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Abstract.

This paper shows that all perfect Bayesian equilibria of a dynamic matching
game with two-sided incomplete information of independent private values variety
converge to competitive equilibria. Buyers purchase a bundle of heterogeneous,
indivisible goods and sellers own one unit of an indivisible good. Buyer preferences
and endowments as well as seller costs are private information. Agents engage
in costly search and meet randomly. The terms of trade are determined through
bilateral bargaining between buyers and sellers. The paper considers a market in
steady state. It is shown that as frictions disappear, i.e., as discounting and the
fixed cost of search become small, all equilibria of the market game converge to
perfectly competitive equilibria.
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1. Introduction

This paper shows that all equilibria of a dynamic matching game with two-sided

incomplete information of the independent private values variety converge to compet-

itive equilibria. In the model each buyer aims to purchase a bundle of heterogeneous,

indivisible objects and each seller owns one unit of a heterogeneous indivisible good

(as in Kelso and Crawford (1982) or Gul and Stacchetti (1999)). Buyer preferences

and endowments as well as seller costs are private information. Agents engage in

costly search and meet randomly. The terms of trade are determined through bilat-

eral bargaining under incomplete information between buyers and sellers. The paper

considers a market in steady state and shows that as frictions disappear, that is as
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discounting and the explicit (fixed) cost of search become small for all agents, the

market becomes perfectly competitive.

Numerous researchers have explored the non-cooperative foundations for compet-

itive equilibria in the markets for indivisible goods using dynamic matching games.

Previous work has focused almost exclusively on markets for an homogeneous good

and has mainly assumed complete information. In particular, Gale (1987) and Mortensen

and Wright (2002) establish convergence of dynamic matching game equilibria to

competitive equilibria as search friction disappear under complete information, while

Satterthwaite and Shneyerov (2007) extend the analysis to the two-sided incomplete

information case.

Often cited examples of markets, where indivisible goods are exchanged through

bilateral negotiations, are the labor and the housing markets. Although cited as moti-

vating examples, neither of these markets fit the mold of a market for an homogeneous

good where buyers only differ in their valuations for the good, and sellers only dif-

fer in their cost of providing the good. For example, in the labor market potential

employees (sellers of labor services) differ in their productivity and their disutility of

labor. Firms (buyers of labor services) usually search for multiple employees, that

may complement or substitute each other. Also, the vacancies in the firms are rarely

exactly alike, and an employees productivity may depend crucially on the type of

vacancy that a firm has available. In the housing market the potential homes are

far from being homogenous and families who search for homes in the same market,

may have diverse needs. Moreover, some home purchases are bundles that include

the actual home, nearby parking, architectural services for remodeling the home and

brokerage services for the transaction. Also, in neither of these markets is it likely

that a seller observes a buyers preferences nor a buyer the sellers outside option. This

paper presents a dynamic matching game, with two sided incomplete information,

that preserves many of the attributes of markets such as the labor market and the

housing market.

A brief description of the model presented here is as follows: In each period a unit

measure of each type (of buyers and sellers) from a finite set of types is available for

entry and those who expect a non-negative return voluntarily enter the market. The

market is in steady-state with the measure of agent types endogenously determined

to balance the flow of types through the economy. Once in the market, each agent
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pays a per period cost, and receives a “draw” from the distribution of active players.

Also, finding a bargaining partner takes time and agents discount the future. The

probability that any buyer (or seller) is paired with a particular type is proportional

to the frequency of that type among all sellers (buyers) active in steady state. After

two agents are paired, nature designates a proposer, the proposer offers an (incentive

compatible direct) mechanism, and the responder decides whether to participate.

During this bargaining stage buyer preferences and endowments, as well as, seller

costs are private information. The good that the seller offers, however, is observed

by the buyer. If a meeting between a pair results in a trade, then the seller leaves the

market, otherwise the agents return to the population of active players. Buyers leave

the market voluntarily after they have purchased all the goods that they want.

The analysis here is concerned with convergence of equilibria to a competitive

equilibrium as search friction vanish. The competitive equilibrium benchmark under

consideration is a “flow” equilibrium as in Gale (1987) or Satterthwaite and Shneyerov

(2007), generalized to accommodate heterogenous goods and multi-unit demand. In

each period, flow supply is the measure of sellers of a particular good entering the

market and flow demand is the measure of agents willing to purchase a particular

good entering the market. In a flow equilibrium, the buyer and seller continuation

values, which are the implicit prices, equate flow supply to flow demand for each of

the goods traded in the market.

The main result in the paper shows that a steady state equilibrium exists for

any δ and c > 0 and as the discount factor δ → 1 and the explicit search costs

c→ 0, all trade takes place at competitive prices. The intuition for the convergence

result is as follows: as search becomes increasingly cheap, buyers wait until they have

accumulated their most favored bundle, and while accumulating these goods, they

reject “high” prices. Also, sellers become more discerning and wait until they receive

the best price offer possible. Consequently, at the limit, trade in each good occurs at

a unique price and each buyer purchases their most preferred bundle at these prices.

Since the market remains in a steady state, the limiting price vector balances the

flow supply of goods with the flow demand for the goods and is thus a competitive

equilibrium price vector. Incomplete information stops playing a role asymptotically,

since all agents anticipate that trade will take place at the Walrasian price.
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Although the literature on dynamic matching and search is vast, Satterthwaite

and Shneyerov (2007) is the work most closely related to this one. Satterthwaite and

Shneyerov (2007) established that equilibria of a dynamic matching game converge

to a competitive equilibrium in the case of a single homogeneous good and two sided

uncertainty. The analysis provided here differs from Satterthwaite and Shneyerov

(2007) in two main respects. First, the homogeneous good, unit demand restrictions

are lifted. Second, in Satterthwaite and Shneyerov (2007), the buyers and sellers

that meet, are assumed to participate in a double auction where any seller bids her

continuation value truthfully. In contrast, here the proposer is allowed to choose any

mechanism and so, strategic behavior is allowed for both the buyers and sellers. In

related models presented in DeFraja and Sakovics (2001), Serrano (2002) and Wolin-

sky (1990), convergence to a competitive equilibrium fails. The failure of convergence

to competitive equilibrium is caused by the bilateral bargaining protocol in Serrano

(2002); results from the inefficiency of aggregating common value information through

bilateral meeting in Wolinsky (1990); and is due to a “clones” assumption in DeFraja

and Sakovics (2001) (see Lauermann (2006) for a detailed discussion of these issues).

The paper proceeds as follows: Section 2 outlines the dynamic matching and bar-

gaining game as well as the competitive benchmark, Section 3.1 presents the main

results that show convergence to a competitive equilibrium, Section 3.2 outlines the

equilibrium existence argument, and Section 4 concludes. Proofs that are not included

in the main text are in the Appendix.

2. The Model

Buyers and sellers in the economy search for possible trading partners. Each seller

owns one indivisible good for sale and each buyer wants to purchase a bundle of the

indivisible goods offered for sale. The game progresses in discrete time and agents

discount the future with a common discount factor δ. In each period, an agent incurs

a positive explicit search cost c and meets pairwise with a potential partner.1 Either

the buyer or the seller is designated as the proposer. The probability that the buyer

is designated as the proposer is β ∈ (0, 1). The proposer offers a direct mechanism

and the responder chooses whether to participate in the mechanism. If the responder

1Although, I assume that all agents share a common discount factor δ and explicit search cost, c,
this is for convenience only. All results in the paper go through even if agents have heterogeneous
search costs.
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participates in the mechanism, then the agents report their types to the mechanism

and the mechanism chooses the probability with which a trade occurs and specifies

the transfers to be paid by the buyer to the seller. Sellers who trade permanently leave

the market. Buyers remain in the economy until they have purchased all the goods

that they want, then they leave the market and consume their bundle. Agents who

fail to trade return to the searching population. Utility is transferable. In particular,

if a buyer of type b consumes bundle G, then she enjoys utility hbG. A seller incurs

cost rs when she sells her good. So trade between b and sellers s ∈ G creates total

transferable utility fbG = hbG −
∑

s∈G rs.

2.1. Population of Types and Private Information. Let B and S denote the

finite sets of initial buyer and seller types and let I = B ∪ S denote the set of all

initial types. A seller’s type specifies the good she owns, xs, and her reservation value

(or cost) rs. Let X denote the set of goods potentially traded in the market, i.e, if xs

is the good owned by seller s, then X = {xs : s ∈ S}.
A buyer’s initial type specifies the buyer’s utility function hb : P(S) → R, where

P(S) denotes the set of all subsets of S. The utility function for any buyer b satisfies:

(i) Normalization: hb∅ = 0,

(ii) Monotonicity: If G ⊃ A, then hbG ≥ hbA,

(iii) Identity Independence: For any s and s′ with xs = xs′ (i.e., for sellers s and

s′ who own the same good), hbG∪{s} = hbG∪{s′} for all G.

Once in the market, a buyer’s type changes after each trade and includes infor-

mation on all trades that the agent has made, and consequently, the goods that the

buyer owns. So, refer to a buyer type by i = bG, where b ∈ B is the initial type,

i.e., her utility function, and G is the set of seller types with whom she has already

traded. Consequently, the set of buyer types present in the market is T = B×P(S).

In each period, a unit measure of each b ∈ B and s ∈ S are available to enter the

market. Consequently, in each period a measure |B| of buyers and measure |S| of sell-

ers potentially enter the market. Buyers and sellers, who do not enter the market in a

given period, are assumed to have opted for an outside option and are thus not avail-

able for entry in any subsequent periods. Let l = (lb1, ..., lbG , ..., l|B||2S |
, ls1, ..., l|S|) de-

note the steady state measure of buyers and sellers in the market, i.e., l ∈ R|B|×|2S |+|S|
+ .

The steady state probability for any seller of meeting buyer b, or any buyer meeting
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a seller s in a given period is

(1) pb =
lb

max{LB, LS}
or ps =

ls
max{LB, LS}

where LB =
∑

b∈T lb and LS =
∑

s∈S ls. The total measure of buyer b and seller s

pairs formed in a period is lspb = lbps and the total measure of pairs formed is equal

to min{LB, LS}. The (sub) probability measures pb and ps (or type distributions) are

commonly known by all agents.

The analysis here assumes independent private values. More precisely, if a buyer

and seller consummate a trade, then the payoff to each agent depends on the terms

of trade and their own private information; but does not depend on their trading

partner’s private information, i.e., there is no “Lemons” problem. Reference to this

assumption, which is stated formally below, is omitted from the statements of the

results presented since it is maintained throughout the paper.

Assumption: Independent Private Values. If buyer bG and seller s meet, then

the buyer observes, xs, the good that seller s has for sale, while bG and rs remain as

private information.

Also, further assume that the agents know the distribution of types in the economy

and that any agent’s prior belief about his/her trading partner’s type coincides with

the distribution of types. This requirement is stronger than what is needed for showing

convergence to a competitive equilibrium. As long as the support of any agent’s prior

belief coincides with the support of the steady state distribution, the convergence

results will continue to hold.

2.2. Agent Behavior and Strategies. Let σi denote a strategy for type i and

σ = (σi)i∈I a strategy profile. Assume that all agents use stationary time-invariant

strategies (σt = σ for all t). At the start of each period, the strategy determines

whether the agent remains in (or enters) the market and pays the cost c. Denote by

σi(in) the probability that agent i remains in (or enters) the market at the start of

any period. If i is paired in the current period and is the proposer, then the strategy

σi returns a (direct) mechanism choice µi. If agent i is the responder, then the strat-

egy specifies whether she accepts to participate in the mechanism. If the responder

accepts to participate, then the two agents report types k and j to the mechanism

and the mechanism chooses a probability of trade and the transfer paid by the buyer
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to the seller. The proposer can condition her mechanism offer, and the responder can

condition her type report, on the measure of agents in the economy l, other common

knowledge parameters of the economy, and the observable characteristics of her part-

ner for the period. The responder can also condition her report to the mechanism on

the mechanism chosen by the proposer. Without loss of generality, assume that the

proposer offers an individually rational and (interim) incentive compatible mechanism

and the responder always participates and reports her type truthfully. Consequently,

a strategy for type i is given by σi = (σi(in), µi).

The game played in each period can always be modeled as a direct mechanism

choice, that satisfies individual rationality and incentive compatibility constraints,

by an informed proposer (principal) (see for example Myerson (1983) or Maskin and

Tirole (1990)). However, the Lemma below shows that the private information of the

proposer does not play a role. In fact, the proposer chooses the same mechanism she

would have chosen even if her type was publicly know. In particular, since buyers

and sellers are risk neutral, a take-it-or-leave-it offer is an optimal mechanism for the

proposer (as in Riley and Zeckhauser (1983)).

Lemma 1. The equilibrium mechanism choices satisfy the following:

(i) If µi is the optimal (direct) mechanism choice for type i, when type i is

proposing and her type is known to the responder, then the direct mechanism

µ = (µi), i.e., the mechanism that uses µi when the proposer reports type i to

the mechanism, is an optimal mechanism choice for all i, when the proposer’s

type is private information.

(ii) A take-it-or-leave-it offer is optimal when the proposer’s type is know, con-

sequently a type specific take-it-or-leave-it offer is an optimal mechanism for

any proposer.

(iii) If s and s′ own the same good and rs ≥ r′s, then the take-it-or-leave-it offer,

ts ≥ t′s in any equilibrium.

In the case where each buyer only wants to purchase a single good, then a property

analogous to the monotonicity property for seller strategies, given in item (iii), also

holds for all buyers. Although Lemma 1 is stated under the assumption that buyers

and sellers meet in pairs, the result is more general, and extends to the case where

a seller (or buyer) meets with an arbitrary number of buyers (or sellers). If a seller
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meets with an arbitrary number of buyers, she will propose the optimal auction that

she would have proposed had her type been known to the responder.

Let the match probability mbs (or msb) denote the probability that b and s trade,

given that the two are paired in the period and b (or s) is chosen as the proposer.

Also, let tbs (or tsb) denote the transfer paid by the buyer to the seller, given that b

and s are paired in the period, b (or s) is chosen as the proposer, and they trade. The

reward function for a buyer b (or seller s ) proposing (responding) to seller s (buyer

b) is πb(σ, s) = −c−mbstbs (or πs(σ, b) = −c+mbs(tbs − rs)). If an agent has exited

the market or has accepted a match in a prior period, then the agent is paired with

0, and πi(σ, 0) = 0. Also, if the agent does not get paired in a period, then she/he is

paired with herself and πi(σ, i) = −c.
The expected future value at the start of a period for a seller equals the maximum

of the value of remaining in the market and the value of leaving the market, i.e.,

vs = max{vs(in), 0}. The expected future value at the start of a period for a buyer

equals the maximum of the value of remaining in the market and the value of leaving

the market and consuming the bundle that she owns, that is, vb = max{vb(in), hbG(b)}
where for each b ∈ T , G(b) denotes the set of seller types with whom type b has already

traded. The value of remaining in the economy, vb(in), satisfies

vb(in) = −c+
∑

s
psβmbs(δvb∪s−tbs) +

∑
s
ps(1− β)msb(δvb∪s − tsb)

+ (1−
∑

s
psβmbs −

∑
s
ps(1− β)msb)δvb.

where the notation b ∪ s (or the notation b \ s) denotes a type b′ with hb = hb′ and

G(b′) = G(b)∪{s} (or G(b′) = G(b)\s). In words, buyer b pays the search (sampling)

cost c, then successfully makes a trade as the responder with seller s with probability

(1−β)psmsb; makes a trade when she proposes to buyer s with probability βpsmbs; and

does not trade in the period and receives her continuation value δvb with probability

(1−
∑

s psβmbs−
∑

s ps(1−β)msb). Continuation values are defined similarly for the

sellers. Rearranging gives the following for buyer and seller values:

vs(in) = −c+ β
∑

b∈T
pbmbs(tbs − rs − δvs)

+ (1− β)
∑

b∈T
pbmsb(tsb − rs − δvs) + δvs, and
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vb(in) = −c+ β
∑

s
psmbs(δvb∪s − δvb − tbs)

+ (1− β)
∑

s
psmsbδ(vb∪s − δvb − tsb) + δvb,

for any b and s.

2.3. Steady State. Assuming that the economy remains in steady state implies that

the number of type b buyers (or type s sellers) entering the market in each period

must equal the number of that type leaving the market. Consequently, the steady

state measure of agents in the economy, l, satisfies the following equations:

lb(
∑

s∈S
Mbs + σb(out)) = σb(in)

ls(
∑

b∈T
Msb + σs(out)) = σs(in)

for all types b ∈ T with b(G) = ∅ and all sellers s ∈ S, where Mbs = ps(βmbs +

(1− β)msb) denotes the fraction of type b buyers who successfully trade with type s

sellers in a period; σb(out) = (1−
∑

s∈SMbs)(1− σb(in)) denotes the fraction of type

b buyers, who failed to trade in the previous period, that choose to leave at start of

the current period; and σb(in) ≤ 1 is the flow of new buyers into the market at the

start of the period. Also,

lb(
∑

s∈S
Mbs + σb(out)) = σb(in)

∑
s∈G(b)

lb\sMb\ss

for b ∈ T with b(G) 6= ∅, where σb(in)
∑

s∈G(b) lb\sMb\ss is the measure of newly

created type b buyers who remain in the market, that is buyer types who were an “s”

away from type b who traded with type s in the previous period.

2.4. Equilibrium. A steady state search equilibrium is comprised of a mutually

compatible strategy profile σ and steady state measure l. That is to say, the measure

l satisfies the steady state equations, given that agents use strategy profile σ and,

the strategy profile σ comprises a Perfect Bayesian Equilibrium for the market game,

given that the steady state measure of agent is l.

2.5. The Competitive Benchmark. The competitive equilibrium benchmark con-

sidered here is a “flow” equilibrium as in Gale (1987) or Satterthwaite and Shneyerov

(2007), generalized to accommodate heterogenous goods and multi-unit demand. In

each period, flow supply is the measure of sellers of a particular good entering the

market and flow demand is the measure of agents willing to purchase a particular
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good entering the market. In a flow equilibrium, the buyer and seller continuation

values, which are the implicit prices, equate flow supply to flow demand for each

good that is traded in the market. The competitive equilibrium allocations for econ-

omy I = B ∪ S is described by the following linear program (and its dual) which is

the classical Assignment Problem where fractional assignments are permitted. This

formulation is a generalization of Shapley and Shubik (1972) to a setting where buy-

ers can purchase multiple commodities as in Kelso and Crawford (1982) or Gul and

Stacchetti (1999, 2000).

Primal Dual

P = max
q≥0

∑
b∈B

∑
G⊂S

qbG(hbG −
∑

s∈G
rs) D = min

v≥0

∑
B
vb +

∑
S
vs

Subject to Subject to∑
b∈B

∑
s�G

qbG ≤ 1 for all s, vb +
∑

s∈G
vs ≥ hbG −

∑
s∈G

rs ∀b,G.(2) ∑
G⊂S

qbG ≤ 1 for all b.(3)

The vector q that solves the program is a competitive allocation and denotes the

measure of matches between buyer b and sellers in the set G that are created in

each period of time. Any vector v that solves the dual program is a competitive

equilibrium utility vector and the competitive price of a traded good is pxs = vs + rs.

The constraint given by equation (2) states that the flow demand for seller of type s,

i.e.,
∑

b∈B
∑

s�G qbG, must be less than the flow supply of that type, which is at most

one. This constraint will bind, if the good’s price is positive, or more precisely, if

vs > 0 and thus pxs = vs + rs > rs. The constraint given by equation (3) states that

the flow supply to buyers of type b, must be less than the flow demand by type b,

which is at most one. Again, this constraint will bind if vb > 0. Together inequalities

(2) and (3) ensure market clearing. Observe that, if q solves the primal and v the

dual, then each buyer consumes her most preferred bundle, sellers offer their good

only if pxs ≥ rs, and all markets clear. Conversely, if q is a competitive allocation

and p a competitive price, then q solves the primal Assignment Problem by the first

welfare theorem; and buyer values vb = maxG⊂S hbG −
∑

s∈G pxs and seller values

vs = max{0, pxs − rs} solve the dual Assignment Problem.
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3. Existence of Equilibrium and Convergence to Competitive

Equilibria

The development in this section shows that as search becomes costless, i.e., δ →
1 and c → 0, any sequence of steady state equilibria converges to a competitive

equilibrium (Theorem 1, Corollary 1 and Corollary 2). Also, for any configuration of

search frictions, that is, for any δ ∈ [0, 1] and c > 0, a steady state search equilibrium

exists (Theorem 2 and Corollary 3).

3.1. Convergence to Competitive Equilibria. The analysis focuses on sequences

of equilibria (ln, σn), and the associated sequences of equilibrium match probabilities

mn, type distributions pn and values vn, as search costs disappear, i.e., as (cn, δn) →
(0, 1). Let

qnb(i)G(i) = lni σ
n
i (out) + (1− σni (in))

∑
s∈G(i)

lni\sM
n
i\ss

denote measure of buyers with initial type b(i) ∈ B leaving the market with bundle

G(i). Since the market is in steady state 0 ≤ qnbG ≤ 1 for all b ∈ B, G ⊂ S and n.

Also, let

enbG = hbG −
∑

s∈G
rs − δnvnb −

∑
s∈G

δnvns

denote the Excess between any initial buyer type b ∈ B and sellers in the set G; and

similarly

enis = δnvni∪s − δnvni − δnvns − rs

denote the excess between buyer i ∈ T and seller s. Note that, 0 ≤ vni ≤ h̄; and

−(|S| + 1)(h̄ + r̄) ≤ enij ≤ h̄, where h̄ = maxb,G hbs and r̄ = maxs rs. Conse-

quently, the sequence (qn, en, vn, pn) is included in a compact set and has a con-

vergent subsequence. From hereon restrict attention to convergent subsequences

(qn, en, vn, pn) → (q̂, ê, v̂, p̂).

The main result of the paper, Theorem 1, is formulated under two assumptions:

Uniform Rate of Convergence (URC) and Free First Draw (FD). The (URC) assump-

tion requires that the explicit search costs cn do not converge to zero faster than the

implicit time costs 1−δn. This assumption, stated more precisely below, ensures that

the market is not clogged up by agents, that have no hope of trading and no incen-

tive to leave, accumulating in the economy. Since remaining in the economy remains

costly for any n, agents who do not have positive continuation values, voluntarily exit

the market.
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Assumption: Uniform Rate of Convergence (URC). lim supn
1−δn

cn
≤ r <∞.

It should be pointed out that (URC) is satisfied in Satterthwaite and Shneyerov

(2007) implicitly. Suppose, as in Satterthwaite and Shneyerov (2007), that the per-

period explicit search cost c = ∆tκ, where ∆t is the period length and κ > 0 is the

explicit cost, and the time cost δ = e−ρ∆t, where ρ > 0 is the discount rate. Then, as

search frictions become small, or formally, as the period length ∆t, shrinks to zero,
1−e−ρ∆t

∆tκ
→ ρ

κ
> 0.

Assumption (FD), stated below, requires, in the first period for any agent, that the

agent not pay the search cost c, that is, one draw (the first draw) from the distribution

agents in the market is free for all agents. This assumption ensures that all agents

enter the market and there are no coordination problems in entry that could result

in a missing market. If the first draw was not for free, then no agent entering the

economy is an equilibrium. Also, Example 1 at the end of the section, outlines a more

robust demonstration of a coordination failure. At the end of this subsection, this

assumption that the first draw comes for free is relaxed.

Assumption: Free First Draw (FD). The search cost c is not paid in the first

period for an agent and a unit measure of each type enters the market in each period;

thus all agents sample the distribution at least once.

Formally, Assumption (FD) requires that the choice of not-entering the market and

opting for an outside option is not available to agents at the start of their first period

in the market. This choice becomes available only after one period in the market.

Consequently, (FD) implies that, 1 ≤ lb, for all b and 1 ≤ ls for all s. Observe, even

if not entering was an available action in the first period, all agents weakly prefer

to sample the market since they get this first draw at no cost. Consequently, the

game where the action of not entering is available to agents in their first period,

always admits an equilibrium where each agent samples the market at least once (see

Theorem 2).

The following theorem shows that, under the (URC) and (FD) assumptions, any

sequence of steady state search equilibria converges to a competitive equilibrium. The

proof first shows that the per-period exit rate of buyers with goods in the set G (i.e.,

q̂bG) is a feasible choice for the Assignment Problem, and so, the flow creation of

value in the economy is at most as large as the maximized value of the Assignment
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Problem. The argument proceeds to show that the Excess êij between any buyer i

and seller j as well as the Excess between any initial type b and sellers in the set G,

i.e., êbG is non-positive. No Excess then implies that the vector of equilibrium values

v is a feasible choice for the dual of the Assignment Problem, and consequently, that

the flow creation of value in the economy is at least as large as the maximized value of

the Assignment Problem.2 The (URC) and (FD) assumptions in conjunction allows

one to show that, if a buyer waits long enough, then she can meet any seller and make

this seller a take-it-or-leave-it offer. This drives the Excess between any two agents

to zero as search frictions vanish.

Theorem 1. Assume (URC) and (FD). If (qn, vn) → (q̂, v̂), then q̂ solves the primal

Assignment Problem and is a competitive equilibrium allocation; v̂ solves the dual

Assignment Problem and is a competitive equilibrium utility vector; and v̂s + rs is a

competitive equilibrium price for good xs.

Proof. Note that
∑

G⊂S l
n
bG

is the measure of buyers, whose initial type was b, present

in the market.
∑

G⊂S l
n
bG

is in steady state since it is the sum of the steady state

measures lnbG . The number of buyers, whose initial type was b, permanently leaving

the market in each period is
∑

G⊂S q
n
bG and the number entering is 1. Consequently,

steady state implies
∑

G q
n
bG ≤ σnb (in) = 1.

Note that
∑

b

∑
s�G l

n
bG

+ lns denotes the measure of agents who own the good that

initially belonged to a seller of type s and this measure is also in steady state since it

is a sum of steady state variables. In each period, the measure of agents leaving with

a good that initially belonged to a seller of type s is∑
b

∑
s�G

qnbG + lnsσ
n
s (out)

and the number of type s agents entering the market is σs(in). Consequently,∑
b

∑
s3G

qnbG + lnsσ
n
s (out) ≤ 1.

Taking limits shows ∑
b

∑
s3G

q̂bG + l̂sσ̂s(out) ≤ 1 for all s and∑
G
q̂bG ≤ 1 for all b.

2Observe that the constraint of the dual Assignment Problem only requires No Excess.
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This implies that the vector q̂ satisfies equation (2) and equation (3) and is feasible

for the primal Assignment Problem. Consequently,∑
b∈B

∑
G⊂S

q̂bG(hbG −
∑

s∈G
rs) ≤ P.

By Lemma 4, given in the Appendix, êbG ≤ 0 for all b and G , this implies that v̂ is

feasible for the dual and consequently,
∑

B v̂b +
∑

S v̂s ≥ D. But,∑
B

v̂b +
∑
S

v̂s ≤
∑

b∈B

∑
G⊂S

q̂bG(hbG −
∑

s∈G
rs)

by Lemma 5, given in the Appendix. Consequently,

D ≤
∑
B

v̂b +
∑
S

v̂s =
∑

b∈B

∑
G⊂S

q̂bG(hbG −
∑

s∈G
rs) ≤ P = D

and so
∑

B×S q̂bsfbs = P proving that q̂ is a competitive allocation and v̂ is a com-

petitive equilibrium utility vector. �

In the development below Assumption (FD) is dropped and replaced by a “tighter”

version. In particular, the following assumption provides an (almost) necessary and

sufficient condition for every sequence of search equilibria to convergence to a compet-

itive equilibrium. The condition requires that only an arbitrarily small, but positive,

measure of the lowest cost seller of each good receive their first draw for free (or enter

the market by accident).

Assumption: FD for Low Cost Sellers (FDL). In each period, there is εx > 0

entry by the lowest cost seller of each good x.

Again, formally this assumption requires that the choice of not-entering the market

and opting for an outside option is not available for a fraction εx > 0 of sellers at the

start of their first period in the market. This choice becomes available only after one

period in the market.

The following corollary of Theorem 1 establishes convergence to competitive equilib-

rium under Assumption (FDL). The argument shows that (FDL) and (URC) together

are sufficient to show No Excess between any two agents.

Corollary 1. Assume (URC) and (FDL). If (qn, vn) → (q̂, v̂), then q̂ solves the

primal Assignment Problem and is a competitive equilibrium allocation; v̂ solves the
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dual Assignment Problem and is a competitive equilibrium utility vector; and v̂s + rs

is a competitive equilibrium price for good xs.

Proof. To show convergence, êbG ≤ 0 (no excess) is established. Once, êbG ≤ 0, then

the corollary follows from the argument in Theorem 1. Lemma 2 and Lemma 3, given

in the Appendix, are valid under the assumption of this corollary. Also, Lemma 4 can

also be applied as follows: Let ix denote the lowest cost seller of good x. By Lemma

4, êGb ≤ 0 for all b and G ⊂ {ix}.
For any two sellers of good x, vs − vs′ ≤ vs(in)− vs′(in) and so,

(vs(in)− vs′(in))(1− δ) ≤ β
∑

b∈T
pbmbs(rs′ + δvs′ − rs − δvs)

+ (1− β)
∑

b∈T
pbmsb(rs′ + δvs′ − rs − δvs)

Also, suppose, without loss of generality, that rs′ ≥ rs.

(vs − vs′)(1− δ) ≤ ((rs′ − rs)− δ(vs − vs′))
∑

b∈T
Msb

vs − vs′ ≤ (rs′ − rs)

∑
b∈T Msb

(1− δ) + δ
∑

b∈T Msb

≤ rs′ − rs

Consequently, δvs + rs ≤ δvs′ + rs′ . For any set G of sellers, let H denote the set

of sellers where each s ∈ G is replaced by ixs , i.e., the lowest cost seller who owns the

same good as seller s. So, hbG = hbH , also, δvs + rs ≤ δvs′ + rs′ for any s′ ∈ G and

s ∈ H with xs′ = xs. Consequently,

ebG = hbG −
∑

s∈G
(δvs + rs)− δvb ≤ hbH −

∑
s∈H

(δvs + rs)− δvb = ebH

However, enbH → êbH ≤ 0 since H ⊂ ix. So, êbG = lim enbG ≤ lim enbH ≤ 0 proving that

êbG ≤ 0. �

As pointed out the condition outlined in Assumption (FDL), or a similar condition

imposed on the buyer side of the market, is also necessary in the following limited

sense: if Assumption (FDL) does not hold, then there exists a sequence of steady

state equilibria for an economy that fails to converge to a competitive equilibrium of

that economy. The following is such an example.

Example: Necessity of FDL. Consider an economy with two buyer types and two

seller types, where each buyer wants to purchase only one good and the two seller

types own two different goods. Let h12 = h21 = 0 and h11 = h22 = 1, that is h is
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super-modular; buyer 1 likes seller 1’s good and buyer 2 likes seller 2’s good. Suppose

r1 = r2 = 0. Let δ = 1. For any c ≤ 1/2, a unit measure of type 1 buyers and

a unit measure of type 1 sellers entering, no type 2 buyers or sellers entering and

all meetings resulting in a trade at a price of 1/2 is an equilibrium. Clearly such a

sequence does not converge to the competitive equilibrium of the economy. However,

if a tiny fraction ε2 of type 2 sellers where to enter in each period, then for c ≤ ε2
1+ε2

the buyers of type 2 would also find it profitable to enter. This results in the markets

for both goods operating and leads to convergence to a competitive equilibrium.

The above example showed that without an assumption along the lines of (FDL),

which can be imposed either on the buyer side, or on the seller side of the mar-

ket, convergence to a competitive equilibrium may fail due to coordination problems.

However, even if convergence to a competitive equilibrium fails, the limit will never-

theless have a competitive flavor. In particular, the following corollary to Theorem 1

shows that the limiting allocation and values will comprise a competitive equilibrium

for the sub-markets that are open. More precisely, pick any convergent sequence

(qn, vn). Let s denote a seller for whom limk l
nk
s > 0 for some subsequence {nk} of

{n} where the subsequence may depend on the seller s, and let Ŝ denote the set of all

such sellers, i.e., Ŝ is the set of sellers who are present in the economy at some limit.

Then, (q̂, v̂) comprises a search equilibrium for the economy where the set of buyers

is B and the set of sellers is Ŝ ⊂ S. The proof argues that the Excess between any

buyer b and seller and s in B ∪ Ŝ disappears along a subsequence where limk l
nk
s > 0.

This in turn implies that the Excess vanishes along the sequence {n} since {en} has

a limit by assumption.

Corollary 2. Assume (URC). Suppose (qn, vn) → (q̂, v̂), let Ŝ = {s ∈ S : lim supn l
n
s >

0}, then q̂ solves the primal Assignment Problem and is a competitive equilibrium al-

location for the economy with agents in Î = B ∪ Ŝ; v̂ solves the dual Assignment

Problem and is a competitive equilibrium utility vector for the economy with agents

in Î = B ∪ Ŝ; and v̂s + rs is a competitive equilibrium price for good xs.

Proof. If s /∈ Ŝ then limnl
n
s = 0 which implies that qbG = 0 for any G 3 s. Conse-

quently, q is feasible for the economy Î. By assumption, for each s ∈ Ŝ, there exists

a sequence {nk} ⊂ {n} and an integer K such that lnk
s > 0 for all nk > K and

limk l
nk
s > 0. Along this sequence the excess between any buyer and the particular
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seller disappears by Lemma 4. However, since vn converges along {n}, lim vnk = v̂,

and limn e
n = limk e

nk = 0, proving No Excess for any b and s ∈ Ŝ, and completing

the proof. �

3.2. Existence of a Steady State Search Equilibrium. The main theorem,

proved in this subsection, establishes that an equilibrium exists, for any δ ∈ [0, 1]

and c > 0. In the model presented here, without an assumption along the lines

of (FD) or (FDL), a trivial no-trade equilibrium always exists. Consequently, for a

meaningful existence result, the following theorem below assumes (FD) (or (FDL))

and establishes the existence of an equilibrium with trade, that is an equilibrium

where the markets for all the goods are open. The proof of the theorem involves a

straight forward application of Kakutani’s fixed point theorem on a mapping defined

from the set of feasible measures l, strategy profiles σ and values v, into itself.

Theorem 2. Assume (FD) or (FDL). For any (c, δ) a search equilibrium (l, σ) exists.

Example 1 demonstrated that without (FDL) there may exist sequences of equilib-

ria that fail to converge to competitive equilibria. However, the following corollary

maintains two additional assumptions and shows that, even without (FDL), there

exists a sequence of equilibria that converges to a competitive equilibrium for the

economy.

The first additional assumption (UNQ), requires that the set of goods traded in any

competitive is unique, that is, the same goods are traded in any competitive equilib-

rium. This assumption is trivially satisfied in the models with an homogeneous good

such as Gale (1987) and Satterthwaite and Shneyerov (2007). Also, the assumption

is satisfied generically in economies where buyers have unit demand and sellers have

unit supply.

Assumption: Uniqueness (UNQ). The set of goods traded in any competitive equi-

librium is the same. That is if good x is not traded in one competitive equilibrium,

then it is not traded in any other CE.

Assumption (DR) requires the goods in the economy are substitutes for each other

from the point of view of all buyers. This assumption is always trivially satisfied in

economies where buyers have unit demand.
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Assumption: Decreasing Returns (DR). If G ⊂ H, then hbH∪{s} − hbH ≤
hbG∪{s} − hbG for all b and s.

The argument for the corollary is as follows: First fix the set of goods traded in any

competitive equilibrium. Assume at a small measure of the lowest cost seller of each

of these goods enters in each period, i.e., (FDL) holds for the traded goods. Given this

assumption a sequence of equilibria, that converges to a competitive equilibrium exists

by Corollary 1 and Theorem 2. However, if the measure of sellers with (FDL) is picked

sufficiently small, then for sufficiently small cn and 1−δn, the measure of sellers of the

traded goods entering the economy must exceed the measure of sellers entering due to

the (FDL) assumption. Consequently, the (FDL) assumption is non-binding and can

be dropped thus proving the existence of the desired sequence of convergent equilibria.

The convergent sequence, however, converges to an competitive equilibrium for the

economy where the set of traded goods is a subset of the set of all goods. Assumption

(DR) is then used to show that this also a Competitive Equilibrium for the set of all

goods.

Corollary 3. Assume (URC), (UNQ) and (DR). There exists a sequence (qn, vn) →
(q̂, v̂), such that q̂ solves the primal Assignment Problem and is a competitive equilib-

rium allocation; v̂ solves the dual Assignment Problem and is a competitive equilibrium

utility vector; and v̂s + rs is a competitive equilibrium price for good xs.

Proof. By (UNQ), the set of goods can be partitioned into two sets H ⊂ X and X \H
where H denotes the set of goods that are traded in any competitive equilibrium. Let

qx denote the measure of good x traded by the lowest cost sellers of good x, i.e., by

sellers Sx = {s : xs = x and rs ≤ r′s for all s′ with xs′ = x}, traded in a competitive

equilibrium. More precisely

qx =
∑

s∈Sx

∑
b

∑
s3G

qbG

Also, let qx = minq∈Qqx where Q denotes the set of competitive allocations. Note

that Q is a compact and convex set and qx > 0 for any x ∈ H. Assume (FDL) for

all x ∈ H and let the measure of low cost sellers of good x ∈ H receiving the first

draw free be 0 < εx < qx. Observe that given this set-up, the sequence of equilibria

will converge to q̂, which is competitive equilibrium for the economy comprised of

sellers such that xs ∈ H and b ∈ B. Also, observe that since only goods in H are
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traded, q is also an efficient allocation for the original economy I. For any buyer b

with l̂b > 0, êbG ≤ 0 for any G ⊂ S. For any buyer with l̂b = 0, êbG ≤ 0 for any

G ⊂ {s : xs ∈ X \H}. This is because otherwise, i.e., is êbG > 0, then allocating to

b, who is not trading, the goods in G, which are not being traded, would improve the

efficiency of the matching which would contradict that the matching q̂ is efficient. So

êbG ≤ 0 for G ⊂ {s : xs ∈ X \H}. Also, for l̂b = 0, êbG ≤ 0 for any G ⊂ {s : xs ∈ H}
by Corollary 1. But, êbG ≤ 0 for G ⊂ {s : xs ∈ H} and G ⊂ {s : xs ∈ X \ H}
in conjunction with (DR) implies that êbG ≤ 0 for all b and G ⊂ S. This, in turn,

shows that the allocation q̂ is a competitive equilibrium allocation for I and v̂ is a

competitive utility vector.

Now observe that for sufficiently large n, σnsx
(in) > εx since the measure of lowest

cost sellers leaving the market must converge to competitive competitive equilibrium

which exceeds qx. This implies that for n sufficiently large vs(in) ≥ 0. This shows

that we can drop the (FDL) assumption which is not binding for sufficiently large n

and just take entry by type sx to equal σnsx
(in). �

4. Discussion and Conclusion

This paper presented a model where buyers purchase a bundle of indivisible, het-

erogeneous goods from sellers who are each endowed with one unit of a good. Trade

takes place in a decentralized market under two sided incomplete information. A

small measure of the lowest cost seller of each good is assumed to sample the market

at least once. Under this assumption an equilibrium is shown to exist (Theorem 2)

and any sequence of equilibria is shown to converge to a competitive equilibrium.

The model presented here considered the case where agents bargain pairwise, where

as other studies in the literature, such as Satterthwaite and Shneyerov (2007), analyze

bargaining in larger coalitions. The convergence result is not sensitive to this assump-

tion. In particular, the results presented here are robust to any random matching

technology as long as any buyer and seller whose exist with positive measure in the

economy meet with positive probability. Also, the analysis proceeded under the as-

sumption of two sided incomplete information. However, all the results presented

also go through without alteration under complete information. Finally, a central

assumption in the model maintained throughout the paper was that the economy re-

mains in steady state. An immediate way to extend this model is to drop the steady
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state assumption and consider a non-stationary market with finitely many, instead of

a continuum, of agents entering in each period. Under such a formulation, the goal

would be to show that trade always occurs at competitive prices and that the market

clears on average.

Appendix A. Omitted Proofs

A.1. Proof of Lemma 1. Proof of item (i) is bellow. Item (ii) follows from Riley and

Zeckhauser (1983). Item (iii) follows since Corollary 1 showed that δvs+rs ≤ δvs′+rs′

for two sellers of the same good with rs ≤ rs′ . The take-it-or-leave-it offer can be

viewed as the choice of an optimal monopoly price where marginal cost is equal to

δvs + rs. Consequently, if δvs + rs ≤ δvs′ + rs′ , then the optimal monopoly price

ts ≤ ts′ .

I show, if µi = (mi, ti) is the optimal mechanism for type i, when type i is proposing

and her type is known to the responder, then the mechanism µ = (µi) is an optimal

mechanism choice for all i, when the proposer’s type is private information. The proof

follows the line of reasoning in Yilankaya (1999). By the Inscrutability Principal of

Myerson (1983), we can assume, without loss of generality, that all proposers choose

the same mechanism. This mechanism choice by the proposer cannot do better in

expectation than the ex-ante optimal mechanism. Below it is shown that the ex-ante

optimal mechanism is just µ = (µi). However, the mechanism choice µ = (µi) is also

available for the proposer and will therefore be chosen. Let r̂s = rs + δvs ≥ 0 and

ĥbG = δ(vbG∪s
− vbG). The ex-ante problem for the proposer, if the proposer is a seller

of good x, is as follows:

max
m,t≥0

∑
BP(G)×S

pbps(tbs −mbsr̂s)

Subject to the incentive compatibility constraint
∑

S ps(mjsĥb−tjs) ≤
∑

S ps(mbsĥb−
tbs), the individual rationality constraint

∑
S ps(mbsĥb − tbs) ≥ 0 and the resource

constraintmbs ≤ 1. Alter the problem as follows: let hb = max{ĥb, 0} for all b ∈ BP(G)

and add a buyer 0 with h0 < 0 and p0 = 0. Also, drop the individual rationality
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constraint for all buyers except for buyer 0. The modified ex-ante problem is then

V x = max
m,t≥0

∑
BP(G)×S

pbps(tbs −mb,sr̂s)∑
S
ps(mishb − tis) ≤

∑
S
ps(mb,shb − tbG,s) ∀b and i (αxbj)

0 ≤
∑

S
ps(m0shb − t0s) (ψx)

mbs ≤ 1 (γxbs)

where the set B now includes buyer 0 and the Lagrange multipliers are given to

the right. The modified problem and the original problem have the same payoff

for the proposer. To see this pick any solution to the original problem and take

m0s = t0s = 0. To show that this is feasible for the modified problem we only need

to check constraints for agents with ĥb ≤ 0 and for h0. However, for any such agent,

their utility in both the original and modified problem is zero which is their maximum

attainable utility. Consequently, the solution to the original problem is feasible for

the modified problem and the payoff for the modified problem is at least as large as

the original problem. Pick any solution to the modified problem and set mbs = tbs = 0

for any hb ≤ 0 which must also a solution to the modified problem. To show that this

solution is also feasible for the original problem note that for any hb ≤ 0, mbs = 0

and tbs = 0 and so these agents receive their highest possible utility and both IR

and IC constraints for these agents hold. Also, dropping the individual rationality

constraints causes no change in value since any agent can still guarantee non-negative

payoff by pretending to be agent 0. Consequently, the value for the original problem

must be at least as large as the value for the modified problem showing that the two

payoffs are equal. The dual of the ex-ante problem is

Dx = min
γx≥0,α≥0,ψ≥0

∑
B×S

γxbs∑
j∈B

(hbα
x
bj − ĥjα

x
jb) ≤

γxbs
ps

+ pbr̂s ∀ b 6= 0 and s,∑
j∈B

(αxjb − αxbj) + pb ≤ 0 ∀ b 6= 0,∑
j∈B

(αxj0 − αx0j) ≤ ψx,∑
j∈B

(h0α
x
0j − hjα

x
j0) + ĥ0ψ

x ≤ γx0s
ps

∀ s.
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Observe that the last constraint for the dual problem is satisfied automatically and

can be ignored since, for any choice of γx ≥ 0, α ≥ 0, ψ ≥ 0, the left hand side is

always non-positive and the right hand side is always non-negative.

Similarly, the problem when r̂s is know and it’s program dual are formulated as

follows:

Vs = maxm,t≥0

∑
B
pb(tbs −mbsr̂s)

subject to, incentive compatibility, hbmjs− tjs ≤ hbmbs− tbs for all b and j, individual

rationality, 0 ≤ h0m0s − t0s and mbs ≤ 1. The dual is as follows

Ds = minγ≥0

∑
b
γbs

subject to: ∑
j∈B

(hbα
s
bj − ĥjα

s
jb) ≤ pbr̂s + γbs ∀ b 6= 0,∑

j∈B
(αsjb − αsbj) + pb ≤ 0 ∀ b 6= 0,∑
j∈B

(αsj0 − αs0j) ≤ ψs,∑
j∈B

(h0α
s
0j − hjα

s
j0) + h0ψ

s ≤ γ0s.

Again, the last constraint for the dual problem can be ignored.

Let ms and ts solve the mechanism choice problem when the cost is rs is known,

and let αs γs and ψs denote a dual solution. Observe that m = (ms) and t = (ts)

is a feasible choice for the ex-ante problem since if each choice satisfies IC and IR0

separately, they satisfy IC and IR0 on average. This implies that V x ≥
∑

s psVs.

Also, observe that α = (αs), γ = (psγ
s) and ψ = maxs{ψs} is feasible for the dual of

the ex-ante problem. Consequently, Dx ≤
∑

B×S psγsb. However, Dx ≤
∑

B×S psγsb =∑
s psVs ≤ V x and so V x =

∑
s psVs completing the proof.

A.2. Proof of Theorem 1.

Lemma 2 (No Excess 1). If max{p̂b, p̂s} > 0, then ebs ≤ 0.

Proof. For any cn and δn a seller (or buyer) can offer to sell her good for δnvb∪s−δnvb−ε
and ensure that buyer b purchases if they meet, since the payoff that buyer b gets

from purchasing the good strictly exceeds her continuation payoff δnvb. Also, any

buyer can offer to buy a good for rs+ δnvns + ε, and ensure that she makes a purchase
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if she meets seller s. Consequently,

vns ≥ −cn + (1− β)pnb (δ
nvb∪s − δnvb − rs) + δn(1− (1− β)pnb )v

n
s

(1− δn)vns ≥ −cn + (1− β)pnb (δ
nvb∪s − δnvb − δnvns − rs)

(1− δn)vns ≥ −cn + (1− β)pnb e
n
bs

and

(1− δn)vnb ≥ −cn + βpns (δ
nvb∪s − δnvb − δnvns − rs),

(1− δn)vnb ≥ −cn + βpns e
n
bs

Taking limits shows that p̂bêbs ≤ 0 and p̂sêbs ≤ 0. However, since max{p̂b, p̂s} > 0,

êbs ≤ 0. �

Lemma 3. Let Ln = max{LnB, LnS}, limn c
nLn = 0 and limn(1− δn)Ln = 0.

Proof. If lim supLn <∞, then since 0 ≤ Ln, limn c
nLn = 0 and limn(1− δn)Ln = 0.

If lim supLn = ∞, then there must exist an agent type i with p̂i > 0 for whom

lni → ∞ and so the value from staying in the market for this type agent must be

non-negative for all n large. Consequently, if lim supLn = ∞, then there exists a

buyer b with p̂b > 0 and vnb (in) ≥ 0, or a seller s with p̂s > 0 and vns (in) ≥ 0, for all

n large. Assume, without loss of generality, that there exists a buyer b with p̂b > 0

and vnb (in) ≥ 0. This implies for sufficiently large n,

(1− δn)lnb v
n
b + lnb c

n = β
∑
S

lnb p
n
sm

n
bs(δ

nvb∪s − tnbs − δnvnb )

+ (1− β)
∑
S

lnb p
n
sm

n
bs(δ

nvb∪s − tnsb − δnvnb )

However, for mn
bs > 0, tnbs ≥ δnvns +rs, so δ

nvb∪s− tnbs−δnvnb ≤ δnvb∪s−δnvb−δnvns −rs
and δnvb∪s − tnsb − δnvnb ≤ δnvb∪s − δnvb − δnvns − rs. Consequently,

(1− δn)lnb v
n
b + lnb c

n ≤ β
∑
S

lnb p
n
sm

n
bse

n
bs + (1− β)

∑
S

lnb p
n
sm

n
bse

n
bs

(1− δn)lnb v
n
b + lnb c

n ≤ ēnbs
∑
S

lnbM
n
bs ≤ ēnbs

1

pnb
((1− δn)lnb v

n
b + lnb c

n) ≤ ēnbs
pnb
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However, since p̂b > 0, by Lemma 2, limn e
n
bj = 0 for any j. This implies that

limn
1

pnb
((1− δn)lnb v

n
b + lnb c

n) ≤ limn
ēnbs
pnb

limn(1− δn)Lnvnb + Lncn = 0

Observe since limLncn = 0, by Assumption 1, limn(1− δn)Ln = 0. �

Lemma 4. If p̂b = 0, then also êbG ≤ 0, consequently, êbG ≤ 0 for all b and G.

Proof. By the argument provided in Lemma 2,

(1− δn)vnb ≥ −cn + βpns1(δ
nvb{s1} − δnvnb − δnvns1 − rns1).

Multiply both sides by Ln = max{LnB, LnS} which gives

((1− δn)vnb + cn)Ln ≥ βLnpns1(δ
nvnb{s1}

− δnvnb − δnvns1 − rns1).

Note that Lnpns = lns ≥ 1 for all n. However, by Lemma 3

limn((1− δn)vnb + cn)Ln = 0.

Consequently,

v̂b{s1} − v̂b − v̂s1 − rs1 ≤ 0.

Also, again by the argument provided in Lemma 2,

((1− δn)vnb{s2}
+ cn)Ln ≥ βLnpns2(δ

nvb{s1,s2} − δnvnb{s1} − δnvns2 − rns2).

So, v̂b{s1,s2} − v̂b{s1}
− v̂s2 − rs2 ≤ 0. Substituting gives

v̂b{s1,s2} − v̂b − v̂s2 − v̂s1 − rs1 − rs2 ≤ 0

Repeating |G| times shows that

v̂bG − v̂b −
∑

s∈G
(v̂s + rs) ≤ 0.

However, vnbG ≥ hbG for all n and so v̂bG ≥ hbG. Thus

hbG − v̂b −
∑

s∈G
(v̂s + rs) ≤ 0

proving the result. �

Lemma 5.
∑

B v̂b +
∑

S v̂s ≤
∑

b

∑
G q̂bG(hbG −

∑
s∈G rs).
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Proof. The value equations for the buyers implies

lbvb(1− δ) ≤ β
∑

s
lbpsmbs(σb∪s(in)δ(vb∪s − hibG(b∪s)) + δhibG(b∪s) − δvb − tbs)

+ (1− β)
∑

s
lbpsmsb(σb∪s(in)δ(vb∪s − hibG(b∪s)) + δhibG(b∪s) − δvb − tsb)

Summing up over all buyers and taking the limit as δ → 1 and observing that tbs goes

to vs + rs for any b and s with mbs > 0 gives

0 ≤
∑

bG∈T

∑
s∈S

(1−σ̂bG∪s
(in))(βl̂bG p̂sm̂bGs+(1−β)l̂bG p̂sm̂sbG)(hbG∪s−v̂b−

∑
j∈G∪s

(v̂j+rj))

rearranging shows that

0 ≤
∑

bG∈T

∑
s∈S

(1−σ̂bG (in))(βl̂bG\s
p̂sm̂bG\ss+(1−β)l̂bG\s

p̂sm̂sbG\s
)(hbG−v̂b−

∑
j∈G

(v̂j+rj))

However ∑
s∈S

(1− σ̂bG(in))(βl̂bG\s
p̂sm̂bG\ss + (1− β)l̂bG\s

p̂sm̂sbG\s
) = q̂bG

which implies that

0 ≤
∑

bG∈T
q̂bG(hbG − v̂b −

∑
j∈G

(v̂j + rj))

0 ≤
∑

b

∑
G
q̂bG(hbG − v̂b −

∑
j∈G

(v̂j + rj))

Observe that for b with v̂b > 0
∑

b

∑
G q̂bG = 1 and for s with v̂s > 0,

∑
b

∑
s�G q̂bG = 1

so ∑
B
v̂b +

∑
S
v̂s ≤

∑
b

∑
G
q̂bG(hbG −

∑
s∈G

rs)

proving the result.

�

A.3. Proof of Theorem 2. For any c and δ, 0 ≤ vi ≤ h̄. Let V = {v ∈ R|B|×2|S|+|S| :

0 ≤ vi ≤ h̄} denote the set of possible values. The steady state measure for any agent

i is bounded. For all b and s, vs(in) < 0. then ls = 1 and vb(in) < 0, then lb = 1,

by Assumption (FD). If vs(in) ≥ 0, then ls = 1/(
∑

b∈T Msb + σs(out)). If vb(in) ≥ 0,

then lb = 1/(
∑

s∈SMbs + σb(out)). Also, if σb(in)
∑

s∈G(b) lb\sMb\ss, then

lb =
σb(in)

∑
s∈G(b) lb\sMb\ss∑

s∈SMbs + σb(out)
.
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Observe that if vi(in) ≥ 0, then vi(in) ≤ −c +
∑

jMijh̄ and so c/h̄ ≤
∑

jMij.

Consequently, 1 ≤ li ≤ h̄
c

. Let Λ = {l : 1 ≤ li ≤ h̄
c
} denote the set of possible steady

state measures. Let mbs and transfer tbs be the mechanism choice by the buyers and

msb and tsb the mechanism choice by the sellers, and σi = (σi0, µi). Start with any

l ∈ Λ, σ ∈ Σ, v ∈ V and let

l′s(l, σ, v) =
1

max{c/h̄,
∑

j∈T Mjspj}
,

l′b(l, σ, v) =
1

max{c/h̄,
∑

s∈SMbs}
and,

l′j(l, σ, v) =
σj(in)

∑
s∈G(j) lj\sMj\ss

max{c/h̄,
∑

s∈SMjs}

where the M ’s are calculated according to σ, p and l. This defines a continuous

function from Λ× Σ× V into Λ, where (l, σ, v) 7→ l′i for each i.

Let

v′b(in|l, σ, v) = max(m′
b,t

′
b)≥0−c+ β

∑
ps(m

′
bs(δvb∪s − δvb)− t′bs)

+ (1− β)
∑
s

ps(msb(δvb∪s − δvb)− tsb) + δvb

subject to

t′bs −m′
bs(rs + δvs) ≥ t′bj −m′

bj(rs − δvs) for all s and j ∈ S

t′bs −m′
bs(rs + δvs) ≥ 0 for all s

m′
bs ≤ 1 for all s.

Also, let S ′b,1(l, σ, v) denote the set of maximizers for the above program and

S ′b,0(l, σ, v) = arg max
σ0∈∆{in,out}

σ0v
′
b(in, l, σ, v) + (1− σ0)hbG(b).

Similarly, for a seller, let

v′s(in|l, σ, v) = maxm′
s,t

′
s
−c+ (1− β)

∑
b∈T

pb(t
′
sb −m′

sb(rs + δvs))

+ β
∑

b∈T
pb(tbs +mbs(rs + δvs)) + δvs
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subject to

m′
sb(δvb∪s − δvb)− t′sb ≥ m′

sj(δvb∪s − δvb)− t′sj for all b and j ∈ T

m′
sb(δvb∪s − δvb)− t′sb ≥ 0 for all b

m′
sb ≤ 1 for all b

Also, let S ′s,1(l, σ, v) denote the set of maximizers for the above program and

S ′s,0(l, σ, v) = arg max
σ0∈∆{in,out}

σ0v
′
s(in, l, σ, v).

Finally let S ′i(l, σ, v) = S ′i,0(l, σ, v)×S ′s,1(l, σ, v) and S ′(l, σ, v) =
∏

i S
′
i(l, σ, v). This

process defines a continuous function from Λ× Σ× V into V where (l, σ, v) 7→ v′i for

each i and defines an upper-hemi-continuous, convex compact valued correspondence

from Λ× Σ× V into V where (l, σ, v) 7→ S ′, by Berge’s Theorem of the Maximum.

However, we have defined an UHC correspondence (l, σ, v) 7→ (l′, S ′, v′). This

correspondence maps Λ×Σ×V into Λ×Σ×V , it is upper-hemi-continuous, compact,

and convex valued; thus by Kakutani’s theorem has a fixed point. This fixed point is

an equilibrium for the economy.
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