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Abstract: This paper studies games of public delegated common agency
under asymmetric information. Using tools from non-smooth analysis and op-
timal control, we derive best responses and equilibria under weak conditions
on schedules. At equilibrium, inefficiencies arise from two sources: inefficient
contracting by a given coalition of active principals and inefficient participa-
tion (insufficient activity) by principals. Particular attention is given to the
continuity of the equilibrium allocation and the characterization of the princi-
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independent economic interest: a lobbying game between conflicting interest
groups influencing the policy chosen by a political-decision maker and a game
of voluntary contributions for a public good by congruent principals.
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1 Introduction

Overview. This paper studies games of public delegated common agency under asym-

metric information. Consider several principals offering contributions to an agent who

produces a public good or takes a public decision on their behalf in a context where the

agent has private information on his cost of doing so. Under public common agency, the

agent’s decision is observable and contractible for all principals. They offer contributions
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which stipulate how much the agent should be paid for any possible decision he may take.

In a delegated common agency setting, the agent can select any subset of those offers and

then choose accordingly which decision to implement.1 We are interested in characterizing

equilibria of those games.

Thanks to earlier effort,2 much properties of public and delegated common agency

are by now known when there is complete (or symmetric but incomplete) information

on the agent’s preferences. The existing literature pointed out two important lines of

results. First, common agency games have efficient equilibria. Second, the principals’

contributions in those equilibria are “truthful”, i.e., they reflect the principals’ preferences

among alternatives. Intuitively, such a truthful schedule maximizes the payoff of any

bilateral coalition between the agent and the corresponding principal because the former

is made “residual claimant” for that coalition’s payoff. A lump-sum payment can then be

used to extract the agent’s surplus and leave him just indifferent between accepting that

principal’s contract and contracting only with all other remaining principals.

Under asymmetric information, contribution schedules not only serve to “pass” the

principals’ preferences onto the agent but they are also used as screening devices. Prin-

cipals elicit non-cooperatively the agent’s private information. When designing his best

response to others’ contributions, a given principal trades off bilateral efficiency for the

coalition he forms with the agent on the one hand and the information rent that the

agent withdraws from his private information on the other hand. This trade-off is of

course well-known from monopolistic screening environments.3 However, under delegated

common agency, it is modified in two important ways.

First, bilateral efficiency in a given principal-gent pair takes as given the other prin-

cipals’ contributions. Because of asymmetric information, those contributions are no

longer truthful but also distorted for incentive reasons. Hence, bilateral efficiency in a

given principal-agent pair is not enough to imply overall efficiency for the grand-coalition.

Second, the nature of the incentive distortion induced in any bilateral relationship

depends also on other principals’ offers. Indeed, when the agent refuses to deal with a

given principal but still contracts with others, he obtains a type-dependent reservation

payoff that affects contracting with that principal. Incentives whether to exaggerate or

underestimate his own type in that relationship depend now not only on how difficult

the agent finds it to please that principal but also on how such manipulations makes the

agent look easier to buy or not for that principal.

1This added possibility to select the set of principals whose offers are accepted distinguishes delegated
from intrinsic common agency. Intrinsic common agency is studied with more care in Martimort and Stole
(2009a). Public common agency should be distinguished from private common agency where different
principals contract on different specific variables under the agent’s control. See Martimort (2007) for a
definition of private and public common agency.

2Bernheim and Whinston (1986), Grossman and Helpman (1994), Dixit and al. (1997), Laussel and
Lebreton (1998, 2001), Chiesa and De Nicolo (2009) among others.

3Laffont and Martimort (2002).
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The broad objective of this paper is to study equilibrium contracts in such competitive

screening environments. Doing so, the analysis of public delegated agency games unveils

a whole set of new issues that cannot be addressed in complete information models.

How are the distortions induced by competing principals compounded at equilibrium?

Given that the equilibrium outcome is inefficient, can we predict the directions of those

distortions by simply looking at the principals’ preferences? What is the activity set

(i.e. the subset of types targeted with positive contributions) of a given principal? Under

which circumstances do we have overlapping activity sets for different principals or instead

activity sets that remain split apart?

Motivating examples. To motivate our theoretical analysis and give an overview of

some of our findings, consider the following two archetypical examples.

Example 1: Lobbying competition. Two interest groups (principals) are willing to influ-

ence a decision-maker (the common agent) in a highly polarized environment. Principals

have conflicting preferences and want to shift the agent’s policy in opposite directions.

The decision-maker has private information on his bliss point. Our analysis predicts that

distortions move the equilibrium policy away from the status quo to favor the closest prin-

cipal in the ideological space. The equilibrium reflects the conflicting forces of competing

principals. A given interest group might secure exclusive influence on the decision-maker

when their preferences are close to each other. Instead, types with ideal points too far

away are too expensive to buy for an interest group. At equilibrium, interest groups

may have overlapping areas of influence with an agent having “intermediate preferences”

accepting both interest groups’ contributions and making policy compromises.

Example 2: Voluntary contributions for a public good. An agent who is privately informed

on his marginal cost of production produces a public good on behalf of two principals.

Those principals have congruent preferences since they both like more public good being

produced. They non-cooperatively offer contributions. Free-riding between those prin-

cipals takes two forms in that context. First, the principals’ marginal contributions are

less than their marginal valuations to extract more of the agent’s information rent. This

induces excessive downward distortions in output compared to a cooperative contracting.

Second, there might be limited participation with the weaker principal, i.e., the less eager

to contribute, eschewing any contribution when the agent is too inefficient.

Results. These two examples illustrate several findings of our more general analysis.

Compounding inefficiencies. For a given coalition of active principals, their non-cooperative

behavior implies excessive distortions compared to the cooperative outcome. The equi-

librium output compounds the incentive distortions that all principals induce. Whether

distortions sum up or somewhat cancel each other depends on whether principals have

congruent or conflicting preferences.

Non-truthful contributions. Contributions are no longer truthful under asymmetric infor-

mation. More precisely, a principal concerned by the agent’s incentives to exaggerate his
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type distorts downward his marginal contribution to make such manipulation less attrac-

tive. Instead, a principal who is more concerned by the agent’s incentives to underestimate

his type contributes more at the margin.

Activity sets. A given principal may find it too costly to offer contribution for certain

types. Indeed, inducing a change in the agent’s output requires giving him at least his

reservation payoff obtained when contracting with all other active principals. This might

be too costly compared with the corresponding efficiency gains that this principal may

enjoy. Inefficient representation often occurs which, again, stands in contrast with the

complete information environment. More generally, characterizing the principals’ activity

sets, i.e., the set of types who strictly gain from contracting with that principal, is a key

aspect of the analysis. Formally, this amounts to finding where the agent’s type-dependent

participation constraint binds for each principal’s best response. This is done by carefully

looking at necessary conditions for such best response.4 At a best response in a continuous

equilibrium, a “smooth-pasting” condition holds on boundaries of the principals’ activity

sets: contribution schedules are zero both in value and at the margin.

A particular attention is given to the case where principals have preferences which are

linear in the agent’s decision. Activity sets are then connected intervals. Contributions are

easily found and the equilibrium output satisfies simple and tractable modified Lindahl-

Samuelson conditions. In passing, this characterization shows existence of equilibria for

delegated common agency games in a class of significant environments.

Technical contribution. To characterize best responses and equilibria, we build on the

lessons of the literature on type-dependent participation constraints and broaden it in a

competitive screening environment.5 Under weaker technical conditions than those found

in the earlier literature and using tools from optimization in non-smooth analysis,6 we

derive conditions under which equilibrium outputs are continuous.

Organization of the paper. Section 2 reviews the literature. Section 3 presents our

model of delegated common agency under asymmetric information. Section 4 describes

the set of incentive feasible allocations for each principal (Section 4.1), discusses the

notion of activity sets (Section 4.2) and finally sets up the best-response problem of a

given principal as a generalized control problem in non-smooth analysis (Section 4.3).

Necessary and sufficient conditions for a best response are then derived in Section 5.

Strengthening those conditions, continuous equilibria are then characterized in Section

4This step is significantly more complex than in monopolistic screening environments. It is simplified
only when the modeler can figure out a priori the shape of activity sets. This task is made easy when
principals’ surpluses are linear in output as we shall see below.

5Lewis and Sappington (1989), Maggi and Rodriguez-Clare (1995), Stole (1995), Jullien (2000).
6For introductions and recent developments in the mathematical tools used in non-smooth analysis,

we refer to the seminal works by Clarke (1990), Loewen and Rockafellar (1997), Galbraith and Vinter
(1997) and Vinter (2000) among others. This part of our analysis is of general interest beyond the
characterization of best responses and may be of value for readers interested in principal-agent models
with type-dependent participation constraints.
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6. Section 7 illustrates our findings by deriving continuous equilibria for our lobbying

and public good examples where principals have monotonic preferences. Proofs are in an

Appendix.

2 Literature Review

The study of public delegated common agency games under asymmetric information has

been initiated in Martimort and Stole (2009b). Our focus there was on studying the con-

vergence properties of equilibrium sets as one gets closer to complete information. With

a sufficiently small uncertainty on types, all principals are always active on the whole

(but tiny) type space and the value of a careful study of activity sets as developed below

disappears. In other words, the only remaining inefficiency that arises for such delegated

agency games is due to non-cooperative screening behavior and not to insufficient par-

ticipation of some principals. Martimort and Stole (2009c) provided a general analysis

of competition with nonlinear prices under both delegated and intrinsic common agency

when manufacturers selling differentiated goods may choose to target only some subsets

of consumers. This earlier paper focused on the case of private contracting with each

principal having a specific screening variable (the output he sells to the agent).7 Here,

we are instead interested in public agency environments where all principals use the same

screening variable. A second difference is that, in Martimort and Stole (2009c), man-

ufacturers rank the agent’s types in the same way, with the agent having the highest

valuation for both goods being the most attractive for both manufacturers.8 Our analysis

below is more general and allows for principals having conflicting preferences over whose

agent’s type is their most preferred one. This is exemplified by our lobbying game. Biais,

Martimort and Rochet (2000) analyzed a model of competing market-makers on financial

markets with traders privately informed on their willingness to buy or sell assets in a

common value environment with private agency. Because of symmetry, all market-makers

have similar activity sets with a hole where traders having a limited valuation for trading

in either direction do not trade under asymmetric information.

3 The Model

Consider n principals Pi, indexed with the subscript i ∈ {1, .., n} = N . Those principals

offer contribution schedules to a common agent who chooses the level of a public good on

7Ivaldi and Martimort (1994) and Calzolari and Scarpa (2004) are earlier studies of delegated common
agency games with private contracting but they focused a priori on cases where all types are served.

8Mezetti (1997) provided a model with conflicting and differentiated principals but his focus was on
an intrinsic common agency setting, putting aside the complete characterization of the activity sets.
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their behalf.9 The feasible set of possible outputs is a closed interval Q ⊆ R. Let S be an

arbitrary coalition of principals in the power set 2N and let |S| be its cardinal.

3.1 Players and Preferences

Principal Pi’s preferences are quasi-linear and defined over the level of public good q ∈ Q
and the monetary payment made to the common agent ti ∈ R as:10

Vi(q, ti) = Si(q)− ti

where Si(·) is some gross surplus function Lipschitz-continuous on Q.

The agent A has also quasi-linear preferences given by:

U(q,
n∑

i=1

ti, θ) =
n∑

i=1

ti − θq + S0(q)

where again S0(·) is some gross surplus function, Lipschitz-continuous onQ. This function

captures the possibility that the agent might also enjoy or dislike the public good.11 The

agent’s marginal cost of producing the public good θ is, for simplicity, constant.12

3.2 Information

The agent has private information on the efficiency parameter θ. This type is drawn

from the set Θ = [θ, θ̄] according to a cumulative distribution F (θ) with an everywhere

positive, atomless and bounded density f(θ) = F ′(θ). The hazard rates R(θ) = F (θ)
f(θ)

and

T (θ) = 1−F (θ)
f(θ)

satisfy the following standard assumptions.13

Assumption 1 Monotone hazard rate properties: Ṙ(θ) > 0 > Ṫ (θ) ∀θ ∈ Θ.

9This public good can be viewed as a public infrastructure of variable size, or it might be given a more
abstract interpretation in terms of a policy variable which would affect all principals’ payoffs.

10Our model is general enough to encompass both the cases where a principal may dislike the public
good over some range and where different principals may have conflicting preferences on which level of
that public good should be chosen.

11At the cost of greater complexity, we could generalize preferences by introducing a type-dependent
shift parameter as follows:

U(q,
n∑

i=1

ti, θ) =
n∑

i=1

ti − θq + S0(q) + u0(θ).

The function u0(θ) is the agent’s type-dependent reservation payoff in the absence of any production of
the public good.

12The quantity θq is a genuine cost function defined on Q ⊆ R+ when the model applies in a public
good context. It might also be viewed as an opportunity cost of moving a public policy away from the
status quo in a lobbying model.

13Bagnoli and Bergstrom (2005).
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3.3 Benchmarks

A first-best optimal level of public good qFB(θ) is defined as:

qFB(θ) ∈ arg max
q∈Q

n∑
i=0

Si(q)− θq.

Assumption 2
∑n

i=0 Si(q)− θq is strictly concave in q on Q.

Strict concavity ensures that a solution to the complete information problem qFB(θ) exists

and is characterized, when interior, by means of first-order conditions.

n∑
i=0

S ′i(q
FB(θ)) = θ. (1)

For future reference, define the agent’s status quo payoff U0(θ) and optimal output

q0(θ) when principals do not contribute respectively as:14

U0(θ) = max
q∈Q

S0(q)− θq and q0(θ) ∈ arg max
q∈Q

S0(q)− θq.

When 0 ∈ Q and S0(0) ≥ 0, we have U0(θ) ≥ 0.

3.4 Strategy Spaces

The strategy space available to each principal is the set of non-negative contribution

schedules which are defined over the domain Q and upper semi-continuous, namely T =

{t : Q → R+ and u.s.c}.
We shall sometimes abuse slightly notations and denote the aggregate schedule offered

by all principals except Pi as t−i(q) =
∑

j 6=i tj(q).

3.5 Timing and Equilibrium

The delegated common agency game Γ =< (Vi(·))1≤i≤n, U(·), Θ, F (·) > unfolds as follows:

1. The agent learns his private information θ.

2. Principals offer non-cooperatively contributions to the agent. The agent can accept

any subset of those contributions.

3. The agent chooses how much to produce and receives accordingly the corresponding

payments from the contributing principals whose offers have been accepted.

14Assuming strict concavity of S0(·) ensures uniqueness of the maximizer. Otherwise, q0(θ) is an
arbitrary measurable selection in the correspondence.
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Γ is a public delegated common agency game since all principals observe and contract

on the publicly observable decision q and the agent can a priori choose any possible

set of offers. We look for pure strategy Perfect Bayesian equilibria with deterministic

mechanisms of Γ (in short equilibria) whose definition follows.

Definition 1 An equilibrium of Γ is a vector of contribution schedules, a set and an

output correspondences {(t̄i)1≤i≤n,S(θ|t), q0(·|t)}15 such that:

• Given any profile of contributions t ∈ T n, (S(θ|t), q0(θ|t)) consists of the set of principals

whose offers are accepted and an output which maximizes the agent’s payoff:

(S(θ|t), q0(θ|t)) ∈ arg max
q∈Q,S∈2N

∑
i∈S

ti(q)− θq + S0(q);

• t̄i maximizes principal Pi’s expected payoff given the other principals’ aggregate contri-

bution schedules t̄−i:

t̄i ∈ arg max
ti∈T

∫

Θ

(Si(q0(θ|ti, t̄−i))− ti(q0(θ|ti, t̄−i)))dF (θ).

It is straightforward to observe that the definition above can be slightly simplified.

Given that T contains only non-negative contributions, it is always weakly optimal for

the agent to accept all contributions (eventually choosing an output that is not rewarded

by a non-empty subset of inactive principals), i.e., S(θ|t) ≡ N in any continuation equi-

librium.16 To further simplify presentation, we will omit the dependence of the agent’s

output on the vector of contributions offered in continuation equilibria and denote by

q0(θ|t) ≡ q̄(θ) the equilibrium output.17

Remark 1 The agent can always refuse all contributions, choose the status quo output

q0(θ) and get payoff U0(θ) which represents his reservation payoff in any equilibrium.

4 Setting the Stage

4.1 Incentive Feasible Set

We now characterize the set of incentive feasible allocations available to principal Pi.

15Sometimes we refer below to those correspondences as a continuation equilibrium.
16Much of the interest of the analysis below comes from determining the set of principals who contribute

a positive amount for a given type of the agent.
17It is worth noticing that existence of a measurable selector from the non-empty compact values

correspondence arg maxq∈Q
∑

i∈S ti(q) − θq + S0(q) follows from the Measurable Maximum (Aliprantis
and Border, 1999, p. 570) when

∑
i∈S ti(q) is continuous and will be assumed otherwise.
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Definition 2 A rent/output profile (U(θ), q(θ)) is implementable by principal Pi under

delegated common agency when the aggregate contribution offered by all other principals

is t̄−i ∈ T if and only if there exists a contribution schedule ti ∈ T such that:

U(θ) = max
q∈Q

ti(q) + t̄−i(q)− θq + S0(q) and q(θ) ∈ arg max
q∈Q

ti(q) + t̄−i(q)− θq + S0(q).

Let define the information rent Ū−i(θ) and the optimal output (or at least a selection

within the best-response correspondence) q̄−i(θ) that an agent with type θ would choose

when not taking Pi’s contribution respectively as:

Ū−i(θ) = max
q∈Q

t̄−i(q)− θq + S0(q) and q̄−i(θ) ∈ arg max
q∈Q

t̄−i(q)− θq + S0(q).

The next Lemma follows from Definition 2:

Lemma 1 Given the non-negative aggregate contribution offered by all other principals

t̄−i ∈ T , a rent/output profile (U(θ), q(θ)) is implementable by principal Pi through a

contribution schedule ti ∈ T (with an aggregate ti + t̄−i contribution) if and only if

1. U(θ) is convex,

2. The agent is as least weakly better off accepting Pi’s offer

U(θ) ≥ Ū−i(θ) ∀θ ∈ Θ. (2)

Item [1.] in Lemma 1 implies that U(θ) is absolutely continuous, with q(θ) decreasing.

Moreover, both functions are a.e. differentiable with, at any differentiability point,

U̇(θ) = −q(θ) (3)

q̇(θ) ≤ 0. (4)

Item [1.] holds also for the rent/output profile (Ū−i(θ), q̄−i(θ)) since it is is itself imple-

mentable (when Pi offers a null contribution) and for the status quo profile (U0(θ), q0(θ)).
18

Because contributions are non-negative, the agent is always at least weakly better off

accepting all offers in the delegated common agency game under scrutiny and Item [2.]

holds. One important aspect of our analysis is nevertheless to determine precisely the

subset of types where the participation constraint (2) binds.

18This property is called “homogeneity” by Jullien (2000).
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4.2 Activity Sets

In this respect, let define the activity set Ωi of principal Pi as follows.

Definition 3 Principal Pi’s activity set is Ωi = {θ ∈ Θ| U(θ) > Ū−i(θ)}.

Pi’s contribution is necessarily positive on his activity set. Because with this definition,

activity sets are open it might be that, at a θi on the boundary of Ωi, Pi’s contribution

is not necessarily zero but yet (2) is binding. This would be the case when Pi “becomes”

an active principal with a positive transfer at some θi.

We refer to Ωc
i = Θ \ Ωi as the subset of types where the participation constraint (2)

binds. Ωi might be a finite collection of connected intervals Ωj
i , namely Ωi =

⋃
j∈J Ωj

i ,

(j ∈ J where J ⊂ N). We denote also the set of active principals at a given type θ and

its complement as respectively α(θ) = {i ∈ N| θ ∈ Ωi} and αc(θ) = N/α(θ). Finally,

let |α(θ)| be the cardinal of this set.

4.3 A Generalized Control Problem

Lemma 1 allows us to restate principal Pi’s optimization problem at a best response to

the aggregate schedule t̄−i offered by other principals as:

(Pi) : max
(U,q∈Q)

∫

Θ

(S0(q(θ))+Si(q(θ))+t̄−i(q(θ))−θq(θ)−U(θ))f(θ)dθ subject to (2), (3), (4).

Let denote now (Pr
i ) the relaxed problem obtained from (Pi) by omitting the second-

order condition (4). As standard in the screening literature, that latter condition will be

checked ex post on the output profile obtained at equilibrium by imposing Assumption 1

on the type distribution.

Introducing the auxiliary variable v(θ) = −q(θ), (3) can be written as:

U̇(θ) = v(θ) (5)

where v(θ) ∈ V = −Q. In the sequel, it is useful to define the extended-value Lagrangean

for (Pr
i ), possibly taking values in R

⋃{+∞}, as Li(θ, u, v) = L0(θ, u) + L1
i (θ, v) + ψV(v),

where L0(θ, u) = uf(θ), L1
i (θ, u, v) = −(S0(−v) + Si(−v) + t̄−i(−v) + θv)f(θ) and ψC(·)

denotes the indicator function of a given set C, namely ψC(q) =

{
0 if q ∈ C

+∞ otherwise.

Using more compact notations borrowed from recent developments in non-smooth

analysis,19 (Pr
i ) can be expressed as the following minimization of a generalized Bolza

problem over the class of absolutely continuous arcs U(·):

(Pr
i ) : min

(U,v∈V)

∫

Θ

Li(θ, U(θ), v(θ))dθ subject to (2) and (5).

19Clarke (1990), Loewen and Rockafellar (1997), Galbraith and Vinter (1997), Vinter (2000), Vinter
and Zheng (1998).
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Definition 4 A minimizing process is a solution to (Pr
i ) (Ū , v̄) : Θ → R × V such that

Ū is absolutely continuous.

We shall be interested in non-trivial cases where such minimizer exists and denote ac-

cordingly by Vi > −∞ the value of (Pr
i ).

5 Optimality Conditions

We are now ready to characterize the solution to (Pr
i ) by means of optimal control tech-

niques. In the screening literature, the “state of the art” to solve problems like (Pr
i ) is

so far given by Jullien (2000). This paper studies screening models with type-dependent

participation constraints which are particularly relevant to study public contracting un-

der delegated agency. It characterizes solutions to such problems when the principal’s

objective is twice continuously differentiable, strictly concave in output, and participa-

tion constraints correspond to utility profiles that can themselves be implemented by a

contract.20 The second requirement certainly applies to our public delegated agency game

since the agent, when refusing the offer of a given principal, makes his choice optimally in

the remaining set of contracts which provides an implementable profile. Under common

agency, the first of this requirement is more problematic because it presumes a priori that

equilibrium tariffs are twice differentiable. This rules out jumps in contribution schedules

although such jumps could be found attractive by one principal to attract the agent’s ser-

vices and induce discontinuous changes in his output. In that respect, relaxing the degree

of smoothness in the data is necessary to have a more complete view of competing screen-

ing environments. Theorems 1 and 2 below dispense from such smoothness properties but

nevertheless provide necessary and sufficient conditions for optimality.

Necessary conditions. Those necessary conditions are actually quite similar to those

found in smoother environments.

Theorem 1 Let (Ū , v̄) be a minimizing process for (Pr
i ) with Vi < +∞.There exists a

non-negative measure µi(·) on Θ with supp µi ⊆ Ωc
i , and a µi− integrable function γi on

Θ such that the following necessary conditions are satisfied by the minimizer (Ū(θ), v̄(θ)):

1. ri(θ) = ri(θ̄) = 0 where

ri(θ
−) = F (θ)−

∫

[θ,θ)

γi(s)µi(ds) ∀θ ∈ (θ, θ) (6)

and ηi(θ) =
∫
[θ,θ)

γi(s)µi(ds) is piecewise absolutely continuous,

2. ri(θ
−)v̄(θ)− L1

i (θ, v̄(θ)) = maxv∈V{ri(θ
−)v − L1

i (θ, v)} a.e.,

20To be complete, Theorem 1 in Jullien (2000) assumes full separation of types (i.e., no bunching) also.
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3. γ(θ) ∈ {0, 1}, and γ(θ)(Ū(θ)− Ū−i(θ)) = 0 a.e..

Items [1.] characterizes how the costate variable for (3) evolves. Item [2.] tells us

that −q̄(θ) = ˙̄U(θ) = −v̄(θ) maximizes the Hamiltonian associated to (Pr
i ). Item [3.]

is a complementary slackness condition that establishes that ηi(θ) can only increase on

inactivity sets, possibly with upward jumps at points where the participation constraint

(2) starts being binding (the measure µi having then masses at those points). Inactivity

sets contribute thus to reduce ri(θ).

Altogether those conditions tell us that output distortions away from the first-best are

captured by means of a cumulative distribution function whose support is the inactivity

set of a given principal at his best response. Under delegated agency, each principal’s

best response is thus characterized by such a distribution and the equilibrium allocation

will compound the different distortions that different principals may induce. We shall

investigate this issue in mode details below.

Application. To illustrate the power of Theorem 1, we now check whether a given

allocation (Ũ(θ), q̃(θ)) that could be expected in some “putative” equilibrium of a lobbying

game fails to satisfy the necessary conditions for optimality.

Consider two competing interest groups (principals) with conflicting preferences S1(q) =

−S2(q) = q. The decision-maker (agent) has some ideal policy he would like to pursue

in the absence of any lobbying. To model this, we assume that S0(q) = − q2

2
where

q ∈ Q = [−Q̄, Q̄] with Q̄ being large enough to avoid corner solutions. Assume also that

θ is uniformly distributed over [−δ, δ] with δ < 1. The agent’s bliss point is located at

q0(θ) = −θ with the corresponding payoff U0(θ) = θ2

2
.21

The nature of the principals’ conflicting preferences suggests that we may be able to

construct a “putative” equilibrium with fierce “head-to-head” competition for the agent’s

services. Indeed principal P1 enjoys higher policies and is ready to cajole types closer to

−δ since they find it more attractive to move up policy. This is the reverse for principal

P2 who prefers types closer to δ. Let us construct such “candidate equilibrium”.

Consider thus the following (symmetric) contribution schedules

t̄1(q) =

{
5
4
(1− δ)2 + 1−δ

2
q + 1

4
q2 if q ≥ 1− δ

0 otherwise
and t̄2(q) = t̄1(−q). (7)

Those contributions altogether implement a decreasing policy q̃(θ) such that:

q̃(θ) =

{
q̄1(θ) = 1− δ − 2θ if θ ∈ [−δ, 0)

q̄2(θ) = −1 + δ − 2θ if θ ∈ (0, δ].
(8)

21Since principals are symmetrically biased in opposite directions, they would just agree on letting the
agent choose his status quo policy had they cooperated.
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This policy is discontinuous at θ = 0, with that type being indifferent between choosing

q̄(0−) = 1 − δ > 0 and q̄(0+) = −1 + δ < 0. Finally, the agent’s information rent is

everywhere greater than his status quo payoff:

Ũ(θ) =
3

2
(1− δ)2 + (1− δ)|θ|+ θ2 > U0(θ) ∀θ ∈ Θ. (9)

Had the agent taken only principal P2’s contribution, he would obtain a rent Ū2(θ) and

choose a policy q̄2(θ)) such that

Ū2(θ) = max
q

{
t̄2(q)− θq − q2

2

}
= max

{
θ2

2
, max
q≤−1+δ

{
5

4
(1− δ)2 − 1− δ + 2θ

2
q − 1

4
q2

}}

where the maximand on the right-hand side is achieved for q̄2(θ) = −1 + δ − 2θ. Hence,

we find Ū2(θ) = 3
2
(1− δ)2 + (1− δ)θ + θ2 with ˙̄U2(θ) = −q̄2(θ) = 1− δ + 2θ ≥ 0.

With those contributions, the principals’ activity sets are respectively Ω1 = [−δ, 0)

and Ω2 = (0, δ] so that interest groups split the type space with the agent accepting only

the contribution of one principal at once. On his own activity set, each principal behaves

as a monopoly and the policy q̄i(θ) are those that would be offered in the absence of a

competing group. Schedules differ with respect to such exclusive contracting environment

because principals bid up for the services of the marginal agent located at 0. The discon-

tinuity in t̄2(q) at q̄2(0) = 1−δ is indeed chosen so that principal P1 is indifferent between

inducing his “monopoly” policy q̄1(0) = −1 + δ from that type and compensating this

agent for the extra payment he would get from P2 when choosing q̄2(0).

We now check that the allocation (Ũ(θ), q̃(θ)) in this “putative” equilibrium does not

satisfy the necessary conditions in Theorem 1. This shows that such discontinuous jumps

at 0 cannot arise.

Fix P2’s offer t̄2(q) and let us define the nonlinear part of P1’s Lagrangean L1
1(θ, v) as

L1
1(θ, v) =

1

2δ

(
v2

2
+ (1− θ)v − t̄2(−v)

)
=





1
2δ

(
v2

2
+ (1− θ)v

)
if v < 1− δ

1
2δ

(
v2

4
+ 1+δ−2θ

2
v − 5

4
(1− δ)2

)
if v ≥ 1− δ.

.

The discontinuity of t̄2(q) at q̄2(0) introduces a non-convexity in L1
1(θ, v). (Indeed, note

that L1
1(θ, (1− δ)+) < L1

1(θ, (1− δ)−). The convexification22 co{L1
1}(θ, v) of L1

1(θ, v) with

respect to v is made of three different pieces with a linear part joining two parabolas.23

Hence, we get the following expression of co{L1
1}(θ, v)

co{L1
1}(θ, v) =





1
2δ

(
v2

2
+ (1− θ)v

)
if v ≤ −1 + δ

δ−θ
2δ

(v − 1 + δ) if −1 + δ ≤ v ≤ 1− δ
1
2δ

(
v2

4
+ 1+δ−2θ

2
v − 5

4
(1− δ)2

)
if v ≥ 1− δ.

21Note in particular that Ū2(·) is increasing in the neighborhood of θ = 0 since 1 > δ.
22Take any function f : Rn → R

⋃{+∞} and define the convex envelope of f as co{f} :
Rn → R

⋃{+∞}: co{f}(x) = minαi≥0,
P

i∈I αi=1,xi∈Rn

{∑
i∈I αif(xi)| x =

∑
i∈I αif(xi)

}
=

minα≥0,(x1,x2)∈Rn×Rn{αf(x1)+(1−α)f(x2)} where the last equality follows from Caratheodory Theorem
(Rockafellar and Wets, 2004, Theorem 2.29).

23Indeed, straightforward computations show that L1
1(θ, 1− δ) = L1

1(θ,−1+ δ)+ δ−θ
2δ (1− δ− (−1+ δ)).
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In particular, we have ∂vco{L1
1}(θ, 1− δ) =

[
δ−θ
2δ

, 1−θ
2δ

] 6= ∅.
Consider r1(θ) = θ+δ

2δ
for θ ∈ [−δ, δ) with µ1 putting mass 1 at δ only which corresponds

to the case where the participation constraint (2) is binding only at δ. This r1 is chosen

at a best response by P1 to the scheme t̄2(q). First, notice that r1(0) = 1
2

so that, from

Item [2.] in Theorem 1, principal P1 is indifferent between q̄(0−) and q̄(0+), exactly

as the agent with type 0 is. (These indifferences are obviously necessary requirements

for any equilibrium having an output discontinuity at type 0.) More generally, we have

r1(θ
−) ∈ ∂vco{L1

1}(θ, 1− δ) for θ ∈ [
0, 1−δ

2

]
(with equality only at θ = 0) which indicates

that, at a best response for P1, v̄(θ) = −q̄(θ) = 1 − δ for such θ ∈ [
0, min

{
1−δ
2

, δ
}]

.

For δ ∈ [
1
3
, 1

]
, the interval

[
1−δ
2

, δ
]

is non-empty and, for θ in that interval, we have

r1(θ
−) =

∂L1
1

∂v
(θ, v̄(θ)), or put differently, q̄(θ) = 1−δ−4θ. For θ ∈ [−δ, 0] instead, we have

r1(θ
−) = ∂vco{L1

1}(θ, v̄1(θ)), i.e., q̄(θ) = q̄1(θ). The corresponding profile (Ū(θ), q̄(θ))

is obviously distinct from (Ũ(θ), q̃(θ)). This shows that our “putative” equilibrium fails

indeed to be an equilibrium.

Intuitively, P1’s best response to the offer t̄2(q) induces always a significant amount

of bunching on the “corner” of t̄2(q). Indeed, with the “symmetric” contribution t̄1(q)

assumed in our “putative equilibrium”, principal P1 could not target types too far away

in the policy space and this is suboptimal. Instead, P1 prefers to pay types slightly above

zero a bit more to convince them to stick on a policy q̄2(0) = 1 − δ which, although on

the other side of the policy spectrum, is preferable from P1’s viewpoint than any policy

q̄2(θ) which is even further away.

Further properties. Theorem1 is of general interest for screening problems with type-

dependent participation constraints but it does not exploit all the structure of our envi-

ronment. Finer properties can be obtained once one realizes that reservation payoffs are

themselves implementable.

Proposition 1 ri(θ) is continuous and µi has no mass point at any θ ∈ (θ, θ̄).

From Proposition 1, an output discontinuity, if any in the interior of the type space,

cannot be due to jumps of the costate variable when reaching the boundary of an activity

set. This limits the investigation of such discontinuity as coming from a lack of strict

convexity of the Lagrangeans. Next section elaborates further on this issue and the

Application above brings some complementary intuition. This example shows that there

cannot be a best-response with a discontinuity at a boundary of the activity set; a principal

would prefer to make a subset of types of the agent bunch on that discontinuity.

Sufficient conditions. We now adapt Arrow’s sufficiency theorem for non-smooth prob-

lems like (Pr
i ). This theorem relies heavily on the concavity (actually linearity) in U of

the maximized Hamiltonian for (Pr
i ).

Theorem 2 Consider any (Ū , v̄) with a ri which altogether satisfy the necessary condi-

tions [1.] to [3.] in Theorem 1. Then, (Ū , v̄) solves (Pr
i ).
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This Theorem is important because it allows us to check only a few conditions to

assess whether a candidate allocation is a best response for a given principal, and beyond

an equilibrium. This technique is illustrated in Section 7 below.

6 Continuous Equilibria

We provide below a condition, weaker than those in Jullien (2000), which ensures continu-

ity of the equilibrium output. The features of the corresponding equilibria are developed

in the specific context of Section 7. We first state the following condition:

Condition 1 Convexity. L1
i (θ, v) is finite valued, continuously differentiable in v, and

there exists a constant K > 0 such that:

|∇vL
1
i (θ, v1)−∇vL

1
i (θ, v2)| ≥ K|v1 − v2| ∀(v1, v2) ∈ V2.

Condition 1 imposes a minimal amount of convexity on Lagrangean. It will be satisfied

in the examples of continuous equilibria in Section 7 below as it can be easily checked.

Contrary to the requirements in Jullien (2000), Condition 1 imposes only that the La-

grangean is continuously differentiable once. The degree of smoothness that is implicitly

put on equilibrium schedules here is thus a priori less stringent.24

Theorem 3 Assume that Condition 1 holds and (Ū , v̄) is a minimizing process for (Pr
i )

with Vi < +∞ that satisfies (2) and (5). Then, q̄(θ) is continuous.

To ensure continuity of the equilibrium output one must not only look carefully to

principal Pi’s objective function (Condition 1) but also avoid mass points in the measure

µi. Such singularity could induce discontinuity in the equilibrium output at a boundary

point of this principal’s activity set. This absence of singularity comes from the fact that

Ū−i(θ) is itself an implementable profile as shown in Proposition 1.

Continuity of q̄(θ) implies that whenever the type-participation constraint (2) starts

being binding at an interior point of Θ, it does so in a smooth-pasting way. Both Ū(θ) =

Ū−i(θ) and ˙̄U(θ) = ˙̄U−i(θ) ⇔ q̄(θ) = q̄−i(θ) at any θ not only in the interior but also

on the boundary of Ωc
i if such boundary lies in the interior of Θ. As we shall see now,

smooth-pasting has strong implications on the shape of equilibrium contributions close to

the boundaries of activity sets.

We are now interested in deriving various properties of those continuous equilibria.

Output. Altogether Theorems 1 and 3 provide limited information on possible output

distortions because they characterize only best responses and not yet equilibrium output.

24At equilibrium, the continuity of the solution will feed back on the property of the data of each
principal’s problem and ensure that those data are in fact continuously differentiable since equilibrium
contributions turn out to be so. Schedules are not assumed a priori to be twice continuously differentiable.
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To be more explicit, we must account for how output distortions induced by different

principals are compounded altogether. Next Theorem goes in that direction.

Theorem 4 Suppose that conditions of Theorem 3 and Assumption 1 are satisfied.

1. The equilibrium output q̄(θ) satisfies

S ′0(q̄(θ)) +
∑

i∈α(θ)

t̄
′
i(q̄(θ)) = θ. (10)

and

S ′0(q̄(θ)) +
∑

i∈α(θ)

S ′i(q̄(θ)) = θ +

∑
i∈α(θ) ri(θ)

f(θ)
(11)

where ri(θ) defined in Theorem 3 is continuous and constant over any connected

subset Ωj
i ⊆ Ωi (j ∈ J ) of principal Pi’s activity set.

2. The monotonicity condition (4) is satisfied a.e..

At a best-response, principal Pi implements an output which maximizes the virtual

surplus of his bilateral coalition with the agent. In doing so, this principal takes into ac-

count that the agent’s type θ must be replaced by his virtual efficiency parameter θ+ ri(θ)
f(θ)

capturing how incentive and participation constraints interact under informational asym-

metry. The presence of a type-dependent participation constraint affects this virtual type

through the term ηi(θ) =
∫
[θ,θ)

γi(s)µi(ds). This integral is a non-decreasing cumulative

distribution function which is constant on any interval where (2) is slack. Its derivative,

in the sense of distribution theory, is the costate variable for the type dependent partici-

pation constraint (2). For a continuous equilibrium, this derivative has no mass point in

the interior of the type space.

Intuitively, when an agent with type θ behaves like a less (resp. more) efficient type

θ + dθ (resp. θ − dθ), he produces the same amount at a lower cost but he also takes

into account how pretending being less (resp. more) efficient changes the payment that

Pi offers to induce participation.The case ri(θ) > 0 corresponds to settings where Pi finds

it more attractive to induce participation by the more efficient types. Instead, ri(θ) < 0

when Pi finds it more attractive to induce participation by the least efficient types.

At equilibrium, all the distortions induced by the active principals are compounded

altogether (equation (11)). The point is that not all distortions may go simultaneously in

the same direction and although ri(θ) may be positive for some principals it may instead

be negative with others. This will be illustrated by means of examples in Section 7 below.

Remark 2 Observe that q̄(θ) being strictly decreasing and continuous it admits an inverse

function, denoted thereafter by θ̄(q).
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Activity sets. Although Theorem 4 describes equilibrium outputs, it says little on

where activity sets stop and start. The difficulty comes from finding a priori from the

fundamental assumptions made on preferences and on the type distribution who are the

active principals on a given set. This is generally a hard task towards which, guided by

intuition, we devote some effort in Section 7. For the time being, let us simply investigate

some general properties of the inactivity set Ωc
i of a given principal Pi.

Proposition 2 Suppose that the conditions of Theorem 3 hold and that Ωc
i has a non-

empty interior Ωc
i . For any θ ∈ Ωc

i , we have:

S ′i(q̄−i(θ)) =
ri(θ)

f(θ)
(12)

where ri(θ) is defined in Theorem 1.

Condition (12) suggests an algorithm for finding out activity sets. Suppose that we

have already computed an equilibrium q̄n−1(θ) with n − 1 principals, say i ∈ {1, .., n −
1}. To find out principal Pn’s activity set it is enough to restrict to the subset of the

type space where d
dθ

(f(θ)S ′i(q̄n−1(θ))) − f(θ) > 0 since, from the monotonicity of ri(·),
d
dθ

(f(θ)S ′i(q̄n−1(θ))) − f(θ) ≤ 0 on any activity set. In a second step, one can use the

smooth-pasting conditions to get the shape of Pn’s contribution at any interior boundary

point of Ωi. Finally, we can reconstruct from there the rest of the schedule. This algorithm

can be particularly efficient with only two principals as illustrated in Section 7.

Contribution schedules. We now derive some properties of the contribution t̄i(·) that

principal Pi offers on any connected interval Ωj
i (j ∈ J ) of his activity set Ωi.

Proposition 3 Suppose that the conditions of Theorem 3 hold.

1. The equilibrium schedule t̄i(·) is strictly differentiable at any equilibrium point q̄(θ).

2. The following “smooth-pasting” conditions are satisfied by the best-response contri-

bution offered by principal Pi at any boundary point θ of his inactivity set Ωc
i :

t̄i(q̄(θ)) = t̄
′
i(q̄(θ)) = 0. (13)

3. The equilibrium marginal contribution for principal Pi satisfies on each connected

subset of activity Ωj
i :

t̄
′
i(q) = S ′i(q)−

F (θ̄(q))−M j
i

f(θ̄(q))
(14)

where M j
i =

∫ θj
i

θ
γi(θ)µi(dθ) ∈ [0, 1] is constant on each connected subset of activity

Ωj
i . Moreover M j

i increases with j.
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Under complete information, Bernheim and Whinston (1986) showed that the so-called

“truthful” schedules (ti(q) = max{0, Si(q) − Ci} for some Ci) sustain efficient outcomes

as equilibria. Those schedules are not smooth at q0 such that ti(q0) = 0 even though they

are locally convex around that point like the equilibrium schedules under asymmetric

information. With asymmetric information, the equilibrium schedule is much more con-

strained around any equilibrium point. Such schedule has now to go through equilibrium

points corresponding to nearby types. This “extra information” implies smooth-pasting.

Failure of continuity. Failure of having Condition 1 hold might generate output discon-

tinuities. Consider the following simple model of the provision of a discrete public good.

Suppose for instance that n = 2 with S0(q) = 0, Si(q) = siq with si > 0 for i = 1, 2 and

that θ is distributed on Θ = [0, 1]. The quantity of public good is now interpreted as a

probability (i.e. Q = [0, 1]). We assume also that s1 +s2 < 1 so that even under complete

information on cost, producing the public good is inefficient for the worst technologies.

Principals and their agent have linear surplus and cost functions and de facto the

equilibrium has a “bang-bang” structure: the agent produces the public good for sure if

and only if his cost is below some threshold.25 Contributions are nevertheless continuous.

Proposition 4 When Assumption 1 holds, there exists an equilibrium of the delegated

common agency game with the following features.

1. Equilibrium schedules are continuous and given by:

t̄i(q) = max

{
0, si − F (θ∗)

f(θ∗)

}
q, i = 1, 2 (15)

where θ∗ is the unique solution in [0, 1] to the equation

2∑
i=1

max

{
0, si − F (θ∗)

f(θ∗)

}
= θ∗. (16)

2. The probability of producing the public good is:

q̄(θ) =

{
1 if θ ∈ [0, θ∗]

0 otherwise.
(17)

7 Applications: Monotonic Equilibria

We now show how simple economic settings give rise to different patterns of equilibria and

activity sets. Beyond, those examples also illustrate a few basic principles of delegated

common agency models. Principles 1 and 2 below are indeed of interest in themselves as

guides for readers interested in applying our methodology to other specific contexts.

25A similar model with a bang-bang structure has been studied by Lebreton and Salanié (2003) in a
lobbying context although the equilibrium is implemented with discontinuous payments as well: lobbyists
(principals) contributing only if the decision-maker (their agent) is choosing the policy they prefer.
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7.1 Generalities

To classify the different patterns of activity sets that may arise in an equilibrium, it is

useful to restrict attention to settings in which each principal’s preference ordering over Q
is monotonic: Si(·) is either nondecreasing or nonincreasing. This allows us to categorize

principals by the direction of their preferences. Between any pair of principals, {i, j},
whose orderings are either both nondecreasing or both nonincreasing, we say preferences

are congruent. If the preferences between any pair of principals are not congruent, we will

denote them as conflicting.

With the assumption that principal preferences are monotonic, a natural focus is on

equilibria in which each principal offers a monotone contract ordered in the same direction

as the principal’s preferences over Q.

Definition 5 An equilibrium is monotonic if each for each i, ti(·) is nondecreasing (resp.,

nonincreasing) if Si(·) is nondecreasing (resp., nonincreasing).

It follows that in any monotone equilibrium, either Ωi = [θ, θi) or Ωi = (θi, θ̄] for

all i ∈ N . If Principals Pi and Pj have conflicting objectives, then Ωi = (θi, θ̄] and

Ωj = [θ, θj);
26 if their preferences are congruent, then Ωi = [θ, θi) and Ωj = [θ, θj).

27

Linear surplus functions. If one is ready to impose more structure on the principals’

preferences, the shape of activity sets, contribution schedules and equilibrium output can

be easily drawn from condition (12).

Proposition 5 Suppose that principals have linear preferences, i.e., Si(q) = siq for some

si. There exists a continuous equilibrium which is monotonic with the following features.

1. Principal Pi’s activity set is Ωi = [θ, θi) (resp. Ωi = (θi, θ̄i]) where si = R(θi) (resp.

si = −T (θi)) and ri(θ) = F (θ) (resp. ri(θ) = F (θ)− 1) if si > 0 (resp. si < 0).

2. The equilibrium output is continuous, montonically decreasing (with inverse θ̄(q))

and solves the modified Lindahl-Samuelson condition:

S ′0(q̄(θ)) +
∑
si≥0

max{0, si −R(θ)}+
∑
si<0

min{0, si + T (θ)} = θ. (18)

3. Principal Pi’s contribution schedule is:

t̄i(q) =

{∫ q

0
max{0, si −R(θ̄(x))}dx if si ≥ 0∫ q

0
min{0, si + T (θ̄(x))}dx if si < 0.

(19)

26This is without loss of generality given that we may permute subscripts for principals.
27Alternatively, principals may also be congruent when Ωi = (θi, θ̄] and Ωj = (θj , θ̄], i.e., both principals

find it more attractive to contract with the least efficient types.
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Condition (19) shows that principals who enjoy the public good contribute at the

margin a positive (or null) amount. However, this marginal contribution is less than their

own marginal valuation with a discount being the hazard rate R(θ). Principals who dislike

the public good contribute at the margin a negative (or null) amount but less (in absolute

values) than their marginal valuations with a discount being now a hazard rate T (θ).

Summing those marginal contributions yields the modified Lindahl Samuelson condition

in this common agency context.

Finally, Proposition 5 provides a simple proof of the existence of equilibria in public

delegated common agency games which applies to large set of circumstances of economic

interest as Sections 7.2 and 7.3 will illustrate.

Propositions 6 and 7 below illustrate further how the forces of competing principals can

be combined to determine the overall equilibrium output distortion either with conflicting

or congruent principals.

7.2 Lobbying for a Public Policy

Let us come back to the lobbying setting described in Section 5. Continuous equilibria

exist in that framework as shown now.

Proposition 6 Assume that δ < 1. There exists an equilibrium of the lobbying game

with the following features.

1. The equilibrium policy q̄(θ) is continuous, decreasing in θ and satisfies





q̄(θ) =





q∗1(θ) = 1− δ − 2θ for θ ∈ [−δ,−1 + δ)

−3θ for θ ∈ [−1 + δ, 1− δ]

q∗2(θ) = −1 + δ − 2θ for θ ∈ (1− δ, δ]

if δ ≥ 1
2

q̄(θ) = −3θ if δ ≤ 1
2

with an inverse function defined as





θ̄(q) =





1
2
(1− δ − q) if 3(1− δ) ≤ q

− q
3

if 3(1− δ) ≥ q ≥ 3(δ − 1)
1
2
(−1 + δ − q) if q ≤ 3(δ − 1)

if δ ≥ 1
2

θ̄(q) = − q
3

if δ ≤ 1
2
.

2. Activity sets are Ω1 = [−δ, 1 − δ) and Ω2 = (−1 + δ, δ] when δ ≥ 1
2

or there is full

coverage by both principals when δ ≤ 1
2
.

3. The principals’ contributions are given by

t̄1(q) =

{∫ q

−3(1−δ)
max{0, (1− δ − θ̄(x))}dx and t̄2(q) = t̄1(−q) if δ ≥ 1

2

(1− δ)q + q2

6
+ 3

4
− 3

2
δ2; t̄2(q) = t̄1(−q) if δ ≤ 1

2
.

(20)
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When there is enough uncertainty on the agent’s type, i.e., δ ≥ 1
2
, each principal can

secure himself an area of influence where he deals exclusively with the agent. This area is

a neighborhood of the “most-preferred” type of the agent from that principal’s viewpoint.

For instance, that area for principal P1 contains type −δ which is the most eager to push

policies up. Instead, in the middle of the type space, both principal do contribute and

maintain overlapping areas of influence. Principals stop contributing for types which are

too “far away” on the other side of the type space.

Figure 1 describes the equilibrium policy in that case.

Figure 1: Policy in the continuous equilibrium of the lobbying game δ ≥ 1
2
.

Of course, as there is less uncertainty on the agent’s type, i.e., δ ≤ 1
2
, the area where

principals have overlapping influence covers now the whole type space. The equilibrium

policy reflects then the preferences of both principals which each offering a positive con-

tribution everywhere even though they want to push policies in opposite directions.28,29

28For more general results along those lines and further classifications of the patterns of contributions
in a lobbying game, we refer to Martimort and Semenov (2008). That latter paper did not derive the
continuity of equilibrium output as we do here and focused on different objective functions.

29As δ decreases to zero, the continuous equilibrium above converges towards an allocation where
the agent located at 0 chooses q̄(0) = 0, getting payoff Ū(0) = 3

2 . Contributions converge towards
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Again this lobbying model shows a double failure of the Coase Theorem under asym-

metric information. First, policy is inefficient even if all interest groups contribute. Sec-

ond, some interest groups may fail to be represented.

Principle 1 In a lobbying game under asymmetric information, common agency induces

inefficient policy choices and inefficient representation of active interest groups with some

groups possibly securing unchallenged influence for some subset of the type space.

7.3 Voluntary Provision of a Public Good

Suppose that principals have valuations for a public good given by Si(q) = siq for all q ∈
Q = [0, Q̄] with si > 0 (i = 1, 2). We assume that S0(q) = − q2

2
so that q0(θ) = U0(θ) ≡ 0

and that θ is uniformly distributed on Θ = [0, θ̄]. Finally, principals are ordered in terms

of their marginal valuations for the public good and we refer to P2 (resp. P1) as the

strong principal (resp. weak principal), with the extra technical assumptions s2 > 2s1 and

s2 < 2θ̄ that reduce the number of cases under scrutiny.

Had both principals cooperated in designing their contributions, the optimal coopera-

tive output under asymmetric information qC(θ) would be given by:30

qC(θ) = max

{
0,

(
2∑

i=1

si

)
− 2θ

}
. (21)

This decision corresponds to the modified Samuelson condition where the optimal level

of public good (when positive) is such that the sum of marginal valuations s1 + s2 is just

equal to the agent’s virtual cost θ + F (θ)
f(θ)

= 2θ.

Let define the stand-alone output that principal Pi would implement when contracting

alone with the privately informed agent as:

q∗i (θ) = max {0, si − 2θ} . (22)

Both qC(θ) and q∗i (θ) (i = 1, 2) are non-increasing and q∗1(θ) ≤ q∗2(θ) ∀θ ∈ Θ.

Denote also by qI(θ) the non-increasing output schedule such that:

qI(θ) = max

{
0,

2∑
i=1

si − 3θ

}
. (23)

This output schedule is the solution to the intrinsic common agency game where the agent

has only the choice of accepting both offers or none, i.e., the participation constraint which

t̄1(q) = q+ q2

6 + 3
4 and t̄2(q) = t̄1(−q). Those contributions form an equilibrium of the complete information

game. Clearly, those contributions are not “truthful” in the sense of Bernheim and Whinston (1986)
although they implement the same allocation as the “truthful” ones that would be defined as ttr1 (q) = q
and ttr2 (q) = ttr1 (−q). See Martimort and Stole (2009b) for more results on the limits of equilibria of
asymmetric information games as uncertainty converges towards zero.

30The proof is standard and thus omitted.
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is the same for both principals is U(θ) ≥ 0 for all θ ∈ Θ.31 In particular, this output

schedule entails a double distortion familiar from the intrinsic common agency literature

and we get qI(θ) ≤ qC(θ) with equality only at θ = 0.32 This hypothetical intrinsic setting

allows to focus on one kind of distortions only, those that arise through non-cooperative

contracting taking as given the set of active principals. The next proposition gives instead

more attention to the inefficiency that comes from insufficient participation of principals.

Those inefficiencies are specific to the delegated contracting setting.

Proposition 7 There exists an equilibrium of the delegated common agency game with

the following features.

1. The equilibrium output q̄(θ) is continuous, decreasing in θ and satisfies

q̄(θ) =

{
qI(θ) if θ ∈ [0, s1]

q∗2(θ) otherwise

with an inverse function defined as

θ̄(q) =

{
1
3
(
∑2

i=1 si − q) if s2 − 2s1 ≤ q

max
{
0, 1

2
(s2 − q)

}
otherwise.

2. Activity sets are Ω1 = [θ, s1) and Ω2 =
[
θ, s2

2

)
with Ω1 ⊂ Ω2 ⊂ Θ.

3. Equilibrium contributions are piecewise quadratic, continuously differentiable with

t̄1(q) =

{∫ q

s2−2s1
(s1 − θ̄(x))dx if s2 − 2s1 ≤ q

0 otherwise
and t̄2(q) =

∫ q

0

(s2− θ̄(x))dx. (24)

Several remarks are in order. First, the equilibrium output in the delegated common

agency game is always greater than in the intrinsic game. This captures the fact that the

non-zero participation constraints under delegated agency force principals to give more

rent than under intrinsic agency, raising thereby equilibrium output.

Second, the weak principal does not reward the agent for levels of output which are

small enough. Indeed, only the strong principal does so. Not all principals contribute

under asymmetric information, only those who are able to pay the corresponding agency

cost do so. As a result, the equilibrium output reflects the existing set of active principals.

More precisely, this equilibrium is obtained by piecing together the contribution that the

strong principal would offer alone for the least efficient types with an intrinsic equilibrium

allocation that would arise when both principals find it worth to contribute, i.e., for

the most efficient types. Smooth-pasting at the threshold type s1 allows to recover the

analytical expressions of contributions beyond that point.

31Martimort and Stole (2009a).
32Note of course that qI(0) > q∗2(0) > q∗1(0). The grand-coalition made of both principals and the agent

produces always more than any simple bilateral coalition between one of those principals and the agent
when the latter produces at zero cost.
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Figure 2: Output in the public good game.

Third, free-riding comes at two levels here. On the one hand, for the most efficient

types, (i.e., if the marginal cost is small enough), both principals contribute but the

equilibrium output is lower than if they were cooperating (qI(θ) ≤ qC(θ) at all θ). This is

so because each principal reduces his marginal contribution below his marginal valuation

for the public good without internalizing the fact that the other principal does so as well.

On the other hand, under asymmetric information, the set of active contributors may be

a strict subset of what it would be under complete information. This arises for the least

efficient types for which the weak principal finds it optimal to stop contributing.

This double failure of the Coase Theorem under asymmetric information is a crucial

finding that we state in a less formal way below:

Principle 2 In a game of voluntary contributions to a public good under asymmetric

information, decentralized bilateral contracting under the common agency institution in-

duces inefficiently low output and inefficient representation of active principals compared

with cooperative contracting.

Remark 3 The equilibrium output is not invariant with respect to redistributions of the

principals’ surplus such that the overall marginal surplus
∑2

i=1 si is kept fixed. Such redis-

tribution may indeed affect the set of active principals. This result is of course reminiscent

of the literature on voluntary contributions (Bergstrom, Blume and Varian 1986, among

others) although this literature obtains that result by making restriction in the set of in-

struments (fixed contributions instead of schedules) and assumes complete information.
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Appendix

Proof of Lemma 1. The proof is standard and is thus omitted.33

Proof of Theorem 1. We apply the necessary conditions for optimality of a min-

imizing process (Ū , v̄) for the state-constrained Maximum Principle (Theorem 10.2.1.

in Vinter (2000) or/and Theorem 3 in Vinter and Zheng (1998) when specialized to a

quasi-linear generalized Lagrangean like ours) when Vi < +∞. Checking that latter con-

dition is immediate. Observe indeed that the null contribution ti(q) ≡ 0 yields a payoff∫
Θ

Si(q̄−i(θ))dF (θ) = − ∫
Θ

Li(θ, Ū−i(θ),−q̄−i(θ)) > −∞ to principal Pi.

Assumptions. Theorem 10.2.1. in Vinter (2000) applies when conditions [a.] to [c.]

below are satisfied. We check those conditions.

[a.] Measurability and lower semi-continuity in (θ, v) of L1
i (·, ·). lower semi-continuity in

(θ, v) of L1
i (·, ·) follows from the fact that t̄−i is upper semi-continuous. Still by upper

semi-continuity the sets Iα = {v ∈ V| t̄−i(−v) < α} are open and thus measurable with

respect to the σ−field B of Borel subsets of V .34

33See for instance Champsaur and Rochet (1989) and Milgrom and Segal (2004) among others.
34Theorem 12, p. 61, in Royden (1988).
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[b.] Lipschitz continuity in u of Li(θ, ·, v) and boundedness of Li(θ, Ū , v). There exists

k(θ) such that:

|Li(θ, u
′, v)− Li(θ, u, v)| ≤ k(θ)|u′ − u|, (A1)

Li(θ, Ū(θ), v) ≥ −k(θ). (A2)

Observe that we have |Li(θ, u
′, v)− Li(θ, u, v)| = |f(θ)(u′ − u)| ≤ (maxθ∈Θ f(θ))|u′ −

u| so that Li(θ, ·, v) is Lipshitz continuous for any (θ, v) and (A1) holds for k(θ) ≥
(maxθ∈Θ f(θ)).

The requirement that Li(θ, Ū(θ), v) ≥ −k(θ) specializes in our context to k(θ) ≥
−f(θ)Ū(θ)− L1

i (θ, v) for all v ∈ V and a.e. θ ∈ Θ. Because f(θ) is bounded and L1
i (θ, ·)

is bounded below, the right-hand side is bounded for every θ ∈ Θ and an acceptable

k ∈ L1 exists that satisfies both (A1) and (A2). Take for instance

k(θ) = max

{
max
θ∈Θ

f(θ);

(
max
θ∈Θ

−f(θ)Ū(θ)−min
v∈V

L1
i (θ, v)

)}
.

[c.] Lipschitz condition on participation: The function u → hi(θ, u) = Ū−i(θ) − u is

Lipschitz continuous in u and lower semi-continuous in (θ, u). This is obviously the case

since Ū−i(θ) is absolutely continuous (see comments following Lemma 1).

Necessary conditions. Theorem 10.2.1 in Vinter (2000) shows then that there exist

an arc pi which is absolutely continuous on Θ, a non-negative real number λi ≥ 0, a

non-negative measure µi and a µi−integrable function γi on Θ such that the following

conditions hold:35

λi + ‖pi‖L∞ +

∫

Θ

µi(dθ) > 0. (A3)

ṗi(θ) ∈ co

{
η|

(
η, pi(θ) +

∫

[θ,θ)

γi(s)µi(ds),−λi

)
∈ Nepi(L(t,·,·))

(
Ū , v̄, L(θ, Ū , v̄)

)}
a.e.

(A4)

pi(θ) = pi(θ̄)−
∫

Θ

γi(s)µi(ds) = 0. (A5)

(
pi(θ)−

∫

[θ,θ)

γi(s)µi(ds)

)
v̄(θ)− λiLi(θ, Ū(θ), v̄(θ))

35Let us briefly add some useful notations. For f : Rn → R
⋃{+∞}, the epigraph of f is the set

epif ≡ {(x, α) ∈ Rn × R| α ≥ f(x)}. For a given set C ⊆ Rn, a vector v is normal to C at x̄ in
the regular sense if and only if 〈v, x − x̄〉 ≤ o(|x − x̄|) ∀x ∈ C. Let denote N̂C(x̄) that normal regular
cone and let NC(x̄) = lim supx→C x̄ N̂C(x) be the normal cone at x̄ obtained by taking limits. The
following definitions of normal subgradients, subgradients and limiting subgradients are also used in the
sequel ∂̂f(x̄) = {v|(v,−1) ∈ N̂epif (x̄, f(x̄))}, ∂f(x̄) = {v|(v,−1) ∈ Nepif (x̄, f(x̄))}, ∂∞f(x̄) = {v|(v, 0) ∈
Nepif (x̄, f(x̄))}, ∂>

x h(θ, x̄) = co {ξ : ∃(θi, xi) → (θ, x̄) s.t. h(θi, xi) > 0 ∀i, ∇xh(θi, xi) → ξ} .
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= max
v∈R

(
pi(θ)−

∫

[θ,θ)

γi(s)µi(ds)

)
v − λiLi(θ, Ū(θ), v). (A6)

γi(θ) = −∂>hi(θ, Ū(θ) =

{
0 if hi(θ, Ū(θ)) < 0

1 if hi(θ, Ū(θ)) = 0.
(A7)

Transformation of those necessary conditions. Several remarks help us to rewrite

those necessary conditions and recover Items [1.] to [3.] in Theorem 1.

• Let ∂L1(θ, U̇) be the limiting subdifferential and let ∂∞L1(θ, U̇) be the asymptotic

limiting subdifferential. Following Rockafellar and Wets (Proposition 10.5), the

limiting normal cone of the epigraph of L(t, ·, ·) can be expressed as

Nepi(L(θ,·,·))
(
U, U̇ , L(θ, U, U̇)

)
=

{(ξf(θ), ξτ,−ξ) ∈ R3 | τ ∈ ∂L1(θ, U̇(θ)), ξ ≥ 0}
⋃
{(0, τ, 0) ∈ R3 | τ ∈ ∂∞L1(θ, U̇(θ))}.

Suppose that λi > 0, then

co

{
ξ |

(
ξ, p(θ)−

∫

[θ,θ)

γ(s)µ(ds),−λ

)
∈ Nepi(L(θ,·,·))

(
Ū , v̄, L(θ, Ū , v̄)

)}
= {λif(θ)}.

If instead λ = 0, then

co

{
ξ |

(
ξ, p(θ)−

∫

[θ,θ)

γ(s)µ(ds), 0

)
∈ Nepi(L(θ,·,·))

(
Ū , v̄, L(θ, Ū , v̄)

)}
= {0}.

Together, we may conclude that ṗ(θ) ∈ {λif(θ)} almost everywhere or, more simply,

ṗi(θ) = λif(θ) a.e. (A8)

Let us state the following definition:

Definition 6 The minimizing process (Ū , v̄) is a normal extremal when conditions

(A3) to (A7) above are obtained for λi > 0.

We are now ready to establish:

Lemma 2 A minimizing process (Ū , v̄) is a normal extremal.

Proof: From (A8) and (A5), we get:

pi(θ) = λiF (θ). (A9)

Then define

ri(θ
−) = λiF (θ)−

∫

[θ,θ)

γi(s)µi(ds). (A10)
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Suppose that λi = 0, then pi(θ) = 0 (thus ‖pi‖L∞ = 0) and ri(θ
−) = − ∫

[θ,θ)
γi(s)µi(ds).

Using (A5) yields ∫

Θ

γi(s)µi(ds) = 0 (A11)

where γi(s) = 1 on supp µi. Since µi is a measure, (A11) implies that this is a zero

measure (and thus
∫
Θ

µi(ds) = 0). Inserting the corresponding values of λi, ‖pi‖L∞

and
∫
Θ

µi(ds) = 0 yields a contradiction with (A3).

From Lemma 2, we may as well use the normalization that let ri(θ
−) be defined as

in (6) in which case (A9) becomes

pi(θ) = F (θ). (A12)

• Taking into account the expression of the extended-value Lagrangean Li(·), the

right-hand side of (A6) can be rewritten as:

max
v∈R

(
pi(θ)−

∫

[θ,θ)

γi(s)µi(ds)

)
v − λiL

1
i (θ, v)− L0(θ, Ū(θ))

= max
v∈V

ri(θ)v − L1
i (θ, v)− L0(θ, Ū(θ)). (A13)

Simplifying yields Item [2.] when taking the normalization λi = 1.

• From condition (A7), we deduce also that supp µi ⊆ Ωc
i . Moreover, this condition

implies the complementary slackness condition in Item [3.].

This ends the proof of the Theorem.

Further notations and properties. For further references used in the proofs below,

define first the Hamiltonian as:

Ĥi(θ, u, v, r) ≡ rv − Li(θ, u, v).

Define also the optimized or “pure” Hamiltonian Hi(θ, u, ·) : R→ R
⋃{+∞}, or Legendre-

Fenchel dual transform of Li(θ, u, ·), as:

Hi(θ, u, r) ≡ sup
v∈R

Ĥi(θ, u, v, r) = max
v∈V

{rv − L1
i (θ, v)} − L0(u). (A14)

That the maximum above is achieved follows from the compactness of V and the lower

semi-continuity of L1
i (θ, ·). Note also that Hi(θ, u, r) is convex in r and concave (ac-

tually linear) in u, closed and proper. Note that, by the Legendre-Fenchel Transform

Theorem,36 the biconjugate co {L1
i } (θ, v) of L1

i (θ, v) is convex, closed and proper and

epi {co {L1
i }} (θ, ·) = co{epiL1

i (θ, ·)}. Hence, we get:

co
{
L1

i

}
(θ, v) + L0(θ, u) ≡ max

r∈R
{rv −Hi(θ, u, r)}

36See Rockafellar and Wets (2004, p.474).
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and

Hi(θ, u, r) ≡ max
v∈R

{rv − co
{
L1

i

}
(θ, r)− L0(θ, u)} ≡ max

v∈R
{rv − L1

i (θ, v)− L0(θ, u)}

where the first and second equality follows from dualization and the last one is just the

definition of Hi(θ, u, r).

Item [2.] in Theorem 1 implies by the rules governing subdifferentials of convex func-

tions:
˙̄U(θ) = v̄(θ) = −q̄(θ) ∈ ∂rHi(θ, Ū(θ), ri(θ

−)) (A15)

and

ri(θ
−) ∈ ∂vco

{
L1

i

}
(θ, v̄(θ)). (A16)

Proof of Proposition 1. Fix θ ∈ Θ and observe that µi({θ}) = 0 if hi(θ, Ū(θ)) =

Ū−i(θ)− Ū(θ) < 0. Suppose on the other hand that hi(θ, Ū(θ)) = 0. Then, we get:

1

ε
(hi(θ + ε, Ū(θ + ε))− hi(θ, Ū(θ))) ≤ 0 ≤ 1

ε
(hi(θ, Ū(θ))− hi(θ − ε, Ū(θ − ε)).

Passing to the limit as ε ↓ 0 and taking into account the right- and left-hand side differ-

entiability of Ū−i(·) at any point θ yields:

˙̄U−i(θ
+)− v̄(θ+) ≤ 0 ≤ ˙̄U−i(θ

−)− v̄(θ−) or v̄(θ−) ≤ ˙̄U−i(θ
−) ≤ ˙̄U−i(θ

+) ≤ v̄(θ+) (A17)

where the inequality ˙̄U−i(θ
−) ≤ ˙̄U−i(θ

+) follows from the convexity of the implementable

profile Ū−i(·).
From (A15) and (A17), we get v̄(θ−) ∈ ∂pHi(θ, Ū(θ), ri(θ

−)) ≤ v̄(θ+) ∈ ∂pHi(θ, Ū(θ), ri(θ
+)).

Because, Hi(θ, Ū(θ), ·) is convex in r, we get ri(θ
−) ≤ ri(θ

+). Using (6), we obtain:

ri(θ
−)− ri(θ

+) = γi(θ)µi({θ}) ≤ 0. (A18)

Given that γi(θ) = 0 for θ ∈ Ωi, it follows that ri(·) is continuous at any such θ ∈ Ωi.

Consider now θ ∈ Ωc
i . We know then that γi(θ) = 1. Henceforth, (A18) implies

µi({θ}) = 0, i.e., µi has no atom (θ, θ̄), and ri(·) is continuous.

Proof of Theorem 2. We adapt the argument of Arrow’s sufficiency theorem using

the basic approach of Seirestad and Sydsaeter (1987) but relaxing their continuity and

smoothness assumptions. Let U be any admissible arc, i.e., absolutely continuous on Θ

and such that (2) and (5) hold. Define

∆i =

∫

Θ

(
Li(θ, U(θ), U̇(t))− Li(θ, Ū(θ), ˙̄U(θ))

)
dθ.

We will demonstrate that ∆i ≥ 0.
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Take ri(θ
−) as defined in (6). It follows that

∆i =

∫

Θ

(
Ĥi(θ, Ū(θ), ˙̄U(θ), ri(θ

−))− Ĥi(θ, U(θ), U̇(θ), ri(θ
−))

)
dt+

∫

Θ

ri(θ
−)·

(
U̇(θ)− ˙̄U(θ)

)
dθ.

By Item [2.] in Theorem 1, we have for any admissible arc U

Hi(θ, Ū(θ), ri(θ
−)) = Ĥi(θ, Ū(θ), ˙̄U(θ), ri(θ

−)) ≥ Ĥi(θ, U(θ), U̇(θ), ri(θ
−)).

From which we deduce

Ĥi(θ, Ū(θ), ˙̄U(θ), ri(θ
−))− Ĥi(θ, U(θ), U̇(θ), ri(θ

−)) ≥ Hi(θ, Ū(θ), ri(θ
−))−Hi(θ, U(θ), ri(θ

−))

= f(θ)(U(θ)− Ū(θ))

where the last equality follows from (A14).

Using (A12), we get:

∆ ≥
∫

Θ

ṗi(θ)
(
U(θ)− Ū(θ)

)
dθ +

∫

Θ

ri(θ
−)

(
U̇(θ)− ˙̄U(θ)

)
dθ.

Decomposing ri(θ
−) back into its absolutely-continuous component, pi(θ), and its possibly

discontinuous component, ηi(θ) ≡
∫
[S,θ)

γi(s)µi(ds), we can write

∆ ≥
∫

Θ

ṗi(θ)
(
U(θ)− Ū(θ)

)
dθ +

∫

Θ

p(θ)
(
U̇(θ)− ˙̄U(θ)

)
dθ −

∫

Θ

ηi(θ)
(
U̇(θ)− ˙̄U(θ)

)
dθ

=

∫

Θ

[
d

dθ

(
pi(θ)(U(θ)− Ū(θ)

)]
dθ −

∫

Θ

ηi(θ)
(
U̇(θ)− ˙̄U(θ)

)
dθ

= pi(θ̄)(U(θ̄)− Ū(θ̄))− pi(θ)(U(θ)− Ū(θ))−
∫

Θ

ηi(θ)
(
U̇(θ)− ˙̄U(θ)

)
dθ

= pi(θ̄)(U(θ̄)− Ū(θ̄))−
∫

Θ

ηi(θ)
(
U̇(θ)− ˙̄U(θ)

)
dθ (A19)

where the last equality follows from (A5).

We want to simplify the second term. Note that ηi(θ) may be discontinuous at a finite

number of points where (2) starts being binding (boundaries of activity sets). Denote

such interior points by τj ∈ (θ, θ̄), j = 1, . . . , k − 1, and set τk = θ̄ to allow for jumps on

the boundary at θ̄. Set τ0 = θ for notational ease, although no jump may occur at θ. We

denote the size of these upward jumps as

δj =

∫

[θ,τj ]

γi(s)µi(ds)−
∫

[θ,τj)

γi(s)µi(ds) = µi ({τj}) > 0,

where the inequality follows from the fact that µi is a non-negative measure and charges

a positive mass at such τj with also γi (τj) = 1 at such point from (A7). It follows that

we may write

∫

Θ

ηi(θ)
(
U̇(θ)− ˙̄U(θ)

)
dθ =

k−1∑
j=0

∫

[τj ,τj+1)

ηi(θ)
(
U̇(θ)− ˙̄U(θ)

)
dθ +

k∑
j=1

δj(U(τj)− Ū(τj)).
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Because ηi(θ) is continuously differentiable on each open set (τj, τj+1), we can integrate

by parts to obtain

∫

Θ

ηi(θ)
(
U̇(θ)− ˙̄U(θ)

)
dθ =

k−1∑
j=0

{[
ηi(θ)(U(θ)− Ū(θ))

]τj+1

τj
+ δj+1(U(τj+1)− Ū(τj+1))

}

−
k−1∑
j=0

∫

[τj ,τj+1)

γi(θ)
(
U(θ)− Ū(θ)

)
µi(dθ).

Simplifying, we get

∫

Θ

ηi(θ)
(
U̇(θ)− ˙̄U(θ)

)
dθ = ηi(θ̄)(U(θ̄)− Ū(θ̄)) +

k−1∑
j=0

δj+1(U(τj+1)− Ū(τj+1))

−
k−1∑
j=0

∫

[τj ,τj+1)

γi(θ)
(
U(θ)− Ū(θ)

)
µi(dθ).

Item [3.] in Theorem 1 implies that γi(θ)(U(θ)− Ū(θ)) = γi(θ)(U(θ)− Ū−i(θ) + Ū−i(θ)−
Ū(θ)) ≤ 0 for all θ. Thus,

∫

Θ

ηi(θ) ·
(
U̇(θ)− ˙̄U(θ)

)
dθ ≥ ηi(θ̄)(U(θ̄)− Ū(θ̄)) +

k−1∑
j=0

δj+1(U(τj+1)− Ū(τj+1)).

The necessary condition (A5) implies that pi(θ̄) + ηi(θ̄) + δθ̄ = 0. Thus,

∫

Θ

ηi(θ)
(
U̇(θ)− ˙̄U(θ)

)
dθ ≥ −pi(θ̄)(U(θ̄)− Ū(θ̄)) +

k−1∑
j=1

δj(U(τj)− Ū(τj)).

Because complementary slackness (Item [3.] in Theorem 1) requires γi(θ)(Ū(θ)−Ū−i(θ)) =

0 for θ a.e., it follows that at jump points (points at which µi is an atom with positive

mass), we must have Ū(τj) = Ū−i(τj). From the fact that U is admissible and satisfies

(2), it follows that U(τj) − Ū(τj) ≥ 0. Given δj < 0, we have δτj
(U(τj) − Ū(τj)) ≥ 0.

Thus, ∫

Θ

ηi(θ)
(
U̇(θ)− ˙̄U(θ)

)
dθ ≥ −pi(θ̄)(U(θ̄)− Ū(θ̄)).

Combining this result with the lower bound for ∆ in (A19) yields ∆ ≥ 0 as desired.

Proof of Theorem 3. To prove continuity of q̄(θ), we adapt the arguments in Galbraith

and Vinter (2004) to our strategic setting.

Lemma 3 The following properties hold:

[1.] For each (θ, u, r) ∈ Θ × R2, ∂rHi(θ, u, r) is single-valued, continuously differentiable

and ∂rHi(θ, u, r) = ∇rHi(θ, u, r);

[2.] Fix (θ, u), r → ∇rHi(θ, u, r) is locally Lipschitz continuous.
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Proof. By the representation of the subdifferential we have:

∂rHi(θ, u, r) =

{
ξ : rξ − Li(θ, u, ξ) = max

v∈V
rv − L1

i (θ, v)− L0(θ, u)

}
.

The max above is achieved because V is compact. Hence ∂rHi(θ, u, r) is non-empty.

Take now two triplets (θ, u, r) and (θ, u, r′) both in Θ×R2 and choose v and v′ such that

v ∈ ∂rHi(θ, u, r) and v′ ∈ ∂rHi(θ, u, r′). By the fundamental property of convex subdiffer-

entials (Rockafellar and Wets, 2004, p. 511), r ∈ ∂vL
1
i (θ, v) and r′ ∈ ∂vL

1
i (θ, v

′). By Con-

dition 1, ∂vL
1
i (θ, v) = ∇vL

1
i (θ, v) is continuously differentiable, we have: ∂vLi(θ, u, v) =

∇vL
1
i (θ, v) + NV(v) and ∂vLi(θ, v

′) = ∇vL
1
i (θ, v

′) + NV(v′) where NV(v) = {x|(v, x −
x̄) ≤ 0} (resp. NV(v′)) is the normal cone at v ∈ V (resp. v′). Therefore, we have

r = ∇vL
1
i (θ, v)+ e and r′ = ∇vL

1
i (θ, v

′)+ e′ where e ∈ NV(v) and e′ ∈ NV(v′). From this,

we deduce:

|r − r′||v − v′| = |∇vL
1
i (θ, v)−∇vL

1
i (θ, v

′) + e− e′||v − v′|

= (∇vL
1
i (θ, v)−∇vL

1
i (θ, v

′))(v − v′) + e(v − v′) + e′(v′ − v). (A20)

Because e ∈ NV(v) and e′ ∈ NV(v′), we have e(v − v′) ≥ 0 and e′(v′ − v) ≥ 0. Inserting

into (A20), we get:

|r − r′||v − v′| ≥ (∇vL
1
i (θ, v)−∇vL

1
i (θ, v

′))(v − v′) ≥ K|v − v′|2

and

|v − v′| = |∂rHi(θ, u, r)− ∂rHi(θ, u, r′)| ≤ 1

K
|r − r′|. (A21)

where the last but one equality follows from Condition 1.

From this, we immediately deduce that ∂rHi(θ, u, r) is single-valued (take r = r′

in the above inequality and observe that any pair (v, v′) ∈ ∂pHi(θ, u, r)2 is such that

v = v′), we thus denote ∂pHi(θ, u, r) = ∇rHi(θ, u, r). Inequality (A21) tells us also that

p → ∇rHi(θ, u, r) is locally Lipschitz continuous with Lipschitz modulus 1
K

.

From Lemma 3, the representation (A15), and condition (A5), we deduce that v̄(θ)

has left- and right-hand limits at all points θ ∈ Θ and one-sided limits at the end-points.

Finally, we deduce that Ū(θ) is Lipschitz continuous.

Lemma 4 v̄(θ) is continuous on Θ.

Proof. From the proof of Proposition 1, we know that v̄(θ−) = ∂rHi(θ, Ū(θ), ri(θ
−)) =

∇rHi(θ, Ū(θ), ri(θ
−)) ≤ v̄(θ+) ∈ ∂rHi(θ, Ū(θ), ri(θ

+)) = ∇rHi(θ, Ū(θ), ri(θ
+)) where

∂rHi(θ, Ū(θ), ri(θ
−)) = ∇rHi(θ, Ū(θ), ri(θ

−)) (resp. ∂rHi(θ, Ū(θ), ri(θ
+)) = ∇rHi(θ, Ū(θ), ri(θ

+)))

by Lemma 3 (Item [1.]). Because ri(·) is continuous (Proposition 1),

v̄(θ−) = ∇rHi(θ, Ū(θ), ri(θ)) = v̄(θ+)
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so that v̄(·) is continuous as well.

This ends the proof of Theorem 3.

Proof of Theorem 4. We first prove the following preliminary result.

Proposition 8 Under the assumptions of Theorem 3, in any pure strategy equilibrium

with deterministic mechanisms, the equilibrium output q̄(θ) satisfies ∀i ∈ N :

0 ∈ ∂qco
{
−W̃i

}
(q̄(θ), θ), (A22)

and

−co
{
−W̃i

}
(q̄(θ), θ) = W̃i(q̄(θ), θ) (A23)

where W̃i(q, θ) = S0(q) + Si(q) + t̄−i(q)−
(
θ + ri(θ)

f(θ)

)
q and ri(θ) is defined in Theorem 3.

Proof. Let first define a stochastic mechanism for principal Pi as a pair {ti(mi), µi(·|mi)}mi∈Mi

whereMi is an arbitrary message space for the agent to communicate with Pi. Condition-

ally on a message mi, such stochastic mechanism stipulates a payment ti(mi) to the agent

and recommends him to choose outputs according to the distribution function µi(·|mi)

whose support is included in Q.37 When Mi ≡ Θ, the stochastic mechanism is direct.

Denote by ∆T the corresponding strategy space of such direct stochastic mechanisms.38

Observe that, in any pure-strategy equilibrium with deterministic mechanisms, we

must have a.e. co {L1
i } (θ, v̄(θ)) = L1

i (θ, v̄(θ)). Suppose the contrary, then, by definition,

we have co {L1
i } (θ, v̄(θ)) < L1

i (θ, v̄(θ)) for a set I of non-zero measure of types θ. From

Caratheodory Theorem, there exists (v1(θ), v2(θ)) ∈ V2 and α(θ) ∈ (0, 1) such that v̄(θ) =

α(θ)v1(θ)+(1−α(θ))v2(θ). Consider now the new mechanism obtained by replacing for any

type θ ∈ I the deterministic mechanism implementing (Ū(θ), v̄(θ)) by a direct stochastic

mechanism that recommends to the agent to randomize between v1(θ) and v2(θ) with

probabilities α(θ) and 1− α(θ). This stochastic mechanism entails a payment

ti(θ) = Ū(θ)−θv̄(θ)−α(θ)(t̄−i(−v1(θ))+S0(−v1(θ))−(1−α(θ))(t̄−i(−v2(θ))+S0(−v2(θ)))).

On the complementary set Ic, the mechanism is unchanged and remains deterministic.

Incentive compatibility is preserved by definition since we have still U̇(θ) = v̄(θ) a.e. both

on I and Ic. This direct stochastic mechanism allows principal Pi to reach a payoff

∫

Θ

(
co

{
L1

i

}
(θ, v̄(θ)) + L0(Ū(θ)

)
dθ <

∫

Θ

(
L1

i (θ, v̄(θ)) + L0(Ū(θ)
)
dθ

37Because of quasi-linearity of the agent’s utility function, there is no value of using stochastic payments
for incentive reasons.

38Considering deviations within such larger strategy space might increase principal Pi’s payoff. We will
find below conditions so that such deviations are suboptimal in any equilibrium.
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since
∫

I
co {L1

i } (θ, v̄(θ))dθ <
∫

I
L1

i (θ, v̄(θ))dθ and
∫

Ic co {L1
i } (θ, v̄(θ))dθ =

∫
Ic L1

i (θ, v̄(θ))dθ.

This new mechanism would be a valuable deviation with respect to what that principal can

get with a deterministic mechanism. Therefore, this cannot arise in any pure equilibrium

with deterministic mechanisms and we get (A23).

Finally, (A22) follows from (A16).

Strict differentiability of t̄i(·) at equilibrium point.39 Because L1
i (θ, ·) is strictly

convex in v and continuously differentiable, −W̃i(q, θ) is also strictly convex in q, so that

co{−W̃i} = −W̃i and ∂q{−W̃i} = ∇q{−W̃i}. Condition (A22) can thus be rewritten as:

0 = ∂q

{
−

(
S0(q) + Si(q) + t̄−i(q)−

(
θ +

ri(θ)

f(θ)

)
q

}}
|q=q̄(θ)

= ∇q

{
−

(
S0(q) + Si(q) + t̄−i(q)−

(
θ +

ri(θ)

f(θ)

)
q

}}
|q=q̄(θ)

⇔ 0 = −S ′0(q̄(θ))− S ′i(q̄(θ)) + θ +
ri(θ)

f(θ)
+ ∂q(−t̄−i)(q̄(θ))

where the last equality comes from observing that h(θ, q) = −S0(q)−Si(q)+
(
θ + ri(θ)

f(θ)

)
q

is strictly differentiable in q and ∂q(h + g)(θ, q) = ∂qh(θ, q) + ∂qg(q) when h is strictly

differentiable in q and g = −t̄−i is lower semi-continuous since t̄−i ∈ T .40

The fact that L1
i (θ, ·) is finite, convex and continuously differentiable implies that

0 = ∂∞q

{
−

(
S0(q) + Si(q) + t̄−i(q)−

(
θ +

ri(θ)

f(θ)

)
q

}}
|q=q̄(θ)

which implies also that ∂∞q (−t̄−i)(q̄(θ)) = 0.41 Since −t̄−i is lower semi-continuous,

∂q(−t̄−i)(q̄(θ)) is a singleton and ∂∞q (−t̄−i)(q̄(θ)) = 0, −t̄−i is also strictly differentiable

at q̄(θ) and ∂q(−t̄−i)(q̄(θ)) = ∇q(−t̄−i)(q̄(θ)).
42

Turning now to the optimality condition of the agent’s problem, we must have:

0 = ∂q {− (S0(q)− θq + t̄i(q) + t̄−i(q))} |q=q̄(θ)

which, by an argument similar to one used above, implies also that ∂∞q (−t̄i)(q̄(θ)) = 0.43

Since −t̄i is lower semi-continuous, ∂q(−t̄i)(q̄(θ)) is a singleton and ∂∞q (−t̄i)(q̄(θ)) = 0,

−t̄i is also strictly differentiable at q̄(θ) and ∂q(−t̄i)(q̄(θ)) = ∇q(−t̄i)(q̄(θ)).

Conditions on equilibrium output. Condition (A22) can finally be rewritten as:

S ′0(q̄(θ)) + S ′i(q̄(θ)) + t̄′−i(q̄(θ)) = θ +
ri(θ)

f(θ)
. (A24)

39A function f : Rn → R
⋃{+∞} is strictly differentiable at a point x̄ if f(x̄) is finite and there

exists a vector v, which is the gradient ∇f(x̄) such that f(x′) = f(x̄) + 〈v, x′ − x̄〉+ o(|x′ − x̄|).
40Rockafellar and Wets (2004, Exercice 10.10).
41Rockafellar and Wets (2004, Exercice 8.8).
42Rockafellar and Wets (2004, Theorem 9.18.c).
43Rockafellar and Wets (2004, Exercice 8.8).
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Summing those equalities over i yields:

S ′0(q̄(θ))+
n∑

i=1

S ′i(q̄(θ)) + (n− 1)

(
S ′0(q̄(θ)) +

n∑
i=1

t̄′i(q̄(θ)− θ

)
= θ +

∑n
i=1 ri(θ)

f(θ)
. (A25)

Observe that t̄i(q) being strictly differentiable at any equilibrium point q̄(θ) implies

0 ∈ ∂q{−S0(q)−
n∑

i=1

t̄i(q) + θq}|q=q̄(θ)

which itself implies

S ′0(q̄(θ)) +
n∑

i=1

t̄
′
i(q̄(θ)) = θ. (A26)

Now, note that at any θ ∈ Ωc
i , it must be that

t̄i(q̄−i(θ)) = t̄
′
i(q̄−i(θ)) = 0. (A27)

So that, finally, (10) holds. Inserting those findings into (A25) yields

S ′0(q̄(θ)) +
n∑

i=1

S ′i(q̄(θ)) = θ +

∑n
i=1 ri(θ)

f(θ)
(A28)

which, taking again (A27) into account yields (11).

Monotonicity of q̄(θ). We already know that q̄(·) is continuous on (θ, θ̄). This implies

that it is enough to show monotonicity on each interval I where α(θ) is fixed (denote Ī

the interior of such interval). Note that on any such interval
∑

i∈α(θ) ri(θ) is constant and

such that
∑

i∈α(θ) ri(θ) ≤ |α(θ)|. Differentiating (11) w.r.t. θ on such interval I yields:

˙̄q(θ)


 ∑

i∈α(θ)
S{0}

S ′′i (q̄(θ))


 = 1 +

d

dθ

(
|α(θ)|F (θ)−∑

i∈α(θ) ri(θ)

f(θ)

)
. (A29)

The derivative of the right-hand side becomes:

d

dθ




(
|α(θ)| −∑

i∈α(θ) ri(θ)
)

F (θ)−
(∑

i∈α(θ) ri(θ)
)

(1− F (θ))

f(θ)




=


|α(θ)| −

∑

i∈α(θ)

ri(θ)


 d

dθ

(
F (θ)

f(θ)

)
−


 ∑

i∈α(θ)

ri(θ)


 d

dθ

(
1− F (θ)

f(θ)

)
> 0 (A30)

where the last inequality follows from Assumption 1. Inserting into (A29) yields the re-

quested monotonicity ˙̄q(θ) < 0 ∀θ ∈ Ī .
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Proof of Proposition 2. On any connected interval included in Ωc
i , equation (A27)

holds both in the interior but also on the boundaries from Proposition 3. Taking into

account (A24) and the agent’s first-order condition for optimality (10) yields (12).

Proof of Proposition 3. We prove each point in turn.

Strict differentiability of equilibrium schedules. We have shown in passing in the

proof of of Theorem 4 that t̄i(q) is strictly differentiable at any equilibrium point q̄(θ).

Smooth-pasting. Consider θ on the boundary of Ωc
i , i.e., such that Ū(θ) = Ū−i(θ), or

t̄i(q̄(θ)) + t̄−i(q̄(θ))− θq̄(θ) + S0(q̄(θ)) = t̄i(q̄−i(θ)) + t̄−i(q̄−i(θ))− θq̄−i(θ) + S0(q̄−i(θ))

where this equality follows from the fact that q̄(θ) is continuous at such θ and q̄(θ) = q̄−i(θ)

on Ωc
i . This yields t̄i(q̄(θ)) = 0.

Finally, (A26) above tells us that any θ ∈ Ωc
i is such that:

t̄
′
i(q̄(θ)) + t̄

′
−i(q̄(θ)) + S ′0(q̄(θ)) = θ = t̄

′
−i(q̄−i(θ)) + S ′0(q̄−i(θ)).

Together with the continuity property q̄(θ) = q̄−i(θ), we get t̄
′
i(q̄(θ)) = 0.

Marginal contributions. First, observe that (A24) can be rewritten as

S ′0(q̄(θ)) + S ′i(q̄(θ)) +
∑

j∈α(θ)/i

t̄j(q̄(θ)) = θ +
ri(θ)

f(θ)
(A31)

since inactive principals contribute zero both at the margin and in value. Using then (10),

we get the expression of the following marginal contribution:

t̄
′
i(q̄(θ)) = S ′i(q̄(θ))−

ri(θ)

f(θ)
. (A32)

Now observe that, on a connected subset Ωj
i of the activity set Ωi, we have

∫ θ

θ
µi(dθ) =

∫ θj
i

θ
µi(dθ) = M j

i ∈ [0, 1].

Proof of Proposition 4. Type θ∗ is just indifferent between producing or not given the

contributions defined in (15). Types below (resp. above) that threshold produce (resp.

do not produce) the public good for sure which gives us condition (17).

Contributions defined in(15) are non-negative and linear in the probability of produc-

ing the public good so that the agent always accept those contributions.

To check that those schedules are best responses to each other, observe that one can

rewrite (Pi) as:

(Pi) : max
(U,q)

∫

Θ

((
si + max

{
0, s−i − F (θ∗)

f(θ∗)

}
− θ

)
q(θ)− U(θ)

)
f(θ)dθ

subject to q ∈ [0, 1], (3), (4) and (2).
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Again, the second-order condition (4) is suppressed and only checked ex post.

Assuming first that (2) binds at θ̄ (and possibly on an non-empty interval including

that boundary), we get

U(θ) = Ū−i(θ̄) +

∫ θ̄

θ

q(x)dx.

Inserting this expression into the integrand above yields a more compact expression of

(Pi) as:

(Pi) : max
q∈[0,1]

∫

Θ

((
si + max

{
0, s−i − F (θ∗)

f(θ∗)

}
− θ

)
q(θ)− U(θ)

)
f(θ)dθ.

Optimizing pointwise, the solution is q̄(θ) =

{
1 if θ ∈ [0, θ̂]

0 otherwise
where θ̂ is uniquely defined

when Assumption 1 holds as the solution to:

si + max

{
0, s−i − F (θ∗)

f(θ∗)

}
= θ̂ +

F (θ̂)

f(θ̂)
. (A33)

Two cases might arise. If θ∗ that solves (16) is such that si ≥ F (θ∗)
f(θ∗) , then the solution

to (A33) is θ̂ = θ∗. If instead θ∗ that solves (16) is such that si < F (θ∗)
f(θ∗) , then θ̂ < θ∗, which

implies that q̄(θ) = 0 < q̄−i(θ) = 1 on (θ̂, θ∗) (with also q̄(θ) = q̄−i(θ) for all θ ∈ Θ/(θ̂, θ∗).

Hence, we get that the slope of U(θ) is less than that of Ū−i(θ). A contradiction with our

starting assumption that (2) binds at θ̄. In that case, the best-strategy for principal Pi is

to offer no contribution at all and (16) still holds.

Gathering everything, the contribution schedules that implement this equilibrium out-

comes are given by (15).

Proof of Proposition 5. We follow the steps of the general analysis in characterizing

such an equilibrium through its activity sets, contributions and output.

Activity sets. When Si(q) = siq for some si > 0 (the proof for si < 0 is similar and

omitted), (12) amounts to

F (θ)− f(θ)si =

∫

[θ,θ)

γi(θ)µi(dθ) ∀θ ∈ Ωc
i . (A34)

We want to prove that the inactivity set Ωc
i is of the form [θi, θ̄] where si = R(θi). Take µi

absolutely continuous with respect to the Lebesgue measure, i.e., µi(dθ) = mi(θ)dθ with

mi(θ) = f(θ)− ḟ(θ)si for [θi, θ̄] being a positive density. Observe that:

mi(θ)

f(θ)
= 1− ḟ(θ)

f(θ)
si > 1− f(θ)

F (θ)
si ≥ 0

where the first inequality follows from si > 0 and Assumption 1 (since then 1 ≥ F (θ)ḟ(θ)
f2(θ)

)

and the second inequality follows from Assumption 1 and the definition of θi.
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This µi allows us to satisfy the necessary Conditions [1.] to [3.] in Theorem 1 which are

also sufficient from Theorem 3. It is also non-singular which shows that the equilibrium

output is continuous.

Contributions. Using the specification of the activity set Ωi = [θ, θ∗i ) given in Item [2.]

of the proposition and the smooth-pasting condition (13) yields immediately (19).

Outputs. (18) follows from summing the expressions of marginal transfers coming from

(19).

Proof of Proposition 6. We follow the steps of the general analysis above in charac-

terizing such an equilibrium through its activity sets, output and contributions.

Activity sets. First, observe that −3θ ≥ q̄1(θ) if and only if θ ≤ −1 + δ. We now prove

that Ω1 = [−δ, 1− δ) when δ ≥ 1
2

and Ω1 = [−δ, δ) when δ ≤ 1
2
.

Let us begin with δ ≥ 1
2
. We use (12) to derive the non-singular measure µ1 on

Ωc
1 = [1− δ, δ]. We have on that interval :

r1(θ) =
θ + δ

2δ
−

∫ θ

1−δ

µ1(dθ) =
S ′1(q̄2(θ))

2δ
=

1

2δ
.

Reminding that µ1 is non-singular for a continuous equilibrium and denoting µ1(dθ) =

η1(θ)
dθ
2δ

, we compute η1(θ) = 1 if θ ∈ Ωc
1. The non-singular measure µ2 on Ωc

2 = [−δ,−1+δ]

is obtained by symmetry.

Consider now the case δ ≤ 1
2
. We have then full coverage with µ1 ({δ}) = 1 and by

symmetry µ2 ({δ}) = 1.

Outputs. The formula for computing the equilibrium output follows immediately from

using (11) and the definition of the activity sets above.

Contributions. Principals have conflicting preferences and thus marginal contributions

on their activity sets are of the form

t̄′1(q) = S ′1(q)−R(θ̄(q)) =
δ − θ̄(q)

2δ
and t̄′2(q) = S ′2(q) + T (θ̄(q)) = −δ + θ̄(q)

2δ
.

When δ ≥ 1
2
, the binding participation constraint for principal P1, namely Ū(1 − δ) =

Ū2(1− δ), determines completely t̄1(q) as in (20). In particular, note that t̄1(q̄(1− δ)) =

t̄
′
1(q̄(1− δ)) = 0, i.e., the smooth-pasting condition holds. By symmetry, we obtain t̄2(q).

When δ ≤ 1
2
, there is full coverage and the binding participation constraint for prin-

cipal P1 becomes Ū(δ) = Ū2(δ). It again determines completely t̄1(q) as in (20). Note in

particular that t̄1(q̄(δ)) > 0 because of full coverage. A symmetry argument gives t̄2(q).

Rent. For completeness, note that the agent’s information rent is given by the following

expressions Ū(θ) =

{
3
2
(1− θ2)− 3δ2 if δ ≤ 1

2

3(1− δ)2 − ∫ θ

0
q̄(x)dx if δ ≥ 1

2
.

Proof of Proposition 7.
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Activity sets. First, observe that qI(θ) ≥ q∗2(θ) if and only if θ ≤ s1. We now prove that

Ω1 = [0, s1). To do so, we use (12) to derive the non-singular measure µ1 on Ωc
1 = [s1, θ̄].

We have:

r1(θ) =
θ

θ̄
−

∫ θ

0

µ1(dθ) =
S ′1(q̄2(θ))

θ̄
=

s1

θ̄

with q̄2(θ) = q∗2(θ). Reminding that µ1 is non-singular for a continuous equilibrium and

denoting µ1(dθ) = η1(θ)
dθ
θ̄
, we compute immediately η1(θ) = 1 if θ ∈ [s1, θ̄].

We now prove that Ω2 = [0, s2). We use again (12) to derive the non-singular measure

µ2 on Ωc
2 = [s2, θ̄]. We have:

r2(θ) =
θ

θ̄
−

∫ θ

0

µ2(dθ) =
S ′2(0)

θ̄
=

s2

θ̄
.

Reminding that µ2 is non-singular and denoting µ2(dθ) = η2(θ)
dθ
θ̄
, we get η2(θ) = 1 if

θ ∈ [s2, θ̄].

Outputs. The formula for computing the equilibrium output follows immediately from

using (11) and the definition of the activity sets above.

Contributions. Principals have congruent preferences and thus marginal contributions,

on their activity respective sets, are of the form

t̄′i(q) = S ′i(q)−R(θ̄(q)) = si − θ̄(q)

θ̄
.

Moreover, the binding participation constraint for principal P2, namely Ū(s2) = Ū1(s2) =

0 determines completely t̄2(q) as in (24). In turn, the binding participation constraint

for principal P1, namely Ū(s1) = Ū2(s1) = maxq

{
t̄2(q)− θq − q2

2

}
=

∫ s1
s2
2
(s2 − 2θ)dθ > 0

determines completely t̄1(q) as in (24).

Rent. For completeness, the agent’s information rent is Ū(θ) =
∫ θ̄

θ
q̄(x)dx.
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