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Abstract. A self proclaimed expert uses past observations of a

stochastic process to make probabilistic predictions about the pro-

cess. An inspector applies a test function to the infinite sequence

of predictions provided by the expert and the observed realization

of the process in order to check the expert’s reliability. If the test

function is Borel and the inspection is such that a true expert will

always pass it, then it is also manipulable by an ignorant expert.

The proof uses Martin’s theorem about determinacy of Blackwell

games. Under the axiom of choice, there exist non-Borel test func-

tions that are not manipulable.

1. Introduction

At every period n = 0, 1, 2, . . . nature chooses an outcome sn from

a finite set S. An expert claims to know the underlying distribution

behind nature’s choices. To prove his claim, at each period n the expert

provides a probabilistic prediction pn about sn before sn is realized. The

question addressed in this paper is whether the expert’s reliability can

be tested from the infinite sequence of predictions (p0, p1, . . . ) provided

by the expert and the actual observed sequence (s0, s1, . . . ).
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Assume that an inspector decides on the reliability of the expert

by applying some test function – a function whose arguments are the

predictions (p0, p1, . . . ) made by the expert and the actual realization

(s0, s1, . . . ), and whose value is either ‘pass’ if the predictions fit the

realization and ‘reject’ otherwise. The calibration test is a well known

example of such a test function, which turns out to be manipulable:

an ignorant expert, who does not know the distribution of the process,

can fake predictions that match the performance of a true expert, who

predicts according to the correct distribution. In this paper I prove

that every Borel test function is manipulable, without making any as-

sumption about its form.

Olszewski and Sandroni [15], extending a previous theorem of San-

droni [17], have already proved a general manipulability result of the

type sought in this paper. They consider an inspection in which the

expert can be rejected only at some finite period: if he wasn’t rejected

at any finite period then he passes the test. This assumption is natural

from an economic perspective, since a real world inspection is based

on a finite data sequence. Topologically, this assumption translates to

semi-continuity of the test function. Olszewski and Sandroni proved

that such a test function is always manipulable1. My contribution is

twofold: I extend Olszewski and Sandroni’s result from semi-continuous

test functions to arbitrary Borel functions, thus dispensing with the as-

sumption that rejection is determined at a finite period, and I give an

example of a non-Borel test function that is not manipulable. My proof

1In fact, their result is formulated in a wider framework, without the assumption
that the predictions are only about the current period. See Section 3.3
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uses Martin’s theorem about determinacy of Blackwell games, which is

a new tool in this literature.

The manipulability theorem of this paper is in sharp construct with

results of Dekel and Feinberg [5] and Olszewksi and Sandroni [16].

These authors prove the existence of non-manipulable inspections that

are based on a prediction in ∆(SN) about the entire infinite realization

of the process, which the expert announces before any data is realized.

The manipulability theorem of this paper, on the other hand, relies on

the fact that at every period the expert provides predictions about the

current period, or, more generally, about a finite number of future pe-

riods, but not about events that are are only determined at infinity. To

emphasize this point, I give an example of a non-manipulable sequen-

tial inspection, in which at every period the expert makes a prediction

about a single event that is only determined at infinity.

Theorem 1 and Theorem 2 in Section 2 are the main results of this

paper – every Borel test function that does not reject the truth with

high probability is manipulable, and, under the axiom of choice, there

exists a non-Borel test function that is not manipulable. Section 3

discusses related literature. Section 4 presents Martin’s theorem . The

proofs of the theorems are in Sections 5 and 6. In Section 7 I give

an example of a Borel non-manipulable inspection that is based on

repeated predictions about a single event. Section 8 concludes.

2. Manipulable and non-manipulable tests

Let S be a finite set. Elements of ∆(S) are called predictions.

At every period n = 0, 1, 2, . . . an outcome sn ∈ S is realized. At
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every period, before sn is realized, an expert declares a prediction

pn ∈ ∆(S) about sn, based on the past outcomes s0, . . . , sn−1. A

realization is given by an infinite sequence s ∈ SN of outcomes, where

N = {0, 1, 2, . . . }.

Let S<N =
⋃
n≥0 S

n be the set of all finite sequences of elements of S,

including the empty sequence e. For every realization s = (s0, s1, . . . ) ∈

SN and every n ∈ N let s|n = (s0, . . . , sn−1) be the initial segment of s

of length n. In particular, s|0 = e.

Definition 1. A prediction rule is given by a function f : S<N → ∆(S).

If the expert uses a prediction rule f then his prediction about sn

after observing (s0, . . . , sn−1) would be f(s0, . . . , sn−1).

Definition 2. A test function is a function T : ∆(S)N × SN → {0, 1}.

A test function T dictates, for every infinite sequence of predictions

and every realization, whether or not the expert passes the inspection:

Definition 3. Let T be a test function and s ∈ SN a realization. A

sequence p ∈ ∆(S)N of predictions passes T over s if T (p, s) = 1.

A prediction rule f passes T over s if p passes T over s, where p =

(p0, p1, . . . ) is the sequence of predictions of f along the realization,

pn = f(s0, . . . , sn−1).

Definition 4. A test function T does not reject the truth with proba-

bility 1− ε if

P
(
f passes T over Θ0,Θ1, . . .

)
≥ 1− ε
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for every sequence of random variables Θ0,Θ1, . . . with values in S,

where the prediction rule f : S<N → ∆(S) is given by

(1) f(s0, . . . , sn−1)[sn] = P(Θn = sn|Θ0 = s0, . . . ,Θn−1 = sn−1)

for every s0, . . . , sn ∈ S.2

Thus, T does not reject the truth if a true expert, who knows the

distribution of the process will pass the test with high probability by

predicting according to this distribution.

Definition 5. A test function T is ε-manipulable if there exists some

probability measure ξ over prediction rules such that

ξ
(
{f |f passes T over s}

)
≥ 1− ε,

for every s ∈ SN.

If a test function is ε-manipulable then an ignorant expert can ran-

domize his prediction rule according to ξ and pass the test with high

probability, regardless of the actual realization. The following theorem

shows that this situation is typical.

Theorem 1. Let T : ∆(S)N × SN → {0, 1} be a Borel test function.

If T does not reject the truth with probability 1 − ε, then T is ε + δ-

manipulable for every δ > 0.

2The random variables Θ0,Θ1, . . . are defined over some probability space (Ω,A,P).
I suppress the underlying probability space when using the language of random
variables.
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Remark 1. For the purpose of Theorem 1, the space ∆(S)N × SN is a

topological space with the product of discrete topologies over ∆(S) and

S. The sigma-algebra of Borel sets of ∆(S)N×SN is the sigma-algebra

generated by the topology. The test function T is a Borel function

if the set {(p, s)|T (p, s) = 1} is a Borel subset of ∆(S)N × SN. Note

that since the discrete topology is stronger than the natural Euclidean

topology over ∆(S) it gives rise to a larger class of Borel functions.

Can a test functions T : ∆(S)N × SN → {0, 1} that is not Borel be

manipulable? It follows from the proof of Theorem 1 that there is a

model of set theory without the axiom of choice in which Theorem 1

is valid for an arbitrary test function (Remark 2). The next theorem

shows that in ZFC there exists a test function that is not manipulable.

Theorem 2. Let S = {0, 1}. Under the axiom of choice, there exists

a test function T : ∆(S)N × SN → {0, 1} such that

(1) T does not reject the truth with probability 1.

(2) For every probability distribution ξ over prediction rules there

exists some s ∈ SN such that

ξ
(
{f |f passes T over s}

)
= 0.

In particular, T is not ε-manipulable for any ε > 0.

3. Related literature

3.1. Calibration tests. Calibration tests [4, 7, 9, 8, 10, 18] compare

the observed frequency of events over a set of time with the average

predictions over the same set of time. I follow Lehrer’s paper [10].
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For p ∈ ∆(S) and a subset V of S let P [V ] =
∑

s∈V p[s] and let

1V : S → {0, 1} be the indicator function of V .

A simple calibration test is given by a pair (U,C), where U and C

are functions that assign for every observation (s0, . . . , sn) ∈ S<N sub-

sets C(s0, . . . , sn) and U(s0, . . . , sn) of S, such that C(s0, . . . , sn) ⊆

U(s0, . . . , sn). The interpretation is that U(s0, . . . , sn) is the local uni-

verse considered after s0, . . . , sn and, within this universe the event

C(s0, . . . , sn) is checked. The simple calibration test TU,C : ∆(S)N ×

SN → {0, 1} induced by (U,C) checks whether the conditional probabil-

ity attached by the expert to the events C(s0, . . . , sn) given U(s0, . . . , sn)

matches the empirical relative frequency. Formally,

TU,C(p, s) = 1 if
∞∑
n=0

1U(s|n)(sn) =∞ implies

lim
n→∞

∑n
i=0 1U(s|i)(si) ·

(
pi[U(s|i)]1C(s|i)(si)− pi[C(s|i)]

)∑n
i=0 1U(s|i)(si)

= 0,

for every realization s = (s0, s1, . . . ) ∈ SN and every infinite sequence

of predictions p = (p0, p1, . . . ) ∈ ∆(S)N. Then TU,C is a Borel test

function that does not reject the truth with probability 1.

A more general calibration test is given by a mixture of simple cal-

ibration tests: Let S be the set of simple calibration tests, and let

λ be a probability distribution over S. Assume the inspector first

chooses a simple calibration test T ∈ S using λ and then applies this

test to the expert’s predictions. For every such λ, Lehrer constructs

a prediction rule that passes the inspection λ-almost surely. Lehrer’s

result relates to Theorem 1 of this paper in the following way: Let
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Λ : ∆(S)N × SN → {0, 1} be the test function that is given by

Λ(p, s) = 1 if and only if

∫
T (p, s)λ(dT ) = 1.

Then Λ is a Borel test function that does not reject the truth with

probability 1. By Theorem 1, it is ε-manipulable for every ε. Thus,

there exists a manipulation scheme that passes the calibration test

with high probability. For the case of calibration tests, Lehrer proves

a stronger result: He shows that the test is 0-manipulable and that

the manipulation scheme is pure – there exists a prediction rule f such

that f passes the test Λ over s for every s3. Most importantly, Lehrer

constructs the manipulating rule, while my proof is not constructive.

3.2. Infinite-horizon predictions. According to the setup of Sec-

tion 2, at each period the expert has to provide a prediction about the

outcome of that period. Dekel and Feinberg [5] and Olszewski and San-

droni [16] consider a different framework, in which at the start of the

inspection the expert must inform the inspector his prediction about

the entire realization of the process. A test function in this context

is a function t : ∆(SN) × SN → {0, 1}, where ∆(SN) is the set of all

probability measures over the set SN of realizations. I call elements of

∆(SN) infinite-horizon predictions, denote tests that are based on infi-

nite horizon predictions by lower case t, and call them infinite-horizon

tests. When necessary to avoid confusion, I call elements of ∆(S) one-

period predictions, and tests a la Definition 2 one-period test.

3Other calibration tests do not admit a pure manipulation [18, Example 2.1].
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There is a natural correspondence f ↔ µf between prediction rules

according to Definition 1 and probability measures over S∞: For every

prediction rule f , µf is the joint distribution of a sequence Θ0,Θ1, . . . of

random variables satisfying (1). Because of this correspondence, every

one-period test function T : ∆(S)N × SN → {0, 1} naturally induces4

an infinite-horizon test function t such that t(µf , s) = 1 iff f passes T

over s, but the converse is not true. The papers [5] and ?? prove the

existence of infinite horizon test functions that do not reject the truth

with probability 1 and that are not manipulable. In light of Theorem 1

it should also be mentioned that the test function constructed by Ol-

szewski and Sandroni is a Borel function, when ∆(S∞) is equipped

with its standard Borel structure. In Section 7 I discuss in detail the

difference between finite horizon and infinite horizon predictions.

3.3. Future independent tests. Olszewski and Sandroni [15] con-

sider (infinite horizon) test functions t : ∆(SN) × SN → {0, 1} of the

form

(2) t(µf , s) =


0, if (f |n, s|n) ∈ R for some n ∈ N,

1, otherwise.

for some R ⊆
⋃
n≥0

(
∆(S)

Sn
i=0 S

i × Sn
)

, where f |n is the restriction of

f to ∆(S)
Sn−1

i=0 Si
for every prediction rule f and s|n = (s0, . . . , sn−1)

for every realization s = (s0, s1, . . . ) ∈ SN. The underlying assumption

is that rejection must occur at some period n, and that the decision

4There is a minor inaccuracy here because µf does not determine f uniquely. Can-
tankerous readers can assume that T (p, s) = 0 whenever pn[sn] = 0 for some n ∈ N,
so that T determines t uniquely.
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of the inspector at that period depends only on the segment of the

data s|n that was realized before that period and on the prediction

rule before that period. The set R (the rejection set) consists of all

finite segments of realizations and prediction rules that are considered

to be inconsistent with each other.

Test functions of the form (2) are called future independent : The

decision whether to reject an infinite-horizon prediction µf at some

period does not depend on predictions made by f at later periods. For

future independent tests, Olszewski and Sandroni prove an analogue of

Theorem 1: A future independent test that does not reject the truth

with high probability is manipulable.

It is interesting to compare the theorem of Olszewski and Sandroni

with Theorem 1 of this paper. Consider first a one-period test function

T : ∆(S)N × SN → {0, 1}. If the infinite-horizon test function induced

by T is future independent, then the set {(p, s)|T (p, s) = 1} is closed

(Recall Remark 1) and, in particular, Borel. Therefore in the frame-

work of test function studies in the paper, the scope of Theorem 1 is

wider than that of Olszewski and Sandroni’s theorem. However, there

are future independent, infinite-horizon tests that are not induced by

one-period test functions. In fact, neither of the theorems is contained

in the other. Olszewski and Sandroni’s inspector is more restricted

in that he must decide to reject using a finite number of predictions.

On the other hand, he can use the entire prediction rule up to the re-

jection point, including predictions conditioned on observation outside

the actual realization.
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3.4. Comparative testing of experts. Two recent papers study a

different setup, in which several experts are tested together by making

simultaneous predictions about the same process. Feinberg and Stew-

art [6] construct a cross-calibration test that does not reject a true

expert, and that, in the presence of a true expert, is non-manipulable

in a strong sense by ignorant experts. Al-Najjar and Weinstein [1] show

that an ignorant expert passes the likelihood ratio tests against a true

expert only if his predictions happen to be close to those of the true

expert. They apply their result in a Bayesian setting, where the true

distribution of the process is chosen randomly according to some prior

over ∆(SN). When tested separately, an ignorant expert who predicts

according to the induced distribution over SN passes the inspection.

On the other hand, if the prior over ∆(SN) is diffusive enough, then

the likelihood ratio against the true expert is non-manipulable.

4. Blackwell games

A Blackwell game is a two-player zero-sum game that is given by

(A,B, r) where A and B are the sets of actions of player 1 (the maxi-

mizer) and 2 (the minimizer) respectively and r : (A× B)N → [0, 1] is

the payoff function.

The game is played as follows: At every stage n = 0, 1, 2, . . . both

players, simultaneously and independently, choose an action. At the

end of the stage, each player is informed of his opponent’s action. Let

an, bn be the actions chosen by player 1 and 2 respectively at stage n.

The payoff that player 2 pays player 1 is given by r(a0, b0, a1, b1, . . . ).
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Let H = (A × B)<N =
⋃
n≥0(A × B)n be the set of finite histories

of the game, including the empty history e. A behavioral strategy σ of

player 1 is given by σ : H → ∆(A). Behavioral strategies τ of player 2

are defined analogously. Every pair σ, τ of behavioral strategies induces

a probability distribution µσ,τ over the set (A×B)N of infinite histories

or plays. Let R(σ, τ) =
∫
r dµσ,τ be the expected payoff in the game if

the players play according to σ, τ .

Determinacy. The upper value V (G) and the lower value V (G) of G

of a Blackwell game G are given by

V (G) = inf
τ

sup
σ
R(σ, τ).

V (G) = sup
σ

inf
τ
R(σ, τ),

where the suprema range over all behavioral strategies σ of player 1 and

the infima over all behavioral strategies τ of player 2. A strategy σ of

player 1 is δ-optimal if R(σ, τ) ≥ V (G)−δ for every behavioral strategy

τ of player 2. The game G is determined if V (G) = V (G). Blackwell [2,

3] proved the determinacy of Blackwell games (which he called infinite

games with imperfect information) with a payoff function that is the

indicator function of a Gδ set, and conjectured that every Blackwell

game with Borel payoff function is determined. Vervoort [19] advanced

higher in the Borel hierarchy, proving determinacy for indicators of Gδσ

sets. The conjecture was proved by Donald A. Martin in 1998 [13] (See

also Maitra and Sudderth’s paper [12] for applications to stochastic

games).
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Martin’s Theorem. Let A,B be two countable sets, at least one of

which is finite, and let r : (A×B)N → [0, 1] be a Borel function. Then

the Blackwell game (A,B, r) is determined.

Random plays. Let (σ, τ) be a pair of behavioral strategies in a the

Blackwell game (A,B, r). A (σ, τ)-random play, is a sequence

α0, β0, . . . , αn, βn, . . .

of random variables over some probability space, where the values of

αn (respectively βn) are in A (respectively B) such that

(3) P (αn = a, βn = b|α0, β0, . . . , αn−1, βn−1) =

σ(α0, β0, . . . , αn−1, βn−1)[a] · τ(α0, β0, . . . , αn−1, βn−1)[b]

for every a ∈ A and b ∈ B.

The measure µσ,τ that is induced by (σ, τ) over (A×B)N is the joint

distribution of some (σ, τ)-random play. The payoff function associated

with a pair of behavioral strategies (σ, τ) can also be written in terms

of random plays: R(σ, τ) = E (r (α0, β0, α1, β1, . . . )).

Pure and mixed strategies. A pure strategy of player 1 in the Black-

well game (A,B, r) is given by a function f : B<N → A: for every

sequence b0, . . . , bn of past actions of player 2, f(b0, . . . , bn) player 1’s

action at stage n+ 1. Every pure strategy is in particular a Behavioral

strategy. A mixed strategy of player 1 is a probability distribution over

pure strategies. Kuhn’s Theorem establishes the equivalence between

behavioral and mixed strategies. In particular, for every δ > 0 player
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1 has a δ-optimal mixed strategy in every Blackwell game, i.e. a mixed

strategy ξ such that R(ξ, g) ≥ V (G)− δ for every behavioral strategy

τ of player 2, where R(ξ, τ) =
∫
R(f, g)ξ(df) is the expected payoff for

player 1 under ξ, τ .

5. Proof of Theorem 1

Let ∆Q(S) = {p ∈ ∆(S)|p[s] ∈ Q for every s ∈ S} be the set of

elements of ∆(S) with rational values. For a test function T let G(T ) be

the Blackwell game in which the set of action of player 1 is ∆Q(S), the

set of actions of player 2 is S and the payoff function is the restriction

of T to (∆Q(S) × S)N. Note that every pure strategy of player 1 in

G(T ) is a prediction rule according to Definition 1. Roughly speaking,

player 1 represents the expert and player 2 represents nature. However,

in the game G(T ) player 2 is allowed to condition his actions on past

actions of player 1 (as if nature picks the value of sn depending on

previous predictions made by the expert) and player 1 is only allowed

to make predictions with rational values5.

The game G(T ) satisfies the assumptions of Martin’s theorem: the

action set of player 1 is finite, the action set of player 2 is countable,

and the payoff function is Borel. Therefore V (G(T )) = V (G(T )). The

following two lemmas complete the proof of Theorem 1.

5Olszewski and Sandroni [16] use another game theoretic representation of the ex-
pert’s problem. Their game is a normal form one-shot game in which nature chooses
a realization and the expert chooses a prediction rule. They use topological prop-
erties of the test function to deduce the determinacy of the game using the classical
minimax theorem.
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Lemma 1. If T does not reject the truth with probability 1 − ε then

V (G(T )) ≥ 1− ε.

Lemma 2. T is 1− V (G(T )) + δ manipulable for every δ > 0

The proof of Lemma 1 uses the following lemma. Recall that, for a

finite set S and p, p′ ∈ ∆(S) a coupling of (p, p′) is a pair (Θ,Θ′) of

random variables such that P(Θ = s) = p[s] and P(Θ′ = s) = p′[s] for

every s ∈ S, i.e. the marginal distributions of Θ and Θ′ are p and p′

resp.

Coupling Lemma. [11, Chapter 1, Theorem 5.2] Let S be a finite set

and let p, p′ ∈ ∆(S). Then there exists a coupling (Θ,Θ′) of (p, p′) such

that P(Θ 6= Θ′) = ‖p− p′‖1/2.6

Proof of Lemma 1. Let τ be a behavioral strategy for player 2 in G(T ).

We have to construct a good response for player 1 against τ . The

strategy will be such that at every stage player 1 predicts the action

of player 2 for that stage. Note that since τ is given, at every stage

player 1 knows the probability distribution according to which player

2 is going to choose an action. However, since in G(T ) player 1 is only

allow to make predictions with rational values, his strategy will only

approximate this distribution.

Let δ > 0 and let f, f ′ : S<N → ∆(S) be the prediction rules defined

inductively as follows: for every (s0, . . . , sn) ∈ S<N let

(4) f(s0, . . . , sn) = τ(p0, . . . , pn, s0, . . . , sn),

6I essentially use the coupling lemma to prove that prediction rules with rational
image give rise to a set of probability measures over S∞ that is dense in the norm
topology. Cf. Lemma 3 in Olszewski and Sandroni’s paper [15].
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where pi = f ′(s0, . . . , si−1) and let f ′(s0, . . . , sn) ∈ ∆Q(S) be such that

(5) ‖f ′(s0, . . . , sn)− f(s0, . . . , sn)‖1 < δ/2n.

Then f ′ is a pure strategy of player 1 in G(T ). I am going to construct

a (f ′, τ)-random play (Π0,Θ0,Π1,Θ2, . . . ) and, on the same probabil-

ity space, a stochastic process (Θ′0,Θ
′
1, . . . ) that equals (Θ0,Θ1, . . . )

with high probability, such that f ′ is the correct prediction rule for

(Θ′0,Θ
′
1, . . . ).

Let Θ = (Θn)n∈N and Θ′ = (Θ′n)n∈N be random variables over some

probability space defined inductively such that, for s0, s
′
0, . . . , sn−1, s

′
n−1 ∈

S, the conditional joint distribution of Θn,Θ
′
n given the event {Θi =

si,Θ
′
i = s′i for 1 ≤ i < n} satisfies

P (Θn = s|Θi = si,Θ
′
i = s′i for 0 ≤ i < n) = f(s0, . . . , sn−1)[s], and

(6)

P (Θ′n = s′|Θi = si,Θ
′
i = s′i for 0 ≤ i < n) = f ′(s′0, . . . , s

′
n−1)[s

′],

(7)

and, if si = s′i for 0 ≤ i < n then also

(8) P (Θn 6= Θ′n|Θi = si,Θ
′
i = s′i for 0 ≤ i < n) ≤ δ/2n.

If si = s′i for 0 ≤ i < n then the existence of a pair of random variables

that satisfy (6),(7),(8) follows from (5) and the coupling lemma. If

si 6= s′i for some 0 ≤ i < n then the conditional joint distribution of

Θn,Θ
′
n given the event {Θi = si,Θ

′
i = s′i for 0 ≤ i < n} can be chosen

arbitrarily with the marginals given by (6) and (7). Note that from (6)
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and (7) it follows that

P (Θn = s|Θ0 = s0, . . . ,Θn−1 = sn−1) = f(s0, . . . , sn−1)[s], and(9)

P
(
Θ′n = s′|Θ′0 = s′0, . . . ,Θ

′
n−1 = s′n−1

)
= f ′(s′0, . . . , s

′
n−1)[s

′].(10)

Also, from (8) it follows that

P(Θn 6= Θ′n|Θi = Θ′i for 0 ≤ i ≤ n) ≤ δ/2n,

and therefore

(11) P(Θ 6= Θ′) ≤
∑
n∈N

P(Θn 6= Θ′n|Θi = Θ′i for 0 ≤ i ≤ n) ≤ 2δ.

Let Π = (Πn)n∈N be given by

(12) Πn = f ′(Θ0, . . . ,Θn−1).

Then it follows from (4), (9) and (12) that

(13) P(Θn = s|Π0,Θ0, . . . ,Πn−1,Θn−1) =

τ(Π0,Θ0, . . . ,Πn−1,Θn−1)[s].

From (12) and (13) it follows that

(14) (Π0,Θ0,Π1,Θ1, . . . ) is a (f ′, τ)-random play in G(T ).
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Therefore

R(f ′, τ) =E
(
T (Π0,Θ0,Π1,Θ1, . . . )

)
=

P
(
Π passes T over Θ

)
≥ P

(
Π passes T over Θ′

)
− P(Θ 6= Θ′) =

P
(
f ′ passes T over Θ′

)
− P(Θ 6= Θ′) ≥

1− ε− P(Θ 6= Θ′) ≥ 1− ε− 2δ,

where the first equality follows from (14), the second equality from

Definition 3, the first inequality from the fact that

{Π passes T over Θ′} ⊆ {Π passes T over Θ} ∪ {Θ′ 6= Θ},

the third equality from (12) and Definition 3, the second inequality

from (10) and the fact that T does not reject the truth with probability

1− ε, and the third inequality from (11). Thus, for every strategy τ of

player 2 and every δ > 0 we built a pure strategy f ′ of player 1 such

that R(f ′, τ) ≥ 1− ε− 2δ. Therefore V (G(T )) ≤ 1− ε as desired. �

Proof of Lemma 2. Let ξ be a mixed δ-optimal strategy for player 1

in G(T ). We claim that ξ, viewed as a distribution over prediction

rules, 1 − V (G(T )) + δ-manipulates T . Indeed, let s be a realization

and let g be the pure strategy of player 2 in G(T ) that is given by

g(p0, . . . , pn−1) = sn for every p0, . . . , pn−1 ∈ ∆Q(S).

Let f be a pure strategy of player 1 in G(T ). Then it follows from

Definition 3 that

R(f, g) =


1, if f passes T over s,

0, otherwise.
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It follows that

V (G(T ))− δ ≤ R(ξ, g) =

∫
R(f, g)ξ(df) = ξ {f |f passes T over s} ,

as desired. �

Remark 2. There is a model of set theory without the axiom of choice

in which every Blackwell game is determined [13, Theorem 13]. In this

model every set is universally measurable, which makes Definitions 4

and 5 meaningful for an arbitrary test function T . It follows from the

proof that in such a model Theorem 1 is valid for an arbitrary test

function.

6. Proof of Theorem 2

The test is a modification of the non-manipulable (infinite-horizon)

test of Dekel and Feinberg [5, Proposition 2]. A subset M of {0, 1}N

is universally null if M is universally measurable and µ(M c) = 1 for

every non-atomic probability measure µ over {0, 1}N. It follows from

the axiom of choice that there exist universally null sets in {0, 1}N of

cardinality ℵ1[14, Theorem 5.3]7. Such a set cannot be a Borel set.

Note that for a universally null set M and an arbitrary probability

measure µ one has

(15) µ(M c ∪ A(µ)) = 1,

where A(µ) = {s ∈ {0, 1}N|µ({s}) > 0} is the set of atoms of µ.

7Dekel and Feinberg use the fact that every Lusin set is universally null. Existence
of Lusin set follows from the continuum hypothesis
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Let S = {0, 1} and Let M be an uncountable universally null subset

of SN. Let T : ∆(S)N × SN → {0, 1} be the test function that is given

by

T (p, s) =


0, if s ∈M and

∏
n∈N pn[sn] = 0,

1, otherwise.

I claim that T satisfies the requirements of Theorem 2.

Let f : S<N → ∆(S) be a prediction rule, and let s ∈ SN. Let

Θ0,Θ1, . . . be a sequence of random variables satisfying (1), and let

µf ∈ ∆(SN) be their joint distribution. Then

(16) µf ({s}) = P
(
Θn = sn for every n ∈ N

)
=∏

n∈N

P
(
Θn = sn|Θi = si for 0 ≤ i < n

)
=
∏
n∈N

pn[sn],

where pn = f(s0, . . . , sn−1).

By the last equation and the definition of T it follows that f passes

T on s ∈ M if and only if µf ({s}) > 0, i.e. s ∈ A(µf ). The rest of

the argument is the same as in Dekel and Feinberg’s paper: For every

prediction rule f

µf
(
{s|f passes T over s}

)
= µf (M

c ∪ A(µf )) = 1

(the last equality follows from (15)), and therefore T does not reject

the truth with probability 1.
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To prove the second assertion of Theorem 2, let ξ be a probability

distribution over prediction rules and let s ∈M . If

ξ
(
{f |f passes T over s}

)
= ξ
(
{f |µf ({s}) > 0

})
> 0,

then in particular ξ({s}) > 0 where ξ ∈ ∆(SN) is the barycenter of ξ,

given by

ξ(B) =

∫
µf (B)ξ(df)

for every Borel subset B of ∆(SN). Thus ξ will pass the test with

some positive probability over s ∈ M only if s ∈ A(ξ). Since M

is uncountable and A(ξ) is countable, it follows that there are some

s ∈M over which ξ passes the test with probability 0.

Remark 3. The test constructed by Olszewski and Sandroni [16] has

the stronger property that for every randomly generated prediction rule

ξ, the set of all realizations s over which ξ passes tests with positive

probability is a set of first Baire category.

7. Finite horizon predictions and predictions about a

finite set

Theorem 1, which deals with one-period tests, can be generalized

to tests with finite horizon: Let k ≥ 1 be a natural number. Con-

sider an inspection in which, at every period n, the expert provides a

probabilistic prediction about (sn, sn+1, . . . , sn+k−1). A k-horizon pre-

diction is an element of ∆(Sk). A k-horizon test function is a function

T : ∆(Sk)N × SN → R. A k-horizon prediction rule is a function

f : S<N → ∆(Sk). Definitions 4 and 5 extend in an obvious way to
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the case of k-horizon test functions, and the analogue of Theorem 1 is

also true: If a k-horizon test function does not reject the truth with

probability 1−ε then it is ε+δ-manipulable for every δ > 0. Moreover,

the number k need not be constant or bounded, and can depend on

past realizations and predictions.

On the other hand, as Dekel and Feinberg and Olszewski and San-

droni show, infinite horizon tests can be non-manipulable. In order

to emphasize that the manipulability result of this paper relies on the

fact that the predictions requested from the expert are about events in

the finite horizon, and not just on the fact that the set Sk over which

predictions are made at each period is finite, consider the following

situation: Fix a Borel set B ⊆ SN. Assume that at every period n,

given the partial realization (s0, . . . , sn−1) observed at that period, the

expert is asked to make a prediction qn ∈ [0, 1] about whether or not

the event B will occur, that is whether or not the infinite realization s

is in B. Consider the test function TB : [0, 1]N × SN → {0, 1} that is

given by

TB(q, s) =


1, if limn→∞ qn = 1B(s)

0, otherwise.

A prediction rule about B is a function f : S<N → [0, 1]. A prediction

rule passes the test TB over realization s ∈ SN if TB(q, s) = 1 where

q ∈ [0, 1]N is given by qn = f(s0, . . . , sn−1). It follows from the mar-

tingale convergence theorem that the test TB does not reject the truth

with probability 1, that is, for every stochastic process Θ0,Θ1, . . . with
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values in S one has

P(f passes TB on Θ0,Θ1, . . . ) = 1

where f is the prediction rule that is given by

f(s0, . . . , sn−1) = P
(
(Θ0,Θ1, . . . ) ∈ B|Θ0 = s0, . . . ,Θn−1 = sn−1

)
.

Note that in the inspection induced by TB the expert is always asked

to state a prediction about only two possibilities – either B occurs or

B does not occur. Still, as I show in the following example, TB need

not be manipulable when B is an event in the infinite horizon.

Example 1. Let B ⊆ SN be a Borel set that is not an Fσ set. Then

the test TB is not ε-manipulable for any ε < 1/2.

Indeed, Let ξ be a probability measure over prediction rules. Let

B =
{
s ∈ SN

∣∣∣ξ ({f |lim inf
n→∞

f(s|n) > 1/2
})

> 1/2
}
.

Since for every s ∈ SN one has

{
f |lim inf

n→∞
f(s|n) > 1/2

}
=
∞⋃
r=1

∞⋃
n=1

∞⋂
k=n

{f |f(s|k) > 1/2 + 1/r}

it follows that that

s ∈ B ↔ ∃r, n ξ

(
∞⋂
k=n

{f |f(s|k) > 1/2 + 1/r}

)
> 1/2

↔ ∃r, n, t ∀m ≥ n ξ

(
m⋂
k=n

{f |f(s|k) > 1/2 + 1/r}

)
> 1/2 + 1/t.
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Therefore

B =
∞⋃

r,n,t=1

∞⋂
m=n

B(r, n, t,m),

where

B(r, n, t,m) =

{
s

∣∣∣∣∣ξ
(

m⋂
k=n

{f |f(s|k) > 1/2 + 1/r}

)
> 1/2 + 1/t

}

Since the sets B(r, n, t,m) are clopen (membership to B(r, n, t,m) de-

pends only on finite number of coordinates) it follows that B is an Fσ

set. By the choice of B it follows that B 6= B. If s is any element in the

symmetric difference of B and B then ξ ({f |f passes TB on s}) ≤ 1/2.

In particular, TB is not ε-manipulable for any ε < 1/2.

Remark 4. Let S = {0, 1}. As an example of a Borel subset B of SN

that is not an Fσ set one can take B = {s ∈ SN|
∑

n∈N sn = ∞}, the

set of realizations with infinitely many 1’s.

8. Conclusions

The inspections considered in this paper are sequential : they require

the expert to announce at every period a probabilistic prediction in

∆(P ) for some finite set P of possibilities. In one-period inspections

P = S, the set of possible outcomes in the period. In k-horizon in-

spections (Section 7) P = Sk, the set of possible outcomes in the k-s

next periods. In inspections TB about an event B (Section 7), P is a

set of two possibilities: ‘B occurs’ and ‘B does not occur’. In contrast,

the inspections studied by Dekel and Feinberg [5] and Olszewski and

Sandroni [16] require the expert to provide one prediction in ∆(SN)

about the entire realization of the process.
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The paper bears good news and bad news to the inspector: There

exist sequential inspections that are not manipulable (Theorem 2 and

Example 1). However, such inspections must be either non-Borel or

rely on predictions about events that are not determined at any finite

period.
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