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Abstract

We investigate under which conditions price competition leads to sorting of buyers and sellers.

In a decentralized Walrasian market where sellers post prices and buyers choose whom to buy from

positive assortative matching obtains only if there is a high enough degree of complementarity be-

tween buyer and seller types. The relevant condition is root-supermodularity ; i.e., the square root

of the match value function is supermodular. This condition is weaker than log-supermodularity,

a condition required for positive assortative matching in markets with random search. Negative

assortative matching obtains whenever the match value function is weakly submodular.
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1 Introduction

We analyze decentralized Walrasian markets in which heterogeneous sellers post prices and buyers

decide whom to buy from. Buyer valuations are determined by the match value function that depends

both on the unobservable buyer type and the observable seller type. We derive general conditions under

which decentralized price setting leads to assortative matching, where higher type buyers prefer to buy

from strictly higher type sellers.

In decentralized Walrasian markets1 sellers compete in prices, for example durables sold on plat-

forms like eBay or Amazon. Unlike standard Walrasian markets where prices are processed through a

centralized market institution, in decentralized Walrasian markets each contract, specifying the trading

price for each seller, is traded in a separate market. Matching buyers and sellers across those separate

decentralized markets injects frictions in this trading process, and the standard notion of market clear-

ing is adjusted to accommodate them. These frictions stem from the lack of coordination of the buyers

in their choice of seller, in conjunction with a limited capacity by the seller. This implies that there is a

positive probability that the demand at a given good for sale is higher than the supply. These frictions

are mediated through a competitive pricing process as the sellers’ pricing strategies now affect their

likelihood to trade through the impact on buyers’ purchasing decisions who respond to changing prices.

A seller thus faces a demand that is not perfectly elastic as he can attract more candidate buyers for

his good by lowering the price.

The focus here is on a market with two-sided heterogeneity of buyers and sellers, where the valuation

of the good consumed depends both on the buyer and the seller type. This is a realistic assumption

in many markets. The value to the buyer of a house for example depends in general on the buyer’s

budget or family size and also on the characteristics of the house. Or the utility derived from a car will

be determined by the car’s quality and the driver’s intended mileage. And the productivity of a worker

depends on her qualifications and the type of occupation or job she is in. In general we investigate how

the degree of complementarities in the valuation between buyer and seller types affects the equilibrium

allocation of buyers and sellers.

Our main finding is that there is positive assortative matching if and only if the match values are

root-supermodular2. There must be sufficient complementarity in the match values for positive sorting

to obtain. This derives from the fact that the equilibrium allocation is governed by two forces, the

degree of complementarity, and the frictions induced by the possibility of no trade. In a world without

complementarities where match values are additive, it does not matter for efficiency who matches with

whom if there are no frictions. Yet, with frictions, the equilibrium allocation is negatively assorted.
1See amongst others Peters (1997a) and Moen (1997).
2A function f(x, y) is root-supermodular if its square root

√
f(x, y) is supermodular.
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High valuation buyers are willing to pay a high price in order to minimize the probability of no trade.

That implies that the sellers they buy from and who set a high price have a high probability of not

selling the good. The low type sellers are those who find it optimal to set high prices. The result is

negative sorting with high type buyers matching with low type sellers. With some complementarities

and no frictions, the equilibrium allocation is positively assorted: high buyer types match with high

seller types. It is well known (Becker 1973) that supermodularity of the match value function leads

to positive assortative matching. When there are frictions, sufficient supermodularity is needed for

positive assortative matching in order to offset the tendency towards negative sorting induced by the

frictions.

Our main result is consistent with existing results on assortative matching. Shimer and Smith (2000)

show that in the context of random search, assortative matching requires log-supermodularity, which is

stronger than root-supermodularity. In our decentralized Walrasian market, there are search frictions

and hence the standard supermodularity requirement fails to deliver positive assortative matching. Be-

cause there is nonetheless some degree of competition between sellers, the requirement is less stringent.

The degree of complementarity needed in decentralized Walrasian markets thus falls in between that

needed for centralized markets (Becker) and markets with random search (Shimer and Smith).

Under weak submodularity – either the match value function exhibits zero complementarities or

it has substitutability – we always get negative assortative matching, and weak submodularity is a

necessary and sufficient conditions for negative assortative matching under all type distributions. The

requirements for assortative matching, both positive and negative, are tight in the sense that for any

match value function, there exist type distributions for which it will be strictly binding. In particular,

the constraint will be binding whenever there exist markets where the ratio of buyers to sellers goes to

zero, which is always the case when there are some buyers whose valuation is below the lowest price

offered. There obviously always exist distributions for which the constraint is slack. This is typically

the case when the lowest buyer valuations are high enough to ensure a strictly positive surplus and no

buyer is rationed.

That also means that for some economies with given distributions, there may be positive assortative

matching if the match value function is less than root-supermodular. More interesting, for some distri-

butions we may have negative assortative matching even if the match values exhibit moderate degrees

of supermodularity. To our knowledge, this is new in the literature.

Our set up is close to the one of McAfee (1993) and Peters (1997a) in which we analyze decentralized

price setting in the Walrasian spirit rather than competition in auctions as they do. This seemingly

minor difference of using competitive pricing rather than auctions leads to drastically different equilib-

rium outcomes. Competitive pricing leads to perfect sorting of buyers and sellers because sorting allows
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competing sellers to screen different valuation buyers ex ante. High valuation buyers are willing to pay

more in order to avoid a long queue of potential competing buyers. We show that market frictions

endogenously generate a single crossing property of expected payoffs in queue length and price. This

property induces buyers to reveal their type by ”voting with their feet”. The equilibrium implication

is that even with identical sellers, buyer heterogeneity leads competing sellers to offer different prices,

each of which generate the same equilibrium profits. Sellers use prices to induce selection amongst

buyers which leads to sorting. These sorting properties are also crucial for establishing existence and a

notion of constrained efficiency.

Related Literature. There is an extensive literature modelling decentralized price setting. Our model

falls into the broad class of Walrasian models of contract markets. Each of the contracts, i.e. a price and

quality combination, are traded in a separate market. Pricing is competitive in the sense that sellers can

affect the amount of trade by changing the offered price. Such Walrasian models of contract markets

(Moen (1997)) assume that the expectations of traders about out of equilibrium market positions, i.e.

in inactive markets, adjust consistent with rational expectations. These assumptions basically entail

that all traders have common beliefs of what happens in the inactive markets, and they must believe

that the number of traders in those markets is large.

Peters (1997b and 2000) and Burdett, Shi, Wright (2001) provide strategic foundations for those

out-of-equilibrium beliefs by modeling deviations in the form of a (sub)game with a finite number of

players. They show that equilibrium allocations in the Walrasian models coincide with the allocations

of the exact equilibrium of the infinite version of the game with direct competition. These are the

outcomes of a market with non-Walrasian direct competition, in which inactive markets consist of

deviations by sellers who correctly anticipate the effects of those deviations. Those results are derived

in the context of homogeneity of buyer valuations. The Walrasian models, including ours in this paper,

use the matching function that is derived out of this exercise.

These decentralized Walrasian market models have proven successful in analyzing labor and goods

markets. Without attempting to be exhaustive, examples include Peters (1991), Acemoglu and Shimer

(1999a and b), Shi (2001), Mortensen and Wright (2002), Galenianos and Kircher (2006), Kircher

(2007), Delacroix and Shi (2006). All of these models mainly deal with homogeneous buyer types.

Exemptions with two-sided heterogeneity include Mortensen and Wright (2002) who analyze a private

valuation environment without complementarities under general specification of the matching frictions.

Shi (2001) who anlyzes an economy with free entry and urn-ball matching. He uses free entry to derive

conditions for assortative matching, yet their strength is hard to assess in terms of submodularity of a

concave transform of the match value function.

Our focus of attention is on heterogeneity on both sides of the market. Buyer types are not observed,
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and sellers independently offer prices, which constitute complete contracts in the sense that seller

valuations are not affected by unobservable buyer types. Peters (1997b) provides an example with

diverse preferences on both sides of the market in which there are two types of buyers and two types

of sellers. He constructs the equilibrium contracts under certain assumptions on the distribution of

types on both sides of the market. He also conjectures that for other distributions equilibrium may not

exist. He rightly points out that the price-queue length combinations offered must also be incentive

compatible. Our result shows however that all offered price-queue length pairs will always be incentive

compatible. The key insight here is that identical firms need not necessarily offer the same prices.

Price competition generates a prediction of equilibrium behavior under price competition that is

fundamentally different from the behavior under competition in auctions. The private valuations version

of our model is the same as that in McAfee (1993), Peters (1997a) and Peters and Severinov (1997).

They show that the equilibrium in competing mechanisms is one where sellers compete in second price

auctions and buyers randomize over sellers. There is no sorting ex ante, but rather screening by sellers

ex post. The allocative outcome in competing auctions is therefore the opposite of perfect sorting. In

equilibrium, high valuation buyers match both with high and low seller types. Under sorting, high

valuation buyer types exclusively match with high seller types.

Shi (2002) and Shimer (2005)3 consider a version of the ex post screening model that has perfectly

observability of valuations, but that allows for complementarities. Because these are ex post screening

models with observability (firms compete in price schedules) there is no perfect sorting in equilibrium.

We return to the comparison of the ex post screening models with our ex ante sorting model in the

discussion section. We analyze the efficiency properties and we show that despite the superior efficiency

of posting auctions over price competition, prices are remarkably more efficient under competition

than under monopoly. The efficiency loss of price posting relative to auctions is much smaller under

competition than in a monopoly setting.

In our setting, both with private values and with complementarities, price posting leads to sorting in

order to induce buyers to reveal their private valuations. This ex ante screening has desirable efficiency

properties.

2 The Model

The economy consists of buyers and sellers. Each seller has one good for sale. Sellers are heterogeneous

and indexed by a type y. Each seller draws her type from a distribution S(y) with continuous density

s(y) on Y =[y, y] ⊂ R∞+ . Let S denotes the measure of all sellers. On the other side of the market

3Peters (2007) considers observable heterogeneity but lack of contractability on the part of the firms.
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there is a unit mass of buyers. Each buyers draws his valuation x for the good i.i.d. from distribution

B(x) with continuous density b(x) on X =[x, x] ⊂ R∞+ . For trade to be viable, we assume x > y. S and

B are C2 and with strictly positive densities and because we are interested in assortative matching,

we endow the function f(x, y) with the properties fx > 0, fy > 0 on the ordered sets X ,Y. This is a

normalization as we can redefine any function f̃ such that f̃x > 0, f̃y > 0.4

Action sets. The market interaction has sellers simultaneously positing a price. Buyers observe the

posted price and then decide which seller to buy from. Let Fy(p) denote the CDF of price offers by

sellers of type y. We can think of Fy(p) as the symmetric distribution with which these sellers post

prices, or as the outcome of pure strategies by the sellers. We assume measurability that allows the

following CDF F (p, y) =
∫ y
y Fy (p) s(y)dy of price-quality combinations in the market. We assume that

buyers can perfectly observe the seller type y and the price p.

Given F (y, p), each buyer decides on the price at which he attempts to trade. That is, each buyer

type decides on a distribution Gx (p, y) that describes his randomized choice of attempting to trade

at price p if his realized type is x. Assume that Gx (p, y) is measurable with respect to x for all p,

and G(p, y) =
∫
X Gx (p, y) b(x)dx denotes the distribution of sellers over prices. Buyer types are not

observable by sellers.

Matching Technology. At a given price, the many buyers and sellers interact if the price is the joint

support of F (p) and G(p). As is standard in this literature, we assume that buyers cannot coordinate

their trading strategies, i.e., they use symmetric and anonymous strategies. This means in our envi-

ronment, that buyers visit sellers of type y who post the same price with equal probability. We allow

for a general formulation of constant returns to scale matching technology to allocate buyers to sellers.

Because of constant returns, we can write the matching probabilities in terms of the ratio of buyers to

sellers, denoted by λ. Let the matching probability of a seller be m(λ) and the matching probability

of a buyer is q(λ) = m(λ)
λ .5 We consider constant returns to scale matching functions and make the

standard assumptions on m(λ) on its domain [0,∞): 0 ≤ m(λ) ≤ min{λ, 1},m′ > 0,m′′ < 0 and q′ < 0,

and first and second derivatives of m and q are bounded.

The first assumption reflects that m is a probability and therefore confined to the unit interval.

Moreover, one cannot match more sellers than buyers, i.e. m(λ) ≤ λ. The conditoin that m′ > 0

reflects the fact that it is easier for a seller to match when the ratio of buyers to sellers is high. The
4Below we consider an example where a firm’s type is a cost of production c and the total value to the consumer of

type x is f(x, c) = x− c. We can define y = −c and write f̃(x, y) = x+ y, where f̃ satisfies f̃x > 0, f̃y > 0.
5Let the aggregate matching function of β buyers and σ sellers be M(β, σ). Then the probability that a seller is

matched is M(β,σ)
σ

, and given consant returns we write M(β,σ)
σ

= M(β
σ
, 1) = m(λ). The probability that a buyer is

matched is M(β,σ)
β

= m(λ)
λ

= q(λ).
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opposite applies to the buyers. The concavity of m ensures the the second order condition of the firm’s

maximization is satisfied. Below, we will make use of another assumption which we will discuss further

below:

Assumption A1. q(λ)−1 is convex at all λ ∈ [0,∞).

One commonly used matching technology in the context of models of price posting is what is often

referred to as the urn-ball process in which buyers use anonymous strategies and therefore randomize

over the sellers with particular (y, p) combination and sellers randomly select present buyers with equal

probability. Then m(λ) is given by m1(λ) = 1− e−λ and is derived as follows. If the number of buyers

and sellers that interact were finite, then the probability that a seller is approached by n buyers is

binomially distributed. In the limit when there are many buyers and sellers with ratio λ(y, p), the

probability that a seller is approached by n sellers approaches a Poisson distribution with parameter

λ(y, p). Therefore, the probability that a seller has no buyer is e−λ(y,p), and with complementary

probability m(λ(y, p)) = 1 − e−λ(y,p) she trades. Since there are λ(y, p) buyers to each seller the

probability for buyers to trade is q(λ(y, p)) = (1− e−λ(y,p))/λ(y, p).6 We show in the appendix that this

function fulfills A1. Yet this is only one of many conceivable matching functions. If e.g. a fraction 1−α
of all intended trades falls through, then the matching function is m2(λ) = α(1−e−λ). If a fraction 1−β
of the buyers gets lost on their way to the sellers the matching function is m3(λ) = 1 − e−βλ. Or the

microfoundations could be completely different, often referred to as matching on island economies. This

is the matching technology typically assumed in made in models of monetary exchange. Assume agents

who want to trade quality y at price p choose an island, on which they.randomly meet any other agent

(both other buyers and sellers) with probability γ. If two buyers or two sellers meet, there is no trade. If

a buyer and a seller meet, there is trade. This yields matching function m4(λ) = γλ/(1−λ) = γs/[s+b].

All these functions fulfill our conditions, including A1.

Preferences. All agents maximize their expected utility. Both buyers and sellers have linear pref-

erences over consumption. The value of a good consumed by buyer x and bought from seller y is

f : X × Y →R. Conditional on consuming and paying a price p, the ex-post utility of the buyer is

f(x, y)− p and that of the seller is p. In general the utility derived from consumption of the good de-

pends both on the buyer and the seller type. Many goods like houses, durables,... depend both on the

goods characteristics y and on the buyer’s characteristics x (income, idiosyncratic preferences,...). We

will consider the indices x and y to be ordered such they increase the utility of the buyer: fy > 0, fy > 0.

We say the f(x, y) is supermodular if for any x′ > x and y′ > y f(x′, y′) + f(x, y) > f(x′, y) + f(x, y′)
6For a careful but intuitive derivation of these matching probabilities as the limit of finite populations see Burdett, Shi

and Wright (2001).
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and f(x, y) is submodular if the opposite inequality holds. We assume that f is twice continuously

differentiable in both x and y. Then supermodularity is equivalent to fxy > 0 and submodularity to

fxy < 0.

Expected utilities and profits are then given by

ux(p, y) =
m(λ(p, y))
λ(p, y)

(f(x, y)− p) (1)

πy(p) = m(λ(p, y))p (2)

where λ(p, y) is the queue length which depends on the price and the seller type. For the equilibrium

condition and future notation, it will be convenient to denote the support of a distribution function

with by a ”hat”, e.g., F̂y is the support of Fy.

Assortative Matching. We define a matching µ : Y ⇒ X as a correspondence that gives for every

seller y the set of all buyer types x such that (y, p) is in the support of Fx for some p. Some sellers

might not be able to trade, in which case µ(y) = ∅. We are interested in the conditions on f(x, y) that

induce sorting, i.e. that generate a matching pattern µ that is single-valued and strictly monotonic on

(y, ȳ] and µ(y) = ∅ on [y, y). In such a case we can treat µ as a function on (y, ȳ]. If the function µ is

strictly increasing, then we say that it exhibits positive assortative matching, if µ is strictly decreasing,

then we say that it exhibits negative assortative matching.

Equilibrium. We take the Walrasian approach to price setting. This approach rests on two assump-

tions on what agents believe about the market thickness in each market. First, all agents hold the same

beliefs about the queue length in each market, and second, traders are supposed to hold well-defined

beliefs for every possible market, including those that have no trading in equilibrium. The latter is

equivalent to the complete markets assumption in centralized Walrasian markets.

Since buyers can condition their visit strategies on the seller type they want to meet, they have

strategy Gx(p, y), specifying the type of buyer and the price at which they want to interact. Let

G(p, y) =
∫
X Gx(p, y)dx. For the equilibrium definition we then get

Definition. An equilibrium is a set of distributions and queue lengths (Fy(p), Gx (p, y)) such that

there exists queue length function λ(p, y) ∈ R̄ such that:

1. (Profit Maximization) ∀y ∈ Y : πy(p) ≥ πy(p′), ∀p ∈ F̂y, ∀p′ ∈ [0, x].

2. (Utility Maximization) ∀x ∈ X : ux(p, y) ≥ ux(p′, y′), ∀(p, y) ∈ Ĝx,∀(p′, y′) ∈ [0, x]× Y.

3. (Consistency of the Queue Length) For all y ∈ Y and all p ∈ [0, x]

S
∫

[y,y]×[0,p]
λ(p, y)dF (y, p) = G(p, y). (3)
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Condition 1. states that the prices that sellers post yield a profit that is weakly higher than any

other profit they could have achieved by setting a different price. Condition 2. states that buyers

attempt to trade with type y at price p only if this yields expected profits at least weakly as high as if

they had attempted to trade at any other seller-price combination. The equilibrium gives rise to some

matching allocation which we will refer to as µ∗. Condition 3. is a consistency requirement that ensures

that the queue length λ indeed reflects the ratio of buyers to sellers. It specifies that the “outflow”

(how applications are dispersed over firms) equals inflow (where applicants up to p, y apply). We note

that buyers can always attempt trade at price 0 and obtain weakly positive utilities, and sellers can

always attempt to trade at price x and obtain weakly positive profits. We assume that buyers that

with valuation below the minimum price in the support of F and sellers above the maximum price do

exactly that. To reflect that some buyers try not to trade, we have to allow λ in the extended reals and

specify q(∞) = limλ→∞m(λ) and m(∞) = limλ→∞m(λ), which are well defined as these functions are

monotonic and bounded. We call buyers and sellers active if they choose prices with a strictly positive

probability to trade.

Finally, we relate our equilibrium concept to the Market Utility Assumption that is common for

directed and competitive search models to capture a notion of subgame perfection (see e.g. Shimer

(2005), Moen (1997), Montgomery (1991)). Define U(x) = maxp,y ux(p, y) as the Market Utility, i.e.

the utility that buyer type x obtains in equilibrium. The Market Utility Assumption states that a seller

of type y that offers some price p that is not offered by any other seller with type y, i.e. (p, y) /∈ F̂y, will

have a queue length λ(y, p) that is low enough such that some buyers want to apply but high enough

such that no buyer buyer type finds it strictly positive.7 It is easy to see that this is the maximal queue

length consistent with equilibrium condition 2. Since any lower queue length makes it more attractive

for firms to deviate, it can be shown that any equilibrium in our environment is also an equilibrium

under the Market Utility Assumption.

3 The Main Results

The problem that a firm resolves is to set prices in order to maximize profits. In the ensuing subgame

where buyers make their visiting decisions, the firm’s pricing strategy will determine the queue length

λ and hence the matching probability m(λ), and also the type of buyers x that will visit the seller.

Fix any equilibrium. In this equilibrium U(x) is the utility that workers of type x obtain. We want

to show a condition that establishes that the equilibrium can only entail positive assortative matching.

7Formally, if (p, y) /∈ F̂y then λ(p, y) = maxx∈X λx(p, y) where λx(p, y) ∈ R̄+ such that 1−e−λx(p,y)

λx(p,y)
[f(x, y)− p] = U(x)

if λx(p, y) > 0. This entails that the buyer who is most eager to trade with combination (p, y) determines the queue length.
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Consider a firm that wants to optimize its profits by setting the appropriate price p. Let’s assume it

could specify the type x of buyer it wants to trade with. Then it achieves at least

max
x,p

π = m(λ)p

s.t.
m(λ)
λ

[f(x, y)− p] = U(x).

Let π∗y be the equilibrium profit that type y sellers obtain, and let Cy be the set of buyer types which

are part of a solution to this maximization problem. Let x̃ be the maximum of Cy. Since buyer types

are private U(x) is continous, and equilibrium condition 2 requires U ′(x) to be well defined for all types

that are trading with positive probability. Continuity implies that maxCy is well defined. Consider a

buyer with positive equilibrium profits π∗y > 0. We will show that any buyer type ŷ > y will prefer to

trade with weakly higher types. That is: minCŷ ≥ x̃. To show this, observe that the maximization

problem for a given x above yields after substitution for p

max
x,λ≥0

π = m(λ)f(x, y)− λU(x).

This gives the FOC

m′(λ)f(x, y) = U(x) (4)

q(λ)fx(x, y) = U ′(x). (5)

Profits conditional on trading with the optimal x are given by

π =
[
m(λx,y)− λx,ym′(λx,y)

]
f(x, y), (6)

where λx,y is defined by U(x) via equation (4).

The main argument informally. Before stating and proving the main result, we informally sum-

marize why supermodularity per se is not enough to induce positive assortative matching. Buyers

care about the probability of matching reflected by λ, the price p, and the type of the seller y. Their

preferences (equation (1)) are over a three-dimensional space as illustrated in Figure 1.
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λ

p

y

For clarity of exposition, in Figure 2 we project those preferences into a two-dimensional space (p, λ)

while indexing each of the indifference curves (in blue) by y. The solid concave curves on the left refer

to the indifference curves for buyers trading with a seller type y1. They exhibit single crossing because

high valuation buyers value fast trade more, and are therefore willing to pay a higher price to avoid

no-sale. The dotted curves on the right represent the same level of utility for the buyers when they

match with a higher buyer type y2 > y1. All indifference curves of a given type x when matching with

different y are parallel shifts of the solid curves: since f(x, y)− p stays constant along some level λ, a

higher y is associated with an equal increase in p for all points on a given indifference curve. That shift

is proportional to the change in the valuation from an increase in y: fy(x, y). Moreover, in the absence

of complementarities, e.g. when f(x, y) = x+y, the change fy is the same for different x, since fxy = 0.

As a result, in that case the curves for different buyer types shift by the same amount, as shown in the

figure.
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λ

p

(λ′, p′)

(λ∗, p∗)

x1

y2 > y1
y1y1

x2 > x1

x1

x2 > x1

One can think of an individual seller’s problem as taking the utility of the buyers as given and

choosing the point on their iso-profit curve that yields the highest profit. The red convex curves

represent iso-profit curves for given sellers. We have drawn the case where seller type y1 is indifferent

between trading with either buyer. To the right is another iso-profit curve, corresponding to a higher

type sellers. Since a higher seller type induces higher utility for buyers, he attracts more buyers and

therefore obtains higher profits. Because at higher prices and same λ a seller is less willing to reduce

the price, higher iso-profit curves are flatter at each λ. The red curve on the right is therefore not a

parallel shift. This implies that the highest utility for a type y2 seller can be achieved when trading

with the low seller type x1. There is negative assortative matching as high types match with low types

and vice versa. Recall that the dashed indifference curves in the figure are those when there are no

complementarities, e.g. when f(x, y) = x+ y. Observe that in a frictionless environment, the allocation

is indeterminate in the absence of complementarities. The market frictions therefore generate a force

that leads to negative sorting.

When there is supermodularity in f(x, y), the change fy is larger for larger x since fxy > 0. There-

fore, because the shift in the indifference curves is proportional to fy, buyer type x2’s indifference curve

will shift more than that of x1. In Figure 2, the solid blue line is x2’s indifference curve in an economy

with complementarities. Only if f(x, y) is sufficiently supermodular will the indifference curve for the

high buyer type shift enough to intersect with the iso-profit curve that is illustrated for y2. Then the

high type sellers are better off by trading with the high buyer types, which leads to positve assortative
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matching. The condition that induces such a large enough shift is root-supermodularity.

λ

p

(λ′, p′)

(λ∗, p∗)

x1

y2 > y1
y1y1

x2 > x1

x1

x2 > x1

3.1 Positive Assortative Matching under Root-Supermodularity

We now state and prove our main result. First, we define the notion of root-supermodularity which is

used in the main theorem.

Definition 1 A function f(x, y) is root-supermodular if
√
f(x, y) is supermodular.

Root-supermodularity requires that its cross-partial derivative of
√
f(x, y) is positive, i.e. that

∂2

∂x∂y

√
f(x, y) = 1

2f
− 1

2 fxy − 1
4f
− 3

2 fxfy > 0 or

fxy(x, y)− 1
2
fx(x, y)fy(x, y)

f(x, y)
> 0.

Theorem 2 Assume A1. The function f(x, y) is root-supermodular if and only if there is Positive

Assortative Matching of µ∗ for all permissible distributions B(x), S(y).

To prove the main theorem, we first establish two Lemmas. We then derive two Propositions, one

establishing the necessary condition, the other the sufficient condition. This also highlights the role

played by Assumption A1. As will become apparent, this assumption is not needed for establishing

necessity. The first Lemma formalizes the graphical illustration above.
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Lemma 3 Along the equilibrium allocation µ∗, ∂2π
∂y∂x > 0 if and only if fxy(x, y) > a(λ)fy(x,y)fx(x,y)

f(x,y) ,

where

a(λ) = −m
′(λ) [m(λ)− λm′(λ)]
λm′′(λ)m(λ)

.

Likewise, the statement holds when all strict inequalities are reversed, and when the strict inequalities

are replaced by equalities.

Proof. We repeat the same exercise as above and calculate the cross-partial derivative of profits of the

equilibrium profits. First we obtain

∂π

∂y
=
[
−λx,ym′′(λx,y)

] ∂λx,y
∂y

f(x, y) +
[
m(λx,y)− λx,ym′(λx,y)

]
fy(x, y).

Since only y changes but x stays constant, we use U(x) = m′(λx,y)f(x, y) to determine

∂λx,y

∂y
= −m

′(λx,y)fy(x, y)
m′′(λx,y)f(x, y)

and get
∂π

∂y
= m(λx,y)fy(x, y).

Then derivation with respect to x gives

∂2π

∂y∂x
= m′(λx,y)

∂λx,y

∂x
fy(x, y) +m(λx,y)fxy(x, y).

At the x that is the optimal choice for y, we have dπ/dx = 0. Using this we get along the equilibrium

allocation
∂λx,y

∂x
= − [m(λx,y)− λx,ym′(λx,y)] fx(x, y)

[−λx,ym′′(λx,y)] f(x, y)
.

Therefore
∂2π

∂y∂x
=
m′(λx,y) [m(λx,y)− λx,ym′(λx,y)]

λx,ym′′(λx,y)
fx(x, y)fy(x, y)

f(x, y)
+m(λ)fxy(x, y)

which is positive provided

fxy(x, y) > −m
′(λx,y) [m(λx,y)− λx,ym′(λx,y)]

λx,ym′′(λx,y)m(λx,y)
fy(x, y)fx(x, y)

f(x, y)
.

Denote a(λ) by

a(λ) = −m
′(λ) [m(λ)− λm′(λ)]
λm′′(λ)m(λ)

.

Then since q(λ) = m(λ)
λ , it follows that q′(λ) = 1

λ2 [λm′(λ)−m] and we can write a(λ) as

a(λ) =
m′(λ)q′(λ)
m′′(λ)q(λ)

. (7)

which establishes the Lemma.
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Lemma 3 formalizes the graphical argument above. Only if f(x, y) is sufficiently supermodular will

high type sellers be better off trading with high type buyers: the profits of higher seller types y are

increasing in buyer types x, i.e. ∂2π
∂y∂x > 0. Lemma 3 highlights that this is the case if and only if

fxy > a(λ)
fxfy
f

(8)

If this inequality is fulfilled, equilibrium behavior is such that high buyer types gain more by moving

towards higher seller types, and therefore positive assortative matching results.

The properties of the function a(λ) are key to understanding condition (8). Because distributions

B and S can always be suitably chosen, this condition must hold for all possible λ ∈ R+. Even at zero,

a(λ) is well defined, since q(0) > 0 and m(0) < 0. It turns out that at λ = 0, the function has a

property that holds for any matching function in the class that we consider, namely a(0) = 1/2. This

is the second Lemma:

Lemma 4 Under any permissible matching function a(0) = 1/2.

Proof. This result follows from the properties of the class of matching functions we consider. Constatn

returns to matching implies λq(λ) = m(λ), which readily yields after some rearranging that q′(λ) =
m′(λ)−q(λ)

λ and q′′(λ) = m′′(λ)−2q′(λ)
λ . Our class of matching functions also assumes boundedness of first

and second derivatives of q. This necessarily implies m′(0) = q(0) and m′′(0) = 2q′(0), since both q′

and q′′ are divided by zero for λ = 0. Boundedness thus obtains only if the numerator is zero as well:

m′(0)− q(0) = 0 and m′′(0)− 2q′(0) = 0. Since

a(λ) =
m′(λ)q′(λ)
m′′(λ)q(λ)

it follows that

a(0) =
m′(0)m

′′(0)
2

m′′(0)q(0)
=

1
2
.

We are now in a position to prove the two Propositions.

Proposition 5 (Necessary) If there is Positive Assortative Matching of µ∗ for all permissible distri-

butions B(x), S(y) then f(x, y) is root-supermodular.

Proof. For the purposes of our proof we will endow all types x ≤ x̃ with the hypothetical utility

Ũ(x) which defines queue length λ̃xy according to the first order condition m′(λ̃xy)f(x, y) = Ũ(x)

such that according to this hypothetical situation all x ≤ x̃ give the optimal utility to type y, i.e.
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π∗y =
[
m(λ̃xy)− λ̃xym′(λ̃xy)

]
f(x, y) for all types for which this is possible. Very low types for whom

this is not possible obtain Ũ(x). Clearly the hypothetical utilities are lower than equilibrium ones,

i.e. Ũ(x) ≥ U(x), because these types are now more attractive to y then they were before, and

U(x) = Ũ(x) for x ∈ Cy. In particular, in any neighborhood of x̂ there are buyer types for which

actual and hypothetical utilities coincide. Since utilities are lower, every buyer type weakly prefers the

hypothetical situation to the actual equilibrium utility. If we can show that under the hypothetical

situation buyer types above y prefer x̂, we know that under the equilibrium utilities there choice has to

be weakly higher than x̂.

Lemma 4 above establishes that a(0) = 1/2. Establish that if PAM, then there always exist distri-

butions such that λ −→ 0 and therefore a(λ) must be at least 1/2.

Before deriving tje sufficient condition, we first show the following property of a(λ). We know from

Lemma 4 that a(0) = 1/2, but that does not rule out that a(λ) cannot be larger than 1/2 for larger

values of λ, in which case root-supermodularity would not be sufficient. It turns out that when 1/q(λ)

is convex, a(λ) is never larger than 1/2.

Lemma 6 a(λ) ≤ 1/2 if and only if 1
q(λ) is convex in λ (A1).

Proof. Since 1
q = λ

m , we have (λ/m)′ = 1
m2 [m−m′λ]. Therefore

(λ/m)′′ =
1
m4

[m′m2 −m′m2 − λm′′m2 − 2mm′(m−m′λ)]

=
1
m3

[−λm′′m− 2m′[m−m′λ]]

=
λ

m3
[−m′′q + 2m′q′].

This is positive if and only if −m′′q + 2m′q′ ≥ 0 or m′q′ ≥ 1
2m
′′q or m′q′

m′′q ≤ 1
2 . The left hand side of the

inequality is a(λ).

Lemma 6 provides a necessary and sufficient condition for a(λ) to be less than 1/2, therefore estab-

lishing a condition under which root-supermodularity is the hightest possible degree of supermodularity

possibly need to ensure positive assortative matching. Proposition 7 thus establishes the sufficient con-

dition.

Proposition 7 (Sufficient) Assume A1. If the function f(x, y) is root-supermodular then there is

Positive Assortative Matching of µ∗ for all permissible distributions B(x), S(y).

Proof. Assumption A1 is equivalent to a(λ) ≤ 1/2 and root-supermodularity ensures that fxy > 1
2
fxfy
f .

Therefore it follows that fxy > a(λ)fxfyf . Since ∂2π
∂y∂x and (8) are equivalent, it follows that there is

Positive Assortative Matching of µ∗ for all permissible distributions B(x), S(y).
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It remains to be evaluated how important a restriction assumption A1 is. All the examples of the

matching functions we mentioned above satsify assumption A1. In fact, so far we have not been able to

come up with a counterexample of a matching function that is in our class and that violates assumption

A1. It has been possible to come up with matching functions that violate A1, but those examples

violate the conditions we imposed on the class of matching functions. For example, m(λ) = λb/(1 +λb)

for b < 1 violates assumption A1, but q(λ) = λb−1/(1 + λb) is no longer bounded as limλ→0 q(λ) =∞.
This violates the restriction that q ∈ [0, 1], which needs to be satisfied since q is interpreted as a

probability.

We note here that assumption A1 has several equivalent interpretations. In the following let Eg be

the elasticity of function g with respect to its argument.

Lemma 8 Assumption A1 holds if and only if

1. The elasticity of the the derivative of the buyers matching function is larger than for the sellers

matching function, i.e. Eq′ ≥ Em′ at all λ ∈ [0,∞).

2. |Em′ | ≥ 2[1− Em] at all λ ∈ [0,∞); or equivalently Eq′ ≥ 2Eq at all λ ∈ [0,∞).

3. x(M) is concave; where x(M) is the buyers matching probability if sellers match with probability

M. That is, for given M there is λM such that m(λM ) = M, and x is defined as x(M) = q(λM ).

Proof. See appendix.

Finally, it is useful at this point to compare the condition of root-supermodularity with log-

supermodularity, the condition derived in Shimer and Smith (2000) for the case of random search. A

function f(x, y) is log-supermodular if log(f(x, y)) is supermodular and therefore fxy(x, y)−fx(x,y)fy(x,y)
f(x,y) >

0. Inspection immediately reveals that root-supermodularity is weaker, as the cross-partial derivative

must be only at least half as big. Therefore, a function that is log-supermodular is necessarily also

root-supermodular, but not vice versa. For an alternative point of view, observe that supermodularity

requires that for x′ > x and y′ > y (and fx, fy > 0) f(x′, y′) + f(x, y) > f(x′, y) + f(x, y′). Any concave

transformation of f(x, y) then implies a stronger restriction. The sum of the extreme values of f on the

left-hand side is reduced more than the intermeidate values of f on the right-hand side of the inequality.

The higher the degree of concavity of the transformation, the more stringent the new condition is. Both

the logarithm and the square root are concave transformations, but the logarithm is more concave in

the sense that we can we can apply g(y) to
√
f such that log f = g(y) ◦ √f . Solving for g(y), we

get g(y) = 2 log y, which is a strictly concave. Therefore log f is “more concave” than
√
f . This is

illustrated in the next figure.
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√
f (x, y)

√
f (x, y) +

√
f (x, y) >

The next Corollary then follows immediately from Proposition 7.

Corollary 9 If f(x, y) is log-supermodular for all (x, y) then the matching pattern exhibits positive

assortative matching.

3.2 Negative Assortative Matching under Weak Submodularity

While ”sufficient” supermodularity is needed for positive assortative matching, we now show that

negative assortative matching obtains under weak submodularity, i.e. fxy(x, y) ≤ 0. In the informal

graphical argument at the outset, we argue that even under amodularity (e.g. f(x, y) = x + y) there

is negative assortative matching. While in the frictionless world, the equilibrium allocation under

amodularity is indeterminate, the market frictions impose a force towards negative assortative matching.

In this sense, there is an asymmetry between positive and negative sorting as there is no need for

”sufficient” submodularity. There is no such asymmetry for example under random search (Shimer and

Smith (2000)), as negative assortative matching obtains provided f(x, y) is log-submodular.

We now establish the Theorem on negative assortative matching.

Theorem 10 Assume A1. The function f(x, y) is weakly submodular if and only if there is Negative

Assortative Matching of µ∗ for all permissible distributions B(x), S(y).
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We establish the result by showing the necessary and sufficient condition separately.

Proposition 11 (Necessary) If the function f(x, y) is weakly submodular then there is Negative As-

sortative Matching of µ∗ for all permissible distributions B(x), S(y).

Proof. Using (8): fxy(x, y) < a(λ)fy(x,y)fx(x,y)
f(x,y) where the right-hand side is always positive. Weak

submodularity of f(x, y) requires fxy ≤ 0, implying this is always satisfied and from Lemma 3, it

follows that ∂2π
∂y∂x < 0 and therefore negative assortative matching.

Proposition 12 (Sufficient) Assume A1. The function f(x, y) is weakly submodular if there is Nega-

tive Assortative Matching of µ∗ for all permissible distributions B(x), S(y).

Proof. We will show that limλ→∞ a(λ) = 0, which means that fxy(x, y) > 0 violates fxy(x, y) <

a(λ)fy(x,y)fx(x,y)
f(x,y) if the queue length at that pair x, y is very high. By shifting the distribution such that

this pair is at this pair the buyer has nearly no option to trade this will be the case.

To show that limλ→∞ a(λ) = 0, observe that m′(λ) = λq′(λ) + q(λ) and m′′(λ) = λq′′(λ) + 2q(λ)

allows us to write a(λ) = [λq′(λ)/q(λ) + 1] / [λq′′(λ)/q′(λ) + 2] . Under constant returns to scale the

elasticities of the matching function add to unity, so that −λq′(λ)/q(λ) + λm′(λ)/m(λ) = 1. Since a

doubling of the queue length does hardly change the matching probability for sellers at long queues

(because it is nearly unity), we have limλ→∞ λm
′(λ)/m(λ) = 0 which implies limλ→∞ λq

′(λ)/q(λ) = −1.

Assumption A1 can be rearranged to yield −λq′′(λ)/q′(λ) ≥ − 2
q(λ)

λq′(λ)
q(λ) , which by limλ→∞ q(λ) = 0

means that −λq′′(λ)/q′(λ) is unbounded as λ→∞.

Interestingly, it is possible for specific distributions to have negative assortative matching for mod-

erate degrees of supermodularity. To see this, refer back to the initial informal graphical argument. Let

there be a very small degree of supermodulairty, say f(x, y) = x+y+ εxy, with ε small. Then the solid

indifference curve on the right will only be slightly more to the right of the dashed indifference curve.

Provided the distributions are such that a(λ) is nowhere zero, the iso-profit curve for y2 will be flatter

everywhere and the equilibrium allocation will exhibit negative assortative matching.

Proposition 13 There exist distributions B(x), S(y) and supermodular functions f(x, y) such that

there is Negative Assortative Matching of µ∗.

Proof. It is sufficient to find some λ such that a(λ) is bounded away from zero and some f(x, y) such

that 0 < fxy(x, y) < a(λ)fy(x,y)fx(x,y)
f(x,y) . There always exist distributions such that a(λ) is bounded away

from zero (in particular with not too large λ).

Likewise, it is possible to obtain positive sorting even if the match value function is not root-

supermodular.
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Proposition 14 Assume A1. There exist distributions B(x), S(y) and functions f(x, y) that are not

root-supermudular such that there is Positive Assortative Matching of µ∗.

Proof. It is sufficient to find some λ that is bounded away from zero such that a(λ) is strictly smaller

than 1
2 and some f(x, y) such that a(λ)fy(x,y)fx(x,y)

f(x,y) < fxy(x, y) < 1
2
fy(x,y)fx(x,y)

f(x,y) . There always exist

distributions B,S such that λ is always large enough.

3.3 Existence

We now establish existence of equilibrium.

Proposition 15 Assume A1. If the function f(x, y) is root-supermodular, then there exists an equi-

librium matching µ∗ for all permissible distributions B(x), S(y).

Proof. An equilibrium is characterized by a queue length function λ̃(y) for each seller y ∈ Y and an

assignment function µ(y) ∈ X ∪ ∅ that specifies the type of buyer to which seller y is matched, where

µ(y) = ∅ means that the seller is not matched. If x ∈ X but x /∈ µ(Y) then the buyer is not matched to

any seller. We are looking for an assignment function with µ′(y) > 0 for all y > ŷ, where ŷ is the lowest

seller type that is matched. Let x̂ be the lowest buyer type that is matched. Since sellers maximize the

problem

max
x,λ

m(λ)f(x, y)− λU(x)

and the problem for almost all types y > ŷ has to be given by the first order conditions

m′(λ)f(x, y) = U(x)
m(λ)
λ

fx(x, y) = U ′(x).

We immediately have the following necessary conditions for an equilibrium

m′(λ̃(y))f(µ(y), y) = U(µ(y)) (9)

q(λ̃(y))fx(µ(y), y) = U ′(µ(y)) (10)

Moreover, for the boundary types it has to hold that

U(µ−1(ŷ)) = m′(λ̃(ŷ))f(µ−1(ŷ), µ(ŷ)) ≥ 0, with equality if µ−1(ŷ) > x, (11)

and

π(ŷ) = [m(λ̃(ŷ))− λ̃(ŷ)m′(λ̃(ŷ))]f(µ(ŷ), ŷ) ≥ 0, with equality if ŷ > y, (12)
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where the notation µ−1 is the inverse of µ(y). Additionally, the queue length function has to be

consistent with the assignment function via the relationship

S
ȳ∫

y

λ̃(ỹ)s(ỹ)dỹ =

x̄∫

µ(y)

b(x̃)dx̃ (13)

where S is the measure of sellers (recall that the measure of buyers is normalized to one). This yields

λ̃(y) =
b(µ(y))
Ss(y)

µ′(y). (14)

An equilibrium is a solution to (9) - (12) and (14). Totally differentiating (9) yields

U ′(µ(y))µ′(y) = m′′(λ̃(y))λ̃′(y)f(µ(y), y) +m′(λ̃(y))
[
fx(µ(y), y)µ′(y) + fy(µ(y), y))

]
.

The derivative U ′(µ(y)) has to coincide with the expression in (10). That is, we get the equation

m′′(λ̃(y))λ̃′(y)f(µ(y), y) (15)

+[m′(λ̃(y))− q(λ̃(y))]µ′(y)fx(µ(y), y)

+m′(λ̃(y))fy(µ(y), y))

= 0

which gives us an expression for λ̃′(y). Differentiating (14) we get the second order differential equation,

and after substituting for λ̃′(y) we get

µ′′(y)

= − S
m′′(λ̃(y))f(µ(y), y)b(µ(y))

×
[

1
Ss(y)

(
b′(µ(y))s(y)µ′(y)− b(µ(y))s′(y)

)
µ′(y) + [m′(λ̃(y))− q(λ̃(y))]µ′(y)fx(µ(y), y) +m′(λ̃(y))fy(µ(y), y))

]
.

The right hand side involves µ(y) and µ′(y). Clearly the right hand side is positive when µ′(y) = 0,

so µ′(y) is always strictly increasing. We have two initial conditions on µ(.). First, µ(x̄) = ȳ. Second,

we guess on Ū for the utility U(x̄). Clearly Ū ∈ [0, f(x̄, ȳ)]. Since µ(ȳ) = x̄, Ū determines by (9) λ̃(ȳ)

uniquely, which we call λ̃(ȳ)|Ū , which in turn by (14) determines µ′(x̄) uniquely, which we call µ′(x̄)|Ū .
Given the initial conditions, this differential equation exists, is unique and varies continuously with the

initial condition for y in (y̌, ȳ] for y̌ high enough, delivering unique queue length λ̃(y)|Ū and assignment

µ(y)|Ū .
Let U(x)|Ū be the utility induced under the assignment and queue length associated with Ū , and

let π(y)|Ū be the associated utilities. Denote the lower bound on the domain of integration by y̌. We

can push y̌ down as long as U(µ(y̌))|Ū > 0, π(y̌)|Ū > 0, y̌ > y and µ(y̌)|Ū > x. Let ŷ|Ū be the infimum

21



that meets these criteria. It is continuos in Ū . For Ū close to zero, U(µ(y̌))|Ū > 0 is the only binding

constraint because buyer types are matched too quickly. Raising Ū will lead to a point where two of

the conditions are binding, as for Ū large only π(y̌)|Ū > 0 is binding as seller types are matched quickly.

Since µ(y̌)|Ū > x is only binding when U(µ(y̌))|Ū > 0 is not, and y̌ > y is only binding when π(y̌)|Ū > 0

is not, we are able to find a constellation fulfilling the equilibrium requirements.

Conditions (9) - (12) are necessary for equilibrium. Moreover, some tedious algebra shows that

equation (15) ensures that every buyer is at his first order condition, which can be shown to be the

global maximum. For the buyer, a negative definit Hessian to his maximization problem is ensured

exactly by root-supermodularity and 1/q(λ) convex (Assumption A1).

4 Concluding Remarks

The pricing mechanism plays a key role in the allocation of heterogeneous agents. In decentralized

Walrasian markets, market frictions naturally arise from the coordination problem that buyers face in

response to prices posted by sellers. The main thesis in this paper is that in the presence of those frictions

and complementarities in the match value function of heterogeneous agents, the pricing mechanism

facilitates sorting compared to random matching.

In a frictionless Walrasian world, supermodularity is sufficient for positive assortative matching. At

the other extreme, in a world with completely random meetings, a strong degree of complementarity, log-

supermodularity, is required to ensure positive assortative matching. In our economy with decentralized

Walrasian prices, the price mechanism mitigates some of the those frictions. Sellers of different types

use their prices to orient buyers where to buy from. With the impact of the frictions reduced by prices

relative to random matching, the complementarities needed to offset the natural tendency of frictions

to induce negative sorting, is of a lesser degree. Root-supermodularity is a weaker requirement than

log-supermodularity and it ensures positive assortative matching.

Because buyer types are not observable, sorting endogenously reveals information. The pricing

mechanism induces buyers to choose a seller type thus revealing the buyer’s type. Price competition

therefore leads to ex ante sorting. This is in sharp contrast with the literature on competing auctions

where heterogeneous buyers randomize over sellers offering mechanism and the mechanism then screens

ex post by selecting the higher buyer type in the auction.
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5 Appendix

Proof that for the standard unball matching function m(λ) = 1− e−λ the term λ/m(λ) is convex:

Proof. The first derivative of 1/q is −q′/q2. Since q′ = −(1 − e−λ − λe−λ)/λ2, we have
(

1
q

)′
=

1−e−λ−λe−λ
(1−e−λ)2

. The second derivative is

(
1
q

)′′
=
e−λ(1− e−λ)

(1− e−λ)4

[
λ(1− e−λ)− 2(1− e−λ − λe−λ)

]
.

The term in square brackets is positive, since it is equal to zero at λ = 0 and is increasing in λ as

1− e−λ − λe−λ > 0.

Proof of Lemma 8:

Proof. For the first statement, observe that a(λ) = m′(λ)q′(λ)
m′′(λ)q(λ) ≤ 1/2 is equivalent to q′′(λ)

q′(λ) ≤
m′′(λ)
m′(λ) . To

see this, observe that:

m′(λ)q′(λ)
m′′(λ)q(λ)

≤ 1/2 (16)

⇔ −2q′(λ) ≤ −m
′′(λ)q(λ)
m′(λ)

⇔ m′′(λ)− 2q′(λ) ≤ m′′(λ)− m′′(λ)q(λ)
m′(λ)

⇔ 1
λ

[
m′′(λ)− 2q′(λ)

]
≤ m′′(λ)
λm′(λ)

[
m′(λ)− q(λ)

]

⇔ q′′(λ) ≤ m′′(λ)
m′(λ)

q′(λ)

⇔ q′′(λ)
q′(λ)

≥ m′′(λ)
m′(λ)

.

For the second statement, recall 1/q convex iff q′′q−2(q′)2 ≤ 0, which implies its second part. From

Proposition 6 we know that assumption A1 coincides with m′(λ)
m′′(λ)

q′(λ)
q(λ) ≤ 1

2 for all λ ∈ [0,∞), which

together with Em − Eq = 1 (which is a general property of constant returns to scale functions) which

implies its first part.

For the forth statement, since x(m(λ)) = q(λ) we have q′(λ) = x′(m)m′(λ) and q′′(λ) = x′(m)m′′(λ)+

x′′(m)m′(λ). Therefore x′′(m) ≤ 0 is equivalent to

x′′(m)m′(λ) ≤ 0

⇔ q′′(λ)− x′(m)m′′(λ) ≤ 0

⇔ q′′(λ)− q′(λ)
m′(λ)

m′′(λ) ≤ 0

which has been shown in (16) to be equivalent with a(λ) ≤ 1/2.
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