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Abstract

We study two-player games of favor-trading in a complete information environment stan-
dard to the literature, but in contrast to prominent models of favor-trading to date, we assume
agents have concave utility functions of the foutx) = =%, 0 < « < 1, instead of linear
utility functions. We characterize equilibria in the concave case and describe qualitative dif-
ferences to the linear case. We extend several equilibria concepts from previous favor-trading
literature, and construct parametric models to numerically analyze and characterize these equi-
libria in our model.

*1 am deeply indebted to Andrew Postlewaite for all his help, guidance and encouragement with this project.



1 Introduction

To date the prominent models of favor-trading assume agents have linear preferences and favors
are intrinsically of greater benefit than cost. In this paper informal favor-trading is considered
to be a form of insurance. We assume agents have concave utility functions and favors derive
their value from risk sharing. With sufficiently concave utility functions, agents can beneficially
trade favors at some level for any discount factors. This is in contrast to the linear case in which
the incentive compatibility of the favors traded is independent of the size of the favors because
agents are essentially risk-neutral with respect to favors. Furthermore, if utility functions are linear
and agents’ discount factors are just large enough to satisfy the incentive compatibility constraint
for equality matching, the best the agents can do is to equality match full favors. If the same
agents have concave utility functions, we show that the equivalent equality matching equilibria
are dominated by equilibria involving a smaller than full first favor, followed by a small second
favor if reciprocation has not been received by the time the agent receives the second consecutive
favor opportunity. Consequently, the assumption of linear preferences drives some of the results in
prominent favor-trading models.

The rest of the paper is organized as follows. We first introduce the relevant literature at the
end of this section. Section 2 introduces the model. Section 3 describes equality matching with
concave utility functions and generalizes equality matching to multiple states. In section 3.1 we
construct two parametric models to numerically analyze multi-state equilibria. The first model
simulates a large sample of games, derives payoff functions from the simulations, and uses them
to solve for the optimal strategy. The second model solves directly the system of simultaneous
payoff equations associated with an equality matching game and uses the results to find the optimal
strategy. Section 3.2 presents the results of the numerical tests and a number of conjectures based
on them. We describe certain unexpected outcomes in multi-state equality matching including
favors above the efficient stage game levels (beyond full-sharing) and optimal multi-state equality
matching favor sequences that are not decreasing. We also argue against the efficiency of infinite
state equality matching strategies. Section 4 repeats the analysis for strategies we call pseudo-
highest symmetric self-generating line equilibria that emulate analogously named strategies from
the linear favor-trading literature. Section 5 discusses preliminary work in strategies involving
favor-depreciation and other remaining issues. Section 6 concludes. An appendix and reference
sections follow.

1.1 Relevant literature

The major contributions to the favor-trading literature byius [12], Hauser and Hopenhayn

[8], and Abdulkadirglu and Bagwell [1] (AB for short), are all linear models in terms of agents’
preferences with intrinsically efficient favors. The model we introduce next retains the fundamental
information structure of these models; that is, all information is complete but not always public,
but we endogenize the value of favors by assigning agents concave utility functions so that favors
may be used to share risk. Furthermore, we assume the absolute cost of doing a favor is equal to
the absolute benefit generated. In other words, favors have no intrinsic value in our model. We



take a simplified version of the favor-trading model by AB [1] as our benchmark for comparisons.

Outside of the favor-trading literature, our model overlaps with the insurance literature. In
particular, Kocherlakota [9] investigates the “Implications of Efficient Risk Sharing without Com-
mitment” as we do, but he uses a macroeconomic model whereas we restrict attention to a two
agent game. To our knowledge, this setup has not been covered by any major works in economics
or closely related fields.

2 The Model

Since concave functions include linear functions and strictly concave functions can be arbitrarily
close to linear functions, we restrict attention to a subclass of concave functions weccaltave.

These functions are “sufficiently concave” for meaningful analysis of the differences concavity
can make in favor-trading models. However, we do not claim that concavity alone is sufficient for
meaning differences. On the contrary, we believe that the results of linear models could gener-
ally be replicated with arbitrary proximity with strictly concave utility functions that are arbitrarily
close to their linear counter-parts. However, our goal is to investigate the difference sufficient con-
cavity canmake relative to linear models. To that end we defineoncave functions below. The
domain and range have each been normalized to the unit interval for simplicity. Unless otherwise
stated, any future references to concave utility functions imptpncave utility functions.

Definition 1 Suppose function : [0, 1] — [0, 1] is such thatu (z) = z* for « € (0,1). Then we
call w an a-concave function.

Consider two identical agents,andb. Each agent has utility function(x) = =* for some
a € (0,1). The agents play an infinitely repeated stage game with the following structure: At
the beginning of each period nature allocates an opportunity, normalized tb itker to agent
a or b (but not both), each with probability € (0,1/2), or to neither with probabilityi — 2p.
Opportunities are private information. An agent who receives an opportunity may either use it
privately and receive a flow payoff af (1) = 1 or share some or all of it. The amount shared
is denoted byr andy for agentsa and b, respectively. If agent receives an opportunity and
shares amount of it, the flow payoffs to(a,b) are ((1 — z)*,z~). Similarly, if agentb does
the sharing, payoffs ang“, (1 — y)*). Because side payments are not allowed, and reciprocation
cannot be explicitly conditioned on future opportunities since they are not publicly observable,
shared opportunities are called favors. Favors, including their size, are public information. The
stage game is repeated in each subsequent period.

To see how favor-trading works consider the following game cadiguahlity matching (EM).
In EM of level =z € (0,1/2], one agent is calleddvantagedthe otherisadvantagedThe disad-
vantaged agent is said to owe the advantaged agent a favor of. sizthe disadvantaged agent
does a favor of size, she becomes advantaged and the other disadvantaged. If she does no favor,
she remains disadvantaged. Favors of size otherlzaia not part of equilibrium play and can be
deterred by Nash reversion. When- 1/2 (full sharing), the game is callddll equality matching

Consider a game of full equality matching between two agents. Suppose agedisad-
vantaged) advantaged. Let,,,, 4.,) denote the average discounted payoffs expected by agents
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( ,b), or more generally by disadvantaged and advantaged agents, respectively, L€}, ten,)
(02, (Werns Uem) » 02, (Uppy, Uern)) deNOte the EM strategy profile that implements the payoff
palr( em,uem) Undero.,, the payoffs are

Uery, = P (1= 0)u(l = 1/2) + 0tien) + (1 — p)Otey,
= p((1 = 0)(1/2)" 4 Stiem) + (1 — p)du,,, 1)
m =D ((1 = 0)u(l) + 6ten) +p ((1 = 0)u(1/2) + du,,) + (1 — 2p)dtiem
= (1 =0 4 Olie) + p (1 = 6)(1/2)% + du,,,) + (1 — 2p)0Tlem. (2)

The first equation consists of two events: (i) with probabjitggenta receives an opportunity,
does a full favoz = 1/2) and becomes the advantaged agent; that is, agectives flow payoff
(1/2)* and continuation promise.,,,, (ii) with probability (1 — p) agenta receives no opportunity,
so her flow payoff is zero and her continuation promise remajpsalong with her disadvantaged
status. The equation for payaff,, consists of three events that occur with probabiliies and
1 — 2p, respectively: (i) agent receives an opportunity, does no favor and receives a flow payoff
of 1 and her continuation promise remains, as she is still advantaged, (ii) agenteceives an
opportunity, shares itr = 1/2) so agenb receives a flow payoff of1/2)* but her continuation
payoff drops ta,,, because she now owes agerthe next favor, and (iii) neither agent receives a
favor opportunity so agemts flow payoff is zero and her continuation payoff remains .

The two previous equations contain two unknowns, and.,, with solutions:

Cp(1—d+0p (24 2%))
Hem = e (1 0(1—2p))

_p((1=8) (1+2°) +6p(2+2%))
" 27 (1— (1~ 2p))

3)

(4)

For the EM strategy profile to beNash equilibrium (NEjn each stage game, neither agent can
have a profitable deviation available to her. It is trivial that the advantaged agent has no profitable
deviation as she just waits for reciprocation, but does no favors. Public (observable) off-equilibrium
path deviations, such as the advantaged agent doing a favor or one of the agents doing the wrong
size favor, can easily be deterred by the threat of autarky (no more favors). Therefore, we only
need to check that a one-shot deviation for the disadvantaged agent consisting of doing no favor
despite having the opportunity to do so followeddyy, play as usual is not profitable. Agedis
discount factor has to be high enough that ith@entive compatibility constraint (ICQelow is
satisfied.

ICCS, (1= 0)55 4 Oley, > 1 — & + dug,,
_ -5

Using equations (3) and (4) we may writ€’C¢  as

p((1=0)(14+2%)+6p(2+2%)) _ p(1-d+p(24+2%)) ~ 1-8 (1 — o )
5

20 (1—6(1—2p)) - 20(1-6(1-2p) — 2=



5 1
— 1—5(1p—2p) >1- 20
e §> 2L =5 (5)

= 20 14p(2—29%)

Figure 1 shows,, asp anda vary betweer{0, 1/2) and(0, 1), respectively.

Figure 1:0,(p, ) for full EM with u(x) = 2

We start with equality matching because that is the easiest and most basic way to implement
cooperation in the linear model, in particular, in AB [1]. Before proving several differences, we
summarize the notation, and introduce the information structure and the equilibrium concept to be
used.

2.1 Summary of notation and structure

The summary that follows is meant for reference, but we also need it in the next subsection to
formally define several equilibrium concepts. Payoffs are in average discounted values.

Model parameters:

i €{a,b}: Agents.

de(0,1): Discount factor.

pe€(0,1/2): Probability that agent € {a, b} receives a favor opportunity.
ae(0,1) Preference convexity parameter

Actions:

z,y €[0,1] : Size of favor by agents, b, respectively

Payoffs:

(u,v) : Current payoffs to agents, b).

(U, V) : Continuation payoffs tda, b)) when no one does a favor.
(g, v;) Continuation payoffs tda, b) wheni € {a, b} does a favar

Table 1: Summary of notation with concave utility functions

Information structure: Lett = 1,2,... denote the time index. If agentreceives a-period
favor opportunity,w! = 1 and0 otherwise. Agent privately observesV; = {wi}’ Let

z=1"
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7 = (z,y) denote favorgz,y) € (0,1]* agentsa andb, respectively, do in period If neither
agent does a favor, then let= 0. Both agents observg = {rz}tz:l. Private history of agent
and public history up to and including periodre denoted by = W} € Hi andH; = T; € H;,

respectively. A strategy for ageihtdenoted bys*, consists of a favor decisiod;, for each period
based on’s private history up to period, and public history up to period— 1. More formally,

Il HixHiy — [0,1] s.t. I} (-, -) = 0 whenw! = 0.

2.2 Strategies and equilibrium concepts

For our solution concept we will ugriblic perfect equilibriunfPPE) following Fudenberg, Levine

and Maskin [5]. A strategy for agente {a, b} is public if it depends only on her current period
private information and the public history. In the favor-trading game under study, private infor-
mation consists of whether or not the agent received a favor opportunity, and public information
consists of (public) favors done up to and including the last period. A PPE is a profile of public
strategies that form a Nash equilibrium for each period and the corresponding public history. Since
the payoff painu,,,, 4., ) is enforceable (implementable), it follows by symmetry that,,, .,,,)

is also enforceable, and therefore any utility pair on the line conne@ting a..,) and(ue,, u.,,)

is enforceable with the use of a public randomization device. Off-equilibrium path moves can be
deterred by the threat of Nash reversion (autarky). This brings us to the following two definitions.

Definition 2 Leto?

aut

be such thaf; = 0, Vt.

Definition 3 Let H; be the set of all public on-equilibrium path histories up to and including
periodt.

For example, if two agents are playing a full EM game and agesthe initial disadvantaged
agent, any history such that ageértid the first favor, one of the agents did two consecutive favors
or a partial favor, would not be ;. However, histories that include only private deviations, that
is, a disadvantaged agent does not do a favor when she has the opportunity, would stif;be in
Next we define EM formally.

Definition 4 Givenz € (0, 1], o, ., is such that/; = z if agenti is disadvantagedy; = 1 and
hi—1 € H;_,, otherwisel; = 0. Leto;, ) = 0,

2.3 Basic properties of concave favor-trading games

The lemmas in this section state for the record that the model always has at least the autarky
equilibrium and that the first-best outcome is not enforceable.

Claim 5 In a favor-trading game with preferencegz) = =, equilibria always exist.

Proof. Immediate. Autarky is always aquilibrium.m



Claim 6 First-best outcome is not enforceable in equilibrium.

Proof. To achieve the first-best outcome both agents have to share every favor opportunity equally,
that is regardless of whether the other agent has reciprocated. But then each agent has a profitable
deviation to not do a favor, which the other agent could not observe as favor opportunities are
privateinformation. m

3 Multi-state equality matching (n-EM)

In this section we generalize equality matching to multiple states.

Lemma 7 (EM is always possible)Givend anda, there exists € (0, 1/2] such that EM at level
z is implementable as a PPE.

Proof. In appendixm

The proof for this lemma follows immediately from the utility function’s formz) = x“.
Marginal utility cost of doing an infinitesimal favor goes to a bounded constant:

u(l—2z2)= :_a — —aasz — 0,
while the marginal benefit to the recipient goes to infinity:
u'(z) = @ xasz—0.

l1-a
That is, we can make the cost of doingza favor relative to the benefit arbitrarily small by choosing
a small enough size for the favor. This is in contrast to the linear case in which the cost-to-benefit
ratio is alwaysk € (1,00) and consequently discount factors need to exceed a certain threshold
for EM to be implementable.

In EM games with linear preferences, full equality matching also represents the most efficient
incentive compatible form of favor-trading (on symmetric self-generating lines) in the special case
of 9 = §*. The equivalent form of EM with concave preferences consists of matching half-sized
favors as opposed to full-sized ones because maximal efficiency is achieved by sharing the oppor-
tunity equally due tax-concave utility functions. Such an EM game is shown in Figure 2 (left).
We refer to it as a 2-state EM game because agents alternate between the twe sthtastaged,

b disadvantaged,A, D), andb advantaged; disadvantaged,D, A). Similarly, we refer to an EM
game with 3-states as a 3-state EM game, such as the one shown in Figure 2 (right)), Blate
refers to a neutral, or even state.

Next we show that 3-state EM strategies dominate 2-state EM strategiesowhen*. To
make the demonstration more concrete, we offer a parametric example of 2-state vs. 3-state EM
strategies using values = 0.6 andp = 0.3. The threshold discount factay,, is determined by
substituting these values into equation (5):

2% —1

Oa
20 —1+4+p(2—-29)

= 0.7802. (6)



2-state full EM game 3-state EM game

xZ:EG 9%:%—6
r=3(p p)y=1
? ? 1-2p { (0,0)) 1-2p
1-p
1-p

(0,0): Neutral state
(A,D): Agenta advantaged, agentdisadvantaged

(D,A): Agenta disadvantaged, agehadvantaged

Figure 2. 2-state and 3-state EM automata

We then substitute our values farp andé = §,, into equations (3) and (4) to find our benchmark

payoffs:
_p(I—=6+0p(2+2%))
Uern, = Qa (1 . 5(1 . 2p)> - 037 (7)
o p((A=0)(1+2%) +dp(2+27)) _
Uem = 20 (1= 5(1=2p)) = 0.39585, (8)

u,, + Uem = 0.69585. (9)

To find the equivalent values for a 3-state EM strategy we need to solve the following system of 3
payoff equations in 3 unknown payoffs,

a=p((1—08)+06u)+p((1-0)(2—2)"+ou) +(1-2p)da,
uw=p((1-06)(1—e)*+0u)+p((1—0)e*+du)+ (1 —2p)ou’,
Q:p((l—é)(%—FE) —1—(5u) (1—p)ou

To simplify the arithmetic, we first replace the utility function terms as follows:

A=e*, B=(3-¢), C=(3+e)", D=(1-¢)" (10)



For mnemonic reasons, we chade< B < C < D for e small. In terms ofd, B, C and D, the
3-state EM payoffs are

p((1—6)+d6u)+p((1—208)B+du®)+ (1 —2p)du,

p((1=6)D+ou)+p((1—68) A+ du)+ (1 —2p)su’,
p((1=0)C+éu’)+ (1 —p)ou.

o &I
Il

u

u

Solving and simplifying:

14 B+((3+A+3B+D)p—2(14 B))é+ (14 B—(3+ A+3B+D)p+(1+ A+ B+C+D)p? ) 5

u=p (-(-p3)(1-(1-37)9) )
o _ , A+D+(—A—D+(1+A+B+C+D)p)d
u =p 1-(1-3p)6 ;
_ CH+((A+3C+D)p—2C)6+(C—(A+3C+D)p+(1+A+B+C+D)p? )5
L=r (=(1=p)8)(1—(1-3p)9) '

For later use, the payoff differences between adjacent states are

o (1= A+B—D—(1—A+B—D+(—2+A—2B+C+D)p)d)
u—u®=p(l-9) P9 -1_5)0) s

0 B (A—C+D+(—A+C—D+(14+A+B—2C+D)p)s)
u —u=p(l-9) (=(=p)3)(1-(1-3p)3) ’ (11)
U—U" | A{B-D—(1-A+B—D+(—2+A—2B+C+D)p)s
W —u  AC+D-(A-C+D-(I+A+B-20+D)p)s

(1=6(1=p))(1—A+B—D)+ps(1+B—C) (12)
(1=6(1-p))(A—C+D)+ps(1+B—C) °

With three states, we have two incentive compatibility constraints. To move from the disadvan-
taged state to the neutral state requires a favor oflsize- ¢ in return for a continuation promise

of u°;

1CC - (1-0)C+du>1-35+du
. ) >1—C
1—60 " w—u
. 1-C
= 5_1—C+u0—g' (13)

To move from the neutral state to the advantaged state requires a favor efisizeturn for a
continuation promise of :

I1CCy - (1-90)D+du>1—68+du°
— 0 >1_D
1—0 — u—u°
. 1-D
== 6_1—D+a—u*' (14)



Below we show that iff C'C5 holds, then/C'C; holds, and therefore it is enough to only verify
1CCs.

Clam8 ICCy, >0 = ICC, > 0.

Proof (by contradiction). Suppose to the contrary that'C', > 0 but /CC;, < 0. Then3e, 6 > 0
such that%; > =L and 2. < =€

1-D 1-C
0 Z 1-D+u—u° ando < 1-CHu’—u

1-D < 1-C
1-D+u—u®° 1-C+u°—u

1-C)Y1-D)+(1-D)(uw —u)<(1-C)(1-D)+(1—-C)(a—u°)
w—u—DWw —u)<u—u®—C(u—u)

Clu—u’)—D(u’ —u)<u—2u"+u

D(—2u’+u) <tu—2u’+u

D > 1 sinceu — 2u°® + u < 0 by strict concavity ofu(-). The last inequality contradicts
the definitionofD = (1 —¢)* < 1.m

NN

Returning to our example, it is sufficient per claim 8 to findsaxr 0 such that/C'C', binds.
Substituting ina = 0.6, p = 0.3 andy = §, = 0.7802 from the 2-state problem into our 3-
state payoff functions and solving’'C, = 0 for ¢ yieldse = 0.2176. Using these valuesl =
e* = 0.4005, B = (3 —¢)" = 04683, C = (3 +¢)" = 08195, D = (1 — )" = 0.8631 and
U0 — u= 0'498(3'821*5)(1*)5). We can now solve fof, from 1CC, : §; > —1=C

(10—6)(1.429—6 1-CHu® —u”
TR 1-(0.5+¢)° :
Substituting in values forl, B,C' andD — 0, > ooy CASGI =) Substi-

(10—61)(1.429—67)
1-0.819
0.498 (203 —2.4026,41.903)

62-11.4361+14.29

tuting in values form, ¢ and solving for§;, — §; > = 0 >

1-0.819+

0.7452.

That is, if we fixé = 0* from the two state problem, and increasantil /C'C, binds, then
1CCy will be slack for thoses andd. In particular, we need > 0.7802 to satisfy/CC, in the
example above, whered€'C, holds foré > 0.7452. The payoffs for our example are as follows:
u = 0.39941 > 0.39585 = Uep,, v’ = 0.36084 andu = 0.30515 > 0.3 = w,,,, Whereu,,, and
Uem, from (8) and (7), respectively, are the corresponding payoffs with the 2-state EM strategy.
Observe that the total value of the game is higher with the 3-states. Furthermore the total payoff in
the 3-state game is higher when the agents are in the middlesigte ., = 0.69585 < u+u =
0.70456 < 2u° = 0.72168. The example demonstrates a general contrast between favor-trading
games with linear and concave utility functions.

We are now ready to generalize equality matching for multiple states. Note that (15) below
also implies reversion to autarky if either agent deviates from the equilibrium patt#¢<;_,).

Definition 9 Suppose that foi € {a,b}, s € S = {1,2,...,n} andt € N, strategy profiles is
such that

. T if s#n,wi =1,h—y € Hf_4,
Ys =Tpi1-s € (0,1) and I’ :={ xp41-s ifs#Lwl=1hy € H |, (15)
0 otherwise

9



S0 3780 (a0}~ Ym0} (18)
Then we calb ann-state EM strategy profil@and denote it byrepn.

Definition 10 (Special case of.,,») Suppose that foi € {a,b}, s € Z andt € N, strategy
profile o is such that

, xs fwl =1 hyy € Hf 4,
y_s=x,€(0,1) andl! = y, fwd=1, hy1 € H} |, (17)
0 otherwise

50 =0, 5411 1= 8¢ + 1{7}:(%“0)} — 1{Tz=(0,yst)}' (18)

Then we calb an co-state EM strategy profileand denote it by ¢

For the subsequent definitions and lemmas, we refer to random variables with uppercase let-
ters, realizations of random variables with lowercase letters, and probability distributions with
calligraphic (or script uppercase) lettetg.refers to the uniform distributioriP refers to the dis-
tribution of favor opportunitiesy,; = p(s,t) is the transition probability from stateto ¢. If a
stationary distribution exists;, = 7(s) denote the associated probabilittes.

Definition 11 Given ann-state strategy profile, let 7,(c) denote the stationary probability for
states = 1,2,...,n, respectively, consistent with If the game has no stationary distribution
consistent withr, let (o) = (). For convenience, lets(o) = 7, = 7(s) when no ambiguity exists
abouto.

Definition 12 Given ann-state strategy profile, let s € S = {1,2,...,n} denote the starting
state, then
us(0) = Ey[u(o): s =s], s =1,2,....n,

defines the expected average discounted payoff to agerdtates, and

u(o) = B[(1-0) X%, 6 (1 — X + (Y1),
represents the overall expected average discounted payoff toagehereX* andY* are random
variables of period favors by agents andb, respectively. Let, andv be the equivalent payoffs
to agenth. If 7 # 0, P (s° = s) = m,, or undefined, and is symmetridy, = x,,,,_, fors € Nor
ys = z_ for s € Z), we claim without proof that for finite*-EM equilibria

(o) = ulz) = 152 S0 (1= 2.7 + (1)),
and we define the value ofto beT' (o) := u + v = 2u(x).

We now return to finish our 2-state vs. 3-state EM comparison for the general case &f
or for its a-concave equivaleng; > §,,.

Lemma 13 (3-state EM strategy) For § > ¢, there exists a 3-state EM equilibrium profile, call
it o/ s, that has strictly higher value than any 2-state EM profile. ThaTiéa;mg) > T (Cem2),
Vo, p, Oeme.

1A stationary probability may also be thought of as the fraction of time spent asymptotically in a given state, or
the number of visits to statein a game witht periods ag — oc.

10



Proof. 4, is defined as the discount factor at which full equality matching becomes incentive
compatible in a 2-state EM game (definition 5). Therefore the eply strategy profile we need
to consider consists of full favors by the disadvantaged agent and no favors by the advantaged
agent. Call this profile” ..

T (0%2) = Uer (0a) + Uem (6a) = p (1 + (1 = 2)* +y*) = p(1 4 2'7°).
For 3-state EM,

T (O-(lamg) = 2 (muy + mous + myug), Wherer = (my, mo, m3) .

7 denotes the stationary probabilities. ketbe a matrix of transition probabilities between states
induced by a 3-state EM strategy, thers determined by

l=p p 0 11 1
mTn = 7 andn; + my + m3 = 1 wherem = [ p 1-2p p } — n:(g,g,g).
0 p 1-p

It is enough to prove the claim far = ¢, since for§ > ¢§, we can use thed = 4,"-solution
because it is incentive compatible o> 6. The ICC foro], ; are:

(1_604) (1 —xl)a—l—éaug Z 1—(5+(5au1, (19)

(1 — 5a> (1 — ZL’Q)a + 5aU3 Z 1-9 + 5aU2. (20)
Suppose for our candidate solution we pigkandz, such the ICC (19) and (20) bind. Treating the
inequality signs in (19) and (20) as equalities and solving yiejds (1 — 2x;) /2. The arithmetic

required for the last step and for an expressiorﬂToébéms) is in the appendix. We just need one
pointso letr; = 1/3 = x5, = 1/6. Then

T (o) =5p(L+ (1=5)"+ ()" + (1-9)"+ (§)")
=+ )+ @)+ G+ R

A comparison of" (o7 .) to T (o”, ,) shown in figure 3 concludes tipeoof. m

e

Figure 3:7(0”, 5) inred,T(c?, ) in blue, andp = 3 by normalization
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To finish this section we show that the uniform stationary distribution we found in the 3-state
EM example holds in general for multi-state EM, except for infinite state strategies. For the latter
we show that now stationary distribution exists. Finally, we define locally and globally efficient
multi-state equilibria.

Lemma 14 7, (0epn) = 1/n, s = 1,2, ..., n.

Proof. The proof is in the appendix. The proof is a generalized version of the transformation
matrix calculation we did in the proof of lemma 13 to compute the fractions of time agents spent
in each state in a-state EM gme. m

Lemma 15 7 (oeme) = 0.

Proof. By (18) of definition 10 the stochastic process associated ayjth is a simple random
walk onZ! with transition probabilities (s, s + 1) = p(s,s — 1) = p andp(s,s) = 1 — 2p. We

say thatp is irreducible since any statec 7Z is reached with positive probability from any state

s € Z in a finite number of steps. Furthermore, each Z is visited infinitely often so each

is recurrent, but there are infinitely many states so the fraction of total visith&s measure.

That is,s is null recurrent and therefore no stationary distribution exists ©@¥el. consistent with
oemes. A proof of the last statement can be found in Durrett [3] (p. 307, but the details are beyond
the scope of thipaper).m

Definition 16 Suppose,,, is ann-state EM strategy profile such that neither agent has a prof-
itable deviation. Then we cadl,,,» anfi-state EM equilibriun{ii-EM equilibrium). If 7' (o,,,7) >

T (o, ), for all A-EM equilibria, o’ ., we callo.,,« alocally efficientfi-state EM equilibrium,
and denoteitby’ .. If T (0.,7) > T (0emn) forall n € Nando,,,», we callo.,,» aglobally effi-
cientmulti-state equality matching equilibriunm{-EM or globally efficienti-EM equilibrium),

and denote it by, ...

3.1 Globally efficient n-EM equilibria (n*-EM): Numerical methods

Imposing concavity on the linear favor-trading model substantially complicates the equilibrium
analysis. At this point we are unable to solve the model further in closed-form and therefore in
this section we turn to numerical techniques to characterizEM equilibria. Subsection 3.1.1
introduces our numerical analysis approach and provides an overview of the parametric models we
have constructed to carry out the analysis. Details of the two models follow in subsections 3.1.2
and 3.1.3, respectively. We characterizeEM equilibria properties in section 3.2 based on the
results of our numerical analysis. However, our solution methods themselves may be of greater
interest to some readers than the actual solutions in so far as these techniques may be used to solve
other applied game theory problems.
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3.1.1 Summary of parametric models

Conjectures in later sections are based on results from two types of parametric computer models;
games withsimulated payoffs (SRNnd games witltomputed payoffs (CPYhe computer code
for each model is Mathematica 7 based, and consists of a favor solver engine and a favor solver
frame. Given numerical values of, 6, p andn (number of statesthe favor solver engine finds

a representation for payoffs, = >, m,u,, and incentive compatibility constraints¢'Cy, in
terms ofz, then solves the constrained nonlinear optimization prot3lem:

max u(z) (21)

x>0
subj. toICCs(z)>0, VsES.

The favor solver frame is essentially a series of loops built around the engine code that feeds the
engine a set of user-specified values dopv andp, and increments until » stops increasing.

The frame also records the results for the optimadlenoted by:*, for each triplet(«, d, p) and
constructs user-specified tables and plots out of these results.

The difference between the simulated payoffs model and the computed payoffs model is the
part of the engine code that finds(x). The SP-model's engine generates a large set of ran-
dom favor opportunity sequences, computes the path of the game (sequence of states) consistent
with strategy profiler,,,» for each favor opportunity sequence and for each possible starting state,
computed the discounted sums ageéatflow payoffs along each path, and takes the averages per
starting states to determing(x), Vs. The CP-model’s engine finds () directly by solving the
set ofn simultaneous payoff equations that charactesizg..

Both models use Mathematica’s built-in optimization algorithms to solve problem (21) and the
CP-model uses Mathematica’'s built-in numerical solver to solve the sets of simultaneous payoff
equations. The Mathematica code for each model is available in the appendix.

3.1.2 Simulated payoffs (SP) model

The SP-model consists of the following steps:

1. Choose simulation and parameter valuesThe user specifies the numbergdmes per
state(7) androunds per gaméo simulate(.J), and either point values or ranges for model param-
etersa (concavity),d (discount factor), ang (probability of favor opportunity).

2. Simulate data: The model generates a matrix of random favor opportunities: [w; |
with elementsu; ; ~ P {a, b, 0}.

3. Process data to estimate payoff functionsiWe need to mapl’ to payoffs consistent with
gemn (@, 9, p). To this end, the model defines operators

IxJ

Q(S, w) =S+ l{w:&s#n} — ]_{w:b”g;,ﬂ}7 (22)
v(s,w)(r,y) =liw=a)(1 — 25)" + Lpw=py (ys)"
— v(s,w)(r) =liw=a} (1 = 25)* + L=t} (Tn+1-5)" by def'n 9 (23)

2In EM optimization problems: = {1, ..., 2,1} in (21) because;,, = 0 by definition of n-EM and therefore
drops out ofu(z) andICC,(x). For other strategies (with,, > 0), = in (21) should be treated as= {z1, ..., z,, }.

13



si; = 0(si j_1,w; ;) iteratively determines the path of garheonsistent with.,,,» given a starting
states; € S. v maps each state along gawgpath to a flow payoff function (af). We want to
find us(z) for states so we apply the following functionals #¢" given starting state; ,

81,0 X (Wil + si0 X [0 (i1, Wi )] s = [Sij-1l1ws (24)

i1l X [0igl ey = [ (s5m1,01) @)y = [0 @) ma] (). (25)
In words, [v(z); ;1] ;. , (s) is anIx.J matrix of flow payoffs in terms of: initiated from state
sio = s, Vi. To find total payoffs the model computes discounted sums along the rows of
[v(2)ij-1];.; - We multiply the result by(1 — §) to convert total payoffs into average discounted
payoffs:

=0 ([0, ], 0 197, = B (26)
whereii(z); = (1 —6)3 7,6 v(@)ij-1.
We use tilde to differentiate estimated payoffs from the true payoffs. Howeverforo,

is(z) = 130y (x); - u () asl — oo (27)

by law of large numberi, (x) contains a small truncation erreg, , = 6”/u,, ,(x), for each game

because/ < co. We could usei,(z) = 577 Zle i, ,—s(2); to compensate, but at the moment
the SP-model does not implement any correction scheme for the truncation error. Instead we chose
J sufficiently large that errors factored by are insignificant.

The model produces;(x) for all s € {1, 2, ...,n} using the sam&’. Therefore the simulation

generates/ payoff samples in total, and the overall value of thg- is estimated as

a(x) + 0(x) = 2u(x) by symmetry, and
u(z) =Y " msus(z) by def'n 12

1
= ﬁzg;las(x) by def'n 14. (28)

4. Optimization: Our goal is to find the optimal number of state$, and efficient multi-
state EM favorse* = {«7}, 23, ..., z%. } for the specified values af, 0, p and a set of random favor
opportunitied?. To do so the model performs following steps:

a. Incrementr by 1 or start withn = 2 if this is the first round.

b. Apply operators andv defined by (22) and (23) td” and transformations (24)-(26) to
the results to findi, (x) for s = 1,2, ..., n as defined in (27).

c. To find zq, ...,z,_1 (xr, = 0 by definition of s.,,»), numerically solve the following

14



formulation of nonlinear optimization problem (21):

max I3 G (21, ey Tpo1) (29)

n
T1,eeny Tpn—1>0

d. Let u(n) andz(n) denote the solutions to (29). Record these values as well as the
correspondindis(n), Vs, and other desired data.
e.lf n=2ora(n —1) < a(n), repeat from step a. Els¢ = n — 1 andz* = z(n — 1).

We defer the technical details concerning Mathematica’s optimization algorithms and their
scope to subsection 3.1.3 and the appendix.

5. Output: A single point solution is not of particular importance to us, so we run the SP-
model on a set of pointsy, J,p) € (0,1)* x (0,1/2) that cover the parameter space. The output is
retrieved in tables and plots that describe the general behavioriBM equilibria. For example,
figure 4 depicts globally efficient? for s = 1,2,...,n* — 1 as a functions op. The exact code for
this demonstration is available in the appendix.

/06

[ 04

Joo

“os
p

Simulated payoffs: n*-EM(p) equilibria
Figure 4: Algorithm: Interior point
Points: o = 0.5, § = 0.8, p = 0.05,0.1, ...,0.45

SP-model versus CP-model: The CP-model is more efficient (faster) and more accurate but
requires the extra step of solvimgsimultaneous payoff equations. When that is not possible, the
SP-model can fill in the gap. We used the SP-model mainly to double check our results, but we
present it here to offer another tool for the continuing research into favor trading equilibria and for
other similar problems.

3.1.3 Computed payoffs (CP) model

The CP-model has similar steps to the SP-model:
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1. Choose parameter valuesThe user specifies point values or ranges for model parameters
« (concavity),d (discount factor), ang (probability of favor opportunity).

2. Setup simultaneous payoff equation problemGivenn, we can describe; (o.,,») with
following set of simultaneous equations:

u =p((1 —=8)(1 —z1)* 4 dug) + (1 — p)duy,
Up = p(l - 5 + 5“’71) +p((1 - 6)(?/71)& + 5un—1) + (1 - 2p)5un7
us = p((1 = 0)(1 —25)" 4+ 0uss1) + p (1 — 6)(ys)* + dus—1)
+ (1 —2p)ousfors=2,...,n — 1.
Substitutingy, = =,,.1_, per definition 9 and simplifying

(1—0)(1—z1)*+dug

1(—(1—;;)5 ' ) s=1,

(1=0)((1—zs)* a8 1 _ 4 ) +0(us—1+usi1) _

ts 1*(1+712p)5 , S=2,...,n-1, (30)
(1-6)(1+2§)+6un-1 —n

1—(1-p)d !

3. Solve payoff equations to find payoff functions:Given parametric values far, 6 and
p, and the number of states Mathematica can numerically solve (30). letz), s = 1,...,n,
denote the solution.

4-5. Optimization and output: Same as in the SP-model, excéptr), s = 1,...,n, in 4(b)
comes from solving (30) instead of simulation based estimateg(of.

Technical details: We used MathematicaNSolvecommand to solve the payoff equations in
the CP-model and thieMaximizeand FindMaximum commands for optimizatidiindMaximum
looks for a local optimum with an interior point algorithm whN8Maximize uses Differential Evo-
lution or Nelder-Meadsimplex algorithm to solve for global optimeSimulated Annealingnd
Random Searchlgorithms were also available, but the other methods performed bé&ited-
Maximumwas significantly faster and more robust in many cases than the global methods, so we
used it to investigate particular aspects of the global equilibria uncovered by the NMaximize. A
description of each global algorithm is available in the appendix courtesy of Wolfram Research
[21].

Limitations: Limiting factors to arbitrarily high numerical accuracy are time and computing
power. In practice this means that characterizing asymptotic behavior of the model is not possible
or reliable using numerical techniques. Closed-form solutions would of course be preferable.

3.2 Numerical analysis ofn*-EM equilibria

In this section we present a number of conjectures derived from numerical testing using the models
from section 3.1. To support these conjectures we refer to a number of figures and tables inter-
polated from sets of parametric solutions. The rest of the section illustt&Es1 equilibrium
behavior ag, o and« are varied in turn.
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3.2.1 Results and resulting conjectures

The following conjectures concern globally efficient multi-state EM equilibria. That is, n-EM
equilibria that are optimal across the number of stétesand favors(zy, zs, ..., x,—1). In our
conjectures we sometimes use the expression “for all” (in quotes) in the context of numerical
results to refer to an entire parameter range that we covered at close increments rather than at
every actual point. For example, if a numerical result was interpolated from solutiops=for
0.01,0.02, ...,0.49, we may refer to it as a result “for alp.

Conjecture 17 Letn*(a, 4, p) be the number of states associated witf).. givena, 6 andp. Then
the finite difference functions (discrete derivatives)dod andp, respectively, are

(1) Ac|pye—1as—np—o < 0andincreasing im* (decreasing in absolute value),

(i) Ad|ppe—1.ra=np—o > 0 and decreasing im* (smallers-steps per unitin*),

(ii)) Ap|an-—1.aa—ns—o > 0 and approximately constant.

Support for conjecture. The conjectured relationships were observed in all our numerical tests.
Please refer to figures 9, 11, and 13 for plots:dfp) ,n* (§) andn* («), respectively. Figure 5
shows the globally efficient number of states, as a function of andp.®> We suggest further
numerical tests to verify these relationships for a larger set of parameter values. Further analysis
of the system of n-EM payoff equations may even yield a closed-&miotion.m

R Vg : n

{'ﬁ
O :
i, e
o e FPESRP PSSP R il

oo 04

Figure 5: Globally efficient n-EM equilibriaz*(d, p) wherea = 0.5

3Each grid point in figure 5 corresponds to a Mathematica solution for given valuearafp. We used Math-
ematica’s interior point algorithm to find the optimal favors,, ..., 7, for eachn = 2,3, ... until w (z7,...,2%)

stopped increasingn* was chosen as the for which u (z7, ..., 2% ) peaked. The grid points consist af = 0.5,
5 =0.4,0.41, ...,0.95 andp = 0.01,0.02, ..., 0.49.
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Conjecture 18 Letz* = {z},z3,...,25.} = {y;-,vy:-_1,...,y;} be the set of favors associated
with o}, ... Defines as the first state witlx] smaller than its successar; ; wheres = n* if

none are smaller. That isi(c,d,p) := inf {s € S: 2% <%, wherez}. , =1}. Then given
d,p Ja € (0, 1) such thats < n* for o < «, otherwises = n*.

Support for conjecture. The relationship was observed in all our numerical tests. Subsection 3.2.2
covers the conjecture 18 “for alp with ¢ fixed whena > « (see figure 6). Subsection 3.2.3 does
the same “for all’s with p fixed (see figure 10). Subsection 3.2.4 illustrates the behavior asa

varies from values below to values above it (see figure 12) and supports our conjecture that such
anq exists. Figure 14 illustrates inequality< n* in more detail. It would be natural to expect,

or at least we expected, the optimal favor sequence to be decreasing so this came as a surprise. At
the moment we do not attempt to explain this anomaly, but we do confirm it by solving the same
model with the additional restriction that favors have to be decreasing. The resulting equilibria
favorsi = {iy, s, ..., ,} are dominated by the original* solution;u(z*) > w(z). Subsection
3.2.5 offers a numerical analysis with figures and tables of caseawithy. In particular, figures

15 and 16 illustrate the case “for aji’and “for all” §, respectively, withx fixed belowa. m

Claim 19 Considerz* discussed in conjecture 18. For > 2 n*-EM equilibria may include (i)
favors that are above the socially optimal stage game level of 1/2 (full sharing), and (ii) favor
sequences that are non-decreasing.

Proof. Both findings surprised us which is why we state them above in a claim. We offer the proofs
in the form of numerical examples. Please refer to table 2 for results of &M equilibrium
solution fora = 0.5, § = 0.9 andp = 0.3,0.31, ..., 0.49. Observe that all of the solutions include

xy > 1/2 andz} > 1/2, and toward the highep-values,z; > 1/2. We ran the exact same
parametric model was with the same values, except with an additional restriction 0f1/2
(instead ofr, < 1). The results are in table 3. Both tables display expected payoff to agettie

first column under heading. (Recall thatl’ = u + v = 2u, by symmetry). A comparison of the
two tables shows that the unrestricteédEM strategies generate slightly higher payoffs. Examples
of non-decreasing favor sequences are available in subsections8.2.5

Conjecture 20 For n* and s discussed in conjectures 17 and 18,2*) has approximately the
same relationship tp,  anda asn* has top, § anda, respectively.

Support for conjecture. Whens (n*) = n*, the result is trivially true. Therefore we only need

to consider case (iii) of conjecture 18, that is, wher n*. Figures 14, 15 and 16 in subsection
3.2.5 show the behavior gfwhena < a. Recall thatr’. = 0 by definition of an n-EM strategy.
Therefore the outer edge in the figure that forms a geometric ridge in the plots, represents second to
last favor by agent. The referenced plots show this ridge fdy._, (), z,+_1 (p) andz?._, (9),
respectively. Along each ridge runs a “concave canal” that is formed by the set of smallest nonzero
favorszy ., (), 2%, (p) andzy, ., (6), respectively. It is apparent from the plots that, .,

varies in tandem with:._, favors in terms of position, and hence it follows thgte 2, 225
a a' Ap P

As _ An*
andm

~as- .
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3.2.2 Efficient favors asp varies

Figure 6 was interpolated from a set of globally optimal EM favor sequefcgsor o = 0.5,

0 = 0.85 fixed, while p was varied fromp = 0.03,0.07,...,0.47. The plot shows the globally
efficient size of favorgz) across state&) as the probability of favor opportunities varies frém

to 0.5. Because the number of states is a discrete variable and favors are optimized across states,
this causes the magnitude of each favor to increagemseases until it becomes optimal to add
another state. At this point the size of the favors in the older states tends to fall slightly. The favor
levels then climb to and above their previous levels until it becomes optimal to add yet another
state, and so forth. This gives the favor surface a jagged outline alongakis. The surface
would appear even more jagged had we used a larger number of poipts f@y, 1/2). Along the

s-axis favors are decreasing for the giverhowever, later we show that this is not necessarily the
case fora sufficiently low. The plot also demonstrates lemma 7 in that for any valye aifleast

some level of equality matching dominates autarky when utility functions-arencave.

S

4 ==
6 e == 7

*

n*-EM favor sequence x;(p), z3(p), ..., z%.(p)
Figure 6: Algorithm: Differential evolution
Points: a = 0.5, § = 0.85, p = 0.03,0.07, ...,0.47

The corresponding numbers for figure 6 are shown in figure 7 and can found in more detail in
the appendix in tables 5 and 6, respectively.
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Crptimzl multi-state EM favors: o = 0.3, 4 = 0.85

u Xy b o Mg X b X
T = 3 1,034 153

= 1,084 g .1

T = n.14 2 0.21

T = 0.13 3 3l

o= 23 3 32 24

E = 3 3 33 2 .2

T = n.3 n.5z2 0.4 n.33 0,28

r =20 0.41 51 0.39 0.35 0.27 0.22

r = 0.35 0.47 0.38 0.44 0.39 0.31 0.28

r = 0.39 0.52 0.58 0.45 0.38 0.34 0.24

r = 0.43 0.38 0.8l 0.3 0.42 0.37 0.28

o= 4 3 0.59 .43 0.42 0.38 33 28 .23

Figure 7: Figure 6 data: Multi-state EM (p)

The slack in incentive compatibility constraints associated with figure 6 are available in table
(figure) 8. The ICC are virtually all tight suggesting the solution may represent a second best
strategy profile in at least some situation or for some parameter values.

ICC for cptimal multi-state EM equilikbria: o = 0.3, & = 0.85

ICy IC: ICy ICe ICs ICe ICs
L= 13 il
P = 17 0
T = 1] n
T =
= 0.0014
£ = i) [n] [u] 0.0025
¢ = 0,27 i) 1] [u] 0,0023
p = 0.31 il i} i} 0.0014
o= 0.35 i i} i} o.0014
T = 0,33 1] n n 0
g = 0.43
g = 0.47

Figure 8: ICC for figure 6: Multi-state EM?(p)

Figure 9 depicts how* changes withp. The step function was interpolated from a set of
solutions fora = 0.5, 6 = 0.9 andp = 0.005, 0.01, ..., 0.495. The other function is a generic linear
approximation. The figure illustrates that stepg sre approximately constant.

Figure 9:n*(p) for n-EM equilibria
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3.2.3 Efficient favors as) varies

Figure 10 was interpolated from the multi-state EM solution sequences (favors) for (oifits) =
(0.6,0.37,0.4), (0.6,0.41,0.4),..., (0.6,0.93,0.4). The regions fo¥ < 0.37 andé > 0.93 were
excluded from the plots because they would have made the plots visually less inforteitii/e.
displays many of the same characteristics as the corresponding plet for (figure 6); % ()
are jagged along th&axis because number of states is a discrete variable, aadfifed, =* ()
decreases alongfor the givena, or for  high enough which we show later. A closer inspection
of the plots and the data shows that the dependene¢ ahdz?, s = 1,...,n* onp is (direct)
linear, and (direct) convex ahfor a sufficiently high.

0

n*-EM behavior w.rt. §: Xj(0),z3(9), ..., x5 ()
Figure 10: Algorithm: Nelder-Mead simplex
Points: a = 0.6, p = 0.4, § = 0.37,0.41, ...,0.93

The data points and ICC for figure 10 are available in the appendix tables 7 and table 8. As
before the incentive compatibility constraints are all tight within round off error. Figure 11 depicts
hown* changes withd. The step function was interpolated from a set of solutionsfer 0.5, p =
0.3andy = 0.1,0.11,...,0.9. The other function is a generic approximation. The figure illustrates
that steps in are decreasing.

3.2.4 Efficient favors asx varies

Figure 12 was interpolated from a set of favor sequentes {z7},z3, ..., z%. } obtained by opti-
mizing o7, . (z*) for 6 = 0.8 andp = 0.4 fixed, while « was varied froom = 0.2,0.24, ..., 0.8.

em™n

4Solutions for§ < 0.37 each consist of one tiny nonzero favar; < 0.1) and subsequently would only have
added flat space into our plots. The number of honzero favors increase exponentially-# Bso including the tail
end would have dominated the rest of the plot, and obscured other detalils.
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i =2+8.288°

4 0.8 0.8

Figure 11:n*(§) for n-EM equilibria

Both thedifferential evolutionand Nelder-Meadalgorithms converged to the same set of global
solutions, but performed poorly for smaller Later on we use aimterior point algorithm to find
(local) z* solutions consistent with?, . whena < 0.2 (high concavity case). However figure 12
already supports conjecture 18, which states thatfoigh enough:* («) is decreasing, but fax
sufficiently low,z* («) fails to remain decreasing toward the end of the sequence. Asei(ith

in p andz? (9) in 4, figure 12 shows that* («) is jagged ino because the number of statesis

treated as a continues variable (for visual effect) even theuglX is discrete.

@

0.8

n*-EM favor sequence: x;(«a), z3(a), ...,z (a)
Figure 12: Algorithm: Differential evolution
Points: § = 0.8, p = 0.4, a = 0.2,0.24, ..., 0.8

The Mathematica code used to compute the data points and to plot figure 12 is available in
the appendix. The data points and associated payoffs and incentive compatibility constraints may
also be found there in tables 9 and 10. The ICC are all close to zero. Figure 13 depict$ how
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changes withn. The step function was interpolated from a set of solutionsfer 0.7, p = 0.3
anda = 0.1,0.11,...,0.9. The other function is a generic approximation. The figure illustrates
that steps inv are increasing.

Figure 13:n*(«) for n-EM equilibria

3.2.5 Analysis of speciah*-EM cases:a < «

For smalloe we used Mathematica’s interior point algorithm that solves for local optima, but in our
case local optima are also global optima. The interior point algorithm is more stable and can handle
more variables (longer favor sequences) than Mathematica’s global algorithms. Therefore it lets us
solves?, . (z*) for smallera and gives us a closer look at the behaviorbfa) sequences in low

cases. Figure 14 depicts globally efficierit(a) sequences far < « that were interpolated from

n*-EM solutions forae = 0.08, 0.09, 0.10, ..., 0.35 (the results forx = 0.2, 0.3 are consistent with

the results obtained by differential evolution and Nelder-Mead algorithms).»T4eM solution

data is available in table 11 in the appendix.

Of course the sudden jump in favor sizes toward the very end of the globally efficient series of
favors shown in figure 14 could be an error of some sort, perhaps a short-coming in the numerical
algorithms employed by Mathematica? However, it seems exceedingly unlikely that three different
algorithms (Differential evolution, Nelder-Mead, and interior point) would all produce identical
errors. But just to be sure we reran the experiment show in figure 14 with one exception; favors
were constrained by < z, < z,_1, Vs wherez, = 0, instead of the standard feasibility constraint
0 < x4, < 1, Vs. The results are available in table 12 and figure 25 in the appendix. The plot
looks identical to its counterpart with unconstrained favor sizes except for the jump in favor values
at the end of favor sequences. The payoffs corresponding to the constrained favor sequences were
smaller by abou.02% on average, but more importantly the < z,_; constraints bound where
xs > x,_1 previously instead of converging to completely different fixed points.

Figure 15 shows the* andz* (p) associated with a globally efficient'-EM equilibrium as
a function ofp € (0,1/2) whena < «. The plot was interpolated from parametric solutions
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n*-EM behavior for a < a: Xj(«a),z5(q), ..., x5 (@)
Figure 14: Algorithm: Interior point
Points: § = 0.85, p = 0.4, a = 0.08,0.09, ...,0.35

fora = 0.2, § = 0.85 andp = 0.01,0.02,...,0.49. The corresponding numbers are available

in the appendix in table 13. The key take-away from the figure is that while an increase in the
probability of favor opportunitiegp) increases the number of favors that are optimal as before,
it does not eliminate or change the “canal” of minimal nonzero favors definedifbgonjecture

18 that appears in the interior of the optimal favor sequence, that<sy*. Furthermores (p)
appears to be directly proportionaltd(p).

p

n*-EM behavior for a < a: zi(p), z5(p), ..., x5 (p)
Figure 15: Algorithm: Interior point
Points: o = 0.2, § = 0.85, p = 0.01,0.02, ..., 0.49

Figure 16 shows the same figure with respect to changifidne plot was interpolated from
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parametric solutions for = 0.3, p = 0.3 andd = 0.6,0.61,...,0.96, and the corresponding
numbers are available in the appendix in table 14. As before, the “canal’” of minimal nonzero
favors defined by remains in the interior of the optimal favor sequence; n* ands (9) appears

to be directly proportional ta* ().

5

n*-EM behavior for a < a: z3(9),z5(6), ..., x5 (5)
Figure 16: Algorithm: Interior point
Points: a = 0.3, p = 0.4, § = 0.6,0.61, ...,0.96

3.3 Partial results and conjectures

The conjectures in this subsections are more speculative than the earlier conjectures in this section.
For finite dimensional EM strategies we defined the value of a strategy profile as the sum of
average discounted state payoffs for both agents weighted by the stationary probabilities of each
state (definition 12). If the starting state is random, this value is also equal to the strategy profile’s
dynamically defined value. For infinite dimensional EM strategy profiles this is not the case as
oco-EM strategies have no stationary distribution (lemma 15). Therefore the vatug ©ofhas to
be computed dynamically and the only sensible starting is state 0. This makes comparisons with
finite o.,,,» trickier, but our preliminary results suggest thatEM strategies cannot be incentive
compatible. If amo-EM equilibrium exists, it would be dominated by a truncated (finite) version
of thatoo-EM strategy profile. The core intuition is that in EM equilibria the value of the game is
the average value of all the states, favors are efficient (up to full sharing) so the bigger the favors,
the greater the value of the game. But favors generally have to decrease to provide agents with an
incentive to keep doing them. This in turn means that in a game with infinite states there would
also be infinitely many low favor (low value) states. Truncating the game at some point ensures
that the game is played in high value territory except for two boundary states that nonetheless map
the game back into the higher favors region. Eliminating a boundary state may provide a higher
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return for that point in the game, but it would extend the game into states with lower values until
adding another state would be inefficient.

Conjecture 21 o, are never globally efficient and may not even exist.
We define the expected (average discounted) value in an iterative fashion then expand.

T (0um) = 2 (1 — 8) vo, wherew, = pU=al sl i) s c 7 (31)

«

To make the expansion easier, Jet= —25, 0 = T s = (1= 2) + (y)" =
(1—z4)" 4+ (x_,)“, and in these terms, := pis + d (vs_1 +vs11) fOr s € Z. Expandingu
iteratively:

vo = Pio + 0 (V_1 + v41)
— pig+0 (ﬁi‘_l + 6 (v_y + vo)) +6 (ﬁ:&l + 6 (vo + v2)>
— pio + POZ_1 + pody + 02 (v_g + 20 + v2)
— pio + POF_1 + PRy + 62 (pfc,z 6 (v + vfl))
+ 262 <ﬁ:@0+5 (v_y + v+1)> + 62 <]5£2 +6 (v + u3)>

= ﬁi’o <]_ —|— 252> +ﬁ5§c_1 —f-ﬁgi'l +]5(§2i‘_2 —f-ﬁgQi’Q + 53 (’U_3+3U_1+3U+1 —I— ’03)

To further condense the expansion,dgt= %, Z; := &, + 2_; fort € N. Then

Vo — ]3 <1 + 252> jﬁo + ]35531 ‘l‘ﬁ(;?fz + 83 (U_3+3’U_1+3’U+1 + U3)
= <1 +26% 4+ 65 + 206° + > To+p (8 +36% 4+ 100° + 3567 + ) o
+p (52 + 46" + 156° + 566° + ) Fo 4 P (53 + 585 + 2187 + 8447 + ) By ...
The i; coefficients, say’;, consist of discounted sums of binomials. Taking their limits shows
thatC; have, F;, Hypergeometri¢form

. s 2 I\ Ao . . . o
€= 3o (3TN = piar (42514 i)

. p c :ﬁlf\/17482 = :ﬁ172827\/17452
! 26y/1-a2 " ° 262¢/1-452

T (Cumee) =2(1=0) 9> 2P (%% | +j;452> i

®“The" Hypergeometric function is defined a8 (a, b; ¢; z) = "3 (@) (b)r/(c)r 2*/ k!
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2(1—6)p 1

17(172;;)5\/1_ 152
(1-(1-2p)9)°

4(1-6 1 2 52 « a
1 ((1 2);6 F1< -‘r] +J 1—|—]7(1(14W> ((1—.1']) —{—(.%’_j) )

(1 —20)" + (w0)"

The hypergeometric function is well-suited for numerical and analytical work but we leave further
analysis ofl" (o, ) for the future.

Speculation supporting conjecture 21.Suppose amo-EM equilibrium exists. We assume the
values of the associated favors would have to be decreasing for both theoretical and empirical rea-
sons. In theory we expect favors to decrease to provide agents with an incentive to keep doing them
(do a big favor today in return for the promise of bigger reciprocal favors tomorrow). Empirically
(numerical testing) we found that favors were decreasing, except in special cases that involved a
jump toward the end of the favor sequence. If the sequence is infinite it has no end (to state the
obvious), so there would be no reason to expect any jump either. Furthermore, our numerical al-
gorithm worked by optimizing the value of the game fostates, comparing the value to the- 1

state value, and adding another state and repeating if 8tate value was higher than the- 1

state value. The solutions were of course finite, but moreover they were well-behaved in terms of
the optimal number of states (see figure 5), and show almost surely that the number of states does
not diverge to infinity within the interior of the parameter space. That said, numerical analysis is
not well-suited for analysis of asymptotic behavior we so cannot rule out anomalous behavior as
a—1,0—1orp—1/2.m

Conjecture 22 The globally efficient*-EM equilibrium exists and is unique up to a measure zero
in parameter space. That is, there may be pairs of points (zero measure) in the parameter space
for which then* andn* + 1 state values of the game are equal.

Speculation supporting conjecture 22 Our numerical tests always produced unigtiecEM out-
comes, however, the parameters live on continuous intervals while the optimal number of states

is discrete. Let be the efficient number of states for a triplet of vah(e?s 5,;5) . Suppose we

decreasey, or increase or p continuously while the globally efficient multi-state solution is up-
dated untiln* = 7 turns ton* = 7 + 1. At that pointT (0% ) = T (c7, ..1), SO by definition

16 both are globally efficient multi-state equilibria. For any integer pain. + 1) with n > 2, we

should be able to create three distinct pairs of such non-unique EM equilibria (one pair for each
parameter), but they would have measure zero mass. It might be possible to use a similar technique
to create lines or planes of n-EM intersections by increasing one parameter while lowering another
subject toT (o7,,») = T (07, ,.+1), however there is no reason to suspect thét’, .) would
remainconstant.m
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Figure 17: Automata for 6-state pseudo-HSSGL strategy

4 Pseudo-highest symmetric self-generating line (HSSGL) equi-
libria

In this section we discuss an analog of AB’s [1] highest symmetric self-generating line (HSSGL)

equilibrium concept for favor-trading with concave utility functions. Our version of HSSGL called

pseudo-HSSGinvolves finite number of states, whereas AB used infinite states, but in the interior

both have the same automata representation (see figure 17). Another difference between AB’s

HSSGL and oumpseudo-HSSGIs that we do not limit our analysis onto lines (Ssymmetric or

otherwise). We call a pseudo-HSSGL strategy witstates am-state pseudo-HSSGL (n-HSSGL)
strategy, and denote it with, g .

4.1 Globally efficient n-HSSGL equilibria (n*-HSSGL)

We use the same approach as withEM strategies to numerically optimize problem (21). As
before, it is enough to solve the optimization problem for agebecause we impose symme-

try on it by replacingv, andy, with u_, andz_,, respectively, where the state spaceis=
{-n,..,—1,1,...,n}. The objective is simply(z) = & because the HSSGL game
starts from either state 1 (agenfully advantaged) or state 1 (agemfully advantaged). Indi-
vidual payoffs are described by equation (32) and incentive compatibility constraints by equation
(33).

28



[ p((1—=0)(1 — )"+ du_y) <=n
Jp “35)( 5)(@/_7)1)‘1 g 5u13 + (1= 2p)du_n
p((1—=0)(1 —xs)* 4+ du_q . ]
B (L s R C T
. p((1=0)(1 —ag)*+du_y) =1 n1
+p ((1 = ) (ys)™ + our) + (1 — 2p)dusss N
p((1 =) (1 = 2,)" + 6u_y) .
\ +p ((1 = 6)(yn)* + dur) + (1 — 2p)du, '
U —up— 52 (1= (1—2_,)% s=n,
) ug w21 - (1 - 2)%)  s=1-n,.,-1,
IOC) =0 4w~ 281 - (1 - 2)%)  s=l.n, (33)

Ug—u,— 52 (1—-(1-2,)%  s=n.

The problem is computationally harder than optimizing n-EM strategies, so we used the CP-model
with interior point algorithm and applied it to well-behaved regions of the parameter space.

4.2 Numerical analysis ofn*-HSSGL equilibria

For low values ofp, our computedh*-HSSGL results are approximately consistent with AB’s
original HSSGL equilibria. That is, the size of the “small” favor owed (interest payment) by
the advantaged agent grows as periods of no favors pass, while the “large” favor owed by the
disadvantaged agent decreases. However, for larges optimaln*-HSSGL strategy appears to
converge to four states: large favors in the inner states, and small favors in the outer states.

n*-HSSGL favors as p varies: View 1
Points: « = 0.3, 0 = 0.9, p = 0.14,0.16, ..., 0.46

Figure 18:
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n*-HSSGL favors as p varies: View 2
Points: a = 0.3, 6 = 0.9, p = 0.14,0.16, ..., 0.46

Figure 19:

For the parameter values used to construct figures 18 and 19,-th8 SGL equilibria produce
higher payoffs tham*-EM equilibria forp = 0.42,0.44, 0.46 and lower payoffs otherwise. If we
lower § by 0.1, n*-HSSGL dominates*-EM for all p in our sample. If we lowery by 0.1 n*-
HSSGL dominates*-EM for p = 0.14,0.16 andp > 0.34. However, in each case thg-HSSGL
dominance increases asncreases, and is insignificant (within margin of error) for lpwalues.

Figures 26-29 in the appendix illustraté-HSSGL equilibrium behavior asanda vary per
our CP-model and the (local) interior point algorithm. However, even these numerical solutions
were difficult to find in terms of error free parameter space coverage and starting points for the
interior point algorithm.

For the variation analysis we usetl = 0.65, 0.67,..., 0.95 while o = p = 0.3. All n*-
HSSGL equilibria involved 8 or fewer states without strong patterns. However, we also ran the
same optimization exercise using-EM strategies, and it turned out that(o},..) > T (a;;ssg,n)
for 6 < 0.8 andn*-HSSGL in turn outperformed*-EM increasingly ford > 0.8.

To investigaten*-HSSGL responsiveness to changes in concavity, we ased).1, 0.12, ...,

0.74 while § = 0.9 andp = 0.3. As the game became more lineargpproached) the optimak.*-

HSSGL solution included a greater number of states and began to resemble AB’s HSSGL strategy.
This suggests that pure-form symmetric line equilibria are optimal in the linear model (for some
parameter values), but not in the concave model. In comparisatftiM, n*-HSSGL produced
higher payoffs for lowx values and lower payoffs for high.

5 Equilibria with favor-depreciation (FD equilibria)
Consider a strategy that involves a small probabifitg [0, 1/2] that if the disadvantaged agent

does not do a favor in the boundary state, the game moves inwards by one state. The idea is to
chooseg high enough that the agents would do a small favor at the boundary state to avoid the
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chance of punishment in the form of having to do a positive (bigger) favor next period. We call
this mechanisnfiavor-depreciationlt is our initial attempt to design equilibria similar to HSSGL
equilibria by AB [1] for a multi-state environment, or equilibria in continuous time by Hauser and
Hopenhayn [8] for a discrete time environment.

In numerical testing, globally efficient (to use the EM definition &§uilibria with favor-
depreciation (FD equilibria)were only marginally better than correspondimgEM equilibria.
When the maximum number of states was bound exogenously, FD equilibria performed somewhat
better against their locally efficient n-EM counterparts. Figures 20 and 21 show the results of FD
equilibria bounded by a maximum of 4 states with= 0.1, ) = 0.5 andp = 0.07,0.11, ...,0.47.
The corresponding results for locally efficient n-EM equilibria are in figures 22 and 23. Column
%(FD — EM) in figure 23 shows the percentage difference between an example set of 4-state
FD and EM equilibria payoffs. This was consistent with our expectation since favor-depreciation
strategies remove some of the inefficiency involved with boundary states, however we were not
expecting as much of a difference for low valuepathen the constraint on the number of states
is not even binding. The payoff difference startsat/o for p = 0.07 and steadily increases to
9% as the probability of favor opportunities is increaseg te 0.47. Perhaps the lack of a greater
difference is due to a fundamental inefficiency in FD strategies; the (fully) disadvantaged agent is
punished with probabilityy even when she does not do a favor simply because she did not receive
a favor opportunity. In our numerical tests, estimates of optimakre very small for smalb
(around0.01) but grew larger (td.066) asp increased. The largeris, the higher the number of
efficient states is, and hence the greater the effect of the bound on states.

4-state FD equilibria: xi(p), z3(p), ...,z (p)
Figure 20: Algorithm: Interior point
Points: « = 0.1, 6 = 0.5, p =0.07,0.11, ...,0.47
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4-ztate D equilikria: o = 0.1, 4§ = 0.3

q X1 Hz Xz Hg

r = 0.07 5 i} 0.18511 0.08027 0.00030721

r=0.11 2 1} 0.2703 0.09523 0.0008152

r = 0.15 5 a 0.3332¢8 0.12809 0.0010375

r=0.18 5 o} 0.36376 0.14302 0.077142 0.00032103
r=0.23 a a. 0.41428 0.17138 0.0994828 0.0013254
r = 0.27 g 1} 0.45508 0.19123 0.12237 0.001246
pr=0.31 7 a 0.48633 0.20805 0.1442 0.0028077
r=0.35 7 i} 0.50755 0.2247& 0.18376 0.003&8857
r=0.39 1} 0.51711 0.23847 0.17325 0.0052718
r = 0.43 1 a 0.51011 0.25028 0.0073891
r = 0.47 7 0.068094 0.48358 0.28088 0.013757

Figure 21: 4-state FD equilibria: Data for figure 20

4-EM equilibria:  x3(p), z5(p), ..., x5 (p)
Figure 22: Algorithm: Interior point
Points: & = 0.1, 6 = 0.5, p = 0.07,0.11, ..., 0.47

Locally efficient 4-EM equilibria: a = 0.1, & 0.3

u X1 Xz X3 % (FD-EM

p = 0.07(0.11074 0.37321 0.034913 0.027 5.428

p = 0.11(0.1745 0.541198 0,12934 0.0 5.674¢
p = 0.15(0.24279 0.55325 0,148898 0.1 5.875

p = 0.19(0.30944 0.56342 0.2117 0.1 6.1427
p = 0.23(0.375374 0.61815 0,31745% 0.1 6.55329
p = 0.27|0.44185 0.62012 0,368847 0.1f 6.9783
p = 0.31(0.50801 0.813% 0,38853 0.2 7.3534
p = 0.35(0.57422 0.60703 0.40253 0.2 7.7059
p = 0.39(0.64048 0.59938 0.4144 0.2 g.0591
p = 0.43(0.70876 0.59287 0,42889 0.2 E.453¢8
p = 0.47(0.77305 0.58527 0.43959 0.2 g.9887

Figure 23: 4-EM equilibria: Data for figure 22

5.1 Remaining questions

Other potential equilibria to investigate include a EM-HSSGL hybrids and equilibria involving
punishment phases. For example, if no one does a favor, a strategy profile could specify that neither
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agent do a favor next period either as punishment. The infinite dimensional EM strategies also
require more work as we did not have time to apply the expressiof fet,,~ ) that we derived.

For finite dimensional strategies, we believe we could generate a full set of data in all dimensions,
fit an approximating curve to it, and use the result for comparative statistics and other analysis.
It may be possible to analyze the system of simultaneous n-EM payoff equations implicitly, for
example, by the use of perturbation analysis.

6 Conclusion

By choosing a concave utility function that is arbitrarily close to a linear utility line, we can obtain
equilibria and outcomes that are arbitrarily close to the linear case of favor-trading. Therefore we
focused on the family afi-concave functions to emphasize the impact that sufficient concavity can
have on favor-trading games. In particular, favor-trading becomes possible doatadbme level

and multi-state strategies become more valuable. For example, when discount factors are just high
enough to equality match full favors doing so maximizes expected utility in the linear case within

a large class of incentive compatible equilibria, whereas in the concave case we can do better by
lowering the favor size and using the generated slack in the incentive compatibility constraints to
enforce a second smaller consecutive favor.

In the rest of the paper, we generalized AB’s [1] equality matching to multiple states or alter-
natively, we generalized bbius’ “chips mechanism” to divisible chips. We defined multi-state
equality matching for equilibria that were locally efficient for a given number of states, and then
for equilibria that were globally efficient across any number of states. We also defined infinite state
equality matching strategies, but argued that they either were not incentive compatible or that they
would be dominated by finite state equality matching equilibria. We constructed two parametric
models to numerically analyze globally efficient multi-state equilibria. The first model simulates
a large sample of games, derives payoff functions from the simulations, and finds the number and
size of favors that would be optimal for the constructed payoff functions. The second model solves
the system of simultaneous payoff equations associated with an equality matching game directly,
and uses the results to find the optimal favor sequence given a general strategy profile such as multi-
state equality matching or pseudo-highest symmetric self-generating line strategies. We used these
models to compute sets of solutions that spanned the parameter space and then interpolated general
equilibria characteristics from those results. We further constructed a version of AB’s highest sym-
metric self-generating lines equilibria that followed the same automata except in the border states
and was not restricted to lines or infinite number of states. And we also extended the multi-state
equality matching model to a class of equilibria that involve favor-depreciation and that dominate
globally efficient multi-state equilibria. All strategies were analyzed using our parametric models,
but not in as much depth as multi-state equality matching strategies. Further research is needed
to find closed-form solutions to these various strategy profiles and to investigate hybrid and other
strategies for favor-trading with concave utility functions.
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7 Appendix

7.1 Proofs

Proof. (Lemma 7: EM equilibrium always exists)
Consider a simple (2-state) EM strategy profilg consisting of favors = y = ¢, and payoffs
u, andu, for the disadvantaged and advantaged agents, respectively. We use a direct proof to show
that given anyy, § andp, there exists an small enough that the incentive compatibility constraint
for simple EM is satisfied.
The payoffs are

u, =p((1=06)(1—e)*+du)+ (1 —p)ou,
(1—6) (1 — &)+ oa.
1—=46(1-p)
. =p((1=0)+du.) +p((1—08)e*+ du.) + (1 — 2p)du.
(1= 6)(1+ %) + ou,
1—-46(1—p)

To obtain explicit equations far. andu. the solve the two equations above in two unknowns,

(1= =)+ ps(L+ (1 —e)* +e%)
Le =P 1— (1—2p)s
(1—=0)1+e*)4+pi(1+(1—e)*+e%)
1—(1—2p)
p(1—=0)(1—(1—¢e)*+¢e%)
1— (1—2p)

Us =D

(34)

e ’U“E_Qg:

The incentive compatibility constraint is
(1-6)(1—¢e)*+0u.>1—08+ ou.

:}(52 1-(1;5)_
1—(1—¢)"+u.—u,

We substitute fori. — u_ from equation 34,

5> 1—(1-¢)"
i} o 5 (1 _~\o o
1 - (1 - 5) + p(l )1(,1(1(,12;))5 e )

and solve for (here we skip several steps of straightforward simplification),

1
o> = — Oase — 0. (35)
L=p+rr=e
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becauser € (0,1) andp € (0,1/2) are fixed andim._o — (1 —=——= = 00. And sinceu (¢) = ¢ is
continuous for > 0 ande > 0, we can always find an suff|C|entIy small that inequality 35 is

satisfiedm

Proof. (Lemma13:6 > 6, = o/, . suchthafl (o! ) > T (0emz2))
We first have to solve system of 3-state EM payoff equations wherd,,

(1 - 2p)6au37
(1 - 2p)5au27

us = p (1 = 04) + Oqusz) + p (1 — 00) Y& + dquiz) +
Uy = p (1= 0a) (1 — 22)* 4 daus) + p (1 — 62) yS + dauy) +
ur = p((1—0a) (1 —21)" 4 dquz) + (1 — p)daus.

Recall thaty, = % and by definition of multi-state EM strategigs = z, and
Yo = 1 ¢
— 2¢-1 29—1
us=1p <<1 - 2a—1+p(2—2a)) + 2a—1+p(2—2a)u3>
2¢—1 o 2¢—1
+ (1 stidom ) 7+ wii )
2¢—1
+(1=2p) a5 T Uss
_ 2¢—1 e} 2%—1
w=p (1~ stz ) (- 2" + st n)
24—-1 « 24—-1
o (1= mime) ot + i)
2¢—1
+ (1 = 2p) my ey o
— 2¢—1 (e} 2¢—1
w = (1= i) (- 0" + i)
2%—1
+(1— P)muy
Solving
Us = p—1+32a—4a+(4—4x1)“+(1—m1)a—21+a(1—xlZi—(1—32a+4a)z?+(2—2m2)a—(1—x2)a+(2a—1)mg
21+a_q )
Uy = p—1+2a+(2—2z1)°‘—(1—;2:j§2a—1)z?+(1—x2)0‘+x‘; ’
Ui — 1210 4o (4—4a1)*43(2—221)* —(1—21)* + (2% —1) 22§ +(2—222)* — (1—22) *+ (2% —1)x§
1 — p 21+a_1q

And taking the differences and the sum average, and simplifying

uz —uz =p(2—2%) za—(2—%1)“+(1—2:J:11+)Zirf%?—(1—z2)a—xg
us —up = p(2—2%) 2a_1_(2_2751)a-;(i"‘a—_ll)x‘f‘-i-(l—xg)a-i-xg‘
T (043) = 35 (ug +ug + 1)
=3p(L+ (1 —2)" +af + (1 - 22)" +25)
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The incentive compatibility constraints fof, , are

(1—5a)(1—x1)a+5au221—5a+5au1

— 150(‘50[ <UQ—U1) 21—(1—x1)a

(1—=04) (1 —22)" +0q u3 > 1 =0+ g us
)

— 170("5& (Ug — UQ) > 1-— (]. — l’g)a

Suppose the ICC inequalities bind. Substitute- = %gig(} and the values fou; — u, and
uy — uy into the ICC and simplify

(20—1) (29— (2—221)*+(1—21)* +2%2¢ — (1—72) " ~25 )

21+a_q = ]‘ - (1 - xl)a
(22-1)(2%—(2—2z1)“+(1—z1)*+2%2¢ — (1—22)* —2¥ o
( - 21+ai1 - 2 2> =1- (1 — .Z'Q)

Solving yieldszy = (1 — 2z1) /2. m
Proof. (Lemma 14: 7; (0epn) = 1/n, s = 1,2,...,n)
Let 7* = (nf,75,...,m), wheren] + 75 + ... + m7 = 1, denote the fraction of time spent

in the corresponding states, and#etdlenote the transformation matrix of agents between states if
they follow o.,,,». In equilibrium,7* has to satisfy the following equations,

m/7* =7 andr + 15 + ...+ 7w =1,

writing out them-matrix andr*-vectors,

1-p p 0 0
p 1-2p p 0 ; . .
0 D 1-2p p 7T1 T
. > 3

0 D 1—2p =
0 "1 \m) =
P
0 0 p 1l—p

multiplying out the terms,

(1 —p)a} +pry =

pri + (1 —2p)ms + pry =75

pmy + (1 —2p)m3 + pry =73
P, o+ (1 - 219)77271 +pm, =m,

pmn o+ (1 —p)m, =7
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Solving suchthat} + 75 + ...+ 71 =1 = W*Z(%»%,--->%)- -

7.2 Mathematica code

The following Mathematica code offers a compact example of using simulated payoffs (section
3.1.2) withae = 0.5, § = 0.8 andp = 0.05,0.1, ..., .45. The code constructs payoff functions from

the simulated data and solves thieEM optimization problem for those payoff functions and the
associated triplet of parameter values ¢, p) . The solution set is used to interpolate 3D-plot of
the optimal favor sequences for the parameter space that was covered (see figure 4).

(* Clear old variables and set new values *)
Clear["Global*"; a=.5;0=.8;11=100;J=10000;
trl:=p;trla="p";tr2:=;tr2a="a";tr3:=4;tr3a="0";Col=1,
v0=1/20;v1=9/20;vInc=1/20;
For[p=v0,p<v1,p+=vinc,
PrintTemporary[ToString[trlal-"=" <>ToString[N[tr1]]];
Clear[avU,xSeq,ICCa];n=1;u[0]=p;
While[n<3||avU[n-1]<avU[n],n++;
Clear[x];x[0]=1;x[n+1]=0;x[n]=0;
(* generate data *)
W=RandomChoic€]p,p,1-2¢—{1,-1,0},{J,II}];
Do[S[k]=Drop[FoldList(Max[1,Min[n,Plus[#1,#2]]1&,k,#]& @W,None,-1],
{k.1.n}];
(* derive payoffs and define objective *)
Do[u[K]=(1-6)Mean[(Map[(1-x[#]) «&,S[k](W/.-1—0),{2}]+Map[x[n+1-#] a&,
-S[KI(W/.{1—0}),{2}]).-Array[6"(#-1)&,I1]], {k,1,n}];
objective=Sum[u[kKk,1,n}1/n;
(* define incentive and feasibility constraints *)
ICCa[n]=Table[0<(1-6)((1-x[K])"a-1)+6 (u[k+1]-u[K]),{k,1,n-1}];
constraints=And@ @Join[Tablefx[k] <1,{k,1,n-1}],ICCa[n]];
(* choose starting points and solve for optimal favors *)
variables=Tablg[x[t], Min[2*p,.55]* §*t"(- ) },{t,1,n-1}];
{avU[n],xSeq[n}=FindMaximumf objective,constrainisvariables]
I;
nMax=0Ordering[Array[avU,n-1,2],-1][[1]]+1;
Col=Max[Col,Count[xSeqg[nMax][[All,2]], 1];
optimalX0[tr1]=Join[xSeq[nMax][[All,2]], Table[0}i,30}]]
I;
gg={Black,24,"Helvetica};
data=Flatten[Tabléjv,nn,optimalX0[vv][[nn]]},{vv,vO,v1,vIng,{nn,1,Col],1];
ListPlot3D[data,AxesLabe}{ Text[Style[ToString[trla],gg]], Text[Style[’s”,gg]],
Text[Style["x”,gg]] },ColorFunction-(ColorData[’LakeColors”][#3*5/3]&)]

Our second example applies the computed payoffs model (section 3.1.3) and the differential
evolution algorithm to find globally efficient equilibrium favors and associated payoffs fer
0.2,.24,...,.8 while § = .8 andp = .4. The results are available in figure 12 and table 9.
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(* Clear old variables and set new values *)

Clear["Global*"]; §=4/5;p=2/5;Col=1;

trl:=q;trla="a";tr2:=9;tr2a="6";tr3.=p;tr3a="p";

(* Define set of system of payoff equations and the ICC *)

equ[n J:=Join[Table[
u[s]==(p (0 u[s-1]+5 u[1+s]+(14)(x[1+n-s]*+(1-x[s])*)))/(1-(1-2 py),
{s.2,n-3],{u[1]==(p (6 u[2]+(1-0) (A-x[1])*))/(1-(1-p)?),
uln]==(p (6 u[n-1]+(1-6) (1+x[1]*)))/(1-(1-p)d)}];

ICCa[n ]:=Table[6<o (u[s+1]-u[s])-(19)(1-(1-x[s])*),{s,1,n-1];

v0=1/5;v1=4/5;vInc=1/25;

For[a=v0, a<vl, a+=vinc,
Clear[avU,xSeq];n=1;PrintTemporary[ToString[trka]=" <>ToString[N][tr1]]];
While[n<3||avU[n-1]<avU[n],n++;PrintTemporary[’n=2>ToString[n]];

Clear[x];x[0]=1;x[n+1]=0;x[n]=0;

(* Solve system of payoff equations *)

uSolv=NSolve[equ[n], Table[u[s]s,1,}]I[[1]];

objective=1/n*Sumlu[t{t,1,n}]/.uSolv;

constraints=And@ @Join[Tablefx[k] <1,{k,1,n-1],ICCa[n])/.uSolv;

(* solve for optimal favors *)

variables=Table[x[t}t,1,n-1}];

{avU[n],xSeq[n}=NMaximize[{ objective,constrainjsvariables,

{Method-"DifferentialEvolution”,MaxIterations-500}]

I;
nMax=0Ordering[Array[avU,n-1,2],-1][[1]]+1;
Col=Max[Col,Count[xSeqg[nMax][[All,2]], ]];pay[trl]=avU[nMaXx];
optimalX[tr1]=xSeg[nMax][[All,2]];
optimalX0[tr1]=Join[xSeq[nMax][[All,2]], Table[0}i,30}]]

I;

gg={Black,24,"Helvetica};

data=Flatten[Tabldpv,nn,optimalX0[vv][[nn]]},{vv,v0,v1,vIng,{nn,1,Co}],1];

Labeled[TableForm[Table[Prepend[optimalX[vv],pay[v¥{ly,v0,v1,vIng],

TableHeadings>{Table[ToString[trla}>" =" <>ToString[N[vv]],{vv,v0,v1,vIng],
Prepend[Table[Subscript[x,{},1,Col}],"u"] }],"n*-EM equilibria: "<>ToString[tr2a]

<>"=" <>ToString[N[tr2]]<>",” <>ToString[tr3ak>"=" <>ToString[N[tr3]], Top,
Frame—True,LabelStyle-Bold]
ListPlot3D[data,AxesLabe}{ Text[Style[ToString[trla],gg]], Text[Style[’s”,gg]],
Text[Style["x”,gg]]},ColorFunction-(ColorData[’LakeColors”][#3*5/3]&)]

Our final Mathematica code example was used to generate figures 22 and 23 depicting 4-state

FD equilibria. The included code is longer than previous examples only because it includes most
of the auxiliary subroutines we use while testing the code. These subroutines provide the user with
an option to use either a global or local optimization algorithm, print out intermediate results so
that we can see which part of the code or loop is running and to gather debugging information if

necessary.

(* Clear old variables and set new values *)
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Clear["Global*"];start = SessionTime[];global=0;Col=1,
a=.10=.5;sMax=4;trl:=p;trla="p";tr2:&;tr2a="a";tr3:=4;tr3a="0",
(* Define favor functions and ICC *)
equ[n ]:=Join[Table[
u[s]==(p@© u[s-1]+ u[s+1]+(10) (X[1+n-sP+(1-x[s])*)))/(1-(1-2 p)J),{s,2,n-1],
{u[1]==(p(@ u[2]+(1-6)((L-x[1])*+(X[n])*)))/(1-(1-p)),
u[n]==(6(p-(1-2 p) x[O])u[n-1]+p(18)((X[1]) *+(L-x[n])*))/(1-6(1-p)+(1-2 py x[O]) }];
ICCa[n.]:=Append[Table[&d (u[s+1]-u[s])-(16)(1-(1-X[s])),
{s,1,n-31,0<(1-6)((A-x[n])*-1)+6*x[0)(u[n]-u[n-11)];
v0=7/100;v1=47/100;vInc=4/100;
(* sMax optional limit to number of states *)
For[p=v0,p<v1,p+=vinc,
Clear[avU,xSeq];n=1;u[0]=p;
While[navU[n]),n++;
Clear[x];x[n+1]=0;uSolv=NSolve[equ[n], Table[u[$k,1,n]][[1]];
(* Define obj, cons and vars - need to choose starting pts carefully *)
objective=1/n*Sumlu[t{t,1,n}]/.uSolv;
constraints=And@ @Join[TablefX[t] <1,{t,0,n}],ICCa[n]]/.uSolv;
variables=Prepend[Table{[t], Min[2*p,.55]*(sMax+1-n)/sMax,
{t,1,n}],{x[0],0.01}];varOnly=Table[x[t]{t,0,n}];
If[global==0{avU[n],xSeq[n}=FindMaximumf objective,constrainis
variables,MaxIterations 20000],
{avU[n],xSeq[n}=NMaximize[{ objective,constrainjsvarOnly,
{Method—"DifferentialEvolution”,MaxlIterations-500}]];
current = SessionTime[]-start;PrintTemporary[’n =ToString[nk>" and ”
<>ToString[trlak>" =" <>ToString[N[tr1]]<>" and time ="
<>ToString[currentf>" Payoff = "<>ToString[avU[n]]]
I;
nMax=0rdering[Array[avU,n-1,2],-1][[1]]+1;
Col=Max[Col,Count[xSeqg[nMax][[All,2]], ]-1];
pay[trl]=avU[nMax];optimalX[trl]=xSeqg[nMax][[All,2]];
optimalX0[tr1]=Join[xSeq[nMax][[All,2]], Table[0}i,sMax}]]
I;
gg={Black,24,"Helvetica};
data=Flatten[Tabléjv,nn-1,optimalX0[vv][[nn]}},{vv,v0,v1,vIng,{nn,2,Col+1],1];
Labeled[TableForm[Table[Prepend[optimalX[vv],pay[v{ily,v0,v1,vIng],
TableHeadings->{ Table[ToString[trla}>" =" <>ToString[N[vV]],
{vv,v0,v1,vIing],Prepend[Prepend[Table[Subscript[x,t],
{t,1,Col}],"q"],"u”] }],ToString[sMaxk>"-state FD equilibria: ”
<>ToString[tr2ak>" =" <>ToString[tr2k>", " <>ToString[tr3ak>" ="
<>ToString[N[tr3]], Top,Frame-True,LabelStyle~Bold]
ListPlot3D[data,AxesLabek{ Text[Style[ToString[tr1a],gg]], Text[Style["s",ggll,
Text[Style["x",gg]] },ColorFunction-(ColorData[’LakeColors”]|[#3*5/3]&)]
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7.3 Numerical algorithms for constrained global optimization

Source: Wolfram Research [21]:

Nelder-Mead

The Nelder-Mead method is a direct search method. For a function of n variables, the
algorithm maintains a set af+1 points forming the vertices of a polytope in n-dimensional
space. This method is often termed the "simplex” method, which should not be confused with
the well-known simplex method for linear programming.

At each iterationp+1 pointszy, xo, ..., z,11 form a polytope. The points are ordered so
thatf(x1) < f(z2) < ... < f(zn+1). A new pointis then generated to replace the worst point
Tp+1-

Let c be the centroid of the polytope consisting of the bepbints,c = > | x;. A trial
pointx; is generated by reflecting the worst point through the centigie; ¢+ a(c — x,,+1),
wherea > 0 is a parameter.

If the new pointz, is neither a new worst point nor a new best poiftz1) < f(xy) <
f(zy), =, replacese,, 1.

If the new pointx; is better than the best poinf(z;) < f(z1), the reflection is very
successful and can be carried out furthezto= ¢ + G(x; — r), where > 1 is a parameter
to expand the polytope. If the expansion is succesgfut,) < f(x¢), . replacesc,1;
otherwise the expansion failed, angdreplacest,, 1.

If the new pointz; is worse than the second worst poifitx;) > f(x,), the polytope is
assumed to be too large and needs to be contracted. A new trial point is defined as

x :{ ¢ty (@ns1—c), I fx) = f(2e41),
Tl ety(@—e), i f (@) < (@),

where0 < v < 1is a parameter. If (x.) < min (f(zn+1), f(x+)), the contraction is success-
ful, andz. replacest,, 1. Otherwise a further contraction is carried out.

The process is assumed to have converged if the difference between the best function values
in the new and old polytope, as well as the distance between the new best point and the old
best point, are less than the tolerances providedldouracyGoal andPrecisionGoal

Strictly speaking, Nelder-Mead is not a true global optimization algorithm; however, in
practice it tends to work reasonably well for problems that do not have many local minima.

Differential Evolution

Differential evolution is a simple stochastic function minimizer.

The algorithm maintains a populationfpoints,{z1, 2, ..., z;, ..., zm, }, Where typically
m > n, with n being the number of variables.

During each iteration of the algorithm, a new populatiomopoints is generated. Thé"
new point is generated by picking three random pointsy,, andz,,, from the old population,
and formingzs = x,, + s(z, — ), where s is a real scaling factor. Then a new peint,
is constructed fronmx; andz, by taking theit" coordinate fromz, with probability p and
otherwise taking the coordinate from. If f(2new) < f(z;), thenz,., replacese; in the
population. The probability is controlled by thé CrossProbability” option.
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The process is assumed to have converged if the difference between the best function values
in the new and old populations, as well as the distance between the new best point and the old
best point, are less than the tolerances providefldnuracyGoal andPrecisionGoal

The differential evolution method is computationally expensive, but is relatively robust and
tends to work well for problems that have more local minima.

Simulated Annealing

Simulated annealing is a simple stochastic function minimizer. It is motivated from the
physical process of annealing, where a metal object is heated to a high temperature and allowed
to cool slowly. The process allows the atomic structure of the metal to settle to a lower energy
state, thus becoming a tougher metal. Using optimization terminology, annealing allows the
structure to escape from a local minimum, and to explore and settle on a better, hopefully
global, minimum.

At each iteration, a new point;,..,, is generated in the neighborhood of the current point,

x. The radius of the neighborhood decreases with each iteration. The best point found so far,
Tpest, 1S AlSO tracked.

If f(Znew) < f(Tbest)s Tnew replacesryes; andz. Otherwise,x,.,, replacesr with a
probability e?>2/./0) Hereb is the function defined bBoltzmannExponent |, i is the
current iteration A f is the change in the objective function value, gftdis the value of the
objective function from the previous iteration. The default functiorbﬂsr%ﬂ.

Like theRandomSearch method SimulatedAnnealing uses multiple starting points,
and finds an optimum starting from each of them.

The default number of starting points, given by the opB@archPoints , ismin(2d, 50),
where d is the number of variables.

For each starting point, this is repeated until the maximum number of iterations is reached,
the method converges to a point, or the method stays at the same point consecutively for the
number of iterations given blyevellterations

Random Search

The random search algorithm works by generating a population of random starting points
and uses a local optimization method from each of the starting points to converge to a local
minimum. The best local minimum is chosen to be the solution.

The possible local search methods are Automatic dnigfiorPoint ", The default
method is Automatic, which uses FindMinimum with unconstrained methods applied to a sys-
tem with penalty terms added for the constraints. When Method is sktaridrPoint
a nonlinear interior-point method is used.

The default number of starting points, given by the option SearchPoints, is
min (10d, 100), where d is the number of variables.

Convergence foRandomSearch is determined by convergence of the local method for
each starting point.

RandomSearch is fast, but does not scale very well with the dimension of the search
space. It also suffers from many of the same limitations as FindMinimum. It is not well suited
for discrete problems and others where derivatives or secants give little useful information
about the problem.
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7.4 Figures

Figure 24 refers to the problem analyzed in lemma 13. We computed the optimal 3-state EM
strategies forv € {%, 2,...., 2}, p € {%, 2, ..., & } and the corresponding, using Mathemat-

ica. The corresponding payoff differenceg,c” ,) —u (c7, ), shown in table 4 in the appendix.
Figure 24 shows: (o7, ;) andu (o7, .), whereu (7, ) was interpolated from the set of ,
payoffs computed with Mathematica. The point to note is that* .) > u (o7, .) in numerical
testing that spanned the whole feasible regios/aand10% increments ofv andp, respectively.

Figure 24w (o7, ;) andu (o7, .) with § = 4,

Figure 25 represents solutions to same problem as figure 14 except with the additional con-

straintofr, < x,_{,Vs=2,3,...,n.

T 1 JJ(J,J
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|
00 |
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@

Figure 25: Constrained*-EM: z7 (o) , ..., x}. (o) Whenz? < x%_|
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Figures 26 and 27 illustrate"-HSSGL equilibrium behavior aschanges.

n*-HSSGL favors asé varies: View 1

Figure 26: points: o — 0.3, p = 0.3, 8 = 0.65,0.67, ... 0.95

n*-HSSGL favors asé varies: View 2
Points: o = 0.3, p = 0.3, 6 = 0.65,0.67,...,0.95

Figure 27:

Figures 28 and 29 illustrate*-HSSGL equilibrium behavior as changes.
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n*-HSSGL favors asa varies: View 1

Figure 28: o .15 0.9, p=0.3, a =0.1,0.12, ...,0.74

n*-HSSGL favors asa varies: View 2
Points: § = 0.9, p=0.3, « =0.1,0.12, ...,0.74

Figure 29:
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7.5 Tables

p u (91 5] T3 Ty Ts Tg T7 xs Tg Z10
30 | .404 | 599 | 500 | 427 | .383 | .334 | .288 | .253

31| 418 | 615 | .516 | .442 | .395 | .347 | .302 | .266
32 | 432 | 631 | 532 | 457 | .406 | .360 | .316 | .279
.33 | .446 | .645 | .5b48 | 471 | 418 | .373 | .329 | .292
34 1 .460 | .647 | 555 | 479 | .426 | .381 | .338 | .303
35| 474 ] 623 | 532 | 462 | .411 | .376 | .329 | .290 | .258
36 | 488 | .637 | .B4T | 475 | 422 | 387 | .341 | .303 | .270
37 1 .502 | .650 | 560 | .488 | .433 | .397 | .353 | .315 | .282
38 | .16 | .658 | 571 | .499 | .442 | .406 | .363 | .325 | .293
.39 | B30 | .654 | 574 | 503 | .447 | .411 | .368 | .330 | .302
40 | .544 | .641 | .57 | 489 | .437 | 404 | .364 | .324 | .290 | .262
41 | 558 | .653 | .B70 | 502 | .448 | 413 | .374 | .335 | .301 | .273
42 | 572 | 663 | .582 | 513 | .459 | 421 | .383 | .345 | .312 | .283
43 | .86 | .664 | .B8T | .519 | .465 | .426 | .390 | .352 | .319 | .292
44 1 .599 | .659 | 588 | .522 | .468 | .430 | .393 | .356 | .323 | .300
45 | .613 | .656 | .579 | 514 | .463 | .423 | .396 | .356 | .321 | .291 | .265
46 | .627 | .666 | 590 | .525 | .473 | .432 | 404 | .365 | .331 | .301 | .275
A7 | .641 | 673 | 599 | B34 | .481 | .439 | .411 | .373 | .339 | .310 | .284
A48 | .655 | .668 | .600 | .B37 | .484 | 442 | 414 | 377 | .344 | 314 | .291
49 | .669 | .663 | .600 | .538 | .487 | .445 | 417 | .380 | .347 | .318 | .299

Table 2:n*-EM and favors above socially efficient sizet(p) > 1/2,« = 0.5,6 = 0.9

P u vy | wo | w3 | xy | w5 | we | xy | xg | mg | w0
.30 | .403 | .500 | .500 | .443 | .393 | .343 | .282 | .192
31 | 417 | .500 | .500 | .448 | .398 | .349 | .285 | .205
32 | 431 | .500 | .500 | .453 | .403 | .354 | .289 | .217
33| .445 | 500 | .500 | .458 | .407 | .360 | .292 | .229
34 | 459 | .500 | .500 | .465 | .412 | .374 | .326 | .257 | .184
.35 | .473 | .500 | .500 | .470 | .416 | .378 | .332 | .261 | .195
.36 | 487 | .500 | .500 | .474 | .421 | .383 | .337 | .264 | .207
37 | 501 | .500 | .500 | .478 | .425 | .387 | .342 | .268 | .218
38 | 515 | .500 | .500 | .483 | .430 | .392 | .348 | .270 | .228
.39 | 528 | .500 | .500 | .493 | .440 | .400 | .357 | .275 | .230
40 | 542 | .500 | .500 | .490 | .439 | .404 | .362 | .321 | .244 | .196
A1 | 556 | .500 | .500 | .494 | .443 | .407 | .366 | .327 | .248 | .206
42 [ 570 | .500 | .500 | .496 | .446 | 411 | .370 | .330 | .251 | .217
43| 584 | 500 | .500 | .500 | .455 | .418 | .379 | .334 | .255 | .221
44 1 .598 | .500 | .500 | .500 | .458 | .421 | .382 | .336 | .263 | .225
45 | 612 | .500 | .500 | .499 | .461 | .424 | .385 | .338 | .271 | .230
46 | 626 | .500 | .500 | .500 | .462 | .424 | .394 | .354 | .310 | .236 | .209
47 | 640 | .500 | .500 | .500 | .470 | .431 | .400 | .361 | .311 | .240 | .214
A48 | .654 | .500 | .500 | .500 | .473 | .434 | .403 | .365 | .313 | .248 | .218
49 | .668 | .500 | .500 | .500 | .475 | .436 | .406 | .368 | .315 | .256 | .222

Table 3:n*-EM with social efficiency constraint on favor sizef;(p) < 1/2,a = .5,6 =.9
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Table 5:n*-EM data for figure 6 andzi(p), ...

46

a |p=05|p=1|p=15|p=2|p=25|p=3|p=35|p=4|p=.45
.05 | .007 014 .020 027 .034 041 .048 .055 .061
10 .006 012 018 .024 .030 .036 .042 .048 .054
.15 .005 011 .016 .022 027 .032 .038 .043 .048
.20 .005 .010 .015 .019 .024 .029 .034 .039 .044
25 | .004 .009 013 017 .022 .026 .031 .035 .039
30 | .004 .008 012 .016 .020 .024 027 .031 .035
.35 .004 .007 011 014 .018 021 .025 .028 .032
40 | .003 .006 .009 012 .016 .019 .022 .025 .028
45 | .003 .006 .008 011 014 017 .019 .022 .025
.50 | .002 .005 .007 .010 012 .014 017 .019 .022
55 | .002 004 .006 .008 010 012 015 017 .019
.60 .002 .004 .005 .007 .009 011 012 .014 .016
.65 | .001 .003 004 .006 .007 .009 010 012 013
.70 | .001 .002 .004 .005 .006 .007 .008 .010 011
751 .001 .002 .003 .004 .005 .006 .007 .008 .009
.80 | .001 .001 .002 .003 .004 .004 .005 .006 .006
.85 | .001 .001 .002 .002 .003 .003 .004 .004 .005
90 | .000 .001 .001 .001 .002 .002 .002 .003 .003
.95 .000 .000 .000 .001 .001 .001 .001 .001 .001
Table 4: 3-EM dominates 2-EMi(c? ;) — u(o? .) whend = 6,

p U T T2 T3 T4 Ts Tg T7

.03 ].034 | .083

.07 | .084 | .175 | .104

A1 137 | 319 | .207

15 | 190 | .445 | .309

19| .245 | 446 | 318 | .243

23 | .300 | .446 | .332 | .269 | .204

27 | 356 | .524 | .395 | .326 | .263

.31 | 410 | .508 | .395 | .352 | .269 | .219

.35 | 466 | .582 | .439 | .386 | .309 | .283

39 | 522 | 559 | 452 | .383 | .337 | .280 | .238

43 | .577 | .608 | .500 | .422 | .374 | .321 | .278

AT | 633 | 592 | 493 | 421 | 379 | 328 | .282 | .247

,xh(p),a=0.5,6=0.85




Table 7:n*-EM data for figure 10u andx3(9), ...,

p | ICC, | ICCy | ICCs | ICCy | ICCys | ICCy | 1CCy
.03 0

.07 0 0

11 0 0

15 0 0

.19 0 0 .001

.23 0 0 0 .003

.27 0 0 0 .002

31 0 0 0 .001 .003

.35 0 0 0 .001 .003

.39 0 0 0 0 .003 .004

43 0 0 0 0 .003 .003

47 0 0 0 0 .001 .004 .004

Table 6:n*-EM: ICC for figure 6, = 0.5, § = 0.85

) U T To T3 Ty s Te T s Tg
.37 | 428 | .055

41 | .433 | .076

45 | .438 | .103

49 | .444 | .136

53| 449 | 176

b7 | 453 | 224

.61 | .458 | .165 | .110

.65 | .465 | .216 | .149

.69 | 472 | .280 | .199

73 | 478 | .359 | .265

77| 484 1 .336 | .266 | .200

.81 | .491 | .450 | .354 | .293

.85 | .498 | .492 | .402 | .347 | .296

.89 | .505 | .515 | .443 | .392 | .356 | .311 | .275

93 | 512 | .595 | .541 | .494 | 454 | .426 | .397 | .366 | .338 | .313

z).(0),a =06, p=04

o

1CCy

1CC,

1CCs

1CCy

1CCs

1CCs

1CCy

1CCy

1CCy

37

41

45

49

.53

.57

.61

.65

.69

73

77

.002

.81

.001

.85

0

.002

.89

(o] Ren] Hen] fen] fen] fenl Han] Han)

0

0

001

.002

93

[en] Hen] Hen] fen] en] Hen] Hen] Ren] Fen] Han] Fen] Han] Hen] Nan] Nan]

o

0

0

0

0

.001

.002

.001

Table 8:n*-EM: ICC for figure 10.cc = 0.6,p = 0.4
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« u T €To T3 T4 xT5 Te Ty T8 i)
.20 | .658 | .689 | .555 | .512 | 406 | .343 | .290 | .238 | .204 | .231
24| .639 | .686 | .590 | .461 | .390 | .356 | .275 | .213 | .180 | .225
28 | .620 | .648 | .573 | .415 | .365 | .315 | .234 | .217 | .218

32| .602 | .653 | .535 | .419 | .346 | .291 | .238 | .229

.36 | 584 | .649 | 513 | 407 | .343 | .277 | .255

40 | 568 | .639 | 481 | .384 | .328 | .261 | .219

44 1 .551 | .604 | .458 | .371 | .305 | .251

A8 | .h35 | 609 | 391 | .332 | .261 | .208

.02 | 520 | .501 | .384 | .318 | .257

.56 | .504 | .506 | .388 | .323

.60 | 490 | 420 | .327 | .267

.64 | 474 | 331 | .271 | .210

.68 | 462 | .364 | .290

72| 448 | 275 | .219

76 | 434 | 341

.80 | .424 | .237

Table 9:n*-EM data for figure 12u andxj(«a), ..., 2. (), 6 = 0.8,p = 0.4

a | ICC, | ICCy | ICCs | ICCy | ICCs | ICCs | ICCy | ICCs | ICCy
20| .035 .009 0 0 0 .001 .002 0 0
24| .024 .001 0 0 0 .001 .003 .003 0
28 | .018 0 0 0 0 .002 .004 .001

32| .012 0 0 0 .002 .004 .002

.36 | .008 0 0 0 .003 .002

.40 0 0 0 0 .004 .005

44 0 0 0 .002 .004

48 0 0 0 .002 .005

.52 0 0 0 .003

.56 0 0 0

.60 0 0 0

.64 0 0 0

.68 0 0

72 0 0

.76 0

.80 0

Table 10:n*-EM: ICC for figure 120 = 0.8,p = 0.4
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j4 u z1 T2 3 Tq 5 e 7 xg g Z10 11 T12 13 T14
.01 .014 135 .043
.02 | .029 | .225 | .095 | .028
.03 | .044 | 299 | .136 | .078 | .023
.04 | .060 | .403 | .177 | .107 | .042
.05 .076 .498 218 137 .068
.06 | .093 | .580 | .258 | .166 | .099
.07 | .109 | .602 | .255 | .213 | .101 078
.08 125 612 289 233 119 .102
.09 .142 .615 321 251 138 129
.10 | 158 | .630 | .336 | .265 | .195 | .102 | .101
11 175 | .631 363 | 282 | .210 | .117 | .125
12 191 .631 .390 .298 224 132 .149
13 208 .629 415 314 238 147 174
.14 225 .625 439 .329 .252 .162 .199
.15 241 .634 433 .320 .293 .185 124 173
16 | 258 | .631 | .456 | .337 | .303 | .197 | .136 | .195
A7 | 275 | 648 | .490 | .361 316 | 213 | .152 | .210
.18 .292 .643 479 .358 321 .258 .168 .120 .186
.19 | .309 | .645 | .502 | .375 | .331 269 | .180 | .132 | .205
.20 | .326 | .680 | .548 | .407 | .348 | .285 | .197 | .149 | .208
21 .342 .683 .556 1420 357 | 294 208 .166 212
22 | .359 | .680 | .B55 | .412 | .351 329 | 233 | .167 | .132 | .208
23 | 376 | .686 | .b6T7 | 428 | .362 | .336 | .243 | .177 | .147 | .211
24 | .393 | .686 | .b68 | .438 | .370 | .342 | .251 186 | .161 215
.25 410 .685 .568 .448 .378 .347 .259 194 176 .220
.26 | .427 | .683 | .567 | .458 | .386 | .353 | .266 | .202 | .191 | .225
27 | 444 .691 583 461 .391 .360 .306 226 172 .158 215
28 | .461 690 | .b82 | 470 | .398 | .365 | .312 | .233 | .179 | .172 | .220
29 | 478 | .689 | .5&1 479 | 406 | 370 | .318 | .240 | .187 | .186 | .224
.30 | .495 | .687 | .B8O | .487 | .413 | .375 | .323 | .247 | .194 | .200 | .228
.31 512 .686 B7T .495 .420 .380 .328 .254 202 214 233
.32 | .529 | .687 | .582 | .503 | .428 | .386 | .334 | .261 209 | 231 .236
33 | 546 | .690 | .588 | .501 423 | 383 | .363 | .284 | .223 | .181 197 | 229
34 | 663 | .689 | .B8&6 | 508 | .430 | .388 | .367 | .290 | .229 | .188 | .210 | .233
.35 | B8O | .689 | .B88 | .5b16 | .438 | .394 | .371 296 | 236 | .194 | .225 | .236
.36 | .b97 | .700 | .615 | .526 | .453 | .406 | .378 | .306 | .246 | .201 244 | 236
37 | 614 | 694 | .596 | .524 | .446 | .402 | .379 | .334 | .265 | .212 | .177 | .206 | .231
.38 .631 .693 .596 531 .453 407 .383 .339 270 219 .183 219 235
39 | .648 | 704 | .623 | B39 | .466 | .420 | .391 347 | 280 | 227 | 188 | 239 | .235
.40 .665 703 .624 .540 471 424 .395 .350 .285 232 198 243 238
41 .682 701 .624 .540 476 428 .398 .354 .289 238 .209 247 241
42 | .699 | 707 | .630 | .549 | .475 | 427 | .398 | .380 | .312 | .255 | .210 | .178 | .237 | .234
43 | 716 | .705 | .630 | .550 | .480 | .432 | .401 383 | .316 | .260 | .215 | .187 | .240 | .237
44 .733 704 .630 .550 .485 .436 .405 .385 .320 .264 220 197 244 .240
.45 .750 .703 .630 .550 .489 .440 .408 .388 .324 .269 225 207 247 .242
.46 767 701 .630 .549 .494 444 411 .390 327 | 273 230 216 251 .245
A7 | 785 | 699 | .630 | 549 | 498 | .448 | 414 | .393 | .331 | .278 | .235 | .226 | .254 | .248
48 | .802 | .706 | .637 | .561 500 | 450 | 418 | .398 | .359 | .299 | .250 | .212 | .197 | .243 | .240
49 | .819 | .705 | .637 | .560 | .504 | .454 | .421 400 | .362 | 303 | .255 | .217 | .206 | .246 | .243

Table 13:n*-EM data for figure 15z andxj(p), ..., z}« (p) whena<a. a = 0.2, § = 0.85
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