
Notes on auctions
Olivier Compte and Andy Postlewaite

April 2010

Consider a standard independent private value setting. Values are drawn
independently from the same uniform distribution on [0, 1]. In such a setting,
a player who gets a draw vi also gets an idea about how his value compares to
others. For example, if vi is close to 0, then bidder i is almost sure that he is
the lowest bidder.
This seems to be an artefact of the model: there is no reason to believe

that learning about one’s own valuation should tell us something about how it
compares to others’ valuations. We may have learned over time what is our
chance of being the highest valuation bidder, (and in a symmetric model, this
chance ought to be 1/n), but, we face problems with substantial variation, it is
hard to believe that there is a strong connection between the realization vi and
the chance of being the highest valuation bidder;
One objective of this paper is to provide a model where bidders cannot use

vi to make inferences about their chances of being the highest valuation bidder.

Consider the following alternative specification:

vi = α+ xi

where xi are, as before, drawn independently from a uniform distribution on
[0, 1], and where α is drawn from a uniform distribution with large support, and
agents observe only vi..
Then, except near the boundaries of the distribution, learning vi tells nothing

about how vi compares with vj . For most values of vi, any player i seeing his
value vi must think he has a chance 1/n of being the highest valuation player.1

As we shall see, in the first price auction, and for most realizations of vi, the
optimal bid must take the following simple form:

bi = vi − a

Comments on the philosophy of the exercise.

(a) The auction literature has noticed that even the independent private
value model embodies a special relationship between the value realization vi
and the chance to be the highest valuation bidder, and that literature has noted
that other assumptions on the joint distribution of valuations would imply other
relationships between the value realization vi and the chance that one is the
highest value bidder. What we propose goes further: we propose a model where
there is no connection to be made.

1Note that this particular specification implies that the particular realization vi does not
convey information about the dispersion of values across bidders. This assumption may be
questionnable and a specification of the type: vi = αxi with xi ∈ [0.9, 1.1], say, might be more
realistic.
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(b) One would think that when bidding, a bidder should pay attention to
how much the object is worth to him, say vi, and to his chances of being the
highest valuation bidder, say πi: a bidder with only small chance of being the
highest valuation bidder should presumably be cautious in not shading his bid
by too much.
In a standard Bayesian model with private values, values are drawn from

a joint distribution, and each bidder’s strategy is a function of his value, i.e.
bi(vi). Seemingly, a bidder thus does not worry about his chance of bidding. The
reason is as follows. In equilibrium, a bidder’s equilibrium bid is optimal given
the joint distribution over values and others’ strategies. We do not necessarily
mean to assume that the bidder knows the joint distribution nor the strategies
of the others, but, playing optimally, he ends up acting as if he knew it, and
correctly shades his bid to take into account his chance of winning. But the
actual assessment that a player might have about his chances of winning plays
no overt role but is buried into the bid function bi(vi).
(c) To be more precise, consider the standard private value model and define

πi(vi) = Pr{maxj 6=i vj < vi | vi} as the probability that he has the highest
valuation for the object given vi. Assume that in addition to vi, player i gets an
imperfect signal yi ∈ {0, 1} about πi(vi), assuming for example that yi = 1 if and
only if πi(vi) > π∗. A priori, one would think that the estimate yi ought to play
a role. In equilibrium however, bidders optimal strategy will be independent
of yi. The fine dependence on vi that the bidder’s strategy bi(vi) allows for is
enough to make signal yi useless: the signal yi brings no new information about
rank than vi already does.
The story would be different if one restricted attention to, say, the following

class of strategies:
bi(vi) = vi − a− cyi

where the bidder tries to find the values of a and c that are optimal (across
realizations of vi and yi).
In other words, there is a link between the set of strategies that are allowed

and what we implicitly assume about what agents know about the distributions:
by allowing all possible strategies, a player who plays optimally ends up bidding
as if he perfectly knew his chance of winning for each possible realization of vi
(thus making signal yi useless). With constraints on the strategy set, this is no
longer the case, and signal yi, if correlated with πi, may end up being useful.
(d) The classic view that bidders would actually know the joint distribution

over draws does not seem tenable. How would one learn about the distribu-
tions of valuations that are never observed? And if equilibrium behavior relies
on learning, how then one would learn about optimal behavior if the space of
strategies is the set of all functions?
(e) Why do we assume that there are no connection to be made between

valuations and the probability to be the highest bidder?
Our aim is a parsimonious model of auctions, and we begin with informational
assumptions that sound minimal. A model that implicitly assume that bidders
have a fine knowledge of their chance of having the highest valuation for each
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possible realization of their own valuation does not sound parsimonious.
We see two (connected) ways of achieving this parsimony.

- Either by making distributional assumptions such as the one described above
that preclude any relationship between valuations and ranking;
- Or by adding constraints on the strategy set. By focusing on the set of

strategies of the form bi = vi−a, bidders find an optimal response that does not
depend in a fine way on the actual relationship between valuation and ranking.
We do not mean to suggest that information about rank never arise. We have

in mind that actual value estimation should be a poor instrument to estimate
rank in many contexts, and that as a first step, it may be a better modelling
strategy to ignore the relationship between valuation and rank altogether. As a
second step however, one could investigate a model in which players do attempt
to take into account signals about how their valuation ranks compared to other,
and such a model could take the form outlined above, namely:

bi = vi − a− cyi

(f) When modelling long run interactions, we often rely on infinite horizon
games. We do not believe that the horizon is actually infinite, but as explained
by Rubinstein (comments the interpretation of game theory, Econometrica), we
believe that the infinite horizon is a better model of a strategic situation in
which the date at which the game ends game is not known for sure: we do not
want the outcome to depend on the fine details of how or when the game will
end.
In a similar vein, we believe it is difficult for bidders to get a clear idea

of their probability of winning as a function their valuation vi and the way
they shade their bid, and we do not want the outcome to depend on the fine
knowledge of this relationship between value and ranking.

1 The basic model.
As explained above, the basic model considers the following specification:

vi = α+ xi

where xi’s are drawn independently from a distribution on [x, x̄] (let f denote the
density), and where α is drawn from a uniform distribution with large support.
Bidder i learns vi, but not α or xi.
We consider the first price auction. Possible strategies are assumed to be of

the form
bi = vi − a

This is a restriction on the strategy set. Yet given the assumptions made on
the distribution of valuations, then, even if there were no restrictions on bid
functions, bidding in this way would be optimal for all realizations but those
that fall near the boundary of α. (See the note below).
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We now look for a symmetric equilibrium of the first price auction. Assume
that all bidders except i shade their bids by a, while bidder i shades his bid by
a+ y. Denote by ui(y, a) the expected payoff that player i derives in that case,
and denote by φ(y) the probability that xi exceeds maxj 6=i xj by more than y,
that is,

φ(y) = Pr(xi −max
j 6=i

xj > y).

We have
ui(y, a) = (a+ y)φ(y)

The first order condition for a symmetric equilibrium thus writes as

aφ0(0) + φ(0) = 0.

Since the xi ’s are drawn from the same distribution, we have φ(0) = 1
n , hence

a =
1

−φ0(0)n

When xi is distributed according to a density f , with cumulative distribution
F , we have:

−φ0(0) = d

dy
Pr(xi + y > xj for all j)

¯̄̄̄
y=0

=
d

dy

Z
f(xi)[F (xi + y)]n−1dxi

¯̄̄̄
y=0

which implies:

−φ0(0) =
Z
(n− 1)(f(xi))2[F (xi)]n−2dxi. (1)

In the case that the distribution is uniform on the interval [x, x̄], we have:
φ0(0) = −1/(x̄− x), hence

a =
x̄− x

n
.

Shading thus depends on the number of bidders and dispersion of valuations:
the more dispersed are valuations, the less risky it is to shade one’s bid.

Comments:
1. In comparison with the standard independent private value model, in

which shading is contingent on vi, shading is here independent of vi.
In general, we should expect shading to be contingent on the chance of being

the highest bidder and the dispersion of values. In the alternative model pro-
posed, both the chances of being the highest bidder and the dispersion of values
are essentially independent of the particular realization vi. Not surprisingly,
then, shading is constant across vi.

2. Computations have been made under the assumption that bidders look for
the optimal strategy among strategies of the form bi = vi−a. If the distribution
over α is flat on a large interval, then, even if bidders look for the optimal
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strategy among all possible bid functions, then, except near the boundary of
the distribution over vi, the computations made are exact, because learning vi
is not informative about xi. Formally, call g the distribution over α, assumed
to be flat over [α, α], then for any vi ∈ [α+ x, α− x] we have:

f(xi | α+ xi = vi) =
f(xi)g(vi − xi)R

yi
f(yi)g(vi − yi)dyi

= f(xi).

3. We did not check above for second order conditions. We have to ensure
that there are no profitable large deviations. The first order condition can be
written as

−a = y +
φ(y)

φ0(y)
. (2)

If y+ φ(y)
φ0(y) is increasing in y, then the solution to (2) is unique, so at a = − φ(0)

φ0(0) ,
y = 0 is the unique interior optimum. The solution must be a maximum since
gains are 0 when y = −a (because then bi = vi) and when y = x− a (because
then i has no chance of winning then), and are strictly positive for values of y
between.

4. An example where second order conditions fail.
Consider two bidders, and assume that for each player, xi is with probability

p concentrated and uniformly distributed on [−ε, ε], and with probability (1−p)
dispersed and uniformly distributed on [−x, x]. Then

−φ0(0) ≥ p2
1

2ε

hence the first order condition holds for some a that satisfies

a ≤ ε

p2

If both players were to follow that strategy, they would thus earn an expected
payoff no larger than ε

2p2 . If one player decides to choose a = x/2, then he
would certainly win in all events where xj < −x/2, hence he would win with
probability at least equal to 1−p

4 hence make a profit at least equal to to x(1−p)
8 .

It follows that if
ε < xp2(1− p)/8,

the second order condition cannot be satisfied, and the candidate equilibrium
obtained by looking at the first order condition is not an equilibrium.
Intuitively, because the distribution is somewhat concentrated around 0, in

a candidate pure strategy symmetric equilibrium, changing slightly one’s bid
has a strong effect on the chances of winning. This Bertrand competition effect
induces bidders to shade their bids very little, implying that expected payoffs
must be very small in such a candidate equilibrium. But then there exists a
force toward large shading: you can take a chance for a large benefit, even if it
is at the risk of having little chance of winning.
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In standard private auctions, one typically assumes affiliation, and existence
of a pure strategy equilibrium is then assured. Our example above is not in
contradiction with this existence result. Though preferences exhibit a relatively
simple form of positive correlation, affiliation does not necessarily hold.
To see why, consider two bidders with valuations v1 ∈ {v, v + d} and v2 ∈

{v − d, v}. Call h(.) the distribution over x1 − x2. Affiliation requires that

f(v, v − d)f(v, v + d) > f(v, v)f(v + d, v − d).

or equivalently, given our flat support assumption on α,

h(d)h(−d) > h(0)h(2d)

When the xi’s are concentrated, and for a choice of d that is neither too small
nor too large, that inequality typically does not hold.

There are examples of non existence of pure strategy equilibria in the liter-
ature. These examples rely on the fact that first order conditions do not imply
a monotone bid function. Here the bid function that is obtained from the first
order conditions is monotone. Some large deviations however turn out to be
profitable.

5. Construction of a symmetric mixed strategy equilibrium
As pointed out above, pure strategy equilibria may not always exist. We

construct below a simple example of a symmetric mixed strategy equilibrium.
We consider two bidders and define φ as above. We shall look for a mixed

strategy equilibrium in which each player randomizes between two values of a,
say ā and a, and choose ā with probability η. Denote by σ that strategy. We
have:

V (a, σ) = a[ηφ(a− ā) + (1− η)φ(a− a)]

which gives the following f.o.c.:

a =
ηφ(a− ā) + (1− η)φ(a− a)

| ηφ0(a− ā) + (1− η)φ0(a− a) |
for a = ā, a.

These two conditions, along with the equality

V (ā, σ) = V (a, σ)

can be used to find a candidate mixed strategy equilibrium. We now check in
an example that this can be done.
Assume that the difference z = x1 − x2 is distributed on [−1, 1] according

to the density h(.) where h(z) = h0(> 1/2) if | z |< ε and h(z) = h1(< 1/2)

otherwise.2 Note that by definition, we have φ(y) =
R 1
y
h(z)dz. Also note that

the only candidate symmetric pure strategy equilibrium must satisfy a∗ = 1
2h0
,

with an expected gain equal to a∗/2 = 1/(4h0).

2Note that h0 and h1 determine ε.
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For h0 = 4 and h1 = 0.2, the following figures plot φ(.) and the expected
gain V (a, a∗) = aφ(a− a∗):
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The figure on the right shows the expected payoff to bidder i when the other
bidder bids by shading his value by a∗ = 1

8 and bidder 1 shades by a. There is a
local maximum at a = 1

8 , but this is not a global maximum. There is a second
local maximum at about .55, and while it is difficult to tell from the graph,
V (.55, a∗) > V (18 , a

∗), and consequently there is no pure strategy equilibrium.
Still for h0 = 4 and h1 = 0.2, the first order conditions yield the following

candidate mixed strategy equilibrium σ∗: play ā = 0.47, with probability 0.027
and a = 0.13 otherwise. The following figure plots the expected gain V (a, σ∗)
as a function of a:
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Here, V (.47, σ∗) = V (.13, σ∗) = maxa V (a, σ
∗), thus confirming that σ∗ is a

mixed strategy equilibrium.

6. Risk aversion.
Assume players are risk averse, and call u(a) the utility that player i derives

from getting a payoff equal to a. The expected utility from shading by a + y
when others shade by a becomes u(a+ y)φ(y), so the first order condition for a
symmetric equilibrium thus writes as

u(a)φ0(0) + u0(a)φ(0) = 0.

With u(a) = aγ with γ < 1 for example, we get:

a = γ
1

−φ0(0)
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7. Releasing information about the dispersion of valuations
We assume that the distribution over xi may be more or less dispersed, and

we wish to compare the case where bidders have access to information on the
dispersion of valuations, to the case where they don’t.
We assume that there are K states of the world, and that in state k, the

xi’s are drawn from f(. | k). We define φk(y) = Pr{xi > maxj 6=i xj | k}. When
bidders know k, the equilibrium shading is:

a∗k =
1

−nφ0k(0)

When bidders do not know k, and the equilibrium shading becomes:

a∗ =
1

−nEφ0k(0)

Since y → 1/y is a convex function, 1
−Ekφ0k(0)

< Ek
1

−φ0k(0)
, so

a∗ < Ea∗k

bidders bid more aggressively on average when they do not know k.

8. Increasing number of bidders.
We evaluate the effect of more bidders on shading. We now write φn(y) to

indicate the number of bidders, and throughout we assume that y + φn(y)
φ0n(y)

is
increasing in y for all n. We denote by a∗n the level of equilibrium shading when
there are n bidders present. We have the following proposition:

Proposition 1. Assume the xi ’s are drawn independently from
a density f that is centered, symmetric, say around 0, and single
peaked. Then

a∗n =
1

nβn

where βn is a decreasing sequence. The sequence βn may decrease
to 0 if f(x̄) = 0. For n large however nβn increases without bound.

Intuitively, when the number of bidders increases, the winning bidder tends
to have a higher realization of xi. Since f is single-peaked, the distribution
over other bidders’ valuations tends to be more dispersed on average, and βn
decreases.
Proof: We already know that βn = −φ0(0). Integrating by parts the ex-

pression on the right hand side of (1) and observing that f 0(x) = f 0(−x) and
F (−x) = 1− F (x), we obtain:

βn = f(x̄) +

Z 0

x

f 0(x)([1− F (x)]n−1 − [F (x)]n−1)dx
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Now for any given p < 1/2, define ∆n = (1−p)n−pn, and kn = ∆n/(1−2p).
We have k1 = 1. Since

∆n+1 = (1− p)∆n + (1− 2p)pn = (1− 2p)((1− p)kn + ppn−1)

This directly implies kn > pn−1 for all n, which further implies that kn+1 is an
average of kn and pn−1, hence kn is a strictly decreasing sequence. Applying
this observation to each p = F (x), we obtain that βn is also a strictly decreasing
sequence. To check the last assertion, assuming for example that f 0(x) > 0, it
is sufficient to take a Taylor expansion of F (x) close to x and then observe that
βn ≥ O(1/n)1/2.

9. Stochastic number of bidders.
We assume that the actual number of bidders is stochastic. We follow

Matthews (1987) and McAfee and McMillan (1987) and compare the case where
the seller commits to reveal the number of actual bidders, to the case where he
commits to kept is secret.
Bidders are drawn from a pool of size N .The realized number of participants

is denoted n. We assume that n is always at least equal to 2, and that conditional
on n each bidder has equal chance of being a participant. For bidder i, the value
of shading by a+ y when others shade by a can be written

V i(y, a) = (a+ y)Ei
nφn(y)

where Ei
n indicates the expectation over n conditional on i participating. Since

Ei
nφn(0) = Ei

n(1/n), the equilibrium shading writes as:

a∗ =
Ei
n(1/n)

−Ei
nφ

0
n(0)

=
Ei
n(1/n)

Ei
n(βn)

,

If, upon participating, bidder i were told the number of participants, he would
shade by a∗n = 1/(nβn), hence in expectation, he would shade by Ei

na
∗
n. As

we shall explain (see comment below), a∗ may be larger than Ei
na
∗
n, hence,

conditional on participating, bidder i would bid more aggressively on average if
he were told the number of bidders.
>From the point of view of the seller, however, a∗ should be compared to

the unconditional expectation Ena
∗
n. Observing that for any random variable

xn, Ei
nxn =

Ennxn
Enn

,3 we may rewrite a∗ as:

a∗ =
1

Ennβn

Since f(y) = 1/y is a convex function, 1
Ennβn

< En
1

nβn
, hence we obtain:

Proposition 2: Ena
∗
n > a∗.

3This is because conditional on n, bidder i has a chance n/N of being a participant.
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As in the case examined earlier where information about the dispersion of
valuations could be revealed (and by a similar argument), the policy of commit-
ting to not revealing such information increases the revenue of the seller;
Comment: Under the conditions of proposition 1, and if nβn is an increas-

ing sequence, then a∗ > Ei
na
∗
n.
4 Thus conditional on participating, bidder i

is bids more aggressively on average if he is told the number of bidders (that
is a∗ > Ei

na
∗
n). However, because participating is more likely when the num-

ber of bidders is larger, and because a∗ is computed taking that into account,
bidders bid more aggressively when they are not told the number of bidders
(a∗ < Ena

∗
n).

10. Further existence issues
With a stochastic number of bidders, existence of a pure strategy equilibrium

for each realization of n with n known to bidders does not guarantee existence
of a pure strategy equilibrium in the uncertain case.
To illustrate, consider a case where xi is drawn uniformly on [0, 1], and where

n may take two values, either n = 2 or n = n0, with n0 assumed to be large.
Let p = Pr{n = 2 | i participates}. For the uniform distribution, βn0 = β2 = 1,
so the only candidate pure symmetric equilibrium is

a∗ = Eφn(0) =
1

n0
+ p(

1

2
− 1

n0
)

and it yields an expected payoff equal to a∗Eφn(0) = (a
∗)2.

Consider now the deviation that consists in choosing a as if only 2 players
where present, that is, a = 1

2 . With that deviation, the bidder wins with
probability at least p/2, hence the deviation yields an expected payoff at least
equal to p/4. If

p

4
> (

1

n0
+ p(

1

2
− 1

n0
))2

then the deviation is profitable. It is easy to see that this inequality holds for
p = 2

n0
and n0 > 7, in which case a pure strategy symmetric equilibrium fails

to exist.

This failure of existence is not specific to our model specification. Consider
the standard independent private value model where each bidder who partici-
pates gets a draw vi from the uniform distribution. The only candidate pure
strategy equilibrium has bidder i choose bid bi = vi(1− a∗) where a∗ is defined
as above, thus yielding bidder i with valuation vi an expected payoff equal to
vi(a

∗)2. Bidder i however could choose to bid vi/2. He would win with prob-
ability at least pvi/2, hence he would obtain an expected payoff at least equal
p(vi)

2/2. So whenever pvi/2 > (a∗)2, the deviation is profitable. For p = 2
n0

and n0 > 7 in particular, all types vi > 1/2 find the deviation profitable.

11. Revenue equivalence.

4βn and 1/(nβn) are then decreasing sequences, so we have: Ei
n(βn)E

i
n[1/(nβn)] <

Ei
n(1/n), which implies a

∗ > Ei
na
∗
n.
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Under the alternative model, equivalence no longer holds: with a uniform
distribution for example, the first price auction generates less revenue than the
second price auction (see details below).
There are also examples of distributions where the first price dominates

however. To see this, consider again the case of two bidders examined earlier
where for each bidder i, xi is with probability p concentrated and uniformly
distributed on [−ε, ε], and with probability (1 − p) dispersed and uniformly
distributed on [−x, x]. Choose ε small, but not too small, so that a symmetric
equilibrium in pure strategies exists. Then, because of a Bertrand competition
effect, shading in the first price will be very small, and one can show that there
are values of ε and p for which the revenues are larger in the first price auction.
Intuitively, bidders do not shade their bid much in the first price auction,

so for any realization of (v1, v2), revenues are close to max vi. This is true even
in events where one of the bidder gets a draw xi drawn from the dispersed
distribution (distributed on [−x, x]). Under that event, however, revenues in
the second price auction are typically far away from max vi.

While it is not surprising that equivalence would not hold here (because
valuations are correlated), and while it is not surprising that the second price
auction does not always generate more revenues (because affiliation does not
necessarily hold), it suggests a fragility of the revenue equivalence or revenue
ranking results: it hinges on the assumption that there is a special relationship
between one’s own valuation and one’s belief about how one’s own valuation
compares to others, and on the ability of players to correctly take into account
this relationship through their bidding strategy: when bidders use simple bid
functions, the above comparison applies (whatever the distribution on α and
whether the realized α is known or not).

2 Incorporating information about rank
We motivated our model by arguing that in many contexts, a bidder’s own valu-
ation is a poor tool for estimating how his value compares to others’ valuations.
We do not mean to suggest, however, that bidders cannot form predictions about
rank stemming from signals about others that they might receive.
In this Section, we illustrate how information about rank can be incorporated

in our basic model. Of course, such information could also be introduced in the
standard model. But the technical difficulty there is then that bidders have a two
dimensional type, and equilibria are then difficult to characterize. In contrast,
we will add a signal that reflects coarse information about rank, taking only two
possible values θi ∈ {0, 1}, and a strategy for bidder i will thus consist of a pair
(a0i , a

1
i ).

Formally, we assume that in addition of vi, each player receives a signal
θi ∈ {0, 1} that is correlated with the ranking over valuations. Specifically,
define Hi to be the event that i has highest valuation. We assume that there
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exists p such that for each valuation vector v = (vi)i,

Pr{θi = 1 | v ∈ Hi} = p and

Pr{θi = 1 | vi /∈ Hi} = 1− p

So when p = 1/2, the signal is uninformative, while for p = 1, it is perfectly
informative of whether i has the highest valuation.
We thus define a standard Bayesian game, in which each bidder i chooses a

shading strategy contingent on the signal θi, hence a pair (a0i , a
1
i ). Clearly, if

the signal is uninformative, we should expect to get back the equilibrium found
in the previous Section. We are interested here in analyzing how information
about rank affects bidding.
For simplicity, we focus on the case of two bidders, and start by examining

the case where p = 1. We also let ψ(a0) ≡ argmax aφ(a− a0). We have:

Proposition 3: a < a∗ and ā = ψ(a).

Since in general ψ is a decreasing function,5 that is, more aggressive be-
havior from the other bidder triggers more aggressive bidder, the auction with
information about rank is more competitive.
Intuitively, when players get information about rank, a player receiving a bad

signal must bid more aggressively to have a chance to win, and this adversely
affects the bidder who receives a good signal. So despite knowing that he can
afford to bid less aggressively than the other player to have a significant chance
to win, he ends up bidding more aggressively than if neither bidder had had
information about rank.
Proof : Define:

φ̄(y) = Pr{xi > xj + y | xi > xj} and φ(y) = Pr{xi > xj + y | xi < xj}

We have φ̄(y) = 2φ(y) for y ≥ 0, φ̄(y) = 1 for y ≤ 0, and by symmetry
φ(y) = 1−φ(−y). We look for a symmetric equilibrium σ = (a(θ))θ=0,1 = (a, ā).
For each bidder, the value from bidding ā+ y in event θi = 1 is:

V 1(y, σ) = (ā+ y)[φ̄(ā− a+ y)],

and the value from bidding a+ y in event θi = 0 is:

V 0(y, σ) = (a+ y)[φ(a− ā+ y)].

Defining z = ā− a, the first order conditions yield:

ā =
φ(z)

−φ0(z)
and a =

1− 2φ(z)
−2φ0(z)

.

The equilibrium difference z∗ = ā− a thus solves:

z∗ =
4φ(z∗)− 1
−2φ0(z∗)

.

5 In case the xi are drawn from uniform distributions for example, ψ is a decreasing function.
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So z∗ is strictly positive. Besides, compared to the case where no information
about rank is provided, and where a∗ = − φ(0)

φ0(0) , and since y +
φ(y)
φ0(y) is assumed

to be increasing, we have a < a∗, and ā = ψ(a) follows immediately from the
definition of V 1. QED
Similar analysis can be performed for the case where the signal is less perfect

(see Appendix).
Assuming that the xi are drawn from uniform distributions, we plot equilib-

rium shading as a function of the precision of the signals.
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As the precision of the signals increases, bidding is thus more competitive, and

this translates into lower gains for buyers as the following figure illustrates (the
lower line represents the gain under a second price auction).
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Under the distributional assumptions made, buyers’ gains are thus reduced to

those of the second price auction. Note however that the signal about rank
induces inefficiencies, as there are events where 0 < x1 − x2 < z∗ and θ1 = 1
and θ2 = 0, hence, events where bidder 1 has higher valuation and yet the object
is allocated to bidder 2. As a result, the seller does not fully benefit from this
increase in competition. The following figure shows the difference in revenues
from a second and first price auction.
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3 Noisy valuations
We extend our basic model to accommodate the possibility that bidders only
have an imperfect estimate of their valuations.
As before we assume that

vi = α+ xi

where xi are drawn independently from a distribution on [x, x̄] (call f the den-
sity), and where α is drawn from a uniform distribution with large support. We
assume that bidders do not observe their valuation vi. Rather, they observe an
estimate

yi = vi + εi

where εi are drawn independently (from one another and from the vi). Again,
possible strategies are assumed to be of the form

bi = yi − a

We look for a symmetric equilibrium of the first price auction. Denote by
φε(y) the probability that xi + εi exceeds maxj 6=i xj + εj by more than y, that
is,

φε(y) = Pr(xi + εi −max
j 6=i

xj + εj > y).

Define
H(y) = E[εi | xi + εi −max

j 6=i
xj + εj > y]

We have the following Proposition:

Proposition 4: In a symmetric equilibrium, bidders shade their
bid by

a∗ε = H(0) +
1−H 0(0)

−nφ0ε(0)
.

The equilibrium payoff is:

V ∗ =
1−H 0(0)

−n2φ0ε(0)
.

To prove proposition 4, it is convenient to denote by h(εi, z) the joint dis-
tribution over εi and z ≡ xi + εi − maxj 6=i xj + εj . Assume that all bidders
except i shade their bids by a, while bidder i shades his bid by a+ y. Denote
by V (y, a) the expected payoff that player i derives in that case. When player
i wins, he obtains a payoff equal to α+ xi − (α+ xi + εi − a− y) = a+ y − εi,
so we have:

V (y, a) =

Z
z≥y

(a+ y − εi)h(εi, z)dεidz = φε(y)(a+ y −H(y)).
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The first order condition thus yields:

(a−H(0))φ0ε(0) + φε(0)(1−H 0(0)) = 0,

hence the proof of the Proposition.

Shading thus has two components. The term Hε(0) takes into account the
fact that more optimistic bidders tend to win the auction (i.e., the winner’s
curse), and rational bidders should correct for that; the second term equals
a∗ −H(0), and exactly corresponds to what a winner gets on average when he
wins.
This second term equals ( 1n)

1
−φ0ε(0)

(1−H 0(0)), and the two first factors are

analogous to those that appear in the no noise case: ( 1n) corresponds to the
expected probability of winning, and 1

−φ0ε(0)
captures how bidders take advan-

tage of the dispersion in valuations. This term is typically larger when noise is
larger. Finally the last term results from the fact that when a bidder slightly
increases shading, he typically reduces the winner’s curse effect (with symmetric
distributions for example, H 0(0) ≥ 0).
Illustrations and comments
(1) With ε taking two values, H 0(0) = 0. So

a∗ε = H(0) +
1

−nφ0ε(0)
and V ∗ =

1

−n2φ0ε(0)
.

Compared to the case with noise, bidders are thus unambiguously better off, as
| φ0ε(0) | decreases with noise. Intuitively, when estimates are noisier, dispersion
of valuations increases and bidders can take advantage of that by shading their
bids more.
That insight typically does not arise in the standard model, because in the

standard model, noisier estimates translate into less dispersed expected val-
uations (by a regression to the mean effect). For example, in a standard in-
dependent value model with noisy estimate, yi = vi + εi, each bidder would
compute E(vi | yi) and these expectations have smaller support when the noise
increases. As a result, noisier estimates induce less dispersed valuations, hence,
(surprisingly) stronger competition.
The regression to the mean effect does not arise in our model because α has

a flat density. The εi are estimation errors, and learning yi tells nothing about
the estimation error. In contrast, in the standard model, learning the estimate
yi would allow the agent, through knowledge of the distribution and Bayesian
updating, to learn about the estimation error.

(2) Assume that ε may take two values, ε̄ (with probability p) or ε, so that
bidders are either optimistic or pessimistic, and that ε̄ − ε > ∆ = x̄ − x. The
assumption ε̄−ε > ∆ implies that in a symmetric equilibrium, bidder imay only
win when he is optimistic (εi = ε̄) or when all bidders are pessimistic (εj = ε
for all j). Clearly H 0

ε(0) = 0, so the equilibrium shading can be written:

a∗ = E[ε | εi = max
j

εj ] +
1

−nφ0ε(0)
.
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We thus need to derive φ0ε(0). To fix ideas we assume that xi is distributed
uniformly on [x, x̄], so that for any given number of bidders n, φ0n(0) = 1/∆.
Define en as the random variable that gives the number of bidders who have a
chance to win in the event (εi)i, that is:en = #{i, εi = max

j
εj}

We have:

Proposition 5: In equilibrium, bidders shade their bid by

a∗ = E[ε | εi = max
j

εj ] +∆E
1en (3)

Besides, letting ρ = (1− p)n/p, we have:

E[ε | εi = max
j

εj ] = ε̄− ρ

1 + ρ
(ε̄− ε)and E

1en = 1

pn(1 + ρ)

Intuitively, the first term corresponds to the expected “optimism” of the
bidder conditional on winning, and that term gets close to ε̄ when n increases.
The second term describes how bidders further shade their bids. Compared

to the case without noise where they would shade by ∆/n, bidders shade more
because they are facing less intense competition: because only optimistic bidders
may win (except in the event all are pessimistic), a bidder is endogenously facing
fewer competitors.
Proof: We need only compute φ0ε(0). Observe that

φε(y) = p
X
n0

Pr(en = n0 | εi = ε̄)φn0(y) + (1− p)(1− p)n−1φn(y).

Thus, given that φ0n(0) = −1/∆ for all n, we have:

φ0ε(0) = −[p
X
n0

Pr(en = n0 | εi = ε̄) + (1− p)(1− p)n−1]/∆

= −(p+ (1− p)(1− p)n−1)/∆.

Now observe that by symmetry each bidder has a chance 1/n of winning, and
that conditional on en = n0 and {εi = max εj}, bidder i has a chance 1

n0
of

winning. This implies

1

n
=

nX
n0=1

1

n0
[pPr(en = n0 | εi = ε̄) + (1− p)

1

n
(1− p)n−1],

Consequently,

1

−nφ0ε(0)
= ∆

Pn
n0=1

1
n0
pPr(en = n0 | εi = ε̄)] + (1− p) 1n(1− p)n−1]Pn

n0=1
pPr(en = n0 | εi = ε̄) + (1− p)(1− p)n−1

= ∆E[
1en | εi = max εj ] = ∆E[ 1en ]. QED
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(3) Winning conveys information about xi + εi, hence about the estimation
error εi and the common value elementα. The bid adjustment H(0) however
reflects only the extent of learning about the estimation error εi (rather than
learning about the common value element α).

4 The Buyer/seller case
We consider a seller with a value v1 for the object to be sold, and a buyer with
a value v2 for the object. As before, we assume that

vi = α+ xi.

We are interested in understanding which player gains from making a take-it-
or-leave offer to the other player, and compare these selling mechanisms to the
split-the-difference mechanism.
In what follows, we define

φ(y) = Pr{x2 − x1 ≥ y}

and let S(y) denote the expected surplus that results when transactions take
place if and only if x2 > x1 + y, that is:

S(y) =

Z
z>y

−zφ0(z)dz = φ(y)E[x2 − x1 | x2 − x1 > y].

When the seller makes an offer equal to p = v1 + a1, the buyer accepts iff
x2 − x1 ≥ a, hence he obtains an expected payoff equal to

GS = v1 + a1φ(a1).

When the buyer makes an offer p = v2− a2, the seller accepts if p ≥ v1, that is,
if x2 − a2 ≥ x1, hence he obtains an expected payoff equal to

GB = a1φ(a1).

The optimal values of a1 and a2 are thus the same, and we call this value
a∗ = argmax aφ(a), and denote by G∗S and G∗B the corresponding gains for the
seller and the buyer. Note that the expected surplus to be shared is the same
whether the seller or the buyer makes the offer, and it is equal to S(a∗). Who
makes the offer thus only affects how the expected surplus is shared.
To see how the expected surplus S(a∗) is shared, observe that when the

buyer makes the offer, the seller obtains:

RS = v1 +E[max(x2 − x1 − a∗, 0)]

= v1 + S(a∗)− a∗φ(a∗).

So the seller prefers to make the offer when G∗S > RS , that is when:

S(a∗) < 2a∗φ(a∗).

Since S(y) =
R
z>y
−zφ0(z)dz = yφ(y) +

R
z>y

φ(z)dz, we obtain the following
Proposition:
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Proposition: Let a∗ = argmax yφ(y). The seller prefers to let
the buyer make the offer if and only ifZ

y>a∗
φ(y)dy > a∗φ(a∗)

Examples:
(1) If the xi’s are drawn independently from the uniform distribution on

[0, 1], then for z > 0, φ(y) = (1− y)2/2. The player who makes an offer chooses
a∗ that maximizes max yφ(y), hence a∗ = 1/3, which yields an expected gain of
2/27 = 6/81. In contrast, the expected surplus to be shared is S(a∗) = 10/81,
so the seller prefers to make the offer.
(2) Define h(z) = −φ0(z). h corresponds to the density over z = x2 − x1.

Assume that h(z) = k
z2 over the interval [1,K]. Set k = 1/(1 − 1/K) so thatRK

1
h(y) = 1. We have φ(1) = 1, and for any a > 1,

aφ(a) = a

Z K

a

h(z)dz = a(
k

a
− k

K
) = k(1− 1/K)− (a− 1)k/K

= 1− (a− 1)k/K < 1.

It is thus optimal for the seller to set a∗ = 1. Now observe that when a∗ = 1,

S(a∗) =

Z K

1

zh(z)dz = k lnK =
lnK

1− 1/K

which is larger than 2a∗φ(a∗) = 2 when K is sufficiently large (K ≥ 4 ,or so...).
So the seller obtains less than half the surplus if he makes the offer, while he
gets more than half the surplus if he lets the buyer make an offer.
(3) The following figures compare the gain G obtained by the seller when he

makes the offer to the revenue R that he obtains when he let the buyer make the
offer under three different assumptions about how y = x2 − x1 is distributed.
(a) y is distributed uniformly over [−1, 1]: G > R
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(b) y is either distributed uniformly over [−1/3, 1/3] or uniform over [−1, 1].
The figure below has been drawn for the case p < 1/2 with p close to 1/2. For
p > 1/2, a∗ = 1/2 and G > R (as in example (a) above). For p very small, we
are also in a situation analogous to the uniform distribution examined above
(with a∗ = 1/6). As p increases, R increases, and for p not too small and yet
below 1/2, G < R because the seller still finds it optimal to pick a relatively
small value of a (a∗ is close to 1/4 when p is close to 1/2). An alternative good
candidate for optimal a would be to choose a = 1/2, but given that 1−p > 1/2,
the seller finds it too risky to take a chance to miss the sale.
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Comparison with the split the difference mechanism.
Under the split the difference mechanism (see Chatterjee and Samuelson

(1983)), the buyer and seller simultaneously offer respectively prices p1 and p2.
In the event p2 − p1 ≥ 0, the transaction takes place at price p = (p1 + p2)/2,
otherwise it does not take place.
We assume that the seller chooses a1 and offers a price p1 = v1 + a1, while

the buyer chooses a2 and offers a price p2 = v2 − a2. The transaction takes
place in the event p2 − p1 ≥ 0, that is in the event x2 − x1 ≥ a1 + a2, so the
expected gain of the seller writes as:Z

y≥a1+a2

y + a1 − a2
2

φ(y)dy.

and similarly, the expected gain for the buyer can be writtenZ
y≥a1+a2

y + a2 − a1
2

φ(y)dy.

Let a∗ as defined earlier. We verify that a∗1 = a∗2 = a∗/2 is an equilibrium.
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Assume 1 chooses b1 = a∗/2 + δ. Then he obtains a payoff H(δ) equal to:

H(δ) =
1

2

Z
y≥a∗+δ

(y + δ)φ(y)dy =
1

2
(

Z
y≥a∗+δ

(y − a∗)φ(y)dy +G(a∗ + δ)).

Each of the terms on the right hand side is maximum for δ = 0. So a∗1 = a∗2 =
a∗/2 is an equilibrium.
In other words, that mechanism generates the same surplus as the two others.

Among these three mechanisms, and whether one considers the buyer’s
perspective or the seller’s perspective, splitting the difference cannot the
most preferred mechanism.

5 Auctions with asymmetries
Our objective here is to illustrate that our basic model delivers reasonable in-
sights in asymmetric contexts. We consider various forms of asymmetries. We
mostly restrict attention to the two bidder case, though similar analysis could
be performed with many bidders.

5.1 Asymmetries in valuations.

We consider a setting where bidder 1 has a value advantage over the other
bidder. We assume that

vi = α+ xi + γi

where the xi’s are drawn independently from a distribution on [x, x̄] (let f
denote the density), where α is drawn from a uniform distribution with large
support. We also assume that γ1 ≥ γ2 = 0. As before, possible strategies are
assumed to be of the form

bi = yi − ai.

We look for an equilibrium of the first price auction in pure strategies where
bidder i chooses ai. The function φ(y) is defined as before as the probability
that xi exceeds y+maxj 6=i xj . Player 1 wins when x1+ γ− a1 ≥ x2− a2, so we
have:

V1(a1, a2) = a1φ(a1 − a2 − γ)

and
V2(a1, a2) = a2(1− φ(a1 − a2 − γ)).

Denote by z the difference a1 − a2. We have:

Proposition: In equilibrium z = a1 − a2 ∈ (0, γ). Besides,
dz
dγ |γ=0=

2
3 , and da1/dγ = 1/3.

As one expects, the bidder with a value advantage shades his bid more than
his opponent.
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Proof: The two first order conditions can be written as

−a1φ0(z − γ) = φ(z − γ) (4)

−a2φ0(z − γ) = 1− φ(z − γ)

which implies:

z =
2φ(z − γ)− 1
−φ0(z − γ)

. (5)

Since φ(0) = 1/2 and φ0 < 0, we immediately obtain that z ∈ (0, γ) when γ > 0.
Besides, since φ(z) = 1/2−φ(−z), we have φ00(0) = 0 so, differentiating (5) and
(4) yields dz/dγ = 2/3. QED
We plot below equilibrium shading as a function of γ for each player in case

the xi are drawn from uniform distributions on [0, 1].
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When γ = 0, both bidders shade by 0.5. As γ increases, bidder 1 gets more

cautious as he fears losing against bidder 2 would have a good draw: at the
limit when γ becomes very large, he shades by an amount close to γ − 1 and
wins with probability close to 1. This cautiousness explains why the first price
auction generates more revenues to the seller when γ gets large, as the following
figure (which plots the difference in revenues between the second and first price
auctions) confirms:
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Since shading differs across bidders, inefficiencies result, though these must dis-
appear at the limit where γ is very large. The following figure plots the welfare
loss as a function of γ:
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Finally, we show below the extent to which bidders win or lose between first

and second price auctions (thick lines are for the first price auction):
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So the weaker player always prefers the first price auction, while the stronger

prefers the first price only if the asymmetry is not too large.

5.2 Asymmetries in information about rank.

We investigate a case where one player, say player 1, has information about
his rank (i.e., whether x1 > x2) while the other has no such information. Our
candidate equilibrium σ thus consists of a triplet σ = (ā, a, a∗∗) where (ā, a)
stands for the strategy of player 1 as a function of his information and a∗∗ the
strategy of player 2.
We show the following:

Proposition: In equilibrium, a < a∗∗ < ā < a∗, where a∗ is
the equilibrium value of shading when no information about rank is
available.

Intuitively, bidder 1 can exploit his information, which reduces bidder 2’s
chance to win the object. This induces bidder 2 to bid more aggressively, which
in equilibrium makes bidder 1 more aggressive whether he gets good or bad
news about ranking.
Proof : As in Section 2, we define:

φ̄(y) = Pr{xi > xj + y | xi > xj} and φ(y) = Pr{xi > xj + y | xi < xj}

Recall that φ̄(y) = 2φ(y) for y ≥ 0, φ̄(y) = 1 for y ≤ 0, and by symmetry
φ(y) = 1− φ(−y).
Our candidate equilibrium σ consists of a triplet σ = (ā, a, a∗∗). For bidder

1, the value from bidding a in the event x1 > x2 is

V 1(a, σ) = aφ̄(a− a∗∗)
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and the value from bidding a in the event x1 < x2 is

V 0(a, σ) = aφ(a− a∗∗).

Since φ̄(0) = 1 and φ(0) = 0, we must have ā ≥ a∗∗ and a < a∗∗. Defining
z1 = ā− a∗∗ and z2 = a∗∗ − a, the first order conditions for bidder 1 are:

ā =
φ(z1)

−φ0(z1)
and a =

1− 2φ(z2)
−2φ0(z2)

. (6)

Consider now bidder 2. We wish to show that bidder 2 must choose a∗∗ < ā.
The value from bidding a is:6

V 2(a, σ) = a(
1

2
φ̄(a− a) +

1

2
φ(a− ā)),

which gives the following first order condition:

a∗∗ =
1 + 2φ(z2)− 2φ(z1)
−2(φ0(z2) + φ0(z1))

. (7)

Assume by contradiction that z1 = 0, that is, a∗∗ = ā. Equation (7) becomes

a∗∗ =
φ(z2)

−(φ0(z2) + φ0(0))
<

φ(0)

−φ0(0)
= a∗.

But then from (6), we must have ā = φ(0)
−φ0(0) = a∗, contradiction. QED

5.3 Asymmetries in precision of information.

We investigate a case where one player, say player 1, would be perfectly informed
of his valuation, while the other would only have an imperfect estimate of his
valuation. So player 1 has an informational advantage over player 2, and we
wish to examine how this informational advantage affects the bidding strategy.
Formally, we assume as before that

vi = α+ xi,

where the xi’s are drawn from the same distribution, but we also assume that
player 1 observes v1 while player 2 only observes an imperfect estimate y2 of v2,
that is

y2 = v2 + ε2

where εi is assumed to be symmetric and centered around 0.
Player 1 chooses a bid b1 = v1− a1. Player 2 chooses a bid b2 = v2− a2. As

before, we define φε as

φε(y) = Pr{x1 − x2 ≥ ε2 + y}
6Note that in the event say {x2 < x1}, which has probability 1/2, player 2 knows that

player 1 has received that information and thus shades by a.
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and
H(y) = E[ε2 | x2 + ε2 > x1 + y].

Player 1’s expected gain from the strategy profile (a1, a2) is

V1(a1, a2) = a1φε(a1 − a2).

Player 2’s expected gain can be written as

V2(a1, a2) = (1− φε(a1 − a2))(a2 −H(a2 − a1)).

Let z = a2 − a1, we obtain the following first order conditions:

a2 −H(z) =
1− φε(−z)
−φ0ε(−z)

(1−H 0(z))

a1 =
φε(−z)
−φ0ε(−z)

.

Note that by symmetry, H 0(0) = 0 and φε(0) = 1/2, while H(0) > 0, so in
equilibrium, we must have z > 0. Compared to the case without noise, there are
two essential differences. First player 2 has to compensate for the fact that he
tends to win when he is optimistic, hence the term H(z). Then, players exploit
the dispersion of bids. Since this dispersion is higher with noise, the resulting
bids are shaded above the winner’s curse effect by an amount that may be even
greater than that which would obtain under no noise, as the following examples
illustrate.
Illustrations.
(1) xi is uniform on [0, 1], while ε is uniform on [−ε̄, ε̄]. TO BE ADDED.
(2) xi is uniform on [0, 1] and ε2 may take two values, ε̄ (with probability

1/2) or ε = −ε̄ and we assume that ε̄ > 1. Without noise, shading would be
equal to a∗ = 1

2 for both bidders. We show below that

a2 = ε̄+ 7/4 and a1 = 9/4.

So, bidder 2 shades his bid by an amount that not only compensate for the
winner’s curse, but goes well beyond the shading a∗ that would obtain under no
noise, shading which player 1 exploits. Competition is weak because it is only
probability 1/2 that player 1 faces a reasonably strong opponent (the optimistic
bidder 2).
To compute the equilibrium, observe first that for any z ≥ 0 bidder 2 will only

win in the event ε2 = ε̄, soH(z) = ε̄, H 0(z) = 0, and φε(y) =
1
2+

1
2φ(ε̄+a1−a2).

Let ba2 = a2 − ε̄, and bz = a1 − ba2. The first order conditions give:
a1 =

1 + φ(bz)
−φ0(bz) and ba2 = 1− φ(bz)

−φ0(bz) ,
from which we conclude that bz > 0. Since xi is uniform, φ(z) = (1− z)2/2 and
we obtain bz = −12 , hence a1 = 1+1/8

1/2 = 9/4, a2 = ε̄+ 7/4. QED
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6 Sequential Auctions
Our aim here is to show that our basic model can be used to deal with issues
that are in general difficult to handle in the standard model. We consider two
heterogenous objects I and II sold sequentially, and assume that there are n
bidders each having unitary demands. For object I, preferences are given as
before by:

vIi = αI + xi

For object II, preferences are given by

vIIi = αII + yi

where αII and yi are drawn independently of αI and xi, and where αI ,αII have
flat support.
This is in general a difficult problem because bidders information in two

dimensional: their preferences are described by a vector (vIi , v
II
i ).

We look for a symmetric equilibrium with bid functions of the form bIi =
vIi − aI and bIIi = vIIi − aII . We are interested in understanding equilibrium
bids, as well as which object the seller should sell first, (or whether he should
ask for simultaneous bids and maintain uncertainty as to which object he will
allocate first).
In what follows, we define as before φn(y) = Pr{xi ≥ maxj 6=i xj + y} and

ψn(y) = Pr{yi ≥ maxj 6=i yj + y}. It will also be convenient to let βn = −φ0n(0)
and γn = −ψ0n(0). The parameters βn and γn characterize the intensity of
competition in each auction.
When the second object is sold, there are n− 1 bidders left, hence following

the analysis of the basic model, bidders shade their bid by

aII =
1

(n− 1)γn−1
.

Consider now the first object. If say bidder i does not get the first object,
he still has a chance to get the second one (with probability 1/n− 1) and gain
V II
∗ = aII/(n− 1). In the first auction, the value of bidding a+ y when others
bid a is thus:

V (y, a) = (a+ y)(φn(y)) + (1− φn(y))V
II
∗

thus yielding

aI =
1

nβn
+ V II
∗

=
1

nβn
+

1

(n− 1)2γn−1
.

As expected, bidding in the first auction takes into account the option value of
losing the first object and possibly getting the second.

Revenue comparisons.
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For each bidder, the equilibrium expected payoff is:

GI,II =
1

n
aI + (1− 1

n
)
aII

n− 1 =
aI + aII

n

=
1

n2βn
+

1

(n− 1)2γn−1
.

This expression can be used to assess how bidders benefit or lose from changing
the order in which goods are sold.
To illustrate, assume that the xi and yi are drawn from uniform distributions,

so γn = γ and βn = β for all n, but that the xi are more dispersed, hence γ > β.
Under this assumption

GI,II =
1

n2β
+

1

(n− 1)2γ <
1

n2γ
+

1

(n− 1)2β = GII,I

so the bidders are worse off when the good with more dispersed valuation is sold
first.
For the seller, one also has to check the welfare changes induced by the

change in the order.
Define

∆I
n = Enmax

i
xi −En−1max

i
xi

as the welfare gain from one additional bidder in the first auction. Starting by
selling object I is better for welfare if and only if

∆I
n > ∆II

n .

In the case of the uniform distribution examined above, the more dispersed
distribution induces a higher welfare gain. So in that case,

∆I
n −∆II

n > 0 > GI,II −GII,I ;

there is thus no conflict between revenue and welfare maximization.
For general distributions however, there may exist a conflict between welfare

maximization and revenue maximization. We give an illustration below, driven
by the fact that the extent of competition among bidders has to do with how
local properties of the functions φ and ψ, while the welfare differences do not
depend on such local properties.

Example: To BE ADDED
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Appendix
A1. Noisy signal about rank.
For bidder 1, the value from bidding a in event θi = 0 is:

V 1(a, σ) = a[p2φ̄(a−a)+p(1−p)φ̄(a− ā)+p(1−p)φ(a− ā)+(1−p)2φ(a−a)],

and the value from bidding a in event θi = 0 is:

V 0(a, σ) = a[p2φ(a− ā)+p(1−p)φ(a−a)+(1−p)pφ̄(a−a)+(1−p)2φ̄(a− ā))].

Defining z = ā− a, the first order conditions become:

ā =
2p2φ(z) + p(1− p)

−[2p2φ0(z) + 2p(1− p)φ0(0)]
and

a =
p2(1− 2φ(z)) + 1− p

−[2p2φ0(z) + 2(1− p)pφ0(0)]

The equilibrium difference z∗ = ā− a thus solves:

z∗ =
4p2φ(z∗)− (p2 + (1− p)2)

−[2p2φ0(z∗) + 2(1− p)pφ0(0)]
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