
Juggling Tasks∗

Decio Coviello
European University Institute

Andrea Ichino
Universita’ di Bologna

Nicola Persico
New York University

February 2010

Abstract

This paper studies the work practices of a worker who can split his effort among
several projects. The worker opens projects at a given rate and devotes the same
effort to all open projects. Working on too many projects at once is referred to as
task-juggling. We find that when the worker opens projects at too high a rate, task
juggling leads to decreased output rate and projects take longer to complete. As time
goes by, the duration of projects increases linearly with time. We obtain a precise
formula linking the input rate, the complexity of the projects, and the worker’s effort,
to the output rate. We provide a model in which task juggling result as the Nash
equilibrium of a lobbying game among the worker’s clients. We also show that if
there is value in the projects clearing intermediate goals, and not only in completion,
then large input rates are not necessarily inefficient; in this case task-juggling can be
optimal despite durations which increases linearly over time. We compare two ways
of incentivizing the worker when the worker can multitask across projects of different
complexity: rewarding output leads the worker to focus effort on on low-complexity
projects, whereas penalizing duration leads the worker to focus on relatively more
complex projects. We conclude by analyzing certain extensions of the model including
one where the worker is forgetful, and so his productivity per task decreases as a
function of the time it takes him to complete two consecutive tasks of the same project.
The presence of this friction gives rise to the possibility of multiple growth paths.

∗Thanks to Debraj Ray.

1

1 Introduction

Most of us seem to be working on too many projects at once. With too much on one’s plate,
one’s effort gets dispersed and so only incremental work gets done on any one project. As
a result projects never get done, deadlines are pushed forward, etc. We refer to this work
practice as task juggling. Sounds familiar? This because this problem is ubiquitous. As
academic researchers, perhaps under the pressure of different co-authors, we sometimes find
ourselves jumping from project to project, and only being able to devote fractions of their
time to each paper. But task juggling is not only limited to researchers: many other types of
workers also engage in task juggling. In related empirical work (Coviello et al. 2010), we show
that judges in Italy also engage in task juggling, and we measure the effect of this practice
on the duration of trials. Of course, it can be efficient to work on a number of projects
simultaneously, and our theory will accommodate this possibility. To be precise, therefore,
we reserve the term “task juggling” for the case in which more than the efficient number of
projects are worked on simultaneously, resulting in a slowdown of project completion. This
paper develops a theory of task juggling.

To understand what we do, let’s start with a simple static model of a worker who can split
one hour between two projects, the first requiring one hour to get done, the second requiring
two hours. If the worker commits the same amount of time to both projects, then each
project receives 1/2 hour and neither project gets done. If instead the worker focused on the
first project, he would at least gets one done. We say that this worker is juggling tasks, in
the sense that by working on too many projects simultaneously, he slows down his output.
The lesson here is that if the goal is completing projects, then it pays to focus on the one
that is closest to being done. Of course, in this case the technology that produces the output
(a complete case) was very stark, and so the effect of overcommitment on productivity was
easy to describe. Imagine now a more realistic world in which the worker receives a constant
stream of projects and can work on many projects at a time. Here the projects that get
done in one instant are exactly those projects which, the instant before, were almost done.
In other words, the evolution of productivity over time depends on the composition of the
case load (how many projects are almost done at any point in time), as well as on the speed
at which projects are moved along. Now this gets complicated: the composition of the case
load, like an inventory, contains projects in different stages of completion and evolves over
time. How the case load composition evolves depends on how much the worker works in
each instant, how much work it takes to complete each project, how many projects he can
complete in each instant given how many he is working on currently, and how many new
projects he opens. In other words, the technology that determines output is now a high-
dimensional Markov problem whose dimensionality must be sufficient to fully describe the
evolution of case load composition.

2

The paper proceeds as follows. In Section 2 we lay out a continuous-time model which
describes how much the worker works and how he works–how many projects he keeps open
at the same time. This second element matters because, by assumption, the worker splits
his effort equally among all open projects. The main variables of the model are: the rate at
which the worker starts working on projects; the stock in each instant in time of projects
being worked on distinguished according to their level of “done-ness” of each project; and
the output rate, the rate at which projects are completed. Formally, the model is described
by the system of partial differential equations (1) through (4).

In Sections 3 to 5 we provide closed-form solutions for this system of partial differential
equations, under the assumption that the rate at which projects are started and the worker’s
effort are stationary. This solution fully characterizes the dynamic production function that
turns opened projects and effort into completed projects. Our analysis is most interesting
and challenging when the rate at which projects are started exceeds that at which projects
are completed. In this case, over time the worker juggles an increasing number of tasks, the
duration of his projects will increase (linearly with time, as we will show), and his output rate
decrease. That the output rate should decrease as the input rate increases follows because,
by assumption, if a new project is opened the worker will devote just as much effort to it as
to any other open project. Thus when the case load is above its efficient level, opening a new
project reduces the effort devoted to projects that are closer to completion. This externality
creates the slowdown associated with task juggling.

What is the production function of output when task juggling is a concern? It is expression
(5) on page 12. This expression links the effort rate η, the complexity X of the project, the
rate ν at which projects are started, and the output rate ω. This relationship, therefore,
represents the technology that yields output ω. We show that when ν exceeds the threshold
η/X then ω becomes decreasing in ν.1 That is, the higher the input rate, the worse the task
juggling and the lower the output rate. Moreover, studying expression (5) reveals that ν and
η are strategic substitutes in the production of output.2 This suggests that anything that
makes workers juggle more tasks will also, indirectly, induce lower effort on the part of the
worker. We will use this information later.

If task juggling is bad, then why is it so prevalent? Why don’t workers keep the input rate
down to η/X and maximize their output rate? Or, from a different perspective, why does the
worker split his effort equally among too many open projects? While the answer will depend
on the specific circumstances–whether the worker is a judge, a university researcher, or
whatever else–Section 6 offers an explanation that could fit several scenarios. The idea

1Figure 3 portrays the relationship implied by equation (5) between the input rate ν and the output rate
ω.

2This means that the cross partial of output with respect to ν and η is negative.

3

is that effort is allocated “under duress.” We provide a framework in which projects being
worked on belong to clients, each of whom wants their project to be done quickly. These
clients have the ability to, in each instant, lobby the worker (at a cost) and have their project
skip the line and get worked on immediately. For an academic researcher, the competing
clients might be co-authors; for a judge, they might be the plaintiffs in the trials, particularly
in countries where trials can last decades. In our model, no matter how low the cost of
lobbying, the input rate that results from the equilibrium of this lobbying game is shown to
be inefficiently large. In other words, lobbying causes task juggling. In addition, we fully
characterize the equilibrium of the lobbying game and show that, if the cost of lobbying is
constant, then the equilibrium input rate is time invariant. This result provides a justification
for focusing on time-invariant input rates, as we do throughout the paper.

A different hypothesis could be that task juggling is strategically engineered by a principal,
to induce the worker to work harder. However, this hypothesis is not consistent with the
theory. We mentioned before that ν and η are strategic substitutes in the production of
output. Therefore, if the worker maximizes (an increasing function of) output, then causing
the worker to juggle more tasks results in lower effort. Our analysis, therefore, suggests that
even if a principal faces limitations on the monetary rewards he can pay for performance (say,
in the public sector because money is scarce, or in the private sector because of union rules),
still he should not induce his workers to open too many new cases in hopes of improving their
effort or their output. This finding has practical implications for the organization of trials in
Italy. Italian judges are required by law to open cases as soon as they have been assigned to
them, thereby forcing ν to be very high. In light of our analysis, this is detrimental for both
output rates and effort. In a separate empirical paper, we apply some of the ideas developed
here to the study of the productivity of Italian judges. The same logic suggests that workers
should be protected from lobbying by clients.

A still different view of task juggling is that in fact it could be efficient. In Section 7 we
show that if value is created when a project completes early intermediate goals, then it may
be optimal to push the input rate ν above η/X. This is because if the primary goal is not
(only) to complete the project, but there is also value in starting it, then the negative effect
of large input rates on output rates is less important. In this case, the progressive slowdown
of projects and the associated increase in duration are in fact efficient. As an application,
consider certain types of trials in which preliminary injunctions may need to be issued early
in the trial, before the case is decided.

In Section 8 we explore variable speed strategies, that is, strategies that calibrate the amount
of effort devoted to a case depending on the degree of completion of the case. A special case
are the “equal treatment” strategies considered in the rest of the paper, which devote the
same proportion of effort to each open case at any point in time. We give conditions under

4

which the optimal variable speed strategy is an equal treatment one.

In Section 9 we analyze the different options available to a principal who needs to incentivize
the worker. The principal may chose to reward the aggregate output rate, or penalize the
average duration of projects. Although these two performance measures are closely related, if
the worker can strategically elect to work on projects of different complexity, then it matters
which measure is used. In Section 9 we show that if the worker is compensated based on
aggregate output irrespective of the complexity of the project, then that worker will totally
ignore complex projects and focus on easy ones. Under this strategy, complex problems
never get done. If instead the worker is penalized based on the average duration of assigned
projects, then we show that a worker will work on cases of all complexities, and in fact will
devote relatively more effort to complex cases.

Section 10 analyzes several extension to the main model. We deal first with the case in which
projects have different degrees of complexity, but they cannot be treated disparately (if they
can, then the analysis of Section 9 applies). We caracterize the ratio of input to output rates
as a function of the complexity of the project and show that more complex projects have a
worse input to output ratio. Next we deal with the case in which the worker is forgetful, that
is, as the completion time grows and any open project is worked on less and less per unit of
time, the worker starts to forget about each individual project and thus before he can make
progress he needs additional effort on each case to “remind himself” of where he left off. The
additional effort required slows down production relative to a constant growth path. More
remarkably, in our model introducing forgetfulness may generate a multiplicity of growth
paths. Finally, we discuss how the model would change in the presence of a “time to build”
constraint whereby the worker cannot complete a project under a certain time threshold, no
matter how large the effort.

1.1 Related Literature

What we call task juggling is an inefficiency that is related to the concept of “bottleneck”
in the literatures on project management and project planning (see Model et al, 1983).
Our model is also related to the literature on network queuing, originating with Jackson
(1963). The focus of these literatures is on how to identify and eliminate bottlenecks in
the production or service processes. In our model this is easily done (set the input rate ν
equal η/X) and is not the main point of the paper. In contrast, our analysis focuses on the
observable features of an inefficient dynamic production function, culminating in equation
(5) which, to our knowledge, is a new mathematical result. This result is our starting point
for a study of incentives: how private incentives to lobby the worker might result in task
juggling, and how to incentivize the worker. Incentives considerations such as the ones we

5

study are largely absent from these literatures.

The model of lobbying by clients presented in Section 6 is a version of common-pool problem,
of a kind that has been studied in economics under various guises (see e.g. Ostrom 1990).

Section 9 analyzes the effect of different incentive schemes when the worker can arbitrage
across projects of different complexity. Such problems have been studied by Holmstrom and
Milgrom (1991).

In Section 10.2 we study the case in which coming back to a project too seldom can slow
down the productivity on each individual task of the project. This idea is explored in a
recent plychological literature on multitasking and task interruptions (see e.g. Mark et al.
2008).

2 The Model

The model lives in continuous time, starting from t = 0. There is a continuum of projects.
Each project takes X steps to complete and is characterized, at any point in time, by its
degree of completion x ∈ [0, X]. Before a worker starts working on a project, that project’s
degree of completion is x = X.We call a project completed when x = 0. Note that, because
x is a continuous variable, we are assuming (with some abuse of the English language) that
there is a continuum of steps for each project. X can properly be interpreted as a measure
of the complexity of the project.

As soon as the worker starts working on a project, that project becomes active. The project
stops being active when it is completed. At any time t, the worker has At active projects, in
various degrees of completion. The distribution ϕt (x) represents the mass of projects which
are exactly x steps away from being done.3 By definition, the number of active projects at
time t is

At =

Z X

0

ϕt (x) dx (1)

We assume that all active projects become more complete at a rate η/At, where a large
η denotes a hard-working or fast worker. Informally, this means that in the time interval
between t and t +∆, the worker’s work shaves off approximately (η/At)∆ steps from each
active project.4 This formulation captures the idea that the worker divides a fixed amount
of working hours equally among all projects active at time t. We refer to this procedure as
working “in parallel.” Parallel work means that all projects proceed at the same speed; this

3Technical note: ϕ is a measure but not a probability measure: it does not sum to 1.
4Note that this formulation requires At > 0.

6

means that after ∆ has elapsed, the distribution ϕt (x) is translated horizontally to the left
(refer to Figure 1), and so for ∆ “small enough” we can write intuitively

ϕt+∆

µ
x− η

At
∆

¶
= ϕt (x) .

To express this condition rigorously, bring ϕt (x) to the right-hand side, divide by ∆ and let
∆→ 0 to get

∂ϕt (x)

∂t
− ∂ϕt (x)

∂x

η

At
= 0. (2)

This partial differential equation embodies the assumption of parallel work.

and Settings/Nicola Persico/Desktop/tempwork/giudici/phifigure2.wmf

X
x

0

φt

φt+Δ

Figure 1: The function ϕt is traslated horizontally to the left as time passes. Newly opened
cases are added to the right. The grey mass of cases to the left of zero are completed.

The projects that fall below 0 (grey mass in Figure 1) are the ones that get completed within
the interval ∆. These are the projects whose x at t is smaller than η

At
∆. Therefore, the mass

of output between t and t+∆ is approximatelyZ η
At

∆

0

ϕt (x) dx.

7

To get the output rate ωt, divide this expression by ∆ and let ∆→ 0 to get

ωt = lim
∆→0

1

∆

Z η
At

∆

0

ϕt (x) dx =
η

At
ϕt (0) . (3)

Cases are assigned to the worker at rate αt, but the worker is not required to open projects
as soon as they are assigned. Rather, we allow the worker to open new projects at a rate νt.
A larger νt will, ceteris paribus, mean more task juggling–more projects being worked on
simultaneously. This νt is seen either as a choice on the part of the worker, or as determined
by lobbying, or else imposed by some regulation. For ∆ small, the change in the mass of
projects active at t is approximately

At+∆ −At = νt ·∆− ωt ·∆.

Divide both sides by ∆ and let ∆→ 0 to get the formally correct expression

∂At

∂t
= νt − ωt. (4)

Graphically, the mass of newly opened projects is squeezed in at the back of the queue in
Figure 1, just to the left of X, in whatever space is vacated on the horizontal axis by the
progress made in ∆ on the pre-existing open projects.

We close this section by defining two measures of productivity.

Definition 1 For a project assigned at t we define the duration Dt as the time which
elapses between t and the completion of the project. For a project opened at t (and thus
assigned at a time before t), we define completion time Ct the time which elapses between
t and the completion of the project.

This completes the description of our model. In this model, two variables are interpreted
(for now) as exogenously given: η and νt. The first describes how much the worker works,
the second how he works–how many projects he keeps open at the same time. These
two variables will determine, through the process described mathematically by equations
(1) through (4), the key variable of interest, the output rate ωt. This variable, in turn, will
determine the duration of a project and its completion time. The two (endogenous) functions
At and ϕt (x) are, perhaps, of merely instrumental interest: they describe the state of the
worker’s docket at any point in time–how many projects he has open, and the degree of
completeness of each. Our first major task is to uncover the law through which η and νt
affect ωt. We turn to this next.

8

3 Growth Paths and Fundamental Theorem

Theorem 1 in this section identifies the law through which νt determines ωt. In terms of
language, however, rather than talking about νt determining ωt, it is more convenient to
talk about νt and ωt (and also ϕt (x) , At) belonging to a growth path.5 This is the language
we use in this section.

Definition 2 A growth path is a quadruple of positive real functions [νt, ϕt (x) , At, ωt]t∈(0,∞)
x∈[0,X]

that satisfies (1), (2), (3) and (4). A constant growth path is a growth path where input
and output rates are constant, νt = ν and ωt = ω.

A growth path is a set of functions which are linked together in that they jointly satisfy
a system of functional equations. While this definition is somewhat abstract, the way to
think about a growth path is as a time-varying production function. The input rate νt is
given exogenously, and the output rate ωt is the output of a complicated, time-evolving
“production function,” which is characterized by the time-varying quantities ϕt (x) and At.

In general, finding a quadruple that constitutes a growth path is a daunting mathemati-
cal problem. However, when νt is constant equal to ν, then a growth path can be fully
characterized. We start by guessing a functional form for ϕt (x) and At. Let

ϕ∗t (x) =
(ν − ω)

η
ω t e

ν−ω
η

x,

and
A∗t = (ν − ω) t.

The theorem states that the pair ϕ∗t (x) , A
∗
t , paired with constant input and output rates

ν and ω, satisfies conditions (1) - (4), and thus are part of a growth path, if and only if a
certain equation holds relating ν and ω.

Theorem 1 The quadruple [ν, ϕ∗t (x) , A∗t , ω] is a constant growth path if and only if the pair
ν, ω solves the equation X ν−ω

η
= log (ν)− log (ω) .

Proof. One can verify directly that for any K,λ, the pair ϕt (x) = Kte
λ
η
x, At = λt solves

(2) above. Moreover, for any λ the triple ϕt (x) = Kte
λ
η
x, At = λt, ωt satisfies (3) if and

only if K = λ
η
ωt, which implies ωt = ω. Finally, the triple νt, At, ω satisfies (4) if and only

if λ = νt − ω, which implies νt = ν.

5In what follows we will omit the subscripts t ∈ (0,∞) and x ∈ [0,X] when no confusion can arise.

9

This shows that, for any ν, ω, the quadruple [ν, ϕ∗t (x) , A
∗
t , ω] satisfies all but one of the

equalities which define a constant growth path. However, we do not yet know which values
of ν and ω are compatible with each other along a growth path. We now show that the pair
ϕ∗t (x) = Kte

λ
η
x, A∗t = λt solves (1) if and only if X ν−ω

η
= log (ν) − log (ω) . Condition (1)

reads

A∗t =

Z X

0

ϕ∗t (x) dx.

Substituting ϕ∗t (x) and A∗t yields

λt =

Z X

0

Kte
λ
η
x dx

= Kt
η

λ
e
λ
η
x
¯̄̄X
x=0

=
η

λ
Kt

h
e
λ
η
X − 1

i
.

Now substitute for K = λ
η
ω and λ = ν − ω to get

λt =
ηλωt

ηλ

h
e
λ
η
X − 1

i
λ = ω

h
e
λ
η
X − 1

i
ν − ω = ω

h
e
(ν−ω)
η

X − 1
i

ν

ω
= e

(ν−ω)
η

X .

Taking logs yields

log (ν)− log (ω) = X
(ν − ω)

η
.

Therefore, Theorem 1 is proved.

Along a constant growth path the function ϕ∗t (x) is exponential in x and multiplicative in
t, as depicted in Figure 2. Thus as t → 0 the function ϕ∗t : [0,X] → R converges to zero
uniformly. As t grows, the function ϕ∗t grows multiplicatively in t.

The next result shows that completion time and duration both grow linearly with t.

Proposition 1 In a constant growth path we have Ct =
(ν−ω)
ω

t and Dt =
(α−ω)

ω
t.

Proof. The completion time Ct of a project started at t is the time that it takes all the
projects in front of it to clear. These projects are At, and given an output rate ω that

10

and Settings/Nicola Persico/Desktop/tempwork/giudici/figurephiequil2.wmf

X
x

0

Δ+tϕ

tϕ

Figure 2: Distribution of active cases, by number of steps away from being done. On the
growth path it is exponential.

duration is given by the solution to the following equationZ t+Ct

t

ω ds = At,

which equals
ωCt = (ν − ω) t.

Solving for Ct yields the desired expression. Let us now turn to duration. Given an arrival
rate α, a project assigned at t finds

αt− ωt

projects in front of it. Given an output rate of ω, these projects will take

Dt =
(α− ω)

ω
t

to complete. This is the duration of a project assigned at t.

The results presented until now show how the system evolves if ν > ω. In this case, as time
goes by the worker juggles an increasing number of projects (formally, At grows linearly
with t), which makes projects proceed at a progressively slower pace (the pace is η/At). As
projects grind along more and more slowly, the constant input ν of new cases results in more
and more projects being accumulated at all degrees of completion x, especially at high x (we
know this because ϕt (x) grows multiplicatively with t). Despite all these complex dynamics,

11

the output rate is constant through time. This remarkable property of the output rate
results from two opposite effects offsetting each other: As time goes by, cases move through
at progressively slower rates, which tends to progressively reduce the output rate. On the
other hand, the mass of cases that are almost done increases with time (this is because ϕt (0)

grows multiplicatively with t), which tends to progressively increase the output rate. These
two effects exactly offset each other along a constant growth path, and thus the output rate
is time-invariant.

4 Characterization of the Output Rate

Theorem 1 goes a long way towards characterizing a constant growth path, but there is still
some work to do. We need to characterize the relationship that links ν and ω along a growth
path or, said differently, we need to understand what level of output is possible given an
input rate.

According to Theorem 1, the relationship between ν and ω along a growth path is

(ν − ω)
X

η
= log (ν)− log (ω) . (5)

Define

h (y) =
X

η
y − log (y) .

Then equation (5) reads
h (ν) = h (ω) .

The next lemma characterize the function h (·).

Lemma 1 The function h (y) is strictly convex on (0,∞), converges to infinity at y = 0 and
y = +∞, and it has its minimum at y = η/X.

Proof. One can easily verify that h (0) = +∞ = h (∞) , h0 (y) = X
η
− 1

y
, and finally

h00 (y) = 1
y2
.

Figure 3 depicts h (y). Not all solutions to equation (5) can be part of a growth path. Which
solutions are consistent with a growth path is described in the next proposition.

Proposition 2 (conditions for a growth path) ν is compatible with a constant growth
path if and only if ν > η

X
. In that case, the quadruple [ν, ϕ∗t (x) , A

∗
t , ω] is a constant growth

path if and only ω is the unique solution to equation (5) that is smaller than η
X
.

12

and Settings/Nicola Persico/Desktop/tempwork/giudici/hfig2.wmf

h(.)

v ω X
η

Figure 3: Relationship between input and output rates on a growth path.

Proof. The solution ω = ν to equation (5) is not acceptable because then A∗t ≡ 0 and (3)
is not well-defined. Nor can we accept solutions where ω > ν, for then ϕ∗t (x) and A∗t would
be negative and thus the quadruple identified in Theorem 1 would not meet the definition
of a growth path. So we need to find solutions with ω < ν. This implies ν > η

X
. The rest of

the Proposition follows immediately from the previous analysis.

This proposition shows how to construct the entire growth path associated to any constant
input rate ν. Given a constant input rate ν > η

X
, one can uniquely identify the corresponding

output rate ω < η
X
which solves equation (5). The (ν, ω) pair thus obtained is substituted

into ϕ∗t (x) , A
∗
t to obtain a full characterization of the growth path.

Proposition 2 shows that a constant growth path only exists if the input rate is sufficiently
large. If not, then the worker can solve projects faster than he opens them, and in that
case our model predicts At ≡ 0. In this case we do not have a model of task juggling, but
rather one of “undercommitment.” We conclude this section by analyzing this case. The
next proposition shows that if ν < η

X
then At shrinks over time, and if ν =

η
X
then At is

constant. Some of these results will be useful in future sections.

Proposition 3 (steady-state and shrink paths) If ν = η
X
then there are a continuum

of steady-state paths, indexed by the mass of projects active at time zero, A0. In each of
these steady states At ≡ A0, the output rate is equal to η/X, and the duration of projects is
increasing in A0.

If ν < η
X
then whatever the value of A0, after a transition period it will be At ≡ 0 and, from

then on, the duration of projects will be zero and the output rate will be increasing in ν.

13

Proof. Let’s start with the case ν < η
X
. In this case the setup of the model described in

Section 2 is no longer applicable, since that setup implicitly required that At > 0, which now
cannot be guaranteed. In fact, if we start at time 0 with A0 > 0 and open projects at rate
ν < η

X
, we expect ωt > ν, and so we are on a temporary “shrink path” where over time At

will shrink down to zero. After At hits zero, the worker completes projects instantaneously
as soon as they are opened, and the system settles into a long-run path with ωt = ν < η

X
,

and At = Ct = Dt = 0. In this long-run steady state, increasing ν increases ω contrary to
Proposition 4.

In the case ν = η
X
, let us conjecture ν = ω and so by (4) we have At = A. Fix any A0 > 0.

Note that this requires assuming an initial load of projects at time zero. Then (3) reads

ω =
η

A0
ϕt (0) ,

whence for all t > 0

ϕt (0) =
A0
η
ω. (6)

Now, by definition we have that for all x > 0 we have ϕt (0) = ϕτ (x) for some τ < t. This
observation, together with (6), implies

ϕτ (x) =
A0
η
ω for all x, τ.

Then (1) reads

A0 =

Z X

0

ϕt (x) dx =
X

η
A0ω.

Note that this equality reduces to the identity ω = η/X, which yields no new information.
This means that any A0 is compatible with the steady state path when ν = η/X.Whatever
is the initial condition of open projects A0, choosing ν = η/X will exactly perpetuate that
mass of open projects.

The completion time of a newly opened project is the interval of time it takes the worker to
process the A0 projects that have precedence over it. We are looking for the time interval
Ct it takes for a worker to complete A0 projects. At a completion rate ω, Ct solves

A0 =

Z t+Ct

t

ω ds

= ωCt =
η

X
Ct,

whence the completion time of a newly activated project is Ct =
A0
η
X, which is increasing

14

in A0. Given an arrival rate α, a project assigned at t finds

A0 + αt− ωt

projects in front of it. The duration of a project assigned at t is the time it takes to complete
these projects given an output rate ω. Thus the duration of a project assigned at t is also
increasing in A0.

5 Comparative Statics For the Output Rate

In this section we derive a number of comparative static results for the output rate in a
constant growth path. To this end, it is convenient to think of the output rate as generated
by the other parameters of the model. The next definition introduces the notation Ω for the
production function of ω. Throughout this section we implicitly assume that ν ≥ η

X
.

Definition 3 For each pair (ν, η/X) denote by Ω (ν; η/X) the unique ω < ν that solves (5).

The next proposition presents the comparative statics results for Ω.

Proposition 4 a) Ω (ν; η/X) is decreasing in ν.

b) Ω (ν; η/X) is increasing in η/X.

c) ∂Ω(ν;η/X)
∂ν∂η

< 0, which means that ν and η are strategic substitutes in Ω (ν; η/X) .

d) The function Ω (·; ·) is homogeneous of degree 1.

e) Ω (η/X; η/X) = η/X.

Proof. a): Immediate from inspection of Figure 3.

b), c): See the Appendix.

d) Suppose the triple
¡
ν, ω, η

X

¢
solves (5). We need to show that for any scalar r > 0, the

triple
¡
rν, rω, r η

X

¢
also solves (5). Write

r
η

X
[log (rν)− log (rω)] = r

η

X
[log (ν)− log (ω)]

= r (ν − ω) = (rν − rω) .

15

where the second equality follows because the triple
¡
ν, ω, η

X

¢
solves (5). The equality

between the first and the last element in this chain of equalities shows that the triple¡
rν, rω, r η

X

¢
solves (5).

e) Immediate from inspection of Figure 3.

Part a) is the effect of task juggling: increasing ν increases the mass of active projects and
reduces output. The proposition shows that η/X is the maximum feasible output rate. When
ν = ω = η/X we have a steady state where At ≡ 0; this is a case treated in Proposition 3.
Part b) simply says that if a worker works more then the output rate is larger.

Part c) deals with the complementarity of inputs in the production of the output rate. It
says that the returns to effort decrease when ν increases. Intuitively, this is because At is
larger and so an increase in effort needs to be spread over a greater number of projects.

Part d) admits two economic intepretations. First, the lemma expresses constant returns to
scale with respect to “inputs” ν and η. One implication is the following. Imagine that instead
of treating all projects in the same pool, the worker splits his projects into two pools: projects
only dealt with in the morning, and projects only dealt with in the afternoon. Suppose the
worker allocates a fraction r < 1 of his projects to the morning, and the remaining (1− r) to
the afternoon. Suppose also that the worker splits his total effort η in the same proportion.
Then his total output is the sum of the outputs of morning and afternoon projects, which
by the lemma are, respectively, rω and (1− r)ω. The total sum is ω, which shows that
the worker does not gain or loses from splitting projects into smaller pools. The second
interpretation obtains when r > 1. Setting r > 1 means that the entire system is working at
a faster pace: per unit of time, we have more input, more effort, and more output, all in the
same proportion. Another way to think about it is as if time was speeding up. One could,
for example, make r a time-varying function of t, and in that case r > 1 would correspond
to the case where the system operates at a faster speed than calendar time.

The results reported in Proposition 4 can be used to prove that increasing the input rate,
and thus the degree of task juggling, increases the inefficiency.

Corollary 2 In a constant growth path, completion time Ct and duration Dt are increasing
in ν.

Proof. From Proposition 1 we have

Ct =

µ
ν

Ω (ν; η/X)
− 1
¶
t =

µ
1

Ω (1; η/νX)
− 1
¶
t,

where the second equality follows from Proposition 4 d). From Proposition 4 (b) we have
that Ω is increasing in its second argument, whence increasing ν decreases Ω (1; η/νX) and

16

increases Ct.

As for duration, from Proposition 1 we have

Dt =

µ
α

Ω (ν; η/X)
− 1
¶
t.

From Proposition 4 (a) we have that Ω is decreasing in its first argument, whence increasing
ν decreases Ω (ν; η/X) and increases Dt.

6 Input Rate Determined Through Lobbying Equilib-
rium

In the previous sections we have assumed that νt, the exogenous input rate, is constant
through time and, furthermore, that it exceeds the efficient input rate η/X. We have not
discussed what process might gives rise to a νt with these features. In this section we
introduce a game in which each project has a client who in each instant can lobby the worker
to devote effort to his project. In this model the input rate νt is determined endogenously
by the clients’ lobbying. In the equilibrium of this game, the input rate turns out to be
constant through time and inefficiently high. Therefore, the results in this section provides
a foundation for the model analyzed in the previous sections. At the end of this section we
also allow effort to be chosen endogenously by the worker.

The basic setup is that clients can, at a cost, force the worker to work on their project,
regardless of its order of assignment, in addition to the projects he would be working on
otherwise. The private benefit of lobbying is that a client avoids its project waiting unopened
and gets the worker working on it immediately. But, by forcing the worker to work on their
projects, lobbyists force a worker to distribute effort among more projects. This will increase
the number of active projects, which slows down all projects. This externality, which is not
internalized by the lobbyists, gives rise to an inefficiency.

The model is as follows. Judicial effort η is fixed and constant through time (we will relax
the first assumption later). Lobbying is modeled as a technology whereby, at any instant t,
a client can pay κ ·∆ and force activity on its project during the interval (t, t+∆) . Activity
on the project means that the project moves forward by (η/At) ·∆. The rate κ is interpreted
as the per-unit of time cost of lobbying. If κ is not paid then the project sits idle at some x
until either lobbying is restarted or the never-lobbied projects of its vintage (those assigned
at the same time) catch up to x, at which time the project becomes active again and stays
active without any need of, or benefit from, further lobbying. In every instant, ν “never

17

lobbied” projects are opened, in the order they were assigned. Once a never-lobbied project
is opened, it forever remains active whether or not it is lobbied. The rate ν represents the
input rate that would prevail in the absence of any lobbying by the clients.6 Here At denotes
the mass of all projects active in instant t and it is composed of the two type of projects: all
those that are lobbied in that instant, and some that are not.7

We assume that clients minimize B times the duration of their project, from assignment to
completion, plus κ times the time spent lobbying. B represents the rate of loss experienced
by a client whose project is not completed. We assume no discounting for simplicity. The
problem of a client who has lobbied in the past and is not caught up is given by

Vt (x) = max

½
Vt+∆

µ
x− η

At
∆

¶
− κ∆, Vt+∆ (x)

¾
.

The value function Vt (x) represents the client’s value of being x steps away from completion
at time t. This problem captures the choice between lobbying in interval ∆ at cost κ∆ which
advances the project by ∆

θAt
, or not lobbying and finding oneself at x in time t +∆. Since

no loss is eperienced once the project is complete, we have Vt (0) = 0 for all t. The value
function of a client whose project was assigned at time τ and is caught up at time t is given
by B · (τ +Dτ − t).

Since our goal is to explain why lobbying makes the input rate ν inefficiently large, let’s tie
our hands by stipulating that the input rate of never-lobbied projects ν is “low,” that is,
it belongs to the interval

£
0, η

X

¤
. This choice of baseline ensures that any slowdown in the

output rate cannot be attributed to an excessively large ν.

Projects are indexed by the time τ they are assigned and by an index a that runs across the
set of the α projects assigned at time τ. We now introduce the notion of lobbying strategy
and lobbying equilibrium.

Definition 4 A lobbying strategy for project (a, τ) is a measurable indicator function
Saτ (t) defined on the interval [τ,∞) which takes value 1 if project a is lobbied in instant

6One could be concerned that in equilibrium there might not be enough never-lobbied cases to open, and
that therefore it would be more precise to state that in every instant the judge opens the minimum of ν
never-lobbied cases and the balance of the never lobbied cases. However, we will see that in equilibrium the
balance of never-lobbied cases never falls below ν.

7Under these rules, for a case that has been lobbied in the past, two scenarios are possible in instant t.
First, the case may have been “caught up” by the never-lobbied cases of its own assignement vintage; in
other words, the case was lobbied in the past, but then the lobbying lapsed and the case is now at the same
stage of advancement (same x) as its never-lobbied assignment vintage. Such a case is worked on without
the need for further lobbying and proceeds at speed η/At. The second scenario is that the case has not been
caught up at time t. In this scenario the case is worked on in the interval ∆ and makes η∆/At progress if
κ∆ is spent; otherwise, the case does not proceed.

18

t, and is zero otherwise. A lobbying equilibrium is a set of strategies such that, for each
project (a, τ) , the strategy Saτ (t) minimizes κ times the time spent lobbying plus B times
the project’s duration.

Although strategies are defined for the infinite future, project (a, τ) will be completed at
a certain time; the shape of the strategy after that time is payoff-irrelevant. Equilibrium
strategies could potentially be quite unwieldy, featuring complex patterns of activity inter-
spersed with periods of no lobbying. The next lemma affords some simplification. It suggests
that we should look for equilibria in which clients play just two simple strategies.

Lemma 2 In any lobbying equilibrium in which the number of active projects grows, two
strategies payoff-dominate all others: strategy 1 (·) which denotes immediate and perpetual
lobbying starting from time of assignment, and strategy 0 (·) which denotes never lobbying.

Proof. We prove that any strategy Sτ (·) (typically displaying “intermittent” lobbying) is
dominated either by strategy 0 (·) or by strategy 1 (·). Let us show this next. First, if Sτ (·)
is caught up, then it is dominated by the strategy 0 (·) which achieves the same completion
date at a lower lobbying cost. This is because after a strategy is caught up, it cannot go any
faster than its assignment vintage. Suppose then that Sτ (·) is not caught up.

Denote

χ (t) =

Z t

τ

Sτ (s) ds

where by construction χ (·) is non-decreasing, χ (τ) = 0 and χ (t) ≤ t− τ. The function χ (t)
can be interpreted as a measure representing how much activity has occurred on the project
between τ and t or, equivalently, the state of advancement of the project. When strategy Sτ
is employed, the project’s advancement at time t is given by

xS (t) = X −
Z t

τ

·
xS (r) dr

= X −
Z t

τ

η

Ar
dχ (r) .

Denote by T the time at which the project is done, that is, T is the smallest value that
solves xS (T) = 0. Create a new strategy eS (t) which equals 1 for t ∈ [τ, τ + χ (T)] and 0 for

19

t > τ + χ (T). Then we have

0 = xS (T)

= X −
Z T

τ

η

Ar
dχ (r)

= X −
Z τ+χ(T)

τ

η

Aχ−1(y−τ)
dy

≥ X −
Z τ+χ(T)

τ

η

Ay
dy

= X −
Z τ+χ(T)

τ

η

Ay

eSτ (y) dy = xS (τ + χ (T))

where the third equality reflects a change of variable y = τ+χ (r) , and the inequality follows
because χ (y) ≤ y− τ , hence χ−1 (y − τ) ≥ y and Aχ−1(y−τ) ≥ Ay. The inequality shows that
strategy S is just done at time T , whereas strategy eS is more than done already by time
τ + χ (T) ≤ T . This means that the duration under strategy eS is smaller than that under
strategy S. . Denote by eT ≤ τ + χ (T) the time strategy eS is done. Let us now turn to
lobbying expenditures. Strategy S’s lobbying expenditure is given by κχ (T). Strategy eS’s
lobbying expenditure is given by κ

³eT − τ
´
. Since eT ≤ τ + χ (T) , strategy eS’s lobbying

expenditure is smaller than strategy S’s.

Summing up, we have shown that duration and lobbying expenditure are smaller under
strategy eS than under strategy S. Thus strategy eS dominates S. Notice that, since undereS a project ends at eT ≤ τ + χ (T) , strategy eS is payoff-equivalent to strategy 1 (·) . Thus
strategy S is dominated by strategy 1 (·) .

The intuition behind Lemma 2 is the following. Lobbying “buys advancement” at the speed
of η/At. If it is profitable to lobby at the assignment of the project, then it makes no sense
to have interludes of no lobbying. During those interludes the project does not advance,
but the mass of active projects At keeps growing, making lobbying (once it is restarted) less
productive.

Even taking Lemma 2 into account, lobbying equilibria could potentially be very complex
because of the possibility of non-steady growth equilibria in which the input rate is not
constant through time. Inspired by Lemma 2, we look for a simple class of equilibria in
which a time-invariant fraction z of the α newly assigned projects is never lobbied, and the
remaining fraction (1− z)α is lobbied immediately upon assignment and then continuously
during the entire duration of their trial. We will call these equilibria constant-growth
lobbying equilibria. Note that the definition of constant-growth lobbying equilibrium
does not restrict the strategy space.

20

If players adopt the strategies of a constant-growth lobbying equilibrium, the input rate ν (z)
is determined by z via the identity

ν (z) = ν + (1− z)α.

The percentage of lobbyists (1− z∗) , and hence the input rate ν (z∗) , are determined in
equilibrium. In what follows we show that a constant-growth lobbying equilibrium always
exists, and we characterize it.

Proposition 5 Suppose α > η
X
. Then, for any ν and any cost of lobbying κ,

a) a constant-growth lobbying equilibrium exists;

b) in any constant-growth lobbying equilibrium ν (z∗) > η
X
, i.e., the input rate is inefficiently

high;

c) the constant-growth lobbying equilibrium is unique;

d) the fraction (1− z∗) of projects that are lobbied in equilibrium is increasing in α
ν
and η

X
,

and decreasing in κ
B
;

e) the equilibrium input rate ν (z∗) is decreasing in κ
B
and increasing in α

ν
and η

X
.

Proof. a) We show that there is a time-invariant z such that the value at the time of
assignment of two players who follow the two different equilibrium strategies (lobby and
not) are the same. The lobbyist’s value at the time of assignment for a project assigned at
τ , assuming the project is lobbied from assignment through to completion, is (−κ−B)Cτ

where Cτ is the completion time of a project started at τ. Substituting for Ct from Proposition
1, the value is given by

V Lτ (z) = (−κ−B)

∙
ν (z)

Ω (ν (z) ; η/X)
− 1
¸
τ.

The value of the non-lobbyist at the time of assignment for a project assigned at τ , assuming
that he never lobbies, is computed as follows. First, the fraction of non-lobbyist projects
inputed in each instant is given by ν

ν(z)
, and consequently the output rate is made up of a

fraction ν
ν(z)

of non-lobbyist projects. Thus, a project assigned at τ finds

zατ − ν

ν (z)
Ω (ν (z) ; η/X) τ

non-completed projects in front of it. These projects are completed at rate ν
ν(z)

Ω (ν (z) ; η/X),

21

so it takes "
zα

ν
ν(z)

Ω (ν (z) ; η/X)
− 1
#
τ

before all non-lobbied projects assigned before τ are completed. Therefore the value of a
non-lobbyist at the time of assignment, assuming that he never lobbies in the future, is

V Nτ (z) = −B
"

zα
ν

ν(z)
Ω (ν (z) ; η/X)

− 1
#
τ

In an equilibrium with lobbyists and non-lobbyists, z∗ solves V Lτ (z
∗) = V Nτ (z

∗) , or

(−κ−B)

∙
ν (z∗)

Ω (ν (z∗) ; η/X)
− 1
¸
= −B

∙
α

ν
z∗

ν (z∗)

Ω (ν (z∗) ; η/X)
− 1
¸

(7)

It is important to note that condition is independent of τ . Thus, if a z∗ exists that verifies
equation (7), this z∗ will be time-invariant, consistent with the definition of constant-growth
lobbying equilibrium. We conclude the proof by showing that at least one z∗ exists that
verifies equation (7) and it lies between ν

α
and ν

α
+ 1

α

¡
α− η

X

¢
.

The lowest possible value of z∗ is ν
α
. If z falls below this level, there are not enough non-

lobbyists to fill ν, and then non-lobbied projects get started immediately. Formally, in this
project the expression in brackets on the RHS of (7) is no greater than the brackets on
the LHS, whence V Nτ (z) > V Lτ (z) . So z ≤ ν

α
is not consistent with equilibrium. The

highest possible value of z∗ is that for which ν (z∗) = η/X. At this level the LHS of (7) is
zero, and so V Nτ (z) < V Lτ (z) . Intuitively, if z∗ were any higher, then ν (z∗) < η/X and
then completion times would be zero, and then lobbyists would lobby at zero cost whence
Thus such z cannot be part of the equilibrium. To find an expression for this bound, write
η/X = ν∗ = ν + (1− z)α, and solving for z yields z = ν

α
+ 1

α

¡
α− η

X

¢
.We have shown that

on the lower bound of the interval z ∈
¡
ν
α
, ν
α
+ 1

α

¡
α− η

X

¢¢
we have V Nτ (z) > V Lτ (z) , and

on the upper bound V Nτ (z) < V Lτ (z) . Since the two functions V Nτ (z) and V Lτ (z) are
continuous in z over the interval, they must cross at least once. Any crossing is consistent
with an equilibrium.

b) Suppose not, so that ν∗ ≤ η
X
. Then α > ν∗, and so a project assigned at τ finds a backlog

of (α− ν∗) τ unopened projects in front of it. Since projects are opened at rate ν∗, the time
it takes the last project in the backlog to be opened is

(α− ν∗)

ν∗
τ.

This expression, which we will call the unopened duration, is positive and grows linearly

22

with τ . This time can be eliminated by lobbying from assignment time all the way through
completion, at a total cost that is proportional to completion time. Proposition 3 proves
that when ν∗ ≤ η

X
completion time is stationary, i.e., it is the same for projects opened at

any τ . Therefore, the strict best response of all projects assigned after a certain bτ is to lobby
all the way through completion time, in order to eliminate the unopened duration which
exceeds lobbying costs. But then for every t > bτ not lobbying cannot be equally profitable
as lobbying. Therefore we have shown that if ν∗ ≤ η

X
, a positive mass cannot be not lobbying

after bτ . Yet the construction requires that in any instant α − ν∗ projects are not lobbied,
and this mass is positive because by assumption α > η

X
≥ ν∗. Contradiction.

c) The equilibrium z∗ solves (7), which can be rearranged as

κ+B

B

∙
ν (z)

Ω (ν (z) ; η/X)
− 1
¸
=

∙
α

ν
z

ν (z)

Ω (ν (z) ; η/X)
− 1
¸

and rewritten as ∙
κ+B

B
− α

ν
z

¸
ν (z)

Ω (ν (z) ; η/X)
=

∙
κ+B

B
− 1
¸
. (8)

The LHS in (8) is the product of two positive and decreasing functions of z, and therefore it
is decreasing in z. The RHS does not depend on z. Therefore equation (8) admits a unique
solution z∗.

d) Rewrite slightly (8) as

H

µ
z;

κ

B
,
α

ν

¶
=

∙
κ

B
+ 1− α

ν
z

¸
ν (z)

Ω (ν (z) ; η/X)
=

κ

B
. (9)

The functionH
³
z; κ

B
, α
ν

´
is decreasing in α

ν
and η

X
, so increasing α

ν
or η

X
results in a downward

shift of the function. Since the function is decreasing in z, shifting the function downward
results in a shift to the left of the intersection point between the function and the constant
line κ

B
. Thus z∗ is decreasing in α

ν
and η

X
.

The function H
³
z; κ

B
, α
ν

´
is increasing in κ

B
, and increasing κ

B
by δ results in an upward shift

of δ ν(z)
Ω(ν(z);η/X)

> 1 in the function. So increasing κ
B
results in the function shifting upward

by more than κ
B
. So, start from a given κ

B
and focus on the resulting equilibrium z∗, which

is the z at which the function H attains height κ
B
. Then increase κ

B
. At z∗, the function H

moves up by more than κ
B
. This means that z∗ is to the left of the new equilibrium. Thus

z∗ is increasing in κ
B
.

e) Follows directly from d) and the definition ν (z) = ν + (1− z)α.

Part b) of the proposition establishes a strong presumption of inefficiently large input rates in

23

our lobbying environment. The intuition is clear: if input rates were efficient, say ν < η/X,

then completion time would be zero. This means that the cost of lobbying would be zero
and, also, that a project which is lobbied would be completed instantaneously. Therefore
lobbying is a dominant strategy, which would give rise to an input rate ν = α > η/X. Thus
an equilibrium input rate ν cannot be smaller than η/X.

Part e) of the proposition also points to κ as a plausible source of heterogeneity in input
rates across workers. If a worker is less susceptible to lobbying, which we can model as κ
being larger, then the proposition indicates that the worker will have a smaller input rate
and a larger output rate. Moreover, the proposition shows that there is more lobbying when
the assignment rate is larger, which is intuitive because then the time spent waiting for a
project to be opened becomes larger. Finally, harder working workers and easier projects
will give rise to more lobbying. Intuitively, this is because then the completion time gets
shorter relative to the duration of a non-lobbied project.

A few words of comment on the causes of inefficiency. The source of a slowdown in output is
that, if an additional project is lobbied, that project does not replace other projects; rather,
it adds to them increasing At. In this respect, our model is analogous to models of common
resource extraction (“common pool” models) where utilizers cannot be excluded from the
pool. We think it is natural that a worker who is lobbied on one additional project may not
have the power (or the inclination) to commit to exclude (“bump”) one other project: for
one thing, bumped projects are treated worse, at least ex post; moreover, bumped projects
would often have to be projects which are lobbied themselves.8 For both these reasons, the
worker may be reluctant to bump projects. 9

Finally we turn to the case in which η, rather than being exogenous, is chosen by the worker.
Suppose η is determined as the solution to the problem

max
η

Ω
³
ν (z∗) ;

η

X

´
− c (η) . (10)

According to this formulation, the worker chooses η by trading off the output rate (increasing
in η) against a cost of effort c (η). Note that since z∗ is taken as given in problem (10), the
worker does not behave as a Stackelberg leader. This assumption reflects the idea that
the worker cannot commit to maintain a given level of effort regardless of lobbying. We

8To see this, consider the extreme case when when ν = 0; in this case, the only cases that could possibly
be bumped would be another lobbied case.

9If the judge has the ability to bump cases in response to lobbying then, just as in common pool problems,
there need not be an inefficiency. One could imagine non-bumping models in which the judge auctions off a
limited number of “undivided units of attention” to the highest bidders, thus keeping At fixed.The rationing
would take place through a “price” κ which would clear the lobbying market. In such a model there would be
greater expenditure on lobbying, but ν would not necessarily be pushed to inefficiently high levels. Therefore
lobbying would not necessarily generate inefficiency.

24

now augment the notion of a lobbying equilibrium by allowing the worker’s effort η∗ to be
determined endogenously.

Definition 5 A lobbying equilibrium with endogenous effort is a lobbying equilibrium
in which effort η∗ solves (10).

To ensure that the equilibrium effort level is greater than zero and smaller than αX we
assume c0 (0) = 0, and c0 (αX) =∞.

Proposition 6 Consider a lobbying equilibrium with endogenous effort. If κ increases, then
the input rate decreases and the worker’s effort increases.

Proof. Suppose by contradiction that, as κ increases to bκ, we have bz < z∗. Then by
definition we have ν (bz) > ν (z∗). Since by Proposition 4 c) ∂Ω(ν;η/X)

∂ν∂η
< 0, it follows from

problem (10) that bη < η∗. Then Ω (ν (bz) ; bη/X) < Ω (ν (z∗) ; η∗/X) , and then the entire LHS
of equation (9) becomes larger. Since the RHS stays unchanged, equation (9) can no longer
be satisfied, and so we do not have an equilibrium. Therefore it must be that as κ increases
to bκ, the input rate decreases. It then follows from problem (10) that the worker’s effort
increases.

This proposition highlights another dimension of inefficiency associated with lobbying. Not
only does lobbying slow down projects, but it also induces the worker to slack off.

7 Input Rate Determined By Maximization of an Ob-
jective Function

In most of the paper we assume that, insofar as the worker has an objective function, it is
to maximize the output rate. We also implicitly assume that this is the unique social goal.
Under this assumption the (socially and privately) optimal input rate is, by Proposition 4
a), the lowest possible, namely η/X. In this section we explore a different hypothesis: that
some private or social value may be generated when projects clear intermediate goals. So,
we consider the possibility that value may accrue when a project is merely being opened, or
when it gets half-done, etc. One example is a judge who may issue preliminary injunctions
early on in the trial, which might increase social welfare.

When weight is placed on clearing intermediate goals, the optimal input rate need no longer
equal η/X. To see this, consider an extreme case in which value is generated only when a

25

project is opened (e.g., completion does not matter); in this case, the optimal input rate is
the largest possible, ν = α. This observation suggests that the framework developed in this
section can provide a meaningful theory of the size of the input rate.

In what follows we assume that effort is fixed. We also assume “equal treatment” in the
sense that all open projects proceed at the same speed according to equation (2). Equal
treatment can be justified on regulatory grounds–it may not be legal to treat open projects
disparately by focusing on some and leaving others behind. It may also be that projects are
unobservably heterogeneous, and the worker does not know ex ante which projects benefit
from clearing which intermediate goal. For example, a judge may not know at which point,
if any, a case might settle. That said, the equal treatment assumption has bite here, and it
will be discussed in the next section.

The first goal is to specify the (private or social) objective function. To this end, some
preliminaries need to be introduced.

Definition 6 (rate of clearing intermediate goals) Denote by ωt (x) the rate at which,
at each instant t, projects clear a given x ∈ [0,X] .

For example, ωt (X/2) denotes the rate at which projects clear the X/2 mark, that is, the
rate at which projects become half done. In this notation, the output rate ωt corresponds
to ωt (0) . We allow for weight to be placed on any number of these “intermediate rates” by
postulating the following objective function:Z ∞

0

e−ρt
∙Z X

0

u (ωt (x)) P (dx)

¸
dt. (P)

Here ρ represents a (social or private) discount factor. The function u is increasing and
its curvature measures the degree to which low clearing rates are penalized in the objective
function. P (x) is a probability measure that specifies the weight placed on intermediate
step x, so for example if one third of the value is created when projects clear the X/2 mark
then P (X/2) = 1/3. A slightly different interpretation of P (X/2) = 1/3 is that for half the
projects two thirds of the value is created by clearing the X/2 mark, and for the other half
no value is created. In this latter interpretation projects are heterogeneous with respect to
when value is created.

Considerable simplification could be achieved in (P) if we knew that ωt (x) was stationary,
i.e., time independent. Fortunately the next lemma ensures that is so along a constant growth
path, and in addition it offers a convenient expression for ωt (x) as a geometric combination
of ν and ω with weight x/X.

26

Lemma 3 Along a constant growth path, ωt (x) = ν
x
X ·ω1− x

X . Thus, along a constant growth
path ωt (x) is stationary and is denoted by ω (x) .

Proof. The mass of projects that clear x between t and t+∆ is approximately equal toZ x+η∆
At

x

ϕt (s) ds ≈ ϕt (x)
η∆

At
,

and the rate ωt (x) obtains dividing by ∆ and letting ∆→ 0. Formally,

ωt (x) =
η

At
ϕt (x) .

We have

ωt (x) =
ηϕt (x)

At
=

ηϕt (0)

At
e
(ν−ω)
η

x = ωe
(ν−ω)
η

x, (11)

where the second equality holds along a constant growth path. Now,

(ν − ω)

η
x =

x

X

(ν − ω)

η
X =

x

X
log

ν

ω
,

where the last equality follows from equation (5) which must hold along a constant growth
path. Taking exponentials on both sides and substituting into (11) yields

ωt (x) = ω
³ν
ω

´ x
X
,

which is equivalent to the expression in the lemma.

In light of this lemma, the inner integral in problem (P) is stationary and so, along a constant
growth path, (P) simplifies to

1

ρ

Z X

0

u (ω (x)) P (dx) .

If, moreover, we assume u (·) = log (·) , then (P) equals

1

ρ

Z X

0

log
³
ν

x
X ω(1−

x
X)
´

P (dx)

=
1

ρ

∙
log (ω) +

E (P)
X

log
³ν
ω

´¸
=
1

ρ
log (ω (E (P))) . (P’)

27

where E (P) =
R X
0
x P (dx) denotes the expected value of the c.d.f. P. Expression (P’) shows

that, despite the fact that the measure P may place weight on clearing a great number of
intermediate goals, when u (·) = log (·) the worker’s problem can always be reduced to caring
about clearing a single “average” goal E (P). This is a considerable analytical advantage.

The next proposition contains the main result of this section. It shows that, the more we care
about clearing early intermediate goals, the higher the optimal input rate ν. Thus we have
the basis for a theory optimally chosen input rates that might account for rates exceeding
η/X.

Proposition 7 Suppose the pair (ν, ω) is part of a constant growth path given η/X. If ν
is chosen to maximize (P’) then ν is strictly increasing in E (P) , and the associated ω is
therefore strictly decreasing in E (P) .

Proof. Along a constant growth path (P’) is proportional to

U
³
ν; eP´ = log (Ω (ν; η/X)) + E (P)

X
log

µ
ν

Ω (ν; η/X)

¶
We know from Proposition 4 (a) that log

³
ν

Ω(ν;η/X)

´
is strictly increasing in ν. It follows that,

if E
³ eP´ > E (P) , then the expression

U
³
ν; eP´− U (ν;P)

is an increasing function of ν. Then for any pair ν < ν 0 we have

U
³
ν; eP´− U (ν;P) < U

³
ν 0; eP´− U (ν 0;P) .

Rearranging yields

U
³
ν 0; eP´− U

³
ν; eP´ > U (ν 0;P)− U (ν;P) .

Now set ν 0 = ν∗ = sup {argmaxU (ν;P)} . Then the right-hand side is no smaller than zero,
which implies that U

³
ν∗; eP´ > U

³
ν; eP´ for any ν < ν∗. This shows that the maximizer(s)

of U
³
·; eP´ must be at least as large as ν∗. To finish the proof we need to show that the

maximizer(s) of U
³
·; eP´ are in fact strictly larger than ν∗. The fact that the function Ω (ν)

is differentiable in ν guarantees that ∂U (ν;P) /∂ν is zero at ν∗. But then ∂U
³
ν; eP´ /∂ν

28

cannot be zero at ν∗ (recall that U
³
ν; eP´− U (ν;P) is a strictly increasing function of ν).

Therefore the maximizer(s) of U
³
·; eP´ cannot include ν∗ and thus they must be strictly

larger than ν∗.

This result makes intuitive sense if we think about polar cases. If E (P) assumes the largest
possible value, namely X, then the worker only cares about the rate at which projects are
opened. In this case, it makes sense for the worker to chose the largest ν possible because the
negative consequences on the completion rate are irrelevant. Conversely, if E (P) assumes
the smallest possible value, namely 0, then the worker only cares about the rate at which
projects are completed. In this case, it makes sense for the worker to chose the smallest ν,
that is, η/X.

The previous analysis is predicated on equal treatment of all open projects, and we have
mentioned earlier some reasons why the equal treatment assumption makes sense in some
circumstances. If, however, it is possible to treat projects disparately then it may be optimal
to do so. This is the subject of the next section.

8 Variable-Speed Work Strategies

Until now we have assumed that all projects receive the same fraction of the worker’s atten-
tion and all proceed at the same speed, irrespective of how close they are to being done. In
this section we relax this assumption and consider work strategies that allow the worker to
focus more effort on just-arrived projects, or almost-done projects, etc. Such strategies can
dominate equal treatment strategies when, as in problem (P) in Section 7, we care about
clearing intermediate goals.

To see why, consider a situation in which all projects are identical, and value is realized only
when projects are opened and/or completed. In our notation, P (0) + P (X) = 1. If it is
possible to move projects along at different rates, then the optimal strategy is the following:
all assigned projects are opened immediately, thus setting the input rate equal to α; but, as
soon as projects clear X, they are placed in a queue from which projects are retrieved at
rate η/X. As soon as a project is retrieved,it is worked on continuously until its completion.
This “stop and go” strategy achieves an average value of αP (X) + η

X
P (0) . Since α ≥ ν

and η
X
≥ Ω (ν; η/X) , this average value is larger than νP (X) + Ω (ν; η/X)P (0) , which

is the average rate that can be achieved with an input rate of ν and equal treatment of
projects. This simple example shows that if it is valuable to clear intermediate goals then a
completeness-dependent work strategy can dominate an equal-treatment one.

We now define a strategy where effort can be tailored according to a project’s level of

29

completion, and moreover the worker is allowed to keep some partially-completed projects
in a queue.

Definition 7 Consider a partition of [0,X] with generic element Ii = (xi−1, xi) , where we
posit x0 = 0, xi < xi+1, and xN = X. A variable-speed work strategy is a vector of pairs
(ηi, νi)

N
i=1 such that

(a)
P

i ηi = η, and

(b) νi ≤ Ω
³
νi+1; ηi+1

1
xi+1−xi

´
.

The interpretation is as follows. Ii is an interval of completion levels, ηi the effort devoted
to projects whose level of completion at any point in time belongs to Ii, and νi is the rate
at which projects are allowed to transit into Ii. The worker is allowed to distribute his
total effort η in any way he chooses across these intervals, which means that he is allowed
to focus on projects with different completion levels. Moreover, the worker is allowed to
tailor the input rate νi for Ii, that is, the worker chooses how fast to feed into Ii projects
coming out of Ii+1. Once ηi+1 and νi+1 are set, the output rate out of interval Ii+1 is given

by Ω
³
νi+1; ηi+1

1
xi+1−xi

´
. Obviously, the worker cannot feed projects into Ii any faster than

they come out of Ii+1; this accounts for the inequality in part (b) of Definition 7. When
strict inequality holds, the worker is slowing down projects coming out of interval Ii+1 and
putting them in a queue of projects waiting to enter interval Ii.

Definition 8 An equal treatment work strategy is one in which νi = Ω
³
νi+1; ηi+1

1
xi+1−xi

´
for all i.

The strategies considered in the previous sections are in fact equal treatment strategies. To
see this, observe that in a strategy where all projects move to the right at the same rate
η 1
At
we can fix any x and think of projects that cross x (moving from right to the left) as

projects that have just outputed “completion level below x” and are just being inputed into
“completion rate higher than x.” Obviously, these two artificial output and input rates are
the same.

Proposition 8 (a) For any variable-speed work strategy, there is an equal treatment strategy
that yields the same output rate and requires (weakly) less effort.

(b) Consider the profile of intermediate output rates ω (x) generated by an equal treatment
strategy with effort η. The sequence of variable-speed work strategies which in the limit yields
the same profile requires the same amount of effort η in the limit.

30

(c) Fix η and ν, and let ω be the output rate along the associated constant growth path.
Suppose we want to maximize (P) with u (·) = log (·) and intermediate outputs being valued
according to P (dx) = ω (x) dx. Then equal treatment strategies do just as well as variable-
speed work strategies.

Proof. (a) Suppose there is an j > 0 such that

νj < Ω

µ
νj+1; ηj+1

1

xj+1 − xj

¶
. (12)

Then we can decrease ηj+1 slightly without changing any other element of (ηi, νi)
N
i=1 and

obtain a new completion-dependent strategy which requires less effort than the original one,
and which has the same output since νj and all the other variables with index j or lower
are unaffected. Moreover, the new strategy satisfies part (b) of Definition 7 for all j if the
decrease in ηj+1 is small enough. Continue this process until (12) binds for all j, and an
equal treatment strategy is obtained with the desired property.

(b) Fix η and ν in an equal treatment strategy, and let ω be the associated completion rate
along the constant growth path. These ν and ω generate an entire profile ω (x) according
to Lemma 3. We turn now to the variable-speed strategy which is going to approximate
the profile ω (x) . For each N consider the partition

¡
0, X

N
, 2X
N
..., X

¢
. The cheapest way to

generate a given output rate ω out of an interval of size X
N
is to have input rate ω and effort

X
N
ω. So the cheapest way to generate intermediate output rates

¡
ω, ω

¡
X
N

¢
, ω
¡
2X
N

¢
..., ν

¢
is

with a variable-speed strategy (ηi, νi)
N
i=0 =

¡
X
N
ω
¡
i
N
X
¢
, ω
¡
i
N
X
¢¢N

i=0
. The effort required by

this strategy is

η =
NX
i=0

ηi =
NX
i=0

X

N
ω

µ
i

N
X

¶
.

Taking the limit as N →∞, this effort converges toZ X

0

ω (x) dx =

Z X

0

ν
x
X · ω1− x

X dx

= ω

Z X

0

³ν
ω

´ x
X

dx

where the first equality follows from Lemma 3. Performing the change of variable y = x/X

31

yields

η = ω

Z 1

0

³ν
ω

´y
X dy

=
ωX

log
¡
ν
ω

¢ ³ν
ω

´y ¯̄̄1
y=0

=
ωX

log
¡
ν
ω

¢ ³ν
ω
− 1
´
.

Rearranging yields (ν − ω) X
η
= log (ν)− log (ω) , which is exactly equation (5). So the effort

required by the limit of the sequence of cheapest variable-speed strategies is the same effort
that generates ω in the equal-treatment strategy.

c) For each N consider the partition
¡
0, X

N
, 2X
N
..., X

¢
and the associated variable-speed strat-

egy (ηi, νi)
N
i=0 . Given this strategy space, the maximization of problem (P) reads

max
(ηi,νi)

N
i=0

X
i

Z (i+1)X
N

iX
N

log

Ã
[νi]

x
X ·
∙
Ω

µ
νi,

N

X
ηi

¶¸1− x
X

!
P (dx)

s.t. νi ≤ Ω (νi+1, Nηi+1) for all i,X
i

ηi = η.

Since N
X
ηi ≤ νi, the objective function is smaller than

max
(ηi,νi)

N
i=0

X
i

Z (i+1)X
N

iX
N

log

Ã
[νi]

x
X ·
∙
Ω

µ
N

X
ηi,

N

X
ηi

¶¸1− x
X

!
P (dx) .

and also the constraint is more restrictive than

νi ≤ Ω

µ
N

X
ηi+1,

N

X
ηi+1

¶
for all i.

We therefore define the relaxed problem as

max
(ηi,νi)

N
i=0

X
i

Z (i+1)X
N

iX
N

log

Ã
[νi]

x
X ·
∙
Ω

µ
N

X
ηi,

N

X
ηi

¶¸1− x
X

!
P (dx) .

s.t. νi ≤ Ω

µ
N

X
ηi+1,

N

X
ηi+1

¶
for all i.X

i

ηi = η.

32

In the solution to the relaxed problem the constraints on each νi bind and so the relaxed
problem reads

max
(ηi)

N
i=0

X
i

Z (i+1)X
N

iX
N

log

Ã∙
Ω

µ
N

X
ηi+1,

N

X
ηi+1

¶¸ x
X

·
∙
Ω

µ
N

X
ηi,

N

X
ηi

¶¸1− x
X

!
P (dx)

s.t.
X
i

ηi = η.

Substituting for Ω (y, y) = y, the relaxed problem reads

max
(ηi)

N
i=0

X
i

Z (i+1)X
N

iX
N

∙
x

X
log

µ
N

X
ηi+1

¶
+
³
1− x

X

´
log

µ
N

X
ηi

¶¸
P (dx)

= max
(ηi)

N
i=0

X
i

"
log

µ
N

X
ηi+1

¶Z (i+1)X
N

iX
N

x

X
P (dx) + log

µ
N

X
ηi

¶Z (i+1)X
N

iX
N

³
1− x

X

´
P (dx)

#
,

subject to the effort constraint. Define

P i =

Z (i+1)X
N

iX
N

x

X
P (dx) +

Z (i+1)X
N

iX
N

³
1− x

X

´
P (dx)

We can rewrite the relaxed problem as

max
(ηi)

N
i=0

X
i

P i log

µ
N

X
ηi

¶
s.t.

X
i

ηi = η.

This is a concave problem so the solution is identified from the first order conditions of the
associated Lagrangean. At the optimum these conditions imply that P i

1
η∗i
is the same for all

i. Since η∗i converges to zero as N → ∞, it is convenient to write the first order conditions
as

P i
1

N
X
η∗i
= const for all i.

As N →∞, P i converges to P (xi). Moreover, since N
X
η∗i = Ω

¡
N
X
η∗i ,

N
X
η∗i
¢
, N
X
η∗i is also equal

to an intermediate output rate, which as N → ∞ converges to the intermediate output
rate ω∗ (xi) in the relaxed problem. Therefore, in the solution to the relaxed problem the
intermediate output rate the first order conditions imply

ω∗ (xi) = const · P (xi) = const · ω (xi) ,

33

where the last equality follows by definition of P (·) . This means that in the solution to the
relaxed problem, the profile of intermediate output rates is proportional to that associated
by an equal treatment strategy with effort η. The budget constraint then ensures that the
constant is equal to 1, and thus that the solution to the relaxed problem is in fact an equal
treatment strategy with effort η. Since this strategy is obviously feasible in the original
problem, the proof is done.

Part (a) of this proposition shows that any output rate that can be achieved by a variable-
speed strategy can also be achieved, more cheaply, by an equal treatment strategy. In this
sense, there is no better strategy than an equal treatment strategy.10 This result justifies the
focus on equal treatment strategies if we only care about output rates. Because this result
holds only if we care exclusively about output rates, it does not apply to the setup of Section
7. That is to say, part (a) of this proposition applies in a world in which equal treatment
functions with ν > ω are necessarily suboptimal.

Parts (b) and (c) rehabilitate equal treatment strategies when ν > ω. In part (b), for
any pair (ν, η/X) these strategies are shown to be the most efficient way to get the profile
of intermediate outputs they generate. So, to the extent that we deem these strategies
“inefficient” when ν > η/X, it is only because we are evaluating their profile of intermediate
outputs according to a criterion that they do not meet (perhaps because we only value final
output). But if we wish to generate the intermediate output profile they generate, there
is no other strategy that attains it for cheaper. In part (c) we show that equal treatment
strategies with ν > ω can be optimal within the class of variable-speed strategies, by reverse-
engineering the parameters that ensure that the variable-speed strategy that maximizes (P)
is in fact an equal treatment strategy.

9 Incentives and Multitasking

In this section we set aside the question of the inefficiencies associated with too large an input
rate, to focus on a different question: how to properly incentivize the worker in a setting
where the worker can strategically direct his effort to different types of projects. We compare
the incentive effects of two measures of aggregate productivity: the aggregate output rate,
and the average duration of assigned projects. We find that rewarding the aggregate output
rate leads to multitasking problems (in the sense of Holmstrom and Milgrom 1991) where
the worker totally focuses his effort on the projects requiring the fewest steps and totally
neglects to work on the other projects. In contrast, penalizing large average durations leads

10However, equal treatment strategies are not necessarily optimal if the objective is not only to increase
the output rate, but also to clear intermediate goals. This point will be addressed at the end of Section 7.

34

to a more “Rawlsian” behavior whereby the worker focuses more effort on projects requiring
more steps.

The model is as follows. In each instant, the worker is assigned α1 projects that will take X1

tasks to complete, α2 projects that will take X2 tasks to complete, . . . , up to αN projects
that will take XN tasks to complete. Without loss of generality we set Xi < Xi+1. In this
setup the vector {αi,Xi}i fully describes how many projects are assigned of which length.
The worker chooses the rate νi at which to open projects of type i, and the effort ηi to devote
to each type of project.

A worker who is rewarded based on aggregate output maximizesZ ∞

0

e−ρt

"
w

NX
i=1

ωi − c

Ã
NX
i=1

ηi

!#
dt, (13)

where ρ represents the worker’s discount factor, w is a parameter that captures the magnitude
of the incentives, ωi is the output rate of projects of type i, c (·) is a convex cost of effort,
and

PN
j=1 ηj represents the total effort exerted by the worker. A worker who is penalized

linearly based on the average duration of his projects maximizesZ ∞

0

e−ρt

"
−w

NX
i=1

αiDit − c

Ã
NX
i=1

ηi

!#
dt, (14)

where Dit represents the duration of a project of type i assigned at t.

Why do we focus on the incentive schemes (13) and (14) which are based on aggregate
outcomes, when in fact we are interested in disaggregate outcomes? The most natural
interpretation is that the principal designing the incentive scheme is less informed than the
worker, and cannot tell the number of steps Xi required to complete a project. This makes
sense if we think of Xi as a measure of the complexity of a project, and of the worker as an
expert vis a vis the non-expert principal.

Proposition 9 (a) A worker who is rewarded based on aggregate output rates will immedi-
ately open all assigned projects requiring fewer than X steps to complete and immediately
complete them. All projects requiring more than X steps are never worked on.

(b) A worker who is penalized linearly based on the average duration of his projects will
put positive effort on all projects, even those that take many steps to complete. Moreover,
(αj)

2Xj > (αi)
2Xi implies that either η∗j > η∗i or else η∗j = αjXj. In other words, ceteris

paribus the worker will work more on projects requiring more steps to complete, and on those
assigned at a higher rate.

35

Proof. (a) The square bracket in the integral of (13) is time-invariant, so it can be factored
out of the integral. Then maximizing (13) is equivalent to solving

max
{νi,ηi}

w
NX
i=1

[Ω (νi; ηi/Xi)] − c

Ã
NX
j=1

ηj

!
,

Fix any constellation of (η1, ..., ηN) (not necessarily optimal). Given that constellation, the
worker will optimally chose the input rate νi =

ηi
Xi
, because this choice achives the maximal

feasible output rate given ηi which is Ω (ηi/Xi; ηi/Xi) =
ηi
Xi
We can therefore rewrite the

worker’s problem as

max
ηi

w
NX
i=1

ηi
Xi
− c

Ã
NX
j=1

ηj

!
.

The maximand is concave and so the first order conditions identify a maximum. They read

w

Xi
− c0

Ã
NX
j=1

η∗j

!
≤ 0 for all i such that η∗i = 0,

w

Xk
− c0

Ã
NX
j=1

η∗j

!
= 0 for the unique k such that η∗k ∈ (0, αkXk) , and

w

Xi
− c0

Ã
NX
j=1

η∗j

!
≥ 0 for all i such that η∗i = αiXi.

These conditions imply that the worker will set ηi at its maximum on projects with the
lowest Xi. All other projects are ignored.

(b) Substitute from Proposition 1 into (14) to getZ ∞

0

e−ρt

"
−w

NX
i=1

αi

µ
αi

Ω (νi; ηi/Xi)
− 1
¶
t− c

Ã
NX
i=1

ηi

!#
dt

= −w

ρ2

NX
i=1

αi

µ
αi

Ω (νi; ηi/Xi)
− 1
¶
− 1

ρ
c

Ã
NX
i=1

ηi

!
,

where we have used the identities
R∞
0

e−ρtt dt = −1
ρ

³
t+ 1

ρ

´
e−ρt

¯̄̄∞
0
= 1/ρ2 and

R∞
0

e−ρt dt =

1/ρ. Like in part (a), the worker will optimally chose the input rate νi =
ηi
Xi
, so the maxi-

36

mization problem simplifies to

max
{ηi}
−w

ρ2

NX
i=1

αi

µ
αiXi

ηi
− 1
¶
− 1

ρ
c

Ã
NX
i=1

ηi

!
.

The maximand is concave in each ηi and so the first order conditions identify an interior
maximum. They read

w

ρ
(αi)

2Xi

∙
1

η∗i

¸2
− c0

Ã
NX
j=1

η∗j

!
≤ 0 for all i such that η∗i = 0,

w

ρ
(αk)

2Xk

∙
1

η∗k

¸2
− c0

Ã
NX
j=1

η∗j

!
= 0 for all k such that η∗k ∈ (0, αkXk) , and

w

ρ
(αi)

2Xi

∙
1

η∗i

¸2
− c0

Ã
NX
j=1

η∗j

!
≥ 0 for all i such that η∗i = αiXi.

From these conditions we see that the project η∗i = 0 is not possible for any i. Then, either
η∗i = αiXi for all i, or else there is an i such that η∗i is interior, that is, η

∗
i < αiXi. If η∗i is

interior then for all j such that (αj)
2Xj > (αi)

2Xi we have

c0

Ã
NX
j=1

η∗j

!
=

w

ρ
(αi)

2Xi

∙
1

η∗i

¸2
<

w

ρ
(αj)

2Xj

∙
1

η∗i

¸2
≤ w

ρ
(αj)

2Xj

∙
1

η∗j

¸2
,

where the last inequality holds only for η∗j ≤ η∗i . Thus if η
∗
j ≤ η∗i then derivative of the

objective function with respect to ηj is positive at η∗j . By the first order conditions this
means η∗j = αjXj. Summing up, we have shown that if (αj)

2Xj > (αi)
2Xi then either

η∗j > η∗i or else η
∗
j = αjXj.

10 Extensions

In this section we consider several important extension to the main model.

37

10.1 Heterogeneous, Equally Treated Cases

Until now we have assumed that all projects take the same number of tasks X to complete.
Let us now consider the situation in which projects are heterogeneous in the number of
tasks they take to complete. We still assume “equal treatment,” however, in the sense that
once opened, all projects proceed at the same speed according to equation (2). Such equal
treatment will arise if, for example, the worker cannot distinguish which projects take fewer
tasks to complete, as may be the case for legal cases that settle unexpectedly during trial.
Another reason why equal treatment may prevail is that disparate treatment of projects may
not be legal.

Consider then two projects which are opened at the same time: project 1 taking X1 tasks
to complete, and project 2 taking X2. If X1 < X2, then we should expect the output rate of
projects of type 1 to be larger, relative to their input rate, compared to projects of type 2.
To get some intuition for this statement, imagine that type 1 projects take so few tasks to
complete that X1 ≈ 0. Then ω1 ≈ ν1, and thus the ratio of input to output rates approaches
its theoretical maximum. In this section we provide exact formulas that characterize how
the input/output ratio varies across projects with different X’s.

The model is as follows. Fix the worker’s effort level at η. In each instant, the worker
opens ν1 projects that will take X1 tasks to complete, ν2 projects that will take X2 tasks
to complete, . . . , up to νN projects that will take XN tasks to complete. We allow the
possibility that N =∞, in which case the set of different types of projects is countable.11 In
this setup the vector {νi, Xi}i fully describes how many projects are opened of which length.
For every open project, in the time interval between t and t+∆, the worker’s work shaves
off approximately

η

At
∆,

where At represents the mass of all projects open at time t.

The next proposition provides an exact characterization of the output rates as a function of
the input rates and of the characteristics of the project.

Proposition 10 Fix η and a constellation of {νi,Xi}i . If η <
PN

i=1 νiXi then completion
time is positive for all projects, and there exists a constant K < 1 such that ωi = νi ·KXi

for all i.

If η >
PN

i=1 νiXi completion time is zero for all projects and νi
ωi
= 1 for all i.

11The analysis in this section generalizes immediately to the case in which the set of possible types of cases
has the power of the continuum.

38

Proof. Think of the worker as grouping projects by type, and working on each group of
projects separately. Accordingly, we denote by ηit the (still to be computed) amount of
effort allocated to Ait, the mass of projects of type i at time t. By definition,

P
i ηit = η

and
P

iAit = At. In order for this representation to be valid, the ηit’s must be such that all
groups of projects move at the same speed, so for all i, j we must have

ηit
Ait

∆ =
ηjt
Ajt

∆. (15)

We conjecture, and later verify, that there exists a unique set of time-invariant {ηit}i = {ηi}i
that solves this equation. In this case each group of projects follows a constant growth path,
and so from Proposition 1 we have Ait = (νi − ωi) t. Substituting into equation (15) yields

ηi
(νi − ωi)

=
ηj

(νj − ωj)
. (16)

For all i, νi and ωi are linked by expression (5) and so we may replace ωi with Ω (νi; ηi/Xi) .

Since Ω (ν; η/X) is increasing in η, the left- and right-hand sides of equation (16) are in-
creasing in ηi and ηj respectively. This fact implies that there exists a unique set {ηi}Ni=1
which solves equation (16) and simultaneously meets the constraint

P
i ηit = η. This verifies

that our conjecture was correct.

Now, recall that expression (5) reads

(νi − ωi)
Xi

ηi
= log

µ
νi
ωi

¶
.

Substituting into (16) yields

log
³
νi
ωi

´
Xi

=
log
³
νj
ωj

´
Xj

,

or equivalently µ
νi
ωi

¶Xj

=

µ
νj
ωj

¶Xi

. (17)

Thus, if Xi < Xj then νi
ωi

<
νj
ωj
.Moreover, equation (17) is verified we replace ωi with νi ·KXi ,

and do the same for ωj. This means that, given η and a constellation of {νi,Xi}i, there exists
a constant K such that for all i

ωi = νi ·KXi .

The constant K cannot exceed 1 for otherwise ωi > νi for all i. The constant equals 1 only
if completion time is zero, which requires η ≥

PN
i=1 νiXi. Otherwise, K < 1.

This proposition informs us about the relative magnitudes of νi
ωi
and νj

ωj
, the input/output

39

ratios. According to the proposition, Xi < Xj implies νi
ωi

<
νj
ωj
, that is, projects that take

more tasks to complete have a worse input/output rate ratio. Note that the constant K in
the proposition is an unspecified function of effort and of the entire vector {νi,Xi} . Therefore
Proposition 10 should not be construed as informing us about the level of any particular ωi.

10.2 Forgetful Worker and “Sleeping On It”

In this section we deal with the case in which, as completion time grows and any open project
is worked on less and less frequently per unit of time, the worker progressively forgets about
the details of each individual project. Thus, upon taking up a project again, the worker
needs additional effort to “remind himself” of where he left off before he can make progress.
We also deal with the opposite case, that in which there is a gain from “sleeping on” projects,
that is, letting time elapse between the completion of two consecutive tasks. Perhaps this
second effect is most present in “creative” jobs.

We introduce both considerations by assuming that in the time interval between t and t+∆,
the worker’s effort shaves off approximately η

At+Ft
∆ steps from each active project. The factor

Ft may be positive or negative; if positive, it captures a “forgetfulness penalty,” if negative,
the gain from “sleeping on” a project. We assume that Ft becomes larger in absolute value
with time; its exact form of will be specified later. The presence of forgetfulness or “sleeping
on it” requires amending equations (2) and (3) from Section 2. The two amended equations
read

∂ϕt (x)

∂t
− ∂ϕt (x)

∂x

η

At + Ft
= 0. (18)

and
ωt =

η

At + Ft
ϕt (0) . (19)

For these conditions to be well-defined it will be necessary to ensure that At + Ft > 0.
Equations (1) and (4) remain unchanged.

Definition 9 The quadruple [ν, ϕt (x) , At, ω] is a constant growth path with forgetful
worker (or with “sleeping on it”) if conditions (1), (4), (18) and (19) are verified.

Now we specify Ft. We assume that both the “forgetfulness penalty” and the “sleeping on
it” factor are proportional to the completion time Ct of a case opened at t. This specification
makes sense because completion time Ct proxies for the interval that elapses between two
“consecutive steps” of a project. If that interval is long, then a lot is forgotten by the time
the worker gets around to making each consecutive step, and so before he can make progress
the worker will have to work harder just to remember where he left off the previous time.

40

The converse interpretation holds for the “sleeping on it” effect. Note that, by making Ft

proportional to Ct, we have made Ft endogenous.

Formally, we assume

Ft = f · Ct

= f
ν − ω

ω
t = F · t.

where by definition F = f ν−ω
ω
. The real number f is a scaling factor, and the second equality

follows substituting for Ct from Proposition 1. From now on we will assume f > −1, which
ensures that At + Ft > 0.

Define

ϕ∗∗t (x) =
(ν − ω) + F

η
ω t e

(ν−ω)+F
η

x,

and recall the previous definition
A∗t = (ν − ω) t.

Theorem 3 The quadruple [ν, ϕ∗∗t (x) , A
∗
t , ω] is a constant growth path with forgetful worker

if and only if the pair ν, ω solves the equation X
η
(ν − ω + F) = log (ν)− log (ω) .

Proof. See the Appendix.

Substituting back for F we get that if the pair ν, ω are part of a constant growth path with
forgetful worker then they must satisfythe equation

log (ν)− log (ω) = X

η

µ
ν − ω + f

ν − ω

ω

¶
. (20)

Proposition 11 (a) If ν ≤ η
X
then the completion time in a constant growth path with

forgetful worker or with “sleeping on it” is zero, and hence these paths both coincide with the
constant growth path described in Sections 3 and 4, regardless of f.

(b) (forgetful worker case) If ν > η
X
and f > 0 then completion time in a constant

growth path with forgetful worker is positive, and the output rate is smaller than in the
constant growth path described in Sections 3 and 4.

(c) (“sleeping on it” case) If ν > η
X
and f ∈ (−1, 0) then completion time in a constant

growth path with “sleeping on it” is positive, and the output rate is larger than in the constant
growth path described in Sections 3 and 4.

41

Proof. See the Appendix.

Remarkably, for a given ν there may be several values of ω that satisfy equation (20). To
these are associated multiple constant growth paths with forgetful worker. We now present
a numerical example displaying multiple ω that solve equation (20). Rewrite equation (20)
as

log
¡
ν
ω

¢
ν − ω

=
X

η

µ
1 +

f

ω

¶
Now, set X

η
= 1, ν = 1.1, f = 0.1 and let’s plot the LHS and RHS of the equation

log
¡
1.1
ω

¢
(1.1− ω)

= 1 +
0.1

ω
.

The horizontal axis is ω, the LHS is the black line and the RHS is the red one. We see two
intersection points in the interval (0, η/X), corresponding to two solutions to the equation.

10.3 Time To Build

In certain contexts, there may be technological limitations on how fast a project can be
completed. For example, a judge may need to allow the lawyers time, between two successive
hearings, to produce certain evidence and to evaluate and respond to the evidence produced
by the adversary. For an academic researcher, before being able to produce a final draft,
time may be required to absorb one’s intermediate findings and “put the puzzle together”.
Etc. The common thread in all these these examples is that one cannot complete a project

42

under a certain time threshold, no matter how large the effort. Let us call this threshold T .

The “time to build” constraint is introduced in our model via the constraint

Ct = max {Ct, T} ,

where Ct denotes the completion time for a case started at t in the model with a time-to-build
constraint, and Ct = t (ν − ω) /ω is the completion time in a model without that constraint.
One way to think about this constraint is to imagine that the system evolves exactly like in
the case without constraint, except that cases that were completed in less than T are “held
back” and not “released” until T has elapsed from the time they were opened. Note that, if
ν > ω then Ct grows linearly with time and so after a certain time we have Ct = Ct. Thus
in our formulation the time-to-build constraint stops binding after a certain time because,
in a constant growth path, eventually projects take long enough to complete. In particular,
the completion times for all projects started after a bt such that Ct = T are unaffected by the
time-to-build constraint. One can easily verify that

bt = ω

(ν − ω)
T .

The output rate will, after a certain time bbt, coincide with the constant-growth-path one
which is ω. The value of bbt is given by

bbt = bt+ Ct =
ν

(ν − ω)
T .

For t < T , the output rate is zero which is the time-to-build effect. For t ∈
hbt,bbti , the output

rate will be higher than ω and decreasing.

11 Conclusion

We have developed a theory of a worker who works simultaneously on several projects, each
of which takes several steps to complete. Given the complexity of the projects and the
amount of effort exerted by the worker, we have identified the maximum number of projects
on which the worker should work on at any given time, assuming the goal is to maximize
the output rate. When this number is exceeded then the output rate decreases. The source
of this inefficiency is that, for each project that is worked on but is far from complete, the
completion date of the almost-done projects is pushed back.

We have focused on the case in which too many projects are worked on at the same time.

43

In this case, as time goes by the number of active projects grows, and each project takes
longer and longer to complete after it has been started. Moreover, if projects are assigned to
the worker at a constant rate, then non-started project also accumulate over time, so that it
takes longer and longer between the time a project is assigned and the time it is completed.
All these durations are shown to grow at a linear rate with time. We have derived an exact
functional form for the “production function” that takes as inputs the rate at which the
worker opens projects, the difficulty of the projects, and the amount of effort exerted by the
worker, and combines all these inputs to yield an output rate. This functional form allows
one, for example, to forecast the effect of additional effort on output.

Based on this “production function” we have asked what might be the cause of the ineffi-
ciently large input rate. We have posited a model in which many “clients” lobby the worker
to get each step of their project done. If the worker is not able to resist this lobbying, then
in equilibrium the worker necessarily works on an inefficiently large number of projects. We
have also investigated a different perspective, the idea that output may not be the only goal
of production. If there is value created by having projects achieve certain intermediate stages
of completion, then we have shown that the optimal input rate exceeds that which is opti-
mal when the only goal is to maximize completion rates. In this perspective, the progressive
slowdown of the speed at which projects are completed is in fact optimal.

We have then investigated how different incentive schemes induce the worker to focus his
efforts on different types of projects, depending on their complexity. A worker who is re-
warded based on aggregate output rates will focus all his effort on non-complex projects and
not ever work on complex projects. In contrast, a worker who is penalized for the average
duration of projects assigned to him will work on all projects, and focus proportionally more
effort on more complex projects. Which of these two schemes produces the most desirable
allocation of effort will depend on the specific application.

We view the analysis in this paper and its companion (Coviello et al. 2010) as a first step
into the theoretical and empirical analysis of work scheduling. Although the intuition for the
inefficiency of task juggling is strong, measuring the quantitative effects of task juggling is
far from straightforward, even at a purely theoretical level. This is because work schedules
come in an almost infinite range of variations, in principle equal to all the ways in which S
steps of each of N projects can be ordered, a very large cardinality indeed. This paper cuts
through this complexity by providing a theory in which task juggling is parameterized by
how many new projects are opened in each quarter. In separate and ongoing work (Coviello
et al. 2010), we use this approach to estimate the productivity of Italian judges. We find
that judges do juggle tasks, and that the slowdown in ouput resulting from task juggling is
large. We view that paper as establishing the empirical relevance of the theory developed in
this paper.

44

References

[1] Coviello, Decio, Andrea Ichino and Nicola Persico (2010) "Too many balls in the air. The
impact of task juggling on workers productivity." Manuscript, NYU.

[2] Holmstrom, Bengt and Paul Milgrom (1991) “Multitask Principal-Agent Analyses: In-
centive Contracts, Asset Ownership, and Job Design.” Journal of Law, Economics, &
Organization, Vol. 7.

[3] Jackson, James R. (1963) “Jobshop-like Queueing Systems.” Management Science, Vol.
10, No. 1 (Oct., 1963), pp. 131-142.

[4] Mark, G., D. Gudith, and U. Klocke. “The Cost of Interrupted Work: More Speed
and Stress.” In CHI ’08: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 107—110, Florence,Italy, April 2008. ACM Press.

[5] Moder,J, C Phillips, E Davis (1983) Project management with CPM, PERT and project
diagramming. Van Nostrand Reinhold Publishers.

[6] Ostrom, Elinor (1990) Governing the Commons. Cambridge University Press.

45

A Proofs and Technical Results

Proof of Proposition 4 a), b).

Proof. a) There are three types of solutions to the equation h (ν) = h (ω). The first one is
ν = ω. This solution is not compatible with the analysis we have carried out because then
At = 0. Then there are two kinds of solutions, one where ν < η

X
< ω, which is not acceptable

for then At < 0. The remaining kind of solution is ν > η
X

> ω. Under this restriction, the
shape of h (·) guarantees the required property.

b) Fix ν, and consider two values η > η0 with associated ω and ω0. The output rates ω and
ω0 solve

h (ω; η/X) = h (ν; η/X)

h (ω0; η0/X) = h (ν; η0/X) .

Combining these equalities yields

h (ω0; η0/X)− h (ω; η/X) = h (ν; η0/X)− h (ν; η/X) . (21)

Now, an easy to verify property of h (y; η/X) that, for any y1 < y2,

h (y1; η
0/X)− h (y1; η/X) < h (y2; η

0/X)− h (y2; η/X) .

Setting y1 = ω, y2 = ν, and combining with (21) gives

h (ω; η0/X)− h (ω; η/X) < h (ω0; η0/X)− h (ω; η/X)

h (ω; η0/X) < h (ω0; η0/X) (22)

Now, remember that ω0 < η0/X. Then either ω > η0/X, in which project ω > ω0 and there
is nothing to prove, or else ω < η0/X. In this project both ω and ω0 lie on the decreasing
portion of the function h (·; η0/X). Then equation (22) yields ω > ω0.

Next we prove a technical lemma that is necessary to prove Proposition 4 c).

Lemma 4 Take any triple
¡
ν, ω, η

X

¢
where ω = Ω (ν; η/X) . Then

¯̄
ν − η

X

¯̄
>
¯̄
ω − η

X

¯̄
. That

is, along a growth path the actual output rate is closer to the efficient output rate than
is the input rate.

46

Proof. For any ν > η
X
> ω we can write

h (v) = h
³ η

X

´
+

Z ν− η
X

0

h0
³ η

X
+ s
´
ds (23)

h
³ η

X

´
= h (ω) +

Z η
X
−ω

0

h0 (ω + r) dr.

Make the change of variable r = −ω + η
X
− s in the second equation, and one gets

h
³ η

X

´
= h (ω)−

Z 0

−ω+ η
X

h0
³ η

X
− s
´
ds

= h (ω) +

Z −ω+ η
X

0

h0
³ η

X
− s
´
ds.

Substitute into equation (23) to get

h (v) = h (ω) +

Z −ω+ η
X

0

h0
³ η

X
− s
´
ds+

Z ν− η
X

0

h0
³ η

X
+ s
´
ds.

Since the triple
¡
ν, ω, η

X

¢
solves (5), it follows that h (v) = h (ω) and so we may rewrite

equation (23) once more asZ η
X
−ω

0

−h0
³ η

X
− s
´
ds =

Z ν− η
X

0

h0
³ η

X
+ s
´
ds (24)

Now, from the proof of Lemma 1 we have h0 (y) = X
η
− 1

y
and so

h0
³ η

X
+ s
´
=

X

η
− 1

η
X
+ s

=
X

η

Ã
1− 1

1 + sX
η

!
=

X

η

Ã
sX
η

1 + sX
η

!

h0
³ η

X
− s
´
=

X

η
− 1

η
X
− s

=
X

η

Ã
1− 1

1− sX
η

!
= −X

η

Ã
sX
η

1− sX
η

!

for any s such that h0
¡
η
X
− s
¢
is well defined, that is, s < η

X
. If in addition s > 0 then

h0
³ η

X
+ s
´
=

X

η

Ã
sX
η

1 + sX
η

!
<

X

η

Ã
sX
η

1− sX
η

!
= −h0

³ η

X
− s
´
. (25)

Now let us turn to equation (24) and let us suppose, by contradiction, that ν − η
X
< η

X
− ω.

47

We may then rewrite that equation asZ η
X
−ω

0

−h0
³ η

X
− s
´
ds−

Z ν− η
X

0

h0
³ η

X
+ s
´
ds = 0Z ν− η

X

0

h
−h0

³ η

X
− s
´
− h0

³ η

X
+ s
´i

ds+

Z η
X
−ω

ν− η
X

−h0
³ η

X
− s
´
ds = 0

The range of s in the above equation is at most
¡
0, η

X
− ω

¢
⊂
¡
0, η

X

¢
, and therefore (25)

applies. This guarantees that the first integral is strictly positive. The second integral is
strictly positive as well. Hence the equation cannot be verified. We therefore contradict our
assumption that ν − η

X
< η

X
− ω.

Proof of Proposition 4 c)

Proof. Equation (5) reads

(ν − Ω (ν; η/X)) =
η

X
[log (ν)− log (Ω (ν; η/X))] . (26)

Fix ν and differentiate both sides of (26) with respect to η to get

−∂Ω (ν; η/X)
∂η

=
1

X
[log (ν)− log (Ω (ν; η/X))]− η

X

1

Ω (ν; η/X)

∂ (Ω (ν; η/X))

∂η
.

Rearranging we get

∂Ω (ν; η/X)

∂η

∙
η

X

1

Ω (ν; η/X)
− 1
¸
=
1

X
[log (ν)− log (Ω (ν; η/X))] (27)

=
1

η
(ν − Ω (ν; η/X)) , (28)

where the second equation susbtitutes from (26). Now, fix η and differentiate (27) with
respect to ν. This yields

∂2Ω (ν; η/X)

∂η∂ν

∙
η

X

1

Ω (ν; η/X)
− 1
¸
−∂Ω (ν; η/X)

∂η

η

X

1

(Ω (ν; η/X))2
∂Ω (ν; η/X)

∂ν

=
1

X

∙
1

ν
− 1

Ω (ν; η/X)

∂Ω (ν; η/X)

∂ν

¸
,

48

which can be rewritten as

∂2Ω (ν; η/X)

∂η∂ν

∙
η

X

1

Ω (ν; η/X)
− 1
¸
=
1

X

∙
1

ν
+

∂Ω (ν; η/X)

∂ν

1

Ω (ν; η/X)

µ
∂Ω (ν; η/X)

∂η
η

1

Ω (ν; η/X)
− 1
¶¸

.

(29)
The term in brackets on the left-hand side is positive, so ∂2Ω(ν;η/X)

∂η∂ν
has the same sign as the

term in brackets on the right hand side of (29). We need to sign this term. To this end,
substitute for ∂Ω(ν;η/X)

∂η
from (28) so that the term in brackets on the right hand side of (29)

reads

1

ν
+

∂Ω (ν; η/X)

∂ν

1

Ω (ν; η/X)

⎡⎣(ν − Ω (ν; η/X))³
η
X

1
Ω(ν;η/X)

− 1
´ 1

Ω (ν; η/X)
− 1

⎤⎦
=
1

ν
+

∂Ω (ν; η/X)

∂ν

1

Ω (ν; η/X)

∙
ν − η

X
η
X
− Ω (ν; η/X)

¸
. (30)

Now, to get an expression for ∂Ω(ν;η/X)
∂ν

, fix η and differentiate both sides of (26) with respect
to ν to get

1− ∂Ω (ν; η/X)

∂ν
=

η

X

∙
1

ν
− 1

Ω (ν; η/X)

∂Ω (ν; η/X)

∂ν

¸
∂Ω (ν; η/X)

∂ν

∙
η

X

1

Ω (ν; η/X)
− 1
¸
=

η

Xν
− 1

∂Ω (ν; η/X)

∂ν
=

Ω (ν; η/X)

ν

η
X
− ν

η
X
− Ω (ν; η/X)

.

Substituting into (30) yields

1

ν
− 1

ν

µ
ν − η

X
η
X
− Ω (ν; η/X)

¶2
=
1

ν

"
1−

µ
ν − η

X
η
X
− Ω (ν; η/X)

¶2#
. (31)

By Lemma 4,
ν − η

X
η
X
− Ω (ν; η/X)

> 1

and so equation (31) is negative. Thus the right hand side of (29) is negative, which implies
∂Ω(ν;η/X)

∂ν∂η
< 0.

Proof of Theorem 3.

49

Proof. Condition (18) is verified because

∂ϕ∗∗t (x)

∂t
− ∂ϕ∗∗t (x)

∂x

η

At + Ft

=
(ν − ω) + F

η
ω e

(ν−ω)+F
η

x − (ν − ω) + F

η
ω t e

(ν−ω)+F
η

x (ν − ω) + F

η

η

(ν − ω + F) t

=
(ν − ω) + F

η
ω e

(ν−ω)+F
η

x − (ν − ω) + F

η
ω e

(ν−ω)+F
η

x

= 0.

Condition (19) is verified because

ω =
η

At + Ft
ϕ∗∗t (0)

=
η

(ν − ω + F) t

(ν − ω) + F

η
ω t

= ω.

Condition (4) can be verified immediately.

Condition (1) reads

A∗t =

Z X

0

ϕ∗t (x) dx.

Substituting for ϕ∗∗t (x) and A∗t yields

(ν − ω) t =

Z X

0

(ν − ω) + F

η
ω t e

(ν−ω)+F
η

x dx

=
(ν − ω) + F

η
ω t

Z X

0

e
(ν−ω)+F

η
x dx

=
(ν − ω) + F

η
ω t

η

(ν − ω) + F
e
(ν−ω)+F

η
x

¯̄̄̄X
x=0

= ω t e
(ν−ω)+F

η
x
¯̄̄X
x=0

= ω t
h
e
(ν−ω)+F

η
X − 1

i
.

50

We can rewrite this equality as

ν

ω
− 1 =

h
e
(ν−ω)+F

η
X − 1

i
ν

ω
= e

(ν−ω)+F
η

X

log (ν)− log (ω) = (ν − ω + F)
X

η

Proof of Proposition 11

Proof. (a) In this case Ct ≡ 0 and then we are back to the standard case of non-forgetful
worker.

(b). Fix any ν and let ω∗∗ be the output rate in a constant growth path with forgetful
worker. Then ω∗∗ solves equation (20), which can be written as

h (ω) = h (ν) + f · ν − ω

ω

X

η
. (32)

Suppose f > 0, and by contradiction, that the output rate in a constant growth path with
non-forgetful worker, call it ω∗, is smaller than ω∗∗. Since obviously, ω∗∗ < ν, we have
ω∗ ≤ ω∗∗ < ν. By definition of ω∗ we have h (ω∗) = h (ν) , and since the function h is
convex, it follows that h (ω∗∗) ≤ h (ν) . But then since f > 0, the right-hand side in (32)
must exceed the left-hand side, and so the equation cannot be satisfied. We have reached a
contradiction.

(c) Suppose f < 0, and by contradiction, that the output rate in a constant growth path
with non-forgetful worker, call it ω∗, is bigger than ω∗∗. We then have ω∗∗ ≤ ω∗ < ν. By
definition of ω∗ we have h (ω∗) = h (ν) , and since the function h is convex, it follows that
h (ω∗∗) > h (ν) . But then since f < 0, the left-hand side in (32) must exceed the right-hand
side, and so the equation cannot be satisfied. We have reached a contradiction.

51

