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Abstract

We analyze a two-player game of strategic experimentation with two-armed bandits.

Each player has to decide in continuous time whether to use a safe arm with a known

payoff or a risky arm whose likelihood of delivering payoffs is initially unknown. The

quality of the risky arms is perfectly negatively correlated between players. In marked

contrast to the case where both risky arms are of the same type, we find that learn-

ing will be complete in any Markov perfect equilibrium if the stakes exceed a certain

threshold, and that all equilibria are in cutoff strategies. For low stakes, the equilib-

rium is unique, symmetric, and coincides with the planner’s solution. For high stakes,

the equilibrium is unique, symmetric, and tantamount to myopic behavior. For inter-

mediate stakes, there is a continuum of equilibria.
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1 Introduction

Two-armed bandit problems as a means of modeling the trade-off between experimentation

and exploitation have already received a quite extensive treatment in the literature thus far,

even though most of the interest has been decision-theoretic, i.e. focussing on single-agent

problems. Only recently has strategic interaction been introduced into the model: Bolton

and Harris (1999, 2000) analyze the case of Brownian motion bandits, while Keller, Rady,

Cripps (2005) as well as Keller and Rady (2007) analyze Poisson bandits. All of the previous

literature, however, has assumed perfect positive correlation across bandits; what was good

news to any given player was assumed to be good news for everybody else.

In the real world, however, situations abound where one man’s boon is the other one’s

bane. Think of a suit at law, for instance: Whatever is good news for one party is bad news

for the other. An appropriate model of strategic interaction in such a setup would, as a

matter of course, assume correlation across bandits was negative. This we propose to do in

the present paper.1

In this respect, our work is related to Dewatripont and Tirole (1999), who, in a moral

hazard setting, which bears no resemblance to ours, pose the question whether it is socially

better to adjudicate disputes through a centralized system of gathering evidence, which they

assimilate to the inquisitorial system of Civil Law countries, or whether the interests of

justice may be better served in a decentralized, adversarial system, as it is found in the

Common Law countries. They show that, in a centralized system, it is not possible to give

adequate incentives to make sure the truth is uncovered, and conclude that the Common Law

system of gathering information was therefore superior. Our model provides an alternative

framework to ascertain the effectiveness of information-gathering processes in a strategic

setting where the parties’ interests are diametrically opposed.

Rather surprisingly, in our setup, all Markov perfect equilibria are in cutoff strate-

gies (i.e. of the form “play risky at beliefs more optimistic than some threshold, and safe

otherwise”). While this structure of optimal strategies is prevalent in single-agent bandit

problems, our result is in stark contrast to Keller, Rady and Cripps (2005), who find that

there is no such equilibrium when all risky arms are of the same type.

On account of the symmetry of the situation, it is not surprising that there always

exists a symmetric equilibrium, where both players use the same cutoff. This symmetric

1There is a decision-theoretic literature on correlated bandits which analyzes correlation across different

arms of a bandit operated by a single agent; see e.g. Camargo (2007) for a recent contribution to this

literature, or Pastorino (2005) for economic applications. Our focus here is quite different, though, in that we

are concerned with correlation between different bandits operated by two players who interact strategically.
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equilibrium is unique. What is more, we are able to show that for a large set of parameter

values, there is no other equilibrium besides the symmetric one. This uniqueness result is

again in sharp contrast to the multiplicity of equilibria in Keller, Rady and Cripps (2005).

When the stakes (as measured by the payoff advantage of a good risky arm over a safe

one) are low, the unique equilibrium is efficient. This is due to the fact that, with low stakes,

single-agent cutoff beliefs are so optimistic that the two bandit problems essentially fail to

interact. Hence, the social planner will treat them as two separate problems, and will let the

players behave as though they were single agents, which is then obviously consistent with

equilibrium.

When the stakes are high, equilibrium is again unique, and it amounts to the players’

behaving myopically, and hence inefficiently. With the stakes high, players are so eager to

play risky that there exists a range of beliefs where both are experimenting. Of course,

when both are doing the same thing with the same result, there is no new information made

available. Thus, the players are essentially shutting down the incremental learning process,

keeping the belief at its current value and effectively freezing the problem in its current state.

This, however, they are only willing to do if the current state is attractive from a myopic

perspective.

If the stakes are intermediate in size, there is a continuum of equilibria. As the stakes

gradually increase and we move from the low to the intermediate case, at first, given any

initial belief, there still exists among the continuum of equilibria one that is efficient. As

stakes increase further, there then appears a range of initial beliefs for which no equilibrium

achieves efficiency. As we move from high stakes down to intermediate stakes, there at

first always exists an equilibrium that involves one player behaving myopically. To achieve

this, the other player has to bear the entire load of experimentation by himself when the

uncertainty is greatest. As stakes gradually grow lower, however, the other player will at

some point no longer be willing to bear this burden, and the equilibrium disappears.

Our strategic setting assumes that either player’s actions and payoffs are perfectly ob-

servable to the other player. Hence, information that is garnered via experimentation is

a public good. Therefore, intuition would suggest, and the previous literature would con-

firm, that levels of experimentation were depressed by an inherent free-rider problem and

learning would often cease prematurely. Our analysis, however, shows that incompleteness

of information gathering, which has been prevalent throughout the previous strategic ex-

perimentation literature, can be overcome by competition between two antagonistic agents.

More precisely, we find that, in equilibrium, learning will be complete whenever this is effi-

cient. Thus, whenever society places a lot of emphasis on uncovering the truth, as one may

argue is the case with the justice system, our analysis would suggest an adversarial setup
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was superior.2

Our analysis would furthermore suggest that competition was conducive to investment

in risky experimentation. This is consistent with the recent literature on growth, innovation

and R&D which shows that decentralization of decision structures boosts investments in

innovation; see, for example, Aghion and Howitt (2006), Acemoglu et al. (2006), Aghion et

al. (2006).

The rest of the paper is structured as follows. Section 2 introduces the model. Section

3 analyzes the planner’s solution. Section 4 sets up the non-cooperative game. Section 5

discusses long-run properties of learning in equilibrium. Section 6 characterizes the Markov

perfect equilibria of the non-cooperative game. Section 7 concludes. Proofs are provided in

the appendix.

2 The Model

There are two players, 1 and 2, each of whom faces a two-armed bandit problem in continuous

time. Bandits are of the exponential type studied in Keller, Rady and Cripps (2005). One

arm is safe in that it yields a known payoff flow of s; the other arm is risky in that it is

either good or bad. If it is bad, it never yields any payoff; if it is good, it yields a lump-

sum payoff with probability λdt when used over a time of length dt. Let g dt denote the

corresponding expected payoff increment; thus, g is the product of the arrival rate λ and

the average size of a lump-sum payoff. The time-invariant constants λ > 0 and g > 0 are

common knowledge. It is also common knowledge that exactly one bandit’s risky arm is

good. To have an interesting problem, we assume that the expected payoff of a good risky

arm exceeds that of the safe arm, whereas the safe arm is better than a bad risky arm, i.e.,

g > s > 0.

The strategic link between the two players’ actions is provided by the assumption that

players perfectly observe each other’s actions and payoffs. Thus, as the bandits are perfectly

negatively correlated, any information that is garnered about the quality of the risky arm

is a public good. At the outset of the game, players have a common prior about which of

the risky arms is good. Since the results of each player’s experimentation are public, players

share a common posterior at all times. Let pt be the players’ posterior probability assessment

2Our complete learning result carries over to the situation where the players’ actions are publicly observ-

able, but their payoffs are private information. In this respect, our work is related to the growing literature

on strategic learning with private information; cf. Moscarini and Squintani (2004), Hopenhayn and Squintani

(2006), Murto and Välimäki (2006), and Rosenberg, Solan and Vieille (2007a, b).
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that player 1’s risky arm is good. This common posterior will serve as the problem’s state

variable, as it encapsulates all relevant information about the decision problem.

Each player chooses actions {kt}t≥0 such that kt ∈ {0, 1} is measurable with respect to

the information available at time t, with kt = 1 indicating use of the risky arm, and kt = 0

use of the safe arm. The player’s total expected discounted payoff, expressed in per-period

units, is

E

[
∫ ∞

0

r e−r t [(1 − kt)s + ktptg] dt

]

,

where the expectation is taken over the stochastic processes {kt} and {pt}, and r is the

players’ common discount rate.

The belief jumps to 1 if there has been a breakthrough on player 1’s bandit, and to 0 if

there has been a breakthrough on player 2’s bandit, where in either case it will remain ever

after. If the players choose the actions k1 and k2 over the time interval [t, t + ∆] and there

is no breakthrough on either bandit, Bayes’ rule gives us

pt+∆ =
pte

−λk1∆

pte−λk1∆ + (1 − pt)e−λk2∆
,

and so the belief solves the ordinary differential equation

ṗ = −(k1 − k2)λp(1 − p).

Note that for k1 = k2 = 1, the belief remains unchanged up to the first breakthrough on a

risky arm.

3 The Planner’s Problem

In this section, we shall be examining a benevolent utilitarian social planner’s behavior in

our setup. Proceeding exactly as Keller, Rady and Cripps (2005), we can write the Bellman

equation for the maximization of the average payoff from the two bandits as

u(p) = s + max
(k1,k2)∈{0,1}2

{

k1

[

B1(p, u) −
c1(p)

2

]

+ k2

[

B2(p, u) −
c2(p)

2

]}

,

where B1(p, u) = λ
r
p[g+s

2
−u(p)− (1−p)u′(p)] measures the expected benefit of playing risky

arm 1, B2(p, u) = λ
r
(1 − p)[g+s

2
− u(p) + pu′(p)] the expected benefit of playing risky arm

2, c1(p) = s − pg the opportunity cost of playing risky arm 1, and c2(p) = s − (1 − p)g the

opportunity cost of playing risky arm 2. Thus, the planner’s problem is linear in both k1

and k2, and the planner is maximizing separately over k1 and k2.

4



If it is optimal to set k1 = k2 = 0, then the value function works out as u(p) = s. If it is

optimal to set k1 = k2 = 1, then the Bellman equation reduces to u(p) = λ
r

[

g+s

2
− u(p)

]

+ g

2
,

and so u(p) = u11 = 1
2

(

g + λ
λ+r

s
)

.

If it is optimal to set k1 = 0 and k2 = 1, then the Bellman equation amounts to the

first-order ODE

λp(1 − p)u′(p) − [r + λ(1 − p)]u(p) = −1
2
{[r + λ(1 − p)]s + (r + λ)(1 − p)g} .

This has the solution

u(p) = 1
2
[s + (1 − p)g] + Cp

r+λ

λ (1 − p)−
r

λ ,

where C is some constant of integration.

Finally, if it is optimal to set k1 = 1 and k2 = 0, then the Bellman equation is tantamount

to the first-order ODE

λp(1 − p)u′
1(p) + (r + λp)u1(p) = 1

2
{(r + λp)s + (r + λ)pg} ,

which is solved by

u(p) = 1
2
(s + pg) + C (1 − p)

r+λ

λ p−
r

λ .

Note that whenever k1 = k2, the value function is flat as the planner does not care which

arm is good. For the same reason, the problem is symmetric around p = 1
2
. All the planner

cares about is the uncertainty that stands in the way of his realizing the upper bound on

the value function, g+s

2
. Hence, intuitively, the planner’s value function will admit its global

minimum at p = 1
2
, where the uncertainty is starkest.

It is clear that (k1, k2) = (1, 0) will be optimal in a neighborhood of p = 1, and (k1, k2) =

(0, 1) in a neighborhood of p = 0. What is optimal at beliefs around p = 1
2

depends on which

of the two possible plateaus s and u11 is higher. This in turn depends on the size of the stakes

involved, i.e. on the value of information as measured by the ratio g

s
, and on the parameters

λ and r that govern the speed of resolution of uncertainty and the planner’s impatience. In

fact, s > u11 if and only if g

s
< 2r+λ

r+λ
. This is the case we consider first.

Proposition 3.1 If g

s
< 2r+λ

r+λ
, it is optimal for the planner to use k1 = k2 = 0 on ]1−p∗, p∗[ ,

(k1, k2) = (0, 1) on [0, 1− p∗[ , and (k1, k2) = (1, 0) on ]p∗, 1], where p∗ = rs
(r+λ)g−λs

> 1
2
. The

choice of actions at 1 − p∗ and p∗ is of no consequence. The planner’s value function is

u(p) =























1
2

{

s + (1 − p)g + (s − p∗g)
(

p

1−p∗

)
r+λ

λ

(

1−p

p∗

)− r

λ

}

if p ≤ 1 − p∗,

s if 1 − p∗ ≤ p ≤ p∗,

1
2

{

s + pg + (s − p∗g)
(

1−p

1−p∗

)
r+λ

λ

(

p

p∗

)− r

λ

}

if p ≥ p∗.
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Figure 1 illustrates the result. Interestingly, p∗ equals the cut-off belief for the single-

agent problem in Keller, Rady and Cripps (2005). Thus, when the (social) value of infor-

mation, as measured by g

s
, is so low that the single-agent cutoff p∗ > 1

2
, it is optimal for the

planner to let the players behave as though they were single players solving two separate,

completely unconnected, problems.

s

g+s

2

0 1 − p∗ 1
2

p∗ 1

Figure 1: The planner’s value function for g

s
< 2r+λ

r+λ
.

Conditional on there not being a breakthrough, the belief will evolve according to

ṗ =











λp(1 − p) if p < 1 − p∗,

0 if 1 − p∗ ≤ p ≤ p∗,

−λp(1 − p) if p > p∗.

Let us suppose risky arm 1 is good. If the initial belief p0 < 1 − p∗, then the posterior

belief will converge to 1 − p∗ with probability 1 as there cannot be a breakthrough on risky

arm 2. If 1 − p∗ ≤ p0 ≤ p∗, the belief will remain unchanged at p0. If p0 > p∗, the belief

will converge either to 1 or to p∗. If t∗ is the length of time needed for the belief to reach

p∗ conditional on there not being a breakthrough on risky arm 1, the probability that the

belief will converge to p∗ is e−λt∗ . By Bayes’ rule, we have 1−pt

pt
= 1−p0

p0e−λt in the absence

of a breakthrough, and so e−λt∗ = 1−p0

p0

p∗

1−p∗
. The belief will therefore converge to p∗ (and

learning will remain incomplete) with probability 1−p0

p0

p∗

1−p∗
, and to 1 (and hence the truth)

with the counter-probability. Analogous results hold when risky arm 2 is good.

Next, we turn to the case where u11 > s and so playing safe on both arms cannot be

part of the planner’s solution.
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Proposition 3.2 If g

s
> 2r+λ

r+λ
, it is optimal for the planner to use k1 = k2 = 1 on ]p̄, 1− p̄[ ,

(k1, k2) = (0, 1) on [0, p̄[ , and (k1, k2) = (1, 0) on ]1 − p̄, 1], where p̄ = (r+λ)s
(r+λ)g+λs

< 1
2
. The

choice of actions at p̄ and 1 − p̄ is of no consequence. The planner’s value function is

u(p) =























1
2

{

s + (1 − p)g +
[

p̄g − r
r+λ

s
]

(

p

p̄

)
r+λ

λ

(

1−p

1−p̄

)− r

λ

}

if p ≤ p̄,

1
2

(

g + λ
r+λ

s
)

if p̄ ≤ p ≤ 1 − p̄,

1
2

{

s + pg +
[

p̄g − r
r+λ

s
]

(

1−p

p̄

)
r+λ

λ

(

p

1−p̄

)− r

λ

}

if p ≥ 1 − p̄.

Figure 2 illustrates this result.

s

u11

g+s

2

0 p̄ 1
2

1 − p̄ 1

Figure 2: The planner’s value function for g

s
> 2r+λ

r+λ
.

The dynamics of beliefs conditional on there not being a breakthrough are now given

by

ṗ =











λp(1 − p) if p < p̄,

0 if p̄ ≤ p ≤ 1 − p̄,

−λp(1 − p) if p > 1 − p̄.

Whenever the stakes are high, therefore, the planner shuts down incremental learning on

[p̄, 1 − p̄]. Yet he will still learn the truth with probability 1 in the long run because this

interval is absorbing for the posterior belief process in the absence of a breakthrough, and

he uses both risky arms forever once it is reached.

In summary, when g

s
> 2r+λ

r+λ
, efficiency calls for complete learning, i.e., convergence of

the posterior belief p to the truth with probability 1. When g

s
< 2r+λ

r+λ
, however, efficient

learning can be incomplete.
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Note finally that when g

s
= 2r+λ

r+λ
, p̄ = p∗ = 1

2
, and so both of the above results hold in

this knife-edge case.

4 The Strategic Problem

Our solution concept is Markov perfect equilibrium, with the players’ common posterior p as

the state variable. As strategies of player i = 1, 2, we allow all functions ki : [0, 1] → {0, 1}

for which k−1
i (1) is the union of a finite number of (possibly degenerate) intervals. Given

strategies k1, k2: [0, 1] → {0, 1}, the payoff function of player i is

ui(p) = E

[
∫ ∞

0

re−rt {ki(pt)g + [1 − ki(pt)]s} dt

]

if, starting from p0 = p, the strategies induce a well-defined and unique law of motion for

the posterior beliefs {pt}t>0; otherwise, ui(p) = −∞.3

Again proceeding as in Keller, Rady and Cripps (2005), we see that the following Bell-

man equation characterizes player 1’s best responses against his opponent’s strategy k2:

u1(p) = s + k2(p)β1(p, u1) + max
k1∈{0,1}

k1[b1(p, u1) − c1(p)],

where c1(p) = s − pg is the opportunity cost player 1 has to bear when he plays risky,

b1(p, u1) = λ
r
p[g − u1(p) − (1 − p)u′

1(p)] is the learning benefit player 1 accrues when he is

playing risky, and β1(p, u1) = λ
r
(1− p)[s− u1(p) + pu′

1(p)] is the learning benefit accruing to

player 1 from player 2’s playing risky.4

Analogously, the Bellman equation for player 2 is

u2(p) = s + k1(p)β2(p, u2) + max
k2∈{0,1}

k2[b2(p, u2) − c2(p)],

where c2(p) = s− (1− p)g is the opportunity cost player 2 has to bear when he plays risky,

b2(p, u2) = λ
r
(1− p)[g − u2(p) + pu′

2(p)] is the learning benefit player 2 accrues himself when

playing risky, and β2(p, u2) = λ
r
p[s− u2(p)− (1− p)u′

2(p)] is the learning benefit accruing to

player 2 from player 1’s playing risky.

3The law of motion is well-defined and unique if the differential equation ṗ = −[k1(p) − k2(p)]λp(1 − p)

possesses a unique global solution for any initial value on the unit interval. This has to be the case in

equilibrium, of course.
4By standard results, player 1’s payoff function from playing a best response against k2 is once continu-

ously differentiable on any open interval of beliefs where player 2’s action is constant. At a belief where k2

is discontinuous, u′
1
(p) must be understood as the one-sided derivative of u1 in the direction implied by the

law of motion of beliefs.
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It is straightforward to obtain closed-form solutions for the payoff functions. If k1(p) =

k2(p) = 0, the players’ payoffs are u1(p) = u2(p) = s. If k1(p) = k2(p) = 1, the Bellman

equations yield u1(p) = pg + λ
λ+r

(1 − p)s and u2(p) = u1(1 − p). On any interval where

k1(p) = 1 and k2(p) = 0, u1 and u2 satisfy the ODEs

λp(1 − p)u′
1(p) + (r + λp)u1(p) = (r + λ)pg,

λp(1 − p)u′
2(p) + (r + λp)u2(p) = (r + λp)s,

which have the solutions u1(p) = pg+C1(1−p)
r+λ

λ p−
r

λ and u2(p) = s+C2(1−p)
r+λ

λ p−
r

λ with

constants of integration C1 and C2, respectively. Finally, on any interval where k1(p) = 0

and k2(p) = 1, u1 and u2 solve

λp(1 − p)u′
1(p) − [r + λ(1 − p)]u1(p) = −[r + λ(1 − p)]s,

λp(1 − p)u′
2(p) − [r + λ(1 − p)]u2(p) = −(r + λ)(1 − p)g,

which implies u1(p) = s + C1p
r+λ

λ (1 − p)−
r

λ and u2(p) = (1 − p)g + C2p
r+λ

λ (1 − p)−
r

λ .

5 Complete Learning

In this section, we shall show that whenever the planner’s solution leads to complete learning,

so will any MPE of the experimentation game. To this end, we first establish a lower bound

on equilibrium payoffs.

From Keller, Rady and Cripps (2005), the optimal payoffs of player 1 and 2, if they

were experimenting in isolation and hence applying the cutoffs p∗ and 1 − p∗, respectively,

would be

u∗
1(p) =







s if p ≤ p∗,

pg + (s − p∗g)
(

1−p

1−p∗

)
r+λ

λ

(

p

p∗

)− r

λ

if p ≥ p∗

and u∗
2(p) = u∗

1(1− p). Since each player in the experimentation game always has the option

to act as though he were a single player by just ignoring the additional signal he gets from

the other player, it is quite intuitive that he cannot possibly do worse with the other player

around than if he were by himself.5 The following lemma confirms this intuition.

Lemma 5.1 The value function of the respective single-agent problem constitutes a lower

bound on each player’s equilibrium value function in any Markov perfect equilibrium.

5Clearly, this intuition carries over to the case where only a player’s actions are observable, while his

payoffs are private information. The results of this section are therefore robust to the introduction of this

form of private information.
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Now, if g

s
> 2r+λ

r+λ
, then p∗ < 1

2
< 1− p∗, so at any belief p, Lemma 5.1 implies u∗

1(p) > s

or u∗
2(p) > s or both. Thus, there cannot exist a p such that k1(p) = k2(p) = 0 be mutually

best responses as this would mean u1(p) = u2(p) = s. This proves the following proposition:

Proposition 5.2 If g

s
> 2r+λ

r+λ
, learning will be complete in any Markov perfect equilibrium.

Whenever efficiency calls for complete learning, therefore, learning will be complete in

equilibrium. This complete learning result is in stark contrast to the benchmark problem

of perfect positive correlation in Bolton and Harris (1999) and Keller, Rady and Cripps

(2005), where there is always a range of beliefs for which learning will be incomplete. This

thus confirms Dewatripont and Tirole’s (1999) finding that two adversaries at loggerheads

will perform better at (eventually) eliciting the truth than two partners whose interests are

perfectly aligned. Indeed, provided the stakes are high enough, incomplete learning can be

overcome by competition, our analysis shows.

6 Markov Perfect Equilibria

Our next aim is to the characterize the Markov perfect equilibria of the experimentation

game. We treat two MPE as identical if they lead to the same law of motion of posterior

beliefs and the same payoff functions.

The profile of actions (k1, k2) must be (0, 0), (0, 1), (1, 0) or (1, 1) at any belief. For
g

s
< 2r+λ

r+λ
, the profile (1, 1) cannot occur in equilibrium since it would imply an average

payoff of u11 < s at the relevant belief, giving at least one player a payoff below s, and hence

below his single-agent optimum. For g

s
> 2r+λ

r+λ
, on the other hand, the profile (0, 0) cannot

occur since it would imply incomplete learning.

We say that the transition (k−
1 , k−

2 )—(k1, k2)—(k+
1 , k+

2 ) occurs at the belief p̂ ∈ ]0, 1[ if

limp↑p̂(k1(p), k2(p)) = (k−
1 , k−

2 ), (k1(p̂), k2(p̂)) = (k1, k2), limp↓p̂(k1(p), k2(p)) = (k+
1 , k+

2 ), and

at least one of the sets {k−
1 , k1, k

+
1 } and {k−

2 , k2, k
+
2 } contains more than one element. Given

our definition of strategies, each MPE has a finite number of transitions.

We first note that the transitions (0, 0)—(1, 0)—(0, 0) and (0, 0)—(0, 1)—(0, 0) can be

ignored since the law of motion of beliefs and players’ payoffs would be the same if both

played safe at p̂ and so no action changed there at all. Similarly, we can ignore the transitions

(1, 1)—(1, 0)—(1, 1) and (1, 1)—(0, 1)—(1, 1) since the law of motion of beliefs and players’

payoffs would be the same if both played risky at p̂.
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We further note that there can be no transitions (0, 1)—(1, 0)—(k+
1 , k+

2 ) in equilibrium.

In fact, the law of motion conditional on there being no breakthrough would read ṗ =

λp(1 − p) on [p̂ − ǫ, p̂[, and ṗ = −λp(1 − p) at p̂. Such a change in sign precludes the

existence of a solution with initial value p̂, and so the law of motion of our state variable

would not be well-defined.6 The same argument rules out transitions (k−
1 , k−

2 )—(0, 1)—(1, 0).

We call all transitions that cannot be ignored or have not been ruled out so far admis-

sible. Among these, we first consider transitions where one player’s action does not change.

To this end, we note that the cutoff belief above which a myopic player 1 (i.e., a player who is

only interested in maximizing current payoffs) would play risky is pm = s
g
. A myopic player

2 would play risky at beliefs below the cutoff 1 − pm. Invoking the standard principles of

value matching and smooth pasting, we obtain the following result.

Lemma 6.1 The following statements hold for all admissible transitions in any Markov

perfect equilibrium: (k−
1 , 0)—(k1, 0)—(k+

1 , 0) can only occur at the belief p∗, (0, k−
2 )—(0, k2)—

(0, k+
2 ) only at 1−p∗, (k−

1 , 1)—(k1, 1)—(k+
1 , 1) only at pm, and (1, k−

2 )—(1, k2)—(1, k+
2 ) only

at 1 − pm.

While it is intuitive that a player would apply the single-agent cutoff rule against an

opponent who plays safe and thus provides no information, it is surprising that the myopic

cutoff determines equilibrium behavior against an opponent who plays risky. Technically,

this result is due to the fact that along player 1’s payoff function for k1 = k2 = 1, his learning

benefit from playing risky vanishes:

b1(p, u1) =
λ

r
p

[

g −

(

pg +
λ

λ + r
(1 − p)s

)

− (1 − p)

(

g −
λ

λ + r
s

)]

= 0,

and so k1 = 1 is optimal against k2 = 1 if and only if c1(p) ≤ 0, that is, p ≥ pm. This is best

understood by recalling the law of motion of beliefs in the absence of a success on either

arm, ṗ = −(k1 − k2)λp(1− p), which tells us that if both players are playing risky, the state

variable does not budge. In other words, all a player does by chiming in in his opponent’s

experimentation is to keep the belief, his action and his continuation value constant until the

first success occurs. But this can only be optimal if he reaps maximal current payoffs while

he waits for the resolution of uncertainty. So his playing the risky arm must be myopically

optimal.

In the following lemma, we pin down the conditions under which some of the remaining

admissible transitions may occur in equilibrium.

6Similar problems have already been treated in the decision-theoretic literature. To guarantee a well-

defined law of motion of posterior beliefs, Presman (1990) allows for simultaneous use of both arms, i.e. for

experimentation intensities kt ∈ [0, 1].
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Lemma 6.2 The following statements hold for all Markov perfect equilibria. (i) The transi-

tion (0, 1)—(0, 0)—(1, 0) can only occur if g

s
= 2r+λ

r+λ
and only at belief 1

2
. (ii) The transition

(1, 0)—(0, 0)—(0, 1) can only occur if g

s
≤ 2r+λ

r+λ
and only at beliefs in [1 − p∗, p∗]. (iii)

The transition (0, 1)—(1, 1)—(1, 0) can only occur if 2r+λ
r+λ

≤ g

s
≤ 2 and only at beliefs in

[1 − pm, pm]. (iv) The transition (1, 0)—(1, 1)—(0, 1) can only occur if g

s
≥ 2 and only at

beliefs in [pm, 1 − pm].

The only admissible transitions that we have not addressed yet are those of the form

(1, 0)—(0, 1)—(k+
1 , k+

2 ) and (k−
1 , k−

2 )—(1, 0)—(0, 1). We will see later that they cannot occur

in equilibrium.

The structure of Markov perfect equilibria depends on the relative position of the pos-

sible transition points, which in turn depends on the stakes involved, i.e. on the ratio g

s
. For

expositional reasons, we shall first analyze the case of very low and that of very high stakes.

6.1 Low Stakes

The low-stakes case is defined by the inequality g

s
< 2r+λ

r+λ
. In this case, 1 − pm < 1 − p∗ <

1
2

< p∗ < pm.

Proposition 6.3 When g

s
< 2r+λ

r+λ
, the unique Markov perfect equilibrium coincides with the

planner’s solution. That is, player 1 plays risky at beliefs above p∗, and safe below p∗, while

player 2 plays risky at beliefs below 1 − p∗, and safe above 1 − p∗. Player 1’s behavior at p∗

and player 2’s behavior at 1 − p∗ are of no consequence. The pertaining value functions are

those of the respective single-agent problems, u∗
1 and u∗

2.

Figure 3 illustrates this result.7 The players’ average payoff function coincides with the

planner’s value function as stated in Proposition 3.1 and shown in Figure 1.

Why we should have efficiency in this case is intuitively quite clear, as the planner basi-

cally lets players behave as though they were single players. As p∗ > 1
2
, there is no spillover

from a player behaving like a single agent on the other player’s optimization problem. Hence

the latter’s best response calls for behaving like a single player as well. Thus, there is no

conflict between social and private incentives.

The law of motion for the belief and the probability of the players’ eventually finding

out the true state of the world are thus the same as in the planner’s solution for low stakes.

7In this and all subsequent figures, the thick solid line depicts the value function of player 1, the thin

solid line that of player 2, and the dotted line the players’ average payoff function.

12



s
0

g+s

2

g

1 − p∗ 1
2

p∗ 1

u2 u1

Figure 3: The equilibrium value functions for g

s
< 2r+λ

r+λ
.

6.2 High Stakes

The high-stakes case is defined by the inequality g

s
> 2. In this case, p∗ < pm < 1

2
< 1−pm <

1 − p∗.

Proposition 6.4 When g

s
> 2, the game has a unique Markov perfect equilibrium, in which

both players behave myopically. That is, player 1 plays risky at beliefs above pm, and safe

below pm, while player 2 plays risky at beliefs below 1 − pm, and safe above 1 − pm. Player

1’s behavior at pm and player 2’s behavior at 1 − pm are of no consequence. The pertaining

value functions are

u1(p) =



















s + λ
λ+r

(1 − pm)s
(

p

pm

)
r+λ

λ

(

1−p

1−pm

)− r

λ

if p ≤ pm,

pg + λ
λ+r

(1 − p)s if pm ≤ p ≤ 1 − pm,

pg + λ
λ+r

pms
(

1−p

pm

)
r+λ

λ

(

p

1−pm

)− r

λ

if p ≥ 1 − pm

and u2(p) = u1(1 − p).

Thus, the unique equilibrium calls for both players’ behaving myopically. This is best

understood by recalling from our discussion above that individual optimality calls for myopic

behavior whenever one’s opponent is playing risky. When the stakes are high, players’ myopic

cutoff beliefs are more pessimistic than p = 1
2
, so the relevant intervals overlap.

Figure 4 illustrates this result. Player 1’s value function has a kink at 1 − pm, where

player 2 changes action. Symmetrically, player 2’s value function has a kink at pm, where
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player 1 changes action. As a consequence, the average payoff function has a kink both at

pm and at 1 − pm. That it dips below the level u11 close to these kinks is evidence of the

inefficiency of equilibrium. We will return to this point in Section 6.4 below.

s
0

u11

g+s

2

g

pm 1
2

1 − pm 1

u2 u1

Figure 4: The equilibrium value functions for g

s
> 2.

Arguing exactly as after Proposition 3.2, it is straightforward to see that learning will

be complete, as predicted by Proposition 5.2.

6.3 Intermediate Stakes

This case is defined by the condition that 2r+λ
r+λ

< g

s
< 2. In this case, p∗ < 1

2
< pm.

When the stakes are intermediate in size, equilibrium is not unique; rather there is a

continuum of equilibria, as the following proposition shows.

Proposition 6.5 When 2r+λ
r+λ

< g

s
< 2, there is a continuum of Markov perfect equilibria.

Each of them is characterized by a unique belief p̂ ∈ [max{1− pm, p∗}, min{pm, 1− p∗}] such

that player 1 plays risky at all beliefs p ≥ p̂, and player 2 at all beliefs p ≤ p̂. The pertaining

value functions are given by

u1(p) =











s +
[

p̂g + λ
λ+r

(1 − p̂)s − s
]

(

p

p̂

)
r+λ

λ

(

1−p

1−p̂

)− r

λ

if p ≤ p̂

pg + λ
λ+r

(1 − p̂)s
(

1−p

1−p̂

)
r+λ

λ

(

p

p̂

)− r

λ

if p ≥ p̂
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for player 1, and

u2(p) =











(1 − p)g + λ
λ+r

p̂s
(

p

p̂

)
r+λ

λ

(

1−p

1−p̂

)− r

λ

if p ≤ p̂

s +
[

(1 − p̂)g + λ
λ+r

p̂s − s
]

(

1−p

1−p̂

)
r+λ

λ

(

p

p̂

)− r

λ

if p ≥ p̂

for player 2.

Amongst the continuum of equilibria characterized in Proposition 6.5, there is a unique

symmetric one, given by p̂ = 1
2
. Figure 5 illustrates this equilibrium. Both players’ value

functions and their average are kinked at p = 1
2
, where both players change action. At any

belief except p = 1
2
, the average payoff function is below the planner’s solution; if the initial

belief is p0 = 1
2
, however, the efficient average payoff u11 is achieved.

s
0

u11

g+s

2

g

1
2

1

u2 u1

Figure 5: The value functions in the unique symmetric equilibrium for 2r+λ
r+λ

< g

s
< 2.

For arbitrary p̂, the dynamics of beliefs in the absence of a breakthrough are given by

ṗ =











λp(1 − p) if p < p̂,

0 if p = p̂,

−λp(1 − p) if p > p̂.

As predicted by Proposition 5.2, learning is complete in all these equilibria.

6.4 Efficiency vs. Myopia

As we have pointed out already, when the stakes are low, players do not interfere with each

other’s optimization problem and behave as though they were all by themselves. We have
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seen that this kind of behavior is also efficient.

If stakes are high, however, we have seen that players behave myopically. This implies

that in the unique MPE, experimentation is at efficient levels except on [p̄, pm]∪ [1− pm, 1−

p̄], the union of two non-empty and non-degenerate intervals, where experimentation is

inefficiently low. Put differently, there is a region of beliefs where one player free-rides on

the other player’s experimentation, which is inefficient from a social point of view.

In the case of intermediate stakes, equilibrium behavior changes gradually from efficiency

to myopia. Indeed, as is easily verified, if 2r+λ
r+λ

< g

s
≤ 2r+λ

2(r+λ)
+

√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
, then the lower

bound on the equilibrium cutoff p̂ satisfies max{p∗, 1 − pm} ≤ p̄. Now, if the players’ initial

belief is p0 > p̄, the equilibrium with p̂ = p̄ achieves efficiency as the only beliefs that

are reached with positive probability under the equilibrium strategies are given by the set

{0, 1} ∪ [p0, p̂], and the equilibrium strategies prescribe the efficient actions at all of these

beliefs. Similarly, for p0 < 1 − p̄, efficiency is achieved by the equilibrium with p̂ = 1 − p̄.

Finally, if p̄ ≤ p0 ≤ 1 − p̄, efficiency is achieved by the equilibrium with p̂ = p0, since this

ensures that only beliefs in {0, p0, 1} are reached with positive probability.

If 2r+λ
2(r+λ)

+
√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
< g

s
< 2, then p∗ < p̄ < 1−pm. Now, suppose p̄ ≤ p0 < 1−pm.

Equilibrium uniquely calls for (k1, k2)(p) = (0, 1) for all p ≤ 1−pm, whereas efficiency would

require (k1, k2)(p) = (1, 1) whenever p̄ < p ≤ 1 − p̄. Thus, equilibrium implies inefficient

play on the interval ]p̄, 1 − pm[ which is reached with positive probability given the initial

belief p0.

Combined with our results for low and high stakes, these arguments establish the fol-

lowing proposition.

Proposition 6.6 If g

s
≤ 2r+λ

2(r+λ)
+

√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
, then for each initial belief, there ex-

ists a Markov perfect equilibrium that achieves the efficient outcome. If g

s
> 2r+λ

2(r+λ)
+

√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
, there are initial beliefs under which the efficient outcome cannot be reached

in equilibrium.

If 1 +
√

r
r+λ

≤ g

s
< 2, then pm ≤ 1 − p∗. In this situation, setting p̂ = pm (p̂ = 1 − pm)

yields an equilibrium where only player 1 (player 2) behaves myopically, while the other

player bears the entire burden of experimentation by himself, something he is only willing

to do provided the stakes involved exceed the threshold of 1+
√

r
r+λ

. In view of our findings

for low and high stakes, this establishes the following result.

Proposition 6.7 If g

s
≥ 1 +

√

r
r+λ

, there exists a Markov perfect equilibrium where at least
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one of the players behaves myopically. If g

s
< 1 +

√

r
r+λ

, no player behaves myopically in

equilibrium.

Note that for certain parameter values, namely if 1+
√

r
r+λ

≤ g

s
≤ 2r+λ

2(r+λ)
+

√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
,

equilibria where one player behaves myopically co-exist with equilibria that achieve efficiency

given the initial belief.

7 Conclusion

We have analyzed a game of strategic experimentation in continuous time where players’

interests are diametrically opposed. We have found that, in very sharp contrast to the case

where players’ interests are perfectly aligned, all the equilibria are of the cutoff type, and that

for a large subset of parameters, equilibrium is unique. When the stakes are low, equilibrium

behavior is efficient, whereas for high stakes players behave myopically.

In our analysis, we have restricted ourselves to what in the literature has been termed

“pure strategy equilibria” (by Bolton and Harris, 1999, and 2000) or “‘simple equilibria” (by

Keller, Rady and Cripps, 2005, and Keller and Rady, 2007). Our results on efficiency, as

well as our complete learning result, are robust to an extension of the strategy space where

players are allowed to choose experimentation intensities from the entire unit interval.

Our finding that incomplete learning, which hitherto has been a staple result of the

strategic two-armed bandit literature, can be overcome by competition, may be interesting

as a building block for more applied models with a richer structure. For instance, it may

constitute a microfoundation for the empirical fact that democracy and decentralization will

foster investments in risky R&D and innovation. For example, Aghion, Alesina, and Trebbi

(2007) were able to show empirically that democracy and political rights enhance the growth

of technologically more advanced sectors, which rely more heavily on innovation and R&D.

They showed to boot that an important channel by which democracy spurs the growth of

the more advanced sectors is freedom of entry, which obviously encourages competition.
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Appendix

Proof of Proposition 3.1

The policy (k1, k2) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p∗ and 1 − p∗, hence is of class C1. It is strictly

decreasing on [0, 1− p∗] and strictly increasing on [p∗, 1]. Moreover, u = s + B2 −
c2
2 on [0, 1− p∗],

u = s on [1 − p∗, p∗], and u = s + B1 −
c1
2 on [p∗, 1] (we drop the arguments for simplicity), which

shows that u is indeed the planner’s payoff function from (k1, k2).

To show that u and this policy (k1, k2) solve the planner’s Bellman equation, and hence that

(k1, k2) is optimal, it is enough to establish that B1 < c1
2 and B2 > c2

2 on ]0, 1 − p∗[ , B1 < c1
2

and B2 < c2
2 on ]1 − p∗, p∗[ , and B1 > c1

2 and B2 < c2
2 on ]p∗, 1[ . Consider this last interval.

There, u = s + B1 − c1
2 and u > s (by monotonicity of u) immediately imply B1 > c1

2 . Next,

B2 = λ
r
[g+s

2 −u]−B1 = λ
r
[g+s

2 −u]−u+ s− c1
2 ; this is smaller than c2

2 if and only if u > u11, which

holds here since u > s and s > u11. The other two intervals are treated in a similar way.

Proof of Proposition 3.2

The proof proceeds along the same lines as the previous one and is therefore omitted.

For p ∈ [0, 1], we now define

w1(p) = pg +
λ

λ + r
(1 − p)s and w2(p) = w1(1 − p).

Furthermore, we define the players’ expected full-information payoffs:

u1(p) = pg + (1 − p)s and u2(p) = (1 − p)g + ps.

We then get the following lemma:

Lemma A.1 k1(p) = 1 is a best response to k2(p) = 1 on some non-degenerate interval of beliefs

if and only if u1(p) ≤ w1(p) on that interval. Similarly, k2(p) = 1 is a best response to k1(p) = 1

on some non-degenerate interval if and only if u2(p) ≥ w2(p) on that interval.

Proof: We first note that b1(p, u1) = λ
r

[u1(p) − u1(p)]−β1(p, u1), and, analogously, that b2(p, u2) =
λ
r

[u2(p) − u2(p)] − β2(p, u2). We also note that a necessary and sufficient condition for k1(p) = 0

to be a best response to k2(p) = 1 on some interval of beliefs is that u1(p) = s + β1(p, u1) and

b1(p, u1) ≤ c1(p), which in turn requires that c1(p) ≥ λ
r

[u1(p) − u1(p)] − [u1(p) − s], which is the

same as u1(p) ≥ w1(p). Analogously, a necessary and sufficient condition for k2(p) = 0 to be a best

response to k1(p) = 1 on some interval of beliefs is that u2(p) ≥ w2(p).

Proof of Lemma 5.1

Let u1 be player 1’s equilibrium value function in some MPE with equilibrium strategies (k1, k2).

Write b∗1(p) = b1(p, u∗
1), and β∗

1(p) = β1(p, u∗
1). Henceforth, we shall suppress arguments whenever
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this is convenient. Since p∗ is the single-agent cutoff belief for player 1, we have u∗
1 = s for p ≤ p∗

and u∗
1 = s + b∗1 − c1 = pg + b∗1 for p > p∗. Thus, if p ≤ p∗, the claim obviously holds as s is a lower

bound on u1.

Now, let p > p∗. Then, noting that b∗1 = u∗
1 − pg, we have β∗

1 = λ
r
[u1 − u∗

1] − (u∗
1 − gp).

Thus, β∗
1 > 0 if and only if u∗

1 < pg + λ
λ+r

(1 − p)s = w1. Noting that w1(p
∗) = u∗

1(p
∗) = s,

w1(1) = u∗
1(1) = g, and that w1 is linear whereas u∗

1 is strictly convex in p, we conclude that

u∗
1 < w1 and hence β∗

1 > 0 on ]p∗, 1[ . As a consequence, we have u∗
1 = pg + b∗1 ≤ gp + k2β

∗
1 + b∗1 on

[p∗, 1].

Now, suppose u1 < u∗
1 at some belief. Since s is a lower bound on u1, this implies existence of a

belief strictly greater than p∗ where u1 < u∗
1 and u′

1 ≤ (u∗
1)

′. This immediately yields b1 > b∗1 > c1,

so that we must have k1 = 1 and u1 = pg + k2β1 + b1 at the belief in question. But now,

u1 − u∗
1 ≥ pg + k2β1 + b1 − (pg + k2β

∗
1 + b∗1) = (1 − k2)(b1 − b∗1) + k2

[

λ

r
(u∗

1 − u1)

]

> 0,

a contradiction.

An analogous argument applies for player 2’s equilibrium value function u2.

Proof of Lemma 6.1

At each of these admissible transitions, we must have value matching and smooth pasting for the

player who changes his action. For example, suppose that there is a transition (0, 0)—(0, 0)—

(1, 0) at the belief p̂. Then the value function of player 1 must satisfy u1(p̂) = s, u′
1(p̂) = 0 and

λp̂(1− p̂)u′
1(p̂) + (r + λp̂)u1(p̂) = (r + λ)p̂g by the ODE for (k1, k2) = (1, 0). Substituting for u1(p̂)

and u′
1(p̂) and solving yields p̂ = rs

(r+λ)g−λs
= p∗. The other transitions are dealt with in the same

way.

Proof of Lemma 6.2

Suppose the transition (0, 1)—(0, 0)—(1, 0) occurs at belief p̂. This implies u1(p̂) = u2(p̂) = s.

Moreover, to the left of p̂, player 2’s value function solves the ODE for k1 = 0 and k2 = 1,

which, by continuity of u2, implies λp̂(1 − p̂)u′
2(p̂−) = [r + λ(1 − p̂)]s − (r + λ)(1 − p̂)g, where

u′
2(p̂−) = limp↑p̂ u′

2(p). Now, if p̂ > 1 − p∗, then u′
2(p̂−) > 0 and so u2(p) < s immediately to the

left of p̂ – a contradiction. So we must have p̂ ≤ 1− p∗. To the right of p̂, player 1’s value function

solves the ODE for k1 = 1 and k2 = 0, which implies λp̂(1 − p̂)u′
1(p̂+) = (r + λ)p̂g − (r + λp̂)s,

where u′
1(p̂+) = limp↓p̂ u′

1(p). If p̂ < p∗, then u′
1(p̂+) < 0 and u1(p) < s immediately to the right of

p̂ – a contradiction again. So we must have p̂ ∈ [p∗, 1−p∗]. But p∗ ≤ 1−p∗ if and only if g
s
≥ 2r+λ

r+λ
.

By Lemma 5.1, however, the existence of a belief p̂ such that u1(p̂) = u2(p̂) = s requires g
s
≤ 2r+λ

r+λ
.

Thus, we must have g
s

= 2r+λ
r+λ

and so p∗ = 1 − p∗ = 1
2 . This proves statement (i).

Next, suppose the transition (1, 0)—(0, 0)—(0, 1) occurs at belief p̂. This implies u1(p̂) =

u2(p̂) = s. Now, player 2’s value function solves the ODE for k1 = 0 and k2 = 1 to the right of p̂,

and so we find u′
2(p̂+) < 0 whenever p̂ < 1−p∗. Player 1’s value function solves the ODE for k1 = 1
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and k2 = 0 to the left of p̂, and so u′
1(p̂−) > 0 whenever p̂ > p∗. So we must have p̂ ∈ [p∗, 1 − p∗],

which requires g
s
≤ 2r+λ

r+λ
. This proves statement (ii).

Suppose now that the transition (0, 1)—(1, 1)—(1, 0) occurs at belief p̂. This implies u1(p̂) =

w1(p̂) and u2(p̂) = w2(p̂). To the right of p̂, player 2’ value function solves the ODE for k1 = 1 and

k2 = 0, which implies

u′
2(p̂+) =

r + λp̂

λp̂(1 − p̂)

[

r + λ(1 − p̂)

r + λ
s − (1 − p̂)g

]

.

Now, if p̂ < 1− pm, then u′
2(p̂+) < w′

2(p̂) and so u2 < w2 to the immediate right of p̂, implying by

Lemma A.1 that k2 = 0 is not a best response to k1 = 1 there – a contradiction. Thus, we must

have p̂ ≥ 1 − pm. To the left of p̂, player 1’s value function solves the ODE for k1 = 0 and k2 = 1,

which implies

u′
1(p̂−) =

r + λ(1 − p̂)

λp̂(1 − p̂)

[

p̂g −
r + λp̂

r + λ
s

]

.

If p̂ > pm, then u′
1(p̂−) > w′

1(p̂) and so u1 < w1 to the immediate left of p̂ – another contradiction

to Lemma A.1. So we must have p̂ ∈ [1 − pm, pm], which requires g
s
≤ 2. Furthermore, we note

that the existence of a belief p̂ such that k1(p̂) = k2(p̂) = 1 requires u11 ≥ s and hence g
s
≥ 2r+λ

r+λ
.

This proves statement (iii).

Finally, suppose the transition (1, 0)—(1, 1)—(0, 1) occurs at belief p̂. Again, this implies

u1(p̂) = w1(p̂) and u2(p̂) = w2(p̂). Now, player 2’s value function solves the ODE for k1 = 1 and

k2 = 0 to the left of p̂, and so we find u′
2(p̂−) > w′

2(p̂) whenever p̂ > 1 − pm. Player 1’s value

function solves the ODE for k1 = 0 and k2 = 1 to the right of p̂, and so u′
1(p̂+) < w′

1(p̂) whenever

p̂ < pm. Thus we must have p̂ ∈ [pm, 1−pm], which requires g
s
≥ 2. This proves statement (iv).

Proof of Proposition 6.3

The policies k1 and k2 induce a well-defined law of motion for the posterior belief. The functions

u1 and u2 are of class C1 with u2 strictly decreasing on [0, 1 − p∗] and u1 strictly increasing on

[p∗, 1]. As u2 = s + b2 − c2 on [0, 1− p∗] and u1 = s + b1 − c1 on [p∗, 1] (we drop the arguments for

simplicity), u1 and u2 are indeed the players’ payoff functions for (k1, k2).

To show that u1 and the policy k1 solve player 1’s Bellman equation given player 2’s strategy

k2, and hence that k1 is a best response to k2, it is enough to establish that b1 < c1 on ]0, p∗[

and b1 > c1 on ]p∗, 1[ . On this last interval, u = s + b1 − c1 and u1 > s (by monotonicity

of u1) immediately imply b1 > c1. On ]0, p∗[ , we have u1 = s and u′
1 = 0, hence b1 − c1 =

λ
r
p(g−s)− (s−pg) = (r+λ)g−λs

r
p−s < 0. As u2(p) = u1(1−p) and k2(p) = k1(1−p), the previous

steps also imply b2 > c2 on ]0, 1 − p∗[ and b2 < c2 on ]1 − p∗, 1[ , which completes the proof that

(k1, k2) constitutes an equilibrium.

For uniqueness, we note that, as g > s, k1(1) = k2(0) = 1 and k1(0) = k2(1) = 0 in any MPE.

Recall that as u11 < s, the action profile (k1, k2) = (1, 1) cannot be part of an MPE since this would

involve a payoff strictly below s for at least one player at some belief. Of the transitions considered

in Lemma 6.2, only (1, 0)—(0, 0)—(0, 1) could happen in this case, and it could only occur at some
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belief p̂ ∈ [1−p∗, p∗]. Moreover, besides the transitions considered in Lemma 6.1, only the following

transitions could potentially arise here: (1, 0)—(0, 1)—(0, 0), (1, 0)—(0, 1)—(0, 1), (1, 0)—(1, 0)—

(0, 1), (0, 0)—(1, 0)—(0, 1). It thus follows that in any MPE, players can only transition out of

(0, 1) = (k1(0), k2(0)) at belief 1−p∗, and have to move into (0, 0) to the immediate right of 1−p∗.

As (k1(1), k2(1)) = (1, 0), players cannot transition back into (0, 1) to the right of 1 − p∗. Since

the only way for the players to transition from (0, 0) into (1, 0) would be via smooth pasting at

p∗, (1, 0)—(0, 1)—(0, 0) could only happen to the right of p∗, implying k1(1) = 0 – a contradiction.

Since (1, 0)—(0, 0)—(1, 0) could potentially only happen at p∗, and (0, 1)—(0, 0)—(0, 1) only at

1 − p∗, these two transitions cannot occur either.

Proof of Proposition 6.4

The policies k1 and k2 induce a well-defined law of motion for the posterior belief. The functions

u1 and u2 are of class C1 except at 1 − pm and pm, respectively, where their first derivative jumps

downward; u1 is strictly increasing, u2 strictly decreasing. Moreover, u1 = s+β1 and u2 = s+b2−c2

on [0, pm], u1 = s + β1 + b1 − c1 and u2 = s + β2 + b2 − c2 on [pm, 1− pm], and u1 = s + b1 − c1 and

u2 = s + β2 on [1 − pm, 1]. So u1 and u2 are indeed the players’ payoff functions for (k1, k2).

To show that u1 and the policy k1 solve player 1’s Bellman equation given player 2’s strategy

k2, and hence that k1 is a best response to k2, it is enough to establish that b1 < c1 on ]0, pm[

and b1 > c1 on ]pm, 1[ . On ]1 − pm, 1[ , u1 = s + b1 − c1 and u1 > s (by monotonicity of u1)

immediately imply b1 > c1. On ]pm, 1 − pm[ , we have b1 = 0 > c1. On ]0, pm[ , u1 = s + β1 and

b1 + β1 = λ
r
[pg + (1 − p)s − u1] imply b1 − c1 = λ

r
[pg + (1 − p)s] − (1 + λ

r
)u1 + pg. This is strictly

smaller than 0 if and only if u1 > w1, which is easily verified for the interval under consideration.

As u2(p) = u1(1 − p) and k2(p) = k1(1 − p), the previous steps also imply b2 > c2 on ]0, 1 − pm[

and b2 < c2 on ]1 − pm, 1[ , which completes the proof that (k1, k2) constitutes an equilibrium.

For uniqueness, we note that, as g > s, k1(1) = k2(0) = 1 and k1(0) = k2(1) = 0 in any

MPE. Recall that the action profile (k1, k2) = (0, 0) cannot be part of an MPE since it would

imply incomplete learning. It thus follows immediately from Lemmas 6.1 and 6.2 that the only way

for players to transition out of (0, 1) is for them to switch to (1, 1) at pm. Thus, players cannot

transition back into (0, 1) to the right of pm. Therefore, again using Lemma 6.1, the only way

to transition out of (1, 1) is to switch to (1, 0) at 1 − pm. Hence, players cannot transition back

to (1, 1) or (0, 1) to the right of 1 − pm. As, by Lemma 6.1, the transitions (1, 0)—(1, 1)—(1, 0)

and (1, 1)—(1, 0)—(1, 1) could potentially only happen at 1 − pm, and (0, 1)—(1, 1)—(0, 1) and

(1, 1)—(0, 1)—(1, 1) only at pm, these transitions cannot occur either.

Proof of Proposition 6.5

The policies k1 and k2 induce a well-defined law of motion for the posterior belief with an absorbing

state at p̂. The functions u1 and u2 are of class C1 except at p̂, where their first derivatives jump;

u1 is strictly increasing, u2 strictly decreasing. Moreover, u1 = s+β1 and u2 = s+ b2− c2 on [0, p̂[ ,

u1 and u2 coincide with w1 and w2, respectively, at p̂, and u1 = s + b1 − c1 and u2 = s + β2 on
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]p̂, 1]. So u1 and u2 are indeed the players’ payoff functions for (k1, k2).

As u1 > w1 and u2 > s on [0, p̂[ , we have b1 < c1 and b2 > c2 on this interval. Similarly, as

u1 > s and u2 > w2 on ]p̂, 1], we have b1 > c1 and b2 < c2 there. Finally, continuity of u1 and u2

implies b1(p̂−, u1) = c1(p̂) < b1(p̂+, u1) and b2(p̂+, u2) = c2(p̂) < b2(p̂−, u2). Now consider player

1 at the belief p̂. Whatever action he chooses, the belief can only drift upward conditional on there

being no success, so it is the right-hand derivative of u1, and hence the right limit b1(p̂+, u1), that

matters in the Bellman equation. As this limit is strictly below c1(p̂), player 1’s strict best response

at p̂ is to play risky. An analogous argument works for player 2. This establishes that k1 and k2

are mutual best responses at all beliefs.

To see that there are no other equilibria, note again that in any MPE (k1, k2)(1) = (1, 0) and

(k1, k2)(0) = (0, 1). Moreover, by Lemmas 6.1 and 6.2, there might potentially be two ways of

transitioning out of (0, 1), namely either via (0, 1)—(1, 1)—(1, 0), which by Lemma 6.2 can only

happen at points in the interval [1 − pm, pm], or via (0, 1)—(0, 1)—(1, 1) or (0, 1)—(1, 1)—(1, 1),

which by Lemma 6.1 can only happen at pm. Now, suppose that there exists an MPE where players

transition from (0, 1) into (1, 1) at pm. To the right of pm, players cannot transition back into (0, 1)

as, to the right of pm, there is no way for them to transition out of (0, 1) again. Moreover, they can

only transition from (1, 1) to (1, 0) via (1, 1)—(1, 1)—(1, 0) or (1, 1)—(1, 0)—(1, 0), both of which

can only happen at 1 − pm < pm. Thus, in such an MPE, we must have (k1, k2)(1) = (1, 1) – a

contradiction.

Therefore, in any MPE, there exists a belief p̂ ∈ [1− pm, pm] at which a transition of the form

(0, 1)—(1, 1)—(1, 0) occurs. Now, the only ways for the players to transition out of (1, 0) to the

right of p̂ are the following: (1, 0)—(1, 0)—(0, 1), (1, 0)—(0, 1)—(0, 1) or (1, 0)—(0, 1)—(1, 1), since

by Lemma 6.1 (1, 0)—(1, 0)—(1, 1) and (1, 0)—(1, 1)—(1, 1) can only occur at 1− pm, and Lemma

6.2(iv) rules out (1, 0)—(1, 1)—(0, 1).

Suppose therefore there exists a belief p† > p̂ at which a transition of the form (1, 0)—

(0, 1)—(1, 1) occurs. By continuity of the value function, this implies that u1(p
†) = p†g + C(1 −

p†)
r+λ

λ (p†)−
r

λ = w1(p
†). By the same token, we have u1(p̂) = p̂g + C(1 − p̂)

r+λ

λ p̂−
r

λ = w1(p̂). Both

equations can only hold if
(

p†

1−p†

)
r

λ λ
λ+r

s =
(

p̂
1−p̂

)
r

λ λ
λ+r

s – a contradiction because the function

p 7→ p
1−p

is strictly monotone.

Now, suppose there exists a p‡ > p̂ where a transition either of the form (1, 0)—(0, 1)—(0, 1)

or (1, 0)—(1, 0)—(0, 1) occurs. Take p‡ to be the smallest such belief. By continuity and Lemma

A.1, we have u1(p
‡) ≥ w1(p

‡). Yet we also have that u1(p̂) = w1(p̂) – a contradiction since w1 is

linear, and on any non-degenerate interval where the action profile (1, 0) prevails, player 1’s value

function is easily seen to be strictly convex.

Hence we have shown that in any MPE, players will not transition out of (1, 0) to the right

of p̂. This already implies uniqueness of p̂. The only transitions that remain to be ruled out are

(1, 0)—(1, 1)—(1, 0) and (0, 1)—(1, 1)—(0, 1), which by Lemma 6.1 can only occur at the beliefs

1 − pm and pm, respectively. If (1, 0)—(1, 1)—(1, 0) did occur at 1 − pm, (1, 0) would be played to

the left of 1 − pm – a contradiction. And if (0, 1)—(1, 1)—(0, 1) occurred at pm, (0, 1) would be

played to the right of pm – another contradiction.
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Thus, we have shown that there is exactly one transition in any MPE, occurring at a belief

p̂ ∈ [1 − pm, pm]. For the case where pm > 1 − p∗, we shall now show that in fact p̂ ∈ [p∗, 1 − p∗].

Indeed, suppose that p̂ < p∗. Then, p̂g + λ
λ+r

(1− p̂)s < s and, by the explicit expression for player

1’s value function, u1 < s on ]0, p̂[ , which is incompatible with player 1 playing a best response.

By an analogous argument, we can rule out p̂ > 1 − p∗.
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