorem 5 In a two-player, single-prize contest that satisfies Condition R1, the unique equi-
librium is (G1, G2) (x) =

³
c2(x)

v2(x)+c2(x)
, w1+c1(x)
v1(x)+c1(x)

´
on [0, T ].

Section 4.1 below provides an application of the result. Theorem 5, applied to separable con-

tests, extends the results of Kaplan & Wettstein (2006) and Che & Gale (2006), who considered

two-player separable contests with strictly increasing, ordered cost functions. When costs are

not strictly increasing, a generic separable contest may have other equilibria (see Example 1).

When the Cost Condition is not met, equilibria may exist in which a player obtains more than

his power (see Example 2 in Siegel (2008)). An immediate consequence of Theorem 5 is the

following.

Corollary 4 A generic one-prize contest that meets Condition R1 has at most one equilibrium
in which two players participate.

Proof. Similar to that of Corollary 3 above.

4 Simple Contests

As the example of Figures 2 and 3 shows, even when a regular contest has a unique equilibrium,

gaps in a player’s best-response set may still arise. In this section I identify a class of regular

contests with a unique equilibrium, in which every player’s best response set is an interval. This

class nests generic all-pay auctions.

Consider a situation in which all players share a common underlying technology, captured

by a strictly increasing function c (·) with c (0) = 0, but may differ in their efficiency of employ-

ing this technology. This difference is captured by every player i’s idiosyncratic cost coefficient
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γi > 0. For example, workers at a production plant who compete for promotions based on output

use the same equipment to manufacture certain products, but differ in their skill of operating

the equipment. A fraction α in (0, 1] of the cost is sunk. The remainder of the cost, 1 − α, is

borne only if the player wins a prize. For every player i, we therefore have vi (si) = Vi − γic (si)

and ci = αγic (si) , where Vi > 0. A generic contest in this family is called a simple contest (see

Figure 5 below). When α = 1 all investments are sunk.28 If, in addition, c (x) = x and γi = 1

for every player i, we have an all-pay auction.

ri

Vi

0
0

-ci

vi

Score

Slope -a

Slope -1

ri

Vi

0
0

-ci

vi

Score

Slope -a

Slope -1

Figure 5: The valuation for winning and cost of losing for player i with γi = 1 in a simple

contest with c (x) = x

The reach ri of player i satisfies vi (ri) = 0, so ri = c−1
³
Vi
γi

´
. Since c is strictly increasing

and players are ordered in decreasing order of reach, V1
γ1
≥ ... ≥ VN

γN
. The contest’s threshold is

T = rm+1 = c−1
³
Vm+1
γm+1

´
, so the range of scores over which players compete, [0, T ], is independent

of α. The Cost Condition is met since vi and −ci are strictly decreasing. For the Power

Condition, assume that Vm+1
γm+1

is distinct. Theorem 1 then shows that the equilibrium payoff of

player i < m + 1 is wi = vi (T ) = Vi − γic
³
c−1

³
Vm+1
γm+1

´´
= Vi − γi

Vm+1
γm+1

. We therefore have the

following corollary of Theorem 1.

Corollary 5 In a simple contest, the payoff of every player i < m + 1 is Vi − γi
Vm+1
γm+1

. The

payoffs of players m+ 1, . . . , N are 0. Payoffs are independent of α and c.

28The contest is then similar to the one in Moldovanu & Sela (2001). The informational assumptions, however,

are different. In their model, all players are ex-ante symmetric. The individual coefficients γi are privately

known and drawn iid from a commonly known distribution. They solve for the symmetric equilibrium, and

do not characterize all equilibria. In contrast, the model here is of complete information and has a unique

equilibrium.
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Corollary 5 shows that a winning player’s payoff increases in his valuation for a prize and

in the marginal player’s cost coefficient, and decreases in the player’s cost coefficient and in the

marginal player’s valuation for a prize. In particular, the payoff of a winning player i is not

affected by the characteristics of any player in N\ {i,m+ 1}. Note that players’ powers are
ranked according to ratio of their valuation to cost coefficient: wi ≥ wj if and only if Vi

γi
≥ Vj

γj
.

Aggregate expenditures equal the allocation value of the prizes less players’ utilities. We

therefore obtain the following corollary of Theorem 1.

Corollary 6 In a simple contest in which V1 = . . . = VN = V , aggregate expenditures are

mV −
Pm

i=1

³
V − γi

V
γm+1

´
= V

Pm
i=1

³
γi

γm+1

´
, and are independent of α and c.

Corollary 6 shows that when all valuations are equal, as is the case when prizes are monetary,

aggregate expenditures increase in valuations and in each of the winning players’ cost coefficients,

and decrease in the marginal player’s cost coefficient.

4.1 Simple Contests with a Single Prize

Since simple contests satisfy condition R1 (they are regular), Theorems 2 and 5 show that

a simple contest with a single prize has a unique equilibrium, described in Theorem 5. We

therefore have the following corollary.

Corollary 7 A simple contest with a single prize has a unique equilibrium. In this equilibrium
players 3, . . . , n choose 0 with probability 1. The CDFs of players 1 and 2 are (Gα

1 , G
α
2 ) (x) =µ

αγ2c(x)
V2−(1−α)γ2c(x)

,
V1−γ1

V2
γ2
+αγ1c(x)

V1−(1−α)γ1c(x)

¶
on
h
0, c−1

³
V2
γ2

´i
.

The corollary shows that the unique equilibrium is not independent of α and c. It is straight-

forward to verify that player 1’s CDF first-order stochastically dominates (FOSD) that of player

2. Therefore, player 1 wins the prize with higher probability than player 2 (see Corollary 10

below). Moreover, ∂Gα
1 (x)

∂α
,
∂Gα

2 (x)

∂α
> 0 for all x in (0, T ), so the equilibria for lower values of α

first order stochastically dominate those of higher values of α.

In the limit, as α approaches 0, player 1 chooses T with probability 1 and wins the prize

with probability 1, and player 2 chooses scores lower or equal to x with probability
V1−γ1

V2
γ2

V1−γ1c(x)
.

This is an equilibrium of the limit game in which every player i’s payoff is 0 if he loses, and

Vi − γic (si) if he wins when choosing si. The equilibrium does not depend on the tie-breaking

rule, and gives every player the payoff specified in Theorem 1. Thus, taking the fraction of the

all-pay component to 0 can serve as a selection criterion that delivers a unique equilibrium of the

limit game. This limit game is not a contest, since Assumption A3 is violated, and has multiple

equilibria with differing payoffs.
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4.2 Simple Contests with Multiple Prizes

From now on assume that c (·) is piecewise analytical. The following result follows fromTheorems
2 and 4.

Corollary 8 A simple contest with multiple prizes has a unique equilibrium.

Proof. Let i = m+ 2, . . . , N . For every x > 0,

cm+1 (x)

vm+1 (0)
=

αγm+1c (x)

Vm+1
<

αγic (x)

Vi
=

ci (x)

vi (0)
,

and for every x ≥ 0,

vm+1 (x)

vm+1 (0)
=

Vm+1 − γm+1c (x)

Vm+1
= 1− γm+1

Vm+1
c (x) ≥ 1− γi

Vi
c (x) =

vi (x)

vi (0)

so by Theorems 2, players m + 2, . . . , N do not participate, i.e., choose 0 with probability 1.

Applying Theorem 4 to the reduced contest, which includes only players 1, . . . ,m+1, we obtain

the result.

Let ai =
γi
Vi
, and note that ai is increasing in i. The following result shows that in the unique

equilibrium, the best response set of every player i ≤ m+1 is an interval whose upper bound is

T and whose lower bound increases in the player’s power (or, equivalently, decreases in ai).

Theorem 6 In the unique equilibrium of a simple contest, every player i ≤ m+ 1 is active on

the interval
£
sli, T

¤
for some sli ≥ 0, with slm = slm+1 = 0. For i, j ≤ m, sli ≤ slj if and only if

aj ≤ ai. Players m+ 2, . . . , N do not participate, i.e., they choose 0 with certainty.

Appendix C contains the proof of Theorem 6 and of other results in this section. To gain

some intuition for the result, suppose α = 1. In this case, players’ semi-elasticities are identical,

so the set of players active at x equals the set of players active to the right of x, for every

x ∈ [0, T ). Thus, once a player becomes active, he remains active up to the threshold. The
higher the normalized power of a player, the later he becomes active.

Having established that each player is active on an interval up to the threshold and that

players with higher power become active at higher scores, we proceed to derive an expression

for players’ equilibrium strategies. Recall that for any y < T the formula for player i’s CDF at

y is given by Equation (3). Since each player is active on an interval, D = 1, and the switching

points are the points sli at which players become active. Because players with higher powers

become active at higher scores, for every y < T there is a unique j = 1, . . . ,m such that y is in£
slj, s

l
j−1
¢
(where sl0 = T ) and A+

¡
slj
¢
= j, . . . ,m+1. Therefore, for y in this

£
slj, s

l
j−1
¢
we have

Gi (y) =

⎧⎨⎩ 1− Πm+1
k=j qk(y)

1
m+1−j

qi(y)
if i ≥ j

0 if i < j
.
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Substituting

qi (y) =
vi (y)− vi (T )

vi (y) + ci (y)
=

ai
³

1
am+1

− c (x)
´

1− (1− α) aic (x)

for i ≥ j, we obtain

Gi (y) = 1−
Πm+1
k=j

∙
ak

1
am+1

−c(y)
1−(1−α)akc(y)

¸ 1
m+1−j

ai
1

am+1
−c(y)

1−(1−α)aic(y)

= 1−

³
1

am+1
− c (y)

´m+2−j
m+1−j

Πm+1
k=j

h
ak

1−(1−α)akc(y)

i 1
m+1−j³

1
am+1

− c (y)
´

ai
1−(1−α)aic(y)

or

Gi (y) = 1−
µ

1

am+1
− c (y)

¶ 1
m+1−j Π

m+1
k=j

h
ak

1−(1−α)akc(y)

i 1
m+1−j

ai
1−(1−α)aic(y)

(8)

We still have to identify the scores sli at which players become active. For simplicity assume

that the ais are distinct (a similar analysis works when they are not distinct, but the notation

becomes more cumbersome). Recall that sm = sm+1 = 0. The score sli at which player i < m

becomes active is the lowest score x at which he obtains his power. That is, sli is the lowest score

x that satisfiesÃ
1−

m+1Y
d=i+1

(1−Gd (x))

!
(1− aic (x))−

Ã
m+1Y
d=i+1

(1−Gd (x))

!
αaic (x) = wi = 1−

ai
am+1

,

or Ã
m+1Y
d=i+1

(1−Gd (x))

!
(aic (x) (1− α)− 1)− aic (x) = −

ai
am+1

.

After substitutingGd with the right-hand side of Equation (8) (with active players i+1, . . . ,m+1)

and some algebraic manipulation, it can be shown that sli is the lowest score x that satisfies

Πm
k=i+1ak

am−ii

=
1

(1− am+1c (x))

Πm+1
k=i+1 (1− akc (x) (1− α))

(1− aic (x) (1− α))m−i
. (9)

Equation (9) characterizes sli implicitly, and provides a simple closed-form expression for sli
when α = 1 (see Section 4.2.1 below). It can also be used to show the following result.

Theorem 7 For α ≤ 1 and i < m, sli decreases in α. As α approaches 0, sli approaches T .

The game with α = 0 is not a contest, since Assumption A3 is violated. Instead, it is

a complete-information multiprize m’th-price auction in which player i’s cost of bidding x is

γic (x). This game has many equilibria, some of which involve players playing weakly-dominated

strategies, and some which rely on specific tie-breaking rules. Different equilibria lead to different

payoffs. Considering the limit of the equilibria of simple contests as α approaches 0 we obtain

the following equilibrium of the game with α = 0. Players 1, . . . ,m−1 bid T with probability 1.

22



Players m+2, . . . , n bid 0 with probability 1. Players m andm+1 bid the limit of the equilibria

of two-player simple contests as α approaches 0. As shown in Section 4.1, this means that player

m bids T with probability 1, and playerm+1 bids according to the CDFGm+1 (x) =
Vm−γm

Vm+1
γm+1

Vm−γmc(x)
.

Each of players 1, . . . ,m wins a prize with probability 1, and players m + 1, . . . , n win a prize

with probability 0. Players’ payoffs are given by the payoff characterization, and the equilibrium

is robust to the tie-breaking rule.

Theorem 7 has the following implication regarding efficiency. Call a simple contest β-efficient,

for some β in (0, 1), if each of the winning players (players with positive power) obtains a prize

with probability at least β in the unique equilibrium of the contest.

Corollary 9 Choose a family of simple contests parameterized by α. For any β < 1, every

simple contest in the family with a small enough α > 0 is β-efficient.

In particular, the corollary shows that when players differ only in their valuations for a

prize, efficiency can be approached arbitrarily closely by reducing the unconditional investment

component α. The limiting equilibrium corresponding to α = 0 is efficient. Since players’ payoffs

remain the same for all α > 0, this immediately implies that as α approaches 0, expenditures

approach their maximal value,
Pm

i=1 Vi −
Pm

i=1

³
Vi − γi

Vm+1
γm+1

´
= Vm+1

Pm
i=1

γi
γm+1

.

That players with higher powers become active at higher scores also implies that their equi-

librium CDFs can be ranked in terms of FOSD.

Corollary 10 For any α in (0, 1] and i < j, the CDF of player i FOSD that of player j. This

implies that player i chooses higher scores than player j, on average, and also that player i wins

a prize with higher probability than player j.

4.2.1 The Case α = 1

When α = 1 the contest is separable. Equation (8) then simplifies to

Gi (y) = 1−
µ

1

am+1
− c (y)

¶ 1
m+1−j Πm+1

k=j a
1

m+1−j
k

ai
(10)

Equation (9) provides the following closed-form expression for sli, i < m (recall that slm =

slm+1 = 0)
Πm
k=i+1ak

am−ii

=
1¡

1− am+1c
¡
sli
¢¢ ⇒ sli = c−1

µ
1

am+1
− am−ii

Πm+1
k=i+1ak

¶
. (11)

The special case of c (x) = x and γi = 1 is a multi-prize all-pay auction, first analyzed by

Clark & Riis (1998). Setting c (x) = x and γi = 1 in Equations (10) and (11) delivers the

equilibrium described in their Proposition 1. Theorem 6 above shows that this equilibrium is
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the unique equilibrium when the marginal player’s valuation is distinct.29 An analysis similar to

that of Clark & Riis (1998) shows that individual and aggregate expenditures are independent

of the cost function c.

29Theorem 6 applied to multiprize all-pay auctions corrects two imprecisions in Clark & Riis (1998). The first

is that they claimed uniqueness but provided an incorrect proof of this claim, as discussed in footnote 6 above.

The second is that their footnote 6 claims that multiple equilibria arise when players’ valuations are not distinct.

Theorem 6 shows that the equilibrium is unique even if several players have the same valuation for a prize, as

long as the valuation of the marginal player is distinct.
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A Examples 1 and 2

All the examples depict separable contests, so vi (·) = Vi − ci (·) for some Vi > 0.
Example 1 Multiple equilibria when costs are not strictly increasing.

Let n = 2,m = 1, Vi = V > 0,

c1 (x) =

½
0 if x < X

x−X if x ≥ X

for some X > 0, and let c2 (x) = x. This is a version of an all-pay auction, in which player 1
has an initial advantage of X. For X ≥ V , the only equilibrium is a pure strategy equilibrium:
player 1 chooses X, and player 2 chooses 0. Player 1 wins with certainty, and expenditures are
zero.
For X < V , (F1, F2) is an equilibrium, where

F1 (x) =

⎧⎪⎨⎪⎩
H1 (x) if x < X

X
V
+ (x−X)

V
if X ≤ x ≤ V

1 if x > V

, F2 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < 0
X
V

if 0 ≤ x < X
X
V
+ (x−X)

V
if X ≤ x ≤ V

1 if x > V

and any right-continuous, non-decreasing function H1, such that H1 (0) = 0 and H1 (x) ≤ x
V
.

Example 2 A non-constructible equilibrium.
I construct an equilibrium (C,G,G) of the following contest, in which player 1’s best-response
set is the Cantor set. Let n = 3,m = 1, Vi = 1. To define player 1’s cost function, let
c1 (x) = F (x) = x and modify F (x) by mimicking the construction of the Cantor set on [0, 1]
in the following way. At every removed (a, b) and for every x ∈ (a, b), let F (x) = a + (x−a)2

b−a .
Denote the resulting function by F̃ . Then F̃ (0) = 0, F̃ (1) = 1, and F̃ is continuous, strictly
increasing, equals x precisely on the Cantor set, and is strictly lower than x on its complement.
In particular, if player 1’s probability of winning when playing x is F̃ (x), then his best-response
set is the Cantor set. To achieve this, let C be the Cantor function, and recall that it is
continuous and weakly increasing, with C (0) = 0 and C (1) = 1. Let G (x) satisfy F̃ (x) =

1− (1−G (x)) (1−G (x)) for all x ∈ [0, 1]. That is,

G (x) = 1−
q
1− F̃ (x)

Then G (x) is continuous and strictly increasing, with G (0) = 0 and G (1) = 1. Now, define
player 2 and 3’s cost functions as

c2 (x) = c3 (x) = 1− (1−G (x)) (1− C (x)) = 1−
µq

1− F̃ (x)

¶
(1− C (x))

Then c2 and c3 are continuous and strictly increasing, with c2 (0) = c3 (0) = 0 and c2 (1) =

c3 (1) = 1. It is straightforward to verify that (C,G,G) is an equilibrium of the contest, in which
player 1’s best-response set is the Cantor set.
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B Proofs of the Results of Section 3

Lemma 5 In any equilibrium G of a contest with strictly decreasing valuations for winning and
strictly increasing costs of losing, (1) G is continuous on (0, T ), and (2) every score in (0, T ) is
a best response for at least two players.

Proof. See the Appendix of Siegel (2008).

B.1 Proof of Lemma 2

Choose y ∈ (x, x̄), and let pi (y) = 1 − Gi (y). Since qi (y) > 0 and pi (y) , D > 0 (all players
choose scores up to the threshold by the Threshold Lemma and strictly decreasing valuations for
winning), Equation (2) for i ∈ A+ (x) can be rewritten as Πj∈A+(x)\{i}pj (y) =

qi(y)
D

> 0. Taking
natural logs, X

j∈A+(x)\{i}

ln pj (y) = ln qi (y)− lnD

This is a system of |A+ (x)| linear equations in |A+ (x)| unknowns pj (y). Denote by IM×M and
1M×M the identity matrix and a matrix of ones, respectively, of dimensions M ×M . Then, in
vector notation, ¡

1|A+(x)|×|A+(x)| − I|A+(x)|×|A+(x)|
¢
ln p (y) = ln q (y)− lnD

Since (1M×M − IM×M)
−1 =

¡
1

M−1 · 1M×M − IM×M
¢
, we have

ln pi (y) =
1

|A+ (x)|− 1
X

j∈A+(x)

ln qj (y)− ln qi (y)−
1

|A+ (x)|− 1 lnD

which gives the result for y ∈ (x, x̄). For y ∈ {x, x̄},x̄ 6= T , the result follows from left- and
right-continuity on [0, T ). And G (T ) = 1 because by Condition R1 no player has best responses
above T .

B.2 Proof of Lemma 1

Since positive payoffs imply winning with positive probability at every best response, the Tie
Lemma shows that players in 1, . . . ,m do not have an atom at 0. Since Condition R1 implies
that there are no atoms above 0 and every x > 0 is a best response of at least two players
(Lemmas 5 and 5), Gm+1 (0) ≥ mini≤m

wi
vi(0)

. Since no player should be able to obtain more
than his power by choosing a score slightly above 0, Gm+1 (0) ≤ mini≤m wi

vi(0)
. Strictly decreasing

valuations for winning also imply that wi = vi (T ) < vi (0), so Gm+1 (0) < 1.

B.3 Statement and Proof of Lemma 6

I show that A+ (x) is exactly all players i ∈ A (x) with εi (y) ≤ HA(x) (y) on some right-
neighborhood of x, where HA(x) (y) is the positive fixed point of

Sy (H|A (x)) =
X

j∈A(x)

max {H − εk (y) , 0}
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Then, by point 1 below, to determine whether εi (y) ≤ HA(x) (y) on some right-neighborhood
of x it suffices to compare the derivatives of εi (x) and H (x), as specified in Section 3, since
Sx (·|A (x)) = Sx (·) so HA(x) (x) = H (x).30

The phrase extend G to the right of x with respect to A+ ⊆ A (x) is shorthand for
defining G using Equation (3) with A+ (x) = A+ on some right-neighborhood of x.

Lemma 6 A set A+ ⊆ A (x) satisfies the following three conditions:

1. A+ ≥ 2

2. For every player i ∈ A+, hi (y) ≥ 0 on some right-neighborhood of x

3. For every player i /∈ A+, Pi (y) vi (y)− (1− P (y)) ci (y) < wi on some right-neighborhood
of x

when G is extended to the right of x with respect to A+, if and only if A+ = cA+ (x) for
cA+ (x) = ©i ∈ A (x) : εi (y) ≤ HA(x) (y) on some right-neighborhood of x

ª
The following points assist in the proof:

1. HA(x) on some right-neighborhood of x can be computed as follows. Order the players
in A (x) in any non-decreasing order of semi-elasticity on some right-neighborhood of x
(this can be done since, by Condition R2, semi-elasticities are analytical on some right-
neighborhood of x, and an analytical function with an accumulation point of roots is
identically 0 in the connected component of the accumulation point). Let L (x) be the
highest l ≥ 2 (in this ordering ) such that

1

l − 1
X

j∈A(x),j≤l

εj (y)− εl (y) ≥ 0

on some right-neighborhood of x (that L (x) is well defined follows from Condition R2 as
above). Then

HA(x) (y) =
1

L (x)− 1
X

j∈A(x),j≤L(x)

εj (y)

on this right-neighborhood of x. This follows from the uniqueness of the fixed point of
Sy (·|A (x)). Consequently, HA(x) is analytical on this right-neighborhood of x.

30A+ (x) can also be constructed as follows. Order the players in A (x) in any non-decreasing order of semi-
elasticity on some right-neighborhood of x. A+ (x) is the subset {1, . . . , L (x)} ⊆ A (x), where L (x) is the highest
l ≥ 2 (in this ordering ) such that

1

l − 1
X

j∈A(y),j≤l
εj (y)− εl (y) ≥ 0

on this right-neighborhood of x. This follows from solving the system of Equations (5) and using the arguments
in the proof of Lemma 6.
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2. cA+ (x) = ni ∈ A (x) : εi (y) ≤ HA+(x) (y) on some right-neighborhood of x
o
, since, by de-

finition of cA+ (x) and point 1, HA+(x) (y) = HA(x) (y) on some right-neighborhood of x.

3. When G is extended to the right of x with respect to A+, A+ ⊆ A (x) ,
¯̄
A+
¯̄
≥ 2, condition

2 in the lemma is met for A+ if and only if the aggregate hazard rate eHA+ equals HA+,
the fixed point of Sy

¡
·|A+

¢
, on some right-neighborhood of x. Indeed, by taking natural

logs and differentiating Equation (2),

eHA+ (y) =
1¯̄

A+
¯̄
− 1

X
j∈A+

εj (y) and eHA+ (y) =
X
j∈A+

eHA+ (y)− εj (y)

so if eHA+ = HA+, condition 2 is met. The other direction follows from the uniqueness of
the fixed point of Sy

¡
·|A+

¢
, because hi (y) = eHA+ (y)− εi (y).

Proof. “if”: That
¯̄̄cA+ ¯̄̄ ≥ 2 is immediate from point 1. By point 2 and the definition of HA+(x),

HA+(x) (y) =
X
j∈A+

HA+(x) (y)− εj (y)

so eHA+ = HA+(x) and by point 2 condition 2 in the lemma is met. Condition 3 is met for players
in A (x) \cA+ (x) since, by point 2, such players have semi-elasticities strictly higher than the
aggregate hazard rate HA+(x) on some right-neighborhood of x. Condition 3 is trivially met for
players in N\A (x) by continuity of G.
“only if”: Consider a set A+ ⊆ A (x) ,

¯̄
A+
¯̄
≥ 2, that satisfies conditions 2 and 3 of the lemma.

Since A+ ⊆ A (x), Sy
¡
·|A+

¢
≤ Sy (·|A (x)), so HA+(x) = HA(x) ≤ HA+. This implies thatcA+ (x) ⊆ A+. Otherwise, when G is extended to the right of x with respect to A+ every player

i ∈ cA+ (x) \A+ obtains at least his power on some right-neighborhood of x, since by points 2
and 3 above, εi ≤ HA+(x) ≤ HA+ = eHA+, the aggregate hazard rate, which violates condition
3. Since cA+ (x) ⊆ A+, HA+ ≤ HA+(x). By condition 2 and point 3, when G is extended to the
right of x with respect to A+

∀i ∈ A+ : 0 ≤ hi = eHA+ − εi = HA+ − εi ≤ HA+(x) − εi

on some right-neighborhood of x. So, by point 2, A+ ⊆ cA+ (x). Therefore, A+ = cA+ (x).
A+ (x) is the set specified by the lemma, since it satisfies conditions 1-3 when G is extended

to the right of x with respect to A+ (x).

B.4 Proof of Lemma 3

Lemma 7 ∀x̃ < T , the number of switching points in [0, x̃] is finite.

Proof. I assume analytical valuations for winning and costs of losing (the obvious extension
applies to piecewise analyticity). Choose x̃ < T and rank players’ semi-elasticities at every
score in [0, x̃]. Since semi-elasticities are analytical, this ranking can change only finitely many
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times. Thus, [0, x̃] can be divided into a finite number of intervals such that the ranking of
players’ semi-elasticities is constant on each interval. Fix one such interval J . For every subset
B ⊆ N of at least two players and every x ∈ J , denote by tB (x) the highest semi-elasticity
of a player who can join the set of active players B and maintain a non-negative hazard rate:
tB (x) =

1
|B|−1

P
j∈B εj (x) (the aggregate hazard rates of players in B). Since semi-elasticities

are analytical, so is tB (·). Thus, the interval J can be divided into a finite number of subintervals
such on every subinterval each function in {εi − tB : i ∈ N,B ⊆ N, |B| ≥ 2} is either positive,
negative, or 0. Clearly, on any such subinterval L ⊆ J an active player can become inactive
only if a player with a strictly lower semi-elasticity becomes active (recall that the order of
players’ semi-elasticities doesn’t change on J). Now, suppose in contradiction that the number
of switching points in L is infinite. This implies that some player i becomes inactive and active
an infinite number of times, which, by the above, implies that some player j with semi-elasticity
strictly lower than that of i becomes inactive and active an infinite number of times. Continuing
in this way, we obtain a contradiction since the number of players is finite.

The following two lemmas show that there are no switching points in some left-neighborhood
of T .

Lemma 8 ∃x̃ < T such that ∀i ∈ N : εi (x) < H (x) for every x ∈ (x̃, T ).

Proof. First, ∀i, j :

lim
x→T

εi (x)

εj (x)
= lim

x→T

q0i (x)

qi (x)

qj (x)

q0j (x)
=

q0i (T )

q0j (T )
lim
x→T

qj (x)

qi (x)
=

q0i (T )

q0j (T )

q0j (x)

q0i (x)
= 1

where the penultimate equality follows from l’Hopital’s rule.
Let εmin (x) = mini∈N εi (x) for x < T . Then, by the above, limx→T

εi(x)
εmin(x)

= 1, so εi(x)
εmin(x)

< n
n−1

for all x > x̃ for some x̃ sufficiently close to T . To conclude, it suffices to show that ∀x > x̃ :

H (x) ≥ n
n−1εmin (x). Let S

min
x (H) = nmax {H − εmin (x) , 0}. Then ∀H : Sx (H) ≤ Sminx (H)

and since n
n−1εmin (x) is the unique positive fixed point of S

min
x , H (x) ≥ n

n−1εmin (x).

Since active players with semi-elasticities strictly lower than the aggregate hazard rate remain
active, in order to complete the proof it suffices to show the following.

Lemma 9 Every player i has scores x arbitrarily close to T such that qi (x) = Πj 6=i (1−Gj (x)).

Proof. Suppose, in contradiction, that ∀x ∈ (x̃i, T ) : qi (x) < Πj 6=i (1−Gj (x)) for some player
i and some x̃i > x̃ of the previous lemma. Then, f (x) =

P
j 6=i ln (1−Gj (x)) − ln qi (x) > 0.

Since i /∈ A (x),

∀x ∈ (x̃i, T ) : H (x) =
|A+ (x)|

|A+ (x)|− 1
X

j∈A+(x)

εj (x) =
X
j∈N

G0
i (x)

(1−Gi (x))
=
X
j 6=i

G0
i (x)

(1−Gi (x))

Thus,

f 0 (x) = εi (x)−
|A+ (x)|

|A+ (x)|− 1
X

j∈A+(x)

εj (x) ≤ εi (x)−
n− 1
n− 2

X
j∈A+(x)

εj (x) =
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− 1

n− 2εmin (x) + o (εmin (x))

as x→ T , by the proof of the previous lemma. Since

− 1

n− 2

Z T

x

εmin (y) dy = lim
z→T

1

n− 2 (ln qmin (z)− ln qmin (x)) = −∞

f crosses 0 at a score in (x̃i T ), a contradiction.

B.5 Proof of Lemma 4

By Lemma 3, ∃x̃ < T such that ∀x ∈ (x̃, T ) , A (x) = N . Equation (3) now implies that

∀x ∈ (x̃, T ) ,∀i ∈ N : ln (1−Gi (x)) =
1

n− 1
X
j∈N

ln qj (x)− ln qi (x)

To show that Gi (x) →
x→T

1, it therefore suffices to show that

1

n− 1
X
j∈N

ln qj (x)− ln qi (x) →
x→T
−∞

Since ln qi (x) →
x→T
−∞, it suffices to show that

1

n− 1

P
j∈N ln qj (x)

ln qi (x)
> 1 + δ for some δ > 0

for large enough x. The inequality follows from l’Hopital’s rule and the fact that limx→T
εi(x)
εj(x)

= 1,
shown in the proof of Lemma 3.

B.6 Proof of Theorem 3

For expositional simplicity, I assume that the number of switching points in G is finite. It is
straightforward to accommodate a countably infinite number of switching points by defining
the limit of a sequence of switching points to be a switching point and modifying the proof
appropriately.
In the following propositions, xk denotes switching point k in G. The last switching point is

T . A (x) and A+ (x) are defined as in Section 3. Choose any equilibrium G̃ of the contest, and
recall that G̃ is continuous above 0 because of Condition R1. Ã (x) denotes the set of players
active at x under G̃, i.e., the set of players defined by Equation (4) with G̃ instead of G. Using
A+ (x), I show that A (x) = Ã (x) for all x ∈ [0, T ]. The following lemma shows that doing so is
sufficient.

Lemma 10 Let x̃ ∈ [0, T ]. If ∀x ∈ [0, x̃] : Ã (x) = A (x), then ∀x ∈ [0, x̃] : G̃ (x) = G (x).

Proof. Similar to that of Proposition 1, since G̃ (0) = G (0) (Lemma 1 does not rely on
analyticity), G̃ satisfies the conditions in the definition of constructibility on [0, x̃) (because G
does), G̃ is continuous on above 0 (Lemma 5), and G̃ (T ) = G (T ) = 1 (by Condition R1).
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Now, let xk be the highest positive switching point such that Ã (x) = A (x) on [0, xk], and
suppose in contradiction that xk < T . Choose x ∈ (xk, xk+1) such that Ã (x) 6= A (x). Since
xk < T , such an x exists otherwise Lemma 10 and continuity would imply that Ã (xk+1) =
A (xk+1). The following lemmas show that Ã (x) ⊆ A (x) and A (x) ⊆ Ã (x), which completes
the proof.

Lemma 11 Ã (x) ⊆ A (x).

Proof. Suppose Ã (x) 6⊆ A (x), and let i0 ∈ Ã (x) \A (x). Since i0 /∈ A (x), we have

wi0 + ci0 (y)

vi0 (y) + ci0 (y)
> Pi0 (x) = 1−Πj 6=i0 (1−Gj (x))

or
vi0 (y)− wi0

vi0 (y) + ci0 (y)
< Πj 6=i0 (1−Gj (x))

and since i0 ∈ Ã (x), we have

vi0 (y)− wi0

vi0 (y) + ci0 (y)
= Πj 6=i0

³
1− G̃j (x)

´
so

Πj 6=i0

³
1− G̃j (x)

´
< Πj 6=i0 (1−Gj (x))

Let J1 = N\ {i0}. Then

Πj∈J1

³
1− G̃j (x)

´
< Πj∈J1 (1−Gj (x)) (12)

By the Threshold Lemma, the expression on each side of Inequality (12) is a product of n − 1
strictly positive numbers. Therefore, there exists a player i1 ∈ J1 such that

ΠJ1\{i1}

³
1− G̃j (x)

´
< ΠJ1\{i1} (1−Gj (x)) (13)

(otherwise multiplying the products of all subsets of size n− 2 for G and for G̃ would lead to a
contradiction).
Now, note that ∀i ∈ N : G̃i (xk) = Gi (xk), by Lemma 10, and since G̃i is non-decreasing

∀i /∈ A+ (x) :
³
1− G̃i (x)

´
≤ (1−Gi (x)) (14)

Let K1 = N\J1 = {i0}. Since A+ (x) ⊆ A (x) and i0 /∈ A (x), by Inequality (14)³
1− G̃j∈K1 (x)

´
≤ (1−Gj∈K1 (x)) (15)

By Inequalities (13) and (15),

Πj∈J1∪K1\{i1}

³
1− G̃j (x)

´
< Πj∈J1∪K1\{i1} (1−Gj (x)) (16)

Since N = J1 ∪K1, Inequality (16) shows that i1 /∈ A+ (xk), otherwise i1 would obtain under G̃
more than his power by choosing x.
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Now repeat the process above, letting Jr+1 = Jr\ {ir} ,Kr+1 = Kr ∪ {ir}. By induction on r,
Inequalities (12),(13),(15), and (16) hold with Jr instead of J1, Kr instead of K1, and ik instead
of i1, so Kr ∩A+ (xk) = φ. A contradiction is reached at stage n− 1, since |Kn−1| = N − 1 but
|A+ (xk)| ≥ 2.

Corollary 11 ∀j /∈ A (x) ,∀y ∈ (xk, xk+1) : G̃j (y) = Gj (y) = G (xk).

Proof. Immediate from Ã (y) ⊆ A (y) applied to all points y ∈ (xk, xk+1) .

The next two lemmas establish that A (x) ⊆ Ã (x).

Lemma 12 If A (x) 6⊆ Ã (x), then G̃i (x) > Gi (x) for some i ∈ A (x) \Ã (x).

Proof. Let B = A (x) \Ã (x), and suppose that ∀j ∈ B : G̃j (x) ≤ Gj (x). This implies that
∃j ∈ B : G̃j (x) < Gj (x). Indeed, by Corollary 11 and Equation (3) with Ã (x) instead of A+ (x)
and x instead of y, once G and G̃ agree on (N/A (x)) ∪ B = N/Ã (x) we obtain G̃ (x) = G (x)

and therefore A (x) = Ã (x).
To show that ∃i ∈ B such that G̃i (x) > Gi (x), the following observation is required. Fix
some values Ḡj (x) for j /∈ A (x) and use Equation (3) to solve for the values Ḡl (x) , l ∈ A (x).
Maintaining the value Ḡl (x) for player l ∈ A (x) and solving for A (x) \ {l} using Equation (3)
gives the same solutions. If we now lower Ḡl (x) and solve for A (x) \ {l}, then the values Ḡj (x)

of all players j ∈ A (x) \ {l} strictly increase (this is easily seen from Equation (3), since D

increases). Observe also that setting Ḡj (x) = G̃j (x) for j /∈ Ã (x) and solving for the values
Ḡi (x) , i ∈ Ã (x) using Equation (3) with Ã (x) instead of A (x) gives Ḡ (x) = G̃ (x).
Now, consider the following process by which G̃ (x) is “reached” from G (x). Set Ḡl (x) equal
to Gl (x) = G̃l (x) for l /∈ A (x). Take a player j ∈ B for whom G̃j (x) < Gj (x). Then, solving
for A (x) \ {j} using Ḡj (x) = Gj (x) as described above and then lowering Ḡj (x) to G̃j (x) and
solving again for A (x) \ {j}, raises the solutions above Gl (x) for all l ∈ A (x) \ {j}. Thus, if
B = {j} then A (x) \ {j} = Ã (x) and Ḡl (x) = G̃l (x) , l /∈ Ã (x), so the solutions for Ḡi, i ∈ Ã (x)

coincide with G̃ and player j obtains under G̃ at x more than his power (since under G at x
player j ∈ A (x) obtains precisely his power). If B 6= {j}, continue this process: take a player
l ∈ B\ {j} and lower Ḡl (x) obtained in the previous step to G̃l (x);31 solve for A (x) \ {j, l},
and remember that after lowering Ḡj (x) from Gj (x) to G̃j (x) all players in A (x) \ {j} obtained
precisely their power, and l ∈ A (x) \ {j}. Since Ḡl (x) decreases to G̃l (x), the solutions for
all players in A (x) \ {j, l} strictly increase and G̃j (x) does not change, so player l now obtains
more than his payoff. Continuing in this way and recalling that Ḡ = G̃ once Ḡ and G̃ agree
on N/Ã (x), we see that the last player in B obtains more than his power under G̃ at x, a
contradiction. Therefore, G̃i (x) > Gi (x) for some player i ∈ B.

Lemma 13 A (x) ⊆ Ã (x).

31Since G̃l (x) ≤ Gl (x) and lowering Ḡj (x) from Gj (x) to G̃j (x) raised the solutions Ḡl (x) for all l ∈
A (x) \ {j}, we have G̃l (x) < Ḡl (x).
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Proof. Suppose A (x) 6⊆ Ã (x). By the previous lemma, G̃i (x) > Gi (x) for some i ∈
A (x) \Ã (x). Since G̃i (xk) = Gi (xk), G̃i (y) > Gi (y) for some y ∈ (xk, x) such that i ∈
Ã (y).32 This means that Ã (y) 6= A (y) (otherwise Corollary 11 and Equation (3) would imply
G̃i (y) = Gi (y)). Let B̂ = A (y) \Ã (y).
Now perform a procedure similar to the one described in the previous lemma, reaching G̃ (y)

from G (y). Begin with players l ∈ B̂ for whom G̃l (y) > Gl (y). Raising Ḡl (y) from Gl (y) to
G̃l (y) decreases the solutions for all other players, so the order of raising does not matter - the
solutions must be raised for all players l ∈ B̂ for whom G̃l (y) > Gl (y). If the solutions of any re-
maining players in B̂ now need to be raised to reach their level in G̃, continue the raising process
until no more players in B̂ need their solutions raised. It cannot be that B̂ is exhausted, since
G̃i (y) > Gi (y) and so far the solutions of all players in Ã (y) have been repeatedly decreased,
starting from their level in G. Thus, there remains a non-empty set B̄ ⊆ B̂ of players whose
solutions must now be decreased to reach their level in G̃. Decreasing these solutions increases
the solutions for all other players. By the argument used in the previous lemma, the last player
whose solution is decreased receives too high a payoff under G̃ at y.

B.7 Proof of Theorem 5

It is straightforward to see that G1 and G2 are increasing, continuous, equal 0 at 0 and 1 at T .
Thus, they are cumulative distribution functions. Player 1 obtains a payoff of w1 by choosing
any score in (0, T ), and at most w1 by choosing 0. Player 2 obtains a payoff of 0 by choosing
any score in [0, T ). Since players’ valuations for winning are strictly decreasing, no profitable
deviation exists in [T,∞). Thus, (G1, G2) is an equilibrium.
Suppose Condition R1 holds. By Lemma 5, both players must be indifferent among all scores

in (0, T ), so an equilibrium has the form
³

u2+c2(y)
v2(y)+c2(y)

, ui+c1(y)
v1(y)+c1(y)

´
on (0, T ) and neither CDF can

reach 1 before T . In fact, the CDF of both players must reach 1 at exactly T : scores above T
are strictly dominated for player 2, so neither player has best responses above T . Therefore, we
have u1 = v1 (T ) = w1 and u2 = v2 (T ) = 0.

B.8 The Example of Section 3

Cost functions are c2 (x) = 3x
4
,

c1 (x) =

⎧⎨⎩
x
100

if 0 ≤ x ≤ 0.31948
x
100
+ 1.0581 (x− (0.31948))2 if 0.31948 < x ≤ 1
0.5 + 1.45 (x− 1) if 1 < x

and

c3 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x
12

if 0 ≤ x ≤ 0.31948
x
12
+ 1.9794 (x− (0.31948))2 if 0.31948 < x ≤ 0.7259

0.387 44 + 1.6923 (x− 0.7259) + 25 (x− 0.7259)2 if 0.7259 < x ≤ 0.85
0.98247 + (1−0.98247)

0.15
(x− 0.85) if 0.85 < x

32Let z̄ = supz∈[xk,x)

n
G̃i (z) = Gi (z)

o
. By continuity of G̃i and Gi, z̄ < x. If for all y ∈ (z̄, x) we had

i /∈ Ã (y) then G̃i would not increase on (z̄, x) so we would have G̃i (x) ≤ Gi (x).
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These cost functions give powers of 0, 1
4
and 1

2
. Perturbing the cost functions slightly does

not change the qualitative aspects of the equilibrium.

C Proofs of the Results of Section 4

C.1 Proof of Theorem 6

That players m + 2, . . . , N do not participate was shown in Corollary 8. That slm = slm+1 = 0

follows from point 4 in step 4 of the equilibrium construction, since m,m+ 1 ∈ A (0). Suppose
that for i, j ≤ m, sli ≤ slj. Since i and j have positive powers and are not active below sli,
Gi

¡
sli
¢
= Gj

¡
sli
¢
= 0. Thus, Pi

¡
sli
¢
= Pj

¡
sli
¢
.33 Since

ui
¡
sli
¢

Vi
= Pi

¡
sli
¢ ¡
1− aic

¡
sli
¢¢
−
¡
1− Pi

¡
sli
¢¢

αaic
¡
sli
¢
= Pi

¡
sli
¢ ¡
1− (1− α) aic

¡
sli
¢¢
−αaic

¡
sli
¢

and

uj
¡
sli
¢

Vj
= Pj

¡
sli
¢ ¡
1− ajc

¡
sli
¢¢
−
¡
1− Pj

¡
sli
¢¢

αajc
¡
sli
¢
= Pj

¡
sli
¢ ¡
1− (1− α) ajc

¡
sli
¢¢
−αajc

¡
sli
¢
,

we have
ui
¡
sli
¢

Vi
−

uj
¡
sli
¢

Vj
= Pi

¡
sli
¢
(1− α) c

¡
sli
¢
(aj − ai) + αc

¡
sli
¢
(aj − ai)

= (aj − ai) c
¡
sli
¢ ¡

α+ Pi

¡
sli
¢
(1− α)

¢
.

Also, wi
Vi
= 1− aic (T ) and

wj
Vj
= 1− ajc (T ) so wi

Vi
− wj

Vj
= (aj − ai) c (T ). Since wi

Vi
=

ui(sli)
Vi

and
wj
Vj
≥ uj(sli)

Vj
, we have

0 ≥
µ
wi

Vi
− wj

Vj

¶
−
Ã
ui
¡
sli
¢

Vi
−

uj
¡
sli
¢

Vj

!
= (aj − ai)

¡
c (T )− c

¡
sli
¢ ¡

α+ Pi

¡
sli
¢
(1− α)

¢¢
and since α > 0 and Pi

¡
sli
¢
≤ 1,

¡
α+ Pi

¡
sli
¢
(1− α)

¢
> 0 so this inequality holds if and only if

(aj − ai)
¡
c (T )− c

¡
sli
¢¢
≤ 0.

Since c
¡
sli
¢
< c (T ), this implies that aj ≤ ai, or wi ≤ wj. Since Gm+1 (0) > 0 (Lemma 1),

slm+1 = 0.
It remains to show that if a player becomes active at some score, then he remains active until

the threshold. To do this, let us derive some properties of player’s semi-elasticities. We must
first normalize players’ payoffs so that the prize value is 1 for all players. To this end, note that
the contest is strategically equivalent to a contest in which all valuations equal 1 and in which
player i’s cost is aic instead of γic. We then have

qi (x) =
vi (x)− vi (T )

vi (x) + ci (x)
=

ai
³

1
am+1

− c (x)
´

1− (1− α) aic (x)

33If sli = 0, we consider the limit of the probabilities of winning as the score approaches 0 from above, and
similarly for ui

¡
sli
¢
and uj

¡
sli
¢
.
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and

εi (x) = −
q0i (x)

qi (x)
=

c0 (x) (ai (α− 1) + am+1)

(1− c (x) am+1) (aic (x) (α− 1) + 1)
.

Viewed as a function of ai, we obtain

∂εi (x)

∂ai
= − c0 (x) (1− α)

(aic (x) (α− 1) + 1)2
≤ 0

so at every score players with higher power have higher semi-elasticities. This means that when
a new player becomes active no existing players are “ousted”, and that whether an active player
remains active depends only on his semi-elasticity and those of players with lower powers. In
particular, players m and m + 1 are always active, since their semi-elasticities are always the
lowest. To show that players 1, . . . ,m − 1 are active on an interval, observe that the ratio of
semi-elasticities of players j > i is non-decreasing in score:µ

εj (x)

εi (x)

¶0
=

µ
(aj (α− 1) + am+1) (aic (x) (α− 1) + 1)
(ai (α− 1) + am+1) (ajc (x) (α− 1) + 1)

¶0
=

am+1 − (1− α) aj
am+1 − (1− α) ai

(1− α) (aj − ai) c
0 (x)

(ajc (x) (α− 1) + 1)2
≥ 0

and also that this ratio is at most 1 (since players with higher power have higher semi-elasticities).
Suppose in contradiction that there is a player who is not active on an interval, and let i ≤ m−1
be the player with the highest index (lowest power) among such players. Suppose that player i is
active at si. Denote by Hi+1,...,m+1 (·) the fixed point of the “supply function” defined using the
semi-elasticities of players i+1, . . . ,m+1, and consider a score s0i ∈ [si, T ] . By definition of player
i and because players with higher powers become active at higher scores, players m+1, . . . , i+1
are active at s0i. So, because the semi-elasticities of all players 1, . . . , i−1 are weakly higher than
that of player i, εi (s0i) ≤ H (s0i) if and only if εi (s

0
i) ≤ Hi+1,...,m+1 (s0i). Let b =

εi(s0i)
εi(si)

. For all

j > i, since
εj(s0i)
εi(s0i)

≥ εj(si)

εi(si)
, we have

εj(s0i)
εj(si)

≥ εi(s0i)
εi(si)

= b. Therefore,

Hi+1,...,m+1 (s0i) =
1

m− i

m+1X
j=i+1

εj (s
0
i) ≥

1

m− i

m+1X
j=i+1

bεj (si) = bHi+1,...,m+1 (si) .

Because player i is active at si, εi (si) ≤ H (si) and εi (si) ≤ Hi+1,...,m+1 (si). Therefore, εi (s0i) =
bεi (si) ≤ bH i+1,...,m+1 (si) ≤ Hi+1,...,m+1 (s0i) so εi (s

0
i) ≤ H (s0i). This shows that once a player

becomes active he remains active until the threshold.

C.2 Proof of Theorem 7

Let

f (α, x) =
1

(1− am+1c (x))

Πm+1
k=i+1 (1− akc (x) (1− α))

(1− aic (x) (1− α))m−i
,

and note that f is differentiable in α < 1 and x < T . Denote by sli (α) the lowest x such that
f (α, x) =

Πm
k=i+1ak

am−ii

. Note that
Πm
k=i+1ak

am−ii

> 1 (because ak increases in k) and f (α, 0) = 1 (since
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c (0) = 0). Suppose that when α increases to α0 the value of f at sli (α) increases. Then, because
f
¡
α0, sli (α)

¢
>

Πmk=i+1ak

am−ii

and f (α0, 0) <
Πm
k=i+1ak

am−ii

, the intermediate value theorem shows that

sli (α
0) < sli (α). Therefore, to show that s

l
i decreases in α it suffices to show that ∂f(a,x)

∂α
> 0 for

x ∈ (0, T ). Since

∂f

∂α
=

³Pm+1
j=i+1 ajc (x)

Q
k∈{i+1,...,m+1}\j (1− akc (x) (1− α))

´
(1− am+1c (x)) (1− aic (x) (1− α))m−i³

(1− am+1c (x)) (1− aic (x) (1− α))m−i
´2

−
Πm+1
k=i+1 (1− akc (x) (1− α))

³
(1− am+1c (x)) (m− i) (1− aic (x) (1− α))m−i−1 aic (x)

´
³
(1− am+1c (x)) (1− aic (x) (1− α))m−i

´2 ,

it suffices to show that⎛⎝ m+1X
j=i+1

ajc (x)
Y

k∈{i+1,...,m+1}\j

(1− akc (x) (1− α))

⎞⎠ (1− aic (x) (1− α)) >

Πm+1
k=i+1 (1− akc (x) (1− α)) ((m− i) aic (x)) .

For this inequality to hold, it suffices that for every j = i+ 1, . . .m+ 1,

ajc (x) > aic (x) and 1− aic (x) (1− α) > 1− ajc (x) (1− α) ,

and this holds since ak increases in k. Therefore sli decrease in α < 1 for every player i =
1, . . . ,m− 1.
Now consider what happens to sli as α approaches 0. For x < T ,

f (0, x) =
1

(1− am+1c (x))

Πm+1
k=i+1 (1− akc (x))

(1− aic (x))
m−i =

Πm
k=i+1 (1− akc (x))

(1− aic (x))
m−i ≤ 1.

Therefore, by uniform continuity of f (α, x) on [0, α̃]× [0, x] for any α̃ ∈ (0, 1), sli must approach
T as α approaches 0.

D Proof of Corollary 9

Choose β < 1. By Theorem 7 there exist x̃ < T and α̃ > 0 such that for all α < α̃ and

i < m, sli > x̃. Choose such x̃ and α̃ that also satisfy (1)
Vm−γm

Vm+1
γm+1

+αγmc(x̃)

Vm−(1−α)γmc(x̃)
> β and (2)

αγm+1c(x̃)

Vm+1−(1−α)γm+1c(x̃)
< 1− β. Consider the unique equilibrium G of a such a simple contest with

α < α̃. Since Gi (x̃) = 0 for i = 1, . . . ,m − 1 and Gi (0) = 1 for i = m + 2, . . . , n, Corollary 7
shows that the CDFs of players m+1 and m on [0, x̃] are given by (1) and (2). Since sli > x̃ for
i = 1, . . . ,m−1, each of these m−1 players beats player m+1, and therefore wins a prize, with
probability of at least β. Player m chooses scores higher than x̃ with probability of at least β,
and therefore wins a prize with probability of at least β2.
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E Proof of Corollary 10

First, slj ≤ sli, so Gi (x) ≤ Gj (x) for any x ≤ sli. By Theorem 6, both players are active on on£
sli, T

¤
. Third, εi ≥ εj, so because both players are active on

£
sli, T

¤
, the equilibrium construction

algorithm shows us that hi ≤ hj on
£
sli, T

¤
. So i starts dropping out later and drops out more

slowly than j, which means that Gi FOSD Gj. To see this, recall that hi (x) = − (1−Gi(x))
0

1−Gi(x)
, so

hi ≤ hj implies that
(1−Gi)

0

1−Gi
≥ (1−Gj)

0

1−Gj
. This implies that for y ∈

£
sli, T

¤
,

0 ≤
Z y

sli

µ
(1−Gi (x))

0

1−Gi (x)
− (1−Gj (x))

0

1−Gj (x)

¶
dx = ln

µ
1−Gi (x)

1−Gj (x)

¶
|y
sli
= ln

µ
1−Gi (y)

1−Gj (y)

¶
−ln

Ã
1−Gi

¡
sli
¢

1−Gj

¡
sli
¢!

Because Gi

¡
sli
¢
≤ Gj

¡
sli
¢
, we have

1−Gi(sli)
1−Gj(sli)

> 1, so by taking exponents the previous inequality

implies 1−Gi(y)
1−Gj(y)

≥ 1, or Gj (y) ≥ Gi (y), as required.
This FOSD implies that probability of winning is higher than that of player j for any given

score, and hence also in expectation. To see this, note that by choosing x > 0 i beats j

with probability Gj (x), whereas by choosing x j beats i with probability Gi (x). Therefore,
because Gj (x) ≥ Gi (x), for any given score i wins with at least as high a probability as j
does, i.e., Pi (x) ≥ Pj (x). Therefore, Pi =

R
Pi (x) dGi ≥

R
Pj (x) dGi, and because Pj (·) is

non-decreasing, by FOSD
R
Pj (x) dGi ≥

R
Pj (x) dGj = Pj.
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