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Abstract

We study the information �ows that arise within an organization with local knowl-
edge and payo¤ externalities. Our organization is modeled as a network game played
by agents with asymmetric information. Before making decisions, agents can invest
in pairwise communication. Both active communication (speaking) and passive com-
munication (listening) are costly. Our main result is a close-form characterization of
equilibrium communication intensities and decision functions for our class of network
games. This result can be used to describe the determinants of pairwise communication,
the overall in�uence of each agent, the ratio between active and passive communication,
and the discrepancy between actual and e¢ cient communication patterns. The analysis
is also extended to organizations that contain teams of agents who share the same ob-
jective. Throughout the paper, we apply our results to two examples of organizations:
a matrix-form �rm and a network of professionals.

1 Introduction

As Arrow (1974) argues in his pioneering work on the limits of organization, one of the
key activity of any organization �be it a �rm, or any other formal or informal group of
professionals �is internal communication.

Before making decisions, agents typically want to communicate with other agents. Think
of the web of interactions that is present within a �rm. When a division manager makes a
decision, he knows that the consequence of his actions will depend on what other divisions
will do. The manager may want to seek the views of other selected colleagues or let his views
be known to them before proceeding. Similarly, his colleagues may want to consult with
him or other colleagues before making their decisions. This generates a potentially complex

�We thank Jose Apesteguia, Wouter Dessein, Jan Eeckhout, Luis Garicano, Christian Hellwig, David
Myatt, Ignacio Palacios-Huerta, Alessandro Pavan, Karl Schlag, Juuso Välimäki, Fernando Vega-Redondo,
Yves Zenou and audiences at Northwestern University, at University of Chicago, at EUI (Florence), at
Universitat Pompeu Fabra, at the conference "Social Networks and Peer E¤ects: Theory and Applications"
in honor of Toni (Universitat Autònoma de Barcelona), at the European Summer Symposium in Economic
Theory (Gerzensee), and at Stockholm University for their suggestions.

yToni passed away in November 2007. His friendship, energy and talents are sorely missed. While the
ideas and the results contained in this paper are due to the three authors, only de Martí and Prat are
responsible for any remaining errors or omissions.

1



communication network within the organization. Similarly, groups of professionals �such
as researchers in the same discipline � have frequent more or less structured exchanges
of ideas, ranging from informal conversations or the transmission of written material to
presentations at conferences or seminars. Typically, one or more professionals inform their
colleagues about some of their current projects. These communication activities can take
up a considerable portion of the professionals�time.

Of course, communication is costly, in terms of physical resources but especially in terms
of time. Agents will have to be selective when they decide who they talk to and who they
listen to. As Arrow (1974) pointed out, the tradeo¤ between the cost of communication
and the bene�t of communication lies at the core of the agenda of organizations. We should
expect the communication pattern that we observe to be the result of some �more or less
coordinated �optimization process on the part of organization members.

At the same time, organizations are potentially complex structures, with a large number
of members interacting in heterogeneous ways with each other. It appears natural in this
setting to look at networks (Goyal 2007, Jackson 2008) as a tool to model information
�ows in a large class of organizational architectures. Here, we think of organizations as
networks of agents with asymmetric information who can communicate with each other
before making decisions. To the best of our knowledge, this is the �rst work that considers
costly endogenous communication in network games with asymmetric information.

The model can be sketched as follows. There are a number of agents who face local
uncertainty (for simplicity, local states are assumed to be mutually independent). Each
agent observes the realization of his local state and must take an action. The payo¤ of
each agent depends on his local state, his own action, and the action of other agents. The
intensity of payo¤ interactions among agents is described by a directed graph. While our
setup encompasses both negative and positive interactions, in most of the paper we restrict
attention to positive complementarities only.

Before choosing his action, an agent can engage in communication. He can inform other
agents about his own state of the world and he can gather information about other agents�
state of the world.1 Formally, the agent selects a vector of active communication intensities
and a vector of passive communication intensities. The precision of the communication of
one agent to another is then determined by how much the sender invests in active commu-
nication (talking) and how much the receiver invests in passive communication (listening).
Both types of communication are costly, and the cost is an increasing and convex function
of communication intensity.

At this point, we face two alternative modeling choices. Agents may choose communica-
tion intensities before or after they learn about their own state of the world. This depends
on whether we think of communication investment as long-term or short-term.

The example of a short-term investment could be a visit. A �rm invites representatives
from another �rm to visit their plants, as a chance for the visitors to learn more about the
host �rm. The active communication cost is sustained by the host �rm (hospitality, time
devoted to visitors, etc...), while the passive communication cost is sustained by the visitors
(travel costs, time spent on visit, etc...). As a visit can be planned in a matter of weeks, it

1 In our set-up, which allows for one round of communication only, there is no loss of generality in assuming
that communication only relates to the observed state of the world. Things would be di¤erent if we allowed
for more than one round.
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is conceivable that the decision to organize a visit is taken after the two parties learn their
respective states of the world (demand, production costs, etc...).

Instead the example of a longer term communication investment could be the appoint-
ment of a liaison o¢ cer. A �rm invites another �rm to second one of their employees to the
�rst �rm. The liaison o¢ cer would then be in a good position to report information about
the host �rm as it arises. Here, again, the host sustains an active communication cost while
the liaison o¢ cer�s �rm sustains a passive communication cost. A secondment of this kind
appears to require a longer time horizon and it is likely that both �rms will receive new
information after the investment is made.

The present paper considers both alternatives. Namely, it examines the case where
agents select their vectors of communication intensities before they observe their private
information and the case where they select them afterwards.2

Besides choosing a vector of active and passive communication intensities, each agent
determines his action as a function of the signal he has received from other agents. Hence,
an equilibrium of our game can be described as a directed graph of active and passive
communication intensities together with a directed graph of �decision in�uences�.

To provide a tractable framework we restrict attention to the standard normal-quadratic
setting developed in team theory (Marschak and Radner 1972). Private information is
normally distributed and payo¤s are a quadratic function of all arguments. Communication
cost is linear in the precision of the message.

We �rst obtain an equivalence result, that greatly simpli�es our analysis. We consider
a one-shot game where agents choose their communication intensity vectors and their deci-
sion functions simultaneously (without knowing their private information). Moreover, the
decision functions are restricted to be linear. We show that the unique Nash equilibrium of
this linear one-shot game corresponds to a perfect Bayesian equilibrium of the game where
agents choose communication intensities before learning their private information as well
as to an identical perfect Bayesian equilibrium of the game where agents choose commu-
nication intensities after learning their private information. The equivalence between the
static and the dynamic version of the game hinges on the normal-quadratic structure of the
network game under consideration. In general, we would expect signalling to occur because
communication intensities should depend on the local state observed and the realization of
the messages transmitted in the second period should provide information on what other
players chose in the �rst period. But we show that this e¤ect does not arise in the class of
network games that we consider.

Armed with the equivalence result, we arrive at a characterization of the unique pure-
strategy equilibrium, which constitutes the main result of the paper. The characterization
takes a simple form. The problem can be split into n separate problems, where n is the
number of agents. For each agent, we express the in�uence of that agent (how the decisions
of all agents depend on signals received from that agent) as the product of the inverse of
the interaction matrix and a vector which can be interpreted as a measure of the relative
bene�t of communication. The interaction matrix is the same for all agents: only the vector
changes. The decision matrix that arises in equilibrium can be interpreted as the limit of a

2However, we abstract from the possibility of information manipulation. In both the example of the visit
and the example of the liaison o¢ cer, the host �rm might have ways to manipulate the information that the
other �rm gathers. [*add references to other papers, which use the same assumption]
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sequence of matrices corresponding to increasingly high levels of interaction.
This tractable characterization leads to a number of comparative statics results about

communication patterns in organizations:

1. Overall communication intensity within an organization is increasing in the interaction
coe¢ cients and on the amount of uncertainty that agents face, and it is decreasing
in the cost of active and passive communication. The information �ow between two
particular agents is increasing in the payo¤ externality between the two agents.

2. We can de�ne the global in�uence of an agent as the aggregate e¤ect that his private
information has on all other agents. We prove that global in�uence can be expressed
in terms of Bonacich centrality (a measure of the centrality of a node developed by
Bonacich 1987, and introduced to economics by Ballester et al 2006). We show that
if an agent�s becomes more important in terms of interactions, he becomes relatively
more in�uential if and only if the cost of passive communication is su¢ ciently low
relative to the cost of active communication. Unless listening is very expensive, agents
who are central to the network invest less in listening to other people than other people
invest in listening to them. The global in�uence of an agent is also increasing in the
amount of uncertainty that the agent faces.

3. As in Dessein and Santos (2006), our agents face a tradeo¤between adaptation (adapt-
ing their decision to the local state) and coordination (�tting in with the decisions
of other agents). We show that the relation between the relative need for adapta-
tion/coordination and communication intensity is U-shaped. This non-monotonicity
is due to the fact that in our model it takes two to communicate. Hence, communica-
tion to and from an agent tends to zero when the agent cares only about coordination
(no one is interested in speaking or listening to him) or only about adaptation (he is
not interested in speaking to or listening to other people).

4. In general, with positive complementarities, all communication intensities are ine¢ -
ciently low. More interestingly, if there are more than two agents, active communica-
tion is ine¢ ciently low compared to passive communication. Our agents have a direct
incentive to gather information because they can use it to make decisions while only
an indirect incentive to send information to others in the hope that it will a¤ect their
decisions.

5. Our set-up can be extended to encompass teams of agents. Namely, we can assume
that some subsets of agents share common goals (members of the same division or
�rm). We provide a full characterization of the equilibrium communication and deci-
sion networks. Agents in the same team communicate with each other and a¤ect each
other�s decisions more than comparable agents in di¤erent teams.

Throughout the analysis, we use two leading economic examples. The �rst is a matrix-
form organization, where agents are interpreted as units in a two-dimensional space (e.g.
functional areas and country o¢ ces). We ask whether communication is stronger on one
dimension or another and whether it is a better idea to group units into teams along one
dimension or along the other.
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The second example is a network of independent and similar professionals (or profes-
sional �rms) who bene�t from coordinating with each other. This second example uses a
relative homogenous interaction matrix in order to explore the role of individual character-
istics in determining information �ows.

In the conclusion, we discuss the potential empirical value of our model. We argue that
information about data about communication patterns in a network is in principle su¢ cient
to identify the underlying interaction matrix.

The present paper aims to combine two strands of literature: network economics and
organization economics. Our contribution with respect to the �rst is to allow for endogenous
strategic communication among asymmetrically informed agents. Our contribution with
respect to the second is to provide a �exible framework that can be used to analyze a large
class of organizational forms.

The closest contributions in the network literature are Calvó-Armengol and de Martí
(2008), which consider a normal-quadratic team-theoretical set-up and study the e¤ect of
communication among agents. The authors provide a full characterization of the decision
functions and the equilibrium payo¤s given a communication structure. Calvó-Armengol
and de Martí also study the best communication structure is when the overall number of
links among agents is bounded: they provide su¢ cient conditions for the optimal commu-
nication network to be a star or the maximum aggregate span network.

Morris and Shin (2007) also consider a normal-quadratic setup. In their model, with a
continuum of agents, they allow for partial communication among predetermined groups.
They analyze the welfare e¤ects of public and semi-public information (derived from partial
communication), complementing their previous analysis on the value of public information
(Morris and Shin, 2002).

This paper also adopts a normal-quadratic speci�cation, close to the one in Calvó-
Armengol and de Martí. The key innovation here is of course that communication is en-
dogenous. We also move away from a team-theoretical framework (now a special case, when
all agents belong to the same team), we introduce the idea of communication intensity and
we distinguish between active and passive communication.

Hagenbach and Koessler (2008) also consider, as we do, strategic endogenous communi-
cation in a network game with a normal-quadratic structure. Their focus is on costless, non
veri�able information (cheap talk) when agents may have biases as in Crawford and Sobel
(1982). They show that full information may not arise in equilibrium and they analyze
various communication protocols. Our set-up is di¤erent in that we focus on costly and
veri�able information. The kind of issues we ask is thus entirely di¤erent (and complemen-
tary).3

With regards to the literature on the formation of (communication) networks, Bloch and
Dutta (2007) study the creation of communication networks with endogenous link strength.
In their model, agents have a �xed resource, for example time, and have to decide how
to allocate it to create connections with others. The bene�ts of a connection depends on
the exposure decisions of both agents involved in it. Furthermore, in the spirit of the
connections model introduced in Jackson and Wolinsky (1996), an agent obtains bene�ts
of indirect connections through the more reliable path connecting them with each one of

3The only point of overlap is their result that, when information is fully veri�able, agents will want to
communicate all they know. This corresponds to our set-up when communication costs go to zero.
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the agents in the society. In this setup, both the equilibrium and the e¢ cient networks are
star-shaped, i.e., with one agent connected to all the rest of the population and all the rest
connected only to this center.

Rogers (2007) analyzes another network formation game in which all agents have a
limited resource available to spend building links with the rest of agents, but di¤ers with
the work of Bloch and Dutta in the structure of bene�ts. In Rogers (2007) the utility of
an agent depends on the utility of each other agent with which he is directly connected.
This recursive de�nition of utilities generates indirect e¤ects that spread through indirect
connections of any length. The author analyzes two games, one in which the dependency
expresses that each agent gives utility to his connections, and another one in which the
dependency expresses that each agent receives utility from his connections. In both cases,
the Nash equilibria are characterized.

Our paper is also linked with the growing literature on games played in a network, in
which players� payo¤s are intimately related to the geometry of relations among them.4

Ballester et al. (2006) analyze a class of complete information games with quadratic payo¤s
and pairwise dependent strategic complementarities. They show that in the equilibrium of
these games the e¤ort exerted by each agent strongly depends on his position of the network
of relations. In particular, this e¤ort is proportional to his Katz-Bonacich centrality mea-
sure (Bonacich, 1987), that measures his prominence derived from the direct and indirect
connections in which he is involved. While our setup di¤ers in a number of ways with theirs
one, we also establish a close connection of individual decisions with the Katz-Bonacich
centrality measure.

Chwe (2000) studies a collective action problem with communication. In particular,
agents are connected in a network and they communicate to their neighbours their willing-
ness to participate in an activity. The analysis provides a neat picture of how the network
shapes individual decisions and helps or precludes coordination. Our work also analyzes
a coordination game with incomplete information and communication, but in our case the
sources of incomplete information and the speci�cation of the coordination game are di¤er-
ent and communication is endogenous.

Goyal and Galeotti (2008) is among the few works that analyze, as we do, at the same
time the network formation process and the play of a game that depends on the network
formed. The authors study a game in which payo¤s depend on the, costly, information
they acquire and gather from their neighbours in a network of relations. The analysis
of this game in a �xed network is performed in Bramoullé and Kranton (2008), in which
a set of varied possible equilibria are presented. The novelty in Goyal and Galeotti is
that they allow agents to choose their connections. They show that the introduction of
endogenous network structures induce a simpler core-periphery structure in the equilibrium
formed. In particular, equilibrium networks show a core-periphery pattern in which a set
of few individuals are highly connected with a high number of poorly connected agents.
While their setup is di¤erent from ours, we share Goyal and Galeotti�s goal of studying
endogenous network formation.

4We analyze an incomplete information game played in a network. However, as usual in the literature,
we assume full knowledge by all players on the realized network structure. For some facts about network
games with incomplete information on the network structure we refer the interested reader to Galeotti et al.
(2007).
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In the second strand of literature, there are a number of papers which study endogenous
communication in a variety of settings. Our approach to multi-person decision making
under asymmetric information, as well as our normal-quadratic formulation, is inspired
by Marschak and Radner�s (1972) team theory. Some recent papers (Dessein and Santos
2006, Alonso et al. 2007, Rantakari 2007, Dessein et al 2006) explore decentralized decision
making within organizations. Besides sharing their normal-quadratic set-up, we are also
interested in the tradeo¤ between adaptation and coordination. We are closest to Dessein
and Santos (2006), who analyze the role of endogenous communication. In their model, an
agent can send a signal about his local state to the other agent, and the precision of the
signal is endogenous.5 They show the existence of complementarity between communication,
adaptation, and job description: in particular, when communication costs decrease, the
organization is more likely to adopt a new set of organizational practices that include broader
tasks and more adaptation. The present paper is complementary to this literature: while
it abstracts from a number of organizational dimensions, it provides a general framework
to study endogenous information �ows, which allows to draw a number of lessons on what
communication networks we should expect to observe in a variety of complex organizational
architectures.

The present work is close to Dewatripont and Tirole (2005), who analyze a model
of endogenous costly communication between a sender and a receiver. As in our model,
both active and passive communication are endogenous and costly, and there are positive
externalities (it takes two to communicate). Dewatripont and Tirole�s communication model
has a number of features that are absent here, such as the presence of signaling and the
possibility of sending �cues�� information about the sender�s credibility. Obviously, our
contribution is to extend endogenous communication to complex architectures. While our
representation of pairwise communication is simpler, we believe it still captures Dewatripont
and Tirole�s insight about moral hazard in communication. For instance, their comparative
statics results on congruence �nd a partial parallel in our Proposition 11.

Our work is also related to Van Zandt (2004), a model of endogenous costly communica-
tion where several agents can transmit information at the same time. This leads to screen-
ing costs on the part of receivers and the potential for �information overload�. Van Zandt
examines possible mechanisms for reducing overload �an important problem in modern or-
ganizations. Our paper abstracts from information overload, by assuming that receivers do
not face a screening problem (they can always choose not to listen to a particular sender).

Following the seminal work of Radner (1993), the literature of organizational economics
has also studied the role of networks in minimizing human limitations in information process-
ing. The works of Bolton and Dewatripont (1994), Van Zandt (1999a), Garicano (2000),
Guimerà et al. (2003), and Dodds et al. (2003) highlight the importance of hierarchies,
and more general network structures, to diminish the costs related to processing informa-
tion that zows through the network of contacts. This literature is surveyed by Van Zandt
(1999b) and Ioannides (2003). Our work is complementary to this one, and analyzes how
individual payo¤ complementarities shape both the network structure of communication
and the equilibrium actions.

5One technical di¤erence is that Dessein and Santos�(2006) signals are either fully informative or unin-
formative, and precision is de�ned as the probability that the signal is informative. Here, instead, signals
are normally distributed and the precision is the reciprocal of the variance.
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Cremer, Garicano, and Prat (2007) formalize Arrow�s (1974) idea of coding: the medium
of communication used by a group of people (the organizational language) is endogenous
and it determines communication costs. For analytical tractability, in the present model the
communication medium is not modeled explicitly but it is represented by a communication
cost function.6

Related work can also be found in political economy. Dewan and Myatt (2007) analyze
the role of communication in the interplay of leaders and activists in political parties. Lead-
ers are heterogeneous in two di¤erent skills: their ability to interpret which is the correct
policy to promote, and the clarity of communication of his ideas to the activists. Activists
seek to advocate for the correct policy by listening with di¤erent intensities to the party
leaders. The authors show that, generally, clarity in communication is the leader�s ability
that induces higher in�uence on activists�opinion. Their interpretation of communication is
close to the one we propose in our work: in a bayesian game with quadratic payo¤ functions
and normally distributed signals, that represent the messages send and received, agents can
a¤ect the precision of these signals. On the other hand, the communication protocols and,
therefore, the strategic e¤ects of communication are di¤erent in the two models, as well as
the questions that are analyzed.

The rest of the paper is organized as follows. The next section introduces the model.
Section 3 discusses the equilibrium equivalence between our two original games and the
linear one-shot game. Section 4 presents the equilibrium characterizatiomn theorem while
section 5 uses it to study: determinants of overall communication intensity, determinants
of relative communication intensities, global in�uence of agents, active vs passive commu-
nication, comparison with e¢ cient communication patterns. Section 6 extends the model
to teams of agents. The two leading examples are introduced with the model in section 2
and re-visited at various points in sections 4, 5, and 6. Section 7 concludes with a brief
discussion of the scope for bringing this approach to the data. All proofs are in appendix.

2 Model

Consider a set of n agents. Agent i faces a local state of the world

�i � N (0; si) ;

where si denotes the precision of �i. The local states of di¤erent agents are mutually
independent. Agent i observes only �i.

All agents engage in, pairwise, communication activity.7 Agent i receives message yij
from agent j, such that

yij = �j + "ij + �ij ;

6Cremer (1993) and Prat (2002) study costly endogenous information collection in a team-theoretic
setting. Hellwig and Veldkamp (2008) examine optimal information choices in a strategic setting. The
present paper is complementary in that it endogenizes communication rather than information collection.

7We assume that there exist channels to engage in communication among any two members inside the
organization, and hence that all these channels are potentially used. While we believe this makes sense in
a setup to analyze organizations, it is an strict assumption when dealing with other social arrangements,
such as friendship networks. In Appendix E we show that in this last case linearity of equilibrium would be
preserved and hence a similar analysis could be performed.
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where "ij and �ij are two normally distributed noise terms

"ij � N (0; rij) ; (active)

�ij � N (0; pij) ; (passive)

and rij (resp. pij) is the precision of "ij (resp. �ij). We interpret "ij as the noise associated
with passive communication (listening to a presentation, reading a report, visiting a plant,
appointing a liaison o¢ cer) and �ij as the noise associated with active communication
(preparing a presentation, writing a report, hosting a visit, hosting a liaison o¢ cer).

Agent i chooses how much to invest in speaking with and listening to other players.
Namely, he selects:

� The precision of the active communication part of all the signals he sends: (rji)j 6=i,
for which he incurs cost k2r

P
j 6=i rji, where kr is a parameter.

� The precision of the passive communication part of all the signals he receives, (pij)j 6=i,
for which he incurs cost k2p

P
j 6=i pij , where kp is a parameter.

We also assume that each precision term is bounded below by a very small number m:
rji � m, pij � m. This avoids dominated equilibria where i does not speak to j because he
does not expect j to listen and viceversa.8

After observing the local state �i and the vector of signals (yij)j 6=i, agent i chooses an
action ai 2 (�1;1).

This setup contains two implicit assumptions. First, agents do not observe the commu-
nication intensities chosen by other agents directly (i.e. the agent does not see how much
e¤ort the others put into writing their reports or into reading his reports; the opportunity
cost of sending/hosting a particular liaison o¢ cer is unobservable). Second, when engaging
in active communication, the agents cannot manipulate the signal they send (the report
may be more or less clear but it cannot contain lies; the liaison o¢ cer cannot be bribed).
While costly signaling and strategic misrepresentation are important aspects of organiza-
tional economics, the present paper must restrict attention to direct and non-manipulable
information �ows in order to keep the analysis tractable.

The payo¤ of agent i is quadratic:

ui = �

0@dii (ai � �i)2 +X
j 6=i

dij (ai � aj)2 + k2r
X
j 6=i

rji + k
2
p

X
j 6=i

pij

1A ; (1)

where the term dii measures the importance of tailoring i�s action to the local state and
the term dij represents the interaction between the action taken by agent i and the action
take by agent j. For the rest of the paper we assume that the interaction terms are positive
(dij � 0 for all i and all j). However, all of our results are valid, as stated, if some �or even

8A natural question is whether in this model speaking and listening are strategic complements. The
answer to this question is not straightforward at this stage and we postpone it to the discussion that follows
the main result: 6 on page 16).
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all �of the interaction terms are negative, as long as the dii�s are positive and su¢ ciently
large.9

We consider two versions of this two-stage game. In the �rst version, agents invest in
communication before observing their local state. Namely, the timeline is:

1. Agents simultaneously select their active and passive communication intensity vectors
(rji)j 6=i and (pij)j 6=i.

2. Agents observe their local state of the world �i.

3. Agents receive signals from other agents (yij)j 6=i.

4. Agents select their actions ai.

We refer to the �rst version of the game as � (D;k; s), where D = (dij)i;j , k = (kr; kp)
and s = (si)i.

In the second version, called �� (D;k; s), agents invest in communication after observ-
ing their local state. The timeline is as above, except that stages 1 and 2 are swapped.
As mentioned in the introduction, the �before�version captures long-term investments in
communication (such as seconding a liaison o¢ cer), while the �after�version is more ap-
propriate to short-term investments (such as making a presentation).

2.1 Examples

This set-up can be applied to a number of situations. We introduce here two examples, which
we will use throughout the rest of the paper to illustrate our results. Besides establishing
a more concrete connection with organization economics, the examples are also useful to
explore separately two di¤erent aspects of the model. The �rst example assumes that all
agents are identical and focuses on the role of the interaction matrix. The second example
does the opposite: it assumes a homogenous interaction matrix in order to focus on the role
of agent heterogeneity.

2.1.1 A Matrix-Form Firm

Beginning with Chandler�s (1962) analysis of some early examples of modern corporations,
management scholars have been studying decentralized organizational structures in which a
�rm is divided into several divisions. One of the more studied structures is matrix manage-
ment, where the units of an organization are arranged along two (or more) dimensions. Each
division can have associated di¤erent attributes, such as its function inside the organization
(marketing, product design, manufacturing,...) or the country in which it is established (see
Galbraith, 1977, for an early de�nition of the Matrix-form organization, and the organiza-
tional challenges associated to it). We are going to model such kind of organization and
try to extract a number of conclusions about communicational aspects of this particular
structure of production. Examples of companies that have attributed part of their success

9 In our notation, whenever a variable has two agent indices, such as yij or dij , the �rst index denotes
the agent that is �directly a¤ected�, such as the receiver of a signal or the owner of the payo¤.
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to the Matrix form include ABB or 3M, among others (see, for example, Chi and Nystrom,
1998, for a general analysis of the Matrix form from a managerial perspective).

We interpret here agents as units of a multinational �rm. Suppose that every i is
associated to two attributes: function fi and country ci. There are nf functions and nc
countries, so there are a total of nfnc units.

We assume that

dij =

8>><>>:
G if fi = fj and ci = cj
F if fi = fj and ci 6= cj
C if fi 6= fj and ci = cj
L otherwise

Moreover, L < F < G and L < C < G: the interaction between units in the same country
or in the same function is greater than the interaction between units who are in di¤erent
countries and in di¤erent functions (but not as large as the adaptation term). For now,
we do not make assumptions on the relative importance of national links as opposed to
functional links.

To focus attention on the role of the interaction matrix, we assume that all units face
that same level of uncertainty (si = s for all i).

The �gure below depicts a matrix-form �rm with three functions and �ve countries.
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2.1.2 A Network of Professionals

A number of important areas of economic activity � like medicine, law, and scienti�c re-
search �tend to be structured as loose networks of professionals (Garicano and Santos 2004).
These networks present two key featuures. First, each individual professional typically en-
joy a high level of independence, especially when it comes to exercising his professional
judgment, which is often enshrined in a charter. Second, despite their autonomy (or per-
haps because of it), the professionals create active communication networks, which tend to
be organized among common interests. Information �ows take forms that are familiar to
academic economists: emails, conversations, documents, presentations, etc. Our set-up can
be specilized to illustrate such a loose communication network among peers.

Agents are now n professionals (doctors, lawyers, academics, etc.) who face di¤erent
private information (patients, cases, problems) and want to maintain a certain degree of
coordination with their colleagues. In contrast to the previous example, we assume that the
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relative importance of interaction among professionals is the same, but that professionals
di¤er in terms of information and payo¤ importance.

Namely, we assume:

dij =

�
Wi if i = j
�Wi if i 6= j ;

where � 2 (0; 1) measures the relative importance of coordination and Wi represents the
�size� of agent i. The other important parameter will be the variance of professional i�s
local state, si.

The �gure below depicts a network of three professionals.

w
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w
W3; s3

wW1; s1
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3 Equilibrium Equivalence

In both versions of the game, � (D;k; s) and �� (D;k; s), the relevant solution concept
is perfect Bayesian equilibrium. Games with quadratic payo¤s have equilibria in linear
strategies. In our case, we say that agent i uses a linear decision function if the action ai
that he selects can always be written as a linear function of his information:

ai = bii�i +
X
j 6=i

bijyij

Note that, while the b-terms are obviously not allowed to depend on the agent�s information,
they may be a (nonlinear) function of the communication intensities that agent i chooses
in the �rst stage of the game. We de�ne a linear perfect Bayesian equilibrium of � (D;k; s)
as a PBE where all agents use linear decision functions.

Remark 1 In what follows, we are only going to consider interior equilibria of the two-
stage games � (D;k; s) and �� (D;k; s). It is possible that, for some range of parameters
of the primitives of our model, corner equilibria in which one or more agents choose the
minimum possible precision � in either active or passive communication with someone else
exist. However, under mild restrictions on the primitives of our model,10 there exists an
interior equilibrium (that we are going to characterize in few lines). In that case, corner
equilibria are prevented. In any case, several of our comparative statics results would con-
tinue to hold when analyzing the behavior associated to a particular corner equilibria. The
main di¤erence would be on the fact that slight perturbations of a parameter may not alter

10For example, if all dijs are strictly positive, for any values of kr and kp there exists � > 0 small enough
such that existence of corner equilibria in both � (D;k; s) and �� (D;k; s) is prevented.
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at all the communication decisions of some agents. That would result in non-strict local
monotonicities.

We can show:

Theorem 2 The set of linear perfect Bayesian equilibria of the games � (D;k; s) and
�� (D;k; s) is the same and it is described by the following set of conditions:

Dibii = dii +
X
j 6=i

dijbji for all i (2)

Dibij =
rijpij

sjrij + sjpij + rijpij

X
k 6=i

dikbkj for all i; j 6= i (3)

p
djibij

kr
= rij for all i; j 6= i (4)

p
Dibij
kp

= pij for all i; j 6= i (5)

To prove this result, it is useful to de�ne two ancillary games. Starting from the dynamic
game � (D;k; s) introduced in the previous section, de�ne the following linear one-shot game
~� (D;k; s). The set of players and the payo¤s are the same as in � (D;k; s), but each agent
i simultaneously selects:

� A vector bi� = (bi1; :::; bin), where all the bij are real numbers;

� Two vectors of communication variances: (pij)j 6=i and (rji)j 6=i.

The signals are as before. Agent i�s action is determined as a linear function of the state
and the signals:

ai = bii�i +
X
j 6=i

bijyij

There are two di¤erences between � and ~�: �rst, the former was a two-stage game
with asymmetric information (the precisions chosen in the �rst stage are private informa-
tion) while ~� (D;k; s) is a one-shot game with symmetric information; second, the decision
functions in ~� (D;k; s) are restricted to be linear in the signals.

The proof of Theorem 2 in a set of three di¤erent lemmas.11 We begin by showing that
�thanks to the normal-quadratic assumption �the two versions of the one-shot game are
equilibrium-equivalent:

Lemma 3 Interior equilibria in ~� (D;k; s) and ~�� (D;k; s) are characterized by the same
system of �rst-order conditions, corresponding to (2) through (5).

The second intermediate result �nds a correspondence between linear equilibria of the
one-shot game ~� (D;k; s) and Perfect Bayesian equilibria of the two-stage game � (D;k; s):

11Proofs of all results can be found in the Appendix.
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Lemma 4 If
�
b̂; r̂; p̂

�
is an interior equilibrium pro�le of ~� (D;k; s), then it is a linear

perfect Bayesian equilibrium pro�le of � (D;k; s).
The game � (D;k; s) has no other linear perfect Bayesian equilibrium.

Finally, the third lemma provides the same correspondence between the one-shot game
and the two-stage game for the case in which local information is know before decisions are
taken:

Lemma 5 If
�
b̂; r̂; p̂

�
is an interior equilibrium pro�le of ~�� (D;k; s), then it is a perfect

Bayesian equilibrium pro�le of �� (D;k; s).
The game �� (D;k; s) has no other linear perfect Bayesian equilibrium.

In the next section, we will show by construction that the one-shot game ~� (D;k; s)
has a unique equilibrium and that such equilibrium is in pure strategies. Combined with
Theorem 2, this will ensure that we can always �nd a linear pure-strategy equilibrium of
game � (D;k; s).

One may wonder about the importance of the restriction to linear equilibria. Do
� (D;k; s) and �� (D;k; s) have equilibria where agents use strategies that are not lin-
ear in their signals? A similar question has arisen in other games with quadratic payo¤
functions, such as Morris and Shin (2002), Angeletos and Pavan (2007,2008), Dewan and
Myatt (2008), and Calvó-Armengol and de Martí (2008).12

For our game we can prove the following uniqueness result. Consider � (D;k; s) but
assume that local states and actions are bounded above and below. Namely assume that
ai 2 [��a; �a] and �i is distributed as a truncated normal distribution on [�k�a; k�a], where
k < 1. Call this new game ��a (D;k; s). We can show that, as the bound �a goes to in�nity,
the set of equilibria of the game ��a (D;k; s) contains (at most) one equilibrium and that
this equilibrium corresponds to the linear equilibrium that we study here. The proof is
available in the Appendix.

4 Equilibrium Communication Network

Given the equivalence result in Theorem 2, from now on we focus on the symmetric-
information static game ~� (D;k; s). Unfortunately, Theorem 2 is not directly useful be-
cause it involves solving a system of (3n� 2)n equations, some of which are non-linear in
the unknowns. As we shall see shortly, we can o¤er a more useful characterization.

12Uniqueness in the team-theoretic setting is proven in Marschak-Radner (1972, Theorem 5).
Calvó-Armengol and de Martí (2008) show that Marschak-Rdaner�s line of proof extends to a strategic

setting if the game admits a potential. Unfortunately, this does not apply to the game at hand (� (D;k; s)
has a potential only in the special case where dij = dji for all pairs ij).
Angeletos and Pavan (2008) prove uniqueness by showing that in their economy the set of equilibria

corresponds to the set of e¢ cient allocations. A similar argument is used by Hellwig and Veldkamp (2008).
Dewan and Myatt (2008) prove uniqueness by restricting attention to strategies with non-explosive higher-

order expectations.
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We add two �nal pieces of notation. Let !ij =
dij
Di
, and let 
 be the matrix with zeros

in the diagonal and out-diagonal entries !ij . Let

hij =

8<: !jj if i = j

�sj
�

kpp
Di
+ krp

dji

�
otherwise

Then we can show:

Theorem 6 For any (D; s), if kr and kp are su¢ ciently low, the game ~� (D;k; s) has a
unique pure-strategy equilibrium:

(i) Decisions are given by

b�j = (I �
)�1 � h�j for all j;

(ii) Active communication is

rij =

p
djibij

kr
for all i 6= j;

(iii) Passive communication is

pij =

p
Dibij
kp

for all i 6= j

The theorem o¤ers a simple equilibrium characterization. Conditions (ii) and (iii) cor-
respond to (4) and (5) and express each communication intensity as a linear function of just
one decision coe¢ cient.

Condition (i) is based on a characterization of b that is particularly tractable because:
(a) It does not depend on communication intensities (it only depends on primitives); (b) It
can be split into n systems of equations, one for each agent; (c) It is linear; (d) It uses a
coe¢ cient matrix that is the same for all n agents.

Each subsystem in condition (i) determines all the coe¢ cients (bij)i=1;:::n that relate to
decisions taken by the n agents with respect to information originating from a certain agent
j: namely, the signal yij if i 6= j and the local state �j if i = j.

The matrix (I �
)�1 can be understood as the result of adding an in�nite sequence of
e¤ects corresponding to increasing orders of interaction:

b�j = (I �
)�1 � h�j =
�
I +
+
2 + :::

�
h�j

The �rst round, b1�j = I �h�j indicates the decision coe¢ cients that the players would choose
if they thought that the other players�decision coe¢ cients were all zero. The second round
b2�j = (I +
) � h�j yields the decision coe¢ cients that the players would select if each of
them thought that the other players chose decision coe¢ cients as in b1�j . The iteration
continues to in�nity. As all the elements of 
 are smaller than 1, the interaction e¤ects
become smaller and smaller, and the series converges.

The matrix (I �
)�1 is the same for all subsystems because the propagation of inter-
action e¤ects across agents goes through the same payo¤ matrix: a change in any part of
j�s decision function a¤ects i through coe¢ cient dij .
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A remark about equilibrium strategies is in order. Equilibrium actions a�i = bii�i +P
j 6=i bijyij are not, in general, weighted averages of the information agents possess. Indeed,

it can be shown that
Pn
j=1 bij � 1 with the inequality being strict unless communication is

costless. More precisely:

Corollary 7 (Reaction to Communication) Linear equilibrium actions a�i = bii�i +P
bijyij satisfy that

P
j bij � 1, with equality only in the case that kr = kp = 0. Moreover,P

j bij is decreasing in kr and kp.

The reason is simple. Agents use both prior and posterior information, the latter ob-
tained from communication, to determine optimal, equilibrium, actions. When communi-
cation is cheap agents lean over posterior information, while when communication is very
expensive and, thus, imprecise, they are more inclined to use prior information, meaning
that they are biased towards the mean of prior distributions for local information. This
mean in all cases is equal to 0. Agents react more to the information that communica-
tion reveals when it is cheap and precise. Otherwise they choose actions closer to 0, that
are focal actions to resolve the coordination problem. The �nal weights depend both on
communication costs and the magnitude of coordination motives.

One may wonder whether active communication and passive communication are strategic
substitutes or complements. This question can be answered formally by examining the
expected payo¤ function (??). Holding the decision coe¢ cients b constant, the payo¤
function is additive in rij and pij : there are no direct strategic complementarities between
active and passive precision. However, if the decision coe¢ cients are taken as endogenous,
rij and pij can be seen as complements �a fact that is evident from (ii) and (iii) in theorem
6.

4.1 Examples

To illustrate the use of Theorem 6, we apply it to the two examples introduced early.

4.1.1 Matrix-Form Firm (continued)

In the case of the matrix-form �rm, we have:

Proposition 8 In the matrix-form organization example:
(i) The decision coe¢ cients and the communication intensities can be written as follows:

bij =

8>><>>:
bG if fi = fj and ci = cj
bF if fi = fj and ci 6= cj
bC if fi 6= fj and ci = cj
bL if fi 6= fj and ci 6= cj

and

(rij ; pij) =

8<:
(rF ; pF ) if fi = fj and ci 6= cj
(rC ; pC) if fi 6= fj and ci = cj
(rL; pL) if fi 6= fj and ci 6= cj
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(ii) The decision coe¢ cients are given by

bG = HGhG + (nF � 1)HFhF + (nC � 1)HChC +�
bF = HFhG + (HG + (nF � 2)HF )hF + (nC � 1)HLhC + (nC � 1) (HC �HL)hL +�
bC = HFhG + (HG + (nC � 2)HC)hC + (nF � 1)HLhF + (nF � 1) (HF �HL)hL +�
bL = HLhG + ((nF � 2)HL +HC)hF + ((nC � 2)HL +HF )hC

+((nC � 2) (HC �HL) + (nF � 2) (HF �HL) + (HG � 2HL))hL +�

where HG, HF , HC , and HL are positive numbers (elements of the inverse of (I � 
))

� = (nF � 1) (nC � 1)HLhL

and,

hG =
G
W hF = �s

�
kpp
W
+ krp

F

�
hC = �s

�
kpp
W
+ krp

C

�
hL = �s

�
kpp
W
+ krp

L

�
where W = G+ (nF � 1)F + (nC � 1)C + (nF � 1) (nC � 1)L

(iii) The communication intensities are:

rF =
p
FbF
kr

rC =
p
CbC
kr

rL =
p
LbL
kr

pF =
p
WbF
kr

pC =
p
WbC
kr

pL =
p
WbL
kr

The matrix-form �rm displays a simple equilibrium information �ow. Communication
intensities are the same within a units that belong to the same function (for all units, for
alal functions) and for units that belong to the same country. They are also between any
two units that belong to di¤erent functions and di¤erent countries.

In turn, the decision coe¢ cients can be expressed as a straightforward (but long)
weighted sum of the four basic communication costs/bene�ts hG, hF , hC , and hL.

To illustrate the result, consider the following numerical example. Suppose that the
�rm operates in �ve countries (nC = 5) and has three functions (nF = 3). The interaction
terms are: G = 10, C = 2, F = 5 and L = 1. The communication cost parameters are
kr = kp = 0:1 and si = 0:05.

In this case, the weights in equilibrium actions are

bG = 0:306 77
bF = 4:475 3� 10�2
bC = 4: 067 7� 10�2
bL = 2: 404 4� 10�2

and equilibrium precisions of active and passive communication are

rF = 1: 328 2; rC = 0:811 21; rL = 0:240 44

pF = 3: 563 9; pC = 3: 441 7; pL = 1: 442 6
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The overall communication precisions are

rF pF
rF + pF

= 0:967 60

rCpC
rC + pC

= 0:656 48

rLpL
rL + pL

= 0:206 09

The following �gure provides a graphical representations of these overall equilibrium com-
munication precisions
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4.1.2 Network of Professionals (continued)

In our second example, Theorem 6 yields the following equilibrium decision and communi-
cation network:
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Proposition 9 The decision coe¢ cients are

bij =

8>><>>:
1+�
1+n� � si

�
kp(n�1)�p
(1+(n�1)�)Wi

+
P
k 6=i

kr�p
�Wk

�
if i = j

�
1+n� � sj

�
kp(1+(n�1)�)p
(1+(n�1)�)Wi

+ kr(1+�)p
�Wj

+
P
k 6=fi;jg

kr�p
�Wk

�
otherwise

Active communication is

rij =

p
�Wjbij

kr
for all i 6= j;

Passive communication is

pij =

p
Wibij
kp

for all i 6= j

The structure becomes even more simple if one assumes that agents di¤er only in the
richness of their local environment (the opposite of precision si):

Corollary 10 In the special case where Wi = 1 for all i,

bij =

8<: 1+�
1+n� � si

1+(n�1)�
1+n�

�
kpp

(1+(n�1)�)
+ krp

�

�
(n� 1) � if i = j

A�Bsj otherwise

where

A =
1 + �

1 + n�

B =

 
kpp

(1 + (n� 1) �)
+
krp
�

!
(1 + (n� 1) �)

and

rij =

p
�

kr
(A�Bsj)

pij =
1

kp
(A�Bsj)

Numerical Example Suppose that

� = 0:5 n = 3 kp = kr = 0:01
s1 = 1 s2 = 2 s3 = 4

Then
r21 = r31 = 4:54 p21 = p31 = 9:08
r12 = r32 = 9:34 p12 = p32 = 18:68
r13 = r23 = 23:48 p13 = p23 = 11:74
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and

r21p21
r21+p21

=
r31p31
r31+p31

=
4:542� 9:084
4:542 + 9:084

= 3:02

r12p12
r12 + p12

=
r32p32
r32 + p32

=
9:342� 18:685
9:342 + 18:685

= 6:22

r13p13
r13 + p13

=
r23p23
r23 + p23

=
23:484� 11:742
23:484 + 11:742

= 7:82

The share of expenditure going to active communication is the same in all three cases and
it�s 13

w
s2 = 2

u
s3 = 1

ys1 = 4
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5 Properties of Equilibrium Communication

We now use Theorem 6 to study the properties of the communication networks that are
formed in equilibrium.

5.1 What Determines Overall Communication?

To begin, what determines the overall intensity of communication within a set of agents?
Let us consider change on three possible dimensions: We say that:

� Overall interaction increases if matrix D0 is such that d0ij � dij for all i and all j and
d0ij > dij for at least one pair (i; j) (which may be the same);

� Communication cost decreases if k0r � kr and k0p � kp with a strict inequality for at
least one of the two cost parameters;

� Overall uncertainty increases if s0i � si for all i with a strict inequality for at least one
i.

Proposition 11 Communication intensities increase when the communication cost de-
creases and the overall uncertainty increases. Communication intensitites increase when
the overall interaction increases under some particular transformations in the interaction
matrix. Formally, suppose that the game with (D;k; s) has an interior solution, then:

(i) the game with (D0;k; s) , where D0 is obtained by multiplying row i of D by �i > 1,
also has an interior solution and satis�es that b0ji > bji, b0ij > bij for all j, and
r0ji > rji, r

0
ij > rij, p

0
ji > pji and p

0
ij > pij for all j 6= i.
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(ii) the game with
�
D;k0; s

�
also has an interior solution and satis�es that, for every i

and every j, b0ij > bij, r
0
ij > rij, and p

0
ij > pij :

(iii) the game with (D;k; s0) also has an interior solution and satis�es that, b0ji > bji,
r0ji > rji, and p

0
ji > pji.

This proposition determines the sign of natural comparative statics with respect to the
primitives of our model

The �rst part of the proposition ensures that if we increase proportionally all interaction
coe¢ cients of a single agent, everybody is going to pay more attention to the information
he transmits about his signal, that he is also going to pay more attention to the informa-
tion communicated by all the rest of agents, and that active and passive communication
precisions in his bilateral communications increase as well.

The second part of the proposition presents a natural conclusion: if communication
costs decrease then all decision parameters move up, i.e. every agent is going to increase
the intensity of all bilateral communications and is going to pay more attention to the
communication reports received; hence, all communication precisions increase accordingly,

Finally, the third part states that if an agent receives local information with an smaller
amount of uncertainty, everybody is going to pay more attention to the information this
agent is going to transmit. Agents might �nd bene�cial to adopt actions closer to the
information with less intrinsic uncertainty as a focal point to alleviate miscoordination.

5.2 Who Communicates with Whom?

A more subtle question is: What determines the relative communication intensities? We
have already provided a number of comparative statics results with respect to the primitives
of the model. Here we are interested in the e¤ect of a transfer of weights in the interaction
coe¢ cients of a memeber of the organization.

Proposition 12 Starting from a symmetric situation, an increase in dij compensated by
an equal decrease in dik (where i, k, and j are distinct integers) leads to an increase in bji,
rji, pji and a decrease in bki, rki, pki, while other other variables are unchanged.

When we slightly perturb a symmetric situation, in which all pairwise interaction co-
e¢ cients coincide, and slightly increase the coordination motive of agent i with respect to
agent j, counterbalanced by a decrease of same magnitude in the coordination motive of
agent i with respect to agent k, the comparative statics are clear: agent j, resp. k, cares
more (resp.less) about the information received from agent i in the action he undertakes,
he pays more (resp. less) attention to this information, and agent i is going to put more
(resp. less) e¤ort in communicating accurately his local information.

5.2.1 Example: Matrix Form (continued)

In the matrix form example, we obtain sharp predictions about which agents communicate
more intensely.
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Proposition 13 Suppose that kr, kp, and L are su¢ ciently small. Then:
(i) If there are the same number of countries and functions (nF = nC), communication

within functions is more intense than communication within countries if and only if F > C.
(ii) If the interaction within countries and the interaction across functions are equally

strong (F = C), communication within functions is stronger than communication within
units if and only if there are less functions than countries (nF < nC)

This proposition ties intensity of communication to the characteristics of each one of the
layers that determine the matrix structure of the organization. When the number of possible
labels in each of the layers (functions or countries) coincides the intensity of communication
depends is strongly linked to the interaction pattern: if coordination among di¤erent local
functions is more important than international coordination, we naturally expect more
communication at the functional level. If the cordination motives at the functional and
international level are the same, we conclude that communication is going to be focused on
the layer that shows an smaller number of elements: if there are less functions than countries,
communication is going to be mostly executed among the di¤erent local functions again.

5.3 Which Way Does Information Flow?

Is the amount of information communicated by agent i to j greater than the amount com-
municated by j to i?

The precision of communication from i to j is given by

qij =
1

�2ij + �
2
ij

=
rijpij
rij + pij

Proposition 14 Suppose that, for two agents i and j, wjj = wii and sj = si. Then,

qij
qji
=
bii
bjj
:

The proposition compares two agents who face the same amount of local uncertainty
and who place the same relative importance of adapting to the local state and coordinating
with other agents. The proposition shows that the ratios between the precisions of commu-
nication from i to j is the same as the ratio of the own local state decision coe¢ cients of
the same two agents. An agent who, in equilibrium, pays more attention to his own state
is an agent who communicates more information to others.

5.4 Who Wields In�uence?

While the previous section dealt with relative in�uence in pairwise comparison, one can ask
which agents are most in�uential overall.

It turns out that the answer to this question links Theorem 6 with a family of measures
of centrality developed in sociology (Bonacich 1987) and applied to economics by Ballester
et al (2006).
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We begin by introducing basic notions of network centrality. Consider a network de-
scribed by an n-square adjacency matrix G, where gij 2 [0; 1] measures the strength of the
path from i to j. For any positive scalar a (su¢ ciently low), de�ne the matrix

M (G; a) = [I � aG]�1 :

Each element mij of the matrix M can be interpreted as a weighted sum of the paths �
direct or indirect �leading from node i to node j. The parameter a is a decay parameter
that may put a lower weight on less direct e¤ects. Let mij (G; a) be the ij element ofM .

The Bonacich centrality measure of node i is de�ned as

�i (G; a) =
nX
j=1

mij (G; a) :

The centrality of node i is determined by the weighted sum of paths to all nodes that begin
in i.

In our context, we let Bi =
Pn
j=1 bji be the global in�uence of agent i. Note that this

corresponds to the sum of the expected e¤ects of a change on the agent�s local state on all
actions (including the agent�s own action).13

We begin by characterizing global in�uence:

Proposition 15 The global in�uence of agent i can be expressed as a weighted sum of all
the agents�Bonacich centrality measures, computed on 
0 with decay factor one, where the
weights are given by the h�i

Bi =

nX
j=1

�j
�

0; 1

�
hji:

The global in�uence of agent i is a sum of weighted Bonacich measures, where the weights
on the agent�s own measure is positive (because hii = !ii) while all the other weights are
negative. Hence, an agent�s global in�uence depends positively on the centrality of that
agent and negatively on the centrality of all other agents.

The following is an immediate consequence of the Proposition:

Corollary 16 When kp; kr ! 0, the global in�uence of agent i corresponds to the product
of his Bonacich centrality index, computed on 
0 with decay parameter one, and the agent�s
sensitivity to his own action.

nX
j=1

bji = �i
�

0; 1

�
!ii

When communication costs vanish, local states of the world become common knowledge.
The in�uence of agent i�s local states on other agents depends on how connected agent i is
to the rest of the network. The local state of an agent with stronger links is more in�uential.
The right way to compute connectedness in this case is the Bonacich centrality measure

13While the notions of network centrality that we employ are already present in the literature, to the
de�nition of global in�uence is, to the best of our knowledge, novel.
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based on the transpose of 
 with decay factor 1. The use of the transpose depends on the
fact that the in�uence of i on j is measured by !ji (had we swapped indices we would not
use the transpose).

The global in�uence of agent i also depends on his sensitivity to his own action !ii.
The other agents�payo¤s do not depend directly on i�s local state. They are a¤ected by it
indirectly through the interaction factors of the form dji (aj � ai)2. Hence, other agents will
be more eager to adapt to i�s local state if i�s action is strongly in�uenced by i�s local state,
which happens when !ii is high. In the extreme case where !ii ! 0, the agent�s action is
independent of his local state and other agents have no reason to adapt their actions to i�s
state.14

Our characterization of global in�uence produces sharp predictions. First, de�ne an
increase in agent i´s importance as follows. For one agent i, let d0ij = �dij for all j.
Consider an in�nitesimal increase of � starting from � = 1.

Proposition 17 If i becomes more important, all global in�uences increase. The global
in�uence of i increases more than the others if and only if the cost of passive communication
is su¢ ciently low compared to the cost of active communication:

kp
kr
�
X
k 6=i

�k (

0; 1)

�i (

0; 1)

p
Dip
dik
:

We know from (i) in Proposition 11 that when an agent becomes more important every-
body is going to increase the weight of her communication reports in others�actions. This
explains why her global in�uence increases. But the increase on the level of externalities is
also partially internalized by the rest of agents in the organization: through the now more
important agent, all other agents also care more for coordination with the rest of the orga-
nization. In other words, if a �rst agent wants to coordinate with the now more important
second agent, and hence this second agent aims to coordinate more with a third one, the
�rst agent needs also to coordinate better with the third one. That�s the reason behind the
increase of all global in�uences. Furthermore, when passive communication is less costly
than active communication, the best way to achieve coordination is by paying attention
to the messages send by the rest of agents inside the organization. In particular, people
is going to pay more attention to the information transmitted by the now more important
agent (that translates into �rst-order level of externalities) than on paying attention to rest
(that would come from the second, and higher, order of externality spreading). This ensures
that the global in�uence of the now more important agent increases more than the rest.

Second, consider the e¤ect of a change in the uncertainty faced by agent i.

Proposition 18 If si increases, i�s global in�uence decreases and the global in�uence for
the rest of agents does not change.

This result provides an straightforward relation between local information uncertainty
and global in�uence. Ceteris paribus, an increase in local uncertainty implies a decrease in

14Another extremely important measure of network centrality is the invariant method (Palacios-Huerta
and Volij 2004). The relation between our results and the invariant method is unclear.

25



global in�uence of the local agent. The reason why this only a¤ects the local agent and does
not spread into a decrease for the rest of agents as well is that here there are no second-order
externalities. An increase of uncertainty does not change the indirect coordination motives
of the rest of the population.

5.4.1 Example: Network of Professionals (continued)

The two e¤ects described in Propositions 17 and 18 are easy to observe in our second
example.

Proposition 19 In the Network of Professionals example, the global in�uence of agent i is

Bi = 1� sikp
p
1 + (n� 1) �

X
j 6=i

1p
Wj

� (n� 1) sikr
1 + (n� 1) �p

�Wi

The global in�uence of agent i increases wheneverWi orWj , with j 6= i, increase. When
si increases Bi decreases, and the expression of Bi does not depend on sj for j 6= i.

In the special case where Wi = 1 for all agents,

Bi = 1� (n� 1) sikp
p
1 + (n� 1) � � (n� 1) sikr

1 + (n� 1) �p
�

Numerical example Suppose that � = 0:5, n = 3, kp = kr = 0:01. Compare the case
where s1 = s2 = s3 = 2 with the case we saw before s1 = 1, s2 = 2, s3 = 4.

In the �rst case, the solution is symmetric across agents, and we have

rij = 9:34 pij = 18:68 ;

with communication precision
rijpij
rij + pij

= 6:22:

The two equilibrium communication networks are depicted in the �gure below
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In the �rst case, all agents have the same global in�uence: for i = 1; 2; 3,

Bi = 0:83

In the second case, as one would expect, our in�uence measure is lower for the �rst agent
and higher for the third.

B1 = 0:66 B2 = 0:83 B3 = 0:91

26



5.5 Adaptation vs. Coordination

Agents�payo¤s re�ect both an adaptation and a coordination concern. On the one hand,
agents want to adapt to their local state. On the other one, they want to coordinate with the
rest of members of the organization. In this section we show that communication intensities
show an inverse U shape form. In particular, we prove that communication activity by
agent i vanishes whenever the adaptation concern is too intense or too weak compared to
coordination motives.

To formalize this result, de�ne d0ii = �dii and d0ij = (2� �) dij for all j 6= i. Observe
that:

� If � ! 0 then d0ii ! 0 and d0ij ! 2dij � 0, and d0ii
d0ij

! 0. Coordination outweighs

adaptation.

� if � = 1 we have the initial vector of i�s interaction terms d.

� If �! 2 we obtain d0ii = 2dii > 0 and d
0
ij ! 0, and d0ii

d0ij
! +1. Adaptation outweighs

coordination.

Proposition 20 If �! 0 or �! 2 agent i does not engage in active communication, and
no agent passively communicates with him.

The reasons why communication vanishes when we approach the two extreme situa-
tions is di¤erent in each case. When coordination motives outweigh the adaptation motive,
communication engagement is null because there is a natural focal point that resolves co-
ordination problems: agent, according to prior information, �x their actions to be 0. This
trivially resolves coordination and does not a¤ect the decision problem that right now is of
negligible magnitude. Local information is unnecesary.

On the other hand, when adaptation outweighs coordination, agents primarly want to
resolve their respective local decision problems. The obvious way is to �x their action close
to the local information they possess. In this case, prior information is redundant.

5.6 Active vs. Passive Communication

Do agents invest more in speaking or listening? For any directed link between two agents,
we can compare the intensity of active communication with the intensity of passive com-
munication: rij=pij .

From Theorem 6, we immediately see that

Proposition 21 The ratio between active and passive communication is

rij
pij

=
kp
kr

s
dji
Di

for all i 6= j

Clearly, the ratio depends on the ratio between the cost parameters for active and passive
communication. More interestingly, the balance between active and passive communication
depends on the ratio dji=Di.
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In general, we should expect Di > dji. Only in the case that agent i is particularly
prominent and the interaction coe¢ cient dji for another agent j is larger than the sum of
interaction coe¢ cients Di that a¤ect agent i, active communication can be relatively more
intensive than passive communication.

If the problem is symmetric (dij = �dQ for all i 6= j and dii =
�
1� (n� 1) �d

�
Q), we have


ij =
�d for all i 6= j:

Consider the case in which active and passive communication are equally costly, i.e. kp = kr.
As �d < 1

n�1 , this means that the ratio between active and passive communication is bounded
above by 1

n�1 , implying that: (i) it is smaller than 1; (ii) it becomes lower as n increases.
As we mentioned after Proposition ??, there is a strategic asymmetry between active

and passive communication, which favors passive communication. In our set-up, spending
resources to inform another agent has a diluted e¤ect: the signal I send you makes you
change your behavior and that a¤ects my payo¤ as well as the payo¤ of other agents (but
I only internalize my part). Hence, the positive e¤ect is a linear function of dji. Instead,
if I spend more resources to understand your state of the world, I can use this information
directly to change my decision, and that a¤ects the interaction of my decision with my own
state and with the decisions of all the other agents. Hence the e¤ect is a linear function of
Di.

The only case where passive communication does not have an intrinsic advantage is
when there are only two agents. Conversely, as the number of agents increases, the ratio
tends to zero.

5.7 Is Equilibrium Communication E¢ cient?

One can ask whether the communication network that emerges in the equilibrium of the non-
cooperative game that we have studied is e¢ cient. This question can be asked in two ways,
depending on which benchmark is used. In particular one can compare the equilibrium
outcome to the outcome that would arise if communication intensities were chosen by a
planner, while decision functions were still be delegated to agents. Or one can use as a
benchmark the case where the planner is also responsible for choosing decision functions.
Here, we analyse the �rst case, while we leave the second for the team theory section.

Reconsider the symmetric-information static game ~� (D;k; s). Keep the same payo¤
functions ui de�ned in (1), but now assume that each agent i solves

max
fbijgnj=1

E [ui]

while a planner solves

max
f�2jignj=1;f
2ijg

n

j=1

nX
i=1

E [ui]

The planner and the agents make their decisions simultaneously. Call this new game
�� (D;k; s).

By an argument similar to Theorem 2, a pure-strategy Nash equilibrium of �� (D;k; s)
corresponds to a perfect-Bayesian equilibrium of a two-stage game where in the �rst stage
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the planner chooses communication intensities but the intensities are not observed by agents,
while in the second stage agents receive signals and select actions.

We can o¤er an equilibrium characterization that mirrors the one of Theorem 6:

Proposition 22 The decision network and communication network that arise in equilib-
rium are given by:

b�i = (I �
)�1 � ~h�i for all i

rij =

vuut nX
k=1

dik +

nX
k 6=i

dki
bij
kr

for all i 6= j

pij =

vuut nX
k=1

dik +
nX
k 6=i

dki
bij
kp

for all i 6= j

with

hji =

(
!ii if i = j

�si kp+krpPn
k=1 dik+

Pn
k 6=i dki

otherwise

Note that this implies

Corollary 23 In the e¢ cient communication network, krr2ij = kpp
2
ij for all i and j.

The asymmetry between active and passive communication that we discussed earlier
is not present with a planner. For any level of precision of communication between i and
j, the planner minimizes the total cost of achieving it by equalizing the marginal costs of
active and passive communication.

By an argument similar to the one in Proposition, we can show:

Proposition 24 In the equilibrium of �� (D;k; s) all the decision coe¢ cients and commu-
nication intensities are larger than in the equilibrium of ~� (D;k; s).

In a game of coordination, communication creates positive externalities that players do
not internalize in the non-cooperative game.

6 Team Problem

In this section we extend the previous analysis by allowing agents to be grouped in teams.
All agents in the same team share the same utility function, that is obtained by adding
up the previously de�ned utility functions of all team members. Two extreme cases are
encompassed in this framework. When each team is formed by only one agent we come
back to the initial game-theoretical formulation of the problem. When all agents are in the
same team, we are in the classical formulation of a team problem. In particular, in this
second case, we model how internal communication intensities in a team are endogenously
determined by the agents that form it.
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Now the n agents are divided into di¤erent disjoint teams. For a given agent i, we
denote by T (i) the team to which he belongs. Each agent shares the same utility function
with the rest of members of his team. De�ne tij = dij + dji. Note that tij = tji.The utility
function of a team T is

uT = �
X
i2T

dii (ai � �i)2�
X

i;j2T;i6=j

tij
2
(ai � aj)2�

X
i2T;j =2T

dij (ai � aj)2�
X
i2T

X
j 6=i

cr (rji)�
X
i2T

X
j 6=i

cp (pij)

Some notation is necessary. Let

�ij =

8>><>>:
dii

dii+
P
j2T (i);j 6=i tij+

P
j =2T (i) dij

if i = j
tij

dii+
P
j2T (i);j 6=i tij+

P
j =2T (i) dij

if i 6= j; T (i) = T (j)
dij

dii+
P
j2T (i);j 6=i tij+

P
j =2T (i) dij

if i 6= j; T (i) 6= T (j)

Let � be the n � n matrix with zeros in the diagonal and outside diagonal entries equal
to �ij . As before, b�i is the column vector with entries bji. z�i is the column vector with
entries

zki =

8>>>><>>>>:
dii

dii+
P
j2T (i);j 6=i tij+

P
j =2T (i) dij

if i = k

�si kp+krp
dkk+

P
j2T (k);j 6=k tkj+

P
j =2T (k) dkj

if T (i) = T (k)

�sk
�

kpp
dkk+

P
j2T (k);j 6=k tkj+

P
j =2T (k) dkj

+ krpP
j2T (i) djk

�
if T (i) 6= T (k)

Proposition 25 The solution to the team-theory problem is given by:
(i) Optimal decisions coe¢ cients are

b�i = (I��)�1 � z�i

(ii) Active communication is

rik =

8<:
p
dkk+

P
j2T (i);j 6=k tjk+

P
j =2T (i) dkj

kr
bik if k 2 T (i)pP

j2T (i) djk
kr

bik if k =2 T (i)
(6)

(iii) Passive communication is

pik =

q
dii +

P
j2T (i);j 6=i tij +

P
j =2T (i) dij

kp
bik for all i 6= k

Observe that the matrix � in the characterization of the team theory solution is equiva-
lent to a matrix 
 in the game theory solution associated to a di¤erent interaction matrix:
when agents i and j are in the same team, the interaction coe¢ cients dij and dji rise up to
tij = dij+dji, while the rest remain the same. Then Di is now equal to dii+

P
j2T (i);j 6=i tij+P

j =2T (i) dij . But the vector z�i in the team theory solution is not equivalent to the h�i in the
game theory solution with the same transformation in interaction terms. Hence, the team
theory solution is in general not equivalent to the solution of an alternative game theory
problem with di¤erent interaction structures.
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6.0.1 Example: Networks of Professionals (continued)

Re-consider the case with three players and s1 = s2 = s3 = 2. It is interesting to focus on a
symmetric example, to illustrate the asymmetry that arises when some agents are grouped
in teams.

In the �rgure below, the �rst graph depicts a situation where there are no teams. In
the second graph, agents 1 and 2 belong to the same team. Using the Theorem above, we
compute the equilibrium communication network as follows:

r12 = r21 = 33:07 p12 = p21 = 33:07
r13 = r23 = 11:81 p13 = p23 = 18:68
r31 = r32 = 10:35 p31 = p32 = 20:70

which yields a high within-team communication intensity

r12p12
r12 + p12

=
r21p21
r21+p21

= 16:53

and a slightly higher across-team communication intensity

r13p13
r13 + p13

=
r23p23
r23 + p23

= 7:23

r31p31
r31 + p31

=
r32p32
r32 + p32

= 6:90

Finally, in the the third graph we examine the case where all agents belong to the same
team. Symmetry is restored and communication intensity continues to increase:

rij = 34:30 pij = 34:30

and
rijpij
rij + pij

= 17:15

Note also that within teams active and passive communication intensities are balanced.
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JĴ

J
JJ]

- �

16:53
16:53

6:90
7:23

7:23

6:90
g

s2 = 2

g
s3 = 2

gs1 = 2














�











� J

J
J
J
J
JĴJ
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6.0.2 Example: Matrix-form Organizations (continued)

Consider again the numerical example developed before, in which there are �ve countries
(nC = 5) and three functions (nF = 3); interaction terms are G = 10, C = 2, F = 5 and
L = 1; communication cost parameters are kr = kp = 0:1; and si = 0:05.
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We analyze here the case in which the diferent units in each country with same function
are grouped to form a team. Hence, there are three di¤erent teams, one for each function.

In this numerical example we obtain that the weights in equilibrium actions are

bG = 0:171 4

bF = 5: 593 7� 10�2

bC = 1: 505 8� 10�2

bL = 9: 944 1� 10�3

and the equilibrium precisions of active and passive communication are

rF = 4: 404 5; rC = 0:368 84; rL = 0:243 58

pF = 4: 404 5; pC = 1: 185 7; pL = 0:783 00

The overall equilibrium communication precisions are

rF pF
rF + pF

= 2: 202 3

rCpC
rC + pC

= 0:281 33

rLpL
rL + pL

= 0:185 78
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The following �gure provides the equilibrium precisions of pairwise communication.
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As expected, there is more intrateam communication than in the game theory case.
Because of the complementarity between equilibrium action decisions and equilibrium com-
munication decisions, also units in the same team put more weight on the communication
reports received from the rest of units with same function than in the game theory case, and
it decreases the weight on its own local information. Interestingly, communication among
units of di¤erent teams decreases, both in the case that they are in the same country or
in di¤erent ones. Similarly, the complementarity between actions and communication de-
cisions is re�ected in that the weight of the communication reports of units in di¤erent
countries is smaller than in the game theory case.

6.1 Negative Inter-Team E¤ects

As the numerical matrix-form example illustrates, the creation of teams may reduce com-
munication between units that now belong to di¤erent teams. This e¤ect can also be seen
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analytically, at least in a special case:

Proposition 26 Consider a matrix-form organization with two countries and two func-
tions. Suppose C = F and consider the limit case as L! 0, kr ! 0, and kp ! 0. Starting
from a situation where all units are independent, group all units in a function into a single
team. Then:

(i) Communication and in�uence within a function go up.
(ii) The within-country decision-coe¢ cent bC is reduced. Within-country active commu-

nication rC is reduced. The sign of the change in passiev communication pC is ambiguous.

The intuition behind this result has to do with the fact that units that now belong to
the same team internalize the damage that they impose on other team members when they
vary their action in response to signals they receive from non-team members.

7 Conclusion

The present paper is a �rst step towards modeling equilibrium information �ows in network
games with asymmetric information. We arrived at a close-form characterization of the
matrix of communication intensities that agents select in equilibrium. The characterization
was then used to obtain a number of comparative statics results.

Does our model have the potential to be used for empirical work? What kind of data
could identify the model? Suppose that we observe the information �ows among nodes of a
network (e.g what amount of resources each �rm spends for liaising with other �rms) but not
the underlying interaction matrix, communication cost parameters, local state uncertainty,
or decision functions. Can back out the primitives of the model?

The potential for identi�cation is there. If the number of agents is at least four, Theorem
6 supplies a number restrictions that is at least as large as the number of primitive variables
to be estimated.15

A similar identi�cation potential exists in the other formulation of the problem, which
is explored in the Appendix. This observation, although preliminary, appears to indicate
that data on information �ows could be a fruitful avenue for investigating organizations
empirically, if combined with a model �not necessarily the present one �of endogenous
communication in network games.

The model can be applied to a variety of setups, including matrix-form organizations
and networks of professionals, but also to other ones. For example, as Kranton and Mine-
hart (2000) highlight, buyer-seller relationships determine a network structure of vertical
contacts. When the formation of this network occurs in a decentralized manner, coordi-
nation problems may emerge. Communication could be introduced in a similar model to
ensure that miscoordination in the network formation process is minimized.

Finally, we have considered and static setup an, although this seems a natural starting
point for our incquire, it would be interesting to analyze dynamic communication protocols
in a similar environment. Information would then come from direct communication and
from learning of the past activity of some, or all, agents in the organization. This relates to

15The Theorem consists of system of n (3n� 2) equations in 2n2 + n+ 2 variables (b�s, d�s, s�s, and k�s).
There are at least as many equations as variables if n � 4.
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a recent literature on social learning in networks (see for example, Acemoglu et al., 2008,
and Bala and Goyal, 2008) and we plan to pursue this analysis in future research.

Appendix A. Proofs

Proof of Theorem 2:

The theorem is proven through the three lemmas in text. Proofs of the lemmas follow. �

Proof of Lemma 3:

For analytical tractability, in proofs we use variances instead of precisions. We denote by
�i = 1=si the variance of �i, �ij = 1=rij the variance of "ij , and �ij = 1=pij the variance of
�ij (the omission of the square sign is intentional: �, � and � are variances not standard
deviations). The expected payo¤ of agent i is then

�E [ui] = dii

0@(bii � 1)2 �i +X
k 6=i

b2ik (�k + �ik + �ik)

1A (7)

+
X
j 6=i

dij

0@X
k

(bik � bjk)2 �k +
X
k 6=i

b2ik (�ik + �ik) +
X
k 6=j

b2jk
�
�jk + �jk

�1A
+k2r

X
j 6=i

1

�ji
+ k2p

X
j 6=i

1

�ij
:

The necessary and su¢ cient �rst-order conditions are:

�1
2

@E [ui]

@bii
= dii (bii � 1)�i +

X
k 6=i

dij (bii � bji)�i = 0

�1
2

@E [ui]

@bij
= diibij

�
�j + �ij + �ij

�
+
X
k 6=i

dik
�
(bij � bkj)�j + bij�ij + bij�ij

�
= 0

�@E [ui]
@�ji

= dijb
2
ji + k

2
r

1

�ji
= 0

�@E [ui]
@�ij

= Dib
2
ij + k

2
p

1

�ij
= 0:

Move now to the other version of the one-shot game. The payo¤ for agent i in ~�� (D;k; s)
is given by

ui = �

0@dii (ai � �i)2 +X
j 6=i

dij (ai � aj)2 +
X
j 6=i

cr

�
1

�ji

�
+
X
j 6=i

cp

�
1

�ij

�1A ; (8)

35



or

�ui = dii

0@(bii � 1) �i +X
k 6=i

bik (�k + "ik + �ik)

1A2

+
X
j 6=i

dij

0@X
k

(bik � bjk) �k +
X
k 6=i

bik"ik +
X
k 6=i

bik�ik �
X
k 6=j

bjk"jk �
X
k 6=j

bjk�jk

1A2

+
X
j 6=i

cr

�
1

�ji

�
+
X
j 6=i

cp

�
1

�ij

�

which can be re-written as

�ui = dii

0@((bii � 1) �i)2 + 2 ((bii � 1) �i)
0@X
k 6=i

bik (�k + "ik + �ik)

1A+
0@X
k 6=i

bik (�k + "ik + �ik)

1A21A
+
X
j 6=i

dij

0@(bii � bji) �i +X
k 6=i

(bik � bjk) �k +
X
k 6=i

bik"ik +
X
k 6=i

bik�ik �
X
k 6=j

bjk"jk �
X
k 6=j

bjk�jk

1A2

+
X
j 6=i

cr

�
1

�ji

�
+
X
j 6=i

cp

�
1

�ij

�

The expected payo¤ for agent i is

�E[ui] = dii

0@(bii � 1)2 �2i +X
k 6=i

b2ik (�k + �ik + �ik)

1A
+
X
j 6=i

dij

0@(bii � bji)2 �2i +X
k 6=i

(bik � bjk)2 �k +
X
k 6=i

b2ik (�ik + �ik) +
X
k 6=j

b2jk
�
�jk + �jk

�1A
+
X
j 6=i

cr

�
1

�ji

�
+
X
j 6=i

cp

�
1

�ij

�

First-order conditions are

�1
2

@E [ui]

@bii
= dii (bii � 1) �2i +

X
k 6=i

dij (bii � bji) �2i = 0

�1
2

@E [ui]

@bij
= diibij

�
�j + �ij + �ij

�
+
X
k 6=i

dik
�
(bij � bkj)�j + bij�ij + bij�ij

�
= 0

�@E [ui]
@�ji

= dijb
2
ji + c

0
r

�
1

�ji

�
= 0

�@E [ui]
@�ij

= Dib
2
ij + c

0
p

�
1

�ij

�
= 0:
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Observe that except for the �rst of these conditions, the rest of conditions coincide with
those for ~� (D;k; s). But, indeed, the �rst condition is also equivalent to the �rst one for
~� (D;k; s), since

dii (bii � 1) �2i +
X
k 6=i

dij (bii � bji) �2i = 0 () dii (bii � 1) +
X
k 6=i

dij (bii � bji) = 0

() dii (bii � 1)�2i +
X
k 6=i

dij (bii � bji)�2i = 0

Hence the �rst-order conditions for ~�� (D;k; s) are equivalent to the ones for ~� (D;k; s).
The statement of the lemma is obtained by applying the notation of total sensitivities.�

Proof of Lemma 4:

For the �rst part, begin by considering the second stage of � (D;k; s). Consider player i.
The other players have chosen

�
r̂�i; p̂�i

�
in the previous stage and are going to play linear

strategies denoted with b̂�i.
As player i may have deviated from equilibrium play in stage 1, denote his precision

vectors with (ri; pi). He now must choose his decision function ai (�i;yi).
In the perfect Bayesian equilibrium, player i forms beliefs on

�
r�i; p�i

�
. Given that the

signal yi he receives have full support under all possible
�
r�i; p�i

�
, there are no out-of-

equilibrium beliefs. In the putative equilibrium, player i�s beliefs are constant and equal to�
r̂�i; p̂�i

�
.

Given i�s beliefs, his expected payo¤ function can be represented in a familiar quadratic
form (see the proof of Lemma 3). The best response is unique, linear and the coe¢ cients
must satisfy:

Dibii = dii +
X
j 6=i

dij b̂ji

Dibij =
r̂ijpij

sj r̂ij + sjpij + r̂ijpij

X
k 6=i

dik b̂kj for all j 6= i

In the �rst stage of the game, player i chooses (ri; pi) knowing what his best response
will be in the second stage. His decision does not a¤ect the beliefs of other players which
are constant and equal to (r̂i; p̂i). Hence, it is easy to see that the optimal decision satis�es
the two remaining �rst-order conditions of Lemma 3, namely (4) and (5).

For the second part of the lemma, suppose that there exists a linear perfect Bayesian
equilibrium of � (D;k; s) that does not satisfy the �rst-order conditions of Lemma 3. From
the �rst part ofthis proof, it is easy to see that the �rst-order conditions for this equilibrium
would be the same as in Lemma 3, and hence it would correspond to an equilibrium of
~� (D;k; s). �

Proof of Lemma 5:

The �rst part is similar to the �rst part of Lemma 4 and can be omitted. The second part
is instead somewhat more complex.
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In the game where the local state is observed before making communication investment
decisions, a �rst-stage strategy pro�le of the form (r̂; p̂) is highly restrictive because players
do not condition their investments on available information. In the case of the one-shot
game ~�� (D;k; s), we already know that all equilibria are of that form, but this point needs
to be checked for the two-stage game �� (D;k; s).

Suppose that �� (D;k; s) has a linear perfect Bayesian equilibrium where, for at least
one player i at least one communication precision depends on the �i he observes. Such a
strategy pro�le would not be an equilibrium of ~�� (D;k; s).

However, note that by assumption the decision function of all players can be expressed
as a linear function with certain coe¢ cients ~b, which may not be a solution of the system
formed by (2) and (3). Still, the expected payo¤ of player i can be written as a quadratic
function of the variances

�E [ui] = dii

0@�~bii � 1�2 �2i +X
k 6=i

~b2ik (�k + �ik + �ik)

1A
+
X
j 6=i

dij

0@X
k

�
~bik � ~bjk

�2
�2i +

2X
k 6=i

~b2ik (�ik + �ik) +
X
k 6=j

~b2jk
�
�jk + �jk

�1A
+k2r

X
j 6=i

1

�ji
+ k2p

X
j 6=i

1

�ij
:

But the problem of choosing variances to maximize E [ui] has clearly a unique (strict)
solution for any possible matrix ~b and this solution does not depend on �i, because the
payo¤ function is additively separable in �i and all the variance terms. Hence, player i
must choose the same vectors (ri; pi) for all realizations of �i, which means that there
exists no linear equilibrium where communication investments depend on local states. �

Proof of Theorem 6:

The equivalent condition for (3) for the pair ji is

Djbji =
pji

pji + qi

X
k 6=j

djkbki

Plugging the expression (4) in this last equation, we get

Djbji =
rjipji

sirji + sipji + rjipji

X
k 6=j

djkbki

bji �
X
k 6=j

djk
Dj
bki = �si

 
kpp
Dj

+
krp
dij

!
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that with (2) form the following system of equations

bii �
X
j 6=i

dij
Di
bji =

dii
Di

bji �
X
k 6=j

djk
Dj
bki = �si

 
kpp
Dj

+
krp
dij

!
if i 6= j

and

rji =

p
dijbji

kr

pij =

p
Dibij
kp

�

7.0.1 Proof of Corollary 7:

When kr and kp are equal to 0,X
j

bij =
X
j

(I �
)�1ij !jj :

We want to check that in this case

(I �
)�1 �

0B@!11...
!nn

1CA = 1:

But this is trivial, since 0B@!11...
!nn

1CA = (I �
) � 1:

by de�nition.
When kr and/or kp are greater than 0, all vectors h�j have strictly negative entries

except for hjj . This immediately implies that
P
j bij < 1. �

Proof of Proposition 8:

Let
W = G+ (nf � 1)F + (nc � 1)C + ((nf � 1) (nc � 1)� 1)L:
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Then,

I�
 = 1

W

26666666666666666666666664

26664
W �F � � � �F
�F W � � � �F
...

...
. . .

...
�F �F � � � W

37775
26664
�C �L � � � �L
�L �C � � � �L
...

...
. . .

...
�L �L � � � �C

37775 � � �

26664
�C �L � � � �L
�L �C � � � �L
...

...
. . .

...
�L �L � � � �C

37775
26664
�C �L � � � �L
�L �C � � � �L
...

...
. . .

...
�L �L � � � �C

37775
26664
W �F � � � �F
�F W � � � �F
...

...
. . .

...
�F �F � � � W

37775 � � �

26664
�C �L � � � �L
�L �C � � � �L
...

...
. . .

...
�L �L � � � �C

37775
...

...
. . .

...26664
�C �L � � � �L
�L �C � � � �L
...

...
. . .

...
�L �L � � � �C

37775
26664
�C �L � � � �L
�L �C � � � �L
...

...
. . .

...
�L �L � � � �C

37775 � � �

26664
W �F � � � �F
�F W � � � �F
...

...
. . .

...
�F �F � � � W

37775

37777777777777777777777775
and it is easy to check that the inverse must take the following form

(I � 
)�1 =

26666666666666666666666664

26664
HG HF � � � HF
HF HG � � � HF
...

...
. . .

...
HF HF � � � HG

37775
26664
HC HL � � � HL
HL HC � � � HL
...

...
. . .

...
HL HL � � � HC

37775 � � �

26664
HC HL � � � HL
HL HC � � � HL
...

...
. . .

...
HL HL � � � HC

37775
26664
HC HL � � � HL
HL HC � � � HL
...

...
. . .

...
HL HL � � � HC

37775
26664
HG HF � � � HF
HF HG � � � HF
...

...
. . .

...
HF HF � � � HG

37775 � � �

26664
HC HL � � � HL
HL HC � � � HL
...

...
. . .

...
HL HL � � � HC

37775
...

...
. . .

...26664
HC HL � � � HL
HL HC � � � HL
...

...
. . .

...
HL HL � � � HC

37775
26664
HC HL � � � HL
HL HC � � � HL
...

...
. . .

...
HL HL � � � HC

37775 � � �

26664
HG HF � � � HF
HF HG � � � HF
...

...
. . .

...
HF HF � � � HG

37775

37777777777777777777777775
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Then

hji =

2666666666666666666666666666666666664

G
W26666664

�s
�
kpp
W
+ krp

F

�
�s
�
kpp
W
+ krp

F

�
...

�s
�
kpp
W
+ krp

F

�

3777777526666664
�s
�
kpp
W
+ krp

C

�
�s
�
kpp
W
+ krp

L

�
...

�s
�
kpp
W
+ krp

L

�

37777775
...26666664

�s
�
kpp
W
+ krp

C

�
�s
�
kpp
W
+ krp

L

�
...

�s
�
kpp
W
+ krp

L

�

37777775

3777777777777777777777777777777777775

�

2666666666666666666666666664

hG26664
hF
hF
...
hF

37775
26664
hC
hL
...
hL

37775
...26664
hC
hL
...
hL

37775

3777777777777777777777777775

Then, for i = 1,

b�1 =
G

W

266666666666666666666666666666664

HGhG + (nF � 1)HF hF + (nC � 1)HChC + (nF � 1) (nC � 1)HLhL266664
HF hG +HGhF + (nF � 2)HF hF + (nC � 1)HLhC + (nC � 1)HChL + (nF � 2) (nC � 1)HLhL
HF hG +HGhF + (nF � 2)HF hF + (nC � 1)HLhC + (nC � 1)HChL + (nF � 2) (nC � 1)HLhL

.

.

.
HF hG +HGhF + (nF � 2)HF hF + (nC � 1)HLhC + (nC � 1)HChL + (nF � 2) (nC � 1)HLhL

377775
266664

HF hG +HGhC + (nC � 2)HChC + (nF � 1)HLhF + (nF � 1)HF hL + (nC � 2) (nF � 1)HLhL
HLhG + (nF � 2)HLhF +HChF + (nC � 2)HLhC + (nC � 2)HChL +HF hC + (nF � 2)HF hL +HGhL + (nC � 2) (nF � 2)HLhL

.

.

.
HLhG + (nF � 2)HLhF +HChF + (nC � 2)HLhC + (nC � 2)HChL +HF hC + (nF � 2)HF hL +HGhL + (nC � 2) (nF � 2)HLhL

377775
.
.
.266664

HF hG +HGhC + (nC � 2)HChC + (nF � 1)HLhF + (nF � 1)HF hL + (nC � 2) (nF � 1)HLhL
HLhG + (nF � 2)HLhF +HChF + (nC � 2)HLhC + (nC � 2)HChL +HF hC + (nF � 2)HF hL +HGhL + (nC � 2) (nF � 2)HLhL

.

.

.
HLhG + (nF � 2)HLhF +HChF + (nC � 2)HLhC + (nC � 2)HChL +HF hC + (nF � 2)HF hL +HGhL + (nC � 2) (nF � 2)HLhL

377775

377777777777777777777777777777775

In general

bij =

8>>><>>>:
HGhG + (nF � 1)HF hF + (nC � 1)HChC + (nF � 1) (nC � 1)HLhL if fi = fj and ci = cj
HF hG +HGhF + (nF � 2)HF hF + (nC � 1)HLhC + (nC � 1)HChL + (nF � 2) (nC � 1)HLhL if fi = fj and ci 6= cj
HF hG +HGhC + (nC � 2)HChC + (nF � 1)HLhF + (nF � 1)HF hL + (nC � 2) (nF � 1)HLhL if fi 6= fj and ci = cj
HLhG + (nF � 2)HLhF +HChF + (nC � 2)HLhC + (nC � 2)HChL +HF hC otherw ise

+ (nF � 2)HF hL +HGhL + (nC � 2) (nF � 2)HLhL

which can be re-written as

bij =

8>>>><>>>>:
HGhG + (nF � 1)HFhF + (nC � 1)HChC +� if fi = fj and ci = cj
HFhG + (HG + (nF � 2)HF )hF + (nC � 1)HLhC + (nC � 1) (HC �HL)hL +� if fi = fj and ci 6= cj
HFhG + (HG + (nC � 2)HC)hC + (nF � 1)HLhF + (nF � 1) (HF �HL)hL +� if fi 6= fj and ci = cj
HLhG + ((nF � 2)HL +HC)hF + ((nC � 2)HL +HF )hC otherwise
+((nC � 2) (HC �HL) + (nF � 2) (HF �HL) + (HG �HL))hL +�

�
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Proof of Proposition 9:

The interaction matrix is now

D =

26664
W1 �W1 � � � �W1

�W2 W2 � � � �W2
...

...
. . .

...
�Wn �Wn � � � Wn

37775
and


 =

266664
0 �

1+(n�1)� � � � �
1+(n�1)�

�
1+(n�1)� 0 � � � �

1+(n�1)�
...

...
. . .

...
�

1+(n�1)�
�

1+(n�1)� � � � 0

377775

(I �
)�1 =

266664
1 � �

1+(n�1)� � � � � �
1+(n�1)�

� �
1+(n�1)� 1 � � � � �

1+(n�1)�
...

...
. . .

...
� �
1+(n�1)� � �

1+(n�1)� � � � 1

377775
�1

=
1 + (n� 1) �
1 + n�

26664
1 + � � � � � �
� 1 + � � � � �
...

...
. . .

...
� � � � � 1 + �

37775
and

hij =

8<:
1

1+(n�1)� if i = j

�sj
�

kpp
(1+(n�1)�)Wj

+ krp
�Wi

�
otherwise

Then, for j = 1,

b�1 =
1 + (n� 1) �
1 + n�

26664
1 + � � � � � �
� 1 + � � � � �
...

...
. . .

...
� � � � � 1 + �

37775

266666664

1
1+(n�1)�

�s1
�

kpp
(1+(n�1)�)W1

+ krp
�W2

�
...

�s1
�

kpp
(1+(n�1)�)W1

+ krp
�Wn

�

377777775

=
1 + (n� 1) �
1 + n�

26666666664

1+�
1+(n�1)� � s1

�
kp(n�1)�p
(1+(n�1)�)W1

+
P
i6=1

kr�p
�Wi

�
�

1+(n�1)� � s1
�

kp(1+(n�1)�)p
(1+(n�1)�)W1

+ kr(1+�)p
�W2

+
P
i6=f1;2g

kr�p
�Wi

�
...

�
1+(n�1)� � s1

�
kp(1+(n�1)�)p
(1+(n�1)�)Wn

+ kr(1+�)p
�Wn

+
P
i6=f1;ng

kr�p
�Wi

�

37777777775

=

26666666664

1+�
1+n� � s1

1+(n�1)�
1+n�

�
kp(n�1)�p
(1+(n�1)�)W1

+
P
i6=1

kr�p
�Wi

�
�

1+n� � s1
1+(n�1)�
1+n�

�
kp(1+(n�1)�)p
(1+(n�1)�)W1

+ kr(1+�)p
�W2

+
P
i6=f1;2g

kr�p
�Wi

�
...

�
1+n� � s1

1+(n�1)�
1+n�

�
kp(1+(n�1)�)p
(1+(n�1)�)Wn

+ kr(1+�)p
�Wn

+
P
i6=f1;ng

kr�p
�Wi

�

37777777775
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In general

bij =

8>><>>:
1+�
1+n� � si

�
kp(n�1)�p
(1+(n�1)�)Wi

+
P
k 6=i

kr�p
�Wk

�
if i = j

�
1+n� � sj

�
kp(1+(n�1)�)p
(1+(n�1)�)Wi

+ kr(1+�)p
�Wj

+
P
k 6=fi;jg

kr�p
�Wk

�
otherwise

Active communication is

rij =

p
�Wjbij

kr
for all i 6= j;

Passive communication is

pij =

p
Wibij
kp

for all i 6= j

�

Proof of Proposition 11:

(i) The multiplication of all entries in row i by �i > 1 does not a¤ect matrix 
, since

!0ij =
d0ij

d0i1 + � � � d0in
=

�dij
� (di1 + � � � din)

=
dij

di1 + � � � din
= !ij

Also, !ii is unchanged. The e¤ect of this transformation concentrates on the elements
hij and hji for all j 6= i. In particular, if j 6= i, we have that

h0ij = �sj

0@ kpp
D0i
+

krq
d0ji

1A = �sj

 
kpp
�iDi

+
krp
dji

!
> hij

h0ji = �si

0@ kpq
D0j

+
krq
d0ij

1A = �si

 
kpp
Dj

+
krp
�idij

!
> hji

because �i > 1. Therefore, condition (i) of Theorem 6 implies that this change in D
causes an increase in all bji�s and all bij�s, for all /j. By conditions (ii) and (iii), communi-
cation intensities rji; rij ; pji and pij increase as well, for all j 6= i.

(ii) For communication costs, note that all the elements in the matrix (I �
)�1 are
positive (because it can be represented as a series of of matrix with non-negative elements:
I +
+
2+ :::). Then, condition (i) of Theorem 6 implies that an increase in either kp or
kr causes a decrease in all the decision coe¢ cient b�s (including bii). By conditions (ii) and
(iii), communication intensities decrease as well.

(iii) A decrease in si only a¤ects the vector h�i, in which all negative entries increase
and the unique non-negative entry, !ii, is unchanged. Condition (i) of Theorem 6 implies
that this decrease in si causes an increase in all bji�s, for all j. By conditions (ii) and (iii),
communication intensities rji and pji increase as well, for all j 6= i. �
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Proof of Proposition 12:

Let M = (I �
)�1, and let a denote the increase (resp. decrease) in dij (resp. dik). We
have

d

da
b�i =

d

da
M � h�i +M � d

da
h�i

Note that

d

da
M =

d

da

�
(I �
)�1

�
= �

�
(I �
)�1

�0 d
da
(I �
) (I �
)�1

=
�
(I �
)�1

�0 d
da

 (I �
)�1

We will evaluate the e¤ect of a change of dij and dik starting form a symmetric situation,
namely dij = d for all i and j and si = s for all i. Then we have

I �
 =

264 1 � � � �!
...

...
�! � � � 1

375
with inverse

M = K

264 1� (n� 1)! � � � !
...

...
! � � � 1� (n� 1)!

375
where K is a constant that depend on w. We also have

hji =

(
1� (n� 1)! if i = j

�s
�
kpp
nd
+ krp

d

�
otherwise

We have

d

da
M =

264 1� (n� 1)! � � � !
...

...
! � � � 1� (n� 1)!

375 d

da



264 1� (n� 1)! � � � !
...

...
! � � � 1� (n� 1)!

375
But note that d

da
 contains zero everywhere excepts a 1 in ij and -1 in ik. Hence it is easy
to see that d

daM = 0. Thus d
dab�i =M � ddah�i. Now note that

d
dah = 0 everywhere except

for
d
dahji = �s

d
da

�
kpp
D
+ krp

dji

�
= dh > 0

d
dahki = �s

d
da

�
kpp
D
+ krp

dki

�
= �dh
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Then note that

d

da
b�i =

264 1� (n� 1)! � � � !
...

...
! � � � 1� (n� 1)!

375 � d
da
h�i

=

8<:
0 if

H (1� nw) for bji
�H (1� nw) for bki

So the only b�s that change are bji (up) and bki (down). All the others are una¤ected.
The only communication intensities to be a¤ected are

rji =

p
dijbji

kr

rki =

p
dikbki
kr

pji =

p
Dbji
kp

pki =

p
Dbki
kp

�

Proof of Proposition 13:

For the �rst part, we begin by proving that HF > HC if and only if F > C. To see this,
note that because (I �
)�1 (I �
) = I, we have that�

(I �
)�1 (I �
)
�
fi=fj ;ci 6=cj

= 0�
(I �
)�1 (I �
)

�
fi 6=fj ;ci=cj

= 0

and hence �
(I �
)�1 (I �
)

�
fi=fj ;ci 6=cj

�
�
(I �
)�1 (I �
)

�
fi 6=fj ;ci=cj

= 0

If nC = nF ,�
(I �
)�1 (I �
)

�
fi=fj ;ci 6=cj

�
�
(I �
)�1 (I �
)

�
fi 6=fj ;ci=cj

= HF (W � (nF � 2)F + (nF � 1)L)�HC (W � (nF � 2)C + (nF � 1)L)
� (F � C) ((HG � (nF � 1)HL))

= 0

If L is su¢ ciently small, then HG > (nF � 1)HL and

sign (HF (W � (nF � 2)F + (nF � 1)L)�HC (W � (nF � 2)C + (nF � 1)L)) = sign (F � C)
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Suppose F > C. Then,

W � (nF � 2)F + (nF � 1)L < W � (nF � 2)C + (nF � 1)L

and a necessary conditions for the equation above to be satis�ed is that HF > HC . The
opposite is true when F < C.

Note that, when communication costs go to zero, all h�s go to zero but hG. Hence16

bij =

�
HFhG if fi = fj and ci 6= cj
HChG if fi 6= fj and ci = cj

For the second part, if C = F , it is easy to see that HC = HF and hC = hF , and

bij =

�
HFhG +HGhF + (nF � 2)hFHF + (nC � 1)hLHF + (nC � 1)hFHL + ((nF � 1) (nC � 2)� 1)hLHL if fi = fj and ci 6= cj
HFhG + (nF � 1)hFHL +HGhF + (nF � 1)hLHF + (nC � 2)hFHF + ((nF � 2) (nC � 1)� 1)hLHL if fi 6= fj and ci = cj

The di¤erence between bij within a function and bij within a country is

(nC � nF ) (HFhL �HFhF +HLhF +HLhL) :

If L is su¢ ciently small, hL vanishes and the sign of the second term is determined by

� (HF �HL)hF

which is positive. Hence, bij between units with the same function is greater than bij
between units in the same country if and only if nC > nF . �

Proof of Proposition 14:

From Theorem 6,

qij =

p
djibij
kr

p
Dibij
kpp

djibij
kr

+
p
Dibij
kp

=

p
djiDi

kp
p
dji + kr

p
Di
bij

and analogously

qji =

p
dijDj

kp
p
dij + kr

p
Dj
bji

Note that, for any i and j,
b�j
b�i
=
h�j
h�i

In particular
bij
bii
=
hij
hii

bjj
bji

=
hjj
hji
;

16As kr and kp do not enter 
, we can �rst �nd an L that guarantees that HF > HC (assuming F > C)
and then take kr and kp small enough to: (i) have an interior solution; (ii) guarantee that all h�s but hG are
su¢ ciently small.
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so that

bij
bji

=
bii
bjj

hjj
hii

hij
hji

=
bii
bjj

wjj
wii

sj

�
kpp
Di
+ krp

dji

�
si

�
kpp
Dj
+ krp

dij

�

=
bii
bjj

wjj
wii

sj
kp
p
dji+kr

p
Dip

Didji

si
kp
p
dij+kr

p
Djp

Djdij

We have

qij
qji
=

p
djiDi

kp
p
dji+kr

p
Di
bij

p
dijDj

kp
p
dij+kr

p
Dj
bji

=
bii
bjj

wjj
wii

sj
si

If we assume wjj = wii and sj = si, we have the statement of the proposition. �

Proof of Proposition 15:

From Theorem 6, we know that, for all i,

b�i = (I �
)�1 � h�i.

We can write264 b1i
...
bni

375 =

26664
�
(I �
)�1

�
11

� � �
�
(I �
)�1

�
1n

...
...�

(I �
)�1
�
n1

� � �
�
(I �
)�1

�
nn

37775 �
264 h1i

...
hni

375

=

nX
j=1

hji

26664
�
(I �
)�1

�
1j

...�
(I �
)�1

�
nj

37775 =
nX
j=1

hji

266664
�
(I �
)�1

�0
j1

...�
(I �
)�1

�0
jn

377775
so that

Bi =

nX
k=1

bki =

nX
k=1

nX
j=1

hji

�
(I � 
)�1

�0
jk
=

nX
j=1

 
nX
k=1

�
(I �
)�1

�0
jk

!
hji:

If we de�ne the G matrix in the Bonacich measure to be the transpose of the 
 matrix
used in Theorem 6 and we let a = 1, we have:

M (G; a) =M
�

0; 1

�
=
�
I �
0

��1
=
�
[I �
]�1

�0
and hence

nX
k=1

�
(I �
)�1

�0
jk
= �j

�

0; 1

�
;
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so that

Bi =

nX
j=1

�j
�

0; 1

�
hji

�

Proof of Proposition 17:

Let d0i� = �di�. In this case 
 does not change, and the e¤ect is in hjk as follows:

dhjk
d�

=

8>>><>>>:
0 if j 6= i and k 6= i

si
kp

2
p
Di

if j = i and k 6= i
si

kr
2
p
dij

if j 6= i and k = i
0 if j = k = i

We have

dBj
d�

=
nX
k=1

�k
�

0; 1

� dhkj
d�

=

(
�i (


0; 1) si
kp

2
p
Di

if j 6= iP
k 6=i �k (


0; 1) si
kr

2
p
dik

if j = i

Note that dBjd� is the same for all j 6= i and that

dBj
d�

� dBi
d�

If and only if

�i
�

0; 1

�
si

kp

2
p
Di

�
X
k 6=i

�k
�

0; 1

�
si

kr

2
p
dik

correponding to
kp
kr
�
X
k 6=i

�k (

0; 1)

�i (

0; 1)

p
Dip
dik

�

Proof of Proposition 18:

The precision si only a¤ects the in�uence elements hji , for all j 6= i. Hence, it only a¤ects
i�s global in�uence. When si increases, all negative entries in the vector h�i decrease while
the positive entry, wii, does not change, and agent i�s global in�uence decreases. An increase
in si does not change 
 and h�j for j 6= i. Therefore, j�s global in�uence does not change.
�
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Proof of Proposition 19:

The Bonacich centrality measure of agent i is de�ned as

�j
�

0; 1

�
=

nX
k=1

�
(I �
)�1

�0
jk

Note that

�
(I �
)�1

�0
=
1 + (n� 1) �
1 + n�

26664
1 + � � � � � �
� 1 + � � � � �
...

...
. . .

...
� � � � � 1 + �

37775
Hence

�j
�

0; 1

�
=
1 + (n� 1) �
1 + n�

(1 + n�) = 1 + (n� 1) �

The global in�uence of agent i is simply

Bi =

nX
j=1

�j
�

0; 1

�
hji = (1 + (n� 1) �)

nX
j=1

hji

Recall that

hji =

8<:
1

1+(n�1)� if i = j

�si
�

kpp
(1+(n�1)�)Wj

+ krp
�Wi

�
otherwise

Hence

Bi = (1 + (n� 1) �)

0@ 1

1 + (n� 1) � �
X
j 6=i

si

 
kpp

(1 + (n� 1) �)Wj

+
krp
�Wi

!1A
= 1� sikp

p
1 + (n� 1) �

X
j 6=i

1p
Wj

� (n� 1) sikr
1 + (n� 1) �p

�Wi

�

Proof of Proposition 20:

(i) If � = 0 then !ii = 0; and this immediately implies that we hit a boundary equilibrium
in which bji = 0 for all j. This implies that agent i is not going to put e¤ort in actively
communicating with agent j, and that agent j is not going to exert any kind of e¤ort in
passive communication to learn about agent i�s state of the world.

(ii) If � ! 2 the matrix 
 tends to 
0, where 
0 is equal to 
 except that row i�s
entries in 
0 are equal to 0. Also

h0ji =

8<: w0ii ! 1 if i = j

�si
�

kpp
Dj
+ krp

d0ij

�
! �1 otherwise
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It is easy to see that the non-negative matrix (I �
0)�1 satis�es that all entries in row i are
also equal to 0; except for (I �
0)�1ii = 1: Hence, following our equilibrium characterization,
the elements b0ji in equilibrium actions would satisfy that, when � ! 2, b0ii ! 1 and
b0ji ! �1 if j 6= i. But this implies that we hit an equilibrium in the boundary that
satis�es b0ji = 0 for all j 6= i. Therefore, again there is neither passive communication by
agent j nor active communication by agent i. �

Proof of Proposition 22

The agents�actions �rst-order conditions are the same as above. Instead the condition on
communication intensities are now

� @

@�ji

nX
k=1

E [uk] =

0@ nX
k=1

dik +
nX
k 6=i

dki

1A b2ij + c0r � 1

�ji

�
= 0

� @

@�ij

nX
k=1

E [uk] =

0@ nX
k=1

dik +
nX
k 6=i

dki

1A b2ij + c0p� 1

�ij

�
= 0

which can be re-written as

rij =

vuut nX
k=1

dik +

nX
k 6=i

dki
bij
kr

for all i 6= j

pij =

vuut nX
k=1

dik +
nX
k 6=i

dki
bij
kp

for all i 6= j

�

Proof of Proposition 25:

The expected utility of team T is given by

�E [uT ] =
X
i2T

dii

0@(bii � 1)2 �i +X
k 6=i

b2ik (�k + �ik + �ik)

1A
+

X
i;j2T;i6=j

tij
2

0@X
k

(bik � bjk)2 �k +
X
k 6=i

b2ik (�ik + �ik) +
X
k 6=j

b2jk
�
�jk + �jk

�1A
+

X
i2T;j =2T

dij

0@X
k

(bik � bjk)2 �k +
X
k 6=i

b2ik (�ik + �ik) +
X
k 6=j

b2jk
�
�jk + �jk

�1A
+
X
i2T

X
j 6=i

cr

�
1

�ji

�
+
X
i2T

X
j 6=i

cp

�
1

�ij

�
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The FOC�s for optimal decisions for an agent i 2 T (i) are

�1
2

@E
�
uT (i)

�
@bii

= dii (1� bii)�i +
X

j2T (i);j 6=i
tij (bii � bji)�i +

X
j =2T (i)

dij (bii � bji)�i = 0

�1
2

@E
�
uT (i)

�
@bik

= diibik (�k + �ik + �ik) +
X

j2T (i);j 6=i
tij [bik (�k + �ik + �ik)� bjk�k]

+
X
j =2T (i)

dij [bik (�k + �ik + �ik)� bjk�k] = 0 ,if k 6= i

�
@E
�
uT (i)

�
@�ik

=

0@dii + X
j2T (i);j 6=i

tij +
X
j =2T (i)

dij

1A b2ik + c0p� 1

�ik

�
= 0

�
@E
�
uT (i)

�
@�ki

=

8<:
�
dkk +

P
j2T (i);j 6=k tjk +

P
j =2T (i) dkj

�
b2ki + c

0
r

�
1
�ki

�
= 0 if k 2 T (i)�P

j2T (i) djk
�
b2ki + c

0
r

�
1
�ki

�
= 0 if k =2 T (i)

These conditions are rewriten as0@dii + X
j2T (i);j 6=i

tij +
X
j =2T (i)

dij

1A bii = dii +
X

j2T (i);j 6=i
tijbji +

X
j =2T (i)

dijbji (9)

0@dii + X
j2T (i);j 6=i

tij +
X
j =2T (i)

dij

1A bik =
rikpik

skrik + skpik + rikpik

0@ X
j2T (i);j 6=i

tijbjk +
X
j =2T (i)

dijbjk

1A(10)
q
dii +

P
j2T (i);j 6=i tij +

P
j =2T (i) dij

kp
bik = pik (11)q

dkk +
P
j2T (i);j 6=k tjk +

P
j =2T (i) dkj

kr
bki = rki if k 2 T (i) (12)qP

j2T (i) djk

kr
bki = rki if k =2 T (i) (13)

If i 2 T (k), plugging the expressions of (11) and (12) in (10), we obtain:

bik �
X

j2T (i);j 6=i

tij
dii +

P
j2T (i);j 6=i tij +

P
j =2T (i) dij

bjk �
X
j =2T (i)

dij
dii +

P
j2T (i);j 6=i tij +

P
j =2T (i) dij

bjk

= � skkp + skkrq
dii +

P
j2T (i);j 6=i tji +

P
j =2T (i) dij
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While, if k =2 T (i), plugging the expressions of (11) and (13) in (10), we obtain:

bik �
X

j2T (i);j 6=i

tij
dii +

P
j2T (i);j 6=i tij +

P
j =2T (i) dij

bjk �
X
j =2T (i)

dij
dii +

P
j2T (i);j 6=i tij +

P
j =2T (i) dij

bjk

= �

0@ skkpq
dii +

P
j2T (i);j 6=i tij +

P
j =2T (i) dij

+
skkrqP
j2T (k) dji

1A
These two sets of equations can be subsumed in matricial form as

(I��) � b�k = z�k

with matrix � and vector z�k as previously de�ned. �

Proof of Proposition 26

Suppose C = F and L! 0. In the four-agent case, the limit of 
 is

1

W

2664
W �F �F 0
�F W 0 �F
�F 0 W �F
0 �F �F W

3775
with inverse

1

W 2 � 4F 2

2664
W 2 � 2F 2 FW FW 2F 2

FW W 2 � 2F 2 2F 2 FW
FW 2F 2 W 2 � 2F 2 FW
2F 2 FW FW W 2 � 2F 2

3775
As communication costs tend to zero, the decision coe¢ cients tend to

1

W 2 � 4F 2

2664
W 2 � 2F 2 FW FW 2F 2

FW W 2 � 2F 2 2F 2 FW
FW 2F 2 W 2 � 2F 2 FW
2F 2 FW FW W 2 � 2F 2

3775
2664

W�2F
W
0
0
0

3775

=

26664
1
W
W 2�2F 2
W 2�4F 2 (W � 2F )
F

W 2�4F 2 (W � 2F )
F

W 2�4F 2 (W � 2F )
2 F 2

W (W 2�4F 2) (W � 2F )

37775
If we group agents by function, we have

� =
1

W + F

2664
W + F �2F �F 0
�2F W + F 0 �F
�F 0 W + F �2F
0 �F �2F W + F

3775
52



with inverse2664 W + F

�16F 3W � 4F 2W 2 + 4FW 3 +W 4

�4F 3 � 2F 2W + 3FW 2 +W 3 �4F 3 + 4F 2W + 2FW 2 4F 3 + 2F 2W + FW 2 4F 3 + 4WF 2

�4F 3 + 4F 2W + 2FW 2 �4F 3 � 2F 2W + 3FW 2 +W 3 4F 3 + 4WF 2 4F 3 + 2F 2W + FW 2

4F 3 + 2F 2W + FW 2 4F 3 + 4WF 2 �4F 3 � 2F 2W + 3FW 2 +W 3 �4F 3 + 4F 2W + 2FW 2

4F 3 + 4WF 2 4F 3 + 2F 2W + FW 2 �4F 3 + 4F 2W + 2FW 2 �4F 3 � 2F 2W + 3FW 2 +W 3

3775
As communication costs tend to zero, the decision coe¢ cients tend to26664

W�2F
�16F 3W�4F 2W 2+4FW 3+W 4

�
�4F 3 � 2F 2W + 3FW 2 +W 3

�
(W � 2F ) �4F 3+4F 2W+2FW 2

�16F 3W�4F 2W 2+4FW 3+W 4

(W � 2F ) 4F 3+2F 2W+FW 2

�16F 3W�4F 2W 2+4FW 3+W 4

(W � 2F ) 4F 3+4WF 2

�16F 3W�4F 2W 2+4FW 3+W 4

37775
Compare bC with an without teams

2
F 2

W (W 2 � 4F 2) �
4F 3 + 2F 2W + FW 2

�16F 3W � 4F 2W 2 + 4FW 3 +W 4
= � F

W (4F +W )

which shows that bC is always lower when units are grouped by function.
It is also immediate to see that, as L ! 0, active communication within countries is

given by p
F

kr
bC

Hence, also active communication goes down when units are grouped by function.
Instead, the sign of the change in passive communication precision is ambiguous. Hence,

the chang ein overall communication precision is ambiguous too. �

Appendix B. Uniqueness

Consider the following variation of our game:

� payo¤s are the same as before

� local information is bounded: �i 2
�
���; ��

�
, with �� 2 R, follows a truncated normal

distribution with mean 0 and precision s.

� the set of possible actions is bounded. In particular, ai 2 [��a; �a] for all i, where
�a = c��, for some c � 1. Note that this implies that

�
���; ��

�
� [��a; �a].

� communication reports are de�ned as in text and, thus, are unbounded: yij = �i +
"ij + �ij with

"ij � N (0; rij)

�ij � N (0; pij)
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Observe that as �� ! +1 we converge to our initial speci�cation of the model.

We de�ne the following expectation operators: Ei [�] = E
h
� j �i; fyijgj 6=i

i
for every

i 2 f1; : : : ; ng :

Lemma 27 For any action pro�le (a1; : : : ; an) we have that !ii�i+
P
j 6=i !ijEi [aj ] 2 [��a; �a]

for all i.

Proof. Just note that Ei [aj ] 2 [��a; �a] for all i; j. Since �i 2
�
���; ��

�
� [��a; �a], the linear

combination !ii�i +
P
j 6=i !ijEi [aj ] must be in [��a; �a].

Lemma 28 The matrix 
 with o¤-diagonal entries equal to !ij and diagonal entries equal
to 0 is a contraction.

Proof. Gerschgorin theorem says that all eigenvalues of a matrix M are in the union of
the following sets

Fi =

8<:� j j��miij �
X
j 6=i

jmij j

9=; :
In our case, !ii = 0 and

P
j 6=i j!ij j = 1�

dii
Di
, and hence all eigenvalues have absolute value

smaller than 1. This is the necessary and su¢ cient condition for 
 being a contraction.

Proposition 29 Given ��; �a, and (rij ; pij)i;j the game in which agents choose actions faigi
has a unique equilibrium.

Proof. Expected payo¤s are

�Ei [ui] = dii (ai � �i)2 +
X
j 6=i

dij
�
a2i � 2aiE [aj ] + E

�
a2j
��
� k2r

X
j 6=i

rji � k2p
X
j 6=i

pij :

Therefore, �rst order conditions with respect to actions are

�@Ei [ui]
@ai

= 2dii (ai � �i) + 2
X
j 6=i

dij (ai � Ei [aj ]) = 0:

Given information sets fyigi individual actions satisfy Kuhn-Tucker�s conditions. Thus, for
each i 2 f1; : : : ; ng either

ai = !ii�i +
X
j 6=i

!ijEi [aj ]

or
ai 2 f��a; �ag :

More precisely:

BRi (a�i) =

8<:
!ii�i +

P
j 6=i !ijEi [aj ] if !ii�1 +

P
j 6=i !ijEi [aj ] 2 [��a; �a]

�a if !ii�1 +
P
j 6=i !ijEi [aj ] > �a

��a if !ii�1 +
P
j 6=i !ijEi [aj ] < ��a
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We can make use of Lemma 27 to show that, indeed,

BRi (a�i) = !ii�i +
X
j 6=i

!ijEi [aj ] for all i:

Hence, equilibrium conditions become

a�i = !ii�i +
X
j 6=i

!ijEi
�
a�j
�

i = 1; : : : ; n: (14)

Nesting these conditions we get

a�i = !ii�i+
X
j 6=i

!ijEi

24!jj�j +X
k 6=j

!jkEj [a
�
k]

35 = !ii�i +X
j 6=i

!ij!jjEi [�j ]| {z }
expectations on primitives

+
X
j 6=i

X
k 6=j

!ij!jkEiEj [a
�
k]| {z }

strategic interdependence

(15)
The last term in this expression allows for a new level of nestedness that we obtain plugging
(14) in (15):

a�i = !ii�i +
X
j 6=i

!ij!jjEi [�j ] +
X
j 6=i

X
k 6=j

!ij!jk!kkEiEj [�k]| {z }
expectations on primitives

+
X
j 6=i

X
k 6=j

X
s 6=k

!ij!jk!ksEiEjEk [a
�
s]| {z }

strategic interdependence

Observe that, again, this last interdependence term allows for adding another level of nest-
edness, and that we can keep repeating this nestedness procedure up to any level. In
particular, if we repeat this l times we obtain the following expression

a�i = !ii�i +
X
k 6=i

!ik!kkEi [�k] + � � �+
X
i1

� � �
X
il

X
k 6=il

!i;i1 � � �!il;k!kkEiEi1 � � �Eil [�k]| {z }
expectations on primitives

(16)

+
X
i1

� � �
X
il

X
k 6=il

X
s 6=k

!i;i1 � � �!il;k!ksEiEi1 � � �EilEk [a�s]| {z }
strategic interdependence

(17)

where, i1; : : : ; il are indices that run from 1 to n.
We want to show that as l ! +1 this expression converges and, therefore, that the

equilibrium is unique. We are going to show this in two steps:

(i) �rst, we are going to show that the limit when l ! +1 of expectations on primi-
tives is bounded above and below; this ensures that the expression of expectations on
primitives is well-de�ned at the limit;

(ii) second, we are going to show that the expression of strategic interdependencies van-
ishes when l! +1.
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The proofs of both steps rely on Lemma 28.
To prove (i), �rst note that all expectations Ei [�k] ; EiEj [�k] ; : : : ; EiEi1 � � �Eil [�k] are

bounded above by �� and bounded below by ���: Then, the expressionX
k 6=i

!ik!kkEi [�k]+
X
j 6=i

X
k 6=j

!ij!jk!kkEiEj [�k]+� � �+
X
i1

� � �
X
il

X
k 6=il

!i;i1 � � �!il;k!kkEiEi1 � � �Eil [�k]

is bounded above by

��

0@X
k 6=i

!ik!kk +
X
j 6=i

X
k 6=j

!ij!jk!kk + � � �+
X
i1

� � �
X
il

X
k 6=il

!i;i1 � � �!il;k!kk

1A
and bounded below by

���

0@X
k 6=i

!ik!kk +
X
j 6=i

X
k 6=j

!ij!jk!kk + � � �+
X
i1

� � �
X
il

X
k 6=il

!i;i1 � � �!il;k!kk

1A :
We can apply now the following result: the entry (i; j) of 
l, that we denote ![l]ij ; is

equal to
P
i1
� � �
P
il�1

!i;i1!i1;i2 � � �!il�2;il�1!il�1;j . Hence

X
k 6=i

!ik!kk +
X
j 6=i

X
k 6=j

!ij!jk!kk + � � �+
X
i1

� � �
X
il

X
k 6=il

!i;i1 � � �!il;k!kk = !kk
lX

j=1

!
[j]
ik

The element
Pl
j=1 !

[j]
ik is the (i; k) entry of the matrix

P
1�j�l


j : A su¢ cient condition
for the in�nite sum

P
j�1


j to converge is that 
 is a contraction. Thus by Lemma

28 !kk
Pl
j=1 !

[j]
ik is bounded when l ! +1 and hence the expression of expectations on

primitives is bounded too. This proves (i).
To prove (ii), �rst note that, trivially, EiEi1 � � �EilEk [a�s] is bounded above by �a and

below by ��a. Hence the expressionX
i1

� � �
X
il

X
k 6=il

X
s 6=k

!i;i1 � � �!il;k!ksEiEi1 � � �EilEk [a�s]

is bounded above by
�a
X
i1

� � �
X
il

X
k 6=il

X
s 6=k

!i;i1 � � �!il;k!ks

and below by
��a
X
i1

� � �
X
il

X
k 6=il

X
s 6=k

!i;i1 � � �!il;k!ks:

Then, since
P
i1
� � �
P
il

P
k 6=il

P
s 6=k !i;i1 � � �!il;k!ks =

P
s 6=k !

[l+1]
is and ![l+1]is ! 0 when

l ! 1 for all s = 1; : : : ; n,17 we can ensure that
P
s !

[l+1]
is ! 0 when l ! 1. Therefore,

17This is, precisely, because
P

l�1

l converges:
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the upper and lower bounds of the strategic intrerdependecies term tend to 0 when l!1:
This proves (ii).

Observation: This proof does not require our structure of communication reports.
Any other information structure would do not change the unicity result. Of course, it
would change the shape of this equilibrium.

Proposition 30 The unique equilibrium of the game when �� ! +1 (and, therefore, �a !
+1 too) is linear.

Proof. The previous proposition states that the equilibrium for any given �� and �a is given
by

a�i = lim
l!+1

8<:!ii�i +X
k 6=i

!ik!kkEi [�k] + � � �+
X
i1

� � �
X
il

X
k 6=il

!i;i1 � � �!il;k!kkEiEi1 � � �Eil [�k]

9=; :
(18)

We have to compute explicitly the expectations in the previous expression when �� !
+1: Observe that when �� ! +1 all �is probability distributions tend to the normal
distribution with mean 0 and precision s. Bayesian updating with normal distributions
takes a simple linear form. To be more precise, in our setup, since the mean of all prior
distributions is equal to 0, we have that

Ei [�j ] = �ijyij for all i 6= j
Ei [yjk] = �ijkyik for all k 6= i 6= j 6= k

with �ij 2 [0; 1] and �ijk 2 [0; 1] being constants that depend on the precisions (rij ; pij)i;j
that are chosen at the �rst stage of the game. Observe that this immediately implies
that also higher-order expectations EiEi1 � � �Eil [�k] are linear in fyijgj 6=i. In particular,
EiEi1 � � �Eil [�k] = '

[l]
ikyik where '

[l]
ik is a product of one � (in particular, of �il;k) and l � 1

di¤erent �s. Note that '[l]ik 2 [0; 1] for all i; k; l. Therefore

a�i = !ii�i +
X
k

!kk

+1X
l=1

'
[l]
ik!

[l]
ikyik for all i: (19)

To show that this expression is well-de�ned we proceed in a similar way than in the
proof of Proposition 29: The expression

P+1
l=1 '

[l]
ik!

[l]
ik is weighted below by 0 and above byP+1

l=1 !
[l]
ik. This last in�nite sum is the entry (i; k) of the matrix

P
l�1


l that is well-de�ned
because 
 is a contraction. Thus, we conclude that the expression in 19 is well-de�ned for

all players and linear in
�
�i; fyijgj 6=i

�
for each i 2 f1; : : : ; ng :

Appendix C. Precluding Communication and Tranfers

In this appendix we want to show up a possible strategic e¤ect that we have not considered
in text. Besides direct communication, another possible tool an agent could use for his own
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purpose is trying to exclude some possible ways of communication. For example, an agent
can inhibit a communication channel by paying some monetary transfer to the agents that
would be involved in it. With the use of a simple three-agent numerical example we show
that this incentive exists.

Consider an organization formed by three agents with interaction matrix

D =

0@0:3 0:3 1
0:3 0:3 1
1 100 1

1A
and such that si = 0:1 for all i, kr = kr = 0:01. Agents 1 and 2 occupy an equivalent position
inside the organization, and they want primarly to coordinate with agent 3. Instead, agent 3
shows a severe coordination motive with agent 2, compared with any other payo¤externality.

When considering unrestricted communication, as we do in text, the �nal utilities of
each agent are

u1 = �7: 034 6; u2 = �3: 593 2; u3 = �17: 789:
If, instead, we consider a setup with inhibited communication in which agents 1 and 2

can not communicate with each other, some algebra shows that agents�utilities under this
communication restriction are

u1 = �11: 446; u2 = �6: 129 7; u3 = �16: 267:

Comparing utilities in both cases, one immediately observes that agent 3 bene�ts from
inhibited communication in the communication lines among agents 1 and 2, while this two
agents end up in a worst situation. This suggests that there is room in this model to analyze
monetary transfers among agents to limit information transmission. Of courses, this would
rise up other strategic considerations, such as the enforcement of the possible agreements
reached, something that would possibly displace the focus and aim of our analysis.

Appendix D. Broadcasting

We analyze here a variation of the game theoretical version of our model. In particular, we
consider the situation in which each agent chooses a unique ri, a common precision for active
communication with the rest of individuals. This can be understood as an approximation to
the analysis of broadcasting. Agents exert the same e¤ort in actively communicating with
every else but can freely choose to which messages they want to pay more atention. This
could be the case of e-mail lists, where the sender is allowed to send a unique message tot he
organization as a whole, and it is at the discretion of each one of the receivers to attend to it.
In our model, when the agent chooses the precision ri, he determines the possible ambiguity
in the message: if the signal is very precise, everybody is going to receive essentially the
same common signal; if the signal is very noisy, the receiver needs to exert a high e¤ort to
decode this message.

Before proceeding to present and prove the chracterization of the equilibrium in the
broadcasting case we need to introduce a bit of notation. Given a vector ��i Let

gji (��i) =

8<: !ii if i = j

�si
�

kpp
Dj
+ kr

�ij

�
otherwise
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Observe that this is a variation of the previously de�ned

Proposition 31 For any (D; s), if kr and kp are su¢ ciently low, the game ~� (D;k; s) has
a unique pure-strategy equilibrium:

(i) Decisions are given by

b�j = (I �
)�1 � g�j(��j) for all j;

where ��j is an endogenously determined vector with positives entries that satisfy
P
k 6=j djkb

2
kj =

�2ijb
2
ij

(ii) Active communication is

ri =
�ijbij
kr

for all j;

(iii) Passive communication is

pij =

p
Dibij
kp

for all i 6= j

Proof. If agent i chooses a unique �i, the set of �rst-order conditions is equal to

�1
2

@E [ui]

@bii
= dii (bii � 1)�i +

X
k 6=i

dij (bii � bji)�i = 0

�1
2

@E [ui]

@bij
= diibij

�
�j + �j + �ij

�
+
X
k 6=i

dik
�
(bij � bkj)�j + bij�j + bij�ij

�
= 0

�@E [ui]
@�i

=
X
j 6=i

dijb
2
ji + c

0
r

�
1

�i

�
= 0

�@E [ui]
@�ij

= Dib
2
ij + c

0
p

�
1

�ij

�
= 0:

This set of �rst-order conditions is equivalent to

Dibii = dii +
X
k 6=i

dijbji (20)

Dibij =
�j

�j + �j + �ij

X
k 6=i

dikbkj (21)

qP
k 6=i dikb

2
ki

kr
= ri (22)

p
Dibij
kp

= pij (23)

Since
rjpij

sjrj + sjpij + rjpij
=

�j
�j + �j + �ij
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condition (21) becomes

Dibij =
rjpij

sjrj + sjpij + rjpij

X
k 6=i

dikbkj

By permuting i and j in this last expression, we get

Djbji =
ripji

siri + sipji + ripji

X
k 6=i

djkbki (24)

Since qP
k 6=i dikb

2
ki

kr
= ri

we can de�ne an endogenous value �ji such that
qP

k 6=i dikb
2
ki = �jibji for each j 6= i. In

particular, it is the unique positive number such that
P
k 6=i dikb

2
ki = �

2
jib
2
ji. Then, the �rst

order condition associated to �i can be rewriten as

�jibji
kr

= ri

for any j 6= i. Plugging this expression and (23) in (24), we get that

bji �
X
k 6=i

wjkbki = �si

 
kpp
Dj

+
kr
�ji

!
for all i

or, equivalently, in matrix form

b�i = (I�
)�1 � g(��i)

Observe that the main di¤erence of the equilibrium action in the broadcasting case
compared with the one in Theorem 6 is the change from the vector h to the vector g. The
matrix that relates these vectors with the equilibrium actions b remains the same in both
cases.

A natural question that arises with the analysis of this new communication protocol is
whether we should expect that agents engage in more active communication than before or
not. The following result gives us an answer in terms of the ratio of passive versus active
communication already considered in a previous section.

Proposition 32 In the symmetric case, in which dij = �dQ for all i 6= j and dii =�
1� (n� 1) �d

�
Q; for some Q > 0; the ratio of passive versus active communication is

kp
kr

q
(n� 1) 
ij :
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Proof. Because of symmetry, for all pairwise di¤erent i; j; k we have that bji = bki = b�.
Therefore,

�ji =

sX
k 6=i

dik =
q
(n� 1) �dQ

This implies that p
(n� 1) �dQb�

kr
= ri

p
Qb�

kp
= pij

The ratio between active and passive communication in this case is

ri
pij

=
kp
kr

s
(n� 1) �dQ

Q
=
kp
kr

q
(n� 1) �d = kp

kr

q
(n� 1) 
ij

Again, when active and passive communication are equally costly, i.e kp = kr, the upper
bound for this ratio is 1. Observe also, that the ratio in the case of broadcasting does
not necessarily decreases when n increases. When �d = 1

n , we obtain that the ratio of
active versus passive communication is

p
(n� 1) =n; that increases and tends to 1 when

n increases. In clear contrast with the case of pairwise communication, active and passive
communication are almost equal when there are enough agents.

Appendix E. Robustness to Alternative Communication Pro-
tocols

In this appendix we show that linearity of equilibrium is preserved under an alternative com-
munication protocol. This ensures that similar comparative statics results can be obtained
under di¤erent communication restrictions.

Assume that externalities, in the form of coordination requirements, only arise between
pairs of agents that are linked. This is natural in social environments where conformity
with social connections is a determinant of individual behavior.18 Furthermore, assume
that communication is retricted to acquitances. While in our model of organizations, where
the formal hierarchy and the formal and informal chart of communication capabilities don�t
necessarily coincide, this assumption makes sense, for example, in the analysis of communi-
cation in social networks that link friends and acquitances. Keeping the same notation as
in text, this means that pairwise communication between agent i and agent j can only take
place when dij 6= 0.19 Under this speci�cation, di¤ering weights in coordination problems
in the utility function can be interpreted as heterogeneous social preferences, in which an
agent seeks to coordination more precisely with individuals for whom she cares the most.

18See for example, Akerlof (1997) and Bernheim (1994).

19We assume here, in accordance with a vast literature on social networks, that relations are bidirectional
and, hence, that dij 6= 0 whenever dji 6= 0; though dij and dji do not need necesarily to coincide.
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Altogether, matrixD determines both the shape of social preferences and all communication
restrictions.

Communication is modelled in the same terms as in text: two agents i and j that are
linked (dij and dji are di¤erent than 0) choose the precisions for pairwise active and passive
communication. Of course, �rst-order conditions with respect to actions do not change and
lead to the following system of equations, that determines equilibrium conditions:

a�i = !ii�i +
X
j 6=i

!ijEi
�
a�j
�

i = 1; : : : ; n

Hence, the equalities obtained through nestedness (15) and (16) in Appendix B are still
valid under this new speci�cation. To apply a similar argument to the proof of Proposition
30, we want to show that all higher order expectations

Ei1Ei2 � � �Eil [�k]

are linear in communication reports for any sequence i1; : : : ; il. The following observa-
tions are useful:

Ei [�j ] =

�
0 if dij = 0

�ijyij if dij 6= 0

Ei [yjk] =

�
0 if dik = 0

�ijkyik if dik 6= 0

Applying these equalities one immediately obtaines the following result: either the value
of Ei1Ei2 � � �Eil [�k] is going to take the same form as in the proof of Proposition 30 and,
hence, it is linear in yik, or otherwise it is equal to 0. The latter case occurs when either in
the sequence i1; : : : ; il there exists an s � l � 1 such that is and is+1 do not communicate
(i.e. disis+1 = 0) or there exists and s � l � 2 such that is and is+2 do not communicate
(i.e. disis+2 = 0).
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