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Abstract

We consider a timing game with private information about a common values

payoff parameter. Information is only transmitted through the stopping decisions

and therefore the model is one of observational learning. We characterize the sym-

metric equilibria of the game and we show that even in large games where pooled

information is sufficiently accurate for first best decisions, aggregate randomness

in outcomes persists. Furthermore, the best symmetric equilibrium induces delay

relative to the first best.

1 Introduction

We analyze a game of timing where the players are privately informed about the optimal

time to stop the game. The stopping decision may, for example, relate to irreversible in-

vestment, which is the case analyzed in the real options literature. Our point of departure

from that literature is in the nature of uncertainty. Rather than assuming exogenous un-

certainty in a publicly observable payoff parameter such as the market price, we consider

the case of dispersed private information on the common profitability of the investment.

We assume that information is only transmitted through observed actions. In other words,

our model is one of observational learning, where communication between players is not

allowed.

The key question in our paper is how the individual players balance the benefits from

observing other players’ actions with the costs of delaying their stopping decision beyond
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what is optimal based on their own private information. Observational learning is po-

tentially socially valuable, because it allows common values information to spread across

players. However, when choosing their optimal timing decisions, the players disregard the

informational benefits that their decisions have for the other players. This informational

externality leads to too late stopping decisions from the perspective of effective informa-

tion transmission, and this delay dissipates most of the potential informational benefit

from the observational learning. Our main findings are: i) The most informative sym-

metric equilibrium of the game involves delay, ii) the delay persists even if the number of

players is large, iii) information aggregates in random bursts of action, and iv) aggregate

uncertainty remains even when aggregate information in the model is sufficiently accurate

to determine the optimal investment time.

In our model, the first-best time to invest is common to all players and depends

on a single state variable ω. Without loss of generality, we identify ω directly as the

first-best optimal time to invest. Since all players have information on ω, their observed

actions contain valuable information as long as the actions depend on the players’ private

information.

The informational setting of the game is otherwise standard for social learning models:

The players’ private signals are assumed to be conditionally i.i.d. given ω and to satisfy

the monotone likelihood property. The payoffs are assumed to be quasi-supermodular in

ω and the stopping time t. Given these assumptions, the equilibria in our game are in

monotone strategies such that a higher signal implies a later investment decision. Our

main characterization result describes a simple way to calculate the optimal stopping

moment for each player in the most informative symmetric equilibrium of the game. The

optimal investment time is exactly the optimal moment calculated based on the knowledge

that other (active) players are not stopping. The game has also less informative equilibria,

where all the players, irrespective of their signals, stop immediately because other players

stop as well. These equilibria bear some resemblance to the non-informative equilibria in

voting games with common values as in Feddersen & Pesendorfer (1997), and also herding

equilibria in the literature on observational learning as in Smith & Sorensen (2000).

In order to avoid complicated limiting procedures, we model the stopping game directly

as a continuous-time model with multiple stages. Each stage is to be understood as the

time interval between two consecutive stopping actions. At the beginning of each stage,

all remaining players choose the time to stop, and the stage ends at the first of these

stopping times. The stopping time and the identity of the player(s) to stop are publicly

observed, and the remaining players update their beliefs with this new information and

start immediately the next stage. This gives us a dynamic recursive game with finitely
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many stages (since the number of players is finite). Since the stage game strategies are

simply functions from the type space to non-negative real numbers, the game and its

payoffs are well defined.

The most informative equilibrium path involves two qualitatively different phases.

When a stage lasts for a strictly positive amount of time, we say that the game is in the

waiting phase. Since the equilibrium strategies are monotonic in signals, the fact that no

players are currently stopping implies that their signals must be above some cutoff level.

This in turn implies that it is more likely that the true state is higher, i.e. the first-best

optimal stopping time is later. Thus, during the waiting phase all players update their

beliefs gradually upwards. Eventually the waiting phase comes to an end as some player

stops. At that point, the remaining players learn that the signal of the stopping player

is the lowest possible consistent with equilibrium play, and by monotone likelihood ratio

property they update their belief about the state discretely downwards. As a result, a

positive measure of player types will find it optimal to stop immediately. If such players

exist, the following stage ends at time zero, and the game moves immediately to the next

stage, where again a positive measure of types stop at time zero. As long as there are

consecutive stages that end at time zero, we say that the game is in the stopping phase.

This phase ends when the game reaches a stage where no player stops immediately. The

game alternates between these two phases until all players have stopped. Notice that

information accumulates in an asymmetric manner. Positive information (low signals

indicating early optimal action) arrives in quick bursts, while pessimistic information

indicating higher signals and the need to delay accumulates gradually.

To understand the source of delay in our model, it is useful to point out an inherent

asymmetry in learning in stopping games. That is, while the players can always revise

their stopping decisions forward in time in response to new information, they can not

go backward in time if they learn to be too late. In equilibrium, every player stops at

the optimal time based on her information at the time of stopping. As a consequence,

if at any moment during the game the current estimate of the stopping player is too

high in comparison to the true state realization, then all the remaining players end up

stopping too late. In contrast, errors in the direction of too early stopping times tend to

be corrected as new information becomes available.

We obtain the sharpest results for games with a large number of players. First, in the

large game limit, almost all the players stop too late relative to the first-best stopping

time (except in the case where the state is the highest possible and the first-best stopping

time is the last admissible stopping time). The intuition for this result is straight-forward.

With a large number of players the pooled information contained in the players’ signals is
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precise. If a non-negligible fraction of players were to stop too early, this would reveal the

true state. But then it would be optimal for all players to delay, and this would contradict

the presumption of too early stopping. Second, we show that almost all players stop at

the same instant of real time (even though they may stop in different stages) where the

game also ends. This is because in the informative equilibrium, all observed stopping

decisions are informative. With a large number of players, most of the players thus have

precise information about state when they stop. But as explained above, information can

not aggregate before first-best stopping time, which means that players become aware

of the true state too late. This leads to a collapse where all the remaining players stop

together fully aware of being too late. Finally, we show that even if we condition on the

true state, the time at which the players stop remains stochastic.

Our paper is related to the literature on herding. The paper closest to ours is the

model of entry by Chamley & Gale (1994).1 The main difference to our paper is that in

that model it is either optimal to invest immediately or never. We allow a more general

payoff structure that allows the state of nature to determine the optimal timing to invest,

but which also captures Chamley & Gale (1994) as a special case. This turns out to be

important for the model properties. With the payoff structure used in Chamley & Gale

(1994), uncertainty is resolved immediately but incompletely at the start of the game. In

contrast, our model features gradual information aggregation over time. The information

revelation in our model is closely related to our previous paper Murto & Välimäki (2009).

In that paper learning over time generates dispersed information about the optimal stop-

ping point, and information aggregates in sudden bursts of action. Moscarini & Squintani

(2008) analyze a R&D race, where the inference of common values information is similar

to our model, but as their focus is on the interplay between informational and payoff

externalities, they have only two players. Our focus, in contrast, is on the aggregation of

information that is dispersed within a potentially large population.

It is also instructive to contrast the information aggregation results in our context with

those in the auctions literature. In a kth price auction with common values, Pesendorfer &

Swinkels (1997) show that information aggregates efficiently as the number of object grows

with the number of bidders. Kremer (2002) further analyzes informational properties of

large common values auctions of various forms. In our model, in contrast, the only link

between the players is through the informational externality, and that is not enough

to eliminate the inefficiencies. The persistent delay in our model indicates failure of

information aggregation even for large economies. On the other hand, Bulow & Klemperer

1See also Levin & J.Peck (2008), which extends such a model to allow private information on oppor-

tunity costs.
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(1994) analyzes an auction model that features ”frenzies” that resemble our bursts of

actions. In Bulow & Klemperer (1994) those are generated by direct payoff externalities

arising from scarcity, while in our case they are purely informational.

The paper is structured as follows. Section 2 introduces the basic model. Section 3

establishes the existence of a symmetric equilibrium. Section 4 discusses the properties

of the game with a large number of players. In section 5 we illustrates the model by

Monte-Carlo simulations. Section 6 concludes with a comparison of our results to the

most closely related literature.

2 Model

2.1 Payoffs and signals

N players consider investing in a project. The payoff from an investment at time ti of

each firm depends on the state ω:

v (ti, ω)

For simplicity, we may take

ω = arg max
t
v (t, ω) .

The players share a common prior p0 (ω) on Ω.

We assume that the payoff function v is quasi-supermodular in ti, ω:

Assumption 1

vi(ti, ω)− vi(t′i, ω)

is strictly single crossing in ω and

vi(ti, ω
′)− vi(ti, ω)

is strictly single crossing in ti.

Because we allow the players to stop at infinity, we use the topology generated by the

one-point compactification of R+∪∞. We assume throughout that v (ti, ω) is continuous in

ti in this topology. 2 Under this assumption, individual stopping problems have maximal

solutions.

Players are initially privately informed about ω. Player i observes privately a signal

θi from a joint distribution G (θ, ω) on [θ, θ] × Ω. We assume that the distribution is

2This assumption holds e.g. under bounded payoff functions and discounting.

5



symmetric across i, and that signals are conditionally i.i.d. Furthermore, we assume that

the conditional distributions G(θ | ω) and corresponding densities g(θ | ω) are well defined

and they have full supports [θ, θ] independent of ω.

We assume that the signals satisfy monotone likelihood property (MLRP).

Assumption 2 For all i, θ′ > θ, and ω′ > ω,

g(θ′ | ω′)
g(θ | ω′)

>
g(θ′ | ω)

g(θ | ω)
.

This assumption allows us to conclude that optimal individual stopping times for

player i, ti(θ) is monotonic in other players’ types: For all j,

∂ti(θ)

∂θj
≥ 0.

Assumption 2 also guarantees that the pooled information in the game becomes arbi-

trarily revealing of the state as N is increased towards infinity.

Furthermore we make the assumption that the information content in individual sig-

nals is bounded.

Assumption 3 There is a constant κ > 0 such that

∀θ, ω, 1

κ
> g (θ, ω) > κ.

Finally, we assume that signal densities are continuous in θ:

Assumption 4 For all ω, g(θ | ω) is continuous in θ within [θ, θ].

2.2 Strategies and information

The game has consists of a random number of stages with partially observable actions. In

stage 0, all players choose their investment time τ 0
i (θi) ∈ [0,∞] depending on their signal

θ. The stage ends at t0 = mini τ
0
i . At that point, the set of players S0 = {i : τ 0

i (θi) = t}
is announced, but the actions of the other players are not observed. The public history

after stage 0 and at the beginning of stage 1 is then h1 = (t0,S0) . The vector of signals

θ and the stage game strategy profile τ (θ) = (τ 1 (θ1) , ..., τN (θN)) induce a probability

distribution on the set of histories H1.The public posterior on Ω (conditional on the

public history only) at the end of stage 0 is given by Bayes’ rule:

p1
(
ω
∣∣h1
)

=
p0 (ω) Pr (h1 |ω )∫
Ω
p0 (ω) Pr (h1 |ω )

.
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In each stage k, players that have not yet invested choose an investment time τ ki . The

public history available to the players is

hk = hk−1 ∪
(
tk−1,Sk−1

)
.

A strategy in the game is a callection of stage game stategies

τ i : = {τ ki }Kk=0

τ ki : Hk × [θ, θ]→ ∆[0,∞].

A stretegy profile τ = (τ i, ..., τN) is a Perfect Bayesian Equilibrium of the game if for all

i and all θi and hk, τ ki is a best response to τ−i.

It is useful to record the real time elapse at the start of stage k:

T k =
k−1∑
i=0

tk.

3 Monotone Symmetric Equilibrium

In this section, we analyze symmetric equilibria in monotone pure strategies.

Definition 5 A strategy σi is monotonic if for all k, hk and for all θi > θ′i,

σki
(
hk, θi

)
> σki

(
hk, θ′i

)
.

For each tk let

θk := max
{
θ
∣∣τ k (θ) = tk

}
.

In any symmetric equilibrium in monotone pure strategies, public history hk then implies

that θj > θ
(
tk−1

)
for all players j that have not invested yet. Furthermore, if stage k has

not been stopped before t , then each player knows that for all active players j,

θj ≥ θk (t) ,

where θk (·) is the inverse function of τ k (·) , i.e.

τ k
(
θk (t)

)
= t.
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3.1 Informative Equilibrium

In this section, we find the symmetric equilibium that maximizes information transmis-

sion in the set of symmetric monotone pure strategy equilibria. In order to acheive the

characterization, it will be useful to consider the following myopic stopping time:

τ k∗ (θ) := min
{
t ≥ 0

∣∣E [v (t+ T k, ω
) ∣∣hk, θk (t) = θ

]
≥ E

[
v
(
t′ + T k, ω

) ∣∣hk, θk (t) = θ
]

for all t′ ≥ t}. (1)

Note that (1) allows τ k∗ (θ) = ∞. In words, τ k∗ (θ) simply indicates the first time at

which a player with with signal θ wants to stop the game given the information at the

beginning of the stage hk and given the information that for all active playesr j, θj ≥ θ.The

following Lemma states that τ k∗ (θ) is increasing in θ (strictly so when 0 < τ k∗ (θ) < ∞),

and therefore defines a symmetric monotonic strategy profile.

Lemma 6 (Monotonicity of τ k∗ (θ)) Let τ k∗ (θ) denote the stopping strategy defined in

(1).

• If 0 < τ k∗ (θ) < ∞ for some θ ∈
(
θ, θ
)
, then for all θ′ ∈ [θ, θ) and θ′′ ∈

(
θ, θ
]
, we

have

τ k∗ (θ′) < τ k∗ (θ) < τ k∗ (θ′′) .

• If τ k∗ (θ) = 0 for some θ ∈
(
θ, θ
)
, then for all θ′ ∈ [θ, θ) we have τ k∗ (θ′) = 0.

• If τ k∗ (θ) =∞ or some θ ∈
(
θ, θ
)
, then for all θ′′ ∈

(
θ, θ
]

we have τ k∗ (θ′′) =∞.

Proof. These follow directly from the Assumptions 1 and 2.

The next Theorem states that this profile is an equilibrium. The proof makes use of

the one-step deviation principle and the assumption of MLRP. We call this profile the

informative equilibrium of the game.

Theorem 7 (Informative equilibrium) The game has a symmetric equilibrium, where

every player adopts at stage k the strategy τ k∗ (θ) defined in (1).

Proof. Assume that all players i use strategies given by (1) in each stage k. It is clear

that no player can benefit by deviating to τ i < τ k∗ (θi) . Let τ̂ i (θi) > τ k∗ (θi) be the best

deviation for player i of type θi in stage k. Let θ̂i be the type of player i that solves

τ k∗

(
θ̂i

)
= τ̂ i (θi) .
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By Assumptions 1 and 2, we know that θ̂i > θi, and also that

E
[
v
(
t+ T k, ω

) ∣∣∣hk, θk (t) = θ̂i, θi

]
is decreasing in t at t = τ k∗

(
θ̂i

)
. But this contradicts the optimality of the deviation to

τ̂ i (θi) .

Since there are no profitable deviations in a single stage for any type of player i, the

claim is proved by the one-shot deviation principle.

Let us next turn to the properties of the informative equilibrium. The equilibrium

stopping strategy τ k∗ (θ) defines a time dependent cutoff level θk (t) for all t ≥ 0 as follows:

θk∗ (t) ≡


θk if 0 ≤ t < τ k∗

(
θk
)

θ if t > τ k∗
(
θ
)

max
{
θ | τ k∗ (θ) ≤ t

}
if τ k∗

(
θk
)
≤ t ≤ τ k∗

(
θ
) . (2)

In words, θk∗ (t) is the highest type that stops at time t in equilibrium. The key properties

of θk∗ (t) for the characterization of equilibrium are given in Proposition 9 below. Before

that, we note that the equilibrium stopping strategy is left-continuous in θ:

Lemma 8 (Left-continuity of τ k∗ (θ)) Let τ k∗ (θ) denote the informative equilibrium stop-

ping strategy defined in (1). For all θ ∈
(
θ, θ
)
,

lim
θ′↑θ

τ k∗ (θ′) = τ k∗ (θ) .

Proof. Assume on the contrary that for some θ, we have τ k∗ (θ) − limθ′↑θ τ
k
∗ (θ′) > 0

(Lemma 6 guarantees that we can not have τ k∗ (θ)−limθ′↑θ τ
k
∗ (θ′) < 0). Denote ∆t = t′′−t′,

where t′′ = τ k∗ (θ) and t′ = limθ′↑θ τ
k
∗ (θ′). Denote u (t, θ) = E

[
v (t, ω)

∣∣hk, θj ≥ θ
]
. By

definition of τ k∗ (θ), we have then u (t′′, θ) > u (t, θ) for all t ∈ [t′ − δ, t′ + δ] for any

0 < δ < ∆t.

Because signal densities are continuous in θ, u (t, θ) must be continuous in θ. This

means that there must be some ε > 0 such that u (t′′, θ′) > u (t, θ′) for all t ∈ [t′ − δ, t′ + δ]

and for all θ′ ∈ [θ − ε, θ]. But on the other hand limθ′↑θ τ
k
∗ (θ′) = t′ implies that τ k∗ (θ′) ∈

[t′ − δ, t′ + δ] if θ′ is chosen sufficiently close to θ. By definition of τ k∗ (θ′) this means

that u
(
τ k∗ (θ′)

)
≥ u (t′′, θ′), and we have a contradiction. We can conclude that for all θ,

limθ′↑θ τ
k
∗ (θ′) = τ k∗ (θ).

The next proposition allows us to characterize the key properties of the informative

equilibrium. It says that θk (t) is continuous, which means that at each t > 0, only a single

type exits, and hence the probability of more than one player stopping simultaneously is

zero for t > 0. In addition, the Proposition says that along equilibrium path, θk (0) > θk
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for all stages except possibly the first one. This means that at the beginning of each stage

there is a strictly positive probability that many players stop simultaneously.

Proposition 9 θk∗ (t) : [0,∞)→
[
θk, θ

]
defined in (2) is continuous, (weakly) increasing,

and along the path of the informative equilibrium θk∗ (0) > θk for k ≥ 1.

Proof. Continuity and monotonicity of θk (t) follow from definition (2) and the proper-

ties of τ k∗ (θ) given in Lemmas 6 and 8.

Take any stage k ≥ 1 along the informative equilibrium path. To see that we must

have θk (0) > θk, consider how information of the marginal player changes at time tk−1.

If tk−1 = 0, the player with signal θk−1
+ = θk was willing to stop at tk−1 = 0 conditional

on being the lowest type within the remaining players. However, since the stage ended

at tk−1 = 0, at least one player had a signal within
(
θk−1
i , θk−1

+

]
. By MLRP and quasi-

supermodularity, this additional information updates the beliefs of the remaining players

discretely downwards. Therefore, τ k∗ (θ) = 0 for all θ ∈
[
θk, θk + ε

]
for some ε > 0, which

by (2) means that θk (0) > θk.

On the other hand, if tk−1 > 0, the lowest signal within the remaining players in

stage k − 1 was θk−1
+ = θk. The player with this signal stopped optimally under the

information that all the remaining players have signals within
[
θk, θ

]
. But as soon this

player stops and the game moves to stage k, the other players update on the information

that one of the players remaining in the game in stage k−1 had the lowest possible signal

value amongst the remaining players. Again, by MLRP and quasi-supermodularity, the

marginal cutoff moves discretely upwards, and we have θk (0) > θk.

To understand the equilibrium dynamics, note that as real time moves forward, the

cutoff θk (t) moves upward, thus shrinking from left the interval within which the signals

of the remaining players lie. By MLRP and quasi-modularity this new information works

towards delaying optimal stopping time for all the remaining players. At the same time,

keeping information fixed, the passage of time brings forth the optimal stopping time for

additional types. In equilibrium, θk (t) moves at a rate that exactly balances these two

effects keeping the marginal type indifferent. As soon as the stage ends at tk > 0, the

expected value from staying in the game drops by a discrete amount for the remaining

players (again by MLRP and quasi-supermodularity). This means that the marginal

cutoff moves discretely upwards and thus θk+1 (0) > θk
(
tk
)

= θk+1, and at the beginning

of the new stage there is thus a mass point of immediate exits. If at least one player

stops, the game moves immediately to stage k + 2 with another mass point of exits,

and this continues as long as there are consecutive stages in which at least one player

stops at t = 0. Thus, the equilibrium path alternates between ”stopping phases”, i.e.
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consecutive stages that end at t = 0 and result with multiple simultaneous exits, and

”waiting phases”, i.e. stages that continue for a strictly positive time.

Note that the random time at which stage k ends,

tk = τ k∗

(
min
i∈N k

θi

)
,

is directly linked to the first order statistic of the player types remaining in the game

at the beginning of stage k. If we had a result stating that for all k, τ k(θi) is strictly

increasing in θi, then the description of the equilibrium path would be equivalent to

characterizing the sequence of lowest order statistics where the realization of all previous

statistics is known. Unfortunately this is not the case, since for all stages except the very

first one there is a strictly positive mass of types that stop immediately at t = 0, which

means that the signals of those players will be revealed only to the extent that they lie

within a given interval. However, in Section 4.3 we will show that in the limit where the

number of players is increased towards infinity, learning in equilibrium is equivalent to

learning sequentially the exact order statistics of the signals.

3.2 Uninformative equilibria

While the model always admits the existence of the informative symmetric equilibrium

defined above, some stage games also allow the possibility of an additional symmetric

equilibrium, where all players stop at the beginning of the stage irrespective of their

signals. We call these uninformative equilibria.

To understand when such uninformative equilibria exist, consider the optimal stopping

time of a player who has private signal θ, conditions on all information sk obtained in

all stages k′ < k, but who does not obtain any new information in stage k. Denote the

optimal stopping time of such a player by τ k (θ):

τ k (θ) ≡ min
{
t ≥ 0

∣∣E [v (t+ T k, ω
) ∣∣sk, θ ] ≥ E

[
v
(
t′ + T k, ω

) ∣∣sk, θ ] for all t′ ≥ t
}
.

If τ k (θ) > 0 for some θ ∈ [θ, θ], then an uninformative equilibrium cannot exist: it is

a strictly dominant action for that player to continue beyond t = 0. But if τ k (θ) = 0 for

all players, then an uninformative equilibrium indeed exists: If all players stop at t = 0

then they learn nothing from each other. And if they learn nothing from each other, then

t = 0 is their optimal action.

Since τ k (θ) is clearly increasing in θ, the existence of uninformative equilibria depends

simply on whether τ k
(
θ
)

is zero:
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Proposition 10 If at stage k we have τ k
(
θ
)

= 0, then the game has a symmetric equilib-

rium, where at stage k all active players stop at time τ k = 0 irrespective of their signals.

The equilibrium, where all the active players choose τ k = 0 in all stages with τ k
(
θ
)

=

0, is the least informative equilibrium of the game. There are of course also intermediate

equilibria between the informative and least informative equilibria, where at some stages

with τ k
(
θ
)

= 0 players choose τ k (θ) defined in (1), and in others they choose τ = 0.

Note that there are also stages where the informative equilibrium commands all players

to stop at t = 0. This happens if the remaining players are so much convinced that they

have already passed the optimal stopping time that even finding out that all of them

have signals θ = θ would not make them think otherwise. In that case τ k (θ) = 0 for all

θ ∈ [θ, θ], where τ k (θ) is defined in (1).

It is easy to rank the symmetric equilibria of the game. The informative equilibrium

is payoff dominant in the class of all symmetric equilibria of the game. The option of

stopping the game is always present for all players in the game, and as a result, not

stopping must give at least the same payoff.

4 Informative Equilibrium in Large Games

In this section we study the limiting properties of the model, when we increase the number

of players towards infinity. In subsection 4.1 we show that the informative equilibrium

exhibits delay and randomness. In subsection 4.2 we discuss the effect on the players’

payoffs of the observational learning. In subsection 4.3 we analyze the information of the

players in equilibrium, and derive a simple algorithm for simulating the equilibrium path

directly in the large game limit.

4.1 Delay in Equilibrium

We state here a theorem that characterizes the equilibrium behavior in the informative

equilibrium for the model with a general state space Ω in the limit N →∞. Let TN(θ, ω)

denote the random exit time (in real time) in the informative equilibrium of a player with

signal θ when the state is ω and the number of players at the start of the game is N . We

will be particularly interested in the behavior of TN(θ, ω) as N grows and we define

T (ω, θ) ≡ lim
N→∞

TN(ω, θ),
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where the convergence is to be understood in the sense of weak convergence.3 Since we

have assumed Ω to be compact, we know that the sequence TN(θ, ω) has a convergent

subsequence. For now, we take T (ω, θ) to be the limit of any such subsequence. Along

the way, we shall prove that this is also the limit of the original sequence.

The real time instant when the last player with signal θ stops is given by TN(ω, θ) and

we let

TN(ω) ≡ TN(ω, θ) and T (ω) ≡ lim
N→∞

TN(ω).

We let F (t | ω) denote the distribution of T (ω), or in other words,

F (t | ω) = Pr{T (ω) ≤ t},

and use f(t | ω) to refer to the corresponding probability density function. The following

Theorem characterizes the asymptotic behavior of the informative equilibrium as the

number of players becomes large.

Theorem 11 In the informative equilibrium of the game, we have for all ω < ω,

1. suppf(t | ω) = [max{t(θ), ω}, ω].

2. For all θ, θ′ ∈
(
θ, θ
]
,

lim
N→∞

Pr{TN(ω, θ) = TN(ω, θ′)} = 1.

Proof. In a symmetric equilibrium, no information is transmitted before the first exit.

By monotonicity of the equilibrium strategies, a lower bound for all exit times and hence

also for TN(ω) for all N is t(θ).

Consider next an arbitrary θ′ > θ. By the law of large numbers, we have for all ω :

#{i ∈ {1, ..., N} |θi < θ′}
N

→ G (θ′ |ω ) .

By Assumption 3, and the law of large numbers, for each θ′ there is a θ′′ < θ′ such that

for all ω < ω and all t < ω

lim
N→∞

Pr{∃k such that θk+ < θ′′ < θ′ < θk+1
+ } = 0.

This follows from the fact that

lim
θ′′→0

G (θ′′ |ω )

G (θ′ |ω )
= 0,

3In our setting, this is also equivalent to convergence in distribution.
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and the fact that by Assumption 2, for all ω′ 6= ω,

lim
N→∞

(
G (θ′ |ω′ )
G (θ′ |ω )

)N
= 0.

Consider therefore the stage k′ where a player with the signal θ′ stops. Then θ′′ <

θk
′−1

+ < θ′, and the player with signal θ′′ knows

#{i ∈ {1, ..., N}
∣∣∣θi < θk

′−1
+ }

N
.

By the law of large numbers, this is sufficient to identify ω. This implies part 2 of the

Theorem and also that suppf(t | ω) ⊂ [max{t(θ), ω}, ω] .

The lower bound of the support is by the argument above max{t(θ), ω}, and the

remaining task is to argue that the upper bound of the support is ω. This follows easily

from the fact that if Pr{TN(ω) < t} → 1 for some t < ω, then the first exit must take place

before t with probability 1 but this is inconsistent with symmetric informative equilibrium

in monotonic strategies. To see this, let t′ ≤ t be the smallest instant such that

lim
N→∞

Pr{∃i ∈ {1, ..., N} : τ 1
∗ (θi) ≤ t′} = 1.

By Assumption 2, conditional on no exit by t′, the posterior probability on Ω converges

to a point mass on ω.

4.2 Payoffs in equilibrium

We turn next to the effect of observational learning on the players’ payoffs. To be precise

about this, we define three ex-ante payoff functions. First, we denote by V 0 the ex-ante

value of a player whose belief on the state is given by the prior:

V 0 =
∑
ω∈Ω

π0 (ω) v
(
T 0, ω

)
,

where T 0 is the optimal timing based on the prior only:

T 0 = arg max
t

∑
ω∈Ω

π0 (ω) v (t, ω) .

Second, consider a player who has a private signal but does not observe other players.

The ex-ante value of such an ”isolated” player is:

V 1 =
∑
ω∈Ω

π0 (ω)

θ∫
θ

g(θ | ω)v
(
T θ, ω

)
dθ

 ,
14



where T θ is the optimal stopping time with signal θ and πθ (ω) is the corresponding

posterior:

T θ ≡ arg max
t

∑
ω∈Ω

πθ (ω) v (t, ω) ,

πθ (ω) ≡ π0 (ω) g(θ | ω)∑
ω∈Ω

π0 (ω) g(θ | ω)
.

Third, consider a player in the informative equilibrium of the game. We assume

that N is very large, which by Theorem 11 means that almost all players stop at the

same random time T (ω) (the moment of collapse). From an ex-ante point of view, the

equilibrium payoff is determined by its probability distribution f (t | ω). The ex-ante

equilibrium payoff is thus:

V ∗ =
∑
ω∈Ω

π0 (ω)

∞∫
0

f (t | ω) v (t, ω) dt

 . (3)

It is clear that additional learning can never reduce the ex-ante value, and therefore

we must have:

V ∗ ≥ V 1 ≥ V 0.

We call V P ≡ V 1−V 0 the value of private learning, and V S ≡ V 1−V ∗ the value of social

learning. In Section 5 we demonstrate numerically that V S and V P are closely related to

each other. In particular, the value of social information increases as the value of private

information is increased. We can also derive analytically an upper bound for V S, which

shows that whenever the individual private signals are non-informative in the sense that

V P is very small, then also V S must be small (this holds even if the pooled information

is still arbitrarily informative).

An important effect of observational learning is that it increases the sensitivity of

players’ payoffs to the realized state of nature. We will demonstrate this effect numerically

in Section 5. We can also define value functions conditional on realized signal:

V 1 (θ) =
∑
ω∈Ω

πθ (ω) v
(
T θ, ω

)
,

V ∗ (θ) =
∑
ω∈Ω

[
πθ (ω)V ∗ (ω)

]
.

We conjecture that V S (θ) ≡ V ∗ (θ)−V 1 (θ) is increasing in θ, that is, the additional value

of observational learning is more valuable to players who have obtained a high signal. The

intuition runs as follows. If the true state is low, a player with a high signal benefits a lot

15



from the information released by the other players who have low signals (since they will

act before her). But if the true state is high, a player with a low signal will learn nothing

from the other players that have higher signals (because those players will act after her).

The computations in Section 5 support this conjecture.

It is clear that the player with the lowest possible signal cannot benefit from obser-

vational learning at all (she must be indifferent between following her own signal and

following an equilibrium strategy), and we must therefore have

V 1 (θ) = V ∗ (θ) .

4.3 Information in equilibrium

The properties of the informative equilibrium rely on the statistical properties of the order

statistics of the players’ signals. In this subsection we analyze the information content in

those order statistics in the limit N →∞.

Denote the n:th order statistic in the game with N players by

θ̃
N

n ≡ min
{
θ ∈

[
θ, θ
]
| # {i ∈ N | θi ≤ θ} = n

}
. (4)

It is clear that if we now increaseN towards infinity while keeping n fixed, θ̃
N

n converges

to θ in probability. Therefore, it is more convenient to work with random variable

Y N
n ≡

(
θ̃
N

n − θ
)
·N . (5)

Note that Y N
n has the same information content as θ̃

N

n , but as we will show below, it

will converge in distribution to a non-degenerate random variable. This limit distribution,

therefore, captures the information content of θ̃
N

n in the limit. Let us also define

∆Y N
n ≡ Y N

n − Y N
n−1 =

(
θ̃
N

n − θ̃
N

n−1

)
·N , (6)

where by convention we let θN0 ≡ θ and Y N
0 ≡ 0. Furthermore, let [∆Y ∞1 , ...,∆Y ∞n ] be

a vector of n independent exponentially distributed random variables with parameter

g (θ | ω):

Pr (∆Y ∞1 ≤ x1, ...,∆Y
∞
n ≤ xn) = e−g(θ|ω)·x1 · ... · e−g(θ|ω)·xn .

Proposition 12 Fix n ∈ N+ Consider the sequence of random variables
{[

∆Y N
1 , ...,∆Y N

n

]}∞
N=n

, where for each N the random variables ∆Y N
i are defined by (4) - (6). As N →∞, we

have: [
∆Y N

1 , ...,∆Y N
n

] D→ [∆Y ∞1 , ...,∆Y ∞n ] ,

where
D→ denotes convergence in distribution.
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Proof. The probability distribution of ∆Y N
n , conditional on Y N

n−1 is given by:

Pr
(
∆Y N

n ≤ x | Y N
n−1

)
= Pr

((
θ̃
N

n − θ̃
N

n−1

)
·N ≤ x | θ̃

N

n−1

)
= Pr

(
θ̃
N

n ≤ θ̃
N

n−1 +
x

N
| θ̃

N

n−1

)
= 1−

1−

(
G
(
θ̃
N

n−1 + x
N
| ω
)
−G

(
θ̃
N

n−1 | ω
))

1−G
(
θ̃
N

n−1 | ω
)

N−n

.

Noting that as N →∞, we have θ̃
N

n−1
P→ θ and x

N
→ 0, and therefore we have:

N ·

(
G
(
θ̃
N

n−1 + x
N
| ω
)
−G

(
θ̃
N

n−1 | ω
))

1−G
(
θ̃
N

n−1 | ω
) P→ g (θ | ω) · x.

Noting also that

lim
N→∞

(
1− g (θ | ω) · x

N

)N−n
= e−g(θ|ω)·x,

we have:

lim
N→∞

Pr
(
∆Y N

n ≤ x | Y N
n−1

)
= 1− e−g(θ|ω)·x.

This means that ∆Y N
n converges in distribution to an exponentially distributed random

variable with parameter g (θ | ω) that is independent of all lower order statistics.

Note that the limit distribution of ∆Y N
n does not depend on n. Therefore, Y N

n =

Σn
i=1∆Y N

n converges to a sum of independent exponentially distributed random variables,

which means that the limiting distribution of Y N
n is Gamma distribution:

Corollary 13 For all n,

Y N
n =

n∑
i=1

∆Y N
i
D→

n∑
i=1

∆Y ∞i ≡ Y ∞n ,

where Y ∞n ∼ Γ (n, g (θ | ω)).

Proposition 12 means that when N is large, observing the n lowest order statistics

is observationally equivalent to observing n independent exponentially distributed ran-

dom variables. This has an important implication for the Bayesian updating based on

order statistics: observing only the n:th order statistic θ̃
N

n is informationally equivalent to

observing
{
θ̃
N

i

}n
i=1

that contains all order statistics up to n. This is due to the ”memo-

ryless” nature of exponential random variables. To see this formally, write the posterior

belief of an observer who updates her belief on the state of the world based on the real-

ization
{
θ̃
N

i

}n
i=1

(approximating the joint distribution of
(
θ̃
N

i − θ̃
N

i−1

)
·N by exponential
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distribution based on Proposition 12). As can be seen, this posterior depends only on the

realization of θ̃
N

n :

π
(
ω |
{
θ̃
N

i

}n
i=1

)
≈

π0 (ω) ·
n∏
i=1

g (θ | ω) e
−g(θ|ω)

(
θ̃
N
i −θ̃

N
i−1

)
·N

∑
ω∈Ω

π0 (ω) ·
n∏
i=1

g (θ | ω) e
−g(θ|ω)

(
θ̃
N
i −θ̃

N
i−1

)
·N

=
π0 (ω) · (g (θ | ω))n e

−g(θ|ω)
(
θ̃
N
n −θ

)
·N∑

ω∈Ω

π0 (ω) · (g (θ | ω))n e
−g(θ|ω)

(
θ̃
N
n −θ

)
·N
.

So far, we have discussed the properties of the order statistics of the signals without

linking them to the equilibrium behavior. Now we turn to the properties of the infor-

mative equilibrium, and show that in the large game limit the equilibrium path can be

approximated by a simple algorithm that samples sequentially the order statistics. To

make this statement precise, we now fix N and define two different sequences of random

variables, both obtained as mappings from realized signal values to real numbers.

First, for each N , denote by T ∗n (N) the real time at which the number of players that

stop exceeds n in the unique informative equilibrium:

T ∗n (N) ≡ min
{
T k | Qk ≥ n

}
.

The increasing sequence {T ∗n (N)}Nn=1 contains the real stopping moments of all N players

in the game.

Second, we define a sequence of stopping times T̂n (N) calculated directly on the basis

of the order statistics. As an intermediate step, denote by T̃n (N) the optimal stopping

moment given the information contained in the n lowest order statistics:

T̃n (N) ≡ inf
{
t ≥ 0

∣∣∣E [v (t, ω)
∣∣∣{θ̃Ni }n

i=1

]
≥ E

[
v (t′, ω)

∣∣∣{θ̃Ni }n
i=1

]
for all t′ ≥ t

}
.

Next, define random variable T̂n (N) as:

T̂n (N) ≡ max
i=1,...,n

T̃n (N) . (7)

Hence,
{
T̂n (N)

}N
n=1

is the sequence of optimal stopping times based on sequential sam-

pling of order statistics under an additional constraint that one is never allowed to ”go

back in time”, i.e. choose a stopping time lower than some previously chosen stopping

time. Note that both {T ∗n (N)}Nn=1 and
{
T̂n (N)

}N
n=1

are weakly increasing sequences of

random variables.

18



The next proposition says that for any fixed n, the difference between T̂n (N) and

T ∗n (N) vanishes as N goes to infinity (in the sense of convergence in probability). The

key for this result is the finding that inference on order statistics becomes informationally

equivalent to inference based on independent exponentially distributed random variables.

This means that a player that conditions on having the lowest signal among the remaining

players does not learn anything more by conditioning on exact realizations of the signals

lower than hers. Thus, inference based on the exact realizations of lowest order statistics

becomes the same as the inference of the marginal player in equilibrium, who knows the

lowest signal realizations only to the extent that they lie within some fixed intervals.

Proposition 14 Fix n ∈ N+ and consider random variables T ∗n (N) and T̂n (N). As

N →∞, we have:

T̂n (N)− T ∗n (N)
P→ 0.

Proof. Fix n. As N →∞, the updating based on the realizations of the n lowest signals

is informationally equivalent to observing n exponentially distributed random variables

with parameter g (θ | ω). Consider the player that has the n:th lowest signal θ̃
N

n . As N

is increased, this signal is of course arbitrarily close to θ at a probability arbitrarily close

to one. In equilibrium, this player is the n:th to stop (possibly together with some other

players). By (1), her real stopping time T ∗n (N) is optimal conditional on information

that some n′ < n players have signals within [θ, θ′] for some θ′ ≤ θ̃
N

n , no player as signals

within
(
θ′, θ̃

N

n

)
, and she herself has signal θ̃

N

n . In contrast, T̃n (N) is optimal conditional

on n players having signals within
[
θ, θ̃

N

n

]
, which by MLRP and super-modularity means

that for any ε > 0,

lim
N→∞

Pr
(
T̃n (N)− T ∗n (N) > ε

)
= 0.

Since for all N , we have

T̂n (N) ≡ max
i=1,...,n

T̃n (N) and

T ∗n (N) ≥ max
i=1,...,n

T ∗i (N) ,

we have also

lim
N→∞

Pr
(
T̂n (N)− T ∗n (N) > ε

)
= 0.

To show that Pr
(
T ∗n (N)− T̂n (N) > ε

)
→ 0 is conceptually similar.
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5 Simulating the informative equilibrium path

In this section we illustrate the main properties of the game by Monte-Carlo simulations.

Proposition 14 gives a simple way to simulate the informative equilibrium directly in the

limit N → ∞. A sample path of the equilibrium is generated as follows. i) First, fix

prior π0 (ω) and the true state of world ω′. ii) Draw a sequence {yi}Mi=1 of independent

exponentially distributed random variables with parameter g (θ | ω′). For this sequence,

the corresponding sequence of posteriors is:

πi (ω) =
πi−1 (ω) g (θ | ω) e−g(θ|ω)·yi∑

ω∈Ω

πi−1 (ω) g (θ | ω) e−g(θ|ω)·yi
, i = 1, ...,M .

For each i = 1, ...,M , calculate the stopping time T̂i as:

T̂i = max

{
T̂i−1, arg max

t
E

[∑
ω∈Ω

πi (ω) · v (t, ω)

]}
.

The generated sequence
{
T̂i

}M
i=1

is the simulated realization of the sequence (7) in the

limit N →∞. By Proposition 14, it corresponds to the real time moments at which the

first M players stop the game in the large game limit. By choosing M sufficiently large,

one can ensure that the belief πM (ω) has converged to the true state, i.e. πM (ω′) ≈ 1

and πM (ω) ≈ 0 for all ω 6= ω′. This means that all the remaining players will stop in

equilibrium at the same real time as the M :th player (with high probability). Thus, T̂M

gives the real time at which the game collapses for this particular sample.

We illustrate next the model by Monte-Carlo simulations, where we generate a large

number of equilibrium paths and use those to compute the probability distributions for

the players’ stopping times and payoffs. We specify the model as follows:

Ω =

{
0,

1

S − 1
,

2

S − 1
, ...,

S − 2

S − 1
, 1

}
,[

θ, θ
]

= [0, 1] ,

g (θ |ω ) = 1 + γ

(
ω − 1

2

)(
θ − 1

2

)
,

v (t, ω) = − (ω − t)2 .

Here S is the number of states and γ is a parameter measuring the precision of

individual signals. In this illustration we have S = 10, and for the signal precision we

compare two cases: γ = 2 (precise signals) and γ = 0.2 (imprecise signals).
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5.1 Distribution of stopping times

We generated 10000 sample paths for each 10 state values. For each sample path, we

use M = 300000 random variables to make sure that the posteriors have fully converged

to the true state. Figure 1 shows the simulated cumulative distribution functions of the

moment of collapse, conditional on state. Top panel uses precision parameter γ = 2 while

the bottom panel uses γ = 0.2. This Figure demonstrates clearly the Theorem 11: the

time of collapse is random and delayed as compared to the first best for all but the highest

state. The delay is more sever for the lowest state values. The signal precision has an

expected effect: with less precise signals there is on average more delay.

Figure 1

5.2 Payoffs

Using the distributions of stopping times generated by the Monte-Carlo simulation, we

can easily compute the ex-ante value of a player in equilibrium according to (3).

The following table shows the ex-ante values defined in section 4.2 and computed with

the two precision parameters used in the simulations:

V 0 V 1 V ∗ V P V S

γ = 2 -0.1019 -0.0984 -0.0690 0.0035 0.0294

γ = 0.2 -0.1019 -0.1018 -0.0989 0.000035 0.0029
The obvious result in this table is that the more precise the private signals, the more

valuable private learning: V P is higher for the precise signals. What is less obvious is

that the social value behaves similarly: the more precise the private signals, the more

valuable is the additional value of the social learning on top of the private value of the

signals. In fact, it is easy to show formally that in the limit where private signals are

made uninformative in the sense that V P goes to zero (in our model specification this

would mean γ → 0), also V S must go to zero.

Figures 2 and 3 show the values conditional on signal and state, respectively. The value

of an isolated player conditional on signal is U-shaped: extreme signal realizations are

ex-ante good news in the quadratic payoff case, since they make large mistakes unlikely.

In equilibrium, high signals are good news: they indicate that the optimal timing is more

likely to be late, and social learning is particularly valuable if that is the case. Learning

from others causes delay, which is valuable if late action is ex-post optimal, but it is costly

if the early action would have been optimal. This can be seen more clearly in Figure 3

that shows the value functions conditional on state. Social learning makes payoffs more

sensitive on true state: actions are delayed which is good if state is high but bad if state
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is low.

Figure 2

Figure 3

6 Discussion

Our results are quite different from related models in Chamley & Gale (1994) and Chamley

(2004). To understand why this is the case, it is useful to note that we can embed the

main features of those models as a special case of our model. For this purpose, assume

that ω ∈ {0,∞}, and

v (t, 0) = e−rt, v (t,∞) = −ce−rt.

If it is optimal to invest at all in this version of the model, then the investment time

is insensitive to the information of the players. In other words, investment is good either

immediately or never. Private signals only affect the relative likelihood of these two cases.

This leads to the conclusion that it is never optimal to invest at t > 0 conditional on

no other investments within (t− ε, t), since then it would have been optimal to invest

immediately. As a result, a given stage k ends either immediately if at least one player

stops at time t = 0 and the play moves to stage k + 1, or the stage continues forever and

the game never moves to stage k + 1. This means that all investment must take place at

the beginning of the game, and with a positive probability investment stops forever even

when ω = 0. The models in Chamley & Gale (1994) and Chamley (2004) are formulated

in discrete time, but their limiting properties as the period length is reduced corresponds

exactly to this description.

We get an intermediate case by setting Ω = {ω1, ..., ωS,∞} with P (∞) > 0. In this

case, the game has some revelation of information throughout the game. Nevertheless, it

is possible that all investment ends even though ω <∞, and as a result, the game allows

for a similar possibility of incorrect actions as Chamley & Gale (1994).

There are a number of directions where the analysis in this paper should be extended.

Exogenous uncertainty on the payoff of investment plays an important role in the lit-

erature on real options. Our paper can be easily extended to cover the case where the

profitability of the investment depends on an exogenous (and stochastic) state variable p

and on private information about common market state ω. In this formulation, the stage

game is one where the players pick a Markovian strategy for optimal stopping. With

our monotonicity assumptions this is equivalent to selecting a threshold value pi (θi) at
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which to stop conditional on their signal. The stage ends at the first moment when the

threshold value of some player is hit.

The analytical simplicity of the model also makes it worthwhile to consider some

alternative formulations. First, it could be that the optimal time to stop for an individual

player i depends on the common parameter ω as well as her own signal θi. The reason

for considering this extension would be to demonstrate that the form of information

aggregation demonstrated in this paper is not sensitive to the assumption of pure common

values. Second, by including the possibility of payoff externalities in the game we can

bring the current paper closer to the auction literature. We plan to investigate these

questions in future work.
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Abstract

We analyze information aggregation in a stopping game with uncertain common

payoffs. Players learn from their own private experiences as well as by observing

the actions of other players. We give a full characterization of the symmetric mixed

strategy equilibrium, and show that information aggregates in randomly occurring

exit waves. Observational learning induces the players to stay in the game longer.

The equilibria display aggregate randomness even for large numbers of players.
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1 Introduction

Learning in dynamic decision problems comes in two different forms. Players learn from

their own individual, and often private, observations about the fundamentals of their

economic environment. At the same time, they may learn by observing the behavior of

other players in analogous situations. In this paper, we analyze the interplay of these

two modes of learning in a timing game with pure informational externalities. We show
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that even though private information accumulates steadily over time, it is revealed in

occasional bursts.

There are a number of examples where both forms of learning are important. Learning

about the quality of a service, the profitability of a new technology, or the size of a new

market are examples of this type. In all these instances, it is reasonable to assume that

part of the uncertainty is common to all agents and part is idiosyncratic. Demand may

be high or low. For a population of monopolistically competing firms, the market is

profitable to a larger fraction of firms if demand is high. Learning from others is useful to

the extent that it can be used to determine the overall demand level. It is not sufficient,

however, as it may be that the product of an individual firm does not appeal to the

consumers even when demand is high.

We use a standard discounted single-player experimentation model in discrete time to

represent private learning. Players do not know their type at the beginning of the game.

Over time, they learn by observing signals that are correlated with their true payoff type.

We assume binary types. Good types gain in expected terms by staying in the game while

bad types gain by exiting the game. We assume that information accumulates according

to a particularly simple form. Good types observe a perfectly informative signal with a

constant probability in each period that they stay in the game while bad types never see

any signals.1 Uninformed players become more pessimistic as time passes and the optimal

strategy is to exit the game once a threshold level of pessimism is reached.

Observational learning matters if a number of players face the same decision problem

and if their types are correlated. We model this correlation by assuming that there is a

binary state of the world that determines the probability distribution of individual types.

In the high state, a higher fraction of the players are of the good type. Conditional on the

state, the players’ types are identically and independently distributed. Whenever the exit

decisions of a given player are sensitive to her information, her actions reveal information

about her information and hence also about the state of the world (since more players are

informed in the high state). Uninformed players gain from additional information on the

state, which creates an incentive to wait as in Chamley & Gale (1994). But in contrast to

Chamley & Gale (1994), private learning prevents the players from waiting indefinitely.

Our model strikes a balance between the benefits from delaying in order to learn more

from others and the costs from increased pessimism as a result of private learning.

We show that the game has a unique symmetric equilibrium in mixed strategies. In

1The actual form of information revelation is not very important for the logic of our model. The

important assumption is that it takes time for even the most pessimistic individual player to exit the

game.
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order to highlight the effects of learning and waiting, we eliminate the observation lags

by reducing the time interval between consecutive decision moments. We show that the

symmetric equilibrium can be characterized by two modes of behavior: In the flow mode,

bad news from no informative signals is balanced by the good news from the observation

that no other player exits. Exits are infrequent and prior to any exit, the beliefs of the

uninformed players evolve smoothly.

When a player exits, the beliefs of the other players become more pessimistic. Imme-

diate exit by all uninformed players would release so much information that an individual

player might find it optimal to wait (since the cost of delay is small for frequent periods).

As a result, the equilibrium must be in mixed strategies that balance the incentives to

exit and wait. If there are further exits from the market as a result of the randomization,

pessimism persists, and another round of randomizations is called for. We call this phase

of consecutive exits an exit wave. As soon as there is a period with no exits, a sufficient

level of optimism is restored in the market and the exit wave ends. An exit wave thus ends

either in a collapse of the game where the last uninformed player exits, or in a reversion

to the flow mode following a period with no exits. In the symmetric equilibrium, play

fluctuates randomly between these two modes until a collapse ends the game.2

When the number of players is increased towards infinity, the pooled information on

the aggregate state becomes accurate. One might conjecture that conditional on the state

aggregate randomness would vanish by the law of large numbers. We show that this is not

the case. Even in the case with a large number of players, transitions between the phases

remain random. The size of an individual exit wave as measured by the total number of

exits during the wave also remains random. Information is thus aggregated during quick

random bursts. We compute the exit probabilities during exit waves and the hazard rate

for their occurrence when the number of players is large.

We show that information is aggregated efficiently in the high state if there is a large

number of players. By this we mean that almost all uninformed players exit in the high

state as if they knew the true state. But if the state is bad, information aggregation fails:

players learn the state too late, and as a result, they delay exit. In terms of the payoffs,

the message of our paper is that observational learning helps the good types while it hurts

the bad types.

Related Literature

This paper is related to the literature on herding and observational learning where

2Examples of models that display waves of action that resemble our exit waves include Bulow &

Klemperer (1994) and Toxvaerd (2008). However, these models depend on the direct payoff externalities

arising from scarcity.
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players have private information about a common state variable at the beginning of the

game. Early papers in this literature assumed an exogenously given order of moves for

the players, e.g. Banerjee (1992), Bikhchandani, Hirshleifer & Welch (1992), and Smith &

Sorensen (2000). A number of later papers have endogenized the timing of action choices.

Among those, the most closely related to ours is Chamley & Gale (1994).3 In that

paper a number of privately informed players consider investing in a market of uncertain

aggregate profitability. The model exhibits herding with positive probability: the players’

beliefs may get trapped in a region with no investment even if the market is profitable.

In our model, private learning during the game prevents the beliefs from getting trapped.

The difference between the models is best seen by eliminating observation lags, i.e., letting

period length go to zero. In Chamley and Gale, information aggregates incompletely in

a single burst at the start of the game. In our model, information is revealed eventually,

but at a slow rate.

Caplin & Leahy (1994) and Rosenberg, Solan & Vieille (2007) consider models with

private learning about common values. While these papers are close to ours in their

motivation, each makes a crucial modeling assumption that leads to qualitatively different

information aggregation properties to ours. Caplin and Leahy assume a continuum of

players from the beginning. This assumption leads to some problems with the existence

of an equilibrium and also rules out what is a key feature of our model. In our model, the

actions of a large number of players result in a moderate rate of information revelation.

Rosenberg, Solan & Vieille (2007) assume a finite number of players like we do, but they

assume signals that may make a player so pessimistic after one period that exiting is the

dominant strategy right away. As a result, when the number of players is increased, the

exit behavior after the first period reveals the state by the law of large numbers. Due to

these modeling assumptions, the aggregate behavior in the large game limit is essentially

deterministic conditional on state both in Caplin & Leahy (1994) and Rosenberg, Solan

& Vieille (2007). Our model adds to these papers by showing that information may

also aggregate slowly through randomly occurring exit waves, even when the pooled

information is precise.

Another difference to the literature mentioned above is that by combining common and

idiosyncratic uncertainty, our paper relaxes the assumption of perfect payoff correlation

across players made in Chamley & Gale (1994), Caplin & Leahy (1994), and Rosenberg,

Solan & Vieille (2007). The pure common values case is obtained in our model as a special

case.

3See also a more general model Chamley (2004). An early contribution along these lines is Mariotti

(1992).
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Our paper is also related to the literature on strategic experimentation. That literature

focuses on the private provision of public information rather than aggregation of privately

held information. Examples of such models are Bolton & Harris (1999) and Keller, Rady

& Cripps (2005). The key difference is that in those models the signals of all players are

publicly observable, whereas in our model the players see only each other’s actions.

The paper is organized as follows. Section 2 sets up the discrete time model and

Subsection 2.1 presents an alternative interpretation for the model as a model of irre-

versible investment. Section 3 describes the flow of information in the game, and Section

4 provides the analysis of the symmetric equilibrium. In Section 5, we discuss information

aggregation in large games. In Section 6, we characterize the symmetric equilibrium in

the continuous time limit. Section 7 concludes. The proofs are in the Appendix.

2 Model

The model is in discrete time with periods t = 0, 1, ...,∞. The discount factor per period

is δ = e−r∆, where ∆ is the period length, and r > 0 is the pure rate of time preference.

The set of players is {1, ..., N}.
Before the game starts, nature chooses the (aggregate) state randomly from two al-

ternatives: θ ∈ {H,L}. Let q0 denote the common prior q0 = Pr{θ = H}. After choosing

the state, nature chooses randomly and independently the individual type for each player.

Each player is either good or bad. If θ = H, the probability of being good is ρH , while

if θ = L, the probability of being good is ρL, where 0 ≤ ρL < ρH ≤ 1. In the special

case, where ρH = 1 and ρL = 0, the players’ types are perfectly correlated and the game

is one of pure common values. Conditional on the state, the player types are drawn

independently for all players. All types are initially unobservable to all players, but the

parameters q0, ρH , and ρL are common knowledge.

The information about nature’s choices arrives gradually during the game as follows.

In each period, each player receives a random signal ζ ∈ {0, 1}. Signals have two functions:

they generate payoffs and transmit information. For a bad-type player, ζ = 0 with

probability 1. For a good player, Pr{ζ = 1} = λ∆, where λ is a commonly known

parameter. Notice that informative signals arrive at a rate that depends linearly on the

period length, and as a result, the real-time rate of information arrival is independent of

the period length The signal realizations across periods and players (conditional on the

state and the type) are assumed to be independent. We call the signal ζ = 1 a positive

signal, since it entails a positive payoff (see next paragraph) and reveals to a player that

her type is good. Each player observes only her own signals. We use the terms informed

5



and uninformed to refer to the players’ knowledge of their own type: players who have

had a positive signal are informed, other players are uninformed.

At the beginning of each period t, all active players i make a binary decision ati. They

either exit, ati = 0, or continue, ati = 1. Exiting is costless, but irreversible: once a player

exits, she becomes inactive and receives the outside option payoff 0. Hence we require

that whenever ati = 0, then asi = 0 for all s > t. We call player i active in period t if

she has stayed in the game up to that point in time. We denote by N the set of active

players and we let n denote their number.

If the player continues in the game, she pays the (opportunity) cost c ·∆, observes a

signal ζ ∈ {0, 1} that yields payoff ζ · v, and then moves to the next period. The cost

c and the benefit v are parameters for which we assume c < λv. We also assume risk

neutrality (i.e. we measure the costs and benefits in utils). The expected payoff per

period is (λv − c) ∆ > 0 for a good player and −c∆ < 0 for a bad player. This means

that if the players knew their types, bad types would exit immediately, and good types

would never exit.4

Within each period the players act simultaneously, but they know each others’ previous

actions. However, they do not observe each others’ signals, and therefore they do not know

whether the others are informed or uninformed.

The history of player i consists of the private history of her own signals, and the public

history consisting of the actions of all the players. Since a positive signal reveals fully the

player’s type, the uninformed have never observed the good signal. Conditional on a good

signal, it is a dominant strategy to stay in the game forever. Strategies are therefore fully

described by the exit behavior of the uninformed players. For the uninformed players,

all relevant information is contained in the public history of past actions, and therefore

we call this public information simply the history. Formally, a history ht in period t is a

sequence of actions:

ht =
{
a0, a1, ..., at−1

}
,

where at = (at1, ..., a
t
N). Denote by H t the set of all such histories up to t and let

H =
∞⋃
t=0

H t. A history h∞ = {at}∞t=0 gives a sequence of action profiles for the entire

game.

A (behavior) strategy for an uninformed player i is a mapping

σi : H → [0, 1]

that maps all histories where i is active to an exit probability. A strategy profile in the

4In Section 7, we discuss the possibility that the value of the signal is different in the two states.
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game is a vector σ = (σ1, ..., σN).

A player maximizes her expected discounted sum of future cash flows as estimated

on the basis of her own signal history, observations of other players’ behavior, and initial

prior probability q0. By equilibrium, we mean a Perfect Bayesian Equilibrium of the

above game. In an equilibrium, all actions in the support of σi (h
t) are best responses to

σ−i for all i and for all ht.

2.1 Interpretation as an Investment Game

We can interpret the game as an investment model where a number of firms have the

option of making an irreversible investment. The project qualities are correlated across

firms. A good project yields c∆ > 0 per period whereas a bad project yields (c− λv) ∆ <

0 per period. The fixed investment cost is normalized to zero. Before undertaking the

project, each firm learns about the quality of her individual potential project as follows.

In each period, a ”failure” signal occurs with probability λ∆ if and only if the project

is bad (see Décamps & Mariotti (2004) for another investment model with this kind of

learning).

To see that this is equivalent to our exit game, consider the capitalized value of

undertaking the action ”exit” in our original model. If the player type is bad, then

by exiting the player avoids the fixed cost c∆ from today to eternity. Therefore the

capitalized value of exit is equal to the value of investing in a ”good” project in the

investment model. A ”good” type in the original model avoids the cost c∆ by exiting,

but at the same time she forgoes the expected payoff λv∆ per period. The net capitalized

value of exit is then equal to the value of investing in a ”bad” project. This shows that the

two models are isomorphic (with ”good” types interpreted as ”bad” projects and ”bad”

types as ”good” projects).

3 Beliefs

In this section we fix a strategy profile σ and describe the two different forms of learning in

our model. First, as long as a player stays in the game, she receives in every period a direct

signal on her type. The strength of this signal is exogenously given, and Bayesian updating

resulting from such signals has been studied extensively in the literature. Subsection 3.1

below describes this private learning.

The second form of learning depends on the publicly observed actions and is endoge-

nous in our model. Since all past exit decisions are observable to all players remaining
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in the game, these decisions may convey information on the aggregate state. Since types

are correlated with states, this information is also relevant for learning each player’s own

type. We let ξθi (ht) denote the probability with which player i exits after history ht in

state θ. If we denote by πθi (ht) the posterior probability with which player i is uninformed

given history ht, we have

ξθi
(
ht
)

:= σi
(
ht
)
πθi
(
ht
)
. (1)

As long as ξHi (ht) 6= ξLi (ht) , other players learn about the true aggregate state by observ-

ing the exit decisions of player i. In contrast to the individual learning, the information

content in observational learning from others is endogenous. First of all, if σi (h
t) = 0,

then ξHi (ht) = ξLi (ht) = 0 and exit decisions are uninformative. Second, the amount of

information depends on πθi (ht). It is important to note that πθi (ht) depends on σi (h
s)

for s < t and hence is also endogenously determined. Subsection 3.2 describes how beliefs

are updated based on observational learning from others. Subsection 3.3 combines the

two forms of learning to derive the beliefs of an uninformed player in our model.5

3.1 Private Learning

We start with the analysis of an isolated player that can only learn from her own signals.

Denote by pt the current belief of an uninformed player about her type, i.e.

pt := Pr{”type is good” |”player i is uninformed in period t”}.

If the player continues for another period, and does not receive a positive signal, the new

posterior pt+1 is obtained by Bayes’ rule:

pt+1 =
pt (1− λ∆)

pt (1− λ∆) + 1− pt
. (2)

The updating formula is essentially the same if the player knows the true aggregate state.

We let pθt denote the player’s belief on her own type conditional on state θ. Using pθ0 = ρθ,

equation (2) gives us the formula for pθt :

pθt =
ρθ (1− λ∆)t

ρθ (1− λ∆)t + (1− ρθ)
. (3)

Notice that pθt is a monotonic function of t and since it conditions on the state of the

world, it will not be affected by learning from others.

5The reader more interested in the equilibrium analysis may jump to Section 4 and return to the

present section as needed.
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To make the connection to the case with learning from others, we also describe the

isolated player’s beliefs on the aggregate state. We let qt denote the probability that the

individual player assigns on the state being H. By the law of iterated expectation,

pt = qtp
H
t + (1− qt) pLt . (4)

Therefore

qt =
pt − pLt
pHt − pLt

, (5)

and as a consequence, we see that the beliefs pt and qt move tightly together.

3.2 Observational Learning

To describe observational learning in our model, we consider for the moment how player

i learns from the behavior of players j 6= i. We denote by q̂i (h
t) the belief of i on

the aggregate state, when learning is based only on the behavior of the other players.

Alternatively, we may think of q̂i (h
t) as the belief of player i as an outside observer to

the game.

Recall that ξθj (ht) denotes the probability with which an active player j ∈ N (ht)

exits at history ht. If ξLj (ht) > ξHj (ht) and j does not exit, then Bayes’ rule implies that

i believes that j is more likely to be informed. As a result, i also believes that state

H is relatively more likely. To describe the belief updating, we denote by A−i (h
t) the

random vector containing the actions of all active players, excluding i, at history ht. The

probability of a given exit vector at−i is then:

Pθ
(
A−i

(
ht
)

= at−i
)

=
∏
j 6=i

(
(1− atj)ξθj

(
ht
)

+ atj
(
1− ξθj

(
ht
)))

, (6)

where we use shorthand notation Pθ to denote probability conditional on state:

PH (·) := Pr (· |θ = H ) , PL (·) := Pr (· |θ = L) .

After observing the exit vector at−i, player i updates her belief q̂i (h
t) according to

Bayes’ rule as follows:

q̂i
(
ht+1

)
=

q̂i (h
t)PH

(
A−i (h

t) = at−i
)

q̂i (ht)PH
(
A−i (ht) = at−i

)
+ (1− q̂i (ht))PL

(
A−i (ht) = at−i

) . (7)

Note that q̂i (h
t+1) depends on ξθj (ht) through (6), which in turn depends on πθj (ht)

through (1). Therefore, in order to complete the description of observational learning in

our model, we must also specify the evolution of πθi (ht), i = 1, ..., N , for the fixed strategy

profile σ.
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At the beginning of each period exit decisions are realized. If player i continues, then

the other players calculate their updated beliefs using Bayes’ rule as follows:

π′θi
(
ht
)

=
πθi (ht) (1− σi (ht))
1− σi (ht) πθi (ht)

, θ ∈ {H,L}. (8)

In the second step, uninformed players become informed within the current period with

probability 1−pθtλ∆ (conditional on not exiting). Combining these two steps, the updated

belief after history ht+1 is:

πθi
(
ht+1

)
=
πθi (ht) (1− σi (ht))
1− σi (ht) πθi (ht)

·
(
1− pθtλ∆

)
, θ ∈ {H,L}. (9)

3.3 Combined Learning

The remaining task is to combine the two forms of learning to derive the beliefs of the

uninformed players in the game. The easiest way of doing this connects the information

contained in q̂i (h
t+1) with the information that i is uninformed.

Let πθt denote the ex-ante probability with which a player (that stays in the game with

probability 1) is uninformed in period t, conditional on state θ. The player is a bad type

with probability
(
1− ρθ

)
, and all bad types remain uninformed. The player is a good

type with probability ρθ, and good types remain uninformed with probability (1− λ∆)

in each period. Hence we have:

πθt =
(
1− ρθ

)
+ ρθ (1− λ∆)t . (10)

We denote by qi (h
t) the belief of i on the aggregate state (conditional on being un-

informed). This belief differs from q̂i (h
t) only to the extent that the private history of i

affects her belief, and therefore the relationship between the two is given by Bayes’ rule

as follows:

qi
(
ht
)

=
q̂i (h

t) πHt
q̂i (ht) πHt + (1− q̂i (ht))πLt

. (11)

The belief of i on her own type follows now from the law of iterated expectation:

pi
(
ht
)

= qi
(
ht
)
pHt +

(
1− qi

(
ht
))
pLt

=
q̂i (h

t)πHt p
H
t + (1− q̂i (ht))πLt pLt

q̂i (ht)πHt + (1− q̂i (ht))πLt
. (12)

where pLt and pHt are given by (3).

We end this section with two propositions that characterize learning in our model.

First, we show that the likelihood of exit in state L is strictly larger than the likelihood
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of exit in H. Furthermore, the likelihood ratio of exit across the states is increasing over

time. This guarantees that an exit is always informative about the aggregate state.

Equation (10) implies that the ex-ante likelihood ratio across states of being unin-

formed changes monotonically over time:

πLt
πHt

>
πLt−1

πHt−1

> · · · > πL1
πH1

=
1− ρLλ∆

1− ρHλ∆
> 1. (13)

With this observation at hand, we can prove our first result on the informativeness of

exits.

Proposition 1 For any strategy profile σ, we have

ξLi (ht)

ξHi (ht)
≥ πLt
πHt

> 1

for all t > 0 and ht such that σi (h
t) > 0.

We give next a proposition that ranks strategy profiles according to their informative-

ness. For a profile σ and a history ht, we let the random variable P t+1
i (ht,σ (ht)) denote

the posterior of player i on her own type at the beginning of period t+ 1, assuming that

she is uninformed at the beginning of period t. The randomness in the posterior arises

from i’s private signal realization and the realized exit decisions of the players other than

i. The following Proposition shows that higher exit probabilities by other players induce

a mean preserving spread (in the sense of Rothschild and Stiglitz, 1970) on the posterior.

Proposition 2 Take an arbitrary history ht with t > 0 and two strategy profiles σ

and σ′ with σ
(
ht
′)

= σ′
(
ht
′)

for t′ = 0, ..., t − 1. Then P t+1
i (ht,σ (ht)) dominates

P t+1
i (ht,σ′ (ht)) in the sense of second order stochastic dominance if σ′j (ht) ≥ σj (ht) for

all j 6= i and σ′j (ht) > σj (ht) for some j 6= i.

The economic content of this Proposition is rather immediate. Since all players’ types

are correlated with the state of the world θ, having maximal information on the state

is also maximal information on an individual type. The total amount of information

available to the players is captured by the vector of information types for the players,

i.e. an enumeration of all players that are informed. A pure strategy profile σ (ht) = 1

transmits all this information, since under this strategy players exit if and only if they

are uninformed. The profile with σ (ht) = 0 conveys no information. Any intermediate

exit probability can be seen as a convex combination of these two signal structures, and

it is to be expected that the combination with a higher weight on the informative signal

is more informative with respect to the true informational state of a player.
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4 Equilibrium Analysis

4.1 Isolated Player

It is again useful to start with the case of an isolated player. The decision problem

of the isolated player is to choose whether to continue or exit at period t. Standard

arguments show that the problem is a Markovian optimal stopping problem with the

posterior probability p = pt as the state variable. We let Vm (p) denote the value function

of the isolated player. Stopping at posterior p yields a payoff of 0. If the player continues,

she pays the cost c∆, and gets a positive signal with probability pλ∆. In this case, the

player learns that her expected payoff per period is (λv − c) · ∆, and thus the value

function jumps to

V + := Vm (1) =
(λv − c) ·∆

1− δ
.

Without a positive signal p falls to pt+1 according to (2). The Bellman equation for the

optimal stopping problem can thus be written as:

Vm (p) = max

{
0,−c∆ + pλ∆ (v + δVm (1)) + (1− pλ∆) δVm

(
p (1− λ∆)

p (1− λ∆) + (1− p)

)}
.

(14)

The optimal policy is to stop as soon as p falls below a threshold level, denoted

p∗ (∆). Standard arguments establish that value function Vm (p) is increasing, convex and

continuous in p. The threshold p∗ (∆) is obtained from (14) by setting Vm (p∗ (∆)) = 0:

p∗ (∆) =
c

λ (v + δVm (1))
. (15)

We shall see that p∗ (∆) plays a crucial role also in the model with many players. Denote

by t∗ (∆) the period in which p falls below p∗ (∆) if there is no positive signal:

t∗ (∆) := min {t ∈ N |pt ≤ p∗ (∆)} .

We denote the optimal strategy of the isolated player by

am (pt) =

{
1 if pt > p∗ (∆) ,

0 if pt ≤ p∗ (∆) .

4.2 Symmetric Equilibrium

In this subsection, we show that the exit game with observational learning has a unique

symmetric equilibrium.6 Furthermore, the equilibrium value functions of the individual

6The game has also asymmetric equilibria, where the players act in a predetermined order conditioning

their actions on the outcomes of the previous moves by the other players. Since the properties of such
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players can be written as functions of their belief on their own type only. With sym-

metric strategies all uninformed players have identical beliefs, and therefore we drop the

subscripts i from the beliefs and the strategies of the uninformed players. In particular,

we let σ (ht) denote the probability with which each uninformed player exits at history

ht in symmetric equilibrium.

We start by showing that if a symmetric equilibrium exists for the stopping game,

then the equilibrium value function V (ht) is closely related to the value function of the

isolated player. The key observation for this result is that as long as σ (ht) = 0, there is

no observational learning and thus the information available in the game is identical to

the information available to the isolated player. On the other hand, when σ (ht) > 0, the

players can learn from each other, but their the value must be zero since they exit with

a positive probability.

Lemma 1 For any symmetric equilibrium of the exit game,

V
(
ht
)

= Vm
(
p
(
ht
))
.

Lemma 1 allows us to derive recursively the symmetric equilibrium strategy profile.

To see this, note that if the symmetric equilibrium is given for periods 0, ..., t − 1, we

can calculate the beliefs of uninformed players at history ht as explained in Section 3.

Consider then exit probabilities at history ht. By Lemma 1, the payoff for the next

period is given by V (ht+1) = Vm (p (ht+1)), and therefore, all we have to do is to find an

exit probability σ (ht) that induces a probability distribution for p (ht+1) that makes the

players indifferent between exiting and staying. This indifference condition must equate

the discounted expected value for the next period with the cost of staying for one period,

so we can write it as:

δEVm
(
P t+1

(
ht;σ

(
ht
)))

= c
(
ht
)
·∆,

where we use notation c (ht) to denote cost of staying net of expected payoff per time

unit:

c
(
ht
)

:= c− p
(
ht
)
λv.

The next Lemma shows that increasing the exit probabilities for the current period

increases the players’ incentive to stay. This result follows from two observations. First,

by Proposition 2, increasing the exit probability for the current period induces a mean

preserving spread for the next period belief P t+1 (ht, σ (ht)). Second, we know from

Subsection 4.1 that the isolated player’s value function Vm is convex.

equilibria are essentially the same as in the herding models with exogenous order of moves, we do not

discuss this issue further (details about asymmetric equilibria are available from authrors upon request).
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Lemma 2 The expected continuation payoff EVm (P t+1 (ht;σ (ht))) is weakly increasing

in σ (ht). Furthermore, for each ht there is at most one exit probability σ (ht) satisfying

δEVm
(
P t+1

(
ht;σ

(
ht
)))

= c
(
ht
)
·∆.

Lemma 2 guarantees that for each ht, at most one exit probability makes the players

indifferent between exiting and staying. However, it may not be possible to induce the

players to stay in the game. The pure strategy profile σ (ht) = [1, ..., 1] releases all

information available to the players. Nevertheless, it is possible that the uninformed

players are so pessimistic that even the release of all this information is not sufficient

to compensate for the one-step loss of c (ht) ∆ from waiting. When this is the case, all

uninformed players exit with probability 1, and we say that the game collapses.

With these preliminaries, we are ready to prove the main result of this section.

Theorem 1 The stopping game has a unique symmetric equilibrium where the exit prob-

ability at history ht is given by:

σ
(
ht
)

=


0 if δEVm (P t+1 (ht; 0)) > c (ht) ∆,

σ∗ (ht) ∈ [0, 1] if δEVm (P t+1 (ht; 0)) ≤ c (ht) ∆ ≤ δEVm (P t+1 (ht; 1)) ,

1 if δEVm (P t+1 (ht; 1)) < c (ht) ∆,

where σ∗ (ht) solves for all ht

δEVm
(
P t+1

(
ht;σ∗

(
ht
)))

= c
(
ht
)

∆.

The symmetric equilibrium has a simple structure. Whenever the players’ beliefs

on their own type are above the threshold of the isolated player, i.e. p (ht) > p∗ (∆) ,

then δEVm (P t+1 (ht; 0)) > c (ht) ∆ and thus the equilibrium actions coincide with those

prescribed by the optimal decision rule of the isolated player (i.e. stay). On the other

hand, if the players are very pessimistic, then δEVm (P t+1 (ht; 1)) < c (ht) ∆, and again

equilibrium actions coincide with the isolated player (i.e. exit with probability one). With

intermediate beliefs equilibrium behavior differs from isolated player: in equilibrium the

exits take place with a probability that exactly balances the players’ incentives to exit

and wait, whereas an isolated player would exit with probability one.

We end this section with a corollary that gives a lower bound for p (ht) along histories

where no player has exited. This will be useful in obtaining a sharper characterization of

the symmetric equilibrium behavior in the limit where the time interval between successive

periods is short. To see how the corollary follows from Theorem 1, note that in order to

have δEVm (P t+1 (ht; 1)) > 0, there must be a positive probability that p (ht+1) > p∗ (∆).

14



Since the highest possible value for p (ht+1) results when no player exits at history ht, it

follows that whenever p (ht) is below p∗, the next period belief p (ht+1) is again above p∗

if no player exits.

Corollary 1 Consider the history ht = (1,1, ...,1), i.e. the history without any exits. In

the symmetric equilibrium,

p
(
ht
)
≥ p∗ (∆) · (1− λ∆)

p∗ (∆) · (1− λ∆) + 1− p∗ (∆)
.

5 Information Aggregation in Large Games

In this section, we consider information aggregation in the symmetric equilibrium of the

game as the number of players grows without bound. As a point of comparison, we

use the case where the players share all information with each other. If the number

of players is large and all information is pooled, then the (weak) law of large numbers

implies that the players can determine the true aggregate state with arbitrarily high

accuracy. Nevertheless, idiosyncratic uncertainty about player types remains: conditional

on the state, each player is still uncertain about her own type. As a result, the efficient

benchmark in terms of information aggregation for large games is the one where all the

uninformed players know the aggregate state θ. In state θ , an uninformed player believes

that she is a good type with probability pθt . Therefore it is optimal for her to exit as soon

as pθt falls below p∗ (∆). We denote the efficient exit period in state θ by t∗θ (∆):

t∗θ (∆) := min
{
t : pθt ≤ p∗ (∆)

}
, θ = H,L.

The main result of this section is Theorem 2, which says that by decreasing the period

length, we eliminate the possibility that a large number of players exit too early relative

to this efficient benchmark. This means that for large games, information is aggregated

efficiently in state θ = H because t∗H (∆) is an upper bound for all exit times of the

uninformed players. However, if θ = L, information aggregation fails: all players exit too

late in expectation.

Since we vary the number of players N and period length ∆ while keeping all the

other parameters of the model fixed, we denote by Γ (∆, N) the game parametrized by ∆

and N . We denote by X (ht) the number of players that exit the game at history ht in

the unique symmetric equilibrium of the game:

X
(
ht
)

:= n
(
ht
)
− n

(
ht+1

)
.
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As a first step towards Theorem 2, we consider the effect of a large number of exits

on the beliefs. In Proposition 1, we showed that individual exit probabilities are different

across the two states, which allows the players to make inferences based on observed

exits. It is therefore natural to expect that if a large number of players exit, then all

the remaining players should have accurate beliefs on the aggregate state. Proposition 3

shows that this must indeed be the case with a high probability:

Proposition 3 For all ε > 0, there is some K ∈ N such that

PH{h∞ : n
(
ht
)
≤ N −K and q

(
ht
)
< 1− ε for some ht ∈ h∞} < ε, (16)

PL{h∞ : n
(
ht
)
≤ N −K and q

(
ht
)
> ε for some ht ∈ h∞} < ε, (17)

for any game Γ (∆, N).

A couple of remarks are in order. First, Proposition 3 holds for all strategy profiles

σ (equilibrium or not) as long as some private information has been accumulated before

first exits. Second, the bound K for the number of exits in the Proposition is independent

of ∆ and N . By increasing N, we can make sure that the state is revealed if an arbitrarily

small fraction of players exit.

Proposition 3 implies that once K players have exited and θ = H, then with a high

probability, no further exits take place before t∗θ (∆). This would suggest that the total

number of suboptimally early exits must be bounded. However, we must also consider

the possibility that an unbounded number of players exit within a single period before

they learn the true state. Our second step towards Theorem 2 is to show that by reducing

period length ∆, we can eliminate this possibility. This is established in Proposition 4

below.

We need some notation to keep track of the passage of real time as we vary ∆.7 Let

τ θ denote the efficient exit time corresponding to state θ in the limit ∆→ 0:

τ θ := lim
∆→0

[t∗θ (∆) ·∆] , θ = H,L.

To link real time to the corresponding period of a discrete time model, we define t (τ ,∆)

as the last period before an arbitrary real time τ :

t (τ ,∆) := max {t : t ·∆ ≤ τ} . (18)

7This notation will also be useful in the following Section where the continuous time limit of the model

is considered.
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Proposition 4 For all τ < τH and ε > 0, there are constants ∆ ∈ R+ and K ∈ N such

that

PH{h∞ : X
(
ht
)
> K for some t ≤ t (τ ,∆)} < ε,

for any game Γ (∆, N) with ∆ < ∆.

The proof of Proposition 4 is lengthy, but the intuition is straight-forward. If the

players were to adopt a strategy that induces a large number of exits with non-negligible

probability within a single period, then this would generate a very informative signal

about the state. For all τ < τH , the value of such a signal is positive. If the waiting cost

is low enough, then all the players would have a strict preference to observe the signal

rather than exit contradicting the hypothesized positive probability of exits.

Combining Propositions 3 and 4 gives us Theorem 2, which bounds the total number of

suboptimally early exits in the game. The result means that in the double limit where we

increase the number of players and reduce the period length, the fraction of players that

exit suboptimally early shrinks to zero, and thus, information is aggregated efficiently if

θ = H. Nevertheless information aggregation fails if θ = L since in that state, the players

exit too late.

Theorem 2 For all τ < τH and ε > 0, there are constants ∆ ∈ R+ and K ∈ N such that

PH

h∞ :

t(τ ,∆)∑
t=0

X
(
ht
)
> K

 < ε,

for any game Γ (∆, N) with ∆ < ∆.

We end this section with a remark on the restriction to the symmetric equilibrium.

Although we have assumed symmetry throughout this section, there is very little that

depends on this restriction. The proof of Proposition 3 is valid for any asymmetric

equilibrium strategy profile as well. The proof of Proposition 4 uses symmetry in two

lemmas (Lemma 6 and Lemma 8 in the Appendix). However, even there symmetry is used

for notational convenience (the number of exits within a period is binomially distributed,

which leads more easily to the desired results).

6 Exit Waves

In this section, we characterize the symmetric equilibrium in the limit as ∆ ↓ 0. We

have several reasons for this. The first reason is substantive. In a model with endogenous
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timing decisions, it is important to know if the results depend on an exogenously imposed

reaction lag ∆. Second, it turns out that the inherent dynamics of the model are best

displayed in the limit: information aggregation happens in randomly occurring bursts of

sudden activity. We call these bursts of activity exit waves. Third, when we also let

N →∞, we can compute the statistical properties of the equilibrium path in an explicit

form.

We may view the public history h∞ generated by the symmetric equilibrium σ (∆, N)

in the game Γ (∆, N) with period length ∆ and N players from a slightly different angle.

Suppose that the players are to be treated anonymously. Then the vector t (∆, N) =

(t1 (∆, N) , ..., tN (∆, N)) where tk (∆, N) indicates the period in which kth exit took place

gives a full account h∞. The profile σ (∆, N) induces a probability distribution on RN

on instants of exit measured in continuous time τ (that is, kth exit takes place at time

τ k = tk (∆, N) ·∆). We denote this distribution, conditional on state, by F θ
∆,N (τ ). We

investigate the limiting distribution

F θ
N (τ ) = lim

∆↓0
F θ

∆,N (τ ) ,

where the convergence is taken to be in the sense of weak convergence. Observational

learning then results from the differences between FH
N (τ ) and FL

N (τ ).

In Subsection 6.1 we keep the number of players fixed at N . We show that when there

was no exit in the previous period, the proability of exit within the current period is of

the order ∆. This means that exits arrive according to a well defined hazard rate, and

we say that the game is in the flow mode. On the other hand, if there was an exit in the

previous period, then the probability of exit in the current period is bounded away from

zero, and we say that the game is in an exit wave. We also show that each exit wave ends

in collapse with a strictly positive probability.

In Subsection 6.2, we consider the limiting distributions

F θ (τ ) = lim
N→∞

F θ
N (τ )

defined on the set of sequences of exit times {τ k}∞k=1. In particular, we compute the

distributions for the first K exit instants and we also calculate the probability of the event

that the market collapses by time instant τ , i.e. the probability of the event {τ k ≤ τ} for

all k. We make use of Poisson approximations and Theorem 2 when computing the size

of exit events and the probability of collapse given an exit event.
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6.1 The Structure of the Symmetric Equilibrium

In this subsection, we keep the number of players N fixed. Since we are interested in the

limit ∆ → 0, we parametrize the game and its histories with the period length ∆. We

say that the game is in the flow mode at history ht if no players exited at history ht−1, i.e.

if X (ht−1) = 0. The game is in an exit wave at history ht if X (ht−1) > 0. Finally, we say

that the game collapses at history ht if σ (ht) = 1. Collapse is an absorbing state: since

all uninformed players exit, the game is effectively over, and π
(
ht
′)

= 0 for all t′ > t.

This means that for a game with a given ∆, we have three mutually exclusive sets of

histories, corresponding to flow mode, exit wave, and collapse, respectively:

Hf (∆) : =
{
ht : X

(
ht−1

)
= 0 and π

(
ht
)
> 0
}

He (∆) : =
{
ht : X

(
ht−1

)
> 0 and π

(
ht
)
> 0
}

Hc (∆) : =
{
ht : π

(
ht
)

= 0
}

In order to relate the discrete decision periods to real time instants, we define

p∗ := lim
∆↓0

p∗ (∆) ,

τ ∗ := lim
∆↓0

t∗ (∆) ·∆,

where p∗ (∆) and t∗ (∆) are understood as the belief threshold and the exit time as defined

in Section 4.1.

We start by showing that the beliefs of the uninformed players are qualitatively differ-

ent in the two active modes. When the game is in the flow mode and ∆ is small, beliefs

are close to p∗ while in an exit wave, they are bounded away from p∗.

Lemma 3 i) For all ε > 0, there is a ∆ > 0 such that

p
(
ht
)
∈ (p∗ − ε, p∗ + ε)

for all ht ∈ Hf (∆), t ≥ t∗ (∆), ∆ < ∆.

ii) There is a ζ > 0 and ∆ > 0 such that

p
(
ht
)
< p∗ − ζ

for all ht ∈ He (∆), ∆ < ∆.

The following Proposition shows that active players also behave differently in the two

modes.
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Proposition 5 i) There is a κ > 0 and a ∆ > 0 such that

PH
(
X
(
ht
)
> 0
)
< PL

(
X
(
ht
)
> 0
)
< κ∆ for all ht ∈ Hf (∆) ,∆ < ∆.

ii) There is a p > 0 and a ∆ > 0 such that

PL
(
X
(
ht
)
> 0
)
> PH

(
X
(
ht
)
> 0
)
> p for all ht ∈ He (∆) ,∆ < ∆.

The first claim in the above Proposition justifies our use of the term flow mode. The

flow mode comes to an end with a well-defined hazard rate. The actual computation

of the equilibrium hazard rate is not hard in principle. Nevertheless, the formula will

depend on the evolution of πθ (ht) and it is not possible to give a closed-form solution for

the continuous-time limit of the updating formula (9).8 In the following subsection, we

compute the explicit hazard rate in the limit as N →∞.
The second point to note is that for all finite N, any exit wave ends in a finite number

of periods. Hence the real time that an exit wave lasts is bounded from above by ∆N and

vanishes as ∆→ 0. As a result, we may view the limit exit waves as (rather complicated)

randomization events between the flow mode and collapse.

Finally, every exit wave results in a collapse with a strictly positive probability. Since

an exit wave takes only a vanishing amount of real time, learning from own experience

during the wave can be ignored. Recall that p (ht) is a martingale, and its value in exit

wave mode is bounded away from p∗ by part ii) of Lemma 3. Therefore, we conclude that

a return to the flow mode cannot happen with probability 1. If the number of players is

small, then the first exit starting a wave may in fact lead to an immediate collapse. Then

the exit wave lasts only one period and ends up in collapse with probability one. If this

is not the case, then a martingale argument establishes that the game must return to the

flow mode with a strictly positive probability.

6.2 Exit Events in Large Games

The large game limit N →∞ simplifies the computations for a number of reasons. First,

we can use Poisson approximations of the Binomial distribution for the number of exits

within each period of an exit wave. Second, conditional on the game not having collapsed,

we know that πθi (ht) ≈ πθt for all t, which allows us to use the continuous time limit of

equation (10) to compute the conditional probabilities for the players to be uninformed.

This follows from the fact that with a large number of players, each individual player exits

8The complication arises because this updating depends on the equilibrium randomization probabili-

ties σ (ht) .

20



with a negligible probability (until collapse). Third, we can apply Theorem 2, which says

that the probability of a collapse in state θ = H before τH vanishes as N →∞.
Let pθ (τ) and πθ (τ) denote the continuous time limits of (3) and (10):

pθ (τ) : =
ρθe−λτ

(1− ρθ) + ρθe−λτ
,

πθ (τ) : =
(
1− ρθ

)
+ ρθe−λτ ,

and let q∗ (τ) denote the belief on aggregate state that corresponds to the critical private

belief p∗:

q∗ (τ) :=
p∗ − pL (τ)

pH (τ)− pL (τ)
, τL ≤ τ ≤ τH .

Note that q∗ (τ) is strictly increasing within [τL, τH ] and q∗ (τL) = 0 and q∗ (τH) = 1.

We compute first the hazard rate of exits in the flow mode. In particular, assume

that k players have exited the game at real times τ 1, ..., τ k, and the game is in flow mode

at real time τ .Using the fact that the likelihood ratio of exit across states is given by

πL (τ) /πH (τ), and the fact that the belief of an uninformed player must stay close to p∗

as long as no player exits (as required by Lemma 3), we can determine the hazard rate

with which an additional player exits:

Proposition 6 In the limit N → ∞, the instantaneous hazard rate of k + 1st exit at

some τ ∈ (τ k, τH), conditional on the first k exit times τ 1, ..., τ k, is given by

f θk+1 (τ |τ 1, ..., τ k )

1− F θ
k+1 (τ |τ 1, ..., τ k )

= πθ (τ)λ
p∗ (1− p∗)

(
pH(τ

)
− pL (τ))

(p∗ − pL (τ)) (pH (τ)− p∗) (πL (τ)− πH (τ))
. (19)

Since the expression (19) does not depend on τ 1, ..., τ k, we may simply denote by

ψθ (τ) the hazard rate with which an exit wave starts at time τ :

ψθ (τ) = πθ (τ)λ
p∗ (1− p∗)

(
pH(τ

)
− pL (τ))

(p∗ − pL (τ)) (pH (τ)− p∗) (πL (τ)− πH (τ))
.

Every exit wave leads either to collapse or a return to flow mode. With a large number

of players, it is easy to compute the probabilities with which either possibility occurs. To

see this, note that conditional on the flow mode ending at τ , the posterior after the first

exit is given by:

q− (τ) =
πH (τ) q∗ (τ)

πH (τ) q∗ (τ) + πL (τ) (1− q∗ (τ))
.

By Theorem 2, the game returns to the flow mode with a probability that converges

to 1 as N → ∞ in state θ = H. Therefore, if the game collapses, q (τ+) = 0. On the

other hand, we know from Lemma 3 that if the game returns to the flow mode, we have
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q (τ+) = q∗ (τ). Let φθ (τ) denote the probability of collapse given an exit event at τ ,

conditional on state θ. The probability of collapse estimated by a player with belief q− (τ)

is (1− q− (τ))φL (τ). Therefore, by the martingale property of belief for this player we

have:9

q− (τ) =
(
1−

(
1− q− (τ)

)
φL (τ)

)
q∗ (τ) ,

which gives

φL (τ) =
q∗ (τ)− q− (τ)

q∗ (τ) (1− q− (τ))
=
πL (τ)− πH (τ)

πL (τ)
. (20)

Since (19) gives the hazard rate with which an exit wave starts, and (20) gives the

probability with which a given exit wave leads to collapse, we get the hazard rate of

collapse by multiplying them:

Corollary 2 In the limit N → ∞, the instantaneous hazard rate of collapse at time

τ ∈ (τL, τH), conditional on state, and conditional on being in flow mode at τ , is:

χH (τ) = 0

χL (τ) = λ
p∗ (1− p∗)

(
pH(τ

)
− pL (τ))

(p∗ − pL (τ)) (pH (τ)− p∗)

We describe next the sequence of events within a given exit wave that takes place in

real time τ . We use index s = 1, 2, ... to refer to the consequtive periods within the exit

wave and S to denote the total number of periods within the wave. Let qs denote the

belief in the sth period of the wave, and let Xs denote the number of exits at that period.

Note that since we are considering the limit ∆→ 0, the duration of the exit wave in real

time is zero.

Fix a period s and the corresponding belief qs. Lemma 3 implies that we must have

qs < q∗ (τ). On the other hand, the same lemma implies that if s is the last period of the

exit wave (that is, no player exits), then we must have qs+1 = q∗ (τ).

Proposition 7 Consider period s of an exit wave taking place at time τ . As N → ∞,
Xθ
s converges in distribution to a Poisson random variable with parameter:

πθ (τ)

(πL (τ)− πH (τ))
log

(
q∗ (τ)

(1− q∗ (τ))
· (1− qs)

qs

)
for θ ∈ {H,L}. (21)

If the realized number of exits is Xs = k, the next period belief is:

qs+1 (k) :=

(
πH (τ)

)k
q∗ (τ)

(πH (τ))k q∗ (τ) + (πL (τ))k (1− q∗ (τ))

9If the game has N < ∞ players, then collapse will take place at a posterior qC > 0 and as a

consequence, the probability of a collapse is higher than in this equation.
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Notice that the number of exits in the previous stage is a sufficient statistic for the

individual randomization probabilities in the current stage. Hence the limiting process of

beliefs on the state of the world can be though of as a non-homogenous Poisson random

walk on the positive integers.

The exit event taking place at real time instant τ reverses to flow mode if there is

some s such that Xs = 0. The Poisson approximation formula above in equation (21),

gives the probability that the exit event ends after s periods. The total number of exits

at real time instant τ is given by

X (τ) = 1 +
S∑
s=1

Xs.

7 Conclusion

We have analyzed a stopping game, where the players base their decisions on their private

information and on the behavior of other players in a similar situation. Other things equal,

the ability to observe the actions of others makes the players more willing to postpone their

actions. But this, in turn, reduces the informativeness of their actions, thus reducing the

incentives to wait. The equilibrium balances these effects and leads to aggregate delays

and randomly arriving exit waves. We showed that even when the number of players gets

large, aggregate uncertainty persists in equilibrium, and information aggregates gradually

until a sudden collapse leads to full revelation of the aggregate state.

We have kept the model as simple as possible in order to highlight the interplay be-

tween individual and social learning. A number of generalizations are possible. We could

allow the value of a signal in aggregate state θ be vθ. In this case, the value of being

informed, V θ, would also depend on the state. As long as the signals accumulate at the

same rate across the two states, the analysis remains similar. The main difference com-

pared to the current model would be in the characterization of the indifference condition

of the uninformed players. In the current paper, indifference requires (in the continuous

time limit) that p (τ) = p∗. In the extended model the analogous requirement would be

that

[q (τ) pH (τ)V H + (1− q (τ)) pL (τ)V L]

remain constant.

Alternatively, we could write a model where payoff signals arrive at different positive

rates across the two states. While the details of the model would change a bit, the main

message of the current paper would remain true in this more complicated model. Infor-

mation would still be released in randomly occurring bursts of activity. In the limiting
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game with a large number of players, the analysis would, in fact, be almost identical to

the current model. The fraction of those players that have not seen a single signal is

sufficient for determining the aggregate state by the law of large numbers. Therefore we

can analyze information aggregation amongst those players in the same manner as in the

previous section.

Finally, a more challenging extension would be to incorporate payoff externalities in

the model. The payoff could for example depend on the number of players present in

the market. It seems to us that beyond the two-player case, quite different analytical

techniques would be needed to cover this case. In our view, this is an interesting and

challenging direction for further research.

Appendix: Shorter Proofs

Proof. [Proof of Proposition 1] Since ξθi (ht) = σi (h
t) πθi (ht), all we have to do is to show

that
πLi (ht)

πHi (ht)
≥ πLt
πHt

(22)

for all t > 0 (note that πLt /π
H
t > 1 follows from (13)).

We use induction. As an induction hypothesis, assume that (22) holds for some t ≥ 0.

Using (9) and (22), we then have

πLi (ht+1)

πHi (ht+1)
=

(
πLi (ht)

πHi (ht)

)(
1− σi (ht) πHi (ht)

1− σi (ht) πLi (ht)

)(
1− pLt λ∆

1− pHt λ∆

)
≥

(
1− pLt λ∆

)
(1− pHt λ∆)

πLt
πHt

. (23)

On the other hand, using (3) and (10), we have:

πθt+1 =
(
1− pθtλ∆

)
πθt , θ = H,L.

Combining this with (23) gives us the induction step:

πLi (ht+1)

πHi (ht+1)
≥
πLt+1

πHt+1

.

Noting that πLi (h0) = πHi (h0) = πL0 = πH0 = 1 gives us:

πLi (h0)

πHi (h0)
≥ πL0
πH0

,

and therefore, the proof by induction is complete.
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Proof. [Proof of Proposition 2] Construct an experiment Xi on Θ = {H,L} with out-

comes in SXi = {0, 1}. The joint probabilities on the states and outcomes are given by

the following stochastic matrix PXi

PXi θ = H θ = L

sXi = 1 1− σi (ht) πHi (ht) 1− σi (ht) πLi (ht)

sXi = 0 σi (h
t) πHi (ht) σi (h

t) πLi (ht)

If we interpret the event {θ = H} as the event that the state is good and the event

{sXi = 1} as the decision of player i to stay in the game. The joint probability over(
θ, sXi

)
simply reflects the conditional exit probabilities given strategy σ.

Consider next another experiment Yi on Θ with outcomes in SYi = {0, 1} and the

associated stochastic matrix P Yi

P Yi θ = H θ = L

sYi = 1 1− σ′i (ht) πHi (ht) 1− σ′i (ht) πLi (ht)

sYi = 0 σ′i (h
t) πHi (ht) σ′i (h

t) πLi (ht)

with σ′i (h
t) > σi (h

t) .Then we can write

PXi = ΦP Yi ,

where the stochastic matrix Φ is given by:

Φ sYi = 1 sYi = 0

sXi = 1 1
σ′i(ht)−σi(ht)

σ′i(h
t)

sXi = 0 0
σi(ht)
σ′i(h

t)

Since Φ is a stochastic matrix that is independent of θ, Xi is a garbling of Yi, and therefore

Yi is sufficient for Xi.

Since the individual exit decisions Xi are independent (conditional on the informa-

tional status of the players), the same argument as above applies for the joint experiments

X := ×n(h
t)

i=1 Xi and Y = ×n(h
t)

i=1 Yi.

Finally, consider two experiments Xω = (X,Z) and Y ω = (Y, Z) on Ω = {G,B}
where X and Y are as above and Z is an experiment with outcomes in SZ = {0, 1}. Since

θ is correlated with ω, the information contained in X and Y is also information on Ω.

We interpret Z as the individual learning experiment on own type and hence the matrix

of conditional probabilities for that experiment is given by PZ :

PZ ω = G ω = B

sZ = 1 λ∆ 0

sZ = 0 1− λ∆ 1
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Since (X,Z) is a garbling of (Y, Z) by the argument above, we know that (Y, Z) is

sufficient for (X,Z) with respect to Ω. The assertion that P t+1
i (ht,σ (ht)) second order

stochastically dominates P t+1
i (ht,σ′ (ht)) follows from Blackwell’s theorem.

Proof. [Proof of Lemma 1] i) Let p (ht) be the belief of an uninformed player at ht under

symmetric equilibrium σ. Compute the sequence of beliefs ps for s > t starting at pt =

p (ht) and using the private updating formula (2). Denote the optimal strategy of the

isolated player starting from prior p (ht) = pt by am (ps) for all s ≥ t. Since am (ps) is a

feasible strategy for each player and since equilibrium strategy σ (ht) is optimal by the

definition of an equilibrium, we have

V
(
ht
)
≥ Vm

(
p
(
ht
))
.

This implies that σ (ht) = 0 if p (ht) > p∗.

ii) Consider next any history ht such that p (ht) = p ≤ p∗. Let

τ = {min s ≥ t |σ (hs) > 0}.

If τ = ∞, then p (hs) = ps for all s > t. But this contradicts the optimal strategy

calculated for the isolated player, so we must have τ <∞. Since exiting is in the support

of the equilibrium strategy at hτ , we have

V (hτ ) = 0.

Since p (hs) = ps, for all t ≤ s < τ, V (hs) > 0 for some s ≥ t implies a contradiction

with the optimal policy of the isolated player. Therefore

V
(
ht
)

= 0 if p
(
ht
)
≤ p∗.

iii) Since V (ht) = 0 whenever p (ht) ≤ p∗, and since σ (ht) = 0 for p (ht) > p∗, the

pure strategy am (p (ht)) is a best response for each player after each history ht, given the

strategy profile σ. Therefore, V (ht) = Vm (p (ht)) for each ht.

Proof. [Proof of Lemma 2] By Lemma (1),

EV
(
ht+1

)
= EVm

(
P t+1

(
ht;σ

(
ht
)))

.

Furthermore, Vm (p) is convex in p and P t+1 (ht;σ (ht)) is second order stochastically

decreasing in σ (ht) by Proposition 2 and hence the first claim follows.

To prove the second claim, suppose that there exists a σ such that

δEVm
(
P t+1

(
ht;σ

(
ht
)))

= c
(
ht
)

∆.
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We claim that for all σ′ (ht) > σ (ht) ,

EVm
(
P t+1

(
ht;σ′

(
ht
)))

> c
(
ht
)

∆. (24)

To see this, consider the exit decision of player i when all players use the symmetric

strategy σ. There must be an exit decision vector ât−i such that at ht+1
0 := ht ∪

(
ât−i, 0

)
,

p
(
ht+1

0 ,σ
)
< p∗

and at ht+1
1 := ht ∪

(
ât−i, 1

)
p
(
ht+1

1 ,σ
)
> p∗.

Furthermore,

Pr{at−i = ât−i} > 0.

Suppose next that player i exits with probability σ′i > σ (ht) and all other players

exit with probability σ (ht) after history ht. We consider the beliefs of an arbitrary player

j 6= i following this change in the strategy profile at history ht.

Denote the profile where all players but i exit with probability σ (ht) and i exits with

probability σ′i by (σ−i, σ
′
i) . By Lemma 2, and by the convexity of Vm (p) , we know that

for every at−i

δEaiV
(
ht ∪

(
at−i, ai

)
; (σ−i, σ

′
i)
)
≥ δEaiV

(
ht ∪

(
at−i, ai

)
;σ
(
ht
))
.

Therefore, the payoff of players other than i is strictly increasing in σ′i, if for ât−i we have

δEaiV
(
ht ∪

(
ât−i, ai

)
; (σ−i, σ

′
i)
)
> δEaiV

(
ht ∪

(
ât−i, ai

)
;σ
(
ht
))
.

But this follows immediately from the facts that

p
(
ht+1

0 ; (σ−i, σ
′
i)
)

= p
(
ht+1

0 ;σ
(
ht
))
,

p
(
ht+1

1 ; (σ−i, σ
′
i)
)
> p

(
ht+1

1 ;σ
(
ht
))
,

and

0 =
∂−Vm

(
p
(
ht ∪

(
ât−i, 0

)))
∂p

<
∂−Vm

(
p
(
ht ∪

(
ât−i, 1

)))
∂p

,

where ∂−Vm(p)
∂p

denotes the derivative from the left (which exists by the convexity of Vm (p))

of Vm at p.

Starting with the strategy profile (σ−i, σ
′
i) , change the exit probability of all players

j 6= i to σ′j = σ′i, and denote the resulting symmetric profile by σ′ (ht). By Proposition 2,

the payoff to all players is weakly increased. Therefore for all j,

EVj
(
ht+1;σ′

(
ht
))

= EVm
(
P t+1

(
ht; (σ′−i, σ

′
i

))
≥ EVm

(
P t+1

(
ht; (σ−i, σ

′
i

))
> EVm(P t+1

(
ht;σ

(
ht
))

) = EVj
(
ht+1;σ

(
ht
))
.
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Proof. [Proof of Theorem 1] All we have to do is to check that σ (ht) is optimal for all

players under all three cases given in the Theorem, and that this is the only symmetric

exit probability with this property.

Lemma 1 implies that it is optimal to stay (exit) at ht iff σ (ht) satisfies

δEVm
(
P t+1

(
ht;σ

(
ht
)))
≥ (≤) c

(
ht
)

∆. (25)

Consider now cases i) - iii) below. These cases cover all possibilities and are mutually

exclusive, because EVm (P t+1 (ht;σ (ht))) is increasing in σ (ht) by Lemma 2.

i) Assume

δEVm
(
P t+1

(
ht; 0

))
> c

(
ht
)

∆.

Then it is strictly optimal for all the players to stay under σ (ht) = 0. Moreover,

by Lemma 2, δEVm (P t+1 (ht;x)) > c (ht) ∆ for all x ≥ 0, so σ (ht) = 0 is the unique

symmetric equilibrium action in that case.

ii) Assume

δEVm
(
P t+1

(
ht; 0

))
≤ c

(
ht
)

∆ ≤ δEVm
(
P t+1

(
ht; 1

))
.

First note that EVm (P t+1 (ht;σ (ht))) is continuous in σ (ht) as a result of the continuity

of the Bayes’ rule in σ (ht). Lemma 2 then implies that there is a unique value σ∗ (ht) for

which

δEVm
(
P t+1

(
ht;σ∗

(
ht
)))

= c
(
ht
)

∆.

Moreover, for all σ (ht) < σ∗ (ht) the strictly optimal action is to exit, and for all

σ (ht) > σ∗ (ht) the strictly optimal action is to stay. Thus, σ∗ (ht) is the unique symmetric

equilibrium action in this case.

iii) Assume

δEVm
(
P t+1

(
ht; 1

))
< c

(
ht
)

∆.

Then it is strictly optimal for all the players to exit under σ (ht) = 1. Moreover, by

Lemma 2, δEVm (P t+1 (ht;x)) < c (ht) ∆ for all x ≤ 1, so σ (ht) = 1 is the unique

symmetric equilibrium action in that case.

Proof. [Proof of Lemma 3] i) We claim that for each ε > 0 there exists a ∆ > 0 such

that for all ∆ < ∆,

p
(
ht
)
< p∗ + ε for all ht with t such that t∆ ≥ τ ∗.

To prove the claim, suppose to the contrary. Clearly the losses from continuing in the

game are bounded from above by c∆.

c∆ ≥
(
p∗ − p

(
ht
))
λ(v + e−r∆V + (∆)). (26)
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Indifference requires that (
p∗ − p

(
ht
))
λ∆(v + e−r∆V + (∆)) (27)

= Σat Pr{At = at}e−r∆Vm
(
pt+1

(
ht, a

t
))

(28)

≥ Pr{At = 1}e−r∆Vm (pt+1 (ht,1)) (29)

≥ Pr{At = 1}e−r∆Vm (p∗ + ε) , (30)

where At is the random vector of exits in period t and {At = 1} is the event that nobody

exits. Since Vm (p) is strictly increasing for p > p∗, there is an η > 0 such that

e−r∆Vm (p∗ + ε) > η.

Hence we have:

Pr{At = 1} ≤ c∆

e−r∆Vm (p∗ + ε)
=
c

η
∆.

Since the individual randomization probabilities are independent, symmetric equilibrium

implies that (
1− ξN

(
ht
))N−1 ≤ c

η
∆,

where ξN (ht) is the individual exit probability in the game with N players after history

ht. Therefore

ξN
(
ht
)
≥ 1−

(
c

η
∆

) 1
N−1

. (31)

Since only uninformed player exit, we have

ξN
(
ht
)
≤ 1− π

(
ht
)
≤ 1− πt < 0,

and equation (31) leads to a contradiction for small enough ∆ and the claim is established.

Corollary 1 and the above claim establish part i) of the Lemma.

ii) Let

ht (k) = ht−1 ∪ at (k) ,

where at (k) is a vector of exit decisions where exactly k active players exit at history

ht−1. By Bayes’ rule, we know that

1− q (ht (k))

q (ht (k))
=

1− q (ht (0))

q (ht (0))

(
πL

πH

)k
.

By Proposition 1, there is an η > 0 such that πL

πH > 1 + η. Therefore, for all k, there is an

η′ such that

q
(
ht (k)

)
< q

(
ht (0)

)
− η′.
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By equation (12), there exists a ζ > 0 such that

p
(
ht (k)

)
< p

(
ht (0)

)
− ζ.

By part i), for all ε > 0, there exists a ∆ > 0 such that for all ∆ < ∆,

p
(
ht (0)

)
< p∗ + ε.

Since ε > 0 can be chosen arbitrarily small, the claim follows.

Proof. [Proof of Proposition 5] i) If X (ht−1) = 0, and p (ht−1) < p∗, then p (ht,1) >

p∗. If p (ht−1) ≥ p∗, then there are no exits and the only learning comes from private

observations. Hence there exists an η > 0 and a ∆ such that for all ∆ < ∆,

p
(
ht
)
> p∗ − η∆.

The loss from staying in the game for an additional period to an uninformed player is

cλ∆− λ∆p
(
ht
) (
v + e−r∆V +

)
= λ∆(c− p

(
ht
)
)
(
v + e−r∆V +

)
)

≤ λ∆(c− p∗ + η∆)
(
v + e−r∆V +

)
)

≤ λ∆η∆
(
v + V +

)
.

Suppose to the contrary of the claim that no such κ,∆ exist. Then there exist a

sequence ∆n → 0 and a sequence κn →∞

PL (X (ht) > 0)

∆n

> κn for some ht ∈ Hf (∆n) .

But then Bayes’ rule implies that there exists an α > 0 such that conditional on no exit,

p
(
ht+1

)
≥ p∗ + ακn∆n.

Since

V
(
p
(
ht
))

= Vm
(
p
(
ht
))
,

we can compute a lower bound for the expected value from stying in the game as:

Pr{no exit}[Vm (p∗)+V ′m (p∗)
(
p
(
ht
)
− p∗

)
+

1

2
V ′
′

m (p∗)
(
p
(
ht
)
− p∗

)2
+higher order terms.

Notice that V ′m (p∗) = 0 by smooth pasting. Since the losses are of order ∆2
n, and since

V ′′m (p∗ > 0) , we see that the gains exceed the losses contradicting the optimality of exits.

ii) Follows immediately from part ii) of the previous Lemma and Bayes’ rule.
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Proof. [Proof of Proposition 6] We define

p (τ) := q (τ) pH (τ) + (1− q (τ)) pL (τ) , (32)

we have

ṗ (τ) = ṗL (τ) + q̇ (τ) (pH (τ)− pL (τ)) + q (τ)
(
ṗH (τ)− ṗL (τ)

)
= 0. (33)

Using 2, we have along the history with no exits:

ṗθ (τ) = −λpθ (τ)
(
1− pθ (τ)

)
for θ ∈ {H,L}. (34)

Substituting from 34 and 32 into 33 gives:

q̇ (τ) = −λq (τ) (1− q (τ))
(
pH (τ)− pL (τ)

)
+

p∗ (1− p∗)
pH (τ)− pL (τ)

. (35)

On the other hand, we have for short intervals dτ of real time

q + dq =

q
(
1− pH + pH (1− λdτ)

) (
1− ξHdτ

)n−1

q (1− pH + pH (1− λdτ))
(
1− ξHdτ

)n−1
+ (1− q) (1− pL + pL (1− λdτ))

(
1− ξLdτ

)n−1 ,

Therefore

q̇ (τ) = q(τ) (1− q (τ))
(
−λpH (τ)− (n− 1) ξH (τ) + λpL (τ) + (n− 1) ξL (τ)

)
. (36)

Equating 35 and 36 and using 32 and ??, we get

ξθ (τ) = πθ (τ)
λp∗ (1− p∗)

(
pH(τ

)
− pL (τ))

(n− 1) (p∗ − pL (τ)) (pH (τ)− p∗) (πL (τ)− πH (τ))
.

Proof. [Proof of Proposition 7] By Lemma 3, we have

q∗ (τ) = lim
n→∞

(
1− σnπH (τ)

)n−1
qs

(1− σnπH (τ))n−1 qs + (1− σnπL (τ))n−1 (1− qs)
.

Therefore
1− q∗ (τ)

q∗ (τ)
=

1− qs
qs

lim
n→∞

(
1− σnπL (τ)

)n−1

(1− σnπH (τ))n−1 .

Evaluating the limits, we have:

eσ(π
L(τ)−πH(τ)) =

1− qs
qs

q∗ (τ)

1− q∗ (τ)
,

where

σ = lim
σn
n
.

Therefore the claim follows by taking logarithms and computing the probability of no

exit for each state.

The second claim is an immediate consequence of the Bayes’ rule with k exits.
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Appendix: Proofs for Section 5

This appendix contains the proofs for Proposition 3, Proposition 4, and Theorem 2. Our

arguments rely on the convergence of what we call the outside observer’s belief q̂ (ht), and

which we define as the posterior belief of the event {θ = H} at public history ht:

q̂
(
ht
)

=
q0PH{ht}

q0PH{ht}+ (1− q0)PL{ht}
.

Note the difference between q̂ (ht) and q̂i (h
t), the latter defined in Section 3.2: q̂ (ht)

is based on actions of all players (and represents therefore a true outside observer), while

q̂i (h
t) is based on actions of players other than i.

To link the convergence of q̂ (ht) to the beliefs of actual players in the game, note that

player i’s belief qi (h
t) differs from q̂ (ht) only to the extent that i’s private information

affects her belief. Lemma 4 below guarantees that i’s private history can not overrule a

sufficiently strong public history:10

Lemma 4 Suppose that ρH < 1. Then for all ε > 0, there is some δ > 0 such that the

following implications hold for all i:

q̂
(
ht
)
≥ 1− δ =⇒ qi

(
ht
)
≥ 1− ε and (37)

q̂
(
ht
)
≤ δ =⇒ qi

(
ht
)
≤ ε. (38)

Proof. Recall from Section 3.2 that q̂i (h
t) is the belief based on public histories of all

players other than i. In addition to this, q̂ (ht) also conditions on actions of i. Consider

the effect of this additional information. The most favorable piece of evidence in terms of

state θ = H that could ever be obtained form i’s actions is the one that fully reveals i to be

informed. The likelihood ratio of being informed across the states is
(
1− πHt

)
/
(
1− πLt

)
,

which gives us an upper bound for q̂ (ht) as expressed in terms of q̂i (h
t):

q̂ (ht)

1− q̂ (ht)
≤ 1− πHt

1− πLt
q̂i (h

t)

1− q̂i (ht)
. (39)

On the other hand, we can write the relationship between qi (h
t) and q̂i (h

t) by using (11):

qi (h
t)

1− qi (ht)
=
πHt
πLt

q̂ (ht)

1− q̂ (ht)
. (40)

10In the pure common values case, where ρH = 1, the ratio
πH
t

πL
t
→ 0 as t → ∞. In that case the

statement below holds for all t up to an arbitrary, fixed t. This modification is not essential for any of

our results.

32



Combining (39) and (40) gives us:

qi (h
t)

1− qi (ht)
≥ πHt
πLt

1− πLt
1− πHt

q̂ (ht)

1− q̂ (ht)
. (41)

From (10), we have 0 < πHt < πLt , and therefore the first equation of Lemma 4 follows

directly from (41). The second equation follows trivially from the fact that qi (h
t) ≤ q̂ (ht)

(an uninformed player must be more pessimistic than the outside observer).

Proof of Proposition 3

Our proof strategy is to follow the evolution of outside observer’s belief along a filtration

that samples the players’ actions sequentially one player at a time. We show that this

belief must converge to truth as the number of exits increases, and furthermore this implies

the convergence of actual players’ beliefs in the original filtration where all actions within

a period are sampled simultaneously. The key step in the argument is Lemma 5 below,

which implies that this belief process drifts at a high rate towards truth when sampled

at the points where players exit. With this Lemma at hand, the rest of the argument is

a straightforward application of Theorem A.1. of Fudenberg & Levine (1992).

We use index s ∈ N to track the moments of observation starting from period t∗ (∆) in

the following way. At s = 1 the action of player 1 in period t∗ (∆) is observed. At s = 2,

the action of player 2 in period t∗ (∆) is observed, and so on. Once the decisions all N

players in period t∗ (∆) have been sampled, the process moves to the next time period.

At s = N + 1 player 1’s action in period t∗ (∆) + 1 is observed, and so on. This means

that we map every s ∈ N to the corresponding period t (s) and player i (s) as follows:

t (s) : =
⌊ s
N

⌋
+ t∗ (∆) ,

i (s) : = s−N ·
⌊ s
N

⌋
.

Let ξθs denote the exit probability of player i (s) in period t (s) with equilibrium strat-

egy profile σ (nothing in the proof requires this to be symmetric):

ξθs := ξθi(s)
(
ht(s)

)
,

where we set ξθi (ht) = 0 if a
t(s)−1
i(s) = 0 (that is, probability of exit is zero for a player that

has already exited). We use xs ∈ {0, 1} as an indicator for player i (s) exiting in period

t (s):
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xs =

{
1 if a

t(s)−1
i(s) = 1 and a

t(s)
i(s) = 0

0 otherwise
.

Note that xs fully describes the public history up to period t (s)− 1, and in addition

contains the actions of players 1, ..., i (s) in period t (s). We use notation hs to refer to

the event defined by xs′ , s
′ = 1, ..., s:

hs =
s⋃

s′=1

a
t(s′)
i(s′).

We denote by q̂s the belief process of the outside observer, who observes the players

sequentially:

q̂s = Pr {θ = H |hs} , s ∈ N.

By Bayes rule, this belief evolves according to:

q̂0 = q0

q̂s ≡


q̂s−1ξ

H
s

q̂s−1ξ
H
s +(1−q̂s−1)ξLs

if xs = 1
q̂s−1(1−ξHs )

q̂s−1(1−ξHs )+(1−q̂s−1)(1−ξLs )
if xs = 0

, s = 1, 2, ... (42)

Note that for all s = t ·N , t ∈ N, the belief q̂s coincides with the outside observer’s belief

after period t:

q̂s = q̂
(
ht
)

, s = t ·N , t ∈ N.

For all other values of s, q̂s is the belief of an outside observer who has observed only a

subset of players in the last period.

Let X∞ denote the total number of players that exit the game:

X∞ :=
∞∑
t=0

X
(
ht
)

.

We define an increasing sequence of natural numbers {s (k)}X∞k=1 as follows:

s (0) = 0,

s (k) = min {s > s (k − 1) |xs = 1} , k = 1, ..., X∞.

Hence,
{
q̂s(k)

}X∞
k=1

is a subset of {q̂s}∞s=1 sequence, that samples the beliefs immediately

after realized exits.

Define:

Lk :=

{
1−q̂s(k)
q̂s(k)

for k = 1, ..., X∞.

0 for k = X∞ + 1, ...
(43)
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In words, Lk is the likelihood ratio for the event {θ = L} sampled after realized exits. It

is clear that under the event {θ = H}, this process is a supermartingale. The next lemma

is the key to our argument, and it states that this process is an active supermartingale,

as defined in Fudenberg & Levine (1992).

Lemma 5 There exists an η > 0 such that

PH
(
|Lk+1/Lk − 1| > η

∣∣hs(k)

)
> η (44)

for all Lk > 0.

Proof. Note first that

{|Lk+1/Lk − 1| ≤ η} ⇐⇒ (1− η)Lk ≤ Lk+1 ≤ (1 + η)Lk. (45)

By Proposition 1 and (13), there is some γ > 0 such that

ξLs
ξHs

> 1 + γ (46)

for all s ∈ N. Fix η small enough to ensure that

(1 + η)

(1− η)2 < 1 + γ. (47)

Write

L̃s :=
1− q̂s
q̂s

, s ∈ N.

Note that Lk = L̃s(k) for k = 1, ..., X∞. Using (42) and (46), we have:

L̃s =


ξLs
ξHs
L̃s−1 > (1 + γ) L̃s−1 if xs = 1

(1−ξLs )
(1−ξHs )

L̃s−1 < L̃s−1 if xs = 0

By definition of s (k), we have xs(k+1) = 1, and therefore, we have

L̃s(k+1) > (1 + γ) L̃s(k+1)−1. (48)

Noting that Lk+1 = L̃s(k+1) and Lk = L̃s(k), and using (45) and (48), we have:

{|Lk+1/Lk − 1| ≤ η} =⇒
{
L̃s(k+1)−1 <

1 + η

1 + γ
L̃s(k)

}
. (49)

Let s be the first observation point after s (k) at which L̃s is below 1+η
1+γ

L̃s(k) in case

there are no exits:

s := min

s′ > s (k) :

 s′∏
j=s(k)+1

1− ξLj
1− ξHj

 L̃s(k) <
1 + η

1 + γ
L̃s(k)

 .
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Then it follows from (49) and (45) that:

{|Lk+1/Lk − 1| ≤ η}

=⇒
{
xs = 0∀s = s (k) + 1, ..., s and L̃s(k+1) >

1− η
1 + η

(1 + γ) L̃s

}
. (50)

But, since L̃s is a super-martingale under θ = H, we have

E
(
L̃s(k+1)

∣∣hs, θ = H
)
< L̃s,

which implies the following (using the fact that L̃s(k+1) is bounded from below by 0):

PH

(
L̃s(k+1) <

1− η
1 + η

(1 + γ) L̃s
∣∣hs) ≥ 1− (1 + η)

(1− η) (1 + γ)
> η,

where the last inequality follows from (47). Combining this with (50), we note that

PH
(
|Lk+1/Lk − 1| > η

∣∣hs(k)

)
> η.

Lemma 5 says that Ls, s ∈ N is an active supermartingale with activity η, as defined in

Fudenberg & Levine (1992). We need this property to apply Theorem A.1. of Fudenberg

& Levine (1992), which we restate here for convenience:

Theorem 3 (Fudenberg and Levine) Let l0 > 0, ε > 0, and η ∈ (0, 1) be given. For

each L, 0 < L < l0, there is some K <∞ such that

Pr

(
sup
k>K

Lk ≤ L

)
≥ 1− ε

for every active supermartingale L with L0 = l0 and activity η.

With these preliminaries at hand, we are ready to finish the proof of Proposition 3:

Proof. [Proof of Proposition 3] Fix ε > 0. Consider the stochastic process Lk, k ∈ N,

defined in (43). Note from (43) that:

Lk ≤ L⇐⇒
({

q̂s(k) ≥
1

1 + L

}
or {k > X∞}

)
.

We set L small enough to guarantee:

Lk ≤ L =⇒
({
q̂s(k) > 1− ε

}
or {k > X∞}

)
. (51)

By Lemma 5, we know that Lk is an active supermartingale with activity η. By Theorem

3, we can therefore set K high enough to guarantee that

PH

{
h∞ : sup

k>K
Lk ≤ L

}
≥ 1− ε. (52)
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Combining this with (51), we have

PH{h∞ : n
(
ht
)
≤ N −K and q̂

(
ht
)
< 1− ε for some ht ∈ h∞} < ε. (53)

We have now proved the Proposition as regards equation (16). Knowing this, the part

concerning equation (17) follows from Bayes’ rule as follows. Define the following event:

A (K, ε) :=
{
h∞ : n

(
ht
)
< N −K and ε < q̂

(
ht
)
< 1− ε for some ht ∈ h∞

}
.

Then, by the definition of A (K, ε), the posterior of {θ = H} conditional on reaching

A (K, ε) must be between ε and 1− ε:

ε <
q0PH (A (K, ε))

q0PH (A (K, ε)) + (1− q)PL (A (K, ε))
< 1− ε. (54)

Since (53) holds for any ε given large enough K, we know that PH (A (K, ε)) can be made

arbitrarily small by increasing K. Therefore, for (54) to hold, also PL (A (K, ε)) must go

to zero as K is increased, which implies that for any ε > 0, we can find K large enough

to ensure that

PL{h∞ : n
(
ht
)
≤ N −K and q̂

(
ht
)
< ε for some ht ∈ h∞} < ε.

Proof of Proposition 4

We work through a number of lemmas. First, we formalize an intuitive fact that whenever

the probability that a large number of players exit within the current period is non-

negligible, the realized actions generate a precise signal about the state of the world. In

particular, if the true state is θ = H, then the beliefs of all players must be very close to

one after that period:

Lemma 6 For all ε > 0 and q > 0, there is some K ∈ N such that

PL
(
X
(
ht
)
> K

)
>

1

2
=⇒ PH

(
q
(
ht+1

)
> 1− ε

)
> 1− ε,

whenever q (ht) > q and t ≥ t∗ (∆).

Proof. Denote

µθ ≡ E
[
X
(
ht
)
|θ
]

= n
(
ht
)
ξθ
(
ht
)
.

Since X (ht) is a random variable that can only take positive values, the following must

hold:

PL
(
X
(
ht
)
> K

)
>

1

2
=⇒ µL >

1

2
K. (55)
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By Proposition 1, we know that there is some γ > 0 such that

ξL (ht)

ξH (ht)
> 1 + γ

for all t ≥ t∗ (∆). Consider the random variable

Z
(
ht
)

:=
X (ht)

µL
.

We have:

E
[
Z
(
ht
)
|θ = H

]
=
n (ht) ξH (ht)

n (ht) ξL (ht)
<

1

1 + γ
, (56)

E
[
Z
(
ht
)
|θ = L

]
=
n (ht) ξL (ht)

n (ht) ξL (ht)
= 1, (57)

var
[
Z
(
ht
)
|θ = H

]
=
n (ht) ξH (ht)

(
1− ξH (ht)

)(
n (ht) ξL (ht)

)2 <
1

n (ht) ξL (ht)
=

1

µL
, (58)

var
[
Z
(
ht
)
|θ = L

]
=
n (ht) ξL (ht)

(
1− ξL (ht)

)(
n (ht) ξL (ht)

)2 <
1

n (ht) ξL (ht)
=

1

µL
. (59)

Consider the event

A =

(
Z
(
ht
)
≤

1 + 1
2
γ

1 + γ

)
.

The formulas (56) - (59) imply that

lim
µL→∞

PH (A) = 1 and lim
µL→∞

PL (A) = 0.

By (55), assuming PL (X (ht) > K) > 1
2

and increasing K will increase µL without

bound. Hence, the result follows from Bayes’ rule by considering the likelihood ratio

across states of event A as K is increased.

Next, Lemma 7 bounds the probability with which a large number of players may exit

within an arbitrary period. By Lemma 6, a random experiment that would induce a large

number of players to exit with a non-negligible probability would be very informative on

the aggregate state. Any uninformed player would like to stay in the game until τH if

she knew the state to be H. Suppose next that the probability of high state is bounded

away from zero. As period length is reduced towards zero, the players would rather wait

and observe the result of an informative experiment than exit immediately. Lemma 7

formalizes this argument.

Lemma 7 For all τ < τH and q > 0, there are some K ∈ N and ∆ ∈ R+ such that

q
(
ht
)
> q =⇒ PL

(
X
(
ht
)
> K

)
<

1

2

whenever ∆ < ∆ and t ≤ t (τ ,∆).
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Proof. Fix τ < τH and q > 0. Lemma 6 implies that there is some φ : N→ R+ with

lim
K→∞

φ (K) = 0,

such that the following implication holds for all ht, t ≤ t (τ ,∆), and q (ht) > q:

PL
(
X
(
ht
)
> K

)
>

1

2
=⇒ PH

(
q
(
ht+1

)
> 1− φ (K)

)
> 1− φ (K) . (60)

Recall the definition (3) that denotes by pHt the belief of a player on her own type

conditional on state being H. If τ < τH , we can fix some η > 0 and ∆′ > 0 such that

pHt(τ ,∆)+1 > p∗ (∆) + η for all ∆ < ∆′. This follows directly from the continuity of p∗ (∆)

and the definition of τH . This means that we can choose K high enough so that

q
(
ht+1

)
> 1− φ (K) =⇒ p

(
ht+1

)
> p∗ (∆) + η. (61)

We fix a K such that (60) and (61) hold for all ht, t ≤ t (τ ,∆), for which q (ht) > q.

Take any such history, and assume that PL (X (ht) > K) > 1
2
. Consider next the payoff

that an uninformed player would get by staying in the game with probability one at that

history. We want to find a lower bound for that payoff. Since q (ht) > q, the posterior for

θ = H is bounded from below by q. By (60) and (61), 1− φ (K) is a lower bound for the

probability that p (ht+1) > p∗ (∆) +η, conditional on θ = H. Finally, Vm (p∗ (∆) + η) > 0

is the value of the isolated player at belief p∗ (∆) + η. Therefore, the continuation payoff

for a player that stays is bounded from below by:

V
(
ht
)
≥ −c∆ + e−r∆ · q · (1− φ (K)) · Vm (p∗ + η) , (62)

We see from (62) that we guarantee V (ht) > 0 by setting ∆ small enough and K large

enough. Since then it is strictly optimal for any individual player to stay in the game,

this contradicts the presumption that PL (X (ht) > K) > 1
2
. We can thus conclude that

for high enough K ∈ N and small enough ∆ ∈ R+ the implication

q
(
ht
)
> q =⇒ PL

(
X
(
ht
)
> K

)
<

1

2

holds whenever ∆ < ∆ and t ≤ t (τ ,∆).

Lemma 8 shows that if a large number or players exit within a period, then the belief

of an uninformed player falls to a very low level.

Lemma 8 For all τ < τH and q > 0, there are some K ∈ N and ∆ ∈ R+ such that the

following implication holds on the equilibrium path of any game Γ (∆, N) with ∆ < ∆:{
t ≤ t (τ ,∆) ∧ q

(
ht
)
> q ∧X

(
ht
)
> K

}
=⇒

{
q
(
ht+1

)
< q
}
.
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Proof. Fix τ < τH and q > 0. By Lemma 7, fix K ′ ∈ N and ∆′ such that

PL
(
X
(
ht
)
> K ′

)
<

1

2
(63)

whenever ∆ < ∆′, q (ht) > q, t ≤ t (τ ,∆). Since τ < τH , the same logic that led to (61)

allows us to fix ∆′′ > 0 and q∗ < 1 such that whenever t ≤ t (τ ,∆) and ∆ < ∆′′, the

following implication holds

q
(
ht
)
> q∗ =⇒ p

(
ht
)
> p∗ (∆) . (64)

Define ∆ = min (∆′,∆′′). For the rest of the proof we assume that ∆ < ∆, and we take

an arbitrary history ht such that t ≤ t (τ ,∆), q (ht) > q, and ξH (ht) > 0. Our goal is to

find K such that that X (ht) > K would imply q (ht+1) < q.

Consider the expression for the probability of k exits:

Pθ
(
X
(
ht
)

= k
)

=
(n
k

) (
ξθ
(
ht
))k (

1− ξθ
(
ht
))n(ht)−k

. (65)

Since ξH (ht) < ξL (ht), it follows by straightforward algebra from (65) that

PH (X (ht) = k)

PL (X (ht) = k)
>
PH (X (ht) = k′)

PL (X (ht) = k′)
for k < k′. (66)

It then also follows that
PH (X (ht) = K ′)

PL (X (ht) = K ′)
< 2. (67)

To see why, assume the contrary. Then, we have

PH
(
X
(
ht
)
≤ K ′

)
=

K′∑
k=0

PH
(
X
(
ht
)

= k
)
> 2 ·

K′∑
k=0

PL
(
X
(
ht
)

= k
)
> 2 · 1

2
= 1,

where the first inequality uses (66) and the presumption that (67) does not hold, whereas

the second inequality follows from (63). But a probability of an event can not be greater

than one, so (67) must hold.

Consider next the following expression:

PH (X (ht) = K ′ +K ′′)

PL (X (ht) = K ′ +K ′′)
=

(
n

K ′ +K ′′

)(
ξH (ht)

)K′+K′′ (
1− ξH (ht)

)n(ht)−K′−K′′
(

n

K ′ +K ′′

)(
ξL (ht)

)K′+K′′ (
1− ξL (ht)

)n(ht)−K′−K′′

=

(
ξH (ht)

ξL (ht)

)K′ (
1− ξH (ht)

1− ξL (ht)

)n(ht)−K′

·
(
ξH (ht)

ξL (ht)

)K′′ (
1− ξL (ht)

1− ξH (ht)

)K′′

=
PH (X (ht) = K ′)

PL (X (ht) = K ′)
·
(
ξH (ht)

ξL (ht)

)K′′
·
(

1− ξL (ht)

1− ξH (ht)

)K′′
40



By (67),
PH (X (ht) = K ′)

PL (X (ht) = K ′)
< 2.

Also, since ξL (ht) > ξH (ht), we have(
1− ξL (ht)

1− ξH (ht)

)K′′
< 1.

By Lemma 1, we have

lim
K′′→∞

(
ξH (ht)

ξL (ht)

)K′′
= 0,

and therefore, we can set K ′′ high enough to ensure

PH (X (ht) = K ′ +K ′′)

PL (X (ht) = K ′ +K ′′)
<

1− q∗

q∗
q. (68)

Since ξH (ht) > 0, we know from (64) that q (ht) < q∗ (otherwise no player would want

to exit). Therefore, Bayesian rule and simple algebra leads to:

q
(
ht+1

∣∣X (ht) = K ′ +K ′′
)

=
q (ht)PH (X (ht) = K ′ +K ′′)

q (ht)PH (X (ht) = K ′ +K ′′) + (1− q (ht))PL (X (ht) = K ′ +K ′′)

<
q (ht)

1− q (ht)

PH (X (ht) = K ′ +K ′′)

PL (X (ht) = K ′ +K ′′)

≤ q∗

1− q∗
PH (X (ht) = K ′ +K ′′)

PL (X (ht) = K ′ +K ′′)
< q,

where the last inequality follows from (68). By (66), this means that

q
(
ht+1

∣∣X (ht) = k
)
< q

for any k > K, where we have set K ≡ K ′ +K ′′.

Finally, we state a lemma that limits the probability with which an outside observer’s

belief q̂ (ht) could ever get small values if θ = H. This result is simply a formalization of

the notion that a Bayesian observer is not likely to get convinced of the untrue state.

Lemma 9 For all ε > 0, there is a q > 0 such that

PH
{
h∞ : q̂

(
ht
)
≤ q for some ht ∈ h∞

}
< ε.

Proof. Consider the event

A =
{
h∞ : q̂

(
ht
)
≤ q for some ht ∈ h∞

}
.
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The posterior probability of θ = H conditional on reaching A is

q0PH (A)

q0PH (A) + (1− q0)PL (A)
≤ q

by the definition of the event A. Since PL (A) ≤ 1, we have:

PH (A) ≤ (1− q0) q

q0 (1− q)
,

which can be made arbitrarily small by decreasing q.

With Lemmas 8 and 9 at hand, it is now easy to finish the proof of Proposition 4:

Proof. [Proof of Proposition 4] Fix τ < τH and ε > 0. Using Lemma 9, and noting that

the divergence of uninformed player’s belief from outside observer’s belief is bounded by

Lemma 4, we can fix q > 0 such that

PH
{
h∞ : q

(
ht
)
≤ q for some ht ∈ h∞

}
< ε. (69)

Next, by Lemma 8, fix K ∈ N and ∆ ∈ R+ such that{
t ≤ t (τ ,∆) , q

(
ht
)
> q , X

(
ht
)
> K

}
=⇒

{
q
(
ht+1

)
< q
}
,

whenever ∆ < ∆. Thus, if there is some ht, t ≤ t (τ ,∆), for which X (ht) > K, we must

have either q (ht) ≤ q or q (ht+1) ≤ q. But by (69) this cannot happen with probability

greater than ε, and as a result, we have

PH
{
h∞ : X

(
ht
)
> K for some t ≤ t (τ ,∆)

}
< ε

if ∆ < ∆.

Proof of Theorem 2

Proof. [Proof of Theorem 2] Fix τ < τH and ε > 0. Then, by Lemma 4, fix q∗ > 0 and

∆′ > 0 such that whenever ∆ < ∆′ and t ≤ t (τ ,∆), the following holds:

q̂
(
ht
)
≥ q∗ =⇒ p

(
ht
)
> p∗ (∆) . (70)

Next, by Proposition 3, we can fix K ′ such that

PH{h∞ : n
(
ht
)
≤ N −K ′ and q̂

(
ht
)
< q∗ for some ht ∈ h∞} < ε

2
. (71)

Assume that Σ
t(τ ,∆)
t=0 X (ht) ≥ K ′ (we may safely ignore the case Σ

t(τ ,∆)
t=0 X (ht) < K ′,

because the Theorem holds for that case with any K ≥ K ′), and denote by tK′ the first

period with fewer than N −K ′ players left:

tK′ := min
{
t : n

(
ht
)
≤ N −K ′

}
. (72)
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Since Σ
t(τ ,∆)
t=0 X (ht) ≥ K ′, we must have

tK′ ≤ t (τ ,∆) + 1. (73)

Equations (70) and (71) mean that the probability that any player exits in [tK′ , ..., t (τ ,∆)]

is less than ε
2
:

PH

h∞ :

t(τ ,∆)∑
t=tK′

X
(
ht
)
> 0

 <
ε

2
. (74)

By definition of tK′ in (72) we know that

tK′−2∑
t=0

X
(
ht
)
< K ′. (75)

Finally, by (73) and Proposition 4, we can find ∆′′ ∈ R+ and K ′′ such that

PH
{
h∞ : X

(
htK′−1

)
> K ′′

}
<
ε

2
. (76)

Noting that (74) holds when ∆ < ∆′ and (76) holds when ∆ < ∆′′, we may set K :=

K ′ +K ′′ and ∆ := min (∆′,∆′′), and combine (74) - (76) to get:

PH

h∞ :

t(τ ,∆)∑
t=0

X
(
ht
)
> K

 < ε,

whenever ∆ < ∆.
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