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Abstract. We study the behavioral definition of complementary goods: if the

price of one good increases, demand for a complementary good must decrease. We

obtain its full implications for observable demand behavior (its testable implica-

tions), and for the consumer’s underlying preferences. We characterize those data

sets which can be generated by rational preferences exhibiting complementarities.

In a model in which income results from selling an endowment (as in general equi-

librium models of exchange economies), the notion is surprisingly strong and is

essentially equivalent to Leontief preferences. In the model of nominal income,

the notion describes a class of preferences whose extreme cases are Leontief and

Cobb-Douglas respectively.
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1. Introduction

We study the behavioral notion of complementarity in demand (which we refer

to throughout simply as complementarity): when the price of one good decreases,

demand for a complementary good increases. We deal with two cases: one in which

consumers’ nominal income is fixed, and one in which income is derived from selling

a fixed endowment at prevailing prices.

We obtain the full implications of complementarity both for observable demand

behavior (its testable implications) and for the underlying preferences. In the former

exercise, we characterize all finite sets of price-demand pairs consistent with com-

plementarity. The latter exercise characterizes the class of preferences generating

complementarity.

The complementarity property we discuss is inherently a property of two goods.

As such, it is natural and widely used. However, it is not intended to be a reason-

able notion of complementarity for any arbitrary collection of goods. Indeed, with

three goods, goods which our intuition suggest should be complements may not be

according to the definition. For example, Samuelson (1974) gives the example of

coffee, tea, and sugar. Both coffee and tea are intuitively complementary to sugar.

However, sugar may be “more complementary” with coffee than tea. Hence, a re-

duction in the price of tea may lead to a decrease in the consumption of sugar, and

a corresponding decrease in the consumption of coffee. Of course, it is unsurprising

that the presence of a third good can have confounding effects in demand for the

other two goods. Therefore, the example is by no means pathological, and merely

speaks to the fact that the notion we discuss is inherently a binary notion.

The preceding does not suggest that our results are useless in a multi-good world.

In fact, if we fix any two goods, we may consider a “reduced” demand for those

two goods alone simply by fixing prices of those two goods and looking at the total

wealth spent on them. This reduced demand is well-defined and generated from

a rational preference when the underlying preferences are “functionally,” or weakly

separable. We have empirical tests which tell us exactly when observed demands over
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an arbitrary commodity space satisfies functional separability (see Varian (1983)).

In this case, it is without loss of generality to consider the reduced “two-good”

demand function. The other natural method of reducing a collection of many goods

to a two-good problem is by considering the notion of Hicksian aggregation (by

assuming fixed relative prices). Thus, if we want to test whether or not meat is

complementary to wine, we can consider “meat” and “wine” as composite goods.

This is done by fixing relative prices between different meats and between different

wines, and letting the relative price of meat and wine vary.1 Additional assumptions

guaranteeing that some type of commodity aggregation of the two described are quite

standard in applied demand analysis (see, e.g. Lewbel (1996) for a discussion).

The complementarity property, which we call “behavioral” to emphasize that

demand, not preference, is primitive, is a classical notion. It is the notion taught in

Principles of Economics textbooks (e.g. McAfee (2006), Stiglitz and Walsh (2003)

and Krugman and Wells (2006)) and Intermediate Microeconomics textbooks (e.g.

Nicholson and Snyder (2006), Jehle and Reny (2000), and Varian (2005)). It is a

crucial property in applied work: marketing researchers test for complementarities

among products they plan to market; managers’ pricing strategy takes a special

form when they market complementary goods; regulatory agencies are interested in

complements for their potential impact on competitive practices; complementarity

is relevant for decisions on environmental policies; complementary goods receive a

special treatment in the construction of price indexes; complementary export goods

are important in standard models of international trade, etc. etc. The literature on

applications of complementarity is too large to review here.

Yet, the notion discussed here has received surprisingly little theoretical atten-

tion. The general testable implications of complementarity were, until now, un-

known. In many applications, one needs to decide empirically whether two goods

are complements. Hence, a test which can falsify complementarity is both useful and

1See Varian (1992) for an exposition of the relevant theory of Hicks composite goods, and Epstein

(1981) for general results in this line.
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important. Empirical researchers’ tests typically estimate cross-partial elasticities

in highly parametric models. However, such an exercise actually jointly tests several

hypotheses. In contrast, we elicit the complete testable implications of complemen-

tarity in a general framework.

We consider two models: a model in which consumers carry endowments and form

their demand as a function of prices and the income derived from selling endowment,

and a model in which consumers are simply endowed with a nominal income. In the

nominal-income model, we provide a necessary and sufficient condition for expen-

diture data to be consistent with the rational maximization of a preference which

exhibits complementarity in demand. In the income-from-endowment model, com-

plementarity is equivalent to all observed demands lying on a continuous monotone

path.

We also characterize the class of preferences that generate complementarity. Again

the results depend on the model under consideration. In the nominal-income model,

complementarity effectively requires that demand be monotonic with respect to set

inclusion of budgets (and hence normal). In addition, complementarity in this model

automatically implies rationalizability by an upper semicontinuous, quasi-concave

utility function–a consequence of the continuity of demand (which is itself an im-

plication of complementarity). Within the class of smooth rationalizations, com-

plementarity is characterized by a bound on the percentage change in the marginal

rate of substitution with respect to a change in either commodity. Cobb-Douglas

preferences are exactly those preferences meeting this bound.

1.1. Illustration of results. We illustrate and discuss graphically some of our

results. See Section 2 for the formal statements.

Consider Figure 1(a), which depicts a hypothetical observation of demand x =

(x1, x2) at prices p = (p1, p2). Figure 1(a) illustrates the notion of complementarity:

goods 1 and 2 are complements if, when we decrease the price of one good, demand

for the other good increases. In the figure, complementarity requires that demand

at the dotted budget line involves more of both goods. Note that we are assuming
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(a) Complementarities.

x

x′

p′p

(b) Demands x and x′ at prices

p and p′.

Figure 1. When is observed demand consistent with complementarity?.

no Giffen goods, which is implied by normal demand. Symmetrically, a decrease in

the price of good 2 would also imply a larger demanded bundle.

Given Figure 1(a), one may think that the testable implications of complemen-

tarity amount to verifying that, whenever one finds two budgets like the ones in

the figure, one demand is always higher than the other. Consider then Figure 1(b),

where one budget is not larger than another. Are the observed demands of x at

prices p, and x′ at p′, consistent with demand complementarity? The answer is neg-

ative, as can be seen from Figure 2(a): the larger budget drawn with a dotted line is

obtained from either of the p or p′ budgets by making exactly one good cheaper. So

it would need to generate a demand larger than both x and x′, which is not possible.

Figure 2(b) shows a condition on x and x′ which is necessary for complementarity:

the pointwise maximum of demands, x ∨ x′, must be affordable for any budget

larger than the p and p′ budgets. Since there is a smallest larger budget, the least

upper bound on the space of budgets (the dotted-line budget), we need x∨ x′ to be

affordable at the least upper bound of the p and p′ budgets.

Since demand is homogeneous of degree zero, we can normalize prices and incomes

so that income is 1. Then the least upper bound of the p and p′ budgets is the budget
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(a) A larger budget.
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x ∨ x′

(b) x ∨ x′ consistent with com-

plementarities

pp′

x
x′

(c) Demands x and x′ at prices

p and p′.

p′p

x
x′

(d) Violation of WARP.

Figure 2. Observed demands.

obtained with income 1 and prices p ∧ p′, the component-wise minimum price. The

necessary condition in Figure 2(b) is that (x ∨ x′) · (p ∧ p′) ≤ 1.

There is a second necessary condition. Consider the observed demands in Fig-

ure 2(c). This a situation where, when we go from p to p′, demand for the good

that gets cheaper decreases while demand for the good that gets more expensive

increases. This is not in itself a violation of either complementarity or the absence

of Giffen goods. However, consider Figure 2(d): were we to increase the budget

from p to the dotted prices, complementarity would imply a demand at the dotted
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prices that is larger than x. But no point in the dotted budget line is both larger

than x and satisfies the weak axiom of revealed preference (WARP) with respect to

the choice of x′.

So a simultaneous increase in one price and decrease in another cannot yield

opposite changes in demand. This property is a strengthening of WARP: Fix p, p′

and x as in Figure 2(c). Then WARP requires that x′ not lie below the point where

the p and p′ budget lines cross. Our property requires that x′ not lie below the point

on the p′-budget line with the same quantity of good 2 as x. In fact, this property

is implied by either of the two following sets of conditions: i) rationalizability and

the absence of Giffen goods or ii) rationalizability and normal demand.

We show (Theorem 1 of Section 2) that the two necessary properties, the (x∨x′) ·

(p ∧ p′) property in Figure 2(b) and the strengthening of WARP, are also sufficient

for a complementary demand. That is: given a finite collection of observed demands

x at prices p, these could come from a demand function for complementary goods

if and only if any pair of observations satisfies the two properties. Thus, the two

properties constitute a non-parametric test for complementary goods, in the spirit

of the revealed-preference tests of Samuelson (1947) and Afriat (1967).2

We now turn to a geometric intuition for one of our results on preferences. Sup-

pose that prices affect incomes—a consumer obtains her income from selling an

endowment ω of goods at the prevailing prices. Consider Figure 3(a), which shows

demand x at prices p and endowment ω, i.e. income is p · ω. We shall describe the

consumer’s indifference curve at x. Note that demand does not change if we set the

endowment to be ω′ = x. Consider the dotted prices in Figure 3(a). Demand at

these prices cannot be to the left of x because it would violate WARP, and demand

to the right of x would violate complementarity, as it would demand less of the

good complementary to the good whose price decreased. But then demand has to

be x at the dotted prices. By repeating this argument for all prices, Figure 3(b),

2See Varian (1982) for an exposition and further results. Matzkin (1991) and Forges and Minelli

(2006) discuss more general sets of data. Brown and Calsamiglia (2007) present a test for quasi-

linear utility.
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x = ω′
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p

(b)

Figure 3. Complementarity implies Leontief preferences.

we conclude that the only indifference curve supported by all prices at x is the one

obtained from Leontief preferences.

1.2. Historical Notes. Before proceeding, we discuss briefly the history of the

theory of complementary goods. Much of this discussion is borrowed from Samuelson

(1974), which serves as an excellent introduction to the topic.

Perhaps the first notion of complementary goods is that formulated by Edge-

worth and Pareto on introspective grounds (Samuelson, 1974). They believed that

if two goods were complementary, then the marginal utility of an extra unit of each

should be greater than the sum of the marginal utilities of an extra unit of either.

In other words, the marginal utility of the consumption of either good should be

increasing in the consumption of the other good; the utility function should have

nonnegative cross-derivatives. This is an intuitively appealing definition based on

preferences, not behavior; however, it clearly depends on cardinal utility compar-

isons. Hicks and Allen (1934), Hicks (1939) and Samuelson (1947) recognized this,

and suggested that as a local measure of complementarity, it was useless. At any

given consumption bundle, any utility function can be transformed to have nonneg-

ative cross-derivatives. Milgrom and Shannon (1994) established that, despite not
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being an ordinal notion, the Edgeworth Pareto definition does in fact have ordinal

implications.

Chambers and Echenique (2007) on the other hand, showed that this notion has

no implications for observed demand behavior, when the observations are finite:

Any finite data set is either non-rationalizable (and violates the strong axiom of

revealed preference) or it is rationalizable by a utility function satisfying the Edge-

worth/Pareto notion of complementarity.

Most of the modern notions build on the increasing marginal utility notion, using

some cardinal function. For example, the notion discussed by Hicks and Allen

notion for three goods works as follows. Consider some bundle
(

x, y, t
)

. Now,

define a function T (x, y) =
{

t : U (x, y, t) = U
(

x, y, t
)}

. Then the first two goods

are complements if and only if

∂2

∂x∂y
(−T (x, y)) ≥ 0.

In particular, if u (x, y, t) = U (x, y) + t, then goods one and two are complemen-

tary if and only if U has nonnegative cross derivatives (Samuelson, 1974, p. 1270).

Samuelson goes a bit further, suggesting that complementarity be defined with re-

spect to a particular cardinalization of preference. His proposal is to use either

McKenzie’s money-metric utility function, or a von Neumann-Morgenstern utility

index for expected utility maximizers.

We now discuss the main objection to the behavioral notion of complementarity

we have studied, and discuss the Hicks-Allen proposal in more detail. While our

notion, sometimes called “gross complementarities,” is both natural and commonly

understood, there are other such notions. The primary criticism of our definition is

that it can be “asymmetric” in a sense. It is possible that raising the price of good

one leads to an increase in consumption of good two, while raising the price of good

two leads to a decrease in consumption of good one. This asymmetry led Hicks

(1939) and other early researchers to take interest in other notions (although they

never claimed the notion we discuss was incorrect). Hicks and Allen (1934) devel-

oped a theory of complementarity of demand based on compensated price changes.
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The type of price change considered by Hicks is the following. The price of good

one is increased and the income of the agent is simultaneously increased just enough

to leave the consumer on the same indifference curve. Good one is complementary

to good two if a compensated increase in the price of good two leads to a lower

consumption of good one. It is well-known that with such a definition, good one is

complementary to good two if and only if good two is complementary to good one.

Samuelson suggests that Hicks’ notion best defense is the fact that it can be

defined for any number of goods, and is symmetric (Samuelson, 1974, p. 1284). A

symmetric definition appears to be important if our main interest is in providing a

simple single-dimensional measure of complementarity of any pair of goods. Implicit

in this approach is the notion that, locally, all goods must be either complements

or substitutes. While a single-dimensional measure of complementarity is certainly

interesting, we believe there is also room for the study of other concepts (perhaps

leading to other, less decisive, measures of complementarity).

Furthermore, our definition has an appealing feature that the Hicks definition

does not have. With the Hicks definition, for two good environments, all goods

are economic substitutes by necessity. This is a consequence of downward sloping

indifference curves–requiring both goods to be complements essentially results in

generalized Leontief preferences. Thus, the definition does not allow for a mean-

ingful study of complementarity in what is arguably a very natural framework for

discussing the concept. In contrast, with our definition (in the nominal income

model), goods are both complements and substitutes if and only if preferences are

Cobb-Douglas.

Finally, compensated price changes present a challenge from the empirical per-

spective we adopt in this paper: compensated demand changes are unlikely to be

observed in real data. In other words, it is unclear what observable phenomena in

the real world correspond to compensated price changes. The notion of complemen-

tarity we adopt is the only purely behavioral notion.
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Thus, at least from a definitional standpoint, behavioral complementarity and

Hicksian complementarity are clearly distinct concepts which are meant to discuss

different issues. It is somewhat unfortunate that the term “complementarity” has

been applied to both concepts historically. Each has its benefits and drawbacks, but

there is no a priori reason to prefer one or the other; the context of the problem

being studied should suggest which definition is relevant.

To sum up, we study the standard textbook-notion of complementarity of demand.

We avoid the criticism of asymmetry simply by specifying from the outset that two

goods are complementary if a change in price in either good leads to consumption

changing in the same direction for both goods.

2. Statement of Results

We discuss complementarity in two different contexts: first we study changes in

price when nominal income is fixed, and second, when an endowment of goods is

fixed. In the latter environment, price changes affect income, as income results

from selling the endowment at prevailing prices. Theorems 1, 2, and 3 are for the

nominal income model, D(p, I). Theorem 4 is for the endowment model. The proof

of Theorem 1 is in Section 6; the proof of Theorem 2 is in Section 6.4; the proof of

Theorem 4 is in Section 4; the proof of Theorem 3 is in Section 5.

2.1. Preliminaries. Let R2
+ be the domain of consumption bundles, and R2

++ the

domain of possible prices. Note that we assume two goods, see the Introduction and

Section 2.5 for how one applies our results in many-goods environments.

We use standard notational conventions: x ≤ y if xi ≤ yi in R, for i = 1, 2; x < y

if x ≤ y and x 6= y; and x ≪ y if xi < yi in R, for i = 1, 2. We write x · y for the

inner product x1y1 + x2y2. We write x∧ y for (min {x1, y1} , min {x2, y2}) and x∨ y

for (max {x1, y1} , max {x2, y2})

A function u : R2
+ ⇒ R is monotone increasing if x ≤ y implies u(x) ≤ u(y).

It is monotone decreasing if (−u) is monotone increasing. It is strongly monotone

increasing if x ≪ y implies u(x) < u(y) and it is monotone increasing.
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A function D : R2
++ × R+ → R2

+ is a demand function if it is homogeneous of

degree 0 and satisfies p · D(p, I) = I, for all p ∈ R2
++ and I ∈ R+ .

Say that a demand function satisfies complementarities if, for fixed p2 and I,

p1 7→ Di((p1, p2), I) is monotone decreasing for i = 1, 2, and for fixed p1 and I,

p2 7→ Di((p1, p2), I) is monotone decreasing for i = 1, 2.3

For all (p, I) ∈ R2
++×R+, define the budget B (p, I) by B (p, I) =

{

x ∈ R2
+ : p · x ≤ I

}

.

Note that B (p, I) is compact, by the assumption that prices are strictly positive.

A demand function D is rational if there is a monotone increasing function u :

R2
+ → R such that

(1) D (p, I) = argmaxx∈B(p,I)u(x).

In that case, we say that u is a rationalization of (or that it rationalizes) D. Note

that D(p, I) is the unique maximizer of u in B(p, I).

A demand function satisfies the weak axiom of revealed preference if p·D(p′, I ′) > I

whenever p′ ·D(p, I) < I ′ (with two goods, the weak axiom is equivalent to the strong

axiom of revealed preference).

2.2. Nominal Income. We shall use homogeneity to regard demand as only a

function of prices: D(p, I) = D((1/I)p, 1), so we can normalize income to 1. In

this case, we regard demand as a function D : R2
++ → R2

+ with p · D(p) = 1 for all

p ∈ R2
++.

A partial demand function is a function D : P → R2
+ where P ⊆ R2

++ and

p ·D(p) = 1 for every p ∈ P ; P is called the domain of D. So a demand function is a

partial demand function whose domain is R2
++. The concept of the partial demand

function allows us to study finite demand observations. We imagine that we have

observed demand at all prices in P (see e.g. Afriat (1967), Diewert and Parkan

(1983) or Varian (1982)).

3This is equivalent to the notion that if p′ ≤ p, then D (p) ≤ D (p′). Formally, we may require the

weaker statement that D2 ((p1, p2) , I) is weakly monotone decreasing in p1 and that D1 ((p1, p2) , I)

is weakly monotone decreasing in p2. That is, none of our results would change if we allowed for

the theoretical possibility of Giffen goods (they will be ruled out anyhow).
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Theorem 1 (Observable Demand). Let P be a finite subset of R2
++ and let D :

P → R2
+ be a partial demand function. Then D is the restriction to P of a rational

demand that satisfies complementarity if and only if for every p, p′ ∈ P the following

conditions are satisfied

(1) (p ∧ p′) · (D(p) ∨ D(p′)) ≤ 1.

(2) If p′ · D(p) ≤ 1 and p′i > pi for some product i ∈ {1, 2} then D(p′)j ≥ D(p)j

for j 6= i.

The following theorem gives several topological implications of rationalizability.

Theorem 2 (Continuity). Let D : R2
++ → R2

+ be a rationalizable demand function

which satisfies complementarity. Then D is continuous. Furthermore, D is rational-

ized by an upper semicontinuous, quasiconcave, strongly monotone increasing utility

function.

Theorem 3 requires demand to be rationalized by a twice continuously differen-

tiable (C2) function u. We write

m(x) =
∂u(x)/∂x1

∂u(x)/∂x2

to denote the marginal rate of substitution of u at an interior point x.

Theorem 3 (Smooth Utility). Let D be a rational demand function with interior

range and a monotone increasing, C2, and strictly quasiconvex rationalization u.

Then D satisfies complementarity if and only if the marginal rate of substitution m

associated to u satisfies

∂m(x)/∂x1

m(x)
≤

−1

x1

and
∂m(x)/∂x2

m(x)
≥

1

x2

.

2.3. Endowment Model. We also study what happens when income results from

selling an endowment ω ∈ R2
+ at prices p. In this case, I = p · ω and demand is

therefore given by D(p, p·ω). Importantly, a change in prices implies a corresponding

change in income.
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In this model, D satisfies complementarity if, for all (p, ω) and all p′,

(2) [D1(p
′, p′ · ω) − D1(p, p · ω)] [D2(p

′, p′ · ω) − D2(p, p · ω)] ≥ 0.

Theorem 4 (Endowment Model). Let D be a rational demand function with a con-

tinuous and strongly monotone increasing rationalization. Then, in the endowment

model, the following are equivalent:

(1) D satisfies complementarity.

(2) There exist continuous strictly monotone functions fi : R+ → R∪{∞},

i = 1, 2, at least one of which is everywhere real valued (fi (R+) ⊆ R), so

that

u(x) = min {f1(x1), f2(x2)}

is a rationalization of D.

2.4. Discussion and remarks. The following observations are of interest:

(1) Theorem 1 derives the testable implications of complementarity in the nomi-

nal income model, D(p, I). With expenditure data (as in, e.g., Afriat (1967)),

it should be straightforward to verify Conditions 1 and 2 in the theorem.

(2) The testable implications of complementarity in the endowment model are,

by Theorem 4, trivial: with Leontief preferences all observed consumption

bundles would lie on a continuous monotone path in consumption space.

(3) Property 2 of Theorem 1 follows from the weak axiom of revealed prefer-

ence and the monotonicity in own price (absence of Giffen goods, see the

discussion in the introduction).

(4) In Theorem 4, we may without loss of generality normalize the real-valued

fi to be the identity function; this good then acts as a kind of endogenous

“numeraire.”

Theorem 1 implies that a partial demand satisfying (1) and (2) is rationalizable

by a monotone increasing, upper semicontinuous, utility. One may want the ratio-

nalizing utility to be in addition continuous, Example 1 shows that complementarity

does not imply rationalization by a continuous utility. It is interesting to note here
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that Richter (1971) and Hurwicz and Richter (1971) present results on the existence

of monotone increasing and continuous rationalizations, but require the range of

demand to be convex. Demand in Example 1 has non-convex range (see also the

remark after Lemma 6.17).4

Example 1. Consider the following utility

u(x1, x2) =











min{x1, x2}, if min{x1, x2} < 1

x1 · x2, if x1, x2 ≥ 1.

So u behaves like a Leontief preference when min{x, y} < 1 and Cobb-Douglas

otherwise. In other words, if the consumer cannot afford to buy at least 1 from both

products then she buys the same amount from each product. Otherwise, she spends

half of her money on each product, making sure to buy at least 1 from each. The

demand generated by this preference relation is given by

D(px, py) =







































(

1/(px + py), 1/(px + py)
)

, if px + py ≥ 1

(

1/(2px), 1/(2py)
)

, if px, py ≤ 1/2

(

1, (1 − px)/py

)

, if py ≤ 1/2 and 1/2 ≤ px ≤ 1 − py

(

(1 − py)/px, 1
)

, if px ≤ 1/2 and 1/2 ≤ py ≤ 1 − px

and let D be the corresponding demand function. It is easy to verify that D is

monotone. So D is continuous by Lemma 6.15.

However D cannot be rationalized by a continuous utility function. Indeed,

assume that v is a utility that rationalizes D. Then for every ǫ > 0 we have

v(1 − ǫ, 3) < v(1, 1), Since (1, 1) is revealed prefer to (1 − ǫ, 3): If p = (1 − η, η)

for small enough η then D(p) = (1, 1) and (1 − ǫ, 3) ∈ L(p). On the other hand

v(1, 3) > v(1, 1) since (1, 3) is revealed preferred to (1, 1): If p = (1/2, 1/6) then

D(p) = (1, 3) and (1, 1) ∈ L(p). Therefore v cannot be continuous.

4A related result is Peters and Wakker’s (1991), who show the existence of a monotone and

quasiconcave rationalization when all compact sets are budgets (demand is a choice function defined

on the set of all compact sets).
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Discussions of complementarity are often centered around the elasticity of sub-

stitution (Samuelson, 1974). In addition, Fisher (1972) presents a characterization

of the gross substitutes property in terms of elasticities. The following corollary to

Theorem 3 may be of interest.

Let D be differentiable, in addition to the hypotheses of Theorem 3. Let ηi(p, I)

be the own-price elasticity, and θi(p, I) be the cross elasticity, of demand for good

i; i.e.

η1(p, I) =
∂D1(p, I)

∂p1

p1

D1(p, I)
θ1(p, I) =

∂D1(p, I)

∂p2

p2

D1(p, I)
.

Corollary 1. If D satisfies complementarity, then, for i = 1, 2,

ηi(p, I) + θi(p, I)

η1(p, I)η2(p, I) − θ1(p, i)θ2(p, i)
≤ −1.

Finally, we consider the case of additive separability.

Corollary 2. Suppose the hypotheses of Theorem 3 are satisfied,and in addition,

suppose that u (x, y) = f (x)+ g (y). Then complementarities is satisfied if and only

if
f ′′ (x)

f ′ (x)
≤ −

1

x
,
g′′ (x)

g′ (x)
≤ −

1

x
.

Therefore, an additively separable utility satisfies complementarity if and only if

each of its components are more concave than the natural logarithm. This result is

essentially in Wald (1951), for the case of gross substitutes (Varian (1985) clarifies

this issue and presents a different proof; the appendix to Quah (2007) has a proof

for the non-differentiable case). For a function f : R+ −→ R, the number

−
f ′′ (x)

f ′ (x)

is often understood as a local measure of curvature at the point x. In particular,

one can demonstrate that for subjective expected utility, when u (x, y) = π1U (x) +

π2U (y), complementarity is satisfied if and only if the rate of relative risk aversion

is greater than one. It may be of interest to compare this with Quah’s (2003) result

that the “law of demand” is, in this case, equivalent to the rate of risk aversion

never varying by more than four.
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2.5. Many-good environments. We work with a two-good model, but out results

are applicable in an environment with n goods by using standard results on aggre-

gation and/or assuming functional (or weak) separability. See also the discussion in

the Introduction.

Aggregation requires assuming constant relative prices. Imagine testing if wine

and meat are complements; one could use a data set where the relative prices of,

say, beef and pork, and Bordeaux and Burgundy, have not changed. Then, changes

in the consumption and prices of meat and wine aggregates can be used to test for

complementarities using our results.

Independence is the assumption that preferences over x1 and x2, for example, are

independent of the consumption of goods (x3, . . . , xn). In this case, the demand for

goods (x1, x2) given prices (p1, . . . , pn) and income I depends only on prices (p1, p2)

and the share I −
∑n

j=3 pjxj left for spending on (x1, x2). With data on prices

and consumption of goods 1 and 2 (as in Section 2.2), our results provide a test

for complementarities between 1 and 2 using the expenditure on goods 1 and 2 as

income (as it equals I −
∑n

j=3 pjxj).

See Chapter 9.3 in Varian (1992) for an exposition of independence and aggrega-

tion.

3. A geometric intuition for Theorem 1.

The proof of Theorem 1 is based on extending D, one price at a time, to a

countable dense subset of R2
++. It turns out that the crucial step is to extend

D from two prices to a third price. Here we present a geometric version of the

argument, for one of the special cases we need to cover in the proof.

Fix two prices, p and p′′, with corresponding demands x = D(p) and x′′ = D(p′′).

Let p′ be a third price. We want to show that we can extend D to p′ while respecting

properties 1 and 2. We fix x as shown in Figure 4(a)

In Figure 4(a) we present the implications of x for demand x′ = D(p′), if x′ is to

satisfy the conditions in the theorem. Compliance with Property 1 requires demand
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p
p′

p ∧ p′

B

B

A A

x

(a) Budget p: between A–A and B–B.

p′′

x

C C

p ∧ p′′

(b) Budget p′′: below C–C.

Figure 4. Implications of (x, p).

x

C C
D

p′
∧ p′′ p ∧ p′

AA
D

Figure 5. Compliance with x and any x′′ that complies with x.

to be below the line A–A, as the intersection of A–A with the p′-budget line gives

equality in Property 1. Compliance with Property 2 requires demand to be to the

left of B–B. Hence, the possible x′ are in the bold interval on the p′ budget line.

Consider Figure 4(b), where we introduce prices p′′. Since x′′ and x satisfy prop-

erties 1 and 2, x′′ must lie below the line C–C on the p′′ budget line. We want to

show that we can choose an x′ that agrees with the implications of both p and p′′.

In particular, we want to show that any x′′ below C–C is compatible with a choice

of x′ on the bold segment of the p′-budget line.
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In Figure 5, we represent the implications of x on x′′, and its indirect implications

on the demand at p′. To make the figure clearer, we do not represent the p′′ budget,

but we keep the C–C line. Note that the highest possible position of x′′ determines

a point on the p′∧p′′-budget line: the point where C–C intersects the p′∧p′′-budget

line. This point, in turn, determines a point on the p′-budget line, the point where

the D–D line intersects the p′ budget line; note that, were x′ to lie to the left of D–

D, it would violate Properties 1 with respect to x′′. To sum up, Property 1 applied

to (x, p) and (x′′, p′′) requires that x′′ lies below the intersection of C–C with the

p′′-budget line. This implies that the position of demand on the p′-budget line must

lie to the right of the intersection with D–D.

Now, the requirement that x′ lie on the p′-budget line to the right of D–D is the

same as the compliance with Property 1 with respect to x: note that A–A and D–D

intersect p′ at the same point. So demand for p′ lies below A–A, as dictated by x

if and only if it lies to the right of D–D, as dictated by any x′′ that complies with

Property 1 with respect to x.

Then, if x′′ lies below C-C, it will require that x′ lies above the projection of x′′

on the p′-line. It is always possible to find such an x′ on the bold segment because

in the worst case, when x′′ is on the C-C line, the point on the D-D line is also on

the bold segment.

That D–D and A–A should coincide on the p′-budget line may seem curious at

this stage, but it is a result of the special case we are considering. Here, the budget

set of p′ is the meet of the budget sets corresponding to prices p ∧ p′ and p′ ∧ p′′;

that is p′ = (p ∧ p′) ∨ (p′ ∧ p′′). Let y and z be, respectively, the intersection of

B–B with the p ∧ p′ budget line, and of C–C with the p′ ∧ p′′ line. Then, in the

case we show in Figure 5, y ∨ z coincides with y in the good that is cheaper for p′,

and with z in the good that is cheaper in p′′. As a result, (p′ ∧ p′′) · (y ∨ z) = 1

says that expenditure on the two cheapest goods adds to 1. But at the same time

y ∧ z coincides with y in the good that is more expensive for p, and similarly for z

and p′′. So (p ∧ p′′) · (y ∨ z) = 1 also says also that the sum of expenditures on the



BEHAVIORAL COMPLEMENTARITY 21

two most expensive goods, when evaluated at prices p ∨ p′′, must equal 1. Hence

(p ∨ p′′) · (y ∧ z) = 1.

4. Proof of Theorem 4

The argument proceeds by establishing that all price vectors have the same

(strictly increasing and continuous) Engel curves.

We first define a function g : R+ → R2
+, and then prove that it is weakly increasing.

Let 1 indicate a vector of ones, and define

g (α) = D (1, α) .

Then g is a function specifying demand when total wealth is α, and prices are equal.

Moreover, g(α) · 1 = α since D is a demand function.

We establish that g is weakly increasing, so that for all i, and all α < β, gi (α) ≤

gi (β). To this end, suppose by means of contradiction that there exist α < β and

i∗ for which gi∗ (β) < gi∗ (α). As
∑

i gi (α) = α, there exists some j∗ for which

gj∗ (α) < gj∗ (β). Let p∗ ∈ R2
++ such that p∗i∗ = 1

gi∗ (β)−gi∗ (α)
and p∗j∗ = 1

gj∗(α)−gj∗(β)
,

and note that p∗ · (g(β) − g(α)) = 0. Now by definition of g and the fact that

g(α) · 1 = α it follows that D (1, g (α) · 1) = g (α). Similarly, D (1, g (β) · 1) = β.

Now, there does not exist x ∈ B (p∗, p∗ · g (α)) for which x ≥ g (α) and x 6= g (α).

Hence, by the definition of complementarity in the endowment model (2), with

p′ = p∗, p = 1 and ω = g(α)) it follows that D (p∗, p∗ · g (α)) = D(1,1·g(α)) = g (α).

Similarly, D (p∗, p∗ · g (β)) = g (β). But note that p∗ · g(α) = p∗ · g(β). Hence

g (α) = D (p∗, p∗ · g (α)) = D (p∗, p∗ · g (β)) = g (β), a contradiction. Hence, α ≤ β

implies g (α) ≤ g (β).

This latter fact in particular, along with the fact that
∑

i gi(α) = α, implies that

g is continuous (we establish that any monotonic demand function is continuous, see

Lemma 6.15). We establish that for any (p, I), D (p, I) = maxα {g (α) : g (α) ∈ B (p, I)}.

Let α∗ = arg maxα {g (α) : g (α) ∈ B (p, I)}, then the claim is that D(p, I) = g(α∗).

This follows in a similar way to the preceding paragraph: For all p and all α one
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easily establishes that D (p, p · g (α)) = g (α) by rationalizability, complementar-

ity, and the preceding argument. As the maximum is attained (by continuity and

the fact that g is unbounded), and as B (p, I) = B (p, p · g (α∗)), we conclude that

D (p, I) = D(p, p ·g(α∗)) = g (α∗), so that D (p, I) = maxα {g (α) : g (α) ∈ B (p, I)}.

Recall that D is rationalized by some monotonic u. Define U (g (α)) ≡ {x : u(x) ≥ u(g (α))}.

As u is strongly monotone increasing, R2
+ + {g (α)} ⊆ U (g (α)). Moreover, for any

x /∈ Rn
+ + {g (α)}, there exists some p ∈ R2

++ for which p · x ≤ p · g (α) (by a

simple separating hyperplane argument). As x /∈ B (p, p · g (α)), we may conclude

that u(g (α)) > u(x). Hence, x /∈ U (g (α)). Therefore, U (g (α)) = R2
+ + {g (α)}.

Therefore, by continuity, for all x ≥ g (α) for which x ≫ g (α) is false, we conclude

that xIRg (α). Therefore, for all α < β, it follows that g (α) ≪ g (β); as otherwise,

for all p, g (α) maximizes u in B (p, g (β)), contradicting rationalizability.

We conclude that g is strictly increasing and continuous. It remains to define fi.

But gi is strictly increasing and continuous for all i, so simply define fi (x) = g−1
i (x)

on the range of gi, and ∞ otherwise. Note that as
∑

i gi (α) = α, it follows that some

gi must be unbounded above; hence for some i, g−1
i is well-defined and real-valued

on all of R+. It is now straightforward to verify that u (x) = mini {fi (xi)} generates

D (p, w).

5. Proof of Theorem 3

Fix x̂ in the interior of consumption space. Denote by ∇u (x) =
(

∂u(x)
∂x1

, ∂u(x)
∂x2

)

.

Note that

x̂ = D (∇u (x̂) ,∇u (x̂) · x̂) .

Let p = ∇u (x̂). We calculate p′1 such that (x̂1 + ǫ, x̂2) lies on the budget line for

(p′1, p2) with income p · x̂. So p′1(x̂1 + ǫ) + p2x̂2 = p1x̂1 + p2x̂2. Conclude

p′1
p2

=
x̂1

x̂1 + ǫ
m(x̂).

The rest of the argument is illustrated in Figure 6. Since p′1 < p1, complementarity

implies that D(p′1p2, I) lies weakly to the northwest of (x̂1 + ǫ, x̂2) on the budget

line. By the strict convexity of u, u(y) > u(x̂1 + ǫ, x̂2) for any y that lies between
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x1

x2

x̂1 x̂1 + ǫ

x̂2

Figure 6. Illustration for the proof of Theorem 3.

D(p′1, p2, I) and (x̂1 + ǫ, x̂2) on the budget line. Hence, if u does not achieve its

maximum on the budget line at (x̂1 +ǫ, x̂2), it is increasing as we move northwest on

the budget line. So the product ∇u ·v, of the gradient of u with any vector pointing

northwest, is nonnegative. This gives m(x̂1 + ǫ, x̂2) ≤
p′
1

p2

, so

m(x̂1 + ǫ, x̂2) ≤
x̂1

x̂1 + ǫ
m(x̂).

Since ǫ > 0 was arbitrary, and since the two sides of the inequality are equal at

ǫ = 0, we can differentiate with respect to ǫ and evaluate at ǫ = 0 to obtain

∂m(x̂)

∂x̂1

1

m(x̂)
≤

−1

x̂1

The proof of the second inequality is analogous.

6. Proof of Theorem 1

6.1. Preliminaries. For p ∈ R2
++ let L(p) = {x ∈ R2

+|p · x = 1}.

For x ∈ R let sgn(x) =























1, if x > 0

−1, if x < 0

0, if x = 0

.
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The following lemmas are obvious.

Lemma 6.1. Let a, b, b′ ∈ R2
+ such that a · b = a · b′ = 1. Then

(1) sgn(b1 − b′1) · sgn(b2 − b′2) ≤ 0.

(2) If a ≫ 0 and b 6= b′ then sgn(b1 − b′1) · sgn(b2 − b′2) = −1.

Lemma 6.2. Let a, b ∈ R2 such that a ≫ 0 and b > 0. Then a · b > 0.

Lemma 6.3. Let a, b, c ∈ R2 such that a ≫ 0. If a·b ≤ a·c and bi ≥ ci for i ∈ {1, 2}

then bj ≤ cj for j = 3 − i.

For p ∈ R2
++ and x ∈ R+ such that pjx ≤ 1 let Xi(p, x) = (1 − pjx)/pi where

j = 3 − i. Then Xi(p, x) is the i-th coordinate of the element of L(p) whose j-th

coordinate is x. Note that, when p, p′ ∈ R2
++ and p · (xi, xj) = 1, Xi(p ∧ p′, xj) is

well defined; this will be a recurrent use of Xi in the sequel.

Lemma 6.4. Let p, p′ ∈ R2
++ and x, x′ ∈ R+ and i ∈ {1, 2} such that pjx, p′jx

′ ≤ 1,

and let j = 3 − i. Then

(1) piXi(p, x) ≤ 1 and x = Xj(p,Xi(p, x))

(2) If p ≤ p′ then Xi(p, x
′) ≥ Xi(p

′, x′).

(3) If x′ < x then Xi(p, x
′) > Xi(p, x)

Lemma 6.5. If p ∈ R2
++ and x ∈ R2

+, i ∈ {1, 2} and j = 3 − i. Assume that

pjxj ≤ 1. Then

(1) p · x ≤ 1 iff xi ≤ Xi(p, xj).

(2) p · x ≥ 1 iff xi ≥ Xi(p, xj)

Note that Statements 1 and 2 in Lemma 6.5 are not equivalent.

Lemma 6.6. Let p, q ∈ R2
++ such that qi ≥ pi for some product i ∈ {1, 2}, and let

x, y ∈ L(p). If q · y ≥ 1 and xi ≥ yi then q · x ≥ 1.

Proof. Since xi ≥ yi and xi ≤ 1/pi (as xipi ≤ x · p = 1) it follows that xi =

λyi + (1 − λ)1/pi for some 0 ≤ λ ≤ 1. Since y ∈ L(p), λy + (1 − λ)ei ∈ L(p), where
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ei ∈ R2
++ is given by ei

i = 1/pi and ei
j = 0 for j = 3 − i. Then, x = λy + (1 − λ)ei,

as there is only one element of L(p) with i-th component xi. Therefore

q · x ≥ min{q · y, q · ei} = min{q · y, qi/pi} ≥ 1,

as desired.

Lemma 6.7. Let p, q ∈ R2
++ such that qi > pi for some product i ∈ {1, 2} and

assume that q · x ≤ 1 for some x ∈ L(p). Then pj ≥ qj for j = 3 − i.

Proof. If pj < qj then q − p ≫ 0 and therefore

q · x − p · x = (q − p) · x > 0

By Lemma 6.2, but this is a contradiction since q · x ≤ p · x = 1.

6.2. The conditions are necessary. We now prove that the conditions in The-

orem 1 are necessary. Let D : R2
++ → R2

+ be a decreasing demand function that

satisfies the weak axiom of revealed preference. Let p, p′ ∈ R2
++.

To prove that D satisfies Condition 1 note first that from the monotonicity of D

it follows that

(3) D(p) ∨ D(p′) ≤ D(p ∧ p′).

Therefore

(p ∧ p′) · (D(p) ∨ D(p′)) ≤ (p ∧ p′) · D(p ∧ p′) = 1,

where the inequality follows from (3) and monotonicity of the scalar product in the

second argument.

To prove that D satisfies Condition 2 assume that p′ · D(p) ≤ 1 and, say, that

p′1 > p1. We want to show that D(p′)2 ≥ D(p)2. Let p′′ = 1
p′·D(p)

p′. Then p′ ≤ p′′

and p′′ ·D(p) = 1. In particular, it follows from the last equality and the weak axiom

of revealed preference that p · D(p′′) ≥ 1. Let x = D(p) and x′′ = D(p′′). Then
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p · x = p′′ · x′′ = p′′ · x = 1 and p · x′′ ≥ 1. Therefore

(4) 0 ≥ p · x + p′′ · x′′ − p · x′′ − p′′ · x = (p − p′′) · (x − x′′) =

(p1 − p′′1) · (x1 − x′′
1) + (p2 − p′′2) · (x2 − x′′

2).

Since p′′1 ≥ p′1 > p1 and p′′ · x = p · x we get from Lemma 6.1 that p′′2 ≤ p2. Assume,

by way of contradiction, that x′′
2 < x2. Then, since p′′ · x′′ = p′′ · x and p′′ ≫ 0 it

follows from Lemma 6.1 that x1 < x′′
1, in which case the sum in the right hand side

of (4) is strictly positive (since p′′2 ≤ p2, p′′1 > p1,x
′′
2 < x2 and x1 < x′′

1), which leads

to a contradiction. It follows that x′′
2 ≥ x2, i.e. D(p′′)2 ≥ D(p)2. By monotonicity

of D it follows that D(p′) ≥ D(p′′). Hence

D(p′)2 ≥ D(p′′)2 > D(p)2,

as desired.

6.3. The conditions are sufficient. A data point is given by a pair (p, x) ∈

R2
++ × R2

+ such that p · x = 1.

Definition 1. A pair (p, x), (p′, x′) ∈ R2
++ ×R2

+ of data points is permissible if the

following conditions are satisfied:

(1) (p ∧ p′) · (x ∨ x′) ≤ 1.

(2) If p′ ·x ≤ 1 and p′i > pi for some product i ∈ {1, 2} then x′
j ≥ xj for j = 3−i.

(3) If p ·x′ ≤ 1 and pi > p′i for some product i ∈ {1, 2} then xj ≥ x′
j for j = 3−i.

Let us say that a partial demand function P : D → R2
++ is permissible if

(p,D(p)), (p′, D(p′)) is a permissible pair for every p, p′ ∈ P Using this terminol-

ogy, a partial demand function D : P → R2
++ satisfies the conditions of Theorem 1

iff it is permissible

Monotonicity is a consequence of permissibility:

Lemma 6.8. If (p, x), (p′, x′) ∈ R2
++ × R2

+ is a permissible pair of data points and

p ≤ p′ then x′ ≤ x.
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Proof. If p ≤ p′ then p ∧ p′ = p and therefore it follows from Condition 1 of Defini-

tion 1 that p · (x ∨ x′) ≤ 1. But p · x = 1 and therefore

p · (x ∨ x′ − x) = p · (x ∨ x′) − p · x ≤ 0.

Since x∨x′−x ≥ 0 it follows from the last inequality and Lemma 6.2 that x∨x′−x =

0, i.e. x′ ≤ x, as desired.

The weak axiom of revealed preference is a consequence of permissibility:

Lemma 6.9. If (p, x), (p′, x′) ∈ R2
++ × R2

+ is a permissible pair of data points and

p′ · x < 1 then p · x′ > 1.

Proof. We show that p · x′ ≤ 1 implies p′ · x ≥ 1. Assume that p · x′ ≤ 1. If p′ ≥ p

then p′ ·x ≥ p ·x = 1 and we are done. Let p′ � p. Assume without loss of generality

that p1 > p′1. By Condition 3 of Definition 1 it follows that x2 ≥ x′
2. Also, since

(p − p′) · x′ = p · x′ − p′ · x′ ≤ 0

and since x′ > 0 it follows from Lemma 6.2 that it cannot be the case that p−p′ ≫ 0.

Therefore p2 ≤ p′2. Let x′′ ∈ R2
++ be such that x′′

2 = x′
2 and p · x′′

2 = 1; that is

x′′ = (X1(p, x
′
2), x

′
2); note that X1(p, x

′
2) is well defined because p2x

′
2 ≤ p′2x

′
2 ≤ 1.

Since p · x′ ≤ 1 = p · x′′ and x′′
2 = x′

2 it follows from Lemma 6.3 that x′′
1 ≥ x′

1.

Therefore x′′ ≥ x′, and, in particular, p′ · x′′ ≥ p′ · x′ ≥ 1. Since x2 ≥ x′
2 = x′′

2 and

p2 ≤ p′2 it follows from Lemma 6.6 that p′ · x ≥ 1 as desired.

The following lemma provides an equivalent characterization of permissible pairs.

Unlike the previous characterization, here the roles of p and p′ are not symmetric.

For fixed p and p′, the lemma states the restrictions on x′ (the demand at p′) such

that the pair (p, x), (p′, x′) is permissible assuming that x is already given. Recall

Figure 4(a). From the lemma we see that every good induces one restriction on x′.

If the good is cheaper for p′ (as is the good that corresponds to the vertical axis in

Figure 4(a)) then it induces an inequality of type 1 – an upper bound on the demand

for that good. This is the line A–A in the figure. If the good is more expensive for p′
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(as is the good that corresponds to the horizontal axis in Figure 4(a)) then it induces

an inequality of type 2 or 3, depending on whether x is a possible consumption at

the new price p′. In the figure, since x is not possible in the new price, we get an

inequality of type 3 – an upper bound on the demand for that product. This is the

line B–B in the figure.

Lemma 6.10. A pair (p, x), (p′, x′) is permissible iff the following conditions are

satisfied for every product i ∈ {1, 2} and j = 3 − i.

(1) If p′i ≤ pi then x′
i ≤ Xi(p ∧ p′, xj).

(2) If p′i > pi and p′ · x ≤ 1 then x′
j ≥ xj.

(3) If p′i > pi and p′ · x > 1 then x′
i ≤ xi.

The proof of Lemma 6.10 requires some auxiliary results, presented here as

Claims 6.12, 6.11, and 6.13.

Claim 6.11. If (p, x), (p′, x′) is a pair of data points and (p∧ p′) · (x∨ x′) ≤ 1 then

x′
i ≤ Xi(p ∧ p′, xj)

Proof. Let i ∈ {1, 2} and j = 3 − i. Let y ∈ R2
++ be such that yj = xj and yi = x′

i.

Then

(p ∧ p′) · y ≤ (p ∧ p′) · (x′ ∨ x) ≤ 1,

where the first inequality follows from the fact that y ≤ x′ ∨ x. In particular, it

follows from the last inequality and Lemma 6.5 that

x′
i = yi ≤ Xi(p ∧ p′, yj) = Xi(p ∧ p′, xj),

as desired.

Claim 6.12. For every p, p′ ∈ R2
++ and x ∈ L(p) the set of all x′ ∈ L(p′) such that

(p ∧ p′) · (x ∨ x′) ≤ 1 is a subinterval of L(p′)

Proof. The function x′ 7→ (p ∧ p′) · (x ∨ x′) is concave since the inner product is

monotone and linear and since

x ∨
(

λα + (1 − λ)β
)

≤ λ(x ∨ α) + (1 − λ)(x ∨ β)
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for every α, β ∈ R2
++ and every 0 ≤ λ ≤ 1.

Claim 6.13. If (p, x), (p′, x′) is a permissible pair such that x1 < x′
1 and x2 > x′

2

then p1 > p′1 and p2 < p′2.

Proof. We show that any other possibility leads to a contradiction. Note first that

Lemma 6.8 implies x ≥ x′ if p ≤ p′, and x ≤ x′ if p ≥ p′. Both cases contradict the

hypotheses on x and x′.

Second, suppose that p1 < p′1 and p2 > p′2. Consider the following three cases.

• If p′ · x ≤ 1, then x′
2 ≥ x2 by Condition 2 of Definition 1.

• If p · x′ ≤ 1, then x1 ≥ x′
1 by Condition 3 of Definition 1.

• If p′ · x > 1 and p · x′ > 1 then

0 < p · x′ + p′ · x − p · x − p′ · x′ = (p − p′) · (x′ − x) =

(p1 − p′1) · (x
′
1 − x1) + (p2 − p′2) · (x

′
2 − x2) < 0

The first inequality follows from the fact that p·x = p′ ·x′ = 1 and p·x′, p′ ·x >

1. The last inequality follows because, in each product, one multiplier is

negative and one is positive.

All three cases contradict the hypotheses on x and x′. The only possibility left is

p1 > p′1 and p2 < p′2, as desired.

We now prove Lemma 6.10

Proof. We consider separately the possible positions of p, p′, x, up to symmetry

between the products.

Case 1: p ≪ p′. We show first that the conditions in the lemma imply permissibility.

Since p ≪ p′ then p′ ·x = p·x+(p′−p)·x > 1 (the inequality follows from Lemma 6.2)

and, by Condition 3 in the lemma x′ ≤ x.

Since p ≤ p′, x′ ≤ x implies that (p∧p′) ·(x∨x′) = p ·x = 1. So Condition 1 in the

definition of permissibility is satisfied. In addition, x′ ≤ x implies that Condition 3

is satisfied. We show Condition 2: If p′ · x ≤ 1 and p′i > pi, then p · x = 1 implies
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that x′
i = xi = 0 and that p′j = pj for j = 3 − i. Then x′

2 = 1/p′2 = 1/p2 = x2. So

Condition 2 is satisfied.

Now we show that permissibility implies the conditions in the lemma. Condi-

tion 1 in the lemma follows from Claim 6.11. Condition 3 holds because Lemma 6.8

implies x′ ≤ x. Finally, Condition 2 follows from Condition 2 in the definition of

permissibility.

Case 2: p′ ≤ p. For each i, p′i ≤ pi. So x′
i ≤ Xi(p

′, xj) by Condition 1 of the lemma,

as p′ = p′ ∧ p′. But x′
i = Xi(p

′, x′
j), so Xi(p

′, x′
j) ≤ Xi(p

′, xj). Since Xi is monotone

decreasing in xj (item 3 of Lemma 6.4), xj ≤ x′
j. This shows that x ≤ x′. The rest

of the argument is analogous to the previous case.

Case 3: p1 < p′1, p2 > p′2 and p′ · x ≤ 1. Let

A = {x′ ∈ L(p′)|x′
2 ≥ x2, (p ∧ p′) · (x ∨ x′) ≤ 1}.

Note that A is the set of all x′ such that the pair (p, x), (p′, x′) is permissible. Let

B = {x′ ∈ L(p′)|x′
2 ≥ x2, x

′
2 ≤ X2(p ∧ p′, x1)}

be the set of all x′ such that the pair (p, x), (p′, x′) satisfies the conditions of

Lemma 6.10. We have to prove that A = B. From Claim 6.11 we get that A ⊆ B.

For the other direction, note that the set B is the closed interval whose endpoints

are the unique points y, z in L(p′) such that y2 = x2 and z2 = X2(p ∧ p′, x1). Since,

by Claim 6.12, A is an interval, it is sufficient to prove that y, z ∈ A.

Since p′ · x ≤ 1 it follows that x1 ≤ y1 and therefore x ≤ y and x ∨ y = y and

therefore

(p ∧ p′) · (x ∨ y) = (p ∧ p′) · y ≤ p′ · y = 1,

and thus y ∈ A.

Now,

z2 = X2(p ∧ p′, x1) ≥ X2(p, x1) = x2 and

z1 = X1(p
′, z2) ≤ X1(p

′ ∧ p, z2) = X1(p
′ ∧ p,X2(p

′ ∧ p, x1)) = x1,
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where the inequalities follow from item 2 of Lemma 6.4. It follows that x ∨ z =

(x1, z2). Since z2 = X2(p ∧ p′, x1) it follows that (p ∧ p′) · (x ∨ z) = 1 and therefore

z ∈ A.

Case 4: p1 < p′1, p2 > p′2 and p′ · x > 1. Note that, in this case, the conditions in

the lemma are equivalent to x′
1 ≤ x1 and x′

2 ≤ X2(p ∧ p′, x1).

We show first that permissibility implies the latter conditions. We need to show

that x′
1 ≤ x1, as Claim 6.11 gives x′

2 ≤ X2(p ∧ p′, x1). First, if p · x′ ≤ 1 then by

Condition 3 of the definition of permissibility x′
1 ≤ x1. Second, let p · x′ � 1. Then

p′ · x > 1 and p · x′ > 1 imply x′ � x and x � x′. Now, x′
1 > x1 and x′

2 < x2 imply,

by Claim 6.13 that p′1 < p1 and p′2 > p2. So it must be that x′
1 < x1 and x′

2 > x2.

Thus, either way we get that x′
1 ≤ x1.

We now show that the conditions imply permissibility. Let y = (x1, X2(p∧p′, x1));

so (p∧p′)·y = 1. Note that x2 = X2(p, x1) ≤ X2(p∧p′, x1), so x ≤ y. The conditions

are equivalent to x′ ≤ y. So we obtain

(p ∧ p′) · (x ∨ x′) ≤ (p ∧ p′) · (x ∨ y) ≤ (p ∧ p′) · y = 1.

Thus Condition 1 of the definition of permissibility is satisfied. Condition 2 in

the definition follows from Condition 2 in the lemma. Finally, Condition 3 in the

definition is satisfied since x′
1 ≤ x1.

The proof of Theorem 1 is based on the following lemma:

Lemma 6.14. Let P be a finite subset of R2
++ and let D : P → R2

+ be a permissible

partial demand function. Let p′ ∈ R2
++. Then D can be extended to a permissible

partial demand function over P ∪ {p′}.

Proof. For p ∈ P and x = D(p) let A(p) be the set of all x′ ∈ L(p′) such that the

pair (p, x), (p′, x′) is permissible. We have to prove that
⋂

p∈P A(p) is nonempty.

From Lemma 6.10, A(p) is a sub-interval of L(p′). It is then sufficient to show that

for any pa and pb in P , A(pa)∩A(pb) 6= ∅, as any collection of pairwise-intersecting
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intervals has nonempty intersection (an easy consequence of Helly’s Theorem, for

example see Rockafellar (1970), Corollary 21.3.2).

Thus we fix pa and pb in P . From Lemma 6.10, A(pa) and A(pb) are defined

by a set of inequalities, one inequality for each product. We have to show that

the intersection of the solution sets for these inequalities is nonempty. Note that

two inequalities that correspond to the same products are always simultaneously

satisfiable.

Case 1: p′1 ≤ pa
1 and p′2 ≤ pb

2. Let y ∈ R2
++ be given by y1 = X1(p

a ∧ p′, xa
2) and

y2 = X2(p
b ∧ p′, xb

1). We have to prove that L(p′) ∩ {x′|x′ ≤ y} is nonempty, or

equivalently that p′ · y ≥ 1. Indeed,

p′ · y = p′1 · y1 + p′2 · y2

= (p′1 ∧ pa
1) · y1 + (p′2 ∧ pb

2) · y2

= 2 −
∑

(i,j)∈{(a,2),(b,1)}

(p′j ∧ pi
j) · x

i
j

≥ 2 −
∑

(i,j)∈{(a,2),(b,1)}

(pj
j ∧ pi

j) · (x
i
j ∨ xj

j)

= 2 − (pa ∧ pb) · (xa ∨ xb)

≥ 1.

The second equality above follows from the fact that p′1 ≤ pa
1 and p′2 ≤ pb

2. The

third equality follows from the fact that (y1, x
a
2) ∈ L(p′ ∧ pa), so (p′1 ∧ pa

1) · y1 =

1 − (p′2 ∧ pa
2) · x

a
2, and similarly for (xb

1, y2). The first inequality is because p′1 ≤ pa
1

and p′2 ≤ pb
2. The last inequality is because (pa, xa), (pb, xb) is permissible.

Case 2: p′1 > pa
1 and p′ · xa ≤ 1, while p′2 > pb

2 and p′ · xb ≤ 1. Let y = (xb
1, x

a
2). We

have to prove that L(p′)∩ {x′|x′ ≥ y} is nonempty. Or, equivalently, that p′ · y ≤ 1.

If y ≤ xa or y ≤ xb then we are done. Suppose then that y � xa and y � xb; hence

that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows from Claim 6.13 that pa
1 > pb

1 and

pa
2 < pb

2. Since we assumed that p′2 > pb
2 it follows that p′2 > pa

2. Since we assumed

that p′1 > pa
1 it follows that p′ ≫ pa, which contradicts p′ · xa ≤ 1 (since pa · xa = 1).
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Case 3: p′1 > pa
1 and p′ · xa > 1, while p′2 > pb

2 and p′ · xb > 1. Let y = (xa
1, x

b
2).

We prove that L(p′) ∩ {x′|x′ ≤ y} is nonempty. Or, equivalently, that p′ · y ≥ 1.

If y ≥ xa or y ≥ xb then we are done. Suppose then that y � xa and y � xb, so

that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows from Claim 6.13 that pa
1 > pb

1 and

pa
2 < pb

2. Therefore pa ∧ pb = (pb
1, p

a
2) and xa ∨ xb = (xb

1, x
a
2). It follows that

p′ · y = p′1 · y1 + p′2 · y2 ≥ pa
1 · x

a
1 + pb

2 · x
b
2 =

2 − pb
1 · x

b
1 − pa

2 · x
a
2 = 2 − (pa ∧ pb) · (xa ∨ xb) ≥ 1,

The first inequality follows from the assumption that p′1 > pa
1 and p′2 > pb

2. The

second equality follows from pi · xi = 1, i = a, b. The last inequality follows from

permissibility (Condition 1 in Definition 1).

Case 4: p′1 ≤ pa
1 and p′2 > pb

2 and p′ · xb ≤ 1. Note first that Lemma 6.7 implies

p′1 ≤ pb
1. We need there to exist x′ ∈ L(p′) with x′

1 ≤ X1(p
a ∧ p′, xa

2) and x′
1 ≥ xb

1.

That is, we need xb
1 ≤ X1(p

a ∧ p′, xa
2). Or, equivalently, that (pa ∧ p′) · y ≤ 1

where y = (xb
1, x

a
2). If y ≤ xa then (pa ∧ p′) · y ≤ pa · xa = 1. If y ≤ xb then

(pa ∧ p′) · y ≤ p′ · xb ≤ 1. The only other possibility is that y > xa and y > xb, so

that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows in particular from Claim 6.13 that

pa
2 < pb

2. Now, p′1 ≤ pb
1 implies that pa ∧ p′ ≤ pb and therefore pa ∧ p′ ≤ pa ∧ pb. In

addition, in this case, y = xa ∨ xb. Therefore

(pa ∧ p′) · y ≤ (pa ∧ pb) · (xa ∨ xb) ≤ 1

the last inequality follows from Condition 1 in Definition 1

Case 5: p′1 ≤ pa
1 and p′2 > pb

2 and p′ · xb > 1. Let y1 = X1(p
a ∧ p′, xa

2) and y2 = xb
2.

We have to prove that the set L(p′) ∩ {x′|x′ ≤ y} is nonempty, or equivalently that

p′ · y ≥ 1. If xa
1 ≥ xb

1 then y ≥ xb (since y1 = X1(p
a ∧ p′, xa

2) ≥ X1(p
a, xa

2) = xa
1)

and, in particular, p′ · y ≥ p′ · xb ≥ 1. If xb
2 ≥ xa

2 then y2 ≥ X2(p
a ∧ p′, y1) (Since, by

Lemma 6.4, X2(p
a ∧ p′, y1) = xa

2) and therefore p′ · y ≥ (pa ∧ p′) · y ≥ 1. The only

other possibility is that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows from Claim 6.13
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that pa
2 < pb

2 and pa
1 > pb

1. So pa ∧ pb = (pb
1, p

a
2), and, since p′2 > pb

2, p′2 > pa
2. Now,

p′ · y ≥ (p′1, p
b
2) · (y1, y2) =

(pb
1, p

b
2) · (x

b
1, y2) + (p′1, p

a
2) · (y1, x

a
2) − (pb

1, p
a
2) · (x

b
1, x

a
2) ≥ 1.

Where the last inequality follows from the following observations:

(pb
1, p

b
2) · (x

b
1, y2) = pb · xb = 1.

(p′1, p
a
2) · (y1, x

a
2) = (pa ∧ p′) · (y1, x

a
2) = 1 since y1 = X1(p

a ∧ p′, xa
2).

(pb
1, p

a
2) · (x

b
1, x

a
2) = (pa ∧ pb) · (xa ∨ xb) ≤ 1

The last equality follows from (pb
1, p

a
2) = (pa ∧ pb), as we established above. The

inequality follows from permissibility.

Case 6: p′1 > pa
1 and p′ · xa ≤ 1 and p′2 > pb

2 and p′ · xb > 1. We have to prove

that xa
2 ≤ xb

2. Indeed, from Lemma 6.7 it follows that p′2 ≤ pa
2. Thus pa

2 > pb
2. If

pa · xb > 1 then by Condition 3 of Lemma 6.10 xa
2 ≤ xb

2, as desired. If pa · xb < 1

then, since pa
2 > pb

2, it follows from Condition 2 of Definition 1 that xa
1 ≥ xb

1. Since

p′ · xa ≤ 1 < p′ · xb it follows from Lemma 6.3 that xa
2 ≤ xb

2, as desired.

Finally, we complete the proof of Theorem 1. Let P be a finite subset of R2
++ and

let D : P → R2
+ be a partial demand function that satisfies the conditions of the

theorem, i.e. such that the pair (p,D(p)), (p′, D(p′)) is permissible for every p, p′ ∈

P . Let Q be a countable dense subset of R2
++ that contains P . By Lemma 6.14, D

can be extended to a function D : Q → R2
+ such that for every p, p′ ∈ Q the pair

(p,D(p)), (p′, D(p′)) is permissible.

In particular, by Lemma 6.8, D is monotone on Q. Extend D to R2
++ by defining

D̃(p) =
∧

q∈Q,q≤p D(q) for every p ∈ R2
++. Since D is monotone, it follows that

D̃(p) = D(p) for p ∈ Q and that D̃ is monotone. Since p · D(p) = 1 for p ∈ Q it

follows that p · D̃(p) = 1 for p ∈ R2
++. That is, for all q ∈ Q, q ≤ p, q · D̃(p) ≤

q · D (q) = 1, so that in the limit, p · D̃(p) ≤ 1. If, in fact, p · D̃(p) < 1, then

there exists q ∈ Q, q ≤ p such that p · D (q) < 1; from which we conclude that

q · D (q) ≤ q · D (p) < 1, a contradiction. Therefore, p · D̃(p) = 1.
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The following lemma is useful here and in Section 6.4

Lemma 6.15. If a demand function satisfies complementarity, then it is continuous.

Proof. Let p∗ ∈ R2
++ and {pn}∞n=1 ⊆ R2

++ such that pn → p∗. First consider the

case in which for all n, pn ≤ p∗. In particular, for all n, D (pn) ≥ D (p∗). Let ε > 0;

we wish to show that there exists some N such that for all i = 1, 2, n ≥ N implies

Di (p
n) < Di (p

∗) + ε. Suppose that there exists no such N and without loss of

generality suppose that D1 (pnk) > D1 (p∗) + ε for some subsequence. The equality

pnk

1 D1 (pnk) + pnk

2 D2 (pnk) = 1 implies that

D2(p
∗) ≤ D2 (pnk) =

1 − pnk

1 D1 (pnk)

pnk

2

<
1 − pnk

1 (D1 (p∗) + ε)

pnk

2

.

Hence, in the limit we have

D2 (p∗) ≤
1 − p∗1 (D1 (p∗) + ε)

p∗2
.

But then

p∗1D1(p
∗) + p∗2D2(p

∗) ≤ 1 − p∗1ε < 1,

contradicting that D is a demand function.

A similar argument holds for pn ≥ p∗.

Now suppose that pn is arbitrary. By monotonicity, we have

D (p∗ ∨ pn) ≤ D (pn) ≤ D (p∗ ∧ pn) ,

and as p∗ ∨ pn → p∗ and p∗ ∧ pn → p∗, we conclude that D (pn) → D (p∗).

It remains to show that D̃ is rationalizable by a monotone increasing utility. We

establish that D̃ satisfies the weak axiom so it is rationalizable. Then the results in

Section 6.4 imply the result (and more).

First note that, by Lemma 6.15, D̃ is continuous. We show that D̃ satisfies the

weak axiom. Suppose by means of contradiction that there exists p, p′ such that

p · D̃ (p′) < 1 and p′ · D̃ (p) ≤ 1. By monotonicity and continuity of D̃, we may
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therefore find q ∈ Q, q ≪ p′ such that p · D̃ (q) < 1 and q · D̃ (p) < 1. By continuity,

there exists q′ ∈ Q such that q′ · D̃ (q) < 1 and q · D̃ (q′) < 1. However, Lemma 6.9

implies that D̃ satisfies the axiom on Q, a contradiction.

6.4. Proof of Theorem 2. Let R be the revealed-preference binary relation on

R2
+, so x R y if there is a p with x = D(p) and p · y ≤ 1.

Lemma 6.16. Let D be a rationalizable continuous demand function. If x, x′ ∈ R2
+

with x R x′, there exists z ∈ D(Q2
++) and a neighborhood U of x′ such that x R z

and z R y for every y ∈ U .

Proof. Suppose first that p · x′ < 1. Then there exists q ∈ Q2
++ with p ≤ q and

q · x′ < 1. Let z = D(q) and U be a neighborhood of x′ such that q · y < 1 for every

y ∈ U . It follows that z Ry for every y ∈ U . Moreover, as p ≤ q and q · z = 1, xRz.

Secondly, suppose that p ·x′ = 1. Without loss of generality, suppose that x1 < x′
1

and x′
2 < x2. Choose w = (1/2)x + (1/2)x′, so x,w, x′ ∈ L(p). Let δ > 0 be

such that Bδ(x) ∩ Bδ(w) = ∅, where Bδ(x) denotes the open ball of radius δ and

center x. For all q1 < p1, let p̂2(q1) = (1/w2)(1 − q1w1) (Note that w2 > 0 since

w2 > x′
2 ≥ 0). So p̂2(q1) > p2 and w is the intersection of L(p) and L(q1, p̂2(q1)).

Note that if z ∈ L(q1, p̂2(q1)) and z1 < w1 then p ·z < 1 and if z ∈ L(p) with w1 < z1

then (q1, p̂2(q1)) · z < 1. Since demand is continuous, and x = D(p), there exists

ǫ > 0 such that p̃ ∈ Bǫ(p) implies D(p̃) ∈ Bδ(x). Fix q1 ∈ Q, q1 > p1, such that

(q1, p̂2(q1)) ∈ Bǫ(p). Note that by the choice of δ, and since D(q1, p̂2(q1)) ∈ Bδ(x), we

have that D(q1, p̂2(q1)) < w1. So p ·D(q1, p̂2(q1)) < 1. Similarly, (q1, p̂2(q1)) · x
′ < 1.

Using continuity of demand again, there is a q2 ∈ Q++ close enough to p̂2(q1) such

that p · D(q1, q2) < 1 and (q1, q2) · x
′ < 1. Let U be a neighborhood of x′ such that

(q1, q2) · y < 1 for every y ∈ U . Set z = D(q1, q2). Then x R z R y for every y ∈ U ,

as desired.

Lemma 6.17. A rationalizable continuous demand function satisfying the weak ax-

iom of revealed preference is rationalizable by an upper semicontinuous, strongly

monotone, and quasiconcave, utility.



BEHAVIORAL COMPLEMENTARITY 37

Remark. Lemma 6.17 is related to Theorem 12 in Richter (1971) and Theorem 1 in

Hurwicz and Richter (1971). Both results require a convex-range assumption. In

addition, the monotonicity and upper-semicontinuity hold on the range of demand,

not necessarily on consumption space. Richter (1971) obtains a strictly increasing

utility on the range of demand, in the sense that x > y implies u(x) > u(y). We

obtain a utility such that x ≫ y implies u(x) > u(y) and x ≥ y implies u (x) ≥ u (y).

Note that the demand function D(p1, p2) =
(

1/(p1 + p2), 1/(p1 + p2)
)

, which is

rationalized by u(x1, x2) = min{x1, x2}, admits no utility function that is strictly

monotone over R2. On the role of convex range, see our Example 1.

Proof. The proof uses the following standard definitions. A preorder � is a binary

relation which is both reflexive and transitive. If � is a preorder, define x ≻ y if

x � y and not y � x. A function u represents the pre-order if u(x) ≥ u(y) whenever

x � y and u(x) > u(y) whenever x ≻ y. A preorder is complete if x � y or y � x if

for every x, y. A preorder is monotone if x ≥ y → x � y; and strongly monotone if

it is strongly monotone and x ≫ y implies x ≻ y. A preorder is convex if {x|x � y}

is convex for every y and upper semi continuous if this set is closed for every y.

Let R be the revealed-preference binary relation on R2
+, so xRy if there is a p with

x = D(p) and p · y ≤ 1. It follows from Afriat’s Theorem that for every finite set

F ⊆ R2
+ there exists a convex, strongly monotone, complete preorder �F over R2

+

such that x �F y whenever x R y, for every x, y ∈ F . By the compactness theorem

(Richter, 1971, for example), there exists a convex, strongly monotone, complete

pre-order � over R2
+ such that x � y whenever x R y, for every x, y ∈ R2

+. Let S

be a dense countable subset of R2
++, closed under linear combinations with rational

coefficients, and such that D(Q2
++) ⊆ S. Let u : S → (0, 1) represent � over S

(a representation exists because S is countable and � is complete and transitive).

Define u∗ : R2
+ → [0, 1] as

u∗(x) = lim sup
s∈S→x

u(s).

We claim that u∗ is upper semicontinuous, strongly monotone, and quasi-concave.
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First, to see that u∗ is upper semicontinuous, we need to show that {y : u∗(y) < α}

is open for all α. So let x ∈ R2
+ be such that u∗(x) < α. Then there exists α′ such

that u∗(x) < α′ < α. By definition of u∗, there exists a neighborhood U of x such

that u(s) < α′ for every s ∈ U ∩ S. In particular, u∗(x′) ≤ α′ < α for every x′ ∈ U .

Thus, {y : u∗(y) < α} is open.

We now show that u∗ is monotone. Let x, y ∈ R2
+ such that x ≥ y. Let {sn}

∞
n=1 ⊆

S be such that sn → y and u(sn) → u∗(y) and let {tn}
∞
n=1 ⊆ S be such that tn ≥ 0

and tn → x − y. Then {sn + tn}
∞
n=1 ⊆ S and sn + tn → x. Moreover, for all n,

sn + tn ≥ sn. In particular, by monotonicity of � on S, for all n, sn + tn � sn.

Since u represents � on S it follows that for all n, u(sn + tn) ≥ u(sn). Therefore, by

definition of u∗ it follows that

u∗(x) ≥ lim sup
n→∞

u(sn + tn) ≥ lim sup
n→∞

u(sn) = u∗(y).

We now show that u∗ is strongly monotone. Let x, y ∈ R2
+ such that x ≫ y.

Let z, z′ ∈ S be such that x ≥ z ≫ z′ ≫ y (such z, z′ exist because S is dense).

Obviously, for any neighborhood U of x, there exists w ∈ U ∩ S such that w ≥ z,

so that by monotonicity of u on S, u∗(x) ≥ u(z) (by definition of u∗). Moreover,

u(z) > u(z′). Now, let V be any neighborhood of y for which for all w ∈ V , w ≪ z′.

Then for all w ∈ V ∩ S, u(w) < u(z′) by monotonicity; consequently, u∗(y) ≤ u(z′).

Thus, u∗(x) ≥ u(z) > u(z′) ≥ u∗(y), so that u∗(x) > u∗(y).

We now show that u∗ is quasiconcave. Let x, y ∈ R2
+ and λ ∈ [0, 1]. Let

{sn, tn}
∞
n=1 ⊆ S such that sn → x, u(sn) → u∗(x) and tn → y, u(tn) → u∗(y) and let

qn ∈ Q such that qn ∈ [0, 1] and qn → λ. Then qnsn + (1 − qn)tn → λx + (1 − λ)y.

Since � is convex and u represents � on S it follows that u(qnsn + (1 − qn)tn) ≥

min{u(sn), u(tn)} and therefore

u∗(λx + (1 − λ)y) ≥ lim sup
n→∞

u(qnsn + (1 − qn)tn)

≥ lim sup
n→∞

min{u(sn), u(tn)}

≥ min{lim inf
n→∞

u(sn), lim inf
n→∞

u(tn)} = min{u∗(x), u∗(y)}.
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It remains to show that u∗ rationalizes D. Equivalently, we show that x R y and

x 6= y implies that u∗(x) > u∗(y).

Assume that xRy and x 6= y. From the previous lemma it follows that there exists

q ∈ Q2
++ and an open neighborhood U of y such that x R D(q) and D(q) R y′ for

every y′ ∈ U . In particular, D(q) � y′ for every y′ ∈ U . Thus, u(D(q)) ≥ u(y′) for

all y′ ∈ U ∩S as u represents � on S. Consequently, for all y′ ∈ U , u∗(y′) ≤ u(D(q)).

Thus, let y′ ∈ U such that y′ ≫ y. Thus, u(D(q)) ≥ u∗(y′) > u∗(y), where the last

inequality follows from monotonicity of u∗. So u(D(q)) > u∗(y).

Now, let {sn}
∞
n=1 ⊆ S be such that sn ≥ x and sn → x. Then sn � x � D(q), as �

is a monotonic extension of R. Thus u(sn) ≥ u(D(q)) for every n, since u represents

� on S. By the definition of u∗ it follows that u∗(x) ≥ u(D(q)). It follows that

u∗(x) ≥ u(D(q)) > u∗(y),

as desired.

Remark. Theorem 2 follows from lemmas 6.15 and 6.17.
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