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Abstract
We study two-player games of favor-trading in a complete information environment stan-

dard to the literature, but in contrast to prominent models of favor-trading to date, we assume
agents have concave utility functions of the formu(x) = xα, 0 < α < 1, instead of linear
utility functions. We characterize equilibria in the concave case and describe qualitative dif-
ferences to the linear case. We extend several equilibria concepts from previous favor-trading
literature, and construct parametric models to numerically analyze and characterize these equi-
libria in our model.

∗I am deeply indebted to Andrew Postlewaite for all his help, guidance and encouragement with this project.



1 Introduction

To date the prominent models of favor-trading assume agents have linear preferences and favors
are intrinsically of greater benefit than cost. In this paper informal favor-trading is considered
to be a form of insurance. We assume agents have concave utility functions and favors derive
their value from risk sharing. With sufficiently concave utility functions, agents can beneficially
trade favors at some level for any discount factors. This is in contrast to the linear case in which
the incentive compatibility of the favors traded is independent of the size of the favors because
agents are essentially risk-neutral with respect to favors. Furthermore, if utility functions are linear
and agents’ discount factors are just large enough to satisfy the incentive compatibility constraint
for equality matching, the best the agents can do is to equality match full favors. If the same
agents have concave utility functions, we show that the equivalent equality matching equilibria
are dominated by equilibria involving a smaller than full first favor, followed by a small second
favor if reciprocation has not been received by the time the agent receives the second consecutive
favor opportunity. Consequently, the assumption of linear preferences drives some of the results in
prominent favor-trading models.

The rest of the paper is organized as follows. We first introduce the relevant literature at the
end of this section. Section 2 introduces the model. Section 3 describes equality matching with
concave utility functions and generalizes equality matching to multiple states. In section 3.1 we
construct two parametric models to numerically analyze multi-state equilibria. The first model
simulates a large sample of games, derives payoff functions from the simulations, and uses them
to solve for the optimal strategy. The second model solves directly the system of simultaneous
payoff equations associated with an equality matching game and uses the results to find the optimal
strategy. Section 3.2 presents the results of the numerical tests and a number of conjectures based
on them. We describe certain unexpected outcomes in multi-state equality matching including
favors above the efficient stage game levels (beyond full-sharing) and optimal multi-state equality
matching favor sequences that are not decreasing. We also argue against the efficiency of infinite
state equality matching strategies. Section 4 repeats the analysis for strategies we call pseudo-
highest symmetric self-generating line equilibria that emulate analogously named strategies from
the linear favor-trading literature. Section 5 discusses preliminary work in strategies involving
favor-depreciation and other remaining issues. Section 6 concludes. An appendix and reference
sections follow.

1.1 Relevant literature

The major contributions to the favor-trading literature by Möbius [12], Hauser and Hopenhayn
[8], and Abdulkadirŏglu and Bagwell [1] (AB for short), are all linear models in terms of agents’
preferences with intrinsically efficient favors. The model we introduce next retains the fundamental
information structure of these models; that is, all information is complete but not always public,
but we endogenize the value of favors by assigning agents concave utility functions so that favors
may be used to share risk. Furthermore, we assume the absolute cost of doing a favor is equal to
the absolute benefit generated. In other words, favors have no intrinsic value in our model. We
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take a simplified version of the favor-trading model by AB [1] as our benchmark for comparisons.
Outside of the favor-trading literature, our model overlaps with the insurance literature. In

particular, Kocherlakota [9] investigates the “Implications of Efficient Risk Sharing without Com-
mitment” as we do, but he uses a macroeconomic model whereas we restrict attention to a two
agent game. To our knowledge, this setup has not been covered by any major works in economics
or closely related fields.

2 The Model

Since concave functions include linear functions and strictly concave functions can be arbitrarily
close to linear functions, we restrict attention to a subclass of concave functions we callα-concave.
These functions are “sufficiently concave” for meaningful analysis of the differences concavity
can make in favor-trading models. However, we do not claim that concavity alone is sufficient for
meaning differences. On the contrary, we believe that the results of linear models could gener-
ally be replicated with arbitrary proximity with strictly concave utility functions that are arbitrarily
close to their linear counter-parts. However, our goal is to investigate the difference sufficient con-
cavity canmake relative to linear models. To that end we defineα-concave functions below. The
domain and range have each been normalized to the unit interval for simplicity. Unless otherwise
stated, any future references to concave utility functions implyα-concave utility functions.

Definition 1 Suppose functionu : [0, 1] → [0, 1] is such thatu (x) = xα for α ∈ (0, 1) . Then we
call u anα-concave function.

Consider two identical agents,a andb. Each agent has utility functionu(x) = xα for some
α ∈ (0, 1). The agents play an infinitely repeated stage game with the following structure: At
the beginning of each period nature allocates an opportunity, normalized to size1, either to agent
a or b (but not both), each with probabilityp ∈ (0, 1/2), or to neither with probability1 − 2p.
Opportunities are private information. An agent who receives an opportunity may either use it
privately and receive a flow payoff ofu (1) = 1 or share some or all of it. The amount shared
is denoted byx andy for agentsa and b, respectively. If agenta receives an opportunity and
shares amountx of it, the flow payoffs to(a, b) are ((1 − x)α , xα). Similarly, if agentb does
the sharing, payoffs are(yα, (1 − y)α). Because side payments are not allowed, and reciprocation
cannot be explicitly conditioned on future opportunities since they are not publicly observable,
shared opportunities are called favors. Favors, including their size, are public information. The
stage game is repeated in each subsequent period.

To see how favor-trading works consider the following game calledequality matching (EM).
In EM of level z ∈ (0, 1/2], one agent is calledadvantaged, the otherdisadvantaged. The disad-
vantaged agent is said to owe the advantaged agent a favor of sizez. If the disadvantaged agent
does a favor of sizez, she becomes advantaged and the other disadvantaged. If she does no favor,
she remains disadvantaged. Favors of size other thanz are not part of equilibrium play and can be
deterred by Nash reversion. Whenz = 1/2 (full sharing), the game is calledfull equality matching.

Consider a game of full equality matching between two agents. Suppose agenta is disad-
vantaged,b advantaged. Let(uem, ūem) denote the average discounted payoffs expected by agents
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(a, b), or more generally by disadvantaged and advantaged agents, respectively. Letσem (uem, ūem)
=
(
σa

em (uem, ūem) , σb
em (uem, ūem)

)
denote the EM strategy profile that implements the payoff

pair (uem, ūem). Underσem the payoffs are

uem = p ((1 − δ)u(1 − 1/2) + δūem) + (1 − p)δuem

= p ((1 − δ)(1/2)α + δūem) + (1 − p)δuem, (1)

ūem = p ((1 − δ)u(1) + δūem) + p ((1 − δ)u(1/2) + δuem) + (1 − 2p)δūem

= p (1 − δ + δūem) + p ((1 − δ)(1/2)α + δuem) + (1 − 2p)δūem. (2)

The first equation consists of two events: (i) with probabilityp agenta receives an opportunity,
does a full favor(x = 1/2) and becomes the advantaged agent; that is, agenta receives flow payoff
(1/2)α and continuation promisēuem, (ii) with probability (1−p) agenta receives no opportunity,
so her flow payoff is zero and her continuation promise remainsuem along with her disadvantaged
status. The equation for payoffūem consists of three events that occur with probabilitiesp, p and
1 − 2p, respectively: (i) agentb receives an opportunity, does no favor and receives a flow payoff
of 1 and her continuation promise remainsūem as she is still advantaged, (ii) agenta receives an
opportunity, shares it(x = 1/2) so agentb receives a flow payoff of(1/2)α but her continuation
payoff drops touem because she now owes agenta the next favor, and (iii) neither agent receives a
favor opportunity so agentb’s flow payoff is zero and her continuation payoff remainsūem.

The two previous equations contain two unknowns,uem andūem, with solutions:

uem =
p (1 − δ+δp (2 + 2α))

2α (1 − δ(1 − 2p))
, (3)

ūem =
p ((1 − δ) (1 + 2α) + δp (2 + 2α))

2α (1 − δ(1 − 2p))
. (4)

For the EM strategy profile to be aNash equilibrium (NE)in each stage game, neither agent can
have a profitable deviation available to her. It is trivial that the advantaged agent has no profitable
deviation as she just waits for reciprocation, but does no favors. Public (observable) off-equilibrium
path deviations, such as the advantaged agent doing a favor or one of the agents doing the wrong
size favor, can easily be deterred by the threat of autarky (no more favors). Therefore, we only
need to check that a one-shot deviation for the disadvantaged agent consisting of doing no favor
despite having the opportunity to do so followed byσem play as usual is not profitable. Agenta’s
discount factor has to be high enough that theincentive compatibility constraint (ICC)below is
satisfied.

ICCa
em : (1 − δ) 1

2α + δūem ≥ 1 − δ + δuem

⇐⇒ ūem − uem ≥ 1−δ
δ

(
1 − 1

2α

)
.

Using equations (3) and (4) we may writeICCa
em as

p((1−δ)(1+2α)+δp(2+2α))
2α(1−δ(1−2p))

− p(1−δ+δp(2+2α))
2α(1−δ(1−2p))

≥ 1−δ
δ

(
1 − 1

2α

)
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⇐⇒ δp
1−δ(1−2p)

≥ 1 − 1
2α

⇐⇒ δ ≥ 2α−1
2α−1+p(2−2α)

≡ δα (5)

Figure 1 showsδα asp andα vary between(0, 1/2) and(0, 1), respectively.

Figure 1:δα(p, α) for full EM with u(x) = xα

We start with equality matching because that is the easiest and most basic way to implement
cooperation in the linear model, in particular, in AB [1]. Before proving several differences, we
summarize the notation, and introduce the information structure and the equilibrium concept to be
used.

2.1 Summary of notation and structure

The summary that follows is meant for reference, but we also need it in the next subsection to
formally define several equilibrium concepts. Payoffs are in average discounted values.

Model parameters:
i ∈ {a, b} : Agents.
δ ∈ (0, 1) : Discount factor.
p ∈ (0, 1/2) : Probability that agenti ∈ {a, b} receives a favor opportunity.
α ∈ (0, 1) Preference convexity parameter.
Actions:
x, y ∈ [0, 1] : Size of favor by agentsa, b, respectively.
Payoffs:
(u, v) : Current payoffs to agents(a, b).
(uo, vo) : Continuation payoffs to(a, b) when no one does a favor.
(ui, vi) : Continuation payoffs to(a, b) wheni ∈ {a, b} does a favor.

Table 1: Summary of notation with concave utility functions

Information structure: Let t = 1, 2, . . . denote the time index. If agenti receives at-period
favor opportunity,wi

t = 1 and 0 otherwise. Agenti privately observesW i
t = {wi

z}
t
z=1. Let
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τt = (x, y) denote favors(x, y) ∈ (0, 1]2 agentsa andb, respectively, do in periodt. If neither
agent does a favor, then letτt = 0. Both agents observeTt = {τz}

t
z=1. Private history of agenti

and public history up to and including periodt are denoted byhi
t = W i

t ∈ Hi
t andHt = Tt ∈ Ht,

respectively. A strategy for agenti, denoted byσi, consists of a favor decision,I i
t , for each period

based oni’s private history up to periodt, and public history up to periodt − 1. More formally,
I i
t : Hi

t×Ht−1 → [0, 1] s.t. I i
t (∙, ∙) = 0 whenwi

t = 0.

2.2 Strategies and equilibrium concepts

For our solution concept we will usepublic perfect equilibrium(PPE) following Fudenberg, Levine
and Maskin [5]. A strategy for agenti ∈ {a, b} is public if it depends only on her current period
private information and the public history. In the favor-trading game under study, private infor-
mation consists of whether or not the agent received a favor opportunity, and public information
consists of (public) favors done up to and including the last period. A PPE is a profile of public
strategies that form a Nash equilibrium for each period and the corresponding public history. Since
the payoff pair(uem, ūem) is enforceable (implementable), it follows by symmetry that(ūem, uem)
is also enforceable, and therefore any utility pair on the line connecting(uem, ūem) and(ūem, uem)
is enforceable with the use of a public randomization device. Off-equilibrium path moves can be
deterred by the threat of Nash reversion (autarky). This brings us to the following two definitions.

Definition 2 Letσi
aut be such thatI i

t = 0, ∀t.

Definition 3 Let H∗
t be the set of all public on-equilibrium path histories up to and including

periodt.

For example, if two agents are playing a full EM game and agenta is the initial disadvantaged
agent, any history such that agentb did the first favor, one of the agents did two consecutive favors
or a partial favor, would not be inH∗

t . However, histories that include only private deviations, that
is, a disadvantaged agent does not do a favor when she has the opportunity, would still be inH∗

t .
Next we define EM formally.

Definition 4 Givenz ∈ (0, 1], σi
em(z) is such thatI i

t = z if agenti is disadvantaged,wi
t = 1 and

ht−1 ∈ H∗
t−1, otherwiseI i

t = 0. Letσi
em(1) ≡ σi

em.

2.3 Basic properties of concave favor-trading games

The lemmas in this section state for the record that the model always has at least the autarky
equilibrium and that the first-best outcome is not enforceable.

Claim 5 In a favor-trading game with preferencesu (x) = xα, equilibria always exist.

Proof. Immediate. Autarky is always anequilibrium.
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Claim 6 First-best outcome is not enforceable in equilibrium.

Proof. To achieve the first-best outcome both agents have to share every favor opportunity equally,
that is regardless of whether the other agent has reciprocated. But then each agent has a profitable
deviation to not do a favor, which the other agent could not observe as favor opportunities are
privateinformation.

3 Multi-state equality matching (n-EM)

In this section we generalize equality matching to multiple states.

Lemma 7 (EM is always possible)Givenδ andα, there existsz ∈ (0, 1/2] such that EM at level
z is implementable as a PPE.

Proof. In appendix.

The proof for this lemma follows immediately from the utility function’s formu (x) = xα.
Marginal utility cost of doing an infinitesimal favor goes to a bounded constant:

u′(1 − z) =
−α

z1−α
→ −α asz → 0,

while the marginal benefit to the recipient goes to infinity:

u′(z) =
α

z1−α
→ ∞ asz → 0.

That is, we can make the cost of doing a favor relative to the benefit arbitrarily small by choosing
a small enough size for the favor. This is in contrast to the linear case in which the cost-to-benefit
ratio is alwaysk ∈ (1,∞) and consequently discount factors need to exceed a certain threshold
for EM to be implementable.

In EM games with linear preferences, full equality matching also represents the most efficient
incentive compatible form of favor-trading (on symmetric self-generating lines) in the special case
of δ = δ∗. The equivalent form of EM with concave preferences consists of matching half-sized
favors as opposed to full-sized ones because maximal efficiency is achieved by sharing the oppor-
tunity equally due toα-concave utility functions. Such an EM game is shown in Figure 2 (left).
We refer to it as a 2-state EM game because agents alternate between the two states:a advantaged,
b disadvantaged,(A,D), andb advantaged,a disadvantaged,(D,A). Similarly, we refer to an EM
game with 3-states as a 3-state EM game, such as the one shown in Figure 2 (right). State(∅, ∅)
refers to a neutral, or even state.

Next we show that 3-state EM strategies dominate 2-state EM strategies whenδ = δ∗. To
make the demonstration more concrete, we offer a parametric example of 2-state vs. 3-state EM
strategies using valuesα = 0.6 andp = 0.3. The threshold discount factor,δα, is determined by
substituting these values into equation (5):

δα ≡
2α − 1

2α − 1 + p (2 − 2α)
= 0.7802. (6)
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2-state full EM game

(A,D)

(D,A)

1-p

1-p

p px = 1
2

y = 1
2

(A,D): Agenta advantaged, agentb disadvantaged

(D,A): Agenta disadvantaged, agentb advantaged

(∅,∅): Neutral state

3-state EM game

(A,D)

(D,A)

(∅,∅)

p

p

p

p

1-p

1-p

1-2p1-2p

x1 = 1
2
− ε

x2 = ε y1 = 1
2
− ε

y2 = ε

Figure 2: 2-state and 3-state EM automata

We then substitute our values forα, p andδ = δα into equations (3) and (4) to find our benchmark
payoffs:

uem =
p (1 − δ+δp (2 + 2α))

2α (1 − δ(1 − 2p))
= 0.3, (7)

ūem =
p ((1 − δ) (1 + 2α) + δp (2 + 2α))

2α (1 − δ(1 − 2p))
= 0.39585, (8)

uem + ūem = 0.69585. (9)

To find the equivalent values for a 3-state EM strategy we need to solve the following system of 3
payoff equations in 3 unknown payoffs,

ū = p ((1 − δ) + δū) + p
(
(1 − δ)

(
1
2
− ε
)α

+ δuo
)

+ (1 − 2p) δū,

uo = p ((1 − δ) (1 − ε)α + δū) + p ((1 − δ) εα + δu) + (1 − 2p)δuo,

u = p
(
(1 − δ)

(
1
2

+ ε
)α

+ δuo
)

+ (1 − p) δu.

To simplify the arithmetic, we first replace the utility function terms as follows:

A ≡ εα, B ≡
(

1
2
− ε
)α

, C ≡
(

1
2

+ ε
)α

, D ≡ (1 − ε)α (10)
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For mnemonic reasons, we choseA < B < C < D for ε small. In terms ofA, B, C andD, the
3-state EM payoffs are

ū = p ((1 − δ) + δū) + p ((1 − δ) B + δuo) + (1 − 2p) δū,

uo = p ((1 − δ) D + δū) + p ((1 − δ) A + δu) + (1 − 2p)δuo,

u = p ((1 − δ) C + δuo) + (1 − p)δu.

Solving and simplifying:

ū = p
1+B+((3+A+3B+D)p−2(1+B))δ+(1+B−(3+A+3B+D)p+(1+A+B+C+D)p2)δ2

(1−(1−p)δ)(1−(1−3p)δ)
,

uo = pA+D+(−A−D+(1+A+B+C+D)p)δ
1−(1−3p)δ

,

u = p
C+((A+3C+D)p−2C)δ+(C−(A+3C+D)p+(1+A+B+C+D)p2)δ2

(1−(1−p)δ)(1−(1−3p)δ)
.

For later use, the payoff differences between adjacent states are

ū − uo = p (1 − δ) (1−A+B−D−(1−A+B−D+(−2+A−2B+C+D)p)δ)
(1−(1−p)δ)(1−(1−3p)δ)

,

uo − u = p (1 − δ) (A−C+D+(−A+C−D+(1+A+B−2C+D)p)δ)
(1−(1−p)δ)(1−(1−3p)δ)

, (11)

ū − uo

uo − u
= 1−A+B−D−(1−A+B−D+(−2+A−2B+C+D)p)δ

A−C+D−(A−C+D−(1+A+B−2C+D)p)δ
,

= (1−δ(1−p))(1−A+B−D)+pδ(1+B−C)
(1−δ(1−p))(A−C+D)+pδ(1+B−C)

. (12)

With three states, we have two incentive compatibility constraints. To move from the disadvan-
taged state to the neutral state requires a favor of size1/2 − ε in return for a continuation promise
of uo:

ICC1 : (1 − δ) C + δuo ≥ 1 − δ + δu

=⇒
δ

1 − δ
≥

1 − C

uo − u

=⇒ δ∗ =
1 − C

1 − C + uo − u
. (13)

To move from the neutral state to the advantaged state requires a favor of sizeε in return for a
continuation promise of̄u :

ICC2 : (1 − δ)D + δū ≥ 1 − δ + δuo

=⇒
δ

1 − δ
≥

1 − D

ū − uo

=⇒ δ∗ =
1 − D

1 − D + ū − u∗
. (14)
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Below we show that ifICC2 holds, thenICC1 holds, and therefore it is enough to only verify
ICC2.

Claim 8 ICC2 ≥ 0 =⇒ ICC1 ≥ 0.

Proof (by contradiction). Suppose to the contrary thatICC2 ≥ 0 but ICC1 < 0. Then∃ε, δ > 0
such that δ

1−δ
≥ 1−D

ū−uo and δ
1−δ

< 1−C
uo−u

.

=⇒ δ ≥ 1−D
1−D+ū−uo andδ < 1−C

1−C+uo−u

=⇒ 1−D
1−D+ū−uo < 1−C

1−C+uo−u

=⇒ (1 − C) (1 − D) + (1 − D) (uo − u) < (1 − C) (1 − D) + (1 − C) (ū − uo)
=⇒ uo − u − D (uo − u) < ū − uo − C (ū − uo)
=⇒ C (ū − uo) − D (uo − u) < ū − 2uo + u
=⇒ D (ū − 2uo + u) < ū − 2uo + u
=⇒ D > 1 sinceū − 2uo + u < 0 by strict concavity ofu(∙). The last inequality contradicts

the definition ofD ≡ (1 − ε)α < 1.

Returning to our example, it is sufficient per claim 8 to find anε > 0 such thatICC2 binds.
Substituting inα = 0.6, p = 0.3 andδ = δα = 0.7802 from the 2-state problem into our 3-
state payoff functions and solvingICC2 = 0 for ε yields ε = 0.2176. Using these valuesA ≡
εα = 0.4005, B ≡

(
1
2
− ε
)α

= 0.4683, C ≡
(

1
2

+ ε
)α

= 0.8195, D ≡ (1 − ε)α = 0.8631 and

uo − u= 0.498(3.821−δ)(1−δ)
(10−δ)(1.429−δ)

. We can now solve forδ1 from ICC1 : δ1 ≥ 1−C
1−C+uo − u

.

Substituting in values forA,B,C andD =⇒ δ1 ≥ 1−(0.5+ε)α

1−(0.5+ε)α+
0.498(3.820−δ1)(1−δ1)

(10−δ1)(1.429−δ1)

. Substi-

tuting in values fora, ε and solving forδ1 =⇒ δ1 ≥ 1−0.819

1−0.819+
0.498(2δ2

1−2.402δ1+1.903)
δ2
1−11.43δ1+14.29

=⇒ δ1 ≥

0.7452.
That is, if we fix δ = δ∗ from the two state problem, and increaseε until ICC2 binds, then

ICC1 will be slack for thoseε andδ. In particular, we needδ ≥ 0.7802 to satisfyICC2 in the
example above, whereasICC1 holds forδ ≥ 0.7452. The payoffs for our example are as follows:
ū = 0.39941 > 0.39585 = ūem, uo = 0.36084 andu = 0.30515 > 0.3 = uem, whereuem and
ūem, from (8) and (7), respectively, are the corresponding payoffs with the 2-state EM strategy.
Observe that the total value of the game is higher with the 3-states. Furthermore the total payoff in
the 3-state game is higher when the agents are in the middle state:uem+ ūem = 0.69585 < u+ ū =
0.70456 < 2uo = 0.72168. The example demonstrates a general contrast between favor-trading
games with linear and concave utility functions.

We are now ready to generalize equality matching for multiple states. Note that (15) below
also implies reversion to autarky if either agent deviates from the equilibrium path (ht−1 /∈H∗

t−1).

Definition 9 Suppose that fori ∈ {a, b}, s ∈ S ≡ {1, 2, ..., n} and t ∈ N, strategy profileσ is
such that

ys ≡xn+1−s ∈ (0, 1) andI i
s :=






xs if s 6=n,wa
t = 1, ht−1 ∈ H∗

t−1,
xn+1−s if s 6=1, wb

t = 1, ht−1 ∈ H∗
t−1,

0 otherwise,
(15)
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st+1 :=st + 1{τt=(xst ,0)} − 1{τt=(0,yst)}. (16)

Then we callσ ann-state EM strategy profileand denote it byσemn .

Definition 10 (Special case ofσemn) Suppose that fori ∈ {a, b}, s ∈ Z and t ∈ N, strategy
profileσ is such that

y−s ≡ xs ∈ (0, 1) andI i
s :=






xs if wa
t = 1, ht−1 ∈ H∗

t−1,
ys if wb

t = 1, ht−1 ∈ H∗
t−1,

0 otherwise,
(17)

s0 ≡ 0, st+1 := st + 1{τt=(xst ,0)} − 1{τt=(0,yst)}. (18)

Then we callσ an∞-state EM strategy profileand denote it byσem∞.

For the subsequent definitions and lemmas, we refer to random variables with uppercase let-
ters, realizations of random variables with lowercase letters, and probability distributions with
calligraphic (or script uppercase) letters.U refers to the uniform distribution.P refers to the dis-
tribution of favor opportunities.ρs,t ≡ ρ(s, t) is the transition probability from states to t. If a
stationary distribution exists,πs ≡ π(s) denote the associated probabilities.1

Definition 11 Given ann-state strategy profileσ, let πs(σ) denote the stationary probability for
states = 1, 2, ..., n, respectively, consistent withσ. If the game has no stationary distribution
consistent withσ, let π(σ) ≡ ∅. For convenience, letπs(σ) ≡ πs ≡ π(s) when no ambiguity exists
aboutσ.

Definition 12 Given ann-state strategy profileσ, let s0 ∈ S ≡ {1, 2, ..., n} denote the starting
state, then

us(σ) := E0 [u(σ) : s0 = s] , s = 1, 2, ..., n,
defines the expected average discounted payoff to agenta in states, and

u(σ) = E [(1 − δ)
∑∞

t=0 δt ((1 − X t)α + (Y t)α)],
represents the overall expected average discounted payoff to agenta, whereX t andY t are random
variables of periodt favors by agentsa andb, respectively. Letvs andv be the equivalent payoffs
to agentb. If π 6= ∅, P (s0 = s) = πs, or undefined, andσ is symmetric(ys ≡ xn+1−s for s ∈ N or
ys ≡ x−s for s ∈ Z), we claim without proof that for finiten∗-EM equilibria

u(σ) ≡ u(x) = 1−δ
2

∑n
s=1 πs ((1 − xs)

α + (ys)
α),

and we define the value ofσ to beT (σ) := u + v ≡ 2u(x).

We now return to finish our 2-state vs. 3-state EM comparison for the general case ofδ > δ∗

or for itsα-concave equivalent;δ > δα.

Lemma 13 (3-state EM strategy)For δ > δα there exists a 3-state EM equilibrium profile, call
it σ′

em3 , that has strictly higher value than any 2-state EM profile. That is,T
(
σ′

em3

)
> T (σem2),

∀α, p, σem2 .

1A stationary probability may also be thought of as the fraction of time spent asymptotically in a given state, or
the number of visits to states in a game witht periods ast → ∞.
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Proof. δα is defined as the discount factor at which full equality matching becomes incentive
compatible in a 2-state EM game (definition 5). Therefore the onlyσem2 strategy profile we need
to consider consists of full favors by the disadvantaged agent and no favors by the advantaged
agent. Call this profileσ∗

em2 .
T
(
σ∗

em2

)
= uem (δα) + ūem (δα) = p (1 + (1 − x)α + yα) = p (1 + 21−α).

For 3-state EM,
T
(
σ′

em3

)
= 2 (π1u1 + π2u2 + π3u3), whereπ = (π1, π2, π3) .

π denotes the stationary probabilities. Letm be a matrix of transition probabilities between states
induced by a 3-state EM strategy, thenπ is determined by

mᵀπ = π andπ1 + π2 + π3 = 1 wherem =
[ 1−p p 0

p 1−2p p
0 p 1−p

]
=⇒ π =

(
1
3
, 1

3
, 1

3

)
.

It is enough to prove the claim forδ = δα since forδ > δα we can use the “δ = δα”-solution
because it is incentive compatible forδ ≥ δα. The ICC forσ′

em3 are:

(1 − δα) (1 − x1)
α + δαu2 ≥ 1 − δ + δαu1, (19)

(1 − δα) (1 − x2)
α + δαu3 ≥ 1 − δ + δαu2. (20)

Suppose for our candidate solution we pickx1 andx2 such the ICC (19) and (20) bind. Treating the
inequality signs in (19) and (20) as equalities and solving yieldsx2 = (1 − 2x1) /2. The arithmetic
required for the last step and for an expression forT

(
σ′

em3

)
is in the appendix. We just need one

point so letx1 = 1/3 =⇒ x2 = 1/6. Then

T (σ′
em3) = 2

3
p
(
1 +

(
1 − 1

3

)α
+
(

1
3

)α
+
(
1 − 1

6

)α
+
(

1
6

)α)

= 2
3
p
(
1 +

(
2
3

)α
+
(

5
6

)α
+
(

1
3

)α
+
(

1
6

)α)
.

A comparison ofT
(
σ∗

em2

)
to T

(
σ′

em3

)
shown in figure 3 concludes theproof.

Figure 3:T (σ′
em3) in red,T (σ∗

em2) in blue, andp = 1
2

by normalization
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To finish this section we show that the uniform stationary distribution we found in the 3-state
EM example holds in general for multi-state EM, except for infinite state strategies. For the latter
we show that now stationary distribution exists. Finally, we define locally and globally efficient
multi-state equilibria.

Lemma 14 πs (σemn) = 1/n, s = 1, 2, ..., n.

Proof. The proof is in the appendix. The proof is a generalized version of the transformation
matrix calculation we did in the proof of lemma 13 to compute the fractions of time agents spent
in each state in a3-state EM game.

Lemma 15 π (σem∞) = ∅.

Proof. By (18) of definition 10 the stochastic process associated withσem∞ is a simple random
walk onZ1 with transition probabilitiesρ (s, s + 1) = ρ(s, s − 1) = p andρ(s, s) = 1 − 2p. We
say thatρ is irreducible since any statet ∈ Z is reached with positive probability from any state
s ∈ Z in a finite number of steps. Furthermore, eachs ∈ Z is visited infinitely often so eachs
is recurrent, but there are infinitely many states so the fraction of total visits tos has measure0.
That is,s is null recurrent and therefore no stationary distribution exists overs ∈ Z consistent with
σem∞ . A proof of the last statement can be found in Durrett [3] (p. 307, but the details are beyond
the scope of thispaper).

Definition 16 Supposeσemñ is an ñ-state EM strategy profile such that neither agent has a prof-
itable deviation. Then we callσemñ anñ-state EM equilibrium(ñ-EM equilibrium). If T (σemñ) ≥
T
(
σ′

emñ

)
, for all ñ-EM equilibria,σ′

emñ , we callσemñ a locally efficient ñ-state EM equilibrium,
and denote it byσ∗

emñ . If T (σemñ) ≥ T (σemn) for all n ∈ N andσemn , we callσemñ a globally effi-
cient multi-state equality matching equilibrium (n∗-EM or globally efficientñ-EM equilibrium),
and denote it byσ∗

emn .

3.1 Globally efficient n-EM equilibria (n∗-EM): Numerical methods

Imposing concavity on the linear favor-trading model substantially complicates the equilibrium
analysis. At this point we are unable to solve the model further in closed-form and therefore in
this section we turn to numerical techniques to characterizen∗-EM equilibria. Subsection 3.1.1
introduces our numerical analysis approach and provides an overview of the parametric models we
have constructed to carry out the analysis. Details of the two models follow in subsections 3.1.2
and 3.1.3, respectively. We characterizen∗-EM equilibria properties in section 3.2 based on the
results of our numerical analysis. However, our solution methods themselves may be of greater
interest to some readers than the actual solutions in so far as these techniques may be used to solve
other applied game theory problems.

12



3.1.1 Summary of parametric models

Conjectures in later sections are based on results from two types of parametric computer models;
games withsimulated payoffs (SP)and games withcomputed payoffs (CP). The computer code
for each model is Mathematica 7 based, and consists of a favor solver engine and a favor solver
frame. Given numerical values ofα, δ, p andn (number of states), the favor solver engine finds
a representation for payoffs,u =

∑n
s=1 πsus, and incentive compatibility constraints,ICCs, in

terms ofx, then solves the constrained nonlinear optimization problem:2

max
x=0

u(x)

subj. toICCs(x)≥0, ∀s∈S.

(21)

The favor solver frame is essentially a series of loops built around the engine code that feeds the
engine a set of user-specified values forα, δ andp, and incrementsn until u stops increasing.
The frame also records the results for the optimaln, denoted byn∗, for each triplet(α, δ, p) and
constructs user-specified tables and plots out of these results.

The difference between the simulated payoffs model and the computed payoffs model is the
part of the engine code that findsus(x). The SP-model’s engine generates a large set of ran-
dom favor opportunity sequences, computes the path of the game (sequence of states) consistent
with strategy profileσemn for each favor opportunity sequence and for each possible starting state,
computed the discounted sums agenta’s flow payoffs along each path, and takes the averages per
starting states to determineus(x), ∀s. The CP-model’s engine findsus(x) directly by solving the
set ofn simultaneous payoff equations that characterizeσemn .

Both models use Mathematica’s built-in optimization algorithms to solve problem (21) and the
CP-model uses Mathematica’s built-in numerical solver to solve the sets of simultaneous payoff
equations. The Mathematica code for each model is available in the appendix.

3.1.2 Simulated payoffs (SP) model

The SP-model consists of the following steps:
1. Choose simulation and parameter values:The user specifies the number ofgames per

state(I) androunds per gameto simulate(J), and either point values or ranges for model param-
etersα (concavity),δ (discount factor), andp (probability of favor opportunity).

2. Simulate data:The model generates a matrix of random favor opportunitiesW ≡ [wi,j ]I×J

with elementswi,j ∼ P {a, b, ∅}.
3. Process data to estimate payoff functions:We need to mapW to payoffs consistent with

σemn(α, δ, p). To this end, the model defines operators

%(s, w) :=s + 1{w=a,s 6=n} − 1{w=b,s 6=1}, (22)

υ(s, w)(x, y) :=1{w=a}(1 − xs)
α + 1{w=b}(ys)

α

⇐⇒ υ(s, w)(x) :=1{w=a}(1 − xs)
α + 1{w=b}(xn+1−s)

α by def’n 9 (23)

2In EM optimization problemsx ≡ {x1, ..., xn−1} in (21) becausexn = 0 by definition of n-EM and therefore
drops out ofu(x) andICCs(x). For other strategies (withxn > 0), x in (21) should be treated asx ≡ {x1, ..., xn}.
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si,j = %(si,j−1, wi,j) iteratively determines the path of gamei consistent withσemn given a starting
statesi,0 ∈ S. υ maps each state along gamei’s path to a flow payoff function (ofx). We want to
find us(x) for states so we apply the following functionals toW given starting statesi,0

si,0 × [wi,j ]I×J 7→ si,0 × [% (si,j−1, wi,j)]I×J ≡ [si,j−1]I×J , (24)

[si,j−1]I×J × [wi,j ]I×J 7→ [υ (si,j−1, wi,j) (x)]I×J ≡
[
υ (x)i,j−1

]

I×J
(s). (25)

In words, [υ(x)i,j−1]I×J (s) is anI×J matrix of flow payoffs in terms ofx initiated from state
si,0 = s, ∀i. To find total payoffs the model computes discounted sums along the rows of
[υ(x)i,j−1]I×J . We multiply the result by(1 − δ) to convert total payoffs into average discounted
payoffs:

(1 − δ)

([
υ (x)i,j−1

]

I×J
(s) ∙

[
δj−1

]
J×1

)

= [ũs(x)i]I×1 , (26)

whereũs(x)i = (1 − δ)
∑J

j=1δ
j−1υ(x)i,j−1.

We use tilde to differentiate estimated payoffs from the true payoffs. However forJ = ∞,

ũs(x) = 1
I

∑I
i=1ũs(x)i →

p
us(x) asI → ∞ (27)

by law of large number.̃us(x) contains a small truncation error,εsi,J
= δJusi,J

(x), for each gamei
becauseJ < ∞. We could usẽus(x) = 1

1−δJ
1
I

∑I
i=1 ũs0,j=s(x)i to compensate, but at the moment

the SP-model does not implement any correction scheme for the truncation error. Instead we chose
J sufficiently large that errors factored byδJ are insignificant.

The model produces̃us(x) for all s ∈ {1, 2, ..., n} using the sameW . Therefore the simulation
generatesnI payoff samples in total, and the overall value of theσemn is estimated as

ũ(x) + ṽ(x) = 2ũ(x) by symmetry, and

ũ(x) =
∑n

s=1πsũs(x) by def’n 12

=
1

n

∑n
s=1ũs(x) by def’n 14. (28)

4. Optimization: Our goal is to find the optimal number of states,n∗, and efficient multi-
state EM favorsx∗ ≡ {x∗

1, x
∗
2, ..., x

∗
n∗} for the specified values ofα, δ, p and a set of random favor

opportunitiesW . To do so the model performs following steps:
a. Incrementn by 1 or start withn = 2 if this is the first round.
b. Apply operators% andυ defined by (22) and (23) toW and transformations (24)-(26) to

the results to find̃us (x) for s = 1, 2, ..., n as defined in (27).
c. To find x1, ..., xn−1 (xn = 0 by definition of σemn), numerically solve the following
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formulation of nonlinear optimization problem (21):

max
x1,...,xn−1>0

1
n

∑n
s=1ũs (x1, ..., xn−1)

subj. toxn=0 and(1−δ)((1−xs)
α−1)+δ(ũs+1(x)−ũs(x))≥0, s=1,...,n−1.

(29)

d. Let ũ(n) and x̃(n) denote the solutions to (29). Record these values as well as the
corresponding̃us(n), ∀s, and other desired data.

e. If n = 2 or ũ(n − 1) < ũ(n), repeat from step a. Elsen∗ = n − 1 andx∗ = x(n − 1).
We defer the technical details concerning Mathematica’s optimization algorithms and their

scope to subsection 3.1.3 and the appendix.
5. Output: A single point solution is not of particular importance to us, so we run the SP-

model on a set of points(α, δ, p) ∈ (0, 1)2 × (0, 1/2) that cover the parameter space. The output is
retrieved in tables and plots that describe the general behavior ofn∗-EM equilibria. For example,
figure 4 depicts globally efficientx∗

s for s = 1, 2, ..., n∗ − 1 as a functions ofp. The exact code for
this demonstration is available in the appendix.

Figure 4:
Simulated payoffs:n∗-EM(p) equilibria
Algorithm: Interior point
Points: α = 0.5, δ = 0.8, p = 0.05, 0.1, ..., 0.45

SP-model versus CP-model: The CP-model is more efficient (faster) and more accurate but
requires the extra step of solvingn simultaneous payoff equations. When that is not possible, the
SP-model can fill in the gap. We used the SP-model mainly to double check our results, but we
present it here to offer another tool for the continuing research into favor trading equilibria and for
other similar problems.

3.1.3 Computed payoffs (CP) model

The CP-model has similar steps to the SP-model:
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1. Choose parameter values:The user specifies point values or ranges for model parameters
α (concavity),δ (discount factor), andp (probability of favor opportunity).

2. Setup simultaneous payoff equation problem:Givenn, we can describeus (σemn) with
following set of simultaneous equations:

u1 = p ((1 − δ)(1 − x1)
α + δu2) + (1 − p)δu1,

un = p(1 − δ + δun) + p ((1 − δ)(yn)α + δun−1) + (1 − 2p)δun,

us = p ((1 − δ)(1 − xs)
α + δus+1) + p ((1 − δ)(ys)

α + δus−1)

+ (1 − 2p)δus for s = 2, ..., n − 1.

Substitutingys = xn+1−s per definition 9 and simplifying

us :=






p (1−δ)(1−x1)α+δu2

1−(1−p)δ
, s=1,

p
(1−δ)((1−xs)α+xα

n+1−s)+δ(us−1+us+1)

1−(1−2p)δ
, s=2,...,n-1,

p
(1−δ)(1+xα

1 )+δun−1

1−(1−p)δ
, s=n.

(30)

3. Solve payoff equations to find payoff functions:Given parametric values forα, δ and
p, and the number of statesn, Mathematica can numerically solve (30). Letũs(x), s = 1, ..., n,
denote the solution.

4-5. Optimization and output: Same as in the SP-model, exceptũs(x), s = 1, ..., n, in 4(b)
comes from solving (30) instead of simulation based estimates ofus(x).

Technical details: We used Mathematica’sNSolvecommand to solve the payoff equations in
the CP-model and theNMaximizeand FindMaximum commands for optimization.FindMaximum
looks for a local optimum with an interior point algorithm whileNMaximize uses Differential Evo-
lution or Nelder-Meadsimplex algorithm to solve for global optima.Simulated Annealingand
Random Searchalgorithms were also available, but the other methods performed better.Find-
Maximumwas significantly faster and more robust in many cases than the global methods, so we
used it to investigate particular aspects of the global equilibria uncovered by the NMaximize. A
description of each global algorithm is available in the appendix courtesy of Wolfram Research
[21].

Limitations: Limiting factors to arbitrarily high numerical accuracy are time and computing
power. In practice this means that characterizing asymptotic behavior of the model is not possible
or reliable using numerical techniques. Closed-form solutions would of course be preferable.

3.2 Numerical analysis ofn∗-EM equilibria

In this section we present a number of conjectures derived from numerical testing using the models
from section 3.1. To support these conjectures we refer to a number of figures and tables inter-
polated from sets of parametric solutions. The rest of the section illustratesn∗-EM equilibrium
behavior asp, δ andα are varied in turn.
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3.2.1 Results and resulting conjectures

The following conjectures concern globally efficient multi-state EM equilibria. That is, n-EM
equilibria that are optimal across the number of states(n) and favors(x1, x2, ..., xn−1). In our
conjectures we sometimes use the expression “for all” (in quotes) in the context of numerical
results to refer to an entire parameter range that we covered at close increments rather than at
every actual point. For example, if a numerical result was interpolated from solutions forp =
0.01, 0.02, ..., 0.49, we may refer to it as a result “for all”p.

Conjecture 17 Letn∗(α, δ, p) be the number of states associated withσ∗
emn givenα, δ andp. Then

the finite difference functions (discrete derivatives) forα, δ andp, respectively, are
(i) Δα|Δn∗=1,Δδ=Δp=0 < 0 and increasing inn∗ (decreasing in absolute value),
(ii) Δδ|Δn∗=1,Δα=Δp=0 > 0 and decreasing inn∗ (smallerδ-steps per unitΔn∗),
(iii) Δp|Δn∗=1,Δα=Δδ=0 > 0 and approximately constant.

Support for conjecture. The conjectured relationships were observed in all our numerical tests.
Please refer to figures 9, 11, and 13 for plots ofn∗ (p) , n∗ (δ) andn∗ (α), respectively. Figure 5
shows the globally efficient number of states,n∗, as a function ofδ andp.3 We suggest further
numerical tests to verify these relationships for a larger set of parameter values. Further analysis
of the system of n-EM payoff equations may even yield a closed-formsolution.

Figure 5: Globally efficient n-EM equilibria:n∗(δ, p) whereα = 0.5

3Each grid point in figure 5 corresponds to a Mathematica solution for given values ofδ andp. We used Math-
ematica’s interior point algorithm to find the optimal favors,x∗

1, ..., x
∗
n, for eachn = 2, 3, ... until u (x∗

1, ..., x
∗
n)

stopped increasing.n∗ was chosen as then for which u (x∗
1, ..., x

∗
n) peaked. The grid points consist ofα = 0.5,

δ = 0.4, 0.41, ..., 0.95 andp = 0.01, 0.02, ..., 0.49.
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Conjecture 18 Let x∗ = {x∗
1, x

∗
2, ..., x

∗
n∗} =

{
y∗

n∗ , y∗
n∗−1, ..., y

∗
1

}
be the set of favors associated

with σ∗
emn . Defines as the first state withx∗

s smaller than its successorx∗
s+1 wheres = n∗ if

none are smaller. That is,s(α, δ, p) := inf
{
s ∈ S : x∗

s < x∗
s+1 where x∗

n∗+1 ≡ 1
}

. Then given
δ, p ∃α ∈ (0, 1) such thats < n∗ for α < α, otherwises = n∗.

Support for conjecture. The relationship was observed in all our numerical tests. Subsection 3.2.2
covers the conjecture 18 “for all”p with δ fixed whenα ≥ α (see figure 6). Subsection 3.2.3 does
the same “for all”δ with p fixed (see figure 10). Subsection 3.2.4 illustrates the behavior ofx∗ asα
varies from values belowα to values above it (see figure 12) and supports our conjecture that such
anα exists. Figure 14 illustrates inequalitys < n∗ in more detail. It would be natural to expect,
or at least we expected, the optimal favor sequence to be decreasing so this came as a surprise. At
the moment we do not attempt to explain this anomaly, but we do confirm it by solving the same
model with the additional restriction that favors have to be decreasing. The resulting equilibria
favorsẋ = {ẋ1, ẋ2, ..., ẋn} are dominated by the originalx∗ solution;u(x∗) > u(ẋ). Subsection
3.2.5 offers a numerical analysis with figures and tables of case withα < α. In particular, figures
15 and 16 illustrate the case “for all”p and “for all” δ, respectively, withα fixed belowα.

Claim 19 Considerx∗ discussed in conjecture 18. Forn∗ > 2 n∗-EM equilibria may include (i)
favors that are above the socially optimal stage game level of 1/2 (full sharing), and (ii) favor
sequences that are non-decreasing.

Proof. Both findings surprised us which is why we state them above in a claim. We offer the proofs
in the form of numerical examples. Please refer to table 2 for results of ann∗-EM equilibrium
solution forα = 0.5, δ = 0.9 andp = 0.3, 0.31, ..., 0.49. Observe that all of the solutions include
x∗

1 > 1/2 andx∗
2 > 1/2, and toward the higherp-values,x∗

3 > 1/2. We ran the exact same
parametric model was with the same values, except with an additional restriction ofxs ≤ 1/2
(instead ofxs ≤ 1). The results are in table 3. Both tables display expected payoff to agenta in the
first column under headingu. (Recall thatT = u + v = 2u, by symmetry). A comparison of the
two tables shows that the unrestrictedn∗-EM strategies generate slightly higher payoffs. Examples
of non-decreasing favor sequences are available in subsection 3.2.5.

Conjecture 20 For n∗ and s discussed in conjectures 17 and 18,s (n∗) has approximately the
same relationship top, δ andα asn∗ has top, δ andα, respectively.

Support for conjecture. Whens (n∗) = n∗, the result is trivially true. Therefore we only need
to consider case (iii) of conjecture 18, that is, whens < n∗. Figures 14, 15 and 16 in subsection
3.2.5 show the behavior ofs whenα < α. Recall thatx∗

n∗ = 0 by definition of an n-EM strategy.
Therefore the outer edge in the figure that forms a geometric ridge in the plots, represents second to
last favor by agenta. The referenced plots show this ridge forx∗

n∗−1 (α), xn∗−1 (p) andx∗
n∗−1 (δ),

respectively. Along each ridge runs a “concave canal” that is formed by the set of smallest nonzero
favorsx∗

s(n∗) (α), x∗
s(n∗) (p) andx∗

s(n∗) (δ), respectively. It is apparent from the plots thatx∗
s(n∗)

varies in tandem withx∗
n∗−1 favors in terms of position, and hence it follows thatΔs

Δα
≈Δn∗

Δα
, Δs

Δp
≈Δn∗

Δp

and Δs
Δδ

≈Δn∗

Δδ
.

18



3.2.2 Efficient favors asp varies

Figure 6 was interpolated from a set of globally optimal EM favor sequences(x∗) for α = 0.5,
δ = 0.85 fixed, while p was varied fromp = 0.03, 0.07, ..., 0.47. The plot shows the globally
efficient size of favors(x) across states(s) as the probability of favor opportunities varies from0
to 0.5. Because the number of states is a discrete variable and favors are optimized across states,
this causes the magnitude of each favor to increase asp increases until it becomes optimal to add
another state. At this point the size of the favors in the older states tends to fall slightly. The favor
levels then climb to and above their previous levels until it becomes optimal to add yet another
state, and so forth. This gives the favor surface a jagged outline along thep-axis. The surface
would appear even more jagged had we used a larger number of points forp ∈ (0, 1/2). Along the
s-axis favors are decreasing for the givenα, however, later we show that this is not necessarily the
case forα sufficiently low. The plot also demonstrates lemma 7 in that for any value ofp, at least
some level of equality matching dominates autarky when utility functions areα-concave.

Figure 6:
n∗-EM favor sequence: x∗

1(p), x∗
2(p), ..., x∗

n∗(p)
Algorithm: Differential evolution
Points: α = 0.5, δ = 0.85, p = 0.03, 0.07, ..., 0.47

The corresponding numbers for figure 6 are shown in figure 7 and can found in more detail in
the appendix in tables 5 and 6, respectively.
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Figure 7: Figure 6 data: Multi-state EMx∗
s(p)

The slack in incentive compatibility constraints associated with figure 6 are available in table
(figure) 8. The ICC are virtually all tight suggesting the solution may represent a second best
strategy profile in at least some situation or for some parameter values.

Figure 8: ICC for figure 6: Multi-state EMx∗
s(p)

Figure 9 depicts hown∗ changes withp. The step function was interpolated from a set of
solutions forα = 0.5, δ = 0.9 andp = 0.005, 0.01, ..., 0.495. The other function is a generic linear
approximation. The figure illustrates that steps inp are approximately constant.

Figure 9:n∗(p) for n-EM equilibria
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3.2.3 Efficient favors asδ varies

Figure 10 was interpolated from the multi-state EM solution sequences (favors) for points(α, δ, p) =
(0.6, 0.37, 0.4), (0.6, 0.41, 0.4),..., (0.6, 0.93, 0.4). The regions forδ < 0.37 andδ > 0.93 were
excluded from the plots because they would have made the plots visually less informative.4 x∗

s (δ)
displays many of the same characteristics as the corresponding plot forx∗

s (p) (figure 6); x∗
s (δ)

are jagged along theδ-axis because number of states is a discrete variable, and forδ fixed,x∗
s (δ)

decreases alongs for the givenα, or for α high enough which we show later. A closer inspection
of the plots and the data shows that the dependence ofn∗ andx∗

s, s = 1, ..., n∗ on p is (direct)
linear, and (direct) convex onδ for α sufficiently high.

Figure 10:
n∗-EM behavior w.r.t. δ: x∗

1(δ), x
∗
2(δ), ..., x

∗
n∗(δ)

Algorithm: Nelder-Mead simplex
Points: α = 0.6, p = 0.4, δ = 0.37, 0.41, ..., 0.93

The data points and ICC for figure 10 are available in the appendix tables 7 and table 8. As
before the incentive compatibility constraints are all tight within round off error. Figure 11 depicts
hown∗ changes withδ. The step function was interpolated from a set of solutions forα = 0.5, p =
0.3 andδ = 0.1, 0.11, ..., 0.9. The other function is a generic approximation. The figure illustrates
that steps inδ are decreasing.

3.2.4 Efficient favors asα varies

Figure 12 was interpolated from a set of favor sequencesx∗ = {x∗
1, x

∗
2, ..., x

∗
n∗} obtained by opti-

mizing σ∗
emn (x∗) for δ = 0.8 andp = 0.4 fixed, whileα was varied fromα = 0.2, 0.24, ..., 0.8.

4Solutions forδ < 0.37 each consist of one tiny nonzero favor(x∗
1 < 0.1) and subsequently would only have

added flat space into our plots. The number of nonzero favors increase exponentially in asδ → 1 so including the tail
end would have dominated the rest of the plot, and obscured other details.
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Figure 11:n∗(δ) for n-EM equilibria

Both thedifferential evolutionandNelder-Meadalgorithms converged to the same set of global
solutions, but performed poorly for smallerα. Later on we use aninterior point algorithm to find
(local) x∗ solutions consistent withσ∗

emn whenα < 0.2 (high concavity case). However figure 12
already supports conjecture 18, which states that forα high enoughx∗ (α) is decreasing, but forα
sufficiently low,x∗ (α) fails to remain decreasing toward the end of the sequence. As withx∗(p)
in p andx∗

s (δ) in δ, figure 12 shows thatx∗ (α) is jagged inα because the number of states,s, is
treated as a continues variable (for visual effect) even thoughs ∈ N is discrete.

Figure 12:
n∗-EM favor sequence: x∗

1(α), x∗
2(α), ..., x∗

n∗(α)
Algorithm: Differential evolution
Points: δ = 0.8, p = 0.4, α = 0.2, 0.24, ..., 0.8

The Mathematica code used to compute the data points and to plot figure 12 is available in
the appendix. The data points and associated payoffs and incentive compatibility constraints may
also be found there in tables 9 and 10. The ICC are all close to zero. Figure 13 depicts hown∗
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changes withα. The step function was interpolated from a set of solutions forδ = 0.7, p = 0.3
andα = 0.1, 0.11, ..., 0.9. The other function is a generic approximation. The figure illustrates
that steps inα are increasing.

Figure 13:n∗(α) for n-EM equilibria

3.2.5 Analysis of specialn∗-EM cases:α < α

For smallα we used Mathematica’s interior point algorithm that solves for local optima, but in our
case local optima are also global optima. The interior point algorithm is more stable and can handle
more variables (longer favor sequences) than Mathematica’s global algorithms. Therefore it lets us
solveσ∗

emn (x∗) for smallerα and gives us a closer look at the behavior ofx∗ (α) sequences in lowα
cases. Figure 14 depicts globally efficientx∗ (α) sequences forα < α that were interpolated from
n∗-EM solutions forα = 0.08, 0.09, 0.10, ..., 0.35 (the results forα = 0.2, 0.3 are consistent with
the results obtained by differential evolution and Nelder-Mead algorithms). Then∗-EM solution
data is available in table 11 in the appendix.

Of course the sudden jump in favor sizes toward the very end of the globally efficient series of
favors shown in figure 14 could be an error of some sort, perhaps a short-coming in the numerical
algorithms employed by Mathematica? However, it seems exceedingly unlikely that three different
algorithms (Differential evolution, Nelder-Mead, and interior point) would all produce identical
errors. But just to be sure we reran the experiment show in figure 14 with one exception; favors
were constrained by0 ≤ xs ≤ xs−1, ∀s wherex0 ≡ 0, instead of the standard feasibility constraint
0 ≤ xs ≤ 1, ∀s. The results are available in table 12 and figure 25 in the appendix. The plot
looks identical to its counterpart with unconstrained favor sizes except for the jump in favor values
at the end of favor sequences. The payoffs corresponding to the constrained favor sequences were
smaller by about0.02% on average, but more importantly thexs ≤ xs−1 constraints bound where
xs > xs−1 previously instead of converging to completely different fixed points.

Figure 15 shows then∗ andx∗ (p) associated with a globally efficientn∗-EM equilibrium as
a function ofp ∈ (0, 1/2) whenα < α. The plot was interpolated from parametric solutions
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Figure 14:
n∗-EM behavior for α < α: x∗

1(α), x∗
2(α), ..., x∗

n∗(α)
Algorithm: Interior point
Points: δ = 0.85, p = 0.4, α = 0.08, 0.09, ..., 0.35

for α = 0.2, δ = 0.85 andp = 0.01, 0.02, ..., 0.49. The corresponding numbers are available
in the appendix in table 13. The key take-away from the figure is that while an increase in the
probability of favor opportunities(p) increases the number of favors that are optimal as before,
it does not eliminate or change the “canal” of minimal nonzero favors defined bys in conjecture
18 that appears in the interior of the optimal favor sequence, that is,s < n∗. Furthermore,s (p)
appears to be directly proportional ton∗(p).

Figure 15:
n∗-EM behavior for α < α : x∗

1(p), x∗
2(p), ..., x∗

n∗(p)
Algorithm: Interior point
Points: α = 0.2, δ = 0.85, p = 0.01, 0.02, ..., 0.49

Figure 16 shows the same figure with respect to changingδ. The plot was interpolated from
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parametric solutions forα = 0.3, p = 0.3 and δ = 0.6, 0.61, ..., 0.96, and the corresponding
numbers are available in the appendix in table 14. As before, the “canal” of minimal nonzero
favors defined bys remains in the interior of the optimal favor sequence;s < n∗ ands (δ) appears
to be directly proportional ton∗ (δ).

Figure 16:
n∗-EM behavior for α < α : x∗

1(δ), x
∗
2(δ), ..., x

∗
n∗(δ)

Algorithm: Interior point
Points: α = 0.3, p = 0.4, δ = 0.6, 0.61, ..., 0.96

3.3 Partial results and conjectures

The conjectures in this subsections are more speculative than the earlier conjectures in this section.
For finite dimensional EM strategies we defined the value of a strategy profile as the sum of

average discounted state payoffs for both agents weighted by the stationary probabilities of each
state (definition 12). If the starting state is random, this value is also equal to the strategy profile’s
dynamically defined value. For infinite dimensional EM strategy profiles this is not the case as
∞-EM strategies have no stationary distribution (lemma 15). Therefore the value ofσem∞ has to
be computed dynamically and the only sensible starting is state 0. This makes comparisons with
finite σemn trickier, but our preliminary results suggest that∞-EM strategies cannot be incentive
compatible. If an∞-EM equilibrium exists, it would be dominated by a truncated (finite) version
of that∞-EM strategy profile. The core intuition is that in EM equilibria the value of the game is
the average value of all the states, favors are efficient (up to full sharing) so the bigger the favors,
the greater the value of the game. But favors generally have to decrease to provide agents with an
incentive to keep doing them. This in turn means that in a game with infinite states there would
also be infinitely many low favor (low value) states. Truncating the game at some point ensures
that the game is played in high value territory except for two boundary states that nonetheless map
the game back into the higher favors region. Eliminating a boundary state may provide a higher
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return for that point in the game, but it would extend the game into states with lower values until
adding another state would be inefficient.

Conjecture 21 σem∞ are never globally efficient and may not even exist.

We define the expected (average discounted) value in an iterative fashion then expand.

T (σem∞) := 2 (1 − δ) v0, wherevs := p (1−xs)
α+(ys)

α+δ(vs−1+vs+1)
1−(1−2p)δ

, s ∈ Z (31)

To make the expansion easier, letp̂ ≡ p
1−(1−2p)δ

, δ̂ ≡ δ
1−(1−2p)δ

, x̂s ≡ (1 − xs)
α + (y−s)

α ≡

(1−xs)
α + (x−s)

α, and in these termsvs := p̂x̂s + δ̂ (vs−1 + vs+1) for s ∈ Z. Expandingv0

iteratively:

v0 = p̂x̂0 + δ̂ (v−1 + v+1)

= p̂x̂0 + δ̂
(
p̂x̂−1 + δ̂ (v−2 + v0)

)
+ δ̂

(
p̂x̂1 + δ̂ (v0 + v2)

)

= p̂x̂0 + p̂δ̂x̂−1 + p̂δ̂x̂1 + δ̂2 (v−2 + 2v0 + v2)

= p̂x̂0 + p̂δ̂x̂−1 + p̂δ̂x̂1 + δ̂2
(
p̂x̂−2 + δ̂ (v−3 + v−1)

)

+ 2δ̂2
(
p̂x̂0+δ̂ (v−1 + v+1)

)
+ δ̂2

(
p̂x̂2 + δ̂ (v1 + v3)

)

= p̂x̂0

(
1 + 2δ̂2

)
+ p̂δ̂x̂−1 + p̂δ̂x̂1 + p̂δ̂2x̂−2 + p̂δ̂2x̂2 + δ̂3 (v−3+3v−1+3v+1 + v3)

= ...

To further condense the expansion, letx̌0 := x̂0, x̌j := x̂j + x̂−j for t ∈ N. Then

v0 = p̂
(
1 + 2δ̂2

)
x̌0 + p̂δ̂x̌1 + p̂δ̂2x̌2 + δ̂3 (v−3+3v−1+3v+1 + v3)

= p̂
(
1 + 2δ̂2 + 6δ̂4 + 20δ̂6 + ...

)
x̌0 + p̂

(
δ̂ + 3δ̂3 + 10δ̂5 + 35δ̂7 + ...

)
x̌1

+ p̂
(
δ̂2 + 4δ̂4 + 15δ̂6 + 56δ̂8 + ...

)
x̌2 + p̂

(
δ̂3 + 5δ̂5 + 21δ̂7 + 84δ̂9 + ...

)
x̌3 + ...

The x̌j coefficients, say̌Cj, consist of discounted sums of binomials. Taking their limits shows
thatČj have2F1 Hypergeometric5 form

Čj =
∞∑

i=0

p̂

(
2i + j

i + j

)

δ̂2i+j = p̂δ̂j
2F1

(
1+j
2

,2+j
2

; 1 + j; 4δ̂
2
)

=⇒ Č0 = p̂√
1−4δ̂2

, Č1 = p̂1−
√

1−4δ̂2

2δ̂
√

1−4δ̂2
, Č2 = p̂1−2δ̂2−

√
1−4δ̂2

2δ̂2
√

1−4δ̂2
, ...

∴ T (σem∞) = 2 (1 − δ) p̂
∞∑

j=0

2F1

(
1+j
2

,2+j
2

; 1 + j; 4δ̂
2
)

x̌j

5“The” Hypergeometric function is defined as2F1(a, b; c; z) =
∑∞

k=0(a)k(b)k/(c)k zk
/

k!
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= 2(1−δ)p
1−(1−2p)δ

1
√

1 − 4δ2

(1−(1−2p)δ)2

(1 − x0)
α + (x0)

α

+ 4(1−δ)p
1−(1−2p)δ

∞∑

j=1

2F1

(
1+j
2

,2+j
2

; 1 + j; 4δ2

(1−(1−2p)δ)2

)
((1 − xj)

α + (x−j)
α)

The hypergeometric function is well-suited for numerical and analytical work but we leave further
analysis ofT (σem∞) for the future.

Speculation supporting conjecture 21.Suppose an∞-EM equilibrium exists. We assume the
values of the associated favors would have to be decreasing for both theoretical and empirical rea-
sons. In theory we expect favors to decrease to provide agents with an incentive to keep doing them
(do a big favor today in return for the promise of bigger reciprocal favors tomorrow). Empirically
(numerical testing) we found that favors were decreasing, except in special cases that involved a
jump toward the end of the favor sequence. If the sequence is infinite it has no end (to state the
obvious), so there would be no reason to expect any jump either. Furthermore, our numerical al-
gorithm worked by optimizing the value of the game forn states, comparing the value to then− 1
state value, and adding another state and repeating if then state value was higher than then − 1
state value. The solutions were of course finite, but moreover they were well-behaved in terms of
the optimal number of states (see figure 5), and show almost surely that the number of states does
not diverge to infinity within the interior of the parameter space. That said, numerical analysis is
not well-suited for analysis of asymptotic behavior we so cannot rule out anomalous behavior as
α → 1, δ → 1 or p → 1/2.

Conjecture 22 The globally efficientn∗-EM equilibrium exists and is unique up to a measure zero
in parameter space. That is, there may be pairs of points (zero measure) in the parameter space
for which then∗ andn∗ + 1 state values of the game are equal.

Speculation supporting conjecture 22.Our numerical tests always produced uniquen∗-EM out-
comes, however, the parameters live on continuous intervals while the optimal number of states

is discrete. Let̃n be the efficient number of states for a triplet of values
(
α̃, δ̃, p̃

)
. Suppose we

decreaseα, or increaseδ or p continuously while the globally efficient multi-state solution is up-
dated untiln∗ = ñ turns ton∗ = ñ + 1. At that pointT

(
σ∗

emñ

)
= T

(
σ∗

emñ+1

)
, so by definition

16 both are globally efficient multi-state equilibria. For any integer pair(n, n + 1) with n ≥ 2, we
should be able to create three distinct pairs of such non-unique EM equilibria (one pair for each
parameter), but they would have measure zero mass. It might be possible to use a similar technique
to create lines or planes of n-EM intersections by increasing one parameter while lowering another
subject toT (σ∗

emn) = T
(
σ∗

emn+1

)
, however there is no reason to suspect thatT (σ∗

emn) would
remainconstant.
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Figure 17: Automata for 6-state pseudo-HSSGL strategy

4 Pseudo-highest symmetric self-generating line (HSSGL) equi-
libria

In this section we discuss an analog of AB’s [1] highest symmetric self-generating line (HSSGL)
equilibrium concept for favor-trading with concave utility functions. Our version of HSSGL called
pseudo-HSSGLinvolves finite number of states, whereas AB used infinite states, but in the interior
both have the same automata representation (see figure 17). Another difference between AB’s
HSSGL and ourpseudo-HSSGLis that we do not limit our analysis onto lines (symmetric or
otherwise). We call a pseudo-HSSGL strategy withn states ann-state pseudo-HSSGL (n-HSSGL)
strategy, and denote it withσhssgln .

4.1 Globally efficient n-HSSGL equilibria (n∗-HSSGL)

We use the same approach as withn∗-EM strategies to numerically optimize problem (21). As
before, it is enough to solve the optimization problem for agenta because we impose symme-
try on it by replacingvs and ys with u−s and x−s, respectively, where the state space isS ≡
{−n, ...,−1, 1, ..., n}. The objective is simplyu(x) = u−1(x)+u1(x)

2
because the HSSGL game

starts from either state 1 (agentb fully advantaged) or state -1 (agenta fully advantaged). Indi-
vidual payoffs are described by equation (32) and incentive compatibility constraints by equation
(33).
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us :=






p ((1 − δ)(1 − x−n)α + δu−1)

+p ((1 − δ)(y−n)α + δu1) + (1 − 2p)δu−n

s=-n

p ((1 − δ)(1 − xs)
α + δu−1)

+p ((1 − δ)(ys)
α + δu1) + (1 − 2p)δus−1

s=1-n,...,-1,

p ((1 − δ)(1 − xs)
α + δu−1)

+p ((1 − δ)(ys)
α + δu1) + (1 − 2p)δus+1

s=1,...,n-1,

p ((1 − δ)(1 − xn)α + δu−1)

+p ((1 − δ)(yn)α + δu1) + (1 − 2p)δun

s=n.

(32)

ICCs(x) :=






u−1 − u−n − 1−δ
δ

(1 − (1 − x−n)α) s=-n,
u−1 − us−1 − 1−δ

δ
(1 − (1 − xs)

α) s=1-n,...,-1,
u−1 − us+1 − 1−δ

δ
(1 − (1 − xs)

α) s=1,...,n-1,
u−1 − un − 1−δ

δ
(1 − (1 − xn)α) s=n.

(33)

The problem is computationally harder than optimizing n-EM strategies, so we used the CP-model
with interior point algorithm and applied it to well-behaved regions of the parameter space.

4.2 Numerical analysis ofn∗-HSSGL equilibria

For low values ofp, our computedn∗-HSSGL results are approximately consistent with AB’s
original HSSGL equilibria. That is, the size of the “small” favor owed (interest payment) by
the advantaged agent grows as periods of no favors pass, while the “large” favor owed by the
disadvantaged agent decreases. However, for largerp the optimaln∗-HSSGL strategy appears to
converge to four states: large favors in the inner states, and small favors in the outer states.

Figure 18:
n∗-HSSGL favors as p varies: View 1
Points: α = 0.3, δ = 0.9, p = 0.14, 0.16, ..., 0.46
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Figure 19:
n∗-HSSGL favors as p varies: View 2
Points: α = 0.3, δ = 0.9, p = 0.14, 0.16, ..., 0.46

For the parameter values used to construct figures 18 and 19, then∗-HSSGL equilibria produce
higher payoffs thann∗-EM equilibria forp = 0.42, 0.44, 0.46 and lower payoffs otherwise. If we
lower δ by 0.1, n∗-HSSGL dominatesn∗-EM for all p in our sample. If we lowerα by 0.1 n∗-
HSSGL dominatesn∗-EM for p = 0.14, 0.16 andp ≥ 0.34. However, in each case then∗-HSSGL
dominance increases asp increases, and is insignificant (within margin of error) for lowp values.

Figures 26-29 in the appendix illustraten∗-HSSGL equilibrium behavior asδ andα vary per
our CP-model and the (local) interior point algorithm. However, even these numerical solutions
were difficult to find in terms of error free parameter space coverage and starting points for the
interior point algorithm.

For theδ variation analysis we usedδ = 0.65, 0.67,..., 0.95 while α = p = 0.3. All n∗-
HSSGL equilibria involved 8 or fewer states without strong patterns. However, we also ran the
same optimization exercise usingn∗-EM strategies, and it turned out thatT (σ∗

emn) > T
(
σ∗

hssgln

)

for δ < 0.8 andn∗-HSSGL in turn outperformedn∗-EM increasingly forδ > 0.8.
To investigaten∗-HSSGL responsiveness to changes in concavity, we usedα = 0.1, 0.12, ...,

0.74 while δ = 0.9 andp = 0.3. As the game became more linear (α approached1) the optimaln∗-
HSSGL solution included a greater number of states and began to resemble AB’s HSSGL strategy.
This suggests that pure-form symmetric line equilibria are optimal in the linear model (for some
parameter values), but not in the concave model. In comparison ton∗-EM, n∗-HSSGL produced
higher payoffs for lowα values and lower payoffs for highα.

5 Equilibria with favor-depreciation (FD equilibria)

Consider a strategy that involves a small probabilityq ∈ [0, 1/2] that if the disadvantaged agent
does not do a favor in the boundary state, the game moves inwards by one state. The idea is to
chooseq high enough that the agents would do a small favor at the boundary state to avoid the
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chance of punishment in the form of having to do a positive (bigger) favor next period. We call
this mechanismfavor-depreciation.It is our initial attempt to design equilibria similar to HSSGL
equilibria by AB [1] for a multi-state environment, or equilibria in continuous time by Hauser and
Hopenhayn [8] for a discrete time environment.

In numerical testing, globally efficient (to use the EM definition 16)equilibria with favor-
depreciation (FD equilibria)were only marginally better than correspondingn∗-EM equilibria.
When the maximum number of states was bound exogenously, FD equilibria performed somewhat
better against their locally efficient n-EM counterparts. Figures 20 and 21 show the results of FD
equilibria bounded by a maximum of 4 states withα = 0.1, δ = 0.5 andp = 0.07, 0.11, ..., 0.47.
The corresponding results for locally efficient n-EM equilibria are in figures 22 and 23. Column
%(FD − EM) in figure 23 shows the percentage difference between an example set of 4-state
FD and EM equilibria payoffs. This was consistent with our expectation since favor-depreciation
strategies remove some of the inefficiency involved with boundary states, however we were not
expecting as much of a difference for low values ofp when the constraint on the number of states
is not even binding. The payoff difference starts at5.4% for p = 0.07 and steadily increases to
9% as the probability of favor opportunities is increased top = 0.47. Perhaps the lack of a greater
difference is due to a fundamental inefficiency in FD strategies; the (fully) disadvantaged agent is
punished with probabilityq even when she does not do a favor simply because she did not receive
a favor opportunity. In our numerical tests, estimates of optimalq were very small for smallp
(around0.01) but grew larger (to0.066) asp increased. The largerp is, the higher the number of
efficient states is, and hence the greater the effect of the bound on states.

Figure 20:
4-state FD equilibria: x∗

1(p), x∗
2(p), ..., x∗

n∗(p)
Algorithm: Interior point
Points: α = 0.1, δ = 0.5, p = 0.07, 0.11, ..., 0.47

31



Figure 21: 4-state FD equilibria: Data for figure 20

Figure 22:
4-EM equilibria: x∗

1(p), x∗
2(p), ..., x∗

n∗(p)
Algorithm: Interior point
Points: α = 0.1, δ = 0.5, p = 0.07, 0.11, ..., 0.47

Figure 23: 4-EM equilibria: Data for figure 22

5.1 Remaining questions

Other potential equilibria to investigate include a EM-HSSGL hybrids and equilibria involving
punishment phases. For example, if no one does a favor, a strategy profile could specify that neither
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agent do a favor next period either as punishment. The infinite dimensional EM strategies also
require more work as we did not have time to apply the expression forT (σem∞) that we derived.
For finite dimensional strategies, we believe we could generate a full set of data in all dimensions,
fit an approximating curve to it, and use the result for comparative statistics and other analysis.
It may be possible to analyze the system of simultaneous n-EM payoff equations implicitly, for
example, by the use of perturbation analysis.

6 Conclusion

By choosing a concave utility function that is arbitrarily close to a linear utility line, we can obtain
equilibria and outcomes that are arbitrarily close to the linear case of favor-trading. Therefore we
focused on the family ofα-concave functions to emphasize the impact that sufficient concavity can
have on favor-trading games. In particular, favor-trading becomes possible for allδ at some level
and multi-state strategies become more valuable. For example, when discount factors are just high
enough to equality match full favors doing so maximizes expected utility in the linear case within
a large class of incentive compatible equilibria, whereas in the concave case we can do better by
lowering the favor size and using the generated slack in the incentive compatibility constraints to
enforce a second smaller consecutive favor.

In the rest of the paper, we generalized AB’s [1] equality matching to multiple states or alter-
natively, we generalized M̈obius’ “chips mechanism” to divisible chips. We defined multi-state
equality matching for equilibria that were locally efficient for a given number of states, and then
for equilibria that were globally efficient across any number of states. We also defined infinite state
equality matching strategies, but argued that they either were not incentive compatible or that they
would be dominated by finite state equality matching equilibria. We constructed two parametric
models to numerically analyze globally efficient multi-state equilibria. The first model simulates
a large sample of games, derives payoff functions from the simulations, and finds the number and
size of favors that would be optimal for the constructed payoff functions. The second model solves
the system of simultaneous payoff equations associated with an equality matching game directly,
and uses the results to find the optimal favor sequence given a general strategy profile such as multi-
state equality matching or pseudo-highest symmetric self-generating line strategies. We used these
models to compute sets of solutions that spanned the parameter space and then interpolated general
equilibria characteristics from those results. We further constructed a version of AB’s highest sym-
metric self-generating lines equilibria that followed the same automata except in the border states
and was not restricted to lines or infinite number of states. And we also extended the multi-state
equality matching model to a class of equilibria that involve favor-depreciation and that dominate
globally efficient multi-state equilibria. All strategies were analyzed using our parametric models,
but not in as much depth as multi-state equality matching strategies. Further research is needed
to find closed-form solutions to these various strategy profiles and to investigate hybrid and other
strategies for favor-trading with concave utility functions.
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7 Appendix

7.1 Proofs

Proof. (Lemma 7: EM equilibrium always exists)
Consider a simple (2-state) EM strategy profileσem consisting of favorsx = y = ε, and payoffs

uε andūε for the disadvantaged and advantaged agents, respectively. We use a direct proof to show
that given anyα, δ andp, there exists anε small enough that the incentive compatibility constraint
for simple EM is satisfied.

The payoffs are

uε = p ((1 − δ)(1 − ε)α + δūε) + (1 − p)δuε

= p
(1 − δ) (1 − ε)α + δūε

1 − δ(1 − p)

ūε = p ((1 − δ) + δūε) + p ((1 − δ)εα + δuε) + (1 − 2p)δūε

= p
(1 − δ) (1 + εα) + δuε

1 − δ(1 − p)

To obtain explicit equations foruε andūε the solve the two equations above in two unknowns,

uε = p
(1 − δ)(1 − ε)α + pδ (1 + (1 − ε)α + εα)

1 − (1 − 2p)δ

ūε = p
(1 − δ) (1 + εα) + pδ (1 + (1 − ε)α + εα)

1 − (1 − 2p)δ

=⇒ ūε − uε =
p(1 − δ) (1 − (1 − ε)α + εα)

1 − (1 − 2p)δ
(34)

The incentive compatibility constraint is

(1 − δ) (1 − ε)α + δūε ≥ 1 − δ + δuε

=⇒ δ ≥
1 − (1 − ε)α

1 − (1 − ε)α + ūε−uε

We substitute for̄uε − uε from equation 34,

δ ≥
1 − (1 − ε)α

1 − (1 − ε)α + p(1−δ)(1−(1−ε)α+εα)
1−(1−2p)δ

and solve forδ (here we skip several steps of straightforward simplification),

δ ≥
1

1 − p + p εα

1−(1−ε)α

→ 0 asε → 0. (35)
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becauseα ∈ (0, 1) andp ∈ (0, 1/2) are fixed andlimε→0
εα

1−(1−ε)α = ∞. And sinceu (ε) = εα is
continuous forα > 0 andε > 0, we can always find anε sufficiently small that inequality 35 is
satisfied.

Proof. (Lemma 13: δ > δα =⇒ ∃σ′
em3 such thatT

(
σ′

em3

)
> T (σem2))

We first have to solve system of 3-state EM payoff equations whenδ = δα :

u3 = p ((1 − δα) + δαu3) + p ((1 − δα) yα
1 + δαu2) + (1 − 2p)δαu3,

u2 = p ((1 − δα) (1 − x2)
α + δαu3) + p ((1 − δα) yα

2 + δαu1) + (1 − 2p)δαu2,

u1 = p ((1 − δα) (1 − x1)
α + δαu2) + (1 − p)δαu1.

Recall thatδα = 2α−1
2α−1+p(2−2α)

and by definition of multi-state EM strategiesy1 = x2 and
y2 = x1 :

u3 = p
((

1 − 2α−1
2α−1+p(2−2α)

)
+ 2α−1

2α−1+p(2−2α)
u3

)

+ p
((

1 − 2α−1
2α−1+p(2−2α)

)
xα

2 + 2α−1
2α−1+p(2−2α)

u2

)

+ (1 − 2p) 2α−1
2α−1+p(2−2α)

u3,

u2 = p
((

1 − 2α−1
2α−1+p(2−2α)

)
(1 − x2)

α + 2α−1
2α−1+p(2−2α)

u3

)

+ p
((

1 − 2α−1
2α−1+p(2−2α)

)
xα

1 + 2α−1
2α−1+p(2−2α)

u1

)

+ (1 − 2p) 2α−1
2α−1+p(2−2α)

u2,

u1 = p
((

1 − 2α−1
2α−1+p(2−2α)

)
(1 − x1)

α + 2α−1
2α−1+p(2−2α)

u2

)

+ (1 − p) 2α−1
2α−1+p(2−2α)

u1.

Solving

u3 = p
−1+32α−4α+(4−4x1)α+(1−x1)α−21+α(1−x1)α−(1−32α+4α)xα

1 +(2−2x2)α−(1−x2)α+(2α−1)xα
2

21+α−1
,

u2 = p
−1+2α+(2−2x1)α−(1−x1)α+(2α−1)xα

1 +(1−x2)α+xα
2

21+α−1
,

u1 = p
1−21+α+4α−(4−4x1)α+3(2−2x1)α−(1−x1)α+(2α−1)2xα

1 +(2−2x2)α−(1−x2)α+(2α−1)xα
2

21+α−1
.

And taking the differences and the sum average, and simplifying

u3 − u2 = p (2 − 2α)
2α−(2−2x1)α+(1−x1)α+2αxα

1 −(1−x2)α−xα
2

21+α−1

u2 − u1 = p (2 − 2α)
2α−1−(2−2x1)α+(2α−1)xα

1 +(1−x2)α+xα
2

21+α−1

T (σ′
em3) = 2

3
(u3 + u2 + u1)

= 2
3
p (1 + (1 − x1)

α + xα
1 + (1 − x2)

α + xα
2 )
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The incentive compatibility constraints forσ′
em3 are

(1 − δα) (1 − x1)
α + δα u2 ≥ 1 − δα + δα u1

=⇒ δα

1−δα
(u2 − u1) ≥ 1 − (1 − x1)

α

(1 − δα) (1 − x2)
α + δα u3 ≥ 1 − δ + δα u2

=⇒ δα

1−δα
(u3 − u2) ≥ 1 − (1 − x2)

α

Suppose the ICC inequalities bind. Substituteδα

1−δα
= 1

p
2α−1
2−2α and the values foru3 − u2 and

u2 − u1 into the ICC and simplify

(2α−1)(2α−(2−2x1)α+(1−x1)α+2αxα
1 −(1−x2)α−xα

2 )
21+α−1

= 1 − (1 − x1)
α

(2α−1)(2α−(2−2x1)α+(1−x1)α+2αxα
1 −(1−x2)α−xα

2 )
21+α−1

= 1 − (1 − x2)
α

Solving yieldsx2 = (1 − 2x1) /2.

Proof. (Lemma 14: πs (σemn) = 1/n, s = 1, 2, ..., n)
Let π∗ = (π∗

1, π
∗
2, . . . , π

∗
n), whereπ∗

1 + π∗
2 + . . . + π∗

n = 1, denote the fraction of time spent
in the corresponding states, and letm denote the transformation matrix of agents between states if
they followσemn . In equilibrium,π∗ has to satisfy the following equations,

m′π∗ = π∗ andπ∗
1 + π∗

2 + . . . + π∗
n = 1,

writing out them-matrix andπ∗-vectors,















1 − p p 0 ∙ ∙ ∙ 0

p 1 − 2p p 0
...

0 p 1 − 2p p
... 0 p 1 − 2p

... 0 p 0
...

. . . p
0 ∙ ∙ ∙ 0 p 1 − p























π∗
1

π∗
2
...

π∗
n








=








π∗
1

π∗
2
...

π∗
n








multiplying out the terms,

(1 − p)π∗
1 + pπ∗

2

pπ∗
1 + (1 − 2p)π∗

2 + pπ∗
3

pπ∗
2 + (1 − 2p)π∗

3 + pπ∗
4

...
pπ∗

n−2 + (1 − 2p)π∗
n−1 + pπ∗

n

pπ∗
n−1 + (1 − p)π∗

n

= π∗
1

= π∗
2

= π∗
3

...
= π∗

n−1

= π∗
n
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Solving such thatπ∗
1 + π∗

2 + . . . + π∗
n = 1 =⇒ π∗ =

(
1
n
, 1

n
, . . . , 1

n

)
.

7.2 Mathematica code

The following Mathematica code offers a compact example of using simulated payoffs (section
3.1.2) withα = 0.5, δ = 0.8 andp = 0.05, 0.1, ..., .45. The code constructs payoff functions from
the simulated data and solves then∗-EM optimization problem for those payoff functions and the
associated triplet of parameter values(α, δ, p) . The solution set is used to interpolate 3D-plot of
the optimal favor sequences for the parameter space that was covered (see figure 4).

(* Clear old variables and set new values *)
Clear[”Global‘*”]; α=.5;δ=.8;II=100;J=10000;
tr1:=p;tr1a=”p”;tr2:=α;tr2a=”α”;tr3:=δ;tr3a=”δ”;Col=1;
v0=1/20;v1=9/20;vInc=1/20;
For[p=v0,p≤v1,p+=vInc,

PrintTemporary[ToString[tr1a]<>”=” <>ToString[N[tr1]]];
Clear[avU,xSeq,ICCa];n=1;u[0]=p;
While[n<3||avU[n-1]<avU[n],n++;

Clear[x];x[0]=1;x[n+1]=0;x[n]=0;
(* generate data *)
W=RandomChoice[{p,p,1-2p}→{1,-1,0},{J,II}];
Do[S[k]=Drop[FoldList[Max[1,Min[n,Plus[#1,#2]]]&,k,#]&/@W,None,-1],

{k,1,n}];
(* derive payoffs and define objective *)
Do[u[k]=(1-δ)Mean[(Map[(1-x[#]) α̂&,S[k](W/.-1→0),{2}]+Map[x[n+1-#] α̂&,

-S[k](W/.{1→0}),{2}]).Array[δˆ(#-1)&,II]], {k,1,n}];
objective=Sum[u[k],{k,1,n}]/n;
(* define incentive and feasibility constraints *)
ICCa[n]=Table[0≤(1-δ)((1-x[k])ˆα-1)+δ (u[k+1]-u[k]),{k,1,n-1}];
constraints=And@@Join[Table[0≤x[k]≤1,{k,1,n-1}],ICCa[n]];
(* choose starting points and solve for optimal favors *)
variables=Table[{x[t],Min[2*p,.55]* δ*tˆ(-α)},{t,1,n-1}];
{avU[n],xSeq[n]}=FindMaximum[{objective,constraints},variables]

];
nMax=Ordering[Array[avU,n-1,2],-1][[1]]+1;
Col=Max[Col,Count[xSeq[nMax][[All,2]], ]];
optimalX0[tr1]=Join[xSeq[nMax][[All,2]],Table[0,{i,30}]]

];
gg={Black,24,”Helvetica”};
data=Flatten[Table[{vv,nn,optimalX0[vv][[nn]]},{vv,v0,v1,vInc},{nn,1,Col}],1];
ListPlot3D[data,AxesLabel→{Text[Style[ToString[tr1a],gg]],Text[Style[”s”,gg]],

Text[Style[”x”,gg]]},ColorFunction→(ColorData[”LakeColors”][#3*5/3]&)]

Our second example applies the computed payoffs model (section 3.1.3) and the differential
evolution algorithm to find globally efficient equilibrium favors and associated payoffs forα =
0.2, .24, ..., .8 while δ = .8 andp = .4. The results are available in figure 12 and table 9.
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(* Clear old variables and set new values *)
Clear[”Global‘*”]; δ=4/5;p=2/5;Col=1;
tr1:=α;tr1a=”α”;tr2:=δ;tr2a=”δ”;tr3:=p;tr3a=”p”;
(* Define set of system of payoff equations and the ICC *)
equ[n ]:=Join[Table[

u[s]==(p (δ u[s-1]+δ u[1+s]+(1-δ)(x[1+n-s]α+(1-x[s])α)))/(1-(1-2 p)δ),
{s,2,n-1}],{u[1]==(p (δ u[2]+(1-δ) (1-x[1])α))/(1-(1-p)δ),
u[n]==(p (δ u[n-1]+(1-δ) (1+x[1]α)))/(1-(1-p)δ)}];

ICCa[n ]:=Table[0≤δ (u[s+1]-u[s])-(1-δ)(1-(1-x[s])α),{s,1,n-1}];
v0=1/5;v1=4/5;vInc=1/25;
For[α=v0, α≤v1, α+=vInc,

Clear[avU,xSeq];n=1;PrintTemporary[ToString[tr1a]<>”=” <>ToString[N[tr1]]];
While[n<3||avU[n-1]<avU[n],n++;PrintTemporary[”n=”<>ToString[n]];

Clear[x];x[0]=1;x[n+1]=0;x[n]=0;
(* Solve system of payoff equations *)
uSolv=NSolve[equ[n],Table[u[s],{s,1,n}]][[1]];
objective=1/n*Sum[u[t],{t,1,n}]/.uSolv;
constraints=And@@Join[Table[0≤x[k]≤1,{k,1,n-1}],ICCa[n]]/.uSolv;
(* solve for optimal favors *)
variables=Table[x[t],{t,1,n-1}];
{avU[n],xSeq[n]}=NMaximize[{objective,constraints},variables,

{Method→”DifferentialEvolution”,MaxIterations→500}]
];
nMax=Ordering[Array[avU,n-1,2],-1][[1]]+1;
Col=Max[Col,Count[xSeq[nMax][[All,2]], ]];pay[tr1]=avU[nMax];
optimalX[tr1]=xSeq[nMax][[All,2]];
optimalX0[tr1]=Join[xSeq[nMax][[All,2]],Table[0,{i,30}]]

];
gg={Black,24,”Helvetica”};
data=Flatten[Table[{vv,nn,optimalX0[vv][[nn]]},{vv,v0,v1,vInc},{nn,1,Col}],1];
Labeled[TableForm[Table[Prepend[optimalX[vv],pay[vv]],{vv,v0,v1,vInc}],

TableHeadings→{Table[ToString[tr1a]<>” = ” <>ToString[N[vv]],{vv,v0,v1,vInc}],
Prepend[Table[Subscript[x,t],{t,1,Col}],”u”] }],”n∗-EM equilibria: ”<>ToString[tr2a]
<>”=” <>ToString[N[tr2]]<>”,” <>ToString[tr3a]<>”=” <>ToString[N[tr3]],Top,
Frame→True,LabelStyle→Bold]

ListPlot3D[data,AxesLabel→{Text[Style[ToString[tr1a],gg]],Text[Style[”s”,gg]],
Text[Style[”x”,gg]]},ColorFunction→(ColorData[”LakeColors”][#3*5/3]&)]

Our final Mathematica code example was used to generate figures 22 and 23 depicting 4-state
FD equilibria. The included code is longer than previous examples only because it includes most
of the auxiliary subroutines we use while testing the code. These subroutines provide the user with
an option to use either a global or local optimization algorithm, print out intermediate results so
that we can see which part of the code or loop is running and to gather debugging information if
necessary.

(* Clear old variables and set new values *)
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Clear[”Global‘*”];start = SessionTime[];global=0;Col=1;
α=.1;δ=.5;sMax=4;tr1:=p;tr1a=”p”;tr2:=α;tr2a=”α”;tr3:=δ;tr3a=”δ”;
(* Define favor functions and ICC *)
equ[n ]:=Join[Table[

u[s]==(p(δ u[s-1]+δ u[s+1]+(1-δ) (x[1+n-s]α+(1-x[s])α)))/(1-(1-2 p)δ),{s,2,n-1}],
{u[1]==(p(δ u[2]+(1-δ)((1-x[1])α+( x[n])α)))/(1-(1-p)δ),
u[n]==(δ(p-(1-2 p) x[0])u[n-1]+p(1-δ)((x[1])α+(1-x[n])α))/(1-δ(1-p)+(1-2 p)δ x[0])}];

ICCa[n ]:=Append[Table[0≤δ (u[s+1]-u[s])-(1-δ)(1-(1-x[s])α),
{s,1,n-1}],0≤(1-δ)((1-x[n])α-1)+δ*x[0](u[n]-u[n-1])];

v0=7/100;v1=47/100;vInc=4/100;
(* sMax optional limit to number of states *)
For[p=v0,p≤v1,p+=vInc,

Clear[avU,xSeq];n=1;u[0]=p;
While[navU[n]),n++;

Clear[x];x[n+1]=0;uSolv=NSolve[equ[n],Table[u[s],{s,1,n}]][[1]];
(* Define obj, cons and vars - need to choose starting pts carefully *)
objective=1/n*Sum[u[t],{t,1,n}]/.uSolv;
constraints=And@@Join[Table[0≤x[t]≤1,{t,0,n}],ICCa[n]]/.uSolv;
variables=Prepend[Table[{x[t],Min[2*p,.55]*(sMax+1-n)/sMax},

{t,1,n}],{x[0],0.01}];varOnly=Table[x[t],{t,0,n}];
If[global==0,{avU[n],xSeq[n]}=FindMaximum[{objective,constraints},

variables,MaxIterations→20000],
{avU[n],xSeq[n]}=NMaximize[{objective,constraints},varOnly,

{Method→”DifferentialEvolution”,MaxIterations→500}]];
current = SessionTime[]-start;PrintTemporary[”n = ”<>ToString[n]<>” and ”

<>ToString[tr1a]<>” = ” <>ToString[N[tr1]]<>” and time = ”
<>ToString[current]<>” Payoff = ”<>ToString[avU[n]]]

];
nMax=Ordering[Array[avU,n-1,2],-1][[1]]+1;
Col=Max[Col,Count[xSeq[nMax][[All,2]], ]-1];
pay[tr1]=avU[nMax];optimalX[tr1]=xSeq[nMax][[All,2]];
optimalX0[tr1]=Join[xSeq[nMax][[All,2]],Table[0,{i,sMax}]]

];
gg={Black,24,”Helvetica”};
data=Flatten[Table[{vv,nn-1,optimalX0[vv][[nn]]},{vv,v0,v1,vInc},{nn,2,Col+1}],1];
Labeled[TableForm[Table[Prepend[optimalX[vv],pay[vv]],{vv,v0,v1,vInc}],

TableHeadings→{Table[ToString[tr1a]<>” = ” <>ToString[N[vv]],
{vv,v0,v1,vInc}],Prepend[Prepend[Table[Subscript[x,t],
{t,1,Col}],”q”],”u”] }],ToString[sMax]<>”-state FD equilibria: ”
<>ToString[tr2a]<>” = ” <>ToString[tr2]<>”, ” <>ToString[tr3a]<>” = ”
<>ToString[N[tr3]],Top,Frame→True,LabelStyle→Bold]

ListPlot3D[data,AxesLabel→{Text[Style[ToString[tr1a],gg]],Text[Style[”s”,gg]],
Text[Style[”x”,gg]]},ColorFunction→(ColorData[”LakeColors”][#3*5/3]&)]
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7.3 Numerical algorithms for constrained global optimization

Source: Wolfram Research [21]:

Nelder-Mead
The Nelder-Mead method is a direct search method. For a function of n variables, the

algorithm maintains a set ofn+1 points forming the vertices of a polytope in n-dimensional
space. This method is often termed the ”simplex” method, which should not be confused with
the well-known simplex method for linear programming.

At each iteration,n+1 pointsx1, x2, ..., xn+1 form a polytope. The points are ordered so
thatf(x1) ≤ f(x2) ≤ ... ≤ f(xn+1). A new point is then generated to replace the worst point
xn+1.

Let c be the centroid of the polytope consisting of the bestn points,c =
∑n

i=1 xi. A trial
pointxt is generated by reflecting the worst point through the centroid,xt = c + α(c−xn+1),
whereα > 0 is a parameter.

If the new pointxt is neither a new worst point nor a new best point,f(x1) ≤ f(xt) ≤
f(xn), xt replacesxn+1.

If the new pointxt is better than the best point,f(xt) < f(x1), the reflection is very
successful and can be carried out further toxe = c + β(xt − r), whereβ > 1 is a parameter
to expand the polytope. If the expansion is successful,f(xe) < f(xt), xe replacesxn+1;
otherwise the expansion failed, andxt replacesxn+1.

If the new pointxt is worse than the second worst point,f(xt) ≥ f(xn), the polytope is
assumed to be too large and needs to be contracted. A new trial point is defined as

xc =

{
c + γ (xn+1 − c), if f (xt) ≥ f (xt+1),
c + γ (xt − c), if f (xt) < f (xt+1),

where0 < γ < 1 is a parameter. Iff(xc) < min (f(xn+1), f(xt)), the contraction is success-
ful, andxc replacesxn+1. Otherwise a further contraction is carried out.

The process is assumed to have converged if the difference between the best function values
in the new and old polytope, as well as the distance between the new best point and the old
best point, are less than the tolerances provided byAccuracyGoal andPrecisionGoal .

Strictly speaking, Nelder-Mead is not a true global optimization algorithm; however, in
practice it tends to work reasonably well for problems that do not have many local minima.

Differential Evolution
Differential evolution is a simple stochastic function minimizer.
The algorithm maintains a population ofm points,{x1, x2, ..., xj , ..., xm}, where typically

m � n, with n being the number of variables.
During each iteration of the algorithm, a new population ofm points is generated. Thejth

new point is generated by picking three random points,xu, xv andxw, from the old population,
and formingxs = xw + s(xu − xv), where s is a real scaling factor. Then a new pointxnew

is constructed fromxj andxs by taking theith coordinate fromxs with probability ρ and
otherwise taking the coordinate fromxj . If f(xnew) < f(xj), thenxnew replacesxj in the
population. The probabilityρ is controlled by the"CrossProbability" option.
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The process is assumed to have converged if the difference between the best function values
in the new and old populations, as well as the distance between the new best point and the old
best point, are less than the tolerances provided byAccuracyGoal andPrecisionGoal .

The differential evolution method is computationally expensive, but is relatively robust and
tends to work well for problems that have more local minima.

Simulated Annealing
Simulated annealing is a simple stochastic function minimizer. It is motivated from the

physical process of annealing, where a metal object is heated to a high temperature and allowed
to cool slowly. The process allows the atomic structure of the metal to settle to a lower energy
state, thus becoming a tougher metal. Using optimization terminology, annealing allows the
structure to escape from a local minimum, and to explore and settle on a better, hopefully
global, minimum.

At each iteration, a new point,xnew, is generated in the neighborhood of the current point,
x. The radius of the neighborhood decreases with each iteration. The best point found so far,
xbest, is also tracked.

If f(xnew) ≤ f(xbest), xnew replacesxbest andx. Otherwise,xnew replacesx with a
probability eb(i,Δf,f0). Hereb is the function defined byBoltzmannExponent , i is the
current iteration,Δf is the change in the objective function value, andf0 is the value of the
objective function from the previous iteration. The default function forb is −Δf log(i+1)

10 .
Like theRandomSearch method,SimulatedAnnealing uses multiple starting points,

and finds an optimum starting from each of them.
The default number of starting points, given by the optionSearchPoints , ismin(2d, 50),

where d is the number of variables.
For each starting point, this is repeated until the maximum number of iterations is reached,

the method converges to a point, or the method stays at the same point consecutively for the
number of iterations given byLevelIterations .

Random Search
The random search algorithm works by generating a population of random starting points

and uses a local optimization method from each of the starting points to converge to a local
minimum. The best local minimum is chosen to be the solution.

The possible local search methods are Automatic and “InteriorPoint ”. The default
method is Automatic, which uses FindMinimum with unconstrained methods applied to a sys-
tem with penalty terms added for the constraints. When Method is set to “InteriorPoint ”,
a nonlinear interior-point method is used.

The default number of starting points, given by the option SearchPoints, is
min (10d, 100), where d is the number of variables.

Convergence forRandomSearch is determined by convergence of the local method for
each starting point.

RandomSearch is fast, but does not scale very well with the dimension of the search
space. It also suffers from many of the same limitations as FindMinimum. It is not well suited
for discrete problems and others where derivatives or secants give little useful information
about the problem.
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7.4 Figures

Figure 24 refers to the problem analyzed in lemma 13. We computed the optimal 3-state EM
strategies forα ∈

{
1
20

, 2
20

, ..., 19
20

}
, p ∈

{
1
20

, 2
20

, ..., 9
20

}
and the correspondingδα using Mathemat-

ica. The corresponding payoff differences,u
(
σ∗

em3

)
− u

(
σ∗

em2

)
, shown in table 4 in the appendix.

Figure 24 showsu
(
σ∗

em3

)
andu

(
σ∗

em2

)
, whereu

(
σ∗

em3

)
was interpolated from the set ofσ∗

em3

payoffs computed with Mathematica. The point to note is thatu
(
σ∗

em3

)
> u

(
σ∗

em2

)
in numerical

testing that spanned the whole feasible region at5% and10% increments ofα andp, respectively.

Figure 24:u
(
σ∗

em3

)
andu

(
σ∗

em2

)
with δ = δα

Figure 25 represents solutions to same problem as figure 14 except with the additional con-
straint ofxs ≤ xs−1, ∀s = 2, 3, ..., n.

Figure 25: Constrainedn∗-EM: x∗
1 (α) , ..., x∗

n∗ (α) whenx∗
s ≤ x∗

s−1
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Figures 26 and 27 illustraten∗-HSSGL equilibrium behavior asδ changes.

Figure 26:
n∗-HSSGL favors asδ varies: View 1
Points: α = 0.3, p = 0.3, δ = 0.65, 0.67, ..., 0.95

Figure 27:
n∗-HSSGL favors asδ varies: View 2
Points: α = 0.3, p = 0.3, δ = 0.65, 0.67, ..., 0.95

Figures 28 and 29 illustraten∗-HSSGL equilibrium behavior asα changes.
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Figure 28:
n∗-HSSGL favors asα varies: View 1
Points: δ = 0.9, p = 0.3, α = 0.1, 0.12, ..., 0.74

Figure 29:
n∗-HSSGL favors asα varies: View 2
Points: δ = 0.9, p = 0.3, α = 0.1, 0.12, ..., 0.74
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7.5 Tables

p u x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

.30 .404 .599 .500 .427 .383 .334 .288 .253

.31 .418 .615 .516 .442 .395 .347 .302 .266

.32 .432 .631 .532 .457 .406 .360 .316 .279

.33 .446 .645 .548 .471 .418 .373 .329 .292

.34 .460 .647 .555 .479 .426 .381 .338 .303

.35 .474 .623 .532 .462 .411 .376 .329 .290 .258

.36 .488 .637 .547 .475 .422 .387 .341 .303 .270

.37 .502 .650 .560 .488 .433 .397 .353 .315 .282

.38 .516 .658 .571 .499 .442 .406 .363 .325 .293

.39 .530 .654 .574 .503 .447 .411 .368 .330 .302

.40 .544 .641 .557 .489 .437 .404 .364 .324 .290 .262

.41 .558 .653 .570 .502 .448 .413 .374 .335 .301 .273

.42 .572 .663 .582 .513 .459 .421 .383 .345 .312 .283

.43 .586 .664 .587 .519 .465 .426 .390 .352 .319 .292

.44 .599 .659 .588 .522 .468 .430 .393 .356 .323 .300

.45 .613 .656 .579 .514 .463 .423 .396 .356 .321 .291 .265

.46 .627 .666 .590 .525 .473 .432 .404 .365 .331 .301 .275

.47 .641 .673 .599 .534 .481 .439 .411 .373 .339 .310 .284

.48 .655 .668 .600 .537 .484 .442 .414 .377 .344 .314 .291

.49 .669 .663 .600 .538 .487 .445 .417 .380 .347 .318 .299

Table 2:n∗-EM and favors above socially efficient size:x∗
s(p) > 1/2, α = 0.5, δ = 0.9

p u x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

.30 .403 .500 .500 .443 .393 .343 .282 .192

.31 .417 .500 .500 .448 .398 .349 .285 .205

.32 .431 .500 .500 .453 .403 .354 .289 .217

.33 .445 .500 .500 .458 .407 .360 .292 .229

.34 .459 .500 .500 .465 .412 .374 .326 .257 .184

.35 .473 .500 .500 .470 .416 .378 .332 .261 .195

.36 .487 .500 .500 .474 .421 .383 .337 .264 .207

.37 .501 .500 .500 .478 .425 .387 .342 .268 .218

.38 .515 .500 .500 .483 .430 .392 .348 .270 .228

.39 .528 .500 .500 .493 .440 .400 .357 .275 .230

.40 .542 .500 .500 .490 .439 .404 .362 .321 .244 .196

.41 .556 .500 .500 .494 .443 .407 .366 .327 .248 .206

.42 .570 .500 .500 .496 .446 .411 .370 .330 .251 .217

.43 .584 .500 .500 .500 .455 .418 .379 .334 .255 .221

.44 .598 .500 .500 .500 .458 .421 .382 .336 .263 .225

.45 .612 .500 .500 .499 .461 .424 .385 .338 .271 .230

.46 .626 .500 .500 .500 .462 .424 .394 .354 .310 .236 .209

.47 .640 .500 .500 .500 .470 .431 .400 .361 .311 .240 .214

.48 .654 .500 .500 .500 .473 .434 .403 .365 .313 .248 .218

.49 .668 .500 .500 .500 .475 .436 .406 .368 .315 .256 .222

Table 3:n∗-EM with social efficiency constraint on favor size:x∗
s(p) ≤ 1/2, α = .5, δ = .9

45



α p = .05 p = .1 p = .15 p = .2 p = .25 p = .3 p = .35 p = .4 p = .45
.05 .007 .014 .020 .027 .034 .041 .048 .055 .061
.10 .006 .012 .018 .024 .030 .036 .042 .048 .054
.15 .005 .011 .016 .022 .027 .032 .038 .043 .048
.20 .005 .010 .015 .019 .024 .029 .034 .039 .044
.25 .004 .009 .013 .017 .022 .026 .031 .035 .039
.30 .004 .008 .012 .016 .020 .024 .027 .031 .035
.35 .004 .007 .011 .014 .018 .021 .025 .028 .032
.40 .003 .006 .009 .012 .016 .019 .022 .025 .028
.45 .003 .006 .008 .011 .014 .017 .019 .022 .025
.50 .002 .005 .007 .010 .012 .014 .017 .019 .022
.55 .002 .004 .006 .008 .010 .012 .015 .017 .019
.60 .002 .004 .005 .007 .009 .011 .012 .014 .016
.65 .001 .003 .004 .006 .007 .009 .010 .012 .013
.70 .001 .002 .004 .005 .006 .007 .008 .010 .011
.75 .001 .002 .003 .004 .005 .006 .007 .008 .009
.80 .001 .001 .002 .003 .004 .004 .005 .006 .006
.85 .001 .001 .002 .002 .003 .003 .004 .004 .005
.90 .000 .001 .001 .001 .002 .002 .002 .003 .003
.95 .000 .000 .000 .001 .001 .001 .001 .001 .001

Table 4: 3-EM dominates 2-EM:u(σ∗
em3) − u(σ∗

em2) whenδ = δα

p u x1 x2 x3 x4 x5 x6 x7

.03 .034 .083

.07 .084 .175 .104

.11 .137 .319 .207

.15 .190 .445 .309

.19 .245 .446 .318 .243

.23 .300 .446 .332 .269 .204

.27 .356 .524 .395 .326 .263

.31 .410 .508 .395 .352 .269 .219

.35 .466 .582 .439 .386 .309 .283

.39 .522 .559 .452 .383 .337 .280 .238

.43 .577 .608 .500 .422 .374 .321 .278

.47 .633 .592 .493 .421 .379 .328 .282 .247

Table 5:n∗-EM data for figure 6:u andx∗
1(p), ..., x∗

n∗(p), α = 0.5, δ = 0.85
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p ICC1 ICC2 ICC3 ICC4 ICC5 ICC6 ICC7

.03 0

.07 0 0

.11 0 0

.15 0 0

.19 0 0 .001

.23 0 0 0 .003

.27 0 0 0 .002

.31 0 0 0 .001 .003

.35 0 0 0 .001 .003

.39 0 0 0 0 .003 .004

.43 0 0 0 0 .003 .003

.47 0 0 0 0 .001 .004 .004

Table 6:n∗-EM: ICC for figure 6,α = 0.5, δ = 0.85

δ u x1 x2 x3 x4 x5 x6 x7 x8 x9

.37 .428 .055

.41 .433 .076

.45 .438 .103

.49 .444 .136

.53 .449 .176

.57 .453 .224

.61 .458 .165 .110

.65 .465 .216 .149

.69 .472 .280 .199

.73 .478 .359 .265

.77 .484 .336 .266 .200

.81 .491 .450 .354 .293

.85 .498 .492 .402 .347 .296

.89 .505 .515 .443 .392 .356 .311 .275

.93 .512 .595 .541 .494 .454 .426 .397 .366 .338 .313

Table 7:n∗-EM data for figure 10:u andx∗
1(δ), ..., x

∗
n∗(δ), α = 0.6, p = 0.4

δ ICC1 ICC2 ICC3 ICC4 ICC5 ICC6 ICC7 ICC8 ICC9

.37 0

.41 0

.45 0

.49 0

.53 0

.57 0

.61 0 0

.65 0 0

.69 0 0

.73 0 0

.77 0 0 .002

.81 0 0 .001

.85 0 0 0 .002

.89 0 0 0 0 .001 .002

.93 0 0 0 0 0 0 .001 .002 .001

Table 8:n∗-EM: ICC for figure 10.α = 0.6, p = 0.4
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α u x1 x2 x3 x4 x5 x6 x7 x8 x9

.20 .658 .689 .555 .512 .406 .343 .290 .238 .204 .231

.24 .639 .686 .590 .461 .390 .356 .275 .213 .180 .225

.28 .620 .648 .573 .415 .365 .315 .234 .217 .218

.32 .602 .653 .535 .419 .346 .291 .238 .229

.36 .584 .649 .513 .407 .343 .277 .255

.40 .568 .639 .481 .384 .328 .261 .219

.44 .551 .604 .458 .371 .305 .251

.48 .535 .509 .391 .332 .261 .208

.52 .520 .501 .384 .318 .257

.56 .504 .506 .388 .323

.60 .490 .420 .327 .267

.64 .474 .331 .271 .210

.68 .462 .364 .290

.72 .448 .275 .219

.76 .434 .341

.80 .424 .237

Table 9:n∗-EM data for figure 12:u andx∗
1(α), ..., x∗

n∗(α), δ = 0.8, p = 0.4

α ICC1 ICC2 ICC3 ICC4 ICC5 ICC6 ICC7 ICC8 ICC9

.20 .035 .009 0 0 0 .001 .002 0 0

.24 .024 .001 0 0 0 .001 .003 .003 0

.28 .018 0 0 0 0 .002 .004 .001

.32 .012 0 0 0 .002 .004 .002

.36 .008 0 0 0 .003 .002

.40 0 0 0 0 .004 .005

.44 0 0 0 .002 .004

.48 0 0 0 .002 .005

.52 0 0 0 .003

.56 0 0 0

.60 0 0 0

.64 0 0 0

.68 0 0

.72 0 0

.76 0

.80 0

Table 10:n∗-EM: ICC for figure 12,δ = 0.8, p = 0.4
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p u x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

.01 .014 .135 .043

.02 .029 .225 .095 .028

.03 .044 .299 .136 .078 .023

.04 .060 .403 .177 .107 .042

.05 .076 .498 .218 .137 .068

.06 .093 .580 .258 .166 .099

.07 .109 .602 .255 .213 .101 .078

.08 .125 .612 .289 .233 .119 .102

.09 .142 .615 .321 .251 .138 .129

.10 .158 .630 .336 .265 .195 .102 .101

.11 .175 .631 .363 .282 .210 .117 .125

.12 .191 .631 .390 .298 .224 .132 .149

.13 .208 .629 .415 .314 .238 .147 .174

.14 .225 .625 .439 .329 .252 .162 .199

.15 .241 .634 .433 .320 .293 .185 .124 .173

.16 .258 .631 .456 .337 .303 .197 .136 .195

.17 .275 .648 .490 .361 .316 .213 .152 .210

.18 .292 .643 .479 .358 .321 .258 .168 .120 .186

.19 .309 .645 .502 .375 .331 .269 .180 .132 .205

.20 .326 .680 .548 .407 .348 .285 .197 .149 .208

.21 .342 .683 .556 .420 .357 .294 .208 .166 .212

.22 .359 .680 .555 .412 .351 .329 .233 .167 .132 .208

.23 .376 .686 .567 .428 .362 .336 .243 .177 .147 .211

.24 .393 .686 .568 .438 .370 .342 .251 .186 .161 .215

.25 .410 .685 .568 .448 .378 .347 .259 .194 .176 .220

.26 .427 .683 .567 .458 .386 .353 .266 .202 .191 .225

.27 .444 .691 .583 .461 .391 .360 .306 .226 .172 .158 .215

.28 .461 .690 .582 .470 .398 .365 .312 .233 .179 .172 .220

.29 .478 .689 .581 .479 .406 .370 .318 .240 .187 .186 .224

.30 .495 .687 .580 .487 .413 .375 .323 .247 .194 .200 .228

.31 .512 .686 .577 .495 .420 .380 .328 .254 .202 .214 .233

.32 .529 .687 .582 .503 .428 .386 .334 .261 .209 .231 .236

.33 .546 .690 .588 .501 .423 .383 .363 .284 .223 .181 .197 .229

.34 .563 .689 .586 .508 .430 .388 .367 .290 .229 .188 .210 .233

.35 .580 .689 .588 .516 .438 .394 .371 .296 .236 .194 .225 .236

.36 .597 .700 .615 .526 .453 .406 .378 .306 .246 .201 .244 .236

.37 .614 .694 .596 .524 .446 .402 .379 .334 .265 .212 .177 .206 .231

.38 .631 .693 .596 .531 .453 .407 .383 .339 .270 .219 .183 .219 .235

.39 .648 .704 .623 .539 .466 .420 .391 .347 .280 .227 .188 .239 .235

.40 .665 .703 .624 .540 .471 .424 .395 .350 .285 .232 .198 .243 .238

.41 .682 .701 .624 .540 .476 .428 .398 .354 .289 .238 .209 .247 .241

.42 .699 .707 .630 .549 .475 .427 .398 .380 .312 .255 .210 .178 .237 .234

.43 .716 .705 .630 .550 .480 .432 .401 .383 .316 .260 .215 .187 .240 .237

.44 .733 .704 .630 .550 .485 .436 .405 .385 .320 .264 .220 .197 .244 .240

.45 .750 .703 .630 .550 .489 .440 .408 .388 .324 .269 .225 .207 .247 .242

.46 .767 .701 .630 .549 .494 .444 .411 .390 .327 .273 .230 .216 .251 .245

.47 .785 .699 .630 .549 .498 .448 .414 .393 .331 .278 .235 .226 .254 .248

.48 .802 .706 .637 .561 .500 .450 .418 .398 .359 .299 .250 .212 .197 .243 .240

.49 .819 .705 .637 .560 .504 .454 .421 .400 .362 .303 .255 .217 .206 .246 .243

Table 13:n∗-EM data for figure 15:u andx∗
1(p), ..., x∗

n∗(p) whenα<α. α = 0.2, δ = 0.85
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