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Abstract

This paper identi�es a broad class of situations in which the contract is both

attainable in closed form and �detail-neutral�. The contract�s functional form is in-

dependent of the noise distribution and reservation utility; moreover, when the cost

of e¤ort is pecuniary, the contract is linear in output regardless of the agent�s utility

function. Our contract holds in both continuous time and a discrete-time, multi-

period setting where action follows noise in each period. The tractable contracts of

Holmstrom and Milgrom (1987) can thus be achieved in settings that do not require

exponential utility, Gaussian noise or continuous time. Our results also suggest that

incentive schemes need not depend on complex details of the particular setting, a

number of which (e.g. agent�s risk aversion) are di¢ cult for the principal to observe.

The proof techniques use the notion of relative dispersion and subdi¤erentials to

avoid relying on the �rst-order approach, and may be of methodological interest.
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1 Introduction

The principal-agent problem is central to many economic settings, such as employment

contracts, insurance and regulation. A vast literature analyzing this problem has found

that it is typically di¢ cult to solve: even in simple settings, the optimal contract can

be highly complex (see, e.g., Grossman and Hart (1983)). The �rst-order approach is

often invalid, requiring the use of more intricate techniques. Even if an optimal contract

can be derived, it may not be attainable in closed form, which reduces tractability �

a particularly important feature in applied theory models. In addition, the contract is

typically contingent upon many speci�c features of the environment, a number of which

(such as the agent�s risk aversion) are di¢ cult to observe and thus use to guide the contract

design in practice. Even those parameters that can be observed do not appear to a¤ect

real-life contracts as much as existing theories predict.

Against this backdrop, Holmstrom and Milgrom (1987, �HM�) made a major break-

through by showing that the optimal contract is linear in pro�ts under certain conditions.

Their result has since been widely used by applied theorists to justify the focus on linear

schemes, which leads to substantial tractability. However, HM emphasized that their re-

sult only holds under exponential utility, continuous time, Gaussian noise, and a pecuniary

cost of e¤ort. In certain settings, the modeler may wish to use discrete time or binary

noise for clarity, or decreasing absolute risk aversion for empirical consistency.

Can tractable contracts be achieved in broader settings? When allowing for alternative

utility functions or noise distributions, do these details start to a¤ect the optimal contract?

What factors do and do not matter for the incentive scheme? These questions are the focus

of our paper. We �rst consider a discrete-time, multiperiod model where, in each period,

the agent �rst observes noise and then exerts e¤ort, before observing the noise in the next

period; he consumes only in the �nal period. We solve for the cheapest contract that

implements a given, but possibly time-varying, path of target e¤ort levels. The optimal

incentive scheme is both tractable (i.e. attainable in closed form) and �detail-neutral:�

its functional form is independent of the noise distribution and the agent�s reservation

utility, and depends only on how the agent trades o¤ the bene�ts of cash against the

cost of providing e¤ort.1 The irrelevance of the noise distribution occurs even though each

action, except the �nal one, is followed by noise, and so he faces uncertainty when deciding

his e¤ort level. Using recent advances in continuous-time contracting (Sannikov (2008)),

1For brevity, we call such a contract �detail-neutral.� This term emphasizes that certain details of
the contracting situation do not matter for the functional form of the contract (whereas they matter in
earlier theories). It is not meant to imply that the functional form is independent of all parameters. Note
that our notion of detail-neutral contracts is a separate concept from Wilson�s (1987) detail-free auction
mechanisms.
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we show that the contract has the same functional form in a continuous-time model where

noise and e¤ort occur simultaneously.

In addition to noise and reservation utility, the optimal contract is also independent

of the agent�s utility function in two cases. First, if the cost of e¤ort is pecuniary as in

HM (i.e. can be expressed as a subtraction to cash pay), the incentive scheme is linear

in output for any utility function, even if the cost of e¤ort is itself non-linear. Second,

if the agent�s preferences are multiplicative in cash and e¤ort, the optimal contract is

independent of utility and log-linear, i.e. the percentage change in pay is linear in output.

An application to CEO incentives demonstrates the implications that �ow from a tractable

contract structure. For CEOs, the appropriate output measure is the percentage stock

return, and multiplicative preferences are theoretically motivated by Edmans, Gabaix and

Landier (2008). The optimal contract thus sets the required percentage change in pay for

a percentage change in �rm value, i.e. the elasticity of pay with respect to �rm value. This

analysis provides a theoretical justi�cation for using elasticities to measure incentives, a

metric previously advocated by Murphy (1999) on empirical grounds.

We allow the target e¤ort path to depend on the noise realizations. The optimal

contract now depends on messages sent by the agent to the principal regarding the noise,

since the �state of nature� may a¤ect the productivity of e¤ort. However, it remains

tractable and detail-neutral, for a given �action function�that links the observed noise to

the principal�s recommended e¤ort level. We �nally solve for the optimal action function

chosen by the principal. In classical agency models, the action chosen by the principal

is the result of a trade-o¤ between the bene�ts of e¤ort (which are increasing in �rm

size) and its costs (direct disutility plus the risk imposed by incentives, which are of

similar order of magnitude to the CEO�s wage). We show that, if the output under the

agent�s control is su¢ ciently large compared his salary (e.g. the agent is a CEO who

a¤ects total �rm value), these trade-o¤ considerations disappear: the bene�ts of e¤ort

swamp the costs. Thus, maximum e¤ort is optimal in each period, regardless of the noise

outcome. By contrast, if output is small, maximum e¤ort may not be optimal for some

noise realizations. We show that the optimal action function can still be solved for if the

cost function is a¢ ne.

The �maximum e¤ort principle�2, when applicable, signi�cantly increases tractability,

since it removes the need to solve the trade-o¤ required to derive the optimal e¤ort level

when it is interior. Indeed, jointly deriving the optimal e¤ort level and the e¢ cient con-

tract that implements it can be highly complex. Thus, papers that analyze the second

(implementation) problem typically assume a �xed target e¤ort level (e.g. Grossman and

2We allow for the agent to exert e¤ort that does not bene�t the principal. The �maximum e¤ort
principle�refers to the maximum productive e¤ort that the agent can undertake to bene�t the principal.

3



Hart (1983), Dittmann and Maug (2007) and Dittmann, Maug and Spalt (2008)). Our

result rationalizes this approach: if maximum e¤ort is always optimal, the �rst problem

has a simple solution �there is no trade-o¤ to be simultaneously tackled and the analysis

can focus on the implementing contract.

In sum, for a given target e¤ort level, the optimal implementation is detail-neutral.

Moreover, if output is su¢ ciently large, the optimal action itself does not depend on

model parameters, and so the overall contract is detail-neutral. All of the above results

are derived under a general contracting framework, where the contract may depend on

messages sent by the agent to the principal, and also be stochastic.

Our analytical framework yields a number of implications. First, it shows that tractable

contracts can be derived even without assuming exponential utility, Gaussian noise and

continuous time. This result may be of use for future contracting models, as it shows that

tractability may be achieved in quite broad settings. For example, certain models may

require decreasing relative risk aversion for empirical consistency and/or discrete time for

clarity. Second, it demonstrates what details of the environment do and do not matter for

the optimal contract. The functional form depends only on how the agent trades o¤ cash

against e¤ort and not the noise distribution or reservation utility, and is independent of

utility with a pecuniary cost of e¤ort or multiplicative preferences. This detail-neutrality

contrasts with many classical principal-agent models (e.g. Grossman and Hart (1983)),

where the optimal contract is contingent upon many speci�c features of the contracting

situation. This poses practical di¢ culties, as some of the important determinants are

di¢ cult to observe, such as the noise distribution and agent�s utility function. Our results

suggest that the contract is robust to such parametric uncertainty. Furthermore, even those

parameters that can be observed do not appear to a¤ect real-life contracts: for example,

Prendergast�s (2002) review of the evidence �nds that incentives show little correlation

with risk. Our model o¤ers a simple potential explanation for why contracts typically

do not depend on as many details of the contracting situation as a reading of the extant

literature would suggest �these details in fact do not matter.

We achieve simple contracts in other settings than HM due to a di¤erent modeling

setup. HM use exponential utility to eliminate �wealth e¤ects�of prior period outcomes

on the current period decision, thus removing the intertemporal link between periods and

allowing the multiperiod problem to collapse into a succession of identical static problems.

The removal of wealth e¤ects also leads to independence of the reservation wage. By

contrast, we achieve tractability by modeling the noise before the action in each period, as

in theories in which the agent observes a �state of nature�before taking his action, or total

output before deciding how much cash �ow to divert.3 This assumption has little e¤ect on

3This timing assumption cannot be made within the HM framework since HM model e¤ort as the
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the economics of the problem since the agent is still exposed to risk in every period (except

the �nal one), but is a technical device that allows the multiperiod model to be solved by

backward induction, so that it becomes a succession of single-period problems. A potential

intertemporal link remains since high past outcomes mean that the agent already expects

high consumption and thus may have a lower current incentive to exert e¤ort. This issue

is present in the Mirrlees (1974) contract if the agent can observe past outcomes. (A high

reservation wage has the same e¤ect.) The optimal contract must address these issues:

if the utility function is concave, the contract must be convex so that, at high levels of

consumption, the agent is awarded a greater number of dollars for exerting e¤ort, to o¤set

the lower marginal utility of each additional dollar. If the cost of e¤ort is in monetary

terms, high past outcomes decrease the bene�ts of cash and the cost of e¤ort equally, and

so incentives are preserved even with a linear contract.

In addition to its results, the paper�s proofs import and extend some mathematical

techniques that are relatively rare in economic theory and may be of use in future models.

We employ use the subderivative, a generalization of the derivative that allows for quasi

�rst-order conditions even if the objective function is not everywhere di¤erentiable. This

concept is related to Krishna and Maenner�s (2001) use of the subgradient, although

the applications are quite di¤erent. These notions also allow us to avoid the �rst-order

approach, and so may be useful for future models where su¢ cient conditions for the

�rst-order approach cannot be veri�ed.4 We also use the notion of �relative dispersion�

for random variables to prove that the incentive compatibility constraints bind, i.e. the

principal imposes the minimum incentive slope that induces the target e¤ort level. We

show that the binding contract is less dispersed than alternative solutions, constituting

e¢ cient risk sharing. A similar argument rules out stochastic contracts, where the payout

is a random function of output.5 We extend a result from Landsberger and Meilijson

(1994), who use relative dispersion in another economic setting.

This paper builds on a rich literature on the principal-agent problem. Grossman and

Hart (1983) demonstrate how the problem can be solved in discrete time using a dynamic

programming methodology that avoids the need for the �rst-order approach. HM show

selection of probabilities, so noise inevitably follows the action. We thus depart from the framework and
model e¤ort as an increment to mean output, so that the noise/state of nature can be realized �rst.

4See Rogerson (1985) for su¢ cient conditions for the �rst-order approach to be valid under a single
signal, and Jewitt (1988) for situations in which the principal can observe multiple signals. Schaettler
and Sung (1993) derive su¢ cient conditions for the �rst-order approach to be valid in a large class of
principal-agent problems, of which HM is a special case.

5With separable utility, it is straightforward to show that the constraints bind: the principal should
o¤er the least risky contract that achieves incentive compatibility. However, with non-separable utility,
introducing additional randomization by giving the agent a riskier contract than necessary may be desirable
(Arnott and Stiglitz (1988)) �an example of the theory of second best. We use the concept of relative
dispersion to prove that constraints bind.
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that optimal contracts are linear in pro�ts in continuous time (where noise is automatically

Gaussian) if the agent has exponential utility and controls only the drift of the process; they

show that this result does not hold in discrete time. A number of papers have extended

their result to more general settings, although all continue to require exponential utility.

In Sung (1995) and Ou-Yang (2003), the agent also controls the di¤usion of the process

in continuous time. Hellwig and Schmidt (2002) show that linearity can be achieved in

discrete time, under the additional assumptions that the agent can destroy pro�ts before

reporting them to the principal, and that the principal can only observe output in the

�nal period. Our multiperiod model yields linear contracts while allowing the principal

to observe signals at each interim stage. Mueller (2000) shows that linear contracts are

not optimal in HM if the agent can only change the drift at discrete points, even if these

points are numerous and so the model closely approximates continuous time. In a di¤erent

setting from HM, where the agent can falsify the level of output, Lacker and Weinberg

(1989) also identify a simple class of situations in which linear contracts obtain. Their

core result is similar to a speci�c case of our Theorem 1, with a linear felicity function and

a single period.

A number of other papers investigate the parameter dependence of optimal contracts.

DeMarzo and Fishman (2007) consider a discrete-time, dynamic model where the agent

can divert cash �ows. They show that the optimal contract can be implemented using the

standard securities of equity, long-term debt and a credit line; under certain conditions,

the terms of debt and the credit line are independent of the severity of the agency problem.

The agent is risk-neutral in their setting; here, we study the impact of the utility function

and noise distribution. DeMarzo and Sannikov (2006) show that the model is particularly

tractable in continuous time, where the incentive scheme can be solved as a di¤erential

equation. Wang (2007) derives the optimal contract under uncertainty and �nds the limit

of this contract as uncertainty diminishes. The limit contract depends on the agent�s risk

aversion and the characteristics of the risk environment.

This paper proceeds as follows. In Section 2 we derive tractable and detail-neutral

contracts in both discrete and continuous time, as well as considering a speci�c application

to CEO compensation. While this section holds the target e¤ort level �xed, Section 3 allows

it to depend on the noise realization and derives conditions under which the maximum

productive e¤ort level is optimal for all noise outcomes. Section 4 concludes. The Appendix

contains proofs and other additional materials; further peripheral material is in the Online

Appendix.
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2 The Core Model

2.1 Discrete Time

We consider a T -period model; its key parameters are summarized in Table 1. In each

period t, the agent observes noise �t, takes an unobservable action at, and then observes

the noise in period t+ 1. The action at is broadly de�ned to encompass any decision that

bene�ts output but is personally costly to the principal. The main interpretation is e¤ort,

but it can also refer to rent extraction: low at re�ects cash �ow diversion or the pursuit

of private bene�ts. We assume that noises �1; :::; �T are independent with open interval

support
�
�t; �t

�
, where the bounds may be in�nite, and that �2; :::; �t have log-concave

densities.6 We require no other distributional assumption for �t; in particular, it need not

be Gaussian. The action space A has interval support, bounded below and above by a

and a. (We allow for both open and closed action sets and for the bounds to be in�nite.)

After the action is taken, a veri�able signal

rt = at + �t: (1)

is publicly observed at the end of each period t.

Insert Table 1 about here

Our assumption that �t precedes at is featured in models in which the agent observes a

�state of nature�before taking his action (e.g. Harris and Raviv (1979), La¤ont and Tirole

(1986) and Baker (1992))7 and cash �ow diversion models where the agent observes total

output before choosing how much to divert (e.g. DeMarzo and Sannikov (2006), DeMarzo

and Fishman (2007).) Note that this timing assumption does not make the agent immune

to risk �in every period, except the �nal one, his action is followed by noise. Even in a

one-period model, the agent bears risk as the noise is unknown when he signs the contract.

In Section 2.2 we show that the contract has the same functional form in continuous time,

where � and a are simultaneous.

In period T , the principal pays the agent cash of c.8 The agent�s utility function is

6A random variable is log-concave if it has a density with respect to the Lebesgue measure, and the
log of this density is a concave function. Many standard density functions are log-concave, in particular
the Gaussian, uniform, exponential, Laplace, Dirichlet, Weibull, and beta distributions (see, e.g., Caplin
and Nalebu¤ (1991)). On the other hand, most fat-tailed distributions are not log-concave, such as the
Pareto distribution.

7In such papers, the optimal action typically depends on the state of nature. We allow for such
dependence in Section 3.1.

8If the agent quits before time T , he receives a very low wage c.
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TX
t=1

g (at)

!#
: (2)

g represents the cost of e¤ort, which is increasing and weakly convex. u is the utility

function and v is the felicity9 function which denotes the agent�s utility from cash; both

are increasing and weakly concave. g, u and v are all twice continuously di¤erentiable. We

specify functions for both utility and felicity to maximize the generality of the setup. For

example, the utility function (
ce�g(a))

1


1� is commonly used in macroeconomics and features

a non-linear u and v. u(x) = x denotes additively separable preferences; v(c) = ln c

generates multiplicative preferences. If v(c) = c, the cost of e¤ort is expressed as a

subtraction to cash pay. This is appropriate if e¤ort represents an opportunity cost of

foregoing an alternative income-generating activity (e.g. outside consulting), or involves

a �nancial expenditure. Note that even if the cost of e¤ort is pecuniary, it remains a

general, possibly non-linear function g (at). HM assume v(c) = c and u(x) = �e�x, i.e. a
pecuniary cost of e¤ort and exponential utility.

The only assumption that we make for the utility function u is that it exhibits nonin-

creasing absolute risk aversion (NIARA), i.e. �u00 (x) =u0 (x) is nonincreasing in x. Many
commonly used utility functions (e.g. constant absolute risk aversion u (x) = �e�x and
constant relative risk aversion u (x) = x1�= (1� ),  > 0) exhibit NIARA. This assump-

tion turns out to be su¢ cient to rule out randomized contracts.

The agent�s reservation utility is given by u 2 Imu, where Imu is the image of u, i.e.
the range of values taken by u. We also assume that Im v = R so that we can apply the
v�1 function to any real number.10 We impose no restrictions on the contracting space

available to the principal, so the contract ec(�) can be stochastic, nonlinear in the signals
rt, and depend on messages Mt sent by the agent. By the revelation principle, we can

assume that the the space of messages Mt is R and that the principal wishes to induce
truth-telling by the agent. The full timing is as follows:

1. The principal proposes a (possibly stochastic) contract ec (r1; :::; rT ;M1; :::;MT )

2. The agent agrees to the contract or receives his reservation utility u.

3. The agent observes noise �1, then sends the principal a message M1, then exerts

e¤ort a1:

9We note that the term �felicity� is typically used to denote one-period utility in an intertemporal
model. We use it in a non-standard manner here to distinguish it from the utility function u.

10This assumption could be weakened. With K de�ned as in Theorem 1, it is su¢ cient to assume that
there exists a value ofK which makes the participation constraint bind, and a �threat consumption�which
deters the agent from exerting very low e¤ort, i.e. infc v (c)� infat

P
t g (at) �

P
t g
0 (a�)

�
�t + a

�
t

�
+K.
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4. The signal r1 = �1 + a1 is publicly observed.

5. Steps (3)-(4) are repeated for t = 2; :::; T .

6. The principal pays the agent ec (r1; :::; rT ;M1; :::;MT ).

As in Grossman and Hart (1983), in this section we �x the path of e¤ort levels that

the principal wants to implement at (a�t )t=1;::;T , where a
�
t > a and a�t is allowed to be time-

varying.11 An admissible contract gives the agent an expected utility of at least u and

induces him to take path (a�t ) and truthfully report noises (�t)t=1;::;T . Since the principal

is risk-neutral, the optimal contract is the admissible contract with the lowest expected

cost E [ec].
We now formally de�ne the principal�s program. Let Ft be the �ltration induced by

(�1; :::; �t), the noise revealed up to time t. The agent�s policy is (a;M) = (a1; :::; aT ;M1; :::;MT ),

where at and Mt are Ft�measurable. at is the e¤ort taken by the agent if noise (�1; :::; �t)
has been realized, and Mt is a message sent by the agent upon observing (�1; :::; �t). Let

S denote the space of such policies, and �(S) the set of randomized policies. De�ne

(a�;M�) = (a�1; :::; a
�
T ;M

�
1 ; :::;M

�
T ) the policy of exerting e¤ort a

�
t at time t, and sending

the truthful message M�
t (�1; :::; �t) = �t. The program is given below:

Program 1 The principal chooses a contract ec (r1; :::; rT ;M1; :::;MT ) and a Ft�measurable
message policy (M�

t )t=1:::;T , that minimizes expected cost:

minec(�) E [ec (a�1 + �1; :::; a
�
T + �T ;M

�
1 ; :::;M

�
T )] ; (3)

subject to the following constraints:

IC: (a�t ;M
�
t )t=1:::T 2 arg max

(a;M)2�(S)
E

"
u

 
v (ec (a1 + �1; :::; aT + �T ;M1; :::;MT ))�

TX
s=1

g (as)

!#
(4)

IR: E

"
u

 
v (ec (�))� TX

t=1

g (a�t )

!#
� u: (5)

In particular, if the analysis is restricted to message-free contracts, (4) implies that the

time-t action a�t is given by:

8�1; :::; �t; a�t 2 argmax
at
E

"
u

 
v (ec (a�1 + �1; :::; at + �t; :::; a

�
T + �T ))� g (at)�

TX
s=1;s 6=t

g (a�s)

!
j �1; :::; �t

#
:

(6)

11If a�t = a, then a �at wage induces the optimal action.
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Theorem 1 below describes our solution to Program 1.12

Theorem 1 (Optimal contract, discrete time). The following contract is optimal. The
agent is paid

c = v�1

 
TX
t=1

g0 (a�t ) rt +K

!
, (7)

whereK is a constant that makes the participation constraint bind (E

"
u

 P
t g
0 (a�t ) rt+

K �
P

t g (a
�
t )

!#
=

u). The functional form (7) is independent of the utility function u, the reservation utility

u, and the distribution of the noise �. These parameters a¤ect only the scalar K. The

optimal contract is deterministic and does not require messages.

In particular, if the target action is time-independent (a�t = a� 8 t), the contract

c = v�1 (g0 (a�) r +K) (8)

is optimal, where r =
PT

t=1 rt is the total signal.

Proof. (Heuristic). The Appendix presents a rigorous proof that rules out stochastic
contracts and messages, and does not assume that the contract is di¤erentiable. Here,

we give a heuristic proof by induction on T that conveys the essence of the result for

deterministic message-free contracts, using �rst-order conditions and assuming a�t < a.

We commence with T = 1. Since �1 is known, we can remove the expectations operator

from the incentive compatibility condition (6). Since u is an increasing function, it also

drops out to yield:

a�1 2 argmax
a1

v (c (a1 + �1))� g (a1) : (9)

The �rst-order condition is:

v0 (c (a�1 + �1)) c
0(a�1 + �1)� g0 (a�1) = 0:

Therefore, for all r1,

v0 (c (r1)) c
0 (r1) = g0 (a�1) ;

which integrates over �1 to

v (c (r1)) = g0 (a�1) r1 +K (10)

12Theorem 1 characterizes a contract that is optimal, i.e. solves Program 1. Strictly speaking, there
exist other optimal contracts which pay the same as (7) on the equilibrium path, but take di¤erent values
for returns that are not observed on the equilibrium path.
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for some constant K. Contract (10) must hold for all r1 that occurs with non-zero proba-

bility, i.e. for r1 2
�
a�1 + �

1
; a�1 + �1

�
.

Proceeding by induction, we now show that, if the result holds for T , it also holds for

T +1. Let V (r1; :::; rT+1) � v (c (r1; :::; rT+1)) denote the indirect felicity function, i.e. the

contract in terms of felicity rather than cash. At t = T + 1, the incentive compatibility

condition is:

a�T+1 2 argmax
aT+1

V (r1; :::; rT ; �T+1 + aT+1)� g (aT+1)�
TX
t=1

g (a�t ) : (11)

Applying the result for T = 1, to induce a�T+1 at T + 1, the contract must be of the form:

V (r1; :::; rT ; rT+1) = g0
�
a�T+1

�
rT+1 + k (r1; :::; rT ) ; (12)

where the integration �constant�now depends on the past signals, i.e. k (r1; :::; rT ). In

turn, k (r1; :::; rT ) must be chosen to implement a�1; :::; a
�
T viewed from t = 0, when the

agent�s utility is:

E

"
u

 
k (r1; :::; rT ) + g0

�
a�T+1

�
rT+1 � g

�
a�T+1

�
�

TX
t=1

g (at)

!#
:

De�ning bu (x) = E �u �x+ g0
�
a�T+1

�
rT+1 � g

�
a�T+1

���
; (13)

the principal�s problem is to implement a�1; :::; a
�
T with a contract k (r1; :::; rT ), given a

utility function

E

"bu k (r1; :::; rT )� TX
t=1

g (at)

!#
:

Applying the result for T , the contract must have the form k (r1; :::; rT ) =
PT

t=1 g
0 (a�t ) rt+

K for some constant K. Combining this with (10), an incentive compatible contract must

satisfy:

V (r1; :::; rT ; rT+1) =

T+1X
t=1

g0 (a�t ) rt +K: (14)

for (rt) that occurs with non-zero probability (i.e. (r1; :::; rT ) 2
TY
t=1

�
a�t + �

t
; a�t + �t

�
. The

associated pay is c = v�1
�PT+1

t=1 g
0 (a�t ) rt +K

�
, as in (7). Conversely, any contract that

satis�es (14) is incentive compatible.

11



The main applications of Theorem 1 are likely to be for T = 1 or for a constant a�t ;

Section 3.2 derives conditions under which the maximum productive e¤ort level is optimal

for all t. In such cases, the contract is particularly simple and only depends on the total

signal, as shown in (8).

In addition to deriving the incentive scheme in closed form (for any T and (a�t )),

Theorem 1 also clari�es the parameters that do and do not matter for the contract�s

functional form. It depends only on the felicity function v and the cost of e¤ort g, i.e.

how the agent trades o¤ the bene�ts of cash against the costs of providing e¤ort, and is

independent of the utility function u, the reservation utility u, and the distribution of the

noise �. For brevity, we call such a contract �detail-neutral.�This term aims to highlight

that certain details of the contracting situation do not matter for the functional form (7);

it does not imply that the functional form is independent of all parameters. If v(c) = c

(the cost of e¤ort is pecuniary) as assumed by HM, the contract is linear regardless of

u, even though the cost function g (at) may be nonlinear. The linear contracts of HM

can thus be achieved in settings that do not require exponential utility, Gaussian noise or

continuous time.

The origins of the contract�s tractability and detail-neutrality can be seen in the heuris-

tic proof. We �rst consider T = 1. Since �1 is known, the expectations operator can be

removed from (6). u then drops out to yield (9): u is irrelevant because it only a¤ects the

magnitude of the increment in utility that results from choosing the correct a1 (i.e. the

a1 that solves (9)). This magnitude is irrelevant �the only important property is that

it is always positive because u is monotonic. Regardless of the form that u takes, it is

maximized by maximizing its argument, i.e. solving (9).

Even though all noise is known when the agent takes his action, it is not automatically

irrelevant. First, since the agent does not know �1 when he signs the contract, he is subject

to risk and so the �rst-best is not achieved. Second, the noise realization has the potential

to undo incentives. If there is a high �1, r1 and thus c will already be high, even if the

agent exerts low e¤ort. (A high reservation utility u has the same e¤ect). If the agent

exhibits diminishing marginal felicity (i.e. v is concave), he will have lower incentives

to exert e¤ort. The optimal contract must address this problem. It does so by being

convex, via the v�1 transformation: if noise is high, it gives a greater number of dollars

for exerting e¤ort ( @c
@r1
), to exactly o¤set the lower marginal felicity of each dollar (v0(c)).

Therefore, the marginal felicity from e¤ort remains v0(c) @c
@r1

= g0 (a�1), and incentives are

preserved regardless of u or �. If the cost of e¤ort is pecuniary (v(c) = c), v�1(c) = c and

so no transformation is needed. Since both the costs and bene�ts of e¤ort are in monetary

terms, high past noise diminishes them equally. Thus, incentives are unchanged even with

a linear contract.

12



We now move to the general case of T > 1. In all periods before the �nal one,

the agent is now exposed to residual uncertainty, since he does not know future noise

realizations when he chooses at. Much like the e¤ect of a high current noise realization,

if the agent expects future noise to be high, his incentives to exert e¤ort will be reduced.

In some models, this would require the agent to integrate over future noise realizations

when choosing at. Here the unknown future noise outcomes do not matter, and this can be

seen in the heuristic proof. Before T + 1, �T+1 is unknown. However, (12) shows that the

component of the contract that solves the T +1 problem (g0
�
a�T+1

�
rT+1) is independent of

that which solves the t = 1; :::; T problems (k (r1; :::; rT )). Hence, the unknown �T+1 enters

additively and does not a¤ect the incentive constraints of the t = 1; :::; T problems.13 Our

timing assumption thus allows us to solve the multiperiod problem via backward induction,

reducing it to a succession of one-period problems, each of which can be solved separately.

It has little e¤ect on the economics of the situation since the agent continues to face

uncertainty in all periods except for the �nal one, but instead is a technical device to

allow us to collapse the problems.

Even though we can consider each problem separately, the periods remain interdepen-

dent. Much like the current noise realization, past outcomes may a¤ect the current e¤ort

choice. The Mirrlees (1974) contract punishes the agent if �nal output is below a certain

threshold. Therefore, if the agent can observe past outcomes, he will shirk if interim

output is high. This complexity distinguishes our multiperiod model from a static multi-

action model, where the agent chooses T actions simultaneously. As in HM, and unlike

in a multi-action model, here the agent observes past outcomes when taking his current

action, and can vary his action in response. HM assume exponential utility to remove such

�wealth e¤ects� and remove the intertemporal link between periods. We instead ensure

that past outcomes do not distort incentives via the v�1 transformation described above,

and so do not require exponential utility.

We achieve simple contracts in other settings than HM due to a di¤erent modeling

framework. In HM, as in Grossman and Hart (1983), e¤ort is modeled as the selection

of a probability distribution over states of nature. Since e¤ort only has a probabilistic

e¤ect on outcomes, the model already features uncertainty and so there is no need to

introduce additional noise �noise dependence is not an issue. However, this formulation

of e¤ort requires exponential utility to remove wealth e¤ects and achieve independence

of the reservation wage.14 By modeling e¤ort as an increment to the signal (equation

13This can be most clearly seen in the de�nition of the new utility function (13), which �absorbs�the
T + 1 period problem.

14Speci�cally, the agent�s objective function is
P

j u (cj � g(p; �j)) pj where the summation is across
states �j , and pj is the probability of each state chosen by the agent. If the reservation wage is reduced by
w, does the new incentive scheme simply subtract w from each cj? The objective function would become
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(1)), we achieve independence of u. This modeling choice requires the speci�cation of

a noise process, else the e¤ort decision would become contractible. We then achieve

tractability by our timing assumption, which allows us to solve the multiperiod problem by

backward induction, and the v�1 transformation ensures incentives are preserved regardless

of past noise or the reservation wage. In sum, the combination of the e¤ort and timing

speci�cations achieves tractability and independence of both utility u and noise �.

The Appendix proves that, even though the agent privately observes �t, there is no

need for him to communicate it to the principal. Since a�t is implemented for all �t,

there is a one-to-one correspondence between rt and �t on the equilibrium path. The

principal can thus infer �t from rt, rendering messages redundant. The Appendix also

shows that we can rule out randomized contracts. There are two e¤ects of randomization.

First, it leads to ine¢ cient risk-sharing, for any concave u. Second, it alters the marginal

cost of e¤ort. If the utility function exhibits NIARA, this cost weakly increases with

randomization. Thus, both e¤ects of randomization are undesirable, and deterministic

contracts are unambiguously optimal.15 The proof makes use of the independence of

noises and the log-concavity of �2; :::; �T . Note that while these assumptions, combined

with the NIARA utility function, are su¢ cient to rule out randomized contracts, they may

not be necessary. In future research, it would be interesting to explore whether randomized

contracts can be ruled out in broader settings.16

In addition to allowing for stochastic contracts, the above analysis also allows for a�t = a

for some t. When a�t = a, the incentive compatibility constraint is an inequality. Therefore,

the contract in (7) only provides a lower bound on the contract slope that implements a�t .

A sharper-than-necessary contract has a similar e¤ect to a stochastic contract, since it

subjects the agent to additional risk. Again, the combination of NIARA and independent

and log-concave noises is su¢ cient rule out such contracts. In sum, if the analysis allows

for randomized contracts and a�t = a, there are several incentive compatible contracts and

the above three assumptions are su¢ cient to show that the contract in (7) is cheaper than

stochastic contracts or contracts with a greater slope.

P
j u (v(cj)� w � c(p; �j)) pj . Since pj is outside the u(�) function, u(�) does not automatically drop out.

Only if utility is exponential does the objective function simplify to �u(�w)
P

j u (v(cj)� c(p; �j)) pj ,
and so incentives are preserved by subtracting w from each payment cj , i.e. the participation constraint
can be met without a¤ecting the incentive constraints. This property will not hold with non-exponential
utility.

15This result builds on Arnott and Stiglitz (1988), who derived conditions under which randomization
is suboptimal in a di¤erent setting of insurance.

16For instance, consider the case T = 2. We only require that bu (x) as de�ned in (40) exhibits NIARA.
The concavity of �2 is su¢ cient, but unnecessary for this. Separately, if NIARA is violated, the marginal
cost of e¤ort falls with randomization. However, this e¤ect may be outweighed by the ine¢ cient risk-
sharing, so randomized contracts may still be dominated.
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If the analysis is restricted to deterministic contracts and a�t < a 8 t, the contract in
(7) is the only incentive-compatible contract (for the signal values realized on the equi-

librium path). We can thus drop the assumptions of NIARA utility and log-concave and

independent noises. This result is stated in Proposition 1 below.

Proposition 1 (Optimal deterministic contract, a�t < a 8 t). Consider only deterministic
contracts and a�t < a 8 t. Drop the assumptions of NIARA utility, independent noises, and
log-concave noises for �2; :::; �T ; assume only that for all t, �t has open interval support

conditional on �1:::; �t�1. Any incentive-compatible contract takes the form

c = v�1

 
TX
t=1

g0 (a�t ) rt +K

!
(15)

for some K, and for (rt)t�T in the interior of the support of the realized values of the

signal on the equilibrium path, (a�t + �t)t�T . Conversely, any contract that satis�es (15)

for all rt is incentive-compatible. The optimal contract has form (15), where K makes the

agent�s participation constraint bind.

Proof. See Appendix.
We close this section by considering two speci�c applications of Theorem 1 to executive

compensation, to highlight the implications that stem from a tractable contract structure.

While contract (7) can be implemented for any informative signal r, the �rm�s equity return

is the natural choice of r for CEOs, since they are contracted to maximize shareholder

value. When the cost of e¤ort is pecuniary (v (c) = c), Theorem 1 implies that the CEO�s

dollar pay c is linear in the �rm�s return r. Hence, the relevant incentives measure is the

dollar change in CEO pay for a given percentage change in �rm value (i.e. �dollar-percent�

incentives), as advocated by Hall and Liebman (1998).

Another common speci�cation is v(c) = ln c, in which case the CEO�s utility function

(2) now becomes, up to a monotonic (logarithmic) transformation:

E
�
U
�
ce�g(a)

��
� U; (16)

where u (x) � U (ex) and U � lnu is the CEO�s reservation utility. Utility is now multi-
plicative in e¤ort and consumption salary; Edmans, Gabaix and Landier (2008) show that

multiplicative preferences are necessary to generate empirically consistent predictions for

the scaling of various measures of CEO incentives with �rm size. Note that we retain the

general utility function U(�).
Let r denote the �rm�s log return and R = er denote its gross return. Applying

Theorem 1 with T = 1 for simplicity, the optimal contract becomes
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ln c = g0(a�)r +K: (17)

The optimal contract is independent of the utility function U . It prescribes the per-

centage change in CEO pay for a percentage change in �rm value, i.e. �percent-percent�

incentives. Murphy (1999) advocated this elasticity measure over alternative incentive

measures (such as �dollar-percent� incentives) on two empirical grounds: it is invariant

to �rm size, and �rm returns have much greater explanatory power for percentage than

dollar changes in pay. However, he notes that �elasticities have no corresponding agency-

theoretic interpretation.�The above analysis shows that elasticities are the theoretically

justi�ed measure under multiplicative preferences, regardless of the CEO�s utility function.

This result extends Edmans, Gabaix and Landier (2008) who advocated �percent-percent�

incentives in a risk-neutral model.

2.2 Continuous Time

This section shows that the contract has the same detail-neutral functional form in contin-

uous time, where actions and noise occur simultaneously. The consistency of the incentive

scheme suggests that, if the underlying reality is continuous time, it is best mimicked in

discrete time by modeling noise before the e¤ort decision in each period.

At every instant t, the agent takes action at and the principal observes signal rt, where

rt =

Z t

0

asds+ �t; (18)

�t =
R t
0
�sdZs +

R t
0
�sds, Zt is a standard Brownian motion, and �t > 0 and �t are

deterministic. The agent�s utility function is:

E

�
u

�
v (c)�

Z T

0

g (at) dt

��
: (19)

The principal observes the path of (rt)t2[0;T ] and wishes to implement a deterministic

action (a�t )t2[0;T ] at each instant. She solves Program 1 with utility function (19). The

optimal contract is of the same detail-neutral form as Theorem 1.

Theorem 2 (Optimal contract, continuous time). The following contract is optimal. The
agent is paid

c = v�1
�Z T

0

g0 (a�t ) drt +K

�
, (20)
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whereK is a constant that makes the participation constraint bind (E

"
u

 R T
0
g0 (a�t ) drt +K

�
R T
0
g (a�t ) dt

!#
=

u).

In particular, if the target action is time-independent (a�t = a� 8 t), the contract

c = v�1 (g0 (a�) rT +K) (21)

is optimal.

Proof. See Appendix.
To highlight the link with the discrete time case, consider the model of Section 2.1 and

de�ne rT =
PT

t=1 rt =
PT

t=1 at +
PT

t=1 �t. Taking the continuous time limit of Theorem 1

gives Theorem 2.

2.3 Discussion: What is Necessary for Tractable, Detail-Neutral

Contracts?

This section has extended the tractable contracts of HM to settings that do not require

exponential utility, continuous time or Gaussian noise. However, the framework considered

thus far has still imposed a number of restrictions, such as a risk-neutral principal, a linear

signal, log-concave noises and a NIARA utility function. We now discuss the features that

are essential for our contract structure, inessential features that we have already relaxed

in extensions to the core model, and additional assumptions which may be relaxable in

future research.

1. Timing of noise. We require that �t is observed before at in each period. Without

this assumption, the contract will depend on the utility function and the noise dis-

tribution. (The dependence on the noise distribution has been previously shown by

Holmstrom (1979) and Grossman and Hart (1983), who assumed u (x) = x.) The

Online Appendix shows that, even if at precedes �t, contract (7) still implements

(a�t )t=1;::;T , although we can no longer show that it is optimal.

2. Risk-neutral principal. The proof of Theorem 1 extends the model to the case of a

risk-averse principal. If the principal wishes to minimize E [w (c)] (where w is an in-

creasing function) rather than E [c], then contract (7) is optimal if u (v (w�1 (�))�
P

t g (a
�
t ))

is concave. This holds if, loosely speaking, the principal is not too risk-averse.

3. NIARA utility, independent and log-concave noise. Proposition 1 states that, if a�t <

a 8 t and deterministic contracts are assumed, (7) is the only incentive-compatible
contract. Therefore, these assumptions are not required.
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4. Unidimensional noise and action. The Online Appendix shows that our model is

readily extendable to settings where the action a and the noise � are multidimen-

sional. A close analog to our result obtains.

5. Linear signal. The linearity of the signal, rt = at + �t, is not essential. Remark 1 in

Section 3.1 later shows that with general signals rt = R (at; �t), the optimal contract

remains detail-neutral.

6. Timing of consumption. The current setup assumes that the agent only consumes

at the end of period T . In ongoing work, we are developing the analog of Theorem 1

for repeated settings where the agent consumes in multiple periods. The key results

remain robust to this extension.

7. Renegotiation. Since the target e¤ort path is �xed, there is no scope for renegotiation

when the agent observes the noise. In Section 3.1, the optimal action may depend

on �. Since the optimal contract speci�es an action for every realization of �, again

there is no incentive to renegotiate.

3 The Optimal E¤ort Level

We have thus far assumed that the principal wishes to implement an exogenous path

of e¤ort levels (a�t ). In Section 3.1 we allow the target e¤ort level to depend on the

noise. Section 3.2 shows that, in a broad class of situations, the principal will wish to

implement the maximum productive e¤ort level for all noise realizations (the �maximum

e¤ort principle�).

3.1 Contingent Target Actions

Let At (�t) denote the �action function�, which de�nes the target action for each noise

realization. (Thus far, we have assumed At (�t) = a�t , independent of �t.) Since it is

possible that di¤erent noises �t could lead to the same observed signal rt = At (�t)+�t, the

analysis must consider revelation mechanisms; indeed, we �nd that the optimal contract

now involves messages. If the agent announces noises b�1; :::; b�T , he is paid c = C (b�1; :::; b�T )
if the observed signals are A1 (b�1)+b�1; :::; AT (b�T )+b�T , and a very low amount c otherwise.
As in the core model, we assume that At (�t) > a 8 �t, else a �at contract would

be optimal for some noise realizations. We make three additional technical assumptions:

the action space A is open, At (�t) is bounded within any compact subinterval of �, and

At (�t) is almost everywhere continuous. The �nal assumption still allows for a countable

number of jumps in At (�t). Given the complexity and length of the proof that randomized
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contracts are inferior in Theorem 1, we now restrict the analysis to deterministic contracts

and assume At (�t) < a. We conjecture that the same arguments in that proof continue to

apply with a noise-dependent target action.

The optimal contract induces both the target e¤ort level (at = At (�t)) and truth-telling

(b�t = �t). It is given by the next Theorem:

Theorem 3 (Optimal contract, noise-dependent action). The following contract is op-
timal. For each t, after noise �t is realized, the agent communicates a value b�t to the
principal. If the subsequent signal is not At (b�t) + b�t in each period, he is paid a very low
amount c. Otherwise he is paid C (b�1; :::; b�T ), where

C (�1; :::; �T ) = v�1

 
TX
t=1

g (At (�t)) +

TX
t=1

Z �t

��

g0 (At (x)) dx+K

!
; (22)

�� is an arbitrary constant, and K is a constant that makes the participation constraint

bind (E
h
u
�PT

t=1

R �t
��
g0 (At (x)) dx+K

�i
= u.)

Proof. (Heuristic). The Appendix presents a rigorous proof that does not assume dif-
ferentiability of V and A. Here, we give a heuristic proof that conveys the essence of the

result using �rst-order conditions. We set T = 1 and drop the time subscript.

Instead of reporting �, the agent could report b� 6= �, in which case he receives c

unless r = A (b�) + b�. Therefore, he must take action a such that � + a = b� + A (b�), i.e.
a = A (b�) + b� � �. In this case, his utility is V (b�) � g (A (b�) + b� � �). The truth-telling

constraint is thus:

� 2 argmaxb� V (b�)� g (A (b�) + b� � �) ;

with �rst-order condition

V 0 (�) = g0 (A (�))A0 (�) + g0 (A (�)) :

Integrating over � gives the indirect felicity function

V (�) = g (A (�)) +

Z �

��

g0 (A (x)) dx+K

for constants �� and K. The associated pay is given by (22).

The functional form of the contract in Theorem 3 does not depend on u (�) nor on the
distribution of �.17 However, it is somewhat more complex than the contracts in Section 2,

17Even though (22) features an integral over the support of �, it does not involve the distribution of �.
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as it involves calculating an integral. In the particular case where A (�) = a� 8 �, Theorem
3 reduces to Theorem 1.

Remark 1 (Extension of Theorem 3 to general signals). Suppose the signal is not rt =

at + �t but a general function rt = R (at; �t), where R is di¤erentiable and has positive

derivatives in both arguments. The same analysis as in Theorem 3 derives the following

contract as optimal:

C (�1; :::; �T ) = v�1

 
TX
t=1

g (At (�)) +

Z �t

��

g0 (At (x))
R2 (At (x) ; x)

R1 (At (x) ; x)
dx+K

!
; (23)

where �� is an arbitrary constant and K is a constant that makes the participation con-

straint bind.

The heuristic proof is as follows (setting T = 1 and dropping the time subscript). If

� is observed and the agent reports b� 6= �, he has to take action a such that R (a; �) =

R (A (b�) ; b�). Taking the derivative at b� = � yields R1@a=@b� = R1A
0 (�) + R2. The

agent solves maxb� V (b�)�g (a (b�)), with �rst-order condition V 0 (�)�g0 (A (�)) @a=@b� = 0.
Substituting for @a=@b� from above and integrating over � yields (23).

3.2 Maximum E¤ort Principle for Large Firms

We now consider the optimal action function A (�), specializing to T = 1 for simplicity.

The principal chooses A (�) to maximize

S E
�
b
�
min

�
A (e�) ; a� ; e���� E �v�1 (V (e�))� : (24)

The second term is the expected cost of compensation. It captures both the direct

disutility from exerting e¤ort A(�) and the risk imposed by the incentive contract required

to implement A (�). The �rst term captures the productivity of e¤ort, which is increasing

in S, the baseline value of the output under the agent�s control. For example, if the agent

is a CEO, S is �rm size; if he is a divisional manager, S is the size of his division. We will

refer to S as �rm size for brevity. E¤ort increases �rm size to S E
�
b
�
min

�
A (e�) ; a� ; e���

where b(�) is the productivity function of e¤ort and a < a is the maximum productive

e¤ort level. De�ning a = min
�
A (e�) ; a�, we assume that b (a; �) is di¤erentiable with

respect to a, with infa;� @b (a; �) =@a > 0. For example, if e¤ort has a linear e¤ect on the

�rm�s log return, b (a; �) = ea+� and so e¤ort a¤ects �rm value multiplicatively.

The min
�
A (e�) ; a� function conveys the fact that, while the action space may be un-

bounded (a may be in�nite), there is a limit to the number of productive activities the
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agent can undertake to bene�t the principal. For example, if the agent is a CEO, there is

a �nite number of positive-NPV projects available; under the interpretation of a as rent

extraction, a re�ects zero stealing. For all agents, there is a limit to the number of hours a

day they can work while remaining productive. In addition to being economically realistic,

this assumption is useful technically as it prevents the optimal action from being in�nite.

Actions a > a do not bene�t the principal, but improve the signal: one interpretation is

manipulation (see Appendix C for further details). Clearly, the principal will never wish

to implement a > a.

The next Theorem gives conditions under which maximum productive e¤ort is opti-

mal.18

Theorem 4 (Optimality of maximum productive e¤ort). Assume that sup(a;a) g
00 and

supx F (x) =f (x) are �nite, where f is the probability density function of �, and F is the

complementary cumulative distribution (i.e. F (x) = Pr (� � x)). De�ne

� =

24�1 + u0 (�)

u0 (�)

�0@ sup
(a;a)

g00

1A�sup F
f

�
+ g0

�
a
�35 �v�1�0 �� + g

�
a
��
; (25)

where

� � u�1 (u)�
�
� � �

�
g0
�
a
�
and � � u�1 (u) +

�
� � �

�
g0
�
a
�
:

When baseline �rm size S is above a threshold size S� = �= infa;�
@b
@a
(a; �), imple-

menting A (�) = a is optimal for all �. Hence, allowing for noise-dependent actions, the

optimal unrestricted contract is c = v�1
�
g0
�
a
�
r +K

�
, where K is a constant that makes

the agent�s participation constraint bind.

Proof. See Appendix.
The costs of e¤ort are the disutility imposed on the CEO plus the risk imposed by

incentives (summarized by �) and thus of similar order of magnitude to CEO pay. The

bene�ts of e¤ort are enhanced �rm value and thus of similar order of magnitude to �rm

size. The productivity of e¤ort also depends on the noise outcome, via the function b (a; �).

If the �rm is su¢ ciently large (S > S�), the bene�ts of e¤ort outweigh the costs for all noise

outcomes, and so dominate the trade-o¤. Therefore, maximum productive e¤ort is optimal

(A (�) = a 8 �.) A simple numerical example illustrates. Consider a �rm with a $20b

market value and, to be conservative, assume that maximum CEO e¤ort increases �rm

18Theorem 4 states the assumption that supx F (x) =f (x) is �nite. A su¢ cient condition for this is to
have f continuous, f(x) > 0 8 x 2 [�; �), and f monotonic in a left neighborhood of �. This condition is
satis�ed for many usual distributions.
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value by only 1%. Then, maximum e¤ort creates $200m of value, which vastly outweighs

the CEO�s salary. Even if it is necessary to double the CEO�s salary to compensate him

for the costs of e¤ort, the bene�ts of e¤ort are much greater than the costs and so the �rm

wishes to implement maximum e¤ort.

Combined with the results of Section 2, the optimal contract is detail-neutral in two

dimensions �both the target e¤ort level and the e¢ cient implementation of this target.

The irrelevance of risk is consistent with the empirical evidence surveyed by Prendergast

(2002): a number of studies �nd that incentives are independent of risk, with the remainder

equally divided between �nding positive and negative correlations.

The comparative statics on the threshold �rm size S� are intuitive. First, S� is increas-

ing in noise dispersion, because the �rm must be large enough for maximum e¤ort to be

optimal for all noise realizations. Indeed, a rise in � � � increases �, lowers �, and raises

sup F
f
. (For example, if the noise is uniformly distributed, then sup F

f
= �� �). Second, it

is increasing in the agent�s risk aversion and thus the risk imposed by incentives. For low

noises, where the agent�s utility is close to u, u
0(�)
u0(�) � 1 is proportional to the agent�s ab-

solute risk aversion. Third, it is increasing in the disutility of e¤ort, and thus the marginal

cost of e¤ort g0
�
a
�
and the convexity of the cost function sup g00. Fourth, it is decreasing

in the marginal bene�t of e¤ort (infa;� @b@a (a; �)).

We conjecture that a �maximum e¤ort principle�holds under more general conditions

than those considered above. For instance, it likely continues to hold if the principal�s ob-

jective function is S E [b (A (e�) ; e�)]�E [v�1 (V (e�))], and the action space is bounded above
by a �i.e. a (the maximum feasible e¤ort level) equals a (the maximum productive e¤ort

level). This slight variant is economically very similar, since the principal never wishes

to implement A (�) > a in our setting, but substantially more complicated mathemati-

cally, because the agent�s action space now has boundaries and so the incentive constraints

become inequalities. We leave the extension of this principle to future research.

3.3 Optimal E¤ort for Small Firms and Linear Cost of E¤ort

While Theorem 4 shows that A(�) = a is optimal when S > S�, we now show that A(�)

can be exactly derived even if S � S�, if the cost function is linear �i.e. g (a) = �a, where

� > 0.19

Proposition 2 (Optimal contract with linear cost of e¤ort). Let g (a) = �a, where � > 0 .

19Note that the linearity of g(a) is still compatible with u (v (c)� g (a)) being strictly concave in (c; a).
Also, by a simple change of notation, the results extend to an a¢ ne rather than linear g (a).
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The following contract is optimal:

c = v�1 (�r +K) ; (26)

where K is a constant that makes the participation constraint bind (E [u (�� +K)] = u).

For each �, the optimal e¤ort A (�) is determined by the following pointwise maximization:

A (�) 2 argmax
a�a

Sb (a; �)� v�1 (� (a+ �) +K) : (27)

When the agent is indi¤erent between an action a and A (�), we assume that he chooses

action A (�) :

Proof. From Theorem 3, if the agent announces �, he should receive a felicity of V (�) =

g (A (�))+
R �
��
�dx+K = � (A (�) + �)+K. Since r = A (�)+� on the equilibrium path, a

contract c = v�1 (�r +K) will implement A (�). To �nd the optimal action, the principal�s

problem is:

max
A(�)

E
�
Sb
�
min

�
A (�) ; a

�
; �
��
� E

�
v�1 (� (A (�) + �) +K)

�
which is solved by pointwise maximization, as in (27).

The main advantage of the above contract is that it can be exactly solved regardless

of S and so it is applicable even for small �rms (or rank-and-�le employees who a¤ect a

small output). For instance, consider a bene�t function b (a; �) = b0 + ae�, where b0 > 0,

so that the marginal productivity of e¤ort is increasing in the noise, and utility function

u (ln c� �a) with � 2 (0; 1). Then, the solution of (27) is:

A (�) = min

�
1� �

�
� + lnS �K � ln �; a

�
:

The optimal e¤ort level increases linearly with the noise, until it reaches a. The e¤ort

level is also weakly increasing in �rm size.

The main disadvantage is that, with a linear rather than strictly convex cost function,

the agent is indi¤erent between all actions. His decision problem is maxa v (c (r))� g (a),

i.e. maxa � (� + a) + K � �a, which is independent of a and thus has a continuum of

solutions. Proposition 2 therefore assumes that indeterminacies are resolved by the agent

following the principal�s recommended action, A (�).
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4 Conclusion

This paper has identi�ed and analyzed a class of situations in which the optimal contract

is both tractable and detail-neutral. The contract can be solved in closed form and its

slope is independent of the noise distribution and reservation utility; it is only determined

by how the agent trades o¤ the bene�ts of cash against the cost of e¤ort. Furthermore,

when the cost of e¤ort can be expressed in �nancial terms, the optimal contract is linear,

regardless of the utility function.

Holding the target e¤ort level constant, detail-neutrality obtains in a multi-period

discrete time model, where noise precedes e¤ort in each period. The optimal contract is

also the same in continuous time, where noise and actions occur simultaneously. Hence, if

the underlying reality is continuous time, it is best mimicked in discrete time under our

timing assumption. If the �rm is su¢ ciently large, the target e¤ort level is itself detail-

neutral: the maximum e¤ort level is optimal for a wide range of cost and e¤ort functions

and noise distributions. Since the bene�ts of e¤ort are a function of total output, trade-o¤

concerns disappear in a large �rm, so maximum e¤ort is e¢ cient.

The model thus extends the tractable contracts of HM to settings that do not require

exponential utility, continuous time or Gaussian noise. Moreover, it demonstrates which

details of the contracting environment do and do not matter for the optimal incentive

scheme. It can therefore rationalize why real-life contracts typically do not depend on as

many speci�c details of the setting as existing literature might suggest �simply put, these

details do not matter.

Our paper suggests several avenues for future research. The HM framework has proven

valuable in many areas of applied contract theory owing to its tractability; however, some

researchers have used the HM result in settings where the assumptions are not satis�ed

(see the critique of Hemmer (2004)). While we considered the speci�c application of execu-

tive compensation, other possibilities include bank regulation, team production, insurance

or taxation. In particular, our contracts are valid in situations where time is discrete,

utility cannot be modeled as exponential (e.g. in calibrated models where it is necessary

to capture decreasing absolute risk aversion), or noise is not Gaussian (e.g. is bounded).

In ongoing work, we are extending detail-neutral contracts to a dynamic setting where the

agent consumes in each period, can privately save, and may smooth earnings intertem-

porally. In addition, while our model has relaxed a number of assumptions required for

tractability, it continues to impose a number of restrictions. These are mostly technical

rather than economic. For example, we feature a continuum of actions rather than a

discrete set; our multiperiod model assumes independent noises with log-concave density

functions; and our extension to noise-dependent target actions assumes an open action

space and a maximum productive e¤ort level. Some of these assumptions may not be
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valid in certain situations, limiting the applicability of our framework. Whether our setup

can be further generalized is an open question for future research.
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a E¤ort (also referred to as �action�)
a Maximum e¤ort
a Maximum productive e¤ort
a� Target e¤ort
b Bene�t function for e¤ort, de�ned over a
c Cash compensation
f Density of the noise distribution
g Cost of e¤ort, de�ned over a
r Signal (or �return�), typically r = a+ �
u Agent�s utility function, de�ned over v (c)� g (a)
u Agent�s reservation utility
v Agent�s felicity function, de�ned over c
� Noise
A Action function, de�ned over �
C Expected cost of contract
F Complementary cumulative distribution function for noise
M Message sent by agent to the principal
S Baseline size of output under agent�s control
T Number of periods
V Felicity provided by contract

Table 1: Key Variables in the Model.

A Mathematical Preliminaries

This section derives some mathematical results that we use for the main proofs.

A.1 Dispersion of Random Variables

We repeatedly use the �dispersive order� for random variables to show that incentive

compatibility constraints bind. Shaked and Shanthikumar (2007, section 3.B) provide

an excellent summary of known facts about this concept. This section provides a self-

contained guide of the relevant results for our paper, as well as proving some new results.

We commence by de�ning the notion of relative dispersion. Let X and Y denote two

random variables with cumulative distribution functions F and G and corresponding right

continuous inverses F�1 and G�1. X is said to be less dispersed than Y if and only if

F�1 (�)�F�1 (�) � G�1 (�)�G�1 (�) whenever 0 < � � � < 1. This concept is location-

free: X is less dispersed than Y if and only if it is less dispersed than Y + z, for any real

constant z.
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A basic property is the following result (Shaked and Shanthikumar (2007), p.151):

Lemma 1 Let X be a random variable and f , h be functions such that 0 � f (y)�f (x) �
h (y)� h (x) whenever x � y. Then f (X) is less dispersed than h (X).

This result is intuitive: h magni�es di¤erences to a greater extent than f , leading to

more dispersion. We will also use the next two comparison lemmas.

Lemma 2 Assume that X is less dispersed than Y and let f denote a weakly increas-

ing function, h a weakly increasing concave function, and � a weakly increasing convex

function. Then:

E [f (X)] � E [f (Y )]) E [h (f (X))] � E [h (f (Y ))]
E [f (X)] � E [f (Y )]) E [� (f (X))] � E [� (f (Y ))] :

Proof. The �rst statement comes directly from Shaked and Shanthikumar (2007), Theo-

rem 3.B.2, which itself is taken from Landsberger and Meilijson (1994). The second state-

ment is derived from the �rst, applied to bX = �X, bY = �Y , bf (x) = �f (�x), h (x) =
�� (�x). It can be veri�ed directly (or via consulting Shaked and Shanthikumar (2007),
Theorem 3.B.6) that bX is less dispersed than bY . In addition, E h bf � bX�i � E

h bf �bY �i.
Thus, E

h
h
� bf � bX��i � E

h
h
� bf �bY ��i. Substituting h� bf � bX�� = �� (f (X)) yields

E [�� (f (X))] � E [�� (f (Y ))].
Lemma 2 is intuitive: if E [f (X)] � E [f (Y )], applying a concave function h should

maintain the inequality. Conversely, if E [f (X)] � E [f (Y )], applying a convex function
� should maintain the inequality. In addition, if E [X] = E [Y ], Lemma 2 implies that X

second-order stochastically dominates Y . Hence, it is a stronger concept than second-order

stochastic dominance.

Lemma 2 allows us to prove Lemma 3 below, which states that the NIARA property

of a utility function is preserved by adding a log-concave random variable to its argument.

Lemma 3 Let u denote a utility function with NIARA and Y a random variable with

a log-concave distribution. Then, the utility function bu de�ned by bu (x) � E [u (x+ Y )]

exhibits NIARA.

Proof. Consider two constants a < b and a lottery Z independent from Y . Let Ca and

Cb be the certainty equivalents of Z with respect to utility function bu and evaluated at
points a and b respectively, i.e. de�ned by

bu (a+ Ca) = E [u (a+ Z)] ; bu (b+ Cb) = E [u (b+ Z)] :

27



bu exhibits NIARA if and only if Ca � Cb, i.e. the certainty equivalent increases with

wealth. To prove that Ca � Cb, we make three observations. First, since u exhibits

NIARA, there exists an increasing concave function h such that u (a+ x) = h (u (b+ x))

for all x. Second, because Y is log-concave, Y + Cb is less dispersed than Y + Z by

Theorem 3.B.7 of Shaked and Shanthikumar (2007). Third, by de�nition of Cb and the

independence of Y and Z, we have E [u (b+ Y + Cb)] = E [u (b+ Y + Z)]. Hence, we can

apply Lemma 2, which yields E [h (u (b+ Y + Cb))] � E [h (u (b+ Y + Z))], i.e.

E [u (a+ Y + Cb)] � E [u (a+ Y + Z)] = E [u (a+ Y + Ca)] by de�nition of Ca:

Thus we have Cb � Ca as required.

A.2 Subderivatives

Since we cannot assume that the optimal contract is di¤erentiable, we use the notion of

subderivatives to allow for quasi �rst-order conditions in all cases.

De�nition 1 For a point x and function f de�ned in a left neighborhood of x, we de�ne
the subderivative of f at x as:

d

dx�
f � f 0� (x) � lim inf

y"x

f (x)� f (y)

x� y

This notion will prove useful since f 0� (x) is well-de�ned for all functions f (with perhaps

in�nite values). We take limits �from below,�as we will often apply the subderivative at

the maximum feasible e¤ort level a. If f is left-di¤erentiable at x, then f 0� (x) = f 0 (x).

We use the following Lemma to allow us to integrate inequalities with subderivatives.

All the Lemmas in this subsection are proven in the Online Appendix.

Lemma 4 Assume that, over an interval I: (i) f 0� (x) � j (x) 8 x, for an continuous

function j (x) and (ii) there is a C1 function h such that f + h is nondecreasing. Then,

for two points a � b in I, f (b)� f (a) �
R b
a
j (x) dx.

Condition (ii) prevents f (x) from exhibiting discontinuous downwards jumps, which

would prevent integration.20

The following Lemma is the chain rule for subderivatives.

20For example, f (x) = 1 fx � 0g satis�es condition (i) as f 0� (x) = 0 8 x, but violates both condition
(ii) and the conclusion of the Lemma, as f (�1) > f (1).
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Lemma 5 Let x be a real number and f be a function de�ned in a left neighborhood of x.
Suppose that function h is di¤erentiable at f (x), with h0 (f (x)) > 0. Then, (h � f)0� (x) =
h0 (f (x)) f 0� (x).

In general, subderivatives typically follow the usual rules of calculus, with inequalities

instead of equalities. One example is below.

Lemma 6 Let x be a real number and f , h be functions de�ned in a left neighborhood of
x. Then (f + h)0� (x) � f 0� (x)+h

0
� (x). When h is di¤erentiable at x, then (f + h)0� (x) =

f 0� (x) + h0 (x).

B Detailed Proofs

Throughout these proofs, we use tildes to denote random variables. For example, e� is the
noise viewed as a random variable and � is a particular realization of that noise. E [f (e�)]
denotes the expectation over all realizations of e� and E h ef (e�)i denotes the expectation
over all realizations of both x and a stochastic function ef .
Proof of Theorem 1
Roadmap. We divide the proof in three parts. The �rst part shows that messages are

redundant, so that we can restrict the analysis to contracts without messages. This part

of the proof is standard and can be skipped at a �rst reading. The second part proves the

theorem considering only deterministic contracts and assuming that a�t < a 8 t. This case
requires weaker assumptions (see Proposition 1). The third part, which is signi�cantly

more complex, rules out randomized contracts and allows for the target e¤ort to be the

maximum a. Both these extensions require the concepts of subderivatives and dispersion

from Appendix A.

1). Redundancy of Messages

Let r denote the vector (r1; :::; rT ) and de�ne � and a analogously. De�ne g (a) =

g (a1) + ::: + g (aT ). Let eVM (r;�) = v (ec (r;�)) denote the felicity given by a message-
dependent contract if the agent reports � and the realized signals are r. Under the rev-

elation principle, we can restrict the analysis to mechanisms that induce the agent to

truthfully report the noise �. The incentive compatibility (IC) constraint is that the agent

exerts e¤ort a and reports b� = �:
8�;8b�;8a; E hu�eVM (� + a; b�)� g (a)�i � E hu�eVM (� + a�;�)� g (a�)�i : (28)
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The principal�s problem is to minimize expected pay E
h
v�1

�eVM (e� + a�; e�)�i, subject
to the IC constraint (28), and the agent�s individual rationality (IR) constraint

E
h
u
�eVM (e� + a�; e�)� g (a�)�i � u: (29)

Since r = r� � a�+� on the equilibrium path, the message-dependent contract is equiv-
alent to eVM (r; r� a�). We consider replacing this with a new contract eV (r), which only
depends on the realized signal and not on any messages, and yields the same felicity as

the corresponding message-dependent contract. Thus, the felicity it gives is de�ned by:

eV (r) = eVM (r; r� a�) : (30)

The IC and IR constraints for the new contract are given by:

8�;8a; E
h
u
�eV (r)� g (a)

�i
� E

h
u
�eV (r�)� g (a�)

�i
; (31)

E
h
u
�eV (r�)� g (a�)

�i
� u: (32)

If the agent reports b� 6= �, he must take action a such that �+a =b�+a�. Substitutingb� = �+a� a� into (28) and (29) indeed yields (31) and (32) above. Thus, the IC and
IR constraints of the new contract are satis�ed. Moreover, the new contract costs exactly

the same as the old contract, since it yields the same felicity by (30). Hence, the new

contract eV (r) induces incentive compatibility and participation at the same cost as the
initial contract eVM (r;�) with messages, and so messages are not useful. The intuition is
that a� is always exerted, so the principal can already infer � from the signal r without

requiring messages.

2). Deterministic Contracts, in the case a�t < a 8 t
We will prove the Theorem by induction on T .

2a). Case T = 1. Dropping the time subscript for brevity, the incentive compatibility

(IC) constraint is:

8�;8a : V (� + a)� g (a) � V (� + a�)� g (a�)

De�ning r = � + a� and r0 = � + a, we have a = a� + r0 � r. The IC constraint can be

rewritten:

g (a�)� g (a� + r0 � r) � V (r)� V (r0) :

Rewriting this inequality interchanging r and r0 yields g (a�) � g (a� + r � r0) � V (r0) �
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V (r), and so:

g (a�)� g (a� + r0 � r) � V (r)� V (r0) � g (a� + r � r0)� g (a�) : (33)

We �rst consider r > r0. Dividing through by r � r0 yields:

g (a�)� g (a� + r0 � r)

r � r0
� V (r)� V (r0)

r � r0
� g (a� + r � r0)� g (a�)

r � r0
: (34)

Since a� is in the interior of the action space A and the support of � is open, there exists r0

in the neighborhood of r. Taking the limit r0 " r, the �rst and third terms of (34) converge
to g0 (a�). Therefore, the left derivative V 0

left (r) exists, and equals g
0 (a�). Second, consider

r < r0. Dividing (33) through by r � r0, and taking the limit r0 # r shows that the right
derivative V 0

right (r) exists, and equals g
0 (a�). Therefore,

V 0 (r) = g0 (a�) : (35)

Since r has interval support21, we can integrate to obtain, for some integration constant

K:

V (r) = g0 (a�) r +K. (36)

2b). If the Theorem holds for T , it holds for T + 1. This part is as in the main text.

Note that the above proof (for deterministic contracts where a�t < a) does not require

log-concavity of �t, nor that u satis�es NIARA. This is because the contract (7) is the only

incentive compatible contract. These assumptions are only required for the general proof,

where other contracts (e.g. randomized ones) are also incentive compatible, to show that

they are costlier than contract (7).

3). General Proof

We no longer restrict a�t to be in the interior of A, and allow for randomized contracts.
We wish to prove the following statement �T by induction on integer T :

Statement �T : Consider a utility function u with NIARA, independent random vari-
ables er1; :::; erT where er2; :::; erT are log-concave, and a sequence of nonnegative numbers
g0 (a�1) ; :::; g

0 (a�T ). Consider the set of (potentially randomized) contracts eV (r1; :::; rT ) such
21The model could be extended to allowing non-interval support: if the domain of r was a union of

disjoint intervals, we would have a di¤erent integration constant K for each interval.
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that (i) E
h
u
�eV (er1; :::; erT )�i � u; (ii) 8 t = 1:::T ,

d

d"�
E
h
u
�eV (er1; :::; ert + "; :::; erT )� j er1; ::; erti

j"=0
� g0 (a�t ) E

h
u0
�eV (er1; :::; ert; :::; erT )� j er1; ::; erti

(37)

and (iii) 8 t = 1:::; T , E
h
u
�eV (er1; :::; ert; :::; erT )� j er1; ::; erti is nondecreasing in ert.

In this set, for any increasing and convex cost function �, E [� (V (er1; :::; erT ))] is mini-
mized with contract: V 0 (r1; :::; rT ) =

PT
t=1 g

0 (a�t ) rt+K, where K is a constant that makes

the participation constraint (i) bind.

Condition (ii) is the local IC constraint, for deviations from below.

We �rst consider the case of deterministic contracts, and then show that randomized

contracts are costlier. We use the notation Et [�] = E [� j er1; :::; ert] to denote the expectation
based on time-t information.

3a). Deterministic Contracts

The key di¤erence from the proof in 2) is that we now must allow for a�t = a.

3ai). Proof of Statement �T when T = 1.

(37) becomes d
d"�u (V (r + "))j"=0 � g0 (a�1)u

0 (V (r)). Applying Lemma 5 to h = u�1

yields:

V 0
� (r) � g0 (a�) : (38)

It is intuitive that (38) should bind, as this minimizes the variability in the agent�s

pay and thus constitutes e¢ cient risk-sharing. We now prove that this is indeed the case;

to simplify exposition, we normalize g (a�) = 0 w.l.o.g.22 If constraint (38) binds, the

contract is V 0 (r) = g0 (a�) r +K, where K satis�es E [u (g0 (a�) r +K)] = u. We wish to

show that any other contract V (r) that satis�es (38) is weaklier costlier.

By assumption (iii) in Statement �1, V is nondecreasing. We can therefore apply

Lemma 4 to equation (38), where condition (ii) of the Lemma is satis�ed by h (r) � 0.

This implies that for r � r0, V (r0)�V (r) � g0 (a�) (r0 � r) = V 0 (r0)�V 0 (r). Thus, using

Lemma 1, V (er) is more dispersed than V 0 (er).
Since V must also satisfy the participation constraint, we have:

E [u (V (er))] � u = E
�
u
�
V 0 (er)�� : (39)

Applying Lemma 2 to the convex function � � u�1 and inequality (39), we have:

E
�
� � u�1 � u (V (er))� � E �� � u�1 � u �V 0 (er)�� ,

22Formally, this can be achieved by replacing the utility function u (x) by unew (x) = u (x� g (a�)) and
the cost function g (a) by gnew (a) = g (a)� g (a�), so that u (x� g (a)) = unew (x� gnew (a)).
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i.e. E [� (V (er))] � E [� (V 0 (er))]. The expected cost of V 0 is weakly less than for V .

Hence, the contract V 0 is cost-minimizing.

We note that this last part of the reasoning underpins item 2 in Section 2.3, the

extension to a risk-averse principal. Suppose that the principal wants to minimize E [w (c)],

where w is an increasing and concave function, rather than E [c]. Then, the above contract

is optimal if w � v�1 � u�1 is convex, i.e. u � v �w�1 is concave. This requires w to be �not
too concave,�i.e. the agent to be not too risk-averse.

Finally, we verify that the contract V 0 satis�es the global IC constraint. The agent�s

objective function becomes u (g0 (a�) (a+ �)� g (a)). Since g (a) is convex, the argument

of u (�) is concave. Hence, the �rst-order condition gives the global optimum.

3aii). Proof that if Statement �T holds for T , it holds for T + 1. We de�ne a new

utility function bu as follows:
bu (x) = E �u �x+ g0

�
a�T+1

� erT+1�� : (40)

Since erT+1 is log-concave, g0 �a�T+1� erT+1 is also log-concave. From Lemma 3, bu has the
same NIARA property as u.

For each er1; :::; erT , we de�ne k (er1; :::; erT ) as the solution to equation (41) below:
bu (k (er1; :::; erT )) = ET [u (V (er1; :::; erT+1))] : (41)

k represents the expected felicity from contract V based on all noise realizations up to and

including time T .

The goal is to show that any other contract V 6= V 0 is weakly costlier. To do so,

we wish to apply Statement �T for utility function bu and contract k, The �rst step is to
show that, if Conditions (i)-(iii) hold for utility function u and contract V at time T + 1,

they also hold for bu and k at time T , thus allowing us to apply the Statement for these
functions.

Taking expectations of (41) over er1; :::; erT yields:
E [bu (k (er1; :::; erT ))] = E [u (V (er1; :::; erT+1))] � u; (42)

where the inequality comes from Condition (i) for utility function u and contract V at

time T + 1. Hence, Condition (i) holds for utility function bu and contract k at time
t. In addition, it is immediate that E [bu (k (er1; :::; erT )) j er1; ::; ert] is nondecreasing in ert.
(Condition (iii)). We thus need to show that Condition (ii) is satis�ed.
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Since equation (37) holds for t = T + 1, we have

d

d"�
u (V (er1; :::; erT ; erT+1 + ")) � g0

�
a�T+1

�
u0 [V (er1; :::; erT+1)] :

Applying Lemma 5 with function u yields:

dV

drT+1�
(r1; :::; rT+1) � g0

�
a�T+1

�
: (43)

Hence, using Lemma 1 and Lemma 4, we see that conditional on er1; :::; erT , V (er1; :::; erT+1)
is more dispersed than k (er1; :::; erT ) + g0

�
a�T+1

� erT+1.
Using (40), we can rewrite equation (41) as

ET
�
u
�
k (er1; :::; erT ) + g0

�
a�T+1

� erT+1�� = ET [u (V (er1; :::; erT+1))] :
Since u exhibits NIARA, �u00 (x) =u0 (x) is nonincreasing in x. This is equivalent to u0�u�1

being weakly convex. We can thus apply Lemma 2 to yield:

ET
�
u0 � u�1 � u (V (er1; :::; erT+1))� � ET �u0 � u�1 � u �k (er1; :::; erT ) + g0

�
a�T+1

� erT+1�� , i.e.
ET [u

0 (V (er1; :::; erT+1))] � ET [bu0 (k (er1; :::; erT ))] : (44)

Applying de�nition (41) to the left-hand side of Condition (ii) for T + 1 yields, with

t = 1:::T ,

d

d"�
Et [bu (k (er1; :::; ert + "; :::; erT ))]j"=0 � g0 (a�t ) E [u

0 (V (er1; :::; ert; :::; erT+1)) j er1; ::; ert]
Taking expectations of equation (44) at time t and substituting into the right-hand side

of the above equation yields:

d

d"�
Et [bu (k (er1; :::; ert + "; :::; erT ))] = d

d"�
Et [u (V (er1; :::; ert + "; :::; erT+1))]j"=0

� g0 (a�t ) Et [bu0 (k (er1; :::; erT ))] :
Hence the IC constraint holds for contract k (er1; :::; erT ) and utility function bu at time

T , and so Condition (ii) of Statement �T is satis�ed. We can therefore apply Statement

�T at T to contract k (r1; :::; rT ), utility function bu and cost function b� de�ned by:
b� (x) � E [� (x+ g0 (aT+1) erT+1)] : (45)
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We observe that the contract V 0 =
PT+1

t=1 g
0 (a�t ) rt +K satis�es:

E

"bu TX
t=1

g0 (a�t ) rt +K

!#
= E

"
u

 
T+1X
t=1

g0 (a�t ) rt +K

!#
= u:

Therefore, applying Statement �T to k; bu and b� implies:
Ck = E

hb� (k (er1; :::; erT ))i � CV 0 = E
"
�

 
T+1X
t=1

g0 (a�t ) ert +K

!#
: (46)

Using equation (45) yields:

Ck = E [� (k (er1; :::; erT ) + g0 (aT+1) erT+1)] � CV 0 = E
"
�

 
T+1X
t=1

g0 (a�t ) ert +K

!#
:

Finally, we compare the cost of contract k (r1; :::; rT )+ g0 (aT+1) erT+1 to the cost of the
original contract V (r1; :::; rT+1). Since equation (41) is satis�ed, we can apply Lemma 2

to the convex function � � u�1 and the random variable erT+1 to yield
Et [� (V (er1; :::; erT+1))] � Et �� �k (er1; :::; erT ) + g0

�
a�T+1

� erT+1��
E [� (V (er1; :::; erT+1))] � E �� �k (er1; :::; erT ) + g0

�
a�T+1

� erT+1�� = Ck � CV 0 :
where the �nal inequality comes from (46). Hence the cost of contract k is weakly greater

than the cost of contract V 0. This concludes the proof for T + 1.

3b). Optimality of Deterministic Contracts

Consider a randomized contract eV (r1; :::; rT ) and de�ne the �certainty equivalent�
contract V by:

u
�
V (r1; :::; rT )

�
� ET

h
u
�eV (r1; :::; rT )�i : (47)

We wish to apply Statement �T (which we have already proven for deterministic contracts)

to contract V , and so must verify that its three conditions are satis�ed.

From the above de�nition, we obtain

E
�
u
�
V (er1; :::; erT )�� = E hu�eV (er1; :::; erT )�i � u,

i.e., V satis�es the participation constraint (29). Hence, Condition (i) holds. Also, it is

clear that Condition (iii) holds for V , given it holds for eV . We thus need to show that
Condition (ii) is also satis�ed. Applying Jensen�s inequality to equation (47) and the

function u0 � u�1 (which is convex since u exhibits NIARA) yields: u0
�
V (r1; :::; rT )

�
�
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ET

h
u0
�eV (r1; :::; rT )�i. We apply this to rt = ert for t = 1:::T and take expectations to

obtain

Et

h
u0
�eV (er1; :::; erT )�i � Et �u0 �V (er1; :::; erT )�� : (48)

Applying de�nition (47) to the left-hand side of (37) yields:

d

d"�
Et
�
u
�
V (er1; :::; ert + "; :::; erT )��j"=0 � g0 (a�t ) Et

h
u0
�eV (er1; :::; ert; :::; erT )�i :

and using (48) yields:

d

d"�
Et
�
u
�
V (er1; :::; ert + "; :::; erT )��j"=0 � g0 (a�t ) Et

�
u0
�
V (er1; :::; ert; :::; erT )�� :

Condition (ii) of Statement �T therefore holds for V . We can therefore apply Statement

�T to show that V 0 has a weakly lower cost than V . We next show that the cost of V

is weakly less than the cost of eV . Applying Jensen�s inequality to (47) and the convex
function � �u�1 yields: �

�
V (r1; :::; rT )

�
� E

h
�
�eV (r1; :::; rT )�i. We apply this to rt = ert

for t = 1:::T and take expectations over the distribution of ert to obtain:
�
�
V (er1; :::; erT )� � E h��eV (er1; :::; erT )�i :

Hence V has a weakly lower cost than eV . Therefore, V 0 has a weakly lower cost than eV .
This proves the Statement for randomized contracts.

3c). Main Proof. Having proven Statement �T , we now turn to the main proof of

Theorem 1. The value of the signal on the equilibrium path is given by ert � a�t + e�t. We
de�ne

u (x) � u

 
x�

TX
s=1

g (a�s)

!
: (49)

We seek to use Statement �T applied to function u and random variable ert, and thus must
verify that its three conditions are satis�ed. Since E

h
u
�eV (er1; :::; erT )�i � u, Condition

(i) holds.

The IC constraint for time t is:

0 2 argmax
"
Et u

 eV (a�1 + e�1; :::; a�t + e�t + "; :::; a�T + e�T )� g (a�t + ")�
X

s=1:::T;s 6=t

g (a�s)

!
;
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i.e.

0 2 argmax
"
Et u

 eV (er1; :::; ert + "; :::; erT )� g (a�t + ")�
X

s=1:::T;s 6=t

g (a�s)

!
: (50)

We note that, for a function f ("), 0 2 argmax" f (") implies that for all " < 0,

(f (0)� f (")) = (�") � 0, hence, taking the lim infy"0, we obtain d
d"�

f 0� (")j"=0 � 0.

Call X (") the argument of u in equation (50). Applying this result to (50), we �nd:
d
d"�
Et u (X ("))j"=0 � 0.
Using Lemma 5, we �nd Et

h
u0 (X (0))

�
d
d"�

X (")j"=0

�i
� 0. Using Lemma 6, d

d"�
X (")j"=0 =

d
d"�
eV (er1; :::; ert + "; :::; erT )� g0 (a�t ), hence we obtain:

Et

�
u0 (X (0))

�
d

d"�
eV (er1; :::; ert + "; :::; erT )� g0 (a�t )

��
� 0:

Using again Lemma 5, this can be rewritten:

d

d"�
Et

"
u

 eV (er1; :::; ert + "; :::; erT )� X
s=1:::T

g (a�s)

!#
j"=0

� g0 (a�t ) Et [u
0 (X (0))] ;

i.e., using the notation (49),

d

d"�
Et

h
u
�eV (er1; :::; ert + "; :::; erT )�i

j"=0
� g0 (a�t ) Et

h
u0
�eV (er1; :::; ert; :::; erT )�i :

Therefore, Condition (ii) of Statement �T holds.

Finally, we verify Condition (iii). Apply (50) to signal rt and deviation " < 0. We

obtain:

Et

"
u

 eV (er1; :::; ert + "; :::; erT )� X
s=1:::T

g (a�s)

!#

� Et

"
u

 eV (er1; :::; ert + "; :::; erT )� g (a�t + ")�
X

s=1:::T;s 6=t

g (a�s)

!#

� Et

"
u

 eV (r1; :::; rt + "; :::; rT )� g (a�t )�
X

s=1:::T;s 6=t

g (a�s)

!#
;

so Condition (iii) holds for contract eV and utility function u.

We can now apply Statement �T to contract eV and function u, to prove that any

globally IC contract is weakly costlier than contract V 0 =
PT

t=1 g
0 (a�t ) rt +K. Moreover,

it is clear that V 0 satis�es the global IC conditions in equation (50). Thus, V 0 is the
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cheapest contract that satis�es the global IC constraint.

Proof of Proposition 1
Conditionally on (�t)t�T+1, we must have:

a�T+1 2 argmax
aT+1

u

 
V
�
a�1 + �1; :::; a

�
T+1 + �T+1

�
� g (aT+1)�

X
t6=T+1

g (a�t )

!
:

Using the proof of Theorem 1 with T = 1, this implies that, for rT+1 in the interior of the

support of erT+1 (given (rt)t�T ), V (r1; :::; rT+1) can be written:
V (r1; :::; rT+1) = KT (r1; :::; rT ) + g0

�
a�T+1

�
rT+1;

for some function KT (r1; :::; rT ). Next, consider the problem of implementing action a�T
at time T . We require that, for all (�t)t�T ,

a�T 2 argmax
aT

ET

"
u

 
KT (a

�
1 + �1; :::; a

�
T + �T ) + g0

�
a�T+1

� �
�T+1 + a�T+1

�
� g (aT )�

X
t6=T

g (a�t )

!#
:

This can be rewritten

a�T 2 argmax
aT
bu (KT (a

�
1 + �1; :::; a

�
T + �T )� g (aT )) ;

where bu (x) � E hu�x+ g0
�
a�T+1

� �
�T+1 + a�T+1

�
�
P

t6=T g (a
�
t )
�
j �1; :::; �T

i
.

Using the same arguments as above for T + 1, that implies that, for rT in the interior

of the support of erT (given (rt)t�T�1) we can write:
KT (r1; :::; rT ) = KT�1 (r1; :::; rT�1) + g0 (a�T ) rT

for some function KT�1 (r1; :::; rT � 1). Proceeding by induction, we see that this implies
that we can write, for (rt)t�T+1 in the interior of the support of (ert)t�T+1,

VT+1 (r1; :::; rT+1) =
T+1X
t=1

g0 (a�t ) rt +K0;

for some constant K0. This yields the �necessary��rst part of the Proposition.

The converse part of the Proposition is immediate. Given the proposed contract, the
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agent faces the decision:

max
(at)t�T

E

"
u

 
TX
t=1

g0 (a�t ) at � g (at) +

TX
t=1

g0 (a�t ) �t

!#
;

which is maximized pointwise when g0 (a�t ) at�g (at) is maximized. This in turn requiresat =
a�t .

Proof of Theorem 2
We shall use the following purely mathematical Lemma, proven in the Online Appen-

dix.

Lemma 7 Consider a standard Brownian process Zt with �ltration Ft, a determinis-
tic non-negative process �t, an Ft�adapted process �t, T � 0, X =

R T
0
�tdZt, and

Y =
R T
0
�tdZt. Suppose that almost surely, 8t 2 [0; T ], �t � �t. Then X second-order

stochastically dominates Y .

Lemma 7 is intuitive: since �t � �t � 0, it makes sense that Y is more volatile than

X.

To derive the IC constraint, we use the methodology introduced by Sannikov (2008).

We observe that the term
R T
0
�tdt induces a constant shift, so w.l.o.g we can assume �t = 0

8 t.
For an arbitrary adapted policy function a = (at)t2[0;T ], let Q

a denote the probability

measures induced by a. Then, Zat =
R t
0
(drs � asds) =�s is a Brownian motion under Qa,

and Za
�
t =

R t
0
(drs � a�sds) =�s is a Brownian under Q

a�, where a� is the policy (a�t )t2[0;T ] :

Recall that, if the agent exerts policy a�, then rt =
R t
0
a�sds + �sdZs. We de�ne vT =

v (c). By the martingale representation theorem (Karatzas and Shreve (1991), p. 182)

applied to process vt = Et [vT ] for t 2 [0; T ], we can write: vT =
R T
0
�t (drt � a�tdt) + v0 for

some constant v0 and a process �t adapted to the �ltration induced by (rs)s�t.

We proceed in two steps.

1) We show that policy a� is optimal for the agent if and only if, for almost all t 2 [0; T ]:

a�t 2 argmax
at

�tat � g (at) : (51)

To prove this claim, consider another action policy (at), adapted to the �ltration in-

duced by (Zs)s�t. Consider the value W = vT �
R T
0
g (at) dt, so that the �nal utility for

the agent under policy a is u (W ). De�ning L �
R T
0
[�tat � g (at)� �ta

�
t + g (a�t )] dt, it can

be rewritten

W = v0 +

Z T

0

�t (drt � atdt)�
Z T

0

g (a�t ) dt+ L:
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Suppose that (51) is not veri�ed on the set � of times with positive measure. Then,

consider a policy a such that �tat�g (at) > �ta
�
t �g (a�t ) for t 2 � , and at = a�t on [0; T ]n� .

We thus have L > 0. Consider the agent�s utility under policy a:

Ua = Ea
�
u

�
vT �

Z T

0

g (at) dt

��
= Ea

�
u

�
v0 +

Z T

0

�t (drt � atdt)�
Z T

0

g (a�t ) dt+ L

��
= Ea

�
u

�
v0 +

Z T

0

�t�tdZ
a
t �

Z T

0

g (a�t ) dt+ L

��
> Ea

�
u

�
v0 +

Z T

0

�t�tdZ
a
t �

Z T

0

g (a�t ) dt

��
since L > 0

= Ea
�
�
u

�
v0 +

Z T

0

�t�tdZ
a�

t �
Z T

0

g (a�t ) dt

��
= Ea

�
�
u

�
vT �

Z T

0

g (a�t ) dt

��
= Ua

�
;

where Ua� is the agent�s utility under policy a�. Hence, as Ua > Ua�, the IC condition is

violated. We conclude that condition (51) is necessary for the contract to satisfy the IC

condition.

We next show that condition (51) is also su¢ cient to satisfy the IC condition. Indeed,

consider any adapted policy a. Then, L � 0. So, the above reasoning shows that Ua � Ua
�
.

Policy a� is at least as good as any alternative strategy a.

2) We show that cost-minimization entails �t = g0 (a�t ).

(51) implies �t = g0 (a�t ) if a
�
t 2 (a; a), and �t � g0 (a�) if a�t = a.

The case where a�t 2 (a; a) 8 t is straightforward. The IC contract must have the form:

v (cT ) = v0 +

Z T

0

g0 (a�t ) (drt � a�tdt) =

Z T

0

g0 (a�t ) drt +K;

where K = v0 +
R T
0
g0 (a�t ) a

�
tdt. Cost minimization entails the lowest possible v0.

The case where a�t = a for some t is more complex, since the IC constraint is only an

inequality: �t � ��t � g0 (a�t ). We must therefore prove this inequality binds. Consider

X =

Z T

0

��t�tdzt, Y =

Z T

0

�t�tdzt:

By reshifting u (x)! u
�
x�

R T
0
g (a�t ) dt

�
if necessary, we can assume

R T
0
g (a�t ) dt = 0

to simplify notation.

We wish to show that a contract vT = Y +KY , with E [u (Y +KY )] � u, has a weakly

greater expected cost than a contract v = X +KX , with E [u (X +KX)] = u. Lemma 7
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implies that E [u (X +KX)] � E [u (Y +KX)], and so

E [u (Y +KX)] � E [u (X +KX)] = u � [u (Y +KY )] :

Thus, KX � KY . Since v is increasing and concave, v�1 is convex and �v�1 is concave.
We can therefore apply Lemma 7 to function �v�1 to yield:

E
�
v�1 (X +KX)

�
� E

�
v�1 (Y +KX)

�
� E

�
v�1 (Y +KY )

�
;

where the second inequality follows from KX � KY . Therefore, the expected cost of

v = X+KX is weakly less that of Y +KY , and so contract v = X+KX is cost-minimizing.

More explicitly, that is the contract (20) with K = KX +
R T
0
g0 (a�t ) a

�
tdt.

Proof of Theorem 3
We prove the Theorem by induction.

Proof of Theorem 3 for T = 1. We remove time subscripts and let V (b�) = v (C (b�))
denote the felicity received by the agent if he announces b� and signal A (b�)+ b� is revealed.
If the agent reports �, the principal expects to see signal � + A (�). Therefore, if the

agent deviates to report b� 6= �, he must take action a such that � + a = b� + A (b�), i.e.
a = A (b�) + b� � �. Hence, the truth-telling constraint is: 8�;8b�,

V (b�)� g (A (b�) + b� � �) � V (�)� g (A (�)) : (52)

De�ning

 (�) � V (�)� g (A (�)) ;

the truth-telling constraint (52) can be rewritten,

g (A (b�))� g (A (b�) + b� � �) �  (�)�  (b�) : (53)

Rewriting this inequality interchanging � and b� and combining with the original inequality
(53) yields:

8�;8b� : g (A (b�))� g (A (b�) + b� � �) �  (�)� (b�) � g (A (�) + � � b�)� g (A (�)) : (54)
Consider a point � where A is continuous and take b� < �. Dividing (54) by � � b� > 0

and taking the limit b� " � yields  0left (�) = g0 (A (�)). Next, consider b� > �. Dividing (54)

by � � b� < 0 and taking the limit b� # � yields  0right (�) = g0 (A (�)). Hence,

 0 (�) = g0 (A (�)) ; (55)
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at all points � where A is continuous.

Equation (55) holds only almost everywhere, since we have only assumed that A is

almost everywhere continuous. To complete the proof, we require a regularity argument

about  (otherwise  might jump, for instance). We will show that  is absolutely

continuous (see, e.g., Rudin (1987), p.145). Consider a compact subinterval I, and aI =

sup fA (�) + � � b� j �; b� 2 Ig, which is �nite because A is assumed to be bounded in any
compact subinterval of �. Then, equation (54) implies:

j (�)�  (b�)j � max fjg (A (b�))� g (A (b�) + b� � �)j ; g (A (�) + � � b�)� g (A (�))g � j� � b�j (sup g0)I .
This implies that  is absolutely continuous on I. Therefore, by the fundamental

theorem of calculus for almost everywhere di¤erentiable functions (Rudin (1987), p.148),

we have that for any �; ��,  (�) =  (��) +
R �
��
 0 (x) dx. From (55),  (�) =  (��) +R �

��
g0 (A (x)) dx, i.e.

V (�) = g (A (�)) +

Z �

��

g0 (A (x)) dx+ k (56)

with k =  (��). This concludes the proof for T = 1.

Proof that if Theorem 3 holds for T , it holds for T +1. This part of the proof is as the

proof of Theorem 1 in the main text. At t = T +1, if the agent reports b�T+1, he must take
action a = A (b�T+1) + b�T+1 � �T+1 so that the signal a+ �T+1 is consistent with declaringb�T+1. The IC constraint is therefore:

�T+1 2 argmaxb�T+1 V (�1; :::; �T ; b�T+1)� g (A (b�T+1) + b�T+1 � �T+1)�
TX
t=1

g (a�t ) : (57)

Applying the result for T = 1, to induce b�T+1 = �T+1, the contract must be of the form:

V (�1; :::; �T ; b�T+1) =WT+1 (b�T+1) + k (�1; :::; �T ) ; (58)

where WT+1 (b�T+1) = g (A (b�T+1)) + R b�T+1��
g0 (A (x)) dx and k (�1; :::; �T ) is the �constant�

viewed from period T + 1.

In turn, k (�1; :::; �T ) must be chosen to implement b�t = �t 8t = 1:::T , viewed from

time 0, when the agent�s utility is:

E

"
u

 
k (�1; :::; �T ) +WT+1 (b�T+1)� TX

t=1

g (at)

!#
:
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De�ning bu (x) = E [u (x+WT+1 (e�T+1))] ; (59)

the principal�s problem is to implement b� = �t 8t = 1:::T , with a contract k (�1; :::; �T ),

given a utility function E
hbu�k (�1; :::; �T )�PT

t=1 g (at)
�i
. Applying the result for T , we

see that k must be:

k (�1; :::; �T ) =
TX
t=1

g (At (�t)) +
TX
t=1

Z �t

��

g0 (At (x)) dx+ k�

for some constant k�. Combining this with (56), the only incentive compatible contract is:

V (�1; :::; �T ; �T+1) =
T+1X
t=1

g (At (�t)) +
T+1X
t=1

Z �t

��

g0 (At (x)) dx+ k�:

Proof of Theorem 4
First, it is clear we can restrict ourselves to A (�) � a for all �. If for some �, A (�) > a,

the principal will be weakly better o¤ by implementing A (�) = a instead, since �rm value

S E
�
b
�
min

�
A (e�) ; a� ; e��� is unchanged, and the cost E [v�1 (V (e�))] will weakly decrease.

Let C (A) denote the expected cost of implementing A (�), i.e. C (A) = E [v�1 (C (�))]
where C (�) is given by Theorem 3. The following Lemma states that the cost of e¤ort is

a Lipschitz-continuous function of the level of e¤ort. Its proof is in the Online Appendix.

Lemma 8 Suppose that g00 is bounded and that supx F (x) =f (x) <1. There is a constant
�, given by equation (25) such that, for any two contracts that implement actions A (�)

and B (�) in (a,a], the di¤erence in the implementation costs satis�es: jC (A)� C (B)j �
�E jA (�)�B (�)j.

By Lemma 8, we have jC0 � Cj � �E
��a� A (�)

��. Next, let W 0 (respectively, W )

denote the value of the principal�s surplus (24) under the contract implementing a (re-

spectively, A (�)) and de�ne m = infa;�
@b
@a
(a; �). The di¤erence in total payo¤ to the �rm

is:

W 0 �W = S E
�
b
�
a; �
��
� C0 � (S E [b (A (�) ; �)]� C) = S E

�
b
�
a; �
�
� b (A (�) ; �)

�
�
�
C0 � C

�
� SmE

�
a� A (�)

�
� �E

��a� A (�)
�� = (Sm� �)E ��a� A (�)

�� :
Therefore, when S > S� � �=m, W 0 � W > 0 unless E

���a� A (�)
��� = 0. Hence, a

contract that implements maximal e¤ort for all noise realizations is optimal.
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C A Microfoundation for the Principal�s Objective

We o¤er a microfoundation for the principal�s objective function (24). Suppose that the

agent can take two actions, a �fundamental�action aF 2 (a; a] and a manipulative action
m � 0. Firm value is a function of aF only, i.e. the bene�t function is b

�
aF ; �

�
. The signal

is increasing in both actions: r = aF+m+�. The agent�s utility is v (c)�
�
gF (a) +G (m)

�
,

where g, G are increasing and convex, G (0) = 0, and G0 (0) � g0
�
a
�
. The �nal assumption

means that manipulation is costlier than fundamental e¤ort.

We de�ne a = aF+m and the cost function g (a) = minaf ;M
�
gF (a) +G (m) j aF +m = a

	
,

so that g (a) = gF (a) for a 2 (a; a] and g (a) = gF (a) + g (m� a) for a � a, which is

increasing and convex. Then, �rm value can be written b
�
min

�
a; a
�
; e��, as in equation

(24).

This framework is consistent with rational expectations. Suppose b
�
aF ; �

�
= eaF+�.

After observing the signal r, the market forms its expectation P1 of the �rm value b
�
aF ; �

�
.

The incentive contract described in Theorem 3 implements a � a, so the agent will not

engage in manipulation. Therefore, the rational expectations price is P1 = er.

In more technical terms, consider the game in which the agent takes action a and the

market sets price P1 after observing signal r. It is a Bayesian Nash equilibrium for the

agent to choose A (�) and for the market to set price P1 = er.
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Online Appendix for �Tractability and Detail-Neutrality in
Incentive Contracting�

Alex Edmans and Xavier Gabaix
November 12, 2008

D Incentive Compatibility of Contract when Timing

is Reversed

In the core model, noise �t precedes the action at in each period. This section shows that,

if the timing is reversed, the optimal contract in Theorem 1 still induces the target path

of actions, although we can no longer prove that it is incentive compatible. For brevity,

we consider T = 1.

The agent chooses

a� 2 argmax
a
E [u (v (c (a+ �))� g (a))] ;

where � is now unknown. With the proposed contract v (c (r)) = g0 (a�) r + K, so the

maximization problem is:

a� 2 argmax
a
E [u (g0 (a�) a� g (a) + g0 (a�) �)]

This is maximized pointwise by maximizing g0 (a�) a� g (a) over a, i.e. for a = a�.

However, we can no longer prove that the contract in Theorem 1 is optimal. In general,

results from Holmstrom (1979) indicate that it is not optimal with that �reversed�timing.

E Multidimensional Signal and Action

While the core model involves a single signal and action, this section shows that our

contract is robust to a setting of multidimensional signals and actions. For brevity, we

only analyze the discrete-time one-period case, since the continuous time extension is

similar. The agent now takes a multidimensional action a 2 A, which is a compact subset
of RI for some integer I. (Note that in this section, bold font has a di¤erent usage than
in the proof of Theorem 1.) The signal is also multidimensional:

r = b (a) + �;
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where �; r 2 RS, and b:A 2 RI!RS. The signal and action can be of di¤erent dimensions.
In the core model, S = I = 1 and b(a) = a. As before, the contract is c (r) and the indirect

felicity function is V (r) = v (c (r)). The following Proposition states the optimal contract.

Proposition 3 (Optimal contract, discrete time, multidimensional signal and action).
De�ne the I � S matrix L = b0 (a�)> i.e. explicitly Lij =

@bj
@ai
(a�1; :::; a

�
I), and assume that

there is a vector � 2 RS such that

L� = g0 (a�) ; (60)

i.e., explicitly:

8i = 1:::I;
SX
j=1

@bj
@ai

(a�1; :::; a
�
I) �j =

@g

@ai
(a�1; :::; a

�
I) :

The optimal contract is given by:

c (r) = v�1 (�r+K (r)) ; (61)

i.e., explicitly, c (r) = v�1
�PS

j=1 �iri +K (r1; :::; rn)
�
, where the function K (�) is the

solution of the following optimization problem:

min
K(�)

E [K (b (a�) + �)] subject to

8r; LK 0 (r) = 0 (62)

E [u (� (b (a�) + �) +K (b (a�) + �)� g (a�))] � u.

Proof. Here we derive the �rst-order condition; the remainder of the proof is as in

Theorem 1 of the main paper. Incentive compatibility requires that, for all �

a� 2 argmax
a

V (b (a) + �)� g (a) ,

and so:

V 0 (b (a�) + �)b0 (a�)� g0 (a�) = 0; (63)

where V 0 is a S�dimensional vector, b0 (a�) is a S�I matrix, and g0 (a�) is a I�dimensional
vector. Integrating equation (63) gives: V (r) = �r + K (r), where �r =

PS
i=1 �iri, and

LK 0 (r) = 0.

Note that K(r) is now a function and so determined by solving an optimization prob-

lem. Previously, K was a constant and determined by solving an equality.
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We now analyze two speci�c applications of this extension.

Two signals. The agent takes a single action, but there are two signals of performance:

r1 = a+ "1; r2 = a+ "2:

In this case, L = (1 1). Therefore, with � =(�1; �2) 2 R2 , (60) becomes: �1+ �2 = g0 (a�).

For example, we can take �1 = �2 = g0 (a�) =2. Next, (62) becomes: @K=@r1+ @K=@r2 = 0.

It is well known that this can be integrated into: K (r1; r2) = k (r1 � r2) for a function k.

Hence, the optimal contract can be written:

c = v�1
�
g0 (a�)

�
r1 + r2
2

�
+ k (r1 � r2)

�
;

where the function k(�) is chosen to minimize the cost of the contract subject to the
participation constraint. As in Holmstrom (1979), all informative signals should be used

to determine the agent�s compensation.

Relative performance evaluation. Again, there is a single action and two signals, but

the second signal is independent of the agent�s action, as in Holmstrom (1982):

r1 = a+ "1; r2 = "2

In this case, L = (1 0). Therefore, with � =(�1; �2) 2 R2 , (60) becomes: �1 = g0 (a�).

Next, (62) becomes: @K=@r1 = 0, so that K (r1; r2) = k (r2) for a function k. Hence, the

optimal contract can be written:

c = v�1 (g0 (a�) r1 + k (r2)) :

The second signal enters the contract even though it is una¤ected by the agent�s action,

since it may be correlated with the noise in the �rst signal.

F Proofs of Mathematical Lemmas

This section contains proofs of some of the mathematical lemmas featured in the appen-

dices of the main paper.

Proof of Lemma 4 We thank Chris Evans for suggesting the proof strategy for this

Lemma. We assume a < b.
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We �rst prove the Lemma when j (x) = 0 8 x. For a positive integer n, de�ne

kn = (b� a) =n, and the function rn(x) as

rn (x) =

(
f(x)�f(x�kn)

kn
for x 2 [a+ kn; b]

0 for x 2 [a; a+ kn):

We have for x 2 (a; b], lim infn!1 rn (x) � lim inf"#0 f(x)�f(x�")"
� 0.

De�ne In =
R b
a
rn (x) dx. As f + h is nondecreasing and k is C1, f(x)�f(x�kn)

kn
�

�h(x)+h(x�kn)
kn

� � sup[a;b] h0 (x). Therefore, rn (x) � min
�
0;� sup[a;b] h0 (x)

�
8 x. Hence we

can apply Fatou�s lemma, which shows:

lim inf
n!1

In = lim inf
n!1

Z b

a

rn (x) dx �
Z b

a

lim inf
n!1

rn (x) dx � 0:

Next, observe that In =
R b
a+kn

f(x)�f(x�kn)
kn

dx consists of telescoping sums, so:

In =

Z b

b�kn

f (x)

kn
dx�

Z a+kn

a

f (x)

kn
dx

= f (b)� f (a)�
Z b

b�kn

f (b)� f (x)

kn
dx�

Z a+kn

a

f (x)� f (a)

kn
dx = f (b)� f (a)�Bn � An:

We �rst minorize An. From condition (ii) of the Lemma, for any " > 0, there is an

� > 0, such that for x 2 [a; a+ �], f (x) � f (a) � �". For n large enough such that
kn � �,

An =

Z a+kn

a

f (x)� f (a)

kn
dx �

Z a+kn

a

�"
kn
dx = �";

and so lim infn!1An � 0.
We next minorize Bn. Since f 0� (b) � 0 for every " > 0, there exists a � > 0 s.t. for

x 2 [b� �; b], (f (b)� f (x)) = (b� x) � �". Therefore, for n su¢ ciently large so that
kn � �,

Bn =

Z b

b�kn

f (b)� f (x)

kn
dx �

Z b

b�kn

(�") (b� x)

kn
dx = �"kn

2
;

and so lim infn!1Bn � 0.
Finally, since f (b)� f (a) = In + An +Bn, we have

f (b)� f (a) = lim inf
n!1

(In + An +Bn) � lim inf
n!1

In + lim inf
n!1

An + lim inf
n!1

Bn � 0:

We now prove the general case. De�ne F (x) = f (x) �
R x
a
j (t) dt. Then, F 0� (x) � 0.

By the above result, F (b)� F (a) � 0.
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Proof of Lemma 5
Let (yn) " x be a sequence such that

f 0� (x) = lim
yn"x

f (x)� f (yn)

x� yn
:

We can further assume that limn!1 f(yn) exists (if not, then we can choose a subse-

quence ynk such that limnk!1 f(ynk) exists and replace yn by ynk) .

If limn!1 f(yn) = f(x), Then,

(h � f)0� (x) = lim inf
y"x

h � f (x)� h � f (y)
x� y

� lim
yn"x

h � f (x)� h � f (yn)
x� yn

= lim
yn"x

h � f (x)� h � f (yn)
f(x)� f(yn)

f(x)� f(yn)

x� yn

= h0 (f (x)) f 0� (x) :

If limn!1 f(yn) < f(x), then f 0� (x) =1, since h0 (f (x)) > 0, we still have (h � f)
0
� (x) �

h0 (f (x)) f 0� (x).

If limn!1 f(yn) > f(x), then (h � f)0� (x) � limyn"x
h�f(x)�h�f(yn)

x�yn = �1, hence (h � f)0� (x) �
h0 (f (x)) f 0� (x).

On the other hand, suppose (ŷn) " x be a sequence such that

(h � f)0� (x) = lim
ŷn"x

h � f (x)� h � f (ŷn)
x� ŷn

;

and that limn!1 f(ŷn) exists. If limn!1 f(ŷn) = f(x), Then,

(h � f)0� (x) = lim
ŷn"x

h � f (x)� h � f (ŷn)
x� ŷn

= lim
ŷn"x

h � f (x)� h � f (ŷn)
f(x)� f(ŷn)

f(x)� f(ŷn)

x� ŷn

= lim
ŷn"x

h � f (x)� h � f (ŷn)
f(x)� f(ŷn)

lim
ŷn"x

f(x)� f(ŷn)

x� ŷn

= h0 (f (x)) lim
ŷn"x

f(x)� f(ŷn)

x� ŷn
5

� h0 (f (x)) f 0� (x) :

Note that the existence of limŷn"x
h�f(x)�h�f(ŷn)

x�ŷn and limŷn"x
h�f(x)�h�f(ŷn)
f(x)�f(ŷn) guarantees the

existence of limŷn"x
f(x)�f(ŷn)
x�ŷn .
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If limn!1 f(ŷn) < f(x), then (h � f)0� (x) =1 � h0 (f (x)) f 0� (x).

If limn!1 f(ŷn) > f(x), then f 0� (x) � limŷn"x
f(x)�f(ŷn)
x�yn = �1 � (h � f)0� (x). There-

fore, (h � f)0� (x) = h0 (f (x)) f 0� (x).

Proof of Lemma 6
We use

(f + h)0� (x) = lim inf
y"x

f (x) + h (x)� f (y)� h (y)

x� y
= lim inf

y"x

�
f (x)� f (y)

x� y
+
h (x)� h (y)

x� y

�
� lim inf

y"x

f (x)� f (y)

x� y
+ lim inf

y"x

h (x)� h (y)

x� y
= f 0� (x) + h0� (x) .

When h is di¤erentiable at x,

(f + h)0� (x) = lim inf
y"x

f (x)� f (y)

x� y
+ lim

y"x

h (x)� h (y)

x� y
= f 0� (x) + h0 (x) :

Proof of Lemma 7
We wish to prove that E [h (X)] � E [h (Y )] for any concave function h. De�ne I (�) =

E [h (X + � (Y �X))] for � 2 [0; 1], so that

I 00 (�) = E
�
h00 (X + � (Y �X)) (Y �X)2

�
� 0

I 0 (0) = E [h0 (X) (Y �X)] = E

�
h0 (X)

�Z T

0

tdZt

��
;

where t = �t � �t , and t � 0 almost surely. We wish to prove I (1) � I (0). Since I is

concave, it is su¢ cient to prove that I 0 (0) � 0.
We next use some basic results from Malliavin calculus (see, e.g., Di Nunno, Oksendal

and Proske (2008)). The integration by parts formula for Malliavin calculus yields:

I 0 (0) = E

�
h0 (X)

�Z T

0

tdZt

��
= E

�Z T

0

(Dth
0 (X)) tdt

�
;

where Dth
0 (X) is the Malliavin derivative of h0 (X) at time t. Since (�s)s2[0;T ] is deter-

ministic. Therefore, the calculation of Dth
0 (X) is straightforward:

Dth
0 (X) � Dth

0
�Z T

0

�sdZs

�
= h00

�Z T

0

�sdZs

�
�t = h00 (X)�t:

53



Hence, we have:

I 0 (0) = E

�Z T

0

(Dth
0 (X)) tdt

�
= E

�Z T

0

h00 (X)�ttdt

�
:

Since h00 (X) � 0 (because h is concave), and �t and t are nonnegative, we have h00 (X)�tt �
0. Therefore, I 0 (0) � 0 as required.

Proof of Lemma 8
We commence the proof with a Lemma.

Lemma 9 Consider a di¤erentiable function f , two continuously di¤erentiable random

variablesX and Y (not necessarily independent), two constants a and b such that E [f (X + a)] =

E [f (Y + b)], and an interval I such that (i) f 0 (x) > 0 8 x 2 I and (ii) almost surely,

X + a and Y + b are in I. Then,

ja� bj � supI f
0

infI f 0
E [jX � Y j] : (64)

The Lemma implies that when X and Y are �close�, then a and b are also close.

Proof. By rede�ning if necessary Y 0 = Y + b, X 0 = X + b, it is su¢ cient to consider

the case b = 0. De�ne H = X � Y + a. From the Intermediate Value Theorem, for any

Y;H, there is a value � (Y;H) such that f (Y +H) � f (Y ) = f 0 (Y + � (Y;H)H)H. In

addition, Y + � (Y;H)H 2 I almost surely. Hence,

0 = E [f (Y )]� E [f (X + a)] = E [f (Y )]� E [f (Y +H)] = E [f 0 (Y + � (Y;H)H) (X � Y + a)]

= E [f 0 (Y + � (Y;H)H) (X � Y )] + aE [f 0 (Y + � (Y;H)H)] :

Thus,

jaj = jE [f 0 (Y + � (Y;H)H) (X � Y )]j
E [f 0 (Y + � (Y;H)H)]

� (supI f
0) E [jX � Y j]
infI f 0

:

We now turn to the main proof. Consider contract A that implements action A (�),

and contract B that implements B (�). De�ne

X =

Z �

�

g0 (A (x)) dx, Y =

Z �

�

g0 (B (x)) dx;

and k, k0 such that

u = E [u (X + k)] = E [u (Y + k0)] : (65)
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From Proposition 3, the felicity of contract A is X + k + g (A (�)), and the felicity of

contract B is Y + k0 + g (B (�)).

We prove the Lemma by demonstrating a sequence of three inequalities.

1). Inequality regarding jk � k0j. Since 0 � X �
�
� � �

�
g0
�
a
�
, we have

u (k) � u = E [u (X + k)] � u
�
k +

�
� � �

�
g0
�
a
��

) u�1 (u)�
�
� � �

�
g0
�
a
�
� k � u�1 (u) :

We therefore have � � k +X � �, where

� � u�1 (u)�
�
� � �

�
g0
�
a
�
and � � u�1 (u) +

�
� � �

�
g0
�
a
�
: (66)

By the same reasoning, � � k0 + Y � �:

Applying Lemma 9 to equation (65), function u and interval [�; �], we obtain: jk � k0j �
sup[�;�] u

0

inf[�;�] u
0 E jX � Y j. Since u is concave, this yields the inequality:

jk � k0j � u0 (�)

u0 (�)
E jX � Y j : (67)

2). Inequality regarding E jX � Y j. We have:

E jX � Y j = E
�����
Z e�
�

(g0 (A (x))� g0 (B (x))) dx

�����
� (sup g00) E

"Z e�
�

jA (x)�B (x)j dx
#
= (sup g00) E

"Z �

�

jA (x)�B (x)j 1x�e�dx
#

= (sup g00)

Z �

�

jA (x)�B (x)jE [1x�e�] dx
= (sup g00)

Z �

�

jA (x)�B (x)jF (x) dx, de�ning F (x) = P (� � x)

= (sup g00)

Z �

�

jA (x)�B (x)j F (x)
f (x)

f (x) dx

� (sup g00)
�
sup

F

f

�Z �

�

jA (x)�B (x)j f (x) dx = (sup g00)
�
sup

F

f

�
E jA (e�)�B (e�)j ;

yielding the inequality

E jX � Y j � (sup g00)
�
sup

F

f

�
E jA (e�)�B (e�)j : (68)
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3). Inequality regarding the di¤erence in costs. We can now compare the costs of the

two contracts, which we denote CA and CB. We �nd:

jCA � CBj =
��E �v�1 (X + k + g (A (�)))� v�1 (Y + k + g (B (�)))

���
� ( sup

[�+inf g;�+sup g]

�
v�1
�0
) � E [jX + k + g (A (�))� (Y + k0 + g (B (�)))j]

� D (E jX � Y j+ jk � k0j+ E [g (A (�)� g (B (�)))]) , de�ning D =
�
v�1
�0 �

� + g
�
a
��

� D

�
1 +

u0 (�)

u0 (�)

�
E jX � Y j+Dg0

�
a
�
E jA (�)�B (�)j ; by equation (67)

De�ne

� =

��
1 +

u0 (�)

u0 (�)

�
(sup g00)

�
sup

F

f

�
+ g0

�
a
�� �

v�1
�0 �

� + g
�
a
��
; (69)

where �; � are given in equation (66), and F (x) = P (� � x). Using equation (68) yields:

jCA � CBj � �E jA (�)�B (�)j ;

as required.
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