
Information-based trade
1

Philip Bond

University of Pennsylvania
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Abstract

We study the possibility of trade for purely informational reasons. We depart from

previous analyses (e.g. Grossman and Stiglitz 1980 and Milgrom and Stokey 1982) by

allowing the final payoff of the asset being traded to depend on an action taken by its

eventual owner. We characterize conditions under which equilibria with trade exist.

We demonstrate that our model also applies to a portfolio allocation setting, and

use our results to show that trade is possible whenever there is sufficient uncertainty

about market betas.



1 Introduction

Following Grossman and Stiglitz (1980) and Milgrom and Stokey (1982), economists

have reached a consensus that under many circumstances it is impossible for an

individual to profit from superior information.1 This result is often described as

the “no trade” or “no speculation” theorem. The underlying argument is, at heart,

straightforward. If a buyer is prepared to buy an asset from a seller for price p, then

the buyer must believe that, conditional on the seller agreeing to the trade, the asset

value exceeds p in expectation. But conversely, knowing this the seller is at least as

well off keeping the asset.

This insight has had enormous consequences for financial economics. Almost all

observers of financial markets regard trade for informational reasons — information-

based trade — as a key motive for trade. To generate information-based trade,

the vast majority of papers studying financial markets introduce “noise traders” who

trade for (typically exogenous) non-informational reasons.2 Provided strategic agents

are unable to observe the volume of noise trader activity information-based trade is

possible. However, the modeling device of noise traders has often been criticized, as is

well-illustrated by Dow and Gorton’s (2008) survey. Moreover, a significant amount

of trade takes place directly between relatively sophisticated parties — a setting that

lies outwith the standard noise-trader framework.3

1See also Kreps (1977), Tirole (1982), Holmström and Myerson (1983) and Fudenberg and Levine

(2005).
2See, for example, Kyle (1985), and Glosten and Milgrom (1985).
3For example, many trades occur in “upstairs” markets, i.e., are trades in which “buyers and

sellers negotiate in the ‘upstairs’ trading rooms of brokerage firms” (Booth et al, 2002). Identifying

upstairs trades is relatively hard, but using detailed data from Finland Booth et al report that

upstairs trades account for 50% of total volume. In the last few years “dark liquidity pools”

(Liquidnet and Pipeline are well-known examples) have captured a significant share of trade volume,

particularly for midcap stocks, and as is the case for upstairs markets are used only by relatively

sophisticated traders.
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In this paper we develop a distinct and hitherto neglected reason for trade between

differentially informed parties. In many cases the holder of the asset must make a

decision that affects its value. If better information leads to superior decisions,

then the information released in trade is socially valuable. This possibility, which is

implicitly ruled out in Milgrom and Stokey’s otherwise general framework, is enough

to generate trade even without noise traders.

An example

The intuition for our results is best illustrated by an example. A risk neutral agent

(the seller) owns an asset that he can potentially trade with a second risk neutral

agent (the buyer). The asset’s payoff depends on two factors: an underlying but

currently unobservable fundamental θ ∈ {a, b}, and what the eventual asset owner

chooses to do with the asset. The best action for the asset owner to take depends

on θ. If θ = a the best action is A, and the asset is worth 2 if this action is taken. If

θ = b the best action is B, and the asset is worth 1 if it is taken. The asset is valueless

if any action other than the (θ-contingent) best action is taken. The buyer and seller

have the same “skill” in taking actions A and B, so that the action-contingent asset

payoffs for both parties are as given above. We discuss various interpretations below;

an immediate one is that the asset is a debt claim and the action is a restructuring

decision (e.g., liquidation vs. reorganization).

The unconditional probability of fundamental a is 1/2. Both the buyer and seller

receive partially informative signals about the true fundamental θ. Conditional on

the fundamental the signals are distributed independently and identically. Specifi-

Our paper will provide one explanation for trade between two sophisticated parties. Another

explanation would be that at least one of the parties is trading on behalf of retail investors, and

the associated agency problems affect trading behavior. (For models of the effect of delegation on

trading and prices see, e.g., Dow and Gorton 1997b and Dasgupta and Prat 2007.)

2



cally, if the true fundamental is a (respectively, b) then each party observes signal sa

(respectively, sb) with probability 3/4.

Consider the following trading game: after observing his signal, the buyer decides

whether or not to offer to buy the asset, and if so, the price p at which he offers to

buy. The seller either accepts or rejects the offer. We claim the following is an

equilibrium: the buyer offers to buy the asset for p = 0.8 independent of his signal,

and the seller accepts if and only if he observes signal sb.

First, consider the situation faced by the seller. If he ends up with the asset, he

must decide what to do using only his own information. As such, if he sees signal sa

and does not sell, his expected payoff is 3/2, while if he sees signal sb and does not

sell his expected payoff is 3/4.4 Consequently, after signal sb the seller prefers to sell

at a price p = 0.8 rather than keep the asset; and after signal sa, prefers to keep the

asset rather than sell at this price.

Next, we show the buyer is prepared to buy at price p = 0.8. Note that in

equilibrium the buyer learns the seller’s signal when he acquires the asset, since in

equilibrium the seller only accepts the buyer’s offer when he observes signal sb. So

on the one hand, if the buyer observes signal sa he regards θ = a and θ = b as equally

likely, since he knows the seller saw sb. Consequently he will choose action A, giving

an expected payoff of 2 × 1/2 = 1. On the other hand, if the buyer observes signal

sb, then given the seller also observed signal sb the buyer’s probability assessment

that θ = b is 9/10.5 Given this, he chooses action B, yielding an expected payoff

of 1 × 9/10 = 9/10. In both cases, the buyer’s expected payoff exceeds the price

4Note that since 3/4 × 1 > 1/4 × 2, action B is the better action to take if the only information

available is that one of the signals is sb.
5Specifically, the buyer’s posterior belief is given by:

Pr
(

b|sbsb
)

=
Pr (b) Pr

(

sb|b
)2

Pr (a) Pr (sb|a)
2

+ Pr (b) Pr (sb|b)
2 =

(

3
4

)2

(

1
4

)2
+
(

3
4

)2 =
9

10
.
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p = 0.8. As such, the behavior described is indeed an equilibrium.6

In this example both parties are strictly better off under the trade. Moreover,

they are both better off even after conditioning on any information they acquire in

equilibrium. The reason this is possible is that the asset value endogenously depends

on the information possessed by its owner. In the example, trade transfers the asset

from the seller when he observes signal sb to the buyer. Trade creates value because

it leads to a better decision after the signal pair sbsa. Specifically, after these signals

the seller would take action B because he observes only signal sb; while the value-

weighted best action is A, and the buyer takes this action. In essence, trade transfers

the asset from an agent who is likely to make the wrong decision to one who is more

likely to make the right decision. In contrast, in Grossman and Stiglitz (1980) and

Milgrom and Stokey (1982) asset holders have no decision to make since the final

asset payoffs are exogenous to the information possessed by its owner.

Applications

A number of different situations are captured by this model:

1. Most directly, the asset is a controlling equity stake in a firm; or (as noted

above) a debt claim that needs restructuring.

2. The asset is a large but non-controlling block of shares in a firm with an up-

coming shareholder vote.7

6There exist out-of-equilibrium beliefs for the seller such that the buyer is unable to profitably

deviate to any offer other than 0.8. Details are contained in an earlier draft.
7While private benefits such as synergies can also explain trade of a controlling equity stake, this

explanation is less readily applicable in the case of non-controlling blocks. That is, while the owners

of such blocks can affect a firm’s decisions by choosing how to vote, it is less clear how they can

derive substantial private benefits (at least without engaging in self-dealing).
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3. The asset is one of several debt claims in a firm with an upcoming bankruptcy

vote.

4. (Arguably of widest applicability:) The asset is an equity or debt claim with

no direct decision rights, but the holder must still decide how to allocate the

remainder of his portfolio. Specifically, suppose now that the seller and buyer

are risk averse, and that the asset’s market beta differs across fundamentals a

and b. Depending on his beliefs about the fundamental the asset holder chooses

different portfolio allocations. Thus in place of an action directly affecting the

asset’s payoff this setting features an action (the portfolio choice) that affects

the asset holder’s utility. We return to this application in much greater detail

in Section 5 below.

Paper outline

We describe our relation to the existing literature immediately below. In Section 2

we present our general model, which closely resembles the example above but with

the binary action set and signal space replaced with an arbitrary action set and

continuous signal space. In Section 3 we derive conditions that are required for trade

to occur regardless of the trading mechanism used. In Section 4 we examine two

simple trading mechanisms. By doing so, we are able to give a simple necessary

and sufficient condition for trade. In Section 5 we apply our results to the case in

which agents trade an asset over which they have no direct control, but instead choose

portfolio allocations.We relate our previously established trade conditions to standard

measures of asset risk — in particular, to the market beta of the asset. Section 6

concludes.
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Related literature

A key ingredient of our model is that the economic agent who decides how to use an

asset is able to infer useful information from the trading process. The notion that

prices reveal information that is useful for real decisions is an old one in economics.

Nonetheless, it is only comparatively recently that researchers have constructed for-

mal models in which, for example, managers learn from the share price. The key

difficulty, of course, is that if share prices affect decisions, those decisions in turn af-

fect share prices. Contributions to this so-called “feedback effect” literature include

Khanna, Slezak, and Bradley (1994), Dow and Gorton (1997a), Subrahmanyam and

Titman (1999), Dye and Sridhar (2002), Dow and Rahi (2003), Goldstein and Guem-

bel (2005), and Dow, Goldstein and Guembel (2006). Chen, Goldstein and Jiang

(2005) and Durnev, Mork and Yeung (2004) both present empirical evidence that

managers are indeed able to make better decisions as a result of information obtained

from stock prices. In more general terms, our paper belongs to a growing literature

that seeks to combine insights from corporate finance with those from the distinct

market microstructure and asset pricing literatures.

A number of classic papers (notably, Hirshleifer 1971) note the distinction between

information in an exchange economy and information in a production economy. How-

ever, the subsequent literature on the possibility of trade between differentially and

privately informed parties has focused almost exclusively on information in an ex-

change economy. In particular, the seminal papers of Grossman and Stiglitz (1980)

and Milgrom and Stokey (1982) show that under many circumstances trade is im-

possible in such an environment. Milgrom and Stokey’s “no trade” or “no specu-

lation” result rests on two assumptions: Pareto optimality of the initial allocation,

and concordancy of beliefs, in the sense that agents agree on how to interpret future

information. A subsequent literature has explored conditions under which the “no

trade” conclusion does not hold. The literature is too large to adequately survey.
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Representative approaches include departing from the common prior assumption, as

in Morris (1994) and Biais and Bossaerts (1998), and thus breaking belief concor-

dancy; departing from Pareto optimality, as in Dow and Gorton (1995), who assume

that some agents can trade only a subset of assets; and introducing multiple trading

rounds, as Grundy and McNichols (1998)8 do when they show that both belief con-

cordancy and Pareto optimality may fail at the intermediate date of a three-period

model.9

None of the above papers study the possibility of trade for purely informational

reasons in an economy in which asset owners must decide how to use their assets. To

the best of our knowledge the only previous consideration of this case is a chapter

of Diamond’s (1980) dissertation.10 He derives conditions under which a rational

expectations equilibrium (REE) with trade exists when there are two types of agents:

one type is uninformed, while the other type observes a noisy signal. The main differ-

ences between our paper and his are that (i) we study trade between agents who both

possess information, (ii) we show that as a consequence, information is never fully

revealed, and (iii) instead of restricting attention to the competitive (REE) outcome,

in the spirit of Milgrom and Stokey (1982) we allow for all possible trading mech-

anisms. Moreover, Diamond’s assumption that one side of the trade is completely

uninformed means that assets always flow from the less to the more informed party.11

In contrast, when both parties to the trade have some information, assets can flow to

8Related, see also Coury and Easley (2006).
9One can also avoid the no-trade conclusion by using non-standard preferences: see, e.g., Halevy

(2004).
10Less closely related is a recent working paper of Tetlock and Hahn (2007), who show that a

decision maker would be willing to trade and act as a loss-making market maker in “weather”

securities (or more generally, securities whose value is exogenous to the decision).
11Diamond does consider an equilibrium in which uninformed agents end up holding the asset.

However, to support the equilibrium he must assume that uninformed agents learn only from the

price at which the trade takes place, and not from the volume of trade.
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the party with lower quality information.

In this paper we analyze the degree to which efficiency gains arising from additional

information make information-based trade possible. However, before proceeding to

the details of our analysis, we wish to make the following clear: we are not arguing

that trade is a superior mechanism relative to other alternatives. Instead, we view

trade as a particular information-sharing mechanism that deserves focused attention:

it is widely observed, has long interested economists, and has many appealing features.

2 The model

Our model is closely related to the opening example. As in the example, there are two

risk neutral agents,12 who we refer to as a seller (agent 1) and a buyer (agent 2). The

seller owns an asset. The payoff from the asset depends on the combination of the

action taken by the asset-owner and the realization of some fundamental θ ∈ {a, b}.

Neither agent directly observes the fundamental θ, but before meeting, both agents

i = 1, 2 receive noisy and partially informative signals si. Whereas in the example

signals were binary, in our main model they have full support in R.

The eventual asset owner must decide what action to take. Regardless of whether

the asset-owner is agent 1 or 2, the range of available actions is given by a compact

set X , with a typical element denoted by X. (In the opening example, X is simply

the binary set {A,B}.) We write v (X, θ) for the payoff when action X is taken and

the fundamental is θ, where v (·, θ) is continuous as a function of X. We emphasize

that the asset payoff is independent of the identity of the asset-owner — both agents

1 and 2 are equally capable of executing all actions in X .

12Our analysis also covers the case of agents with constant absolute risk aversion preferences. We

consider this case in Section 5 below.
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Pre-trade information

The information structure of the economy is described by a probability measure space

(Ω,F , µ), where Ω = {a, b} × R2 and F is the σ-algebra {{a} , {b} , {a, b}} × B2.

(Throughout, we denote the Borel algebras of R and R2 by B and B2 respectively.)

We write a typical state as ω = (θ, s1, s2), where θ is the fundamental, s1 is the signal

observed by the seller (agent 1) and s2 is the signal observed by the buyer (agent 2).

For i = 1, 2 and θ = a, b let ηθi : B → R be the conditional distribution of si given

θ. We write F θ
i for the associated distribution functions, and make the following

distributional assumptions. (I) The signals s1 and s2 are conditionally independent

given θ. (II) For i = 1, 2 and θ = a, b the conditional distribution has full support.

(III) For i = 1, 2 and θ = a, b the conditional distribution ηθi has a density, which we

denote f θi . (IV) For i = 1, 2 signal si satisfies the strict monotone ratio likelihood

property (MLRP), i.e., Li (si) ≡
fa

i
(si)

fb

i
(si)

is strictly increasing in si. Moreover, we

assume that the likelihood ratio is unbounded, i.e.,

Li (si) → ±∞ as si → ±∞. (1)

That is, there are extreme realizations of each agent’s signal that are very informative

— even if an agent’s signal is generally uninformative. (We stress that none of the

results of Section 3 depend on either the existence of densities or the assumption of

unbounded likelihood ratios. See also the discussion on page 16.)

Agent i directly observes only his own signal. Formally, the information of agents

i = 1, 2 before trade is given by the sub σ-algebras F1 = {a, b} × B × R and F2 =

{a, b} × R × B.

Trade

An allocation in our economy is a pair of mappings κ : Ω → {1, 2} and π : Ω → R

where κ specifies which agent owns the asset, and π specifies a transfer from agent 2

9



to agent 1. Since neither agent observes the fundamental θ both κ and π must be

measurable with respect to the σ-algebra {a, b} × B2. Let (κ̂, π̂) denote the initial

allocation, in which agent 1 owns the asset and no transfer takes place: (κ̂, π̂) ≡ (1, 0).

A trade is an allocation (κ, π) with κ (ω) = 2 with strictly positive probability.

To rule out trades in which both parties are exactly indifferent between trading and

not trading the asset we assume that whenever the asset changes hands its final value

is reduced by δ > 0.

Post-trade information

After trade, agent i’s information is given by a σ-algebra Fκ,π
i ⊂ F , where Fi ⊂

Fκ,π
i ⊂ {a, b} × B2. That is, each agent remembers his own signal, and learns at

most the other agent’s signal.

Each agent observes the outcome of the trade, and updates his information accord-

ingly. Formally, κ and π are Fκ,π
i -measurable. Moreover, in principle it is possible

that the trade mechanism entails the release of additional information to agent i. In

this case, the σ-algebra generated by (κ, π) would be a strict sub-algebra of Fκ,π
i .

An important object in our analysis is the probability that an agent attaches

to fundamental a (or b) conditional on some information. Notationally, for any σ-

algebra G let Q (ω;G) denote the conditional probability of {a}×R2 in state ω relative

to G.

Endogenous asset values

The eventual asset owner must select an action X ∈ X without knowing the re-

alization of fundamental θ. For each candidate action X he can evaluate the ex-

pected payoff under that action. We denote this expected payoff by V (q;X) ≡

qv (X, a) + (1 − q) v (X, b), where q denotes the probability the agent places on fun-

damental a. Since the asset owner chooses the action with the highest expected
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payoff, his valuation of the asset is given by

V (q) ≡ max
X∈X

V (q;X). (2)

Note that V is continuous over [0, 1], and hence bounded.13

Ex post individually rational trade

Our primary goal is to characterize when trade can — and cannot — occur for purely

informational reasons. The answer to this question clearly depends to some extent

on the institutional environment. However, it is also clear that we want our results to

be as independent as possible of a priori assumptions about the trading environment.

To meet these objectives, we begin by establishing necessary conditions for trade

to occur in a very wide class of trading mechanisms. The only condition we impose

is that trades must be ex post individually rational. That is, both agents 1 and 2

must prefer the post-trade outcome to the original allocation (in which agent 1 owns

the asset), even after conditioning on any information they acquire in equilibrium.

This condition must be met state-by-state. We adopt this requirement for two

13We have assumed that the fundamental θ is binary-valued. The significance of this assumption

is that it allows us to define the asset value V as a function of a one-dimensional summary statistic,

namely the probability q that the fundamental is a. That is, uncertainty is unidimensional. Uni-

dimensionality greatly facilitates the derivation of sufficient conditions for trade in Section 4. We

conjecture the necessary conditions of Section 3 would extend to more general state spaces.

It should also be noted that it is possible to obtain a similarly tractable unidimensional framework

with a richer set of fundamentals, though at the cost of introducing more assumptions on the asset

payoff functions v (X, θ). For example, one could allow the fundamental θ to be drawn from an

arbitrary subset of R, but restrict the asset payoff to take the form v (X, θ) = K (X) +M (X) θ for

an arbitrary pair of continuous functions K and M . In this case, the expected asset payoff given

action X is a linear function of the expected value of θ, and so one can define an analogous function

to V that depends only on a one-dimensional variable (i.e., the expected value of θ as opposed to

the probability of a).
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reasons. First, it is a demanding condition to satisfy, and so biases our analysis

against generating trade. Second, it is used in many prior analyses. In particular,

it is equivalent to Milgrom and Stokey’s (1982) requirement of common knowledge of

gains from trade;14 and is part of the definition of a rational expectations equilibrium.

Formally, a trade (κ, π) is ex post individually rational (IR) if

π (ω) ≥ V (Q (ω;Fκ,π
1 )) (3)

V (Q (ω;Fκ,π
2 )) − δ − π (ω) ≥ 0 (4)

almost always when the buyer gets the asset, i.e., for almost all ω such that κ (ω) = 2.

Note that the information used by agent i to evaluate the trade is Fκ,π
i , i.e., the

information of agent i after trade. The analogous conditions for states ω in which

no trade occurs are that π (ω) ≥ 0 and 0 ≥ π (ω) almost always when the seller keeps

the asset, i.e., κ (ω) = 1. It follows trivially that ex post IR implies that no money

changes hands in almost all states ω in which the seller keeps the asset, i.e., π (ω) = 0

when κ (ω) = 1.

For any allocation let ΩT denote the states in which the buyer acquires the asset

(i.e., κ (ω) = 2) and the ex post IR conditions (3) and (4) hold. Note that µ
(

ΩT
)

> 0

in any ex post IR trade.

14In Milgrom and Stokey, agent i evaluates the trade according to “his information at the time of

trading, including whatever he can infer from prices or from the behavior of other traders” (page 19).

We take this information to include at least the information revealed by the post-trade allocation.

In Milgrom and Stokey’s framework, there would still be no trade even if one instead assumed that

agent i possessed coarser information. In contrast, in our model coarsening the information that

agent i uses to evaluate the trade will generally enhance trade opportunities, since it weakens the

ex post individual rationality condition.
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Pareto optimality of the original allocation

Milgrom and Stokey’s “no speculation” theorem establishes that trade cannot occur

purely for information-based reasons. Of course, this in no way affects the possibility

of trade for risk-sharing reasons. As such, Milgrom and Stokey’s result is predicated

on the Pareto optimality of the pre-trade state-contingent allocation.

In our setting, both agents are risk neutral, and are equally capable of executing

any action X ∈ X . As such, the only possible motivation for trade is the differential

information of the two parties. Formally, since risk-sharing motivations are absent,

any state-contingent allocation is Pareto optimal. Of course, this ignores the fact that

agents 1 and 2 potentially have different information, and so take different actions.

However, trade motivated by such considerations is precisely information-based trade,

and is the main object of our analysis.

3 Necessary conditions for trade

In this section we establish necessary conditions for trade to take place, all of which

must hold regardless of the trading mechanism employed. First:

Proposition 1. No ex post IR trade exists if V is monotone.

All proofs are in the appendix. The intuition is most easily understood by consid-

ering again the opening example, which is displayed graphically in Figure 1. Recall

that in the example trade occurs whenever the seller sees signal sb. The buyer’s valu-

ation when trade occurs is driven by the probability he places on fundamental a, i.e.,

Pr
(

a|sbsa
)

or Pr
(

a|sbsb
)

, depending on his own signal realization. Trade is possible

because the value of the asset given these probabilities exceeds the value of the asset

when the probability of fundamental a is Pr
(

a|sb
)

, which is the information the seller

has. Since Pr
(

a|sbsa
)

> Pr
(

a|sb
)

> Pr
(

a|sbsb
)

, trade is clearly only possible in this

13



Pr (a|·)

V (q;A)

V (q;B)

V
(

sbsb
)

Pr
(

a|sbsb
)

V
(

sb
)

Pr
(

a|sb
)

V
(

sbsa
)

Pr
(

a|sbsa
)

V (sa)

Pr (a|sa)

Figure 1: The graph displays V (q;X) for the opening example: the action set is

X = {A,B} and both the buyer and seller observe signals drawn from
{

sa, sb
}

. The

bold line is the upper envelope of these two functions, and corresponds to the function

V (q).

14



example if V is non-monotone. Proposition 1 extends this observation to our main

model, and to any trading mechanism.

As an immediate corollary of Proposition 1 we obtain:

Corollary 1. Trade is possible only if (i) there is no dominant action, i.e., ∄X ∈ X

such that v (X, θ) ≥ v (X ′, θ) for all X ′ 6= X and θ = a, b; and (ii) there is no

dominant fundamental, i.e., ∄θ ∈ {a, b} such that v (X, θ) ≥ v (X, θ′) for all X ∈ X

and θ′ 6= θ.

A second key property of the trade equilibrium in the opening example is that

the buyer learns the seller’s signal when trade occurs. The fact that the buyer learns

everything about the seller’s signal is an artifact of the binary nature of signals in

the example. In general, however, a necessary condition for trade is that the buyer

learns something about the seller’s signal when trade occurs:

Proposition 2. There is no ex post IR trade in which the buyer learns nothing

whenever he acquires the asset.

Proposition 2 says that trade is not possible if it does not convey some informa-

tion to the buyer. This conclusion is very much in line with the existing no-trade

literature. At the same time, and as our opening example makes clear, trade is at

least sometimes possible if it enables the buyer to learn the seller’s signal.

To understand Proposition 2, it again helps to reconsider the opening example.

Suppose that trade occurred in this example without the buyer learning anything

about the seller’s signal. For specificity, suppose further that trade only occurs when

the buyer sees signal sa.15 Recall that agents always learn at least the information

revealed by the trade allocation. Consequently, for the buyer not to learn anything

trade must occur after both signal pairs sasa and sbsa. So when trade occurs, the

15Similiar arguments apply for the cases of trade following signal sb, and trade after both buyer

signal realizations.
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buyer places probability Pr (a|sa) on the fundamental being a; while the seller places

probability Pr (a|sasa) or Pr
(

a|sbsa
)

on the fundamental being a, depending on his

own signal realization.

To see why this information is inconsistent with trade, look again at Figure 1.

As a function of the probability q of fundamental a, the asset value V is V-shaped.

Since the buyer does not learn the seller’s signal, at one state in which trade occurs

the seller places a higher probability on fundamental a than does the buyer, while

in another state the seller places a lower probability on fundamental a. Specifically,

Pr (a|sasa) > Pr (a|sa) > Pr
(

a|sbsa
)

. Given the V -shape of V it follows that at least

one of V (Pr (a|sasa)) and V
(

Pr
(

a|sbsa
))

exceeds V (Pr (a|sa)). But in words, this

comparison says that at at least one of sasa and sbsa the seller’s valuation exceeds

the buyer’s valuation — contradicting the trade conditions.

The key step in this argument is the shape of the V function. Since V is the

upper envelope of functions V (q;X), each of which is linear, we obtain:

Lemma 1. V is a convex function.

The proof of Proposition 2 follows from the convexity of V , and is along the

same lines as the above discussion of the example. The main complication in the

formal proof is the need to form conditional probabilities for arbitrary information

possessed by the seller. At the same time, the proof is simplified somewhat by our

assumption of unbounded likelihood ratios (see (1)). We emphasize, however, that

(as the example illustrates) this property is not essential for the result, and a proof

for the case of bounded likelihood ratios is contained in an earlier working paper.

For our next two results, it is useful to separate the benefits and costs of trade.

Ex post IR implies

∫

ΩT

(V (Q (ω;Fκ,π
2 )) − V (Q (ω;Fκ,π

1 )))µ (dω) ≥ µ
(

ΩT
)

δ. (5)

The lefthand side is the benefit of trade. Since the buyer’s information in state ω
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is different from the seller’s, he potentially takes a different action. This causes the

value of the asset when owned by the buyer to potentially diverge from the value

of the asset owned by the seller, in spite of their equal ability to execute all actions

X ∈ X . The righthand side is the direct cost of trade, i.e., the trade cost δ multiplied

by the probability of trade occurring.

An almost immediate consequence of (5) is:

Proposition 3. Suppose an ex post IR trade exists. Then there exists a non-null

subset of the trade set ΩT in which the buyer’s action differs from the action the seller

would take if he controlled the asset in the same state.

Note that Proposition 3 is also a corollary of Milgrom and Stokey’s main result.

Proposition 3 says that trade is associated with a change in action. Two possible

applications include the role of vulture investors in debt restructuring, and corporate

raiders. With regard to the former, it is widely perceived that vulture investors’

behavior in restructuring negotiations differs from that of the original creditors (see,

e.g., Morris 2002). With regard to the latter, there is evidence that large scale layoffs

and divestitures follow takeovers (see, e.g., Bhagat et al 1990).

A second implication of inequality (5) is that as the seller’s information becomes

infinitely accurate the probability of trade converges to zero. The reason is that

as the seller’s information quality grows his own signal almost perfectly reveals the

fundamental θ in most states, and so the seller takes the full-information optimal

action. This effectively eliminates the gains from trade. Since the direct costs

of trade are fixed by the parameter δ, the probability of trade must approach zero.

Formally, the seller’s signal is high quality if the likelihood ratio L1 of the signal is

either very low or very high with high probability:

Proposition 4. Consider a sequence of economies, indexed by n, that are identical

apart from the conditional distribution of the seller’s signal, ηθ1(n), along with a corre-

sponding sequence of ex post IR trade sets ΩT
(n). Suppose the quality of the seller’s
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signal becomes arbitrarily good as n→ ∞, in the sense that for any ε > 0 and θ = a, b

ηθ1(n)

({

s1 : L1(n) (s1) ∈ [ε, 1/ε]
})

→ 0.

Then the probability of trade converges to zero, i.e., µ
(

ΩT
(n)

)

→ 0.

Similar to Proposition 4, one can show that if the buyer’s signal becomes arbi-

trarily uninformative then the probability of trade likewise converges to zero.

Recall that Proposition 2 says that the buyer must learn something about the

realization of the seller’s signal if trade is to occur. However, the buyer must have

information of his own to complement information he acquires from the seller. That

is, if instead the seller’s information is much more informative than the buyer’s, the

buyer’s information adds almost nothing and the above observations imply that the

probability of trade is very low.

4 Sufficient conditions for trade

Proposition 1 establishes that trade is possible only if the asset value V is non-

monotone in the probability of fundamental a. We next show that this necessary

condition is also sufficient for at least one simple trading mechanism.

Third-party posted price

In many trading environments both buyers and sellers take the price as exogenous.

This is the case, for example, when traders submit market orders; in upstairs trades,

in which the upstairs broker proposes the price; and in crossing networks (POSIT

is a well-known example) in which the price is determined elsewhere. Formally,

we consider a simple trading mechanism in which: (1) a non-strategic third-party

— a “broker” — sets a price p, and then (2) the buyer and seller simultaneously
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and publicly16 announce whether they wish to trade at price p. We show that this

mechanism allows trade whenever V is non-monotone. Combined with Proposition

1, this implies that non-monotonicity of V is both necessary and sufficient for trade.

Proposition 5. Suppose V is non-monotone and the third-party posted price mech-

anism is used. Choose any price p ∈ (min V,min {V (0) , V (1)} − δ). There exists

an equilibrium of the following form: the seller offers to sell when he sees a signal

s1 ∈ ST1 ≡ [s1, s̄1], and the buyer offers to buy if he sees a signal s2 ∈ ST2 ≡ R\ (s2, s̄2).

The ex post IR constraints are satisfied in equilibrium.

In the equilibrium of Proposition 5, the buyer offers to buy whenever his signal

is either high or low, that is, when it is relatively informative of the fundamental.

Given that V is non-monotone and convex (see Figure 1), the buyer’s valuation of

the asset is relatively high at such signals. Similarly, the seller offers to sell when he

sees an intermediate signal, that is, a signal that is relatively uninformative about

the fundamental. Given the shape of V the seller’s valuation is relatively low at such

signals.

In equilibrium, trade transfers control of the asset from an agent who has received

an uninformative signal to one who has received an informative signal. Moreover,

because of its contingent nature trade also reveals information about the agents’

signals to each other. Specifically, when the seller retains the asset he learns whether

or not the buyer’s signal is in ST2 ; and when the buyer acquires the asset, he learns

16Clearly the seller learns whether the buyer offers to buy if he offers to sell. Likewise, the buyer

learns whether the seller offers to sell if he offers to buy. It is irrelevant what the buyer learns if

he does not offer to buy. As such, the only remaining question is whether the seller learns whether

the buyer offers to buy if he does not offer to sell.

For many upstairs trades it is reasonable to suppose that the seller learns the buyer’s announce-

ment when he does not offer to sell. That is, for many stocks only a few individuals hold a large

block, and so the holder of a block learns whether or not there is buying interest from whether or

not an upstairs broker contacts him.
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that the seller’s signal is in ST1 .

Proposition 5 establishes the existence of a continuum of equilibria, indexed by

the trade price p. Comparing the lowest price p = min V to the highest price p =

min {V (0) , V (1)}−δ, the buyer’s demand (i.e., the probability of accepting the price)

decreases (from 1 to 0), while the seller’s supply increases (from 0 to 1). That is, the

comparative static across equilibria generates an downwards sloping demand curve

and an upwards sloping supply curve.17

An important implication of the no-trade theorems established in the existing

literature is that economic agents would not spend resources to acquire information.

In contrast, our next result shows that this is not true in our model. The key reason

is, of course, that information is valuable. The non-trivial aspect of the result consists

of showing that an agent’s information is valuable above-and-beyond the information

he acquires from the other agent in the course of trade.

Proposition 6. Suppose the buyer and seller must each incur a cost k in order to

observe their signals. Fix any price p ∈ (minV,min {V (0) , V (1)} − δ). Provided

the information acquisition cost k is sufficiently small there exists an equilibrium of

the third-party posted price mechanism in which both the buyer and seller acquire their

signals and trade occurs with positive probability.

Buyer proposes a price

The third-party price mechanism above approximates various real-world trading ar-

rangements, and facilitates the analysis of when trade occurs by avoiding the issue of

strategic price setting. However, in at least some situations it is the trading parties

themselves who set the price. Accordingly, we consider a simple example of such a

17Because of the interdependency between the buyer and seller, more conditions would be required

to establish that the demand (respectively, supply) curve is monotonically downwards (respectively,

upwards) sloping.
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mechanism: (1) the buyer proposes a price p ∈ P , where P is finite set of possible

offers,18 and (2) the seller accepts or rejects. We assume that P contains at least one

element lying between minV and min {V (0) , V (1)} − δ; and moreover that 0 ∈ P ,

so that the buyer can effectively abstain from making an offer by offering the zero

price.

Our first result shows that an equilibrium with meaningful trade is necessarily

more complicated when the buyer chooses the price than when the price is simply

imposed non-strategically. To see this, start by noting that in the equilibrium of

Proposition 5 both the buyer and the seller make zero profit at the boundaries of

their trade sets ST1 and ST2 . This is a consequence of continuity: for example, for the

buyer, when s2 ∈ ST2 the buyer’s valuation of the asset exceeds p, while when s2 /∈ ST2

the price p exceeds the buyer’s valuation.

Because the buyer has zero profits at the boundary signals s2 and s̄2 of ST2 , he

faces a strong temptation to offer a lower price after observing these signals. In

fact, regardless of the seller’s out-of-equilibrium beliefs the buyer could make strictly

positive profits at at least one of s2 and s̄2 by offering p̃ between p and minV . The

reason is that the seller’s response to p̃ either increases or decreases the buyer’s belief

that the fundamental is a relative to his equilibrium belief, and given the convex and

non-monotone shape of V this raises the buyer’s valuation at one of s2 and s̄2.

It follows that the only possibility for an equilibrium with trade at just one price

entails trade at the lowest price in P that still exceeds minV , i.e.,

p∗ ≡ min {p ∈ P : p > min V } .

However, the seller only accepts this low price when he sees a signal that places his

valuation between minV and p∗. When p∗ is close to minV this can occur only

rarely. Formally:

18The assumption that the offer set P is finite ensures that the action set is finite. As is well-

known, equilibrium existence is not guaranteed in games with infinite action spaces.
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Proposition 7. Suppose V is non-monotone, never flat,19 and the buyer-posted price

mechanism is used. Suppose an equilibrium exists in which trade occurs at only one

price. Then (I) the trade price is p∗, and (II) the probability of trade approaches zero

as p∗ → minV .

Proposition 7 implies that when the buyer chooses the price trade can occur with

a meaningful probability only if the buyer makes different offers after different signals,

and the seller accepts multiple offers with different probabilities. Characterizing such

an equilibrium is challenging. Formally, our environment is close to a bargaining game

with interdependent values and two-sided asymmetric information,20 and we are not

aware of any paper to consider such a game with more than two types.21

In order to illustrate the possibilities for trade when the buyer proposes the price,

we focus on the simplest environment in which strategic offers by the buyer are

possible, namely that in which V is non-monotone and the offer set is P =
{

pC , pD, 0
}

,

where min {V (0) , V (1)}−δ > pC > pD > minV . As we explain below, even here the

fact that there are a continuum of buyer “types” necessitates a numerical simulation

in order to verify the incentive constraints.

A trade equilibrium with trade at both prices pC and pD is characterized by signal

sets SC2 and SD2 in which the buyer offers the prices pC and pD respectively, with

corresponding signal sets SC1 and SD1 in which the seller accepts these offers. Given

that V is convex and non-monotone the seller’s acceptance sets SC1 and SD1 must be

of the form
(

sC1 , s̄
C
1

)

and
(

sD1 , s̄
D
1

)

. As in the equilibrium of Proposition 5, the seller

19That is, there is no interval over which V is constant.
20However, our environment is not a special case of such a bargaining game because the value of

the asset is endogenous.
21Schweizer (1989) analyzes the case of two types. In general, the literature on bargaining with

interdependent values is small and focuses on the case of one-sided asymmetric information: see

Evans (1989), Vincent (1989), Deneckere and Liang (2006), Dal Bo and Powell (2007).
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has zero profits at the boundaries of SC1 and SD1 :

V
(

Pr
(

a|sj1, s2 ∈ Sj2
))

= V
(

Pr
(

a|s̄j1, s2 ∈ Sj2
))

= pj for j = C,D. (6)

Since both pC and pD exceed min V , there must exist a non-empty subset of signals

at which the buyer prefers to make no offer. Again by the convexity and non-

monotonicity of V , this no-offer set is an interval of the form
[

sD2 , s̄
D
2

]

. Thus the

equilibrium conditions for the buyer are that for s2 ∈ SC2

Pr
(

s1 ∈ SC1 |s2

) (

V
(

Pr
(

a|s1 ∈ SC1 , s2

))

− δ − pC
)

≥ max
{

0,Pr
(

s1 ∈ SD1 |s2

) (

V
(

Pr
(

a|s1 ∈ SD1 , s2

))

− δ − pD
)}

; (7)

while for s2 ∈ SD2 ,

Pr
(

s1 ∈ SD1 |s2

) (

V
(

Pr
(

a|s1 ∈ SD1 , s2

))

− δ − pD
)

≥ max
{

0,Pr
(

s1 ∈ SC1 |s2

) (

V
(

Pr
(

a|s1 ∈ SC1 , s2

))

− δ − pC
)}

; (8)

and if s2 ∈
[

sD2 , s̄
D
2

]

,

0 ≥ max
{

V
(

Pr
(

a|s1 ∈ SC1 , s2

))

− δ − pC , V
(

Pr
(

a|s1 ∈ SD1 , s2

))

− δ − pD
}

.

Finally, in light of the form the equilibrium takes in the third-party mechanism, along

with the non-monotonicity of V , a natural conjecture for the form of the buyer’s trade

sets SC2 and SD2 is as follows. The buyer makes the higher offer pC only when his

signal is relatively informative, that is, SC2 is of the form R\
[

sC2 , s̄
C
2

]

. The buyer

then makes the lower offer pD after the remaining signals R\
(

SC2 ∪
[

sD2 , s̄
D
2

])

, so that

SD2 = [sC2 , s
D
2 ) ∪ (s̄D2 , s̄

C
2 ]. By continuity, the following equalities are then necessary

for an equilibrium of this type to exist:

V
(

Pr
(

a|s1 ∈ SD1 , s2

))

− δ = pD (9)

at s2 = sD2 , s̄
D
2 ; while at s2 = sC2 , s̄

C
2 ,

Pr
(

s1 ∈ SC1 |s2

) (

V
(

Pr
(

a|s1 ∈ SC1 , s2

))

− δ − pC
)

= Pr
(

s1 ∈ SD1 |s2

) (

V
(

Pr
(

a|s1 ∈ SD1 , s2

))

− δ − pD
)

. (10)
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Together, equations (6), (9) and (10) constitute eight equations in the eight pa-

rameters
{

sC1 , s̄
C
1 , s

D
1 , s̄

D
1 , s

C
2 , s̄

C
2 , s

D
2 , s̄

D
2

}

that characterize the equilibrium of the type

described.

Figure 2 displays an example of such an equilibrium for a specific set of parameter

values.22 The figure plots the buyer’s expected profits from each of the offers pC and

pD as a function of his signal s2. The vertical lines are drawn at the boundaries of the

sets SC2 and SD2 , i.e., at sC2 , s
D
2 , s̄

C
2 , s̄

D
2 respectively. The figure makes clear that the

solution to equations (6), (9) and (10) defines an equilibrium in this case: whenever

s2 ∈ SC2 the buyer prefers offering pC to pD, and whenever s2 ∈ SD2 the buyer prefers

offering pD to pC . The advantage of the higher offer pC is that it is accepted more

often; the disadvantage is, of course, that the buyer pays more.

The significance of this example relative to Proposition 7 is that it shows that

trade can occur with significant probability when the buyer proposes different prices

after different signals. That is, although the probability of trade at the lower price

pD is relatively low, the buyer sometimes offers the higher price pC , and the seller’s

acceptance probability at this price is higher. Moreover, our focus on an equilibrium

with trade at two prices is solely for tractability, and we conjecture that with a finer

offer set P there exist equilibria with trade at a large number of different prices. We

leave the further exploration of this bargaining framework for future research.

5 Portfolio selection

In our basic model agents choose an action that directly affects the payoff produced

by the asset. Clearly in many circumstances agents trade assets over which they have

little or no direct control. Even in such settings, however, an agent who owns an asset

22Unfortunately, we have not been able to characterize the conditions under which equations (6),

(9) and (10) have a solution; and even if we were to do so, one would still need to check that the

equilibrium conditions (7) and (8) hold away from the boundaries of the SC2 and SD2 .
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Solid (dashed) line shows the expected profit for the buyer from the high (low) price.

Buyer signal (likelihood ratio scale)

Figure 2: The asset value is as in the opening example. The prices are pC = 14/18

and pD = 13/18, and minV = 12/18. Also as in the opening example the ex ante

probability of fundamentals a is 1/2. Both the buyer and seller observe a normally

distributed signal with standard deviation 1 (for both fundamentals a, b) and a mean

of 0 (respectively, 1) when the fundamental is b (respectively, a). The solid (dashed)

line shows the buyer’s expected profit from making the offer pC (respectively, pD).

The vertical lines are drawn at sC2 , s
D
2 , s̄

D
2 , s̄

C
2 respectively.
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must still decide how to allocate the remainder of his portfolio, and if the agent is risk

averse this decision affects the agent’s utility from holding the asset. When agents

are unsure about how asset returns are distributed, gains from trade arise as in our

basic model, for the same reasons. In this section we study when portfolio decisions

of this type generate trade, even in the absence of direct control over an asset.

A general framework

Our goal in this section is to show that portfolio allocation concerns can motivate

information-based trade, and that, as such, our framework is capable of accounting

for trade even in cases where asset-holders exercise no direct control. To avoid moving

too far from our basic model we consider the following environment. There are n+ 2

securities in total. Security 1 is a security such that the optimal portfolio choice of

an agent holding it depends on the fundamental θ.23 Security 2 is a standard risk

free security. Finally, securities 3, . . . , n + 2 are risky securities whose attractiveness

does not differ across fundamentals a and b. Specifically, the fundamental θ has no

effect on how an investor without security 1 would divide his portfolio between the

risk free security and securities 3, . . . , n + 2. (We give a formal condition for this in

(12) below.) All investors in the economy are free to take any position in the risk free

security, and any position ψ ∈ Ψ ⊂ Rn in securities 3, . . . , n+ 2.

Since the fundamental θ only affects the portfolio decision of an investor holding

security 1, this security is analogous to the asset traded in our basic model. To keep

as close as possible to our basic model, we assume that only one owner, agent 1, of

security 1 is interested in selling it. (Multiple sellers would not fundamentally change

our analysis.) From our analysis of necessary conditions for trade, we know that

23More generally, our framework could accommodate multiple securities with this property. The

assumption that security 1 is the only such security keeps the analysis of this section close to our

basic model.
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the only potential buyers are investors who observe an informative signal about the

fundamental θ. Again, to keep our analysis close to the basic model we assume there

is just one such investor, agent 2.24 We characterize when agent 2 buys security 1

from agent 1. Importantly, agents 1 and 2 are free to rebalance their portfolios by

trading the remaining n+ 1 securities after they decide whether to trade security 1.

Although our assumptions regarding the ownership of security 1 are made primar-

ily for illustrative purposes, one situation where they are approximately satisfied is

that in which security 1 is a share in a private company.25

All investors have a common utility function u. The initial wealth of agents 1 and

2 is W1 and W2 respectively. As in the basic model, we typically refer to agent 1 as

the seller and agent 2 as the buyer. We normalize both the return on the risk free

security and the price of each risky security 3, . . . , n+2 to unity. We denote the payoff

of security 1 by R, and the n-vector of excess returns (over the risk free security) of

securities 3, . . . , n + 2 by r. Both R and r are stochastic, with distributions that

potentially differ across fundamentals a and b. The expected utility of an agent with

wealth W who owns security 1 and believes that the probability of fundamental a is

q is given by

U (W, q) ≡ max
ψ∈Ψ

E [u (W +R + ψr) |q] .

Likewise, the expected utility of an agent who does not own security 1 is

Ū (W, q) ≡ max
ψ∈Ψ

E [u (W + ψr) |q] .

24As with the seller, allowing for multiple buyers would not fundamentally change our analysis.
25We also assume that security 1 is indivisible. Various complications would arise if instead it

were divisible. First, while a Pareto optimal allocation of the indivisible security necessarily entails

a single agent holding the security, with divisibility the Pareto optimal allocation might entail both

agents holding a strictly positive quantity of the security. Second, and related, if both agents hold

the security initially one would have to consider the direction of trade. Third, one would also have

to consider the quantity of trade. We leave an analysis of these issues for future research.
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Exactly as in our basic model, an allocation is described by the pair of mappings κ

and π. We continue to assume a small cost δ is associated with trading security 1.

Analogous to before, the ex post IR conditions are

Ū (W1 + π (ω) , Q (ω;Fκ,π
1 )) ≥ U (W1, Q (ω;Fκ,π

1 ))

U (W2 − π (ω) − δ, Q (ω;Fκ,π
2 )) ≥ Ū (W2, Q (ω;Fκ,π

2 ))

in almost all states in which the buyer gets the security (i.e., ω such that κ (ω) = 2),

and

U (W1 + π (ω) , Q (ω;Fκ,π
1 )) ≥ U (W1, Q (ω;Fκ,π

1 ))

Ū (W2 − π (ω) , Q (ω;Fκ,π
2 )) ≥ Ū (W2, Q (ω;Fκ,π

2 ))

in almost all states in which the seller keeps the security (i.e., ω such that κ (ω) = 1).

Note that exactly as in the basic model, this second pair of inequalities implies that

π (ω) for almost all states in which the seller keeps the security.

One complication of this framework relative to our basic model is that wealth

effects may lead the buyer and seller to choose different portfolios, even if they have

exactly the same information.26 In contrast, in our basic model agents with the same

information always choose the same action. To avoid this complication we assume

that both agents share the same constant absolute risk aversion (CARA) utility,

u (x) = −e−γx, where γ > 0. In this case, there exist negative-valued functions v and

v̄ such that U (W, q) = e−γW v (q) and Ū (W, q) = e−γW v̄ (q). After substitution, the

ex post IR conditions for states in which the buyer gets the security become

e−γπ(ω) ≤
v (Q (ω;Fκ,π

1 ))

v̄ (Q (ω;Fκ,π
1 ))

v (Q (ω;Fκ,π
2 ))

v̄ (Q (ω;Fκ,π
2 ))

≤ e−γ(π(ω)+δ).

26Even if W1 = W2, so that the two agents have the same initial wealth, the buyer’s wealth when

he acquires the security is lower.
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Taking logs and defining V ≡ − 1
γ

ln v
v̄

then generates precisely equations (3) and (4),

with V replaced by V.

Trade and market betas

From above, when agents have CARA preferences with the same degree of risk aver-

sion the model of trade prior to portfolio choice is isomorphic to our basic model

of trade prior to a decision that directly affects asset payoffs. We next specialize

this framework to one in which we can relate trade to standard measures of risk —

specifically, return standard deviations and market betas.

The version of the model we consider is one with just three securities: security

1, the risk free security, and a risky security we term the market. The return dis-

tributions of security 1 and market are jointly normal. Let µθ and σθ denote the

expected (excess) return and standard deviation of returns for the market when the

fundamental is θ, while νθ and ζθ denote the expected return and standard deviation

of returns for security 1. Let ρθ be the correlation between the market and security

1. The market beta of security 1 in fundamental θ is βθ ≡ ρθζθ/σθ.

In the CARA-normal framework an agent who knows the fundamental is θ and

does not own security 1 invests µθ/γσ
2
θ in the market.27 Similarly, an agent who

owns security 1 chooses a portfolio

ψθ ≡
µθ
γσ2

θ

− βθ. (11)

That is, the agent picks a market position that combines the position he would choose

if he did not own security 1 with the variance-minimizing hedge of that security, i.e.,

−βθ. Recall that we assumed the fundamental θ only affects the portfolio decision

27This follows from the fact that E
[

e−γrψ|θ
]

= exp
(

−γ
(

µθψ − γ
2σ

2
θψ

2
))

. Likewise, the fact that

E
[

e−γ(rψ(q)+R)|θ
]

= exp
(

−γ
(

νθ + µθψ − γ
2

(

ζ2
θ + ψ2σ2

θ + 2βθσ
2
θψ
)))

implies (11).
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of an agent holding security 1, and so

µa/σ
2
a = µb/σ

2
b . (12)

Our framework assumes that there is a fixed price at which all investors can buy/sell

the market. An important implication of equality (12) is that it justifies this assump-

tion: holding the price fixed, equality (12) implies that aggregate demand for the

market is independent of the fundamental,28 thereby justifying the assumption of a

fixed price.

In our basic model, ex post IR trade of the asset is possible if and only if V is

non-monotone (see Propositions 1 and 5). Analogously, ex post IR trade of security

1 is possible if and only if V is non-monotone. Our next result states when V is

non-monotone in terms of the distribution parameters of security 1 and the market:

Proposition 8. Without loss, assume that ψb ≤ ψa. Ex post IR trade of security 1

is possible if and only if

ψbγ
(

σ2
aψa − σ2

bψb
)

+ ψ2
b

γ

2

(

σ2
b − σ2

a

)

<
(

νb −
γ

2
ζ2
b

)

−
(

νa −
γ

2
ζ2
a

)

+
1

2γ

(

µ2
a

σ2
a

−
µ2
b

σ2
b

)

< ψaγ
(

σ2
aψa − σ2

bψb
)

+ ψ2
a

γ

2

(

σ2
b − σ2

a

)

. (13)

Intuitively, trade of security 1 is possible only if the fundamental affects the port-

folio decision of an agent holding it. That is, trade requires that ψa 6= ψb, or

equivalently (given (12)) that the market betas βa and βb differ. However, the formal

proof of this result is not quite immediate since while v and v̄ are both monotone in q

if βa = βb, by itself this does not eliminate the possibility that v/v̄ is non-monotone.

Nonetheless, this result does follow as a corollary of Proposition 8:

Corollary 2. Ex post IR trade of security 1 is possible only if βa 6= βb.

28Assuming, that is, that agents 1 and 2 are “small” compared to the total population of investors.
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Corollary 2 says that the market beta of security 1 must differ across fundamentals

in order for trade to occur. Our next result gives a simple sufficient condition for how

much beta must differ. It concerns the case in which only the correlation between

security 1 and the market differs across fundamentals, so that the only determinant

of an agent’s utility from holding security 1 is the ease with which it can be hedged.

Corollary 3. Suppose νa = νb, ζa = ζb, µa = µb, and σa = σb. Then ex post

IR trade of security 1 is possible if and only if ρa and ρb are sufficiently different

that ψa and ψb have different signs, i.e., an investor with security 1 who knows the

fundamental is a is long the market while an investor with security 1 who knows the

fundamental is b is short the market, or vice versa.

Corollary 3 implies the existence of a trade equilibrium of the following type.

Without loss, assume βb > βa, with the difference in market betas large enough that

ψa > 0 > ψb. Suppose the initial owner of security 1 (the seller) is unsure whether

the fundamental is a or b, i.e., has observed an intermediate signal s1. Under these

circumstances, if he takes a long market position he exposes himself to excessive risk if

the true fundamental is b; but if he shorts the market, he gives up expected return and

fails to gain an effective hedge if the true fundamental is a. Given his uninformative

signal realization he seeks to sell security 1. Meanwhile, a potential buyer who has

good evidence that the fundamental is either a or b is prepared to buy: if he thinks

the fundamental is a he can combine security 1 with a long market position without

taking on excessive risk, while if he thinks the fundamental is b he can effectively

hedge security 1 by taking a short market position.
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Volatility and volume

Empirically, stock return volatility and trading volume are positively correlated, both

at an aggregate level and at the level of individual stocks.29 Our next corollary

of Proposition 8 illustrates how our framework can be used to deliver a positive

correlation between volatility and trade volume:

Corollary 4. Suppose νa = νb, ρa = ρb > 0, µa = µb, σa = σb, ζa = ζ − ε and

ζb = ζ + ε for some ζ and ε ∈ [0, ζ). Then ex post IR trade of security 1 is possible

if and only if ε is sufficiently large.

Corollary 4 characterizes when trade is possible if the only difference between

fundamentals is that security 1 is riskier in one than in the other, i.e., ζb > ζa. The

basic idea is similar to Corollary 3. If the volatility of security 1 differs a lot across

fundamentals (i.e., ε is high), and so there is significant uncertainty about the market

beta of security 1, then a seller with an uninformative signal realization is unable to

hedge security 1 effectively. In these circumstances there are gains from trading the

asset to the buyer if the latter has seen a more informative signal, and is thus in a

better position to incorporate security 1 into his portfolio.

Provided the unconditional probabilities of fundamentals a and b are approxi-

mately equal, an increase in ε in Corollary 4 increases the unconditional variance of

security 1. As such, Corollary 4 predicts a positive correlation between the implied

volatility of security 1 and the volume of trade in this security.

29See, e.g., the survey by Karpoff (1987). The typical study in this literature relates volume to

volatility measured over a trailing window. Our model predicts correlation between volume and

perceived future volatility. To the extent to which volatility is persistent the two correlations will

be similar. Moreover, implied aggregate volatility from options markets is also correlated with

aggregate volume (details are available upon request from the authors).
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6 Conclusion

In this paper we have shown that if asset payoffs are endogenously determined by

the actions of agents, then trade based purely on informational differences is possible.

This conclusion stands in sharp contrast to the existing literature, which takes asset

values as exogenous. Trade transfers control of the asset from an agent who has

received an uninformative signal to one who has received an informative signal. Even

without the presence of noise traders, agents in our model would be prepared to

spend resources to acquire information; and this information is subsequently partially

revealed by trade.

Our analysis generates a number of empirical implications. One general impli-

cation is that trade affects the action taken: when the buyer acquires the asset, he

(at least sometimes) takes an action that is different from the one the seller would

have taken. As we discussed, this implication is consistent with both firm policy after

takeovers and with different creditor behaviors in debt restructuring, though other

explanations are certainly possible. Other implications depend more on the specific

application. In particular, the application of our model to the trade of non-controlling

shares implies that trade volume may increase with volatility.

Clearly many avenues for future research exist. A fuller analysis of price negotia-

tion between the buyer and seller is one important topic. Another is the extension of

our portfolio allocation application from information-based trade in one asset (secu-

rity 1) between a designated buyer and seller to information-based trade in multiple

securities between arbitrary market participants.

References

Sanjai Bhagat, Andrei Shleifer, and Robert W. Vishny. Hostile takeovers in the 1980s:

The return to corporate specialization. Brookings Papers on Economic Activity.

33



Microeconomics, pages 1–84, 1990.

Bruno Biais and Peter Bossaerts. Asset prices and trading volume in a beauty contest.

Review of Economic Studies, 65(2):307–340, April 1998. 2.

G. Geoffrey Booth, Ji-Chai Lin, Teppo Martikainen, and Yiuman Tse. Trading and

price discovery in upstairs and downstairs stock markets. Review of Financial

Studies, 15(4):1111–1135, Fall 2002.

Qi Chen, Itay Goldstein, and Wei Jiang. Price informativeness and investment sen-

sitivity to stock price. Working Paper, 2005.

Tarek Coury and David Easley. Information-generated trade in asset markets. Work-

ing paper, 2006.

Ernesto Dal Bo and Robert Powell. Conflict and compromise in hard and turbulent

times. Working Paper, 2007.

Amil Dasgupta and Andrea Prat. Information aggregation in financial markets with

career concerns. Working paper, 2007.

Raymond Deneckere and Meng-Yu Liang. Bargaining with interdependent values.

Econometrica, 74(5):1309–1364, September 2006.

Douglas W Diamond. Rational expectations with asymmetric information about

production technique. PhD Dissertation, Yale University, 1980.

James Dow and Gary Gorton. Profitable informed trading in a simple general equi-

librium model of asset pricing. Journal of Economic Theory, 67:327–369, 1995.

James Dow and Gary Gorton. Stock market efficiency and economic efficiency: Is

there a connection? Journal of Finance, 52(3):1087–1129, July 1997a.

34



James Dow and Gary Gorton. Noise trading, delegated portfolio management, and

economic welfare. Journal of Political Economy, 105(5):1024–1050, October 1997b.

James Dow and Gary Gorton. The New Palgrave: A Dictionary of Economics, chapter

Noise Traders. Palgrave Macmillan: New York, 2nd edition edition, 2008.

James Dow and Rohit Rahi. Informed trading, investment, and economic welfare,.

Journal of Business, 76:430–454, 2003.

James Dow, Itay Goldstein, and Alexander Guembel. Commitment to overinvest and

price informativeness. Working Paper, 2006.

Art Durnev, Randall Morck, and Bernard Yeung. Value-enhancing capital budgeting

and firm-specific stock return variation. Journal of Finance, 59(1):65–105, February

2004.

Ronald A. Dye and Sri S. Sridhar. Resource allocation effects of prices reactions to

disclosures. Contemporary Accounting Research, 19(3):385–410, Fall 2002.

Robert Evans. Sequential bargaining with correlated values. Review of Economic

Studies, 56:499–510, 1989.

Drew Fudenberg and David K Levine. Learning and belief based trade. Proceedings

of the National Academy of Sciences, 102:199–207, 2005.

Lawrence R Glosten and Paul R Milgrom. Bid, ask, and transaction prices in a special-

ist market with heterogenously informed traders. Journal of Financial Economics,

14:71–100, 1985.

Itay Goldstein and Alexander Guembel. Manipulation and the allocational role of

prices. Working Paper, 2005.

35



Sanford J Grossman and Joseph E Stiglitz. On the impossibility of informationally

efficient markets. American Economic Review, 70(3):393–408, June 1980.

Bruce D. Grundy and Maureen McNichols. Trade and the revelation of information

through prices and direct disclosure. Review of Financial Studies, 2(4):495–526,

1998.

Yoram Halevy. The possibility of speculative trade between dynamically consistent

agents. Games and Economic Behavior, 46:189–198, 2004.

Jack Hirshleifer. The private and social value of information and the reward to

inventive activity. American Economic Review, 61(4):561–574, 1971.

Bengt Holmström and Roger Myerson. Efficient and durable decision rules with

incomplete information. Econometrica, 51(6):1799–1819, 1983.

Jonathan M. Karpoff. The relation between price changes and trading volume: A

survey. Journal of Financial and Quantitative Analysis, 22(1):109–126, 1987.

Naveen Khanna, Steve L. Slezak, and Michael Bradley. Insider trading, outside search,

and resource allocation: Why firms and society may disagree on insider trading

restrictions. Review of Financial Studies, 7(3):575–608, Autumn 1994.

David M. Kreps. A note on fulfilled expectations’ equilibria. Journal of Economic

Theory, 14:32–43, 1977.

Albert S. Kyle. Continuous auctions and insider trading. Econometrica, 53(6):1315–

1336, November 1985.

Paul Milgrom and Nancy Stokey. Information, trade and common knowledge. Journal

of Economic Theory, 26(1):17–27, February 1982.

John E Morris. Times are changing. The Deal.com, June 2002.

36



Stephen Morris. Trade with heterogeneous prior beliefs and asymmetric information.

Econometrica, 62(6):1327–1347, November 1994.

Urs Schweizer. Litigation and settlement under two-sided incomplete information.

Review of Economic Studies, 56:163–178, 1989.

Avanidhar Subrahmanyam and Sheridan Titman. The going-public decision and the

development of financial markets. Journal of Finance, 54(3):1045–1082, June 1999.

Paul C Tetlock and Robert W Hahn. Optimal liquidity provision for decision makers.

Working Paper, 2007.

Jean Tirole. On the possibility of trade under rational expectations. Econometrica,

50:1163–1182, 1982.

Daniel R Vincent. Bargaining with common values. Journal of Economic Theory, 48:

47–62, 1989.

A Appendix

Proof of Proposition 1: Without loss, suppose V is weakly increasing, and suppose

that contrary to the claimed result the set trade set ΩT is non-null. Let P be the set

of prices at which trade occurs, and for each p ∈ P let ΩT (p) be the subset in which

trade occurs at price p and the ex post IR conditions hold, so ΩT = ∪p∈PΩT (p).

We claim that for some p ∈ P there exists ω∗ ∈ ΩT (p) such that Q (ω∗;Fκ,π
2 ) ≤

Q (ω∗;Fκ,π
1 ). Since V is weakly increasing, this claim implies that

V (Q (ω∗;Fκ,π
2 )) ≤ V (Q (ω∗;Fκ,π

1 )) .

However, ex post IR implies

V (Q (ω∗;Fκ,π
1 )) ≤ p < p+ δ ≤ V (Q (ω∗;Fκ,π

2 )) ,
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giving the required contradiction.

To prove the claim, suppose to the contrary that Q (ω;Fκ,π
1 ) < Q (ω;Fκ,π

2 ) for all

p ∈ P and ω ∈ ΩT (p). By the definition of conditional probability, for i = 1, 2,

∫

ΩT

Q (ω;Fκ,π
i )µ (dω) = µ

(

ΩT ∩ {a} × R2
)

,

and so
∫

ΩT

(Q (ω;Fκ,π
2 ) −Q (ω;Fκ,π

1 ))µ (dω) = 0.

This gives a contradiction, since by supposition Q (ω;Fκ,π
2 )−Q (ω;Fκ,π

1 ) > 0 and ΩT

has strictly positive measure.

Proof of Proposition 2: We establish Proposition 2 by contradiction. Suppose to

the contrary that an ex post IR trade (κ, π) exists in which the buyer learns nothing

whenever he acquires the asset. That is, trade occurs over ΩT , where µ
(

ΩT
)

> 0,

and
{

F ∩ ΩT : F ∈ Fκ,π
2

}

=
{

F ∩ ΩT : F ∈ F2

}

.

Choose an integer n such that ΩT
n ≡ ΩT ∩{a, b}×R×[n, n+ 1] has strictly positive

mass. Since the buyer learns nothing when he acquires the asset, Q ((θ, s1, s2) ;Fκ,π
2 ) =

Q ((θ, s1, s2) ;F2) = Pr (a|s2) for all (θ, s1, s2) ∈ ΩT . Let q = Pr (a|s2 = n) and

q̄ = Pr (a|s2 = n + 1), so that Q (ω;Fκ,π
2 ) ∈

[

q, q̄
]

for ω ∈ ΩT
n .

We claim that

inf
ω∈ΩT

n

Q (ω;Fκ,π
1 ) < q < q̄ < sup

ω∈ΩT
n

Q (ω;Fκ,π
1 ) . (14)

This implies the result, as follows. Ex post IR for the buyer and convexity of V (see

Lemma 1) together imply that

π (ω) ≤ V (Q (ω;Fκ,π
2 )) − δ ≤ max

{

V
(

q
)

, V (q̄)
}

− δ

for all ω ∈ ΩT
n . Convexity of V and (14) imply that

max

{

V

(

inf
ω∈ΩT

n

Q (ω;Fκ,π
1 )

)

, V

(

sup
ω∈ΩT

n

Q (ω;Fκ,π
1 )

)}

≥ max
{

V
(

q
)

, V (q̄)
}

.
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But then since V is continuous there must exist ω ∈ ΩT
n such that V (Q (ω;Fκ,π

1 )) >

π (ω), contradicting ex post IR for the seller.

To complete the proof we must establish (14). Suppose that contrary to (14),

infω∈ΩT
n
Q (ω;Fκ,π

1 ) ≥ q. From the definition of conditional probability, for any s1

∫

ΩT ∩({a,b}×(−∞,s1)×R)

Q (ω;Fκ,π
1 )µ (dω) = µ

(

ΩT ∩ ({a} × (−∞, s1) × R)
)

.

Since ΩT
n ⊂ ΩT and by supposition Q (ω;Fκ,π

1 ) ≥ q over ΩT
n ,

∫

ΩT∩({a,b}×(−∞,s1)×R)

Q (ω;Fκ,π
1 )µ (dω)

≥

∫

ΩT
n∩({a,b}×(−∞,s1)×R)

Q (ω;Fκ,π
1 )µ (dω)

≥ qµ
(

ΩT
n ∩ ({a, b} × (−∞, s1) × R)

)

.

So

q ≤
µ
(

ΩT ∩ ({a} × (−∞, s1) × R)
)

µ (ΩT
n ∩ ({a, b} × (−∞, s1) × R))

.

Since after trade the buyer learns nothing, ΩT ∈ F2 and so is of the form {a, b} ×

R × ST2 , where ST2 ∈ B. Note that ηθ1
(

ST2
)

and ηθ1
(

ST2 ∩ [n, n + 1]
)

are both strictly

positive for θ = a, b, since µ
(

ΩT
)

> 0. So the last inequality rewrites to

q ≤
Pr (a)F a

1 (s1) η
a
1

(

ST2
)

Pr (a)F a
1 (s1) ηa1 (ST2 ∩ [n, n + 1]) + Pr (b)F b

1 (s1) ηb1 (ST2 ∩ [n, n+ 1])
.

But since the likelihood ratio is unbounded (see (1)) the righthand side converges to

0 as s1 → −∞, giving a contradiction and thus showing infω∈ΩT
n
Q (ω;Fκ,π

1 ) < q. A

parallel argument implies q̄ < supω∈ΩT
n
Q (ω;Fκ,π

1 ) , completing the proof.

Proof of Proposition 3: Suppose to the contrary that for almost all ω ∈ ΩT the

buyer takes the same action the seller would take if he controls the asset in state ω.

Then V (Q (ω;Fκ,π
2 )) = V (Q (ω;Fκ,π

1 )) for almost all ω ∈ ΩT , which violates (5) and

gives a contradiction.
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Proof of Proposition 4: Recall that if an agent has information given by the

σ-algebra F he knows the true realization of the fundamental. As such,

∫

ΩT

(V (Q (ω;Fκ,π
2 )))µ (dω) ≤

∫

ΩT

(V (Q (ω;F)))µ (dω) ,

i.e., the buyer’s valuation of asset is less than the value of the asset to a perfectly

informed agent. Moreover, since the seller’s information becomes arbitrarily good,

∫

ΩT

(V (Q (ω;Fκ,π
1 )))µ (dω) →

∫

ΩT

(V (Q (ω;F)))µ (dω) .

It follows that the limit supremum of the lefthand side of (5) is weakly negative,

giving the result.

Proof of Proposition 5: We start with some preliminaries. Recall that Li (si)

denotes the likelihood ratio of signal si; likewise, for any set S such that ηai (S) > 0,

we let Li (S) denote the likelihood ratio ηai (S) /ηbi (S). The asset value V is defined

as a function of q, the probability the asset holder attaches to fundamental a. In the

trade equilibria under consideration, for the seller the conditional probability q is of

the form Pr
(

a|s1, s2 /∈ ST2
)

, while for the buyer it is of the form Pr
(

a|s1 ∈ ST1 , s2

)

.

It is convenient to rewrite these probabilities as

Pr
(

a|s1, s2 /∈ ST2
)

=

Pr(a)
Pr(b)

L1 (s1)L2

(

R\ST2
)

Pr(a)
Pr(b)

L1 (s1)L2 (R\ST2 ) + 1

Pr
(

a|s1 ∈ ST1 , s2

)

=

Pr(a)
Pr(b)

L1

(

ST1
)

L2 (s2)

Pr(a)
Pr(b)

L1 (ST1 )L2 (s2) + 1
.

Next, define a mapping from likelihood ratios to probabilities by

q (L) ≡

Pr(a)
Pr(b)

L

Pr(a)
Pr(b)

L+ 1
for any L ∈ [0,∞),

along with a transformation V ℓ of V that takes a likelihood ratio L as its argument,

i.e., V ℓ ≡ V ◦ q. The function V is convex, and by hypothesis is non-monotone.

As such, there exist probabilities q∗ and q∗∗ ≥ q∗ such that V is strictly decreasing
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over [0, q∗], flat over [q∗, q∗∗], and strictly increasing over [q∗∗, 1]. Since q is strictly

increasing in L, L∗ = q−1 (q∗) and L∗∗ = q−1 (q∗∗) are well-defined, and V ℓ is strictly

decreasing over [0, L∗], flat over [L∗, L∗∗], and strictly increasing over [L∗∗,∞).

We show there exists an equilibrium of the type described, i.e., ST1 ≡ [s1, s̄1] and

ST2 ≡ R\ (s2, s̄2). If the seller sees signal s1 his payoff from offering to sell is

Pr
(

s2 ∈ ST2 |s1

)

p+ Pr
(

s2 /∈ ST2 |s1

)

V ℓ
(

L1 (s1)L2

(

R\ST2
))

,

while his payoff from not offering to sell is

Pr
(

s2 ∈ ST2 |s1

)

V ℓ
(

L1 (s1)L2

(

ST2
))

+ Pr
(

s2 /∈ ST2 |s1

)

V ℓ
(

L1 (s1)L2

(

R\ST2
))

.

Thus it is a best response for the seller to offer to sell whenever s1 ∈ ST1 if and only if

V ℓ
(

L1 (s1)L2

(

ST2
))

≤ p for all s1 ∈ ST1

V ℓ
(

L1 (s1)L2

(

ST2
))

≥ p for all s1 /∈ ST1 .

By continuity and the shape of V ℓ, these conditions are satisfied if and only if

V ℓ
(

L1 (s1)L2

(

ST2
))

= V ℓ
(

L1 (s̄1)L2

(

ST2
))

= p. (15)

Likewise, in order for the buyer to offer to buy whenever s2 ∈ ST2 ,

V ℓ
(

L1

(

ST1
)

L2 (s2)
)

− δ ≥ p for all s2 ∈ ST2

V ℓ
(

L1

(

ST1
)

L2 (s2)
)

− δ ≤ p for all s2 /∈ ST2 ,

and these conditions are satisfied if and only if

V ℓ
(

L1

(

ST1
)

L2 (s2)
)

− δ = V ℓ
(

L1

(

ST1
)

L2 (s̄2)
)

− δ = p. (16)

Thus a trade equilibrium exists if and only if there exist s1, s̄1 6= s1, s2, s̄2 6= s2 such

that (15) and (16) hold.
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From the shape of V ℓ, there exists a unique quadruple L1, L̄1, L2, L̄2 such that

Li < L∗ ≤ L∗∗ < L̄i for i = 1, 2, and

V ℓ (L1) = V ℓ
(

L̄1

)

= p

V ℓ (L2) − δ = V ℓ
(

L̄2

)

− δ = p.

Consequently, a trade equilibrium of the type described exists if and only if there

exist s1, s̄1 6= s1, s2, s̄2 6= s2 satisfying the following system of four equations:

L1 (s1)L2(R\ (s2, s̄2)) = L1 (17)

L1 (s̄1)L2(R\ (s2, s̄2)) = L̄1 (18)

L1 ([s1, s̄1])L2(s2) = L2 (19)

L1 ([s1, s̄1])L2(s̄2) = L̄2. (20)

To complete the proof we show that such a quadruple does exist. First note that

(17) and (18) imply
L1(s1)

L1(s̄1)
=
L1

L̄1

< 1 (21)

and (19) and (20) imply
L2(s2)

L2(s̄2)
=
L2

L̄2

< 1. (22)

Fix s1 and solve for s̄1(s1) > s1 from (21). Similarly solve for s̄2(s2) > s2 from (22).

Substituting for s̄1(s1) and s̄2(s2), rewrite (17) and (19) as

L1 (s1)L2(R\ (s2, s̄2(s2))) = L1 (23)

L1 ([s1, s̄1(s1)])L2(s2) = L2. (24)

Observe that s̄1 (s1) → ±∞ as s1 → ±∞. Consequently L1([s1, s̄1(s1)]) → ∞ as

s1 → ∞ and L1([s1, s̄1(s1)]) → 0 as s1 → −∞. Thus from (24) define s2 (s1), and

note that s2 (s1) → ∓∞ as s1 → ±∞.

Also observe that s̄2 (s2) → ±∞ as s2 → ±∞, and so L2 (R\ (s2, s̄2)) → 1 as

s2 → ±∞. So substituting in for s2 (s1), the lefthand side of (23) approaches 0 as
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s1 → −∞ and grows without bound as s1 → ∞. By continuity it follows that there

exists some s1 such that

L1 (s1)L2(R\
(

s2

(

s1

)

, s̄2(s2 (s1))
)

) = L1,

completing the proof.

Proof of Proposition 6: The key to the proof is the following observation: for

any set S2 ⊂ R, Jensen’s inequality, the convexity and non-monotonicty of V , and

unbounded MLRP together imply

E [V (Pr (a| {s1} × S2)) |s2 ∈ S2]

=
∑

θ=a,b

Pr (θ|s2 ∈ S2)

∫ ∞

−∞

V (Pr (a| {s1} × S2)) f
θ
1 (s1) ds1

>
∑

θ=a,b

Pr (θ|s2 ∈ S2)V (Pr (a|S2)) = V (Pr (a|S2)) .

Likewise, for any S1 ⊂ R, E [V (Pr (a|S1 × {s2})) |s1 ∈ S1] > V (Pr (a|S1)).

We show that the equilibrium established in Proposition 5 remains an equilibrium

when the buyer and seller must pay k to acquire their signals. For an information

acquisition cost of k = 0, the seller’s equilibrium utility is

pPr
(

s1 ∈ ST1 , s2 ∈ ST2
)

+E
[

V
(

Pr
(

a| {s1} × ST2
))

|s1 /∈ ST1 , s2 ∈ ST2
]

Pr
(

s1 /∈ ST1 , s2 ∈ ST2
)

+E
[

V
(

Pr
(

a| {s1} × R\ST2
))]

Pr
(

s2 /∈ ST2
)

. (25)

Because the seller could instead always offer to sell, this quantity exceeds

pPr
(

s2 ∈ ST2
)

+ E
[

V
(

Pr
(

a| {s1} × R\ST2
))

|s2 /∈ ST2
]

Pr
(

s2 /∈ ST2
)

,

which by above is in turn strictly greater than

pPr
(

s2 ∈ ST2
)

+ V
(

Pr
(

a|R\ST2
))

Pr
(

s2 /∈ ST2
)

.
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This last expression equals the seller’s payoff under the deviation in which he does

not buy his signal and always trades. Similarly, the seller’s equilibrium utility (25)

is greater than his payoff from never trading,

E
[

V
(

Pr
(

a| {s1} × ST2
))

|s2 ∈ ST2
]

Pr
(

s2 ∈ ST2
)

+E
[

V
(

Pr
(

a| {s1} × R\ST2
))

|s2 /∈ ST2
]

Pr
(

s2 /∈ ST2
)

which is in turn strictly greater than

V
(

Pr
(

a|ST2
))

Pr
(

s2 ∈ ST2
)

+ V
(

Pr
(

a|R\ST2
))

Pr
(

s2 /∈ ST2
)

,

the value of the asset to the seller if he observes only the buyer’s announcement of

whether or not he is prepared to buy. So for all information acquisition costs k that

are sufficiently low the seller chooses to buy his information.

For an information acquisition cost of k = 0, the buyer’s equilibrium utility is

E
[

V
(

Pr
(

a|ST1 × {s2}
))

− p− δ|s1 ∈ ST1 , s2 ∈ ST2
]

Pr
(

s1 ∈ ST1 , s2 ∈ ST2
)

.

Because the buyer could instead always offer to buy, this exceeds

E
[

V
(

Pr
(

a|ST1 × {s2}
))

− p− δ|s1 ∈ ST1
]

Pr
(

ST1
)

,

which in turn strictly exceeds

(

V
(

Pr
(

a|ST1
))

− p− δ
)

Pr
(

ST1
)

,

the buyer’s payoff under the deviation in which he does not buy his signal and always

trades. Finally, if the buyer deviates to not buying the signal and never trading, his

payoff is simply zero, and which is strictly less than his equilibrium utility. Again,

for all information acquisition costs k that are sufficiently low the buyer chooses to

buy his information.
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Proof of Proposition 7: Let p denote the unique buyer’s offer that is accepted,

and let S1 denote the set of signals at which the seller accepts this offer and sells. It

follows that the buyer offers p if and only if

V ℓ (L1 (S1)L2 (s2)) − δ ≥ p,

where the likelihood ratios Li and function V ℓ are as defined in the proof of Proposi-

tion 5. From Proposition 1 and the proof of Proposition 5, we know that there exists

L∗ such that V ℓ is strictly decreasing over [0, L∗) and strictly increasing over (L∗,∞).

Since the seller accepts the offer p with strictly positive probability, p > minV ℓ. It

follows that there exist s2 and s̄2 such that the buyer offers p if s2 ∈ (−∞, s2)∪(s̄2,∞),

with

V ℓ (L1 (S1)L2 (s2)) = V ℓ (L1 (S1)L2 (s̄2)) = p+ δ.

So the buyer makes zero profits when he sees s2 ∈ {s2, s̄2}, regardless of whether

or not he offers p at these signals. Moreover, observe that V ℓ is decreasing at

L1 (S1)L2 (s2) and increasing at L1 (S1)L2 (s̄2).

To prove (I), suppose to the contrary that p > p∗, and consider the deviation

in which the buyer offers p∗. We show that this deviation is strictly profitable for

the buyer at at least one of the signals s2, s̄2. The seller’s beliefs are completely

summarized by L̃2. The seller then sells if s1 ∈ S̃1. If L1

(

S̃1

)

> L1

(

ST1
)

the buyer

has a profitable deviation at s̄2. If L1

(

S̃1

)

< L1

(

ST1
)

the buyer has a profitable

deviation at s2. If L1

(

S̃1

)

= L1

(

ST1
)

the buyer has a profitable deviation at both s2

and s̄2. In each case we have shown that p is not a best response for the buyer, giving

a contradiction. To complete the proof, simply note that if p < p∗ then p ≤ minV

and the seller accepts the offer with zero probability.

To prove (II), let ST2 denote the set of buyer signals at which the buyer offers p,

and suppose to the contrary that the trade probability remains bounded away from 0

as p∗ → min V . It follows that L2

(

ST2
)

is also bounded away from 0. The seller sells
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at signal s1 only if p ≥ V ℓ
(

L1 (s1)L2

(

ST2
))

. This occurs only if L1 (s1)L2

(

ST2
)

∈

(L∗ − ε, L∗ + ε) for some ε, where ε → 0 as p∗ → minV . Since L2

(

ST2
)

is bounded

away from 0 it follows that Pr
(

s1 ∈ ST1
)

converges to 0 as p∗ → minV , which gives

a contradiction and completes the proof.

Proof of Proposition 8: The proof consists of showing that condition (13) is a

necessary and sufficient condition for the non-monotonicity of V. The only complica-

tion in the application of Propositions 1 and 5 is that in our basic model V is convex

(see Lemma 1), while V is not necessarily convex. However, we show below that if

V (q) is strictly increasing (respectively, decreasing) for some q, the same is true for

all higher (respectively, lower) q. That is, if V is non-monotone it is decreasing then

increasing. Proposition 1 does not use the convexity of V , while in Proposition 5

convexity is used only to show that V has this property when it is non-monotone.

As noted in the main text, an agent without security 1 allocates ψ̄ ≡ µa/γσ
2
a =

µb/γσ
2
b to the market regardless of his beliefs about the fundamental. Let ψ (q) be

the optimal market allocation of an investor who holds the special asset and attaches

a probability q to fundamental a. Hence

v (q) = qE
[

−e−γ(rψ(q)+R)|a
]

+ (1 − q)E
[

−e−γ(rψ(q)+R)|b
]

v̄ (q) = qE
[

−e−γrψ̄|a
]

+ (1 − q)E
[

−e−γrψ̄|b
]

.

Since V ′ (q) ≥ 0 is equivalent to −v′

−v
≤ −v̄′

−v̄
(recall that v and v̄ are both negative-

valued), by the envelope theorem V is weakly increasing if and only if

E
[

e−γ(rψ(q)+R)|a
]

−E
[

e−γ(rψ(q)+R)|b
]

qE [e−γ(rψ(q)+R)|a] + (1 − q)E [e−γ(rψ(q)+R)|b]

≤
E
[

e−γrψ̄|a
]

− E
[

e−γrψ̄|b
]

qE
[

e−γrψ̄|a
]

+ (1 − q)E
[

e−γrψ̄|b
] .

By straightforward algebra, this inequality is itself equivalent to

E
[

e−γ(rψ(q)+R)|a
]

E [e−γ(rψ(q)+R)|b]
≤
E
[

e−γrψ̄|a
]

E
[

e−γrψ̄|b
] . (26)

46



To evaluate the righthand side of (26), note that by normality of the market return

r,

E
[

e−γrψ̄|a
]

= exp
(

−γ
(

µaψ̄ −
γ

2
σ2
aψ̄

2
))

= exp

(

−

(

µ2
a

σ2
a

−
1

2

µ2
a

σ2
a

))

= exp

(

−
µ2
a

2σ2
a

)

.

So V ′ (q) ≥ 0 is equivalent to

E
[

e−γ(rψ(q)+R)|a
]

≤ E
[

e−γ(rψ(q)+R)|b
]

exp

(

−γ

(

µ2
a

2γσ2
a

−
µ2
b

2γσ2
b

))

.

Applying the joint normality of r and R, taking logs and dividing by −γ implies that

V ′ (q) ≥ 0 is equivalent to

νa + ψ (q)µa −
γ

2

(

ζ2
a + ψ (q)2 σ2

a + 2βaσ
2
aψ (q)

)

≥ νb + ψ (q)µb −
γ

2

(

ζ2
b + ψ (q)2 σ2

b + 2βbσ
2
bψ (q)

)

+
1

2γ

(

µ2
a

σ2
a

−
µ2
b

σ2
b

)

.

Recall that ψθ = µθ

γσ2

θ

− βθ for θ = a, b, and define the function

G (ψ) ≡
(

νa −
γ

2
ζ2
a

)

−
(

νb −
γ

2
ζ2
b

)

+
1

2γ

(

µ2
b

σ2
b

−
µ2
a

σ2
a

)

+ψγ
(

σ2
aψa − σ2

bψb
)

+ ψ2γ

2

(

σ2
b − σ2

a

)

.

So V ′ (q) ≥ 0 is equivalent to G (ψ (q)) ≥ 0.

As the probability q varies from 0 to 1 the allocation ψ (q) increases monotonically

and continuously from ψb to ψa. Differentiation ofG yields G′ (ψa) = γσ2
b (ψa − ψb) ≥

0 and G′ (ψb) = γσ2
a (ψa − ψb) ≥ 0. Since G is quadratic in ψ it follows that G is

increasing over the interval [ψb, ψa]. So V (q) is non-monotonic over [0, 1] if and

only if G (ψb) < 0 < G (ψa) (in which case V is decreasing then increasing), which is

equivalent to (13), completing the proof.

Proof of Corollary 3: Under the conditions given, (13) simplifies to ψb (ψa − ψb) <

0 < ψa (ψa − ψb), which holds if and only if ψb < 0 < ψa. (Recall that Proposition 8

assumes without loss that ψb ≤ ψa.)
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Proof of Corollary 4: Under the conditions given, (13) simplifies to

ψb (ψa − ψb)σ
2
a <

1

2

(

ζ2
a − ζ2

b

)

< ψa (ψa − ψb)σ
2
a.

Substituting in for ψa − ψb = ρa

σa
(ζb − ζa) and dividing by ζb − ζa gives

ψb
ρa
σa
σ2
a < −

γ

2
(ζa + ζb) < ψa

ρa
σa
σ2
a.

As ε increases, ζa + ζb stays fixed, ψa increases, and ψb decreases. So condition (13)

is satisfied if and only if ε is sufficiently large.
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