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Abstract

This paper considers tests and confidence intervals based on a test statistic that has
a limit distribution that is discontinuous in a nuisance parameter or the parameter of
interest. The paper shows that standard fixed critical value (FCV) tests and subsample
tests often have asymptotic size–defined as the limit of the finite sample size–that
is greater than the nominal level of the test. We determine precisely the asymptotic
size of such tests under a general set of high-level conditions that are relatively easy
to verify. Often the asymptotic size is determined by a sequence of parameter values
that approach the point of discontinuity of the asymptotic distribution. The problem
is not a small sample problem. For every sample size, there can be parameter values for
which the test over-rejects the null hypothesis. Analogous results hold for confidence
intervals.

We introduce a hybrid subsample/FCV test that alleviates the problem of over-
rejection asymptotically and in some cases eliminates it. In addition, we introduce
size-corrections to the FCV, subsample, and hybrid tests that eliminate over-rejection
asymptotically. In some examples, these size corrections are computationally challeng-
ing or intractable. In other examples, they are feasible.

Keywords: Asymptotic size, finite sample size, hybrid test, over-rejection, size correc-
tion, subsample confidence interval, subsample test.
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1 Introduction

THIS INTRODUCTION IS QUITE PRELIMINARY. IN PARTICULAR, REF-
ERENCES TO THE LITERATURE ARE NOT INCLUDED. SUGGESTIONS FOR
RELEVANT REFERENCES ARE WELCOME.

In this paper, we show that if a sequence of test statistics has an asymptotic distri-
bution that is discontinuous in the true parameter, then a subsample test based on the
test statistic does not necessarily yield the desired asymptotic level. That is, the limit
of the finite sample size of the test can exceed its nominal level. The same is shown to
be true for a standard fixed critical value (FCV) test. Analogous problems arise with
subsample and FCV confidence intervals (CIs) and confidence regions.

Examples where the asymptotic distribution of a test statistic is discontinuous in
the true parameter include (i) models where a parameter may be on a boundary, (ii)
models where a parameter may be unidentified at one or more points, e.g., as occurs
in an instrumental variables model with weak instruments and in models where some
parameters are only set identified, rather than point identified, (iii) models where the
“degree of identification” of a parameter differs across parameter values causing dif-
ferent rates of convergence of estimators, as occurs in an autoregressive model with
possible unit root, and (iv) models where shrinkage or post-model selection procedures
are employed.

The intuition for the result stated above for a subsample test is roughly as follows.
Suppose for a parameter θ we are interested in testingH0 : θ = θ0, a nuisance parameter
γ appears under the null hypothesis, and the asymptotic distribution of the test statistic
of interest is discontinuous at γ = 0. Then, a subsample test statistic based on a
subsample of size bn << n behaves like it is closer to the discontinuity point γ = 0
than does the full-sample test statistic. This occurs because the variability of the
subsample statistic is greater than that of the full-sample statistic and, hence, its
behavior at a fixed value γ 9= 0 is harder to distinguish from its behavior at γ = 0.
In consequence, the subsample statistic can have a distribution that is close to the
asymptotic distribution for γ = 0, whereas the full-sample statistic has a distribution
that is close to the asymptotic distribution for γ 9= 0. If the asymptotic distribution of
the test statistic for γ 9= 0 is more disperse than for γ = 0, then the subsample critical
value is too small typically and the subsample test over-rejects the null hypothesis.
On the other hand, if the asymptotic distribution of the test statistic for γ 9= 0 is
less disperse than for γ = 0, then the subsample critical value is too large and the
subsample test is not asymptotically similar. More precisely, the limit of the finite-
sample size of a subsample test depends on the whole range of behavior of the test
statistic and subsample statistic for parameter values close to γ = 0.

The intuition laid out in the previous paragraph is made rigorous by considering
the behavior of subsampling tests under asymptotics in which the true parameter, γn,
drifts to the point of discontinuity γ = 0 as n → ∞. Since the finite-sample size of a
test is based on the supremum of the null rejection rate over all parameter values γ for
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given n, the limit of the finite sample size of a test is always greater than or equal to
its limit under a drifting sequence {γn : n ≥ 1}. Hence, if the limit of the null rejection
rate under a drifting sequence exceeds the nominal level, then the limit of the exact
finite-sample null rejection rate exceeds the nominal level. Analogously, if the limit of
the null rejection rate under a drifting sequence is less than the nominal level, then the
limit of the exact finite-sample measure of nonsimilarity must be positive.

We show that there are two different rates of drift such that over-rejection and/or
under-rejection (compared to the nominal level) can occur. The first rate is one under
which the full-sample test statistic has an asymptotic distribution that depends on a
localization parameter, h, and the subsample critical values behave like the critical
value from the asymptotic distribution of the statistic under γ = 0. The second rate is
one under which the full-sample test statistic has an asymptotic distribution that is the
same as for fixed γ 9= 0 and the subsample critical value behaves like the critical value
from the asymptotic distribution of the full-sample statistic under a drifting sequence
with localization parameter h.

The results of the paper provide conditions under which sequences of these two
types determine the limit of the finite-sample size of the test. In particular, under
these conditions, we obtain necessary and sufficient conditions for the limit of the
finite—sample size of a subsample test to exceed its nominal level. The paper gives
corresponding results for standard tests that are based on a fixed critical value.

The paper introduces a hybrid test whose critical value is the maximum of a sub-
sample critical value and a certain fixed critical value. The hybrid test has advantages
over both the subsample test and a fixed critical value test in terms of its asymptotic
size. In particular, in comparison to using the subsample critical value alone, we show
that taking the maximum over the fixed critical value is either irrelevant asymptotically
or it reduces over-rejection asymptotically somewhere in the null hypothesis. In some
scenarios, the hybrid test has correct asymptotic size. In other scenarios, it does not.

We suggest three solutions to the asymptotic over-rejection problem discussed
above. One solution is a size-corrected (SC) FCV test whose asymptotic size equals the
desired nominal level. The second and third solutions are SC subsample and SC hybrid
tests. These solutions can be computationally challenging and may be intractable in
some contexts. But, they are feasible in some contexts. In some cases, these solutions
do not work at all–i.e., the assumptions under which the solutions work are violated.
Examples of this considered below include a CI based on a shrinkage estimator and
tests and CIs in an IV regression model where the IVs are not completely exogenous.

We show that the SC-FCV test may be uniformly more powerful than the SC-
subsample test or vice versa or the two tests cannot be unambiguously ranked, de-
pending upon the shape of the quantile function of the asymptotic distributions of the
test statistics (as a function of parameters of the model). The SC hybrid test has the
nice power property that it is asymptotically equivalent to the SC-FCV test in the
context where the SC-FCV test is uniformly more powerful than the SC-Sub test, and
it is asymptotically equivalent to the SC-Sub test in the context in which the SC-Sub
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test is uniformly more powerful than the SC-FCV test.
The potential problem of subsampling tests, the hybrid procedure, and the SC

methods outlined above carry over with some adjustments to confidence intervals (CIs)
by the usual duality between tests and CIs. Some adjustments are needed because the
limit of the finite-sample level of a CI depends on uniformity over θ ∈ Θ and γ ∈ Γ,
where Θ and Γ are the parameter spaces of θ and γ, respectively, whereas the limit of
the finite-sample size of a test of H0 : θ = θ0 only depends on uniformity over γ ∈ Γ
for fixed θ0.

The paper considers general test statistics, including t, LR, and LM statistics. The
results cover one-sided, symmetric two-sided, and equal-tailed two-sided t tests and
corresponding confidence intervals. The t statistics may be studentized (i.e., of the
form τn(eθn − θ0)/eσn for an estimator eθn, a scale estimator eσn, and a normalization
factor τn) or non-studentized (i.e., of the form τn(eθn−θ0)). Non-studentized t statistics
are often considered in the subsample literature, see Politis, Romano, and Wolf (1999)
(PRW). But, studentized t statistics are needed in certain testing situations in which
non-studentized statistics have rates of convergence that are parameter dependent.
This occurs with unit root tests, see Romano and Wolf (2001), and with tests in the
presence of weak instruments, see Guggenberger and Wolf (2004).

The results in the paper also apply to the case where the limit distribution of a test
statistic is “continuous” in a nuisance parameter. In this case, sufficient conditions are
given under which FCV, subsample, and hybrid tests and CIs have asymptotic levels
(defined to be the limit of their finite sample levels) equal to their nominal levels. To
the best of our knowledge, results of this sort are not available in the literature–results
in the literature are pointwise asymptotic results.

NEED TO ADD DETAILS REGARDING THE EXTENSION OF THE RESULTS
OF THE PAPER TO COVER THE m < n BOOTSTRAP BY ADJUSTING AS-
SUMPTION B1 AND/OR B2 BELOW.

The main results given in the paper employ high-level assumptions. These assump-
tions are verified in several examples.

2 Basic Testing Set-up

We are interested in tests concerning a parameter θ ∈ Rd in the presence of a
nuisance parameter γ ∈ Γ. Of special interest is the case where d = 1, but the results
allow for d > 1. The null hypothesis of interest is H0 : θ = θ0. The alternative
hypothesis of interest may be one-sided or two-sided.

2.1 Test Statistic

Let Tn(θ0) denote a test statistic based on a sample of size n for testing H0 : θ = θ0
for some θ0 ∈ Rd. The leading case that we consider is when Tn(θ0) is a t statistic, but
the results also allow Tn(θ0) to be an LR, LM, or some other statistic. Large values of
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Tn(θ0) indicate evidence against the null hypothesis, so a test based on Tn(θ0) rejects
the null hypothesis when Tn(θ0) exceeds some critical value.

When Tn(θ0) is a t statistic, it is defined as follows. Let eθn be an estimator of a
scalar parameter θ based on a sample of size n. Let eσn (∈ R) be an estimator of the
scale of eθn. For alternatives of the sort (i) H1 : θ > θ0, (ii) H1 : θ < θ0, and (iii)
H1 : θ 9= θ0, respectively, the t statistic is defined as follows:

Assumption t1. (i) Tn(θ0) = τn(eθn − θ0)/eσn, or (ii) Tn(θ0) = −τn(eθn − θ0)/eσn, or
(iii) Tn(θ0) = |τn(eθn − θ0)/eσn|, where τn is some known normalization constant.
In many cases, τn = n1/2. For example, this is true in boundary examples and even in
the unit root example. Note that τn is not uniquely defined because eσn could be scaled
up or down to counteract changes in the scale of τn. In practice this is usually not an
issue because typically there is a natural definition for eσn, which determines its scale.

A common case considered in the subsample literature is when Tn(θ0) is a non-
studentized t statistic, see PRW. In this case, Assumption t1 and the following as-
sumption hold.

Assumption t2. eσn = 1.
There are cases, however, where a non-studentized test statistic has an asymptotic

null distribution with a normalization factor τn that depends on a nuisance parameter
γ. This causes problems for the standard theory concerning subsample methods, see
PRW, Ch. 8. In such cases, a studentized test statistic often has the desirable property
that the normalization factor τn does not depend on the nuisance parameter γ. This
occurs with tests concerning unit roots in time series, see Romano and Wolf (2001), and
with tests in the presence of weak instruments, see Guggenberger and Wolf (2004). The
set-up that we consider allows for both non-studentized and studentized test statistics.
Note that under Assumption t2 the order of magnitude of τn is uniquely determined.

The focus of this paper is on the behavior of tests when the asymptotic null dis-
tribution of Tn(θ0) depends on the nuisance parameter γ and is discontinuous at some
value(s) of γ. Without loss of generality, we take the point(s) of discontinuity to be γ
values for which some subvector of γ is 0.

2.2 Fixed Critical Values

We consider two different types of critical value for use with the test statistic Tn(θ0).
The first is a fixed critical value (FCV) and is denoted cFix(1− α), where α ∈ (0, 1) is
the nominal size of the FCV test. The FCV test rejects H0 when

Tn(θ0) > cFix(1− α). (2.1)

The results below allow cFix(1− α) to be any constant. However, if the discontinuity
(or discontinuities) of the asymptotic null distribution of Tn(θ0) is (are) not taken into
account, one typically defines

cFix(1− α) = c∞(1− α), (2.2)

4



where c∞(1 − α) denotes the 1 − α quantile of J∞ and J∞ is the asymptotic null
distribution of Tn(θ0) when γ is not a point of discontinuity. For example, when
Assumption t1(i), (ii), or (iii) holds, c∞(1− α) typically equals z1−α, z1−α, or z1−α/2,
respectively, where z1−α denotes the 1−α quantile of the standard normal distribution.
If Tn(θ0) is an LR, LM, or Wald statistic, then c∞(1 − α) typically equals the 1 − α
quantile of a χ2d distribution, denoted χ2d(1− α).

On the other hand, if a discontinuity at γ = h0 is recognized, one might take the
FCV to be

cFix(1− α) = max{c∞(1− α), ch0(1− α)}, (2.3)

where ch0(1 − α) denotes the 1 − α quantile of Jh0 and Jh0 is the asymptotic null
distribution of Tn(θ0) when γ = h0. The FCV test based on this FCV is not likely to
be asymptotically similar, but one might hope is that it has asymptotic level α. The
results given below show that often even the latter is not true.

2.3 Subsample Critical Values

The second type of critical value that we consider is a subsample critical value. Let
{bn : n ≥ 1} be a sequence of subsample sizes. For brevity, we sometimes write bn as
b. Let {eTn,b,i : i = 1, ..., qn} be certain subsample statistics that are based primarily on
subsamples of size bn rather than the full sample. For example, with iid observations,
there are qn = n!/((n− bn)!bn!) different subsamples of size bn and eTn,b,i is determined
primarily by the observations in the ith such subsample. With time series observations,
say {X1, ...,Xn}, there are qn = n− bn + 1 subsamples of bn consecutive observations,
e.g., Yi = {Xi, ...,Xi+bn−1}, and eTn,b,i is determined primarily by the observations in
the ith subsample Yi.

Let Ln,b(x) and cn,b(1 − α) denote the empirical distribution function and 1 − α

sample quantile, respectively, of the subsample statistics {eTn,b,i : i = 1, ..., qn}. They
are defined by

Ln,b(x) = q−1n
qn[
i=1

1(eTn,b,i ≤ x) for x ∈ R and
cn,b(1− α) = inf{x : Ln,b(x) ≥ 1− α}. (2.4)

The subsample test rejects H0 : θ = θ0 if

Tn(θ0) > cn,b(1− α). (2.5)

We now describe the subsample statistics {eTn,b,i : i = 1, ..., qn} in more detail. Let
{Tn,b,i(θ0) : i = 1, ..., qn} be subsample statistics that are defined exactly as Tn(θ0) is
defined, but based on subsamples of size bn rather than the full sample. For example,
suppose Assumption t1 holds. Let (eθn,b,i, eσn,b,i) denote the estimators (eθb, eσb) applied
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to the ith subsample. In this case, we have

(i) Tn,b,i(θ0) = τ b(eθn,b,i − θ0)/eσn,b,i, or
(ii) Tn,b,i(θ0) = −τ b(eθn,b,i − θ0)/eσn,b,i, or
(iii) Tn,b,i(θ0) = |τ b(eθn,b,i − θ0)/eσn,b,i|. (2.6)

Below we make use of the empirical distribution of {Tn,b,i(θ0) : i = 1, ..., qn} defined
by

Un,b(x) = q
−1
n

qn[
i=1

1(Tn,b,i(θ0) ≤ x). (2.7)

In most cases, subsample critical values are based on a simple adjustment to the
statistics {Tn,b,i(θ0) : i = 1, ..., qn}, where the adjustment is designed to yield subsam-
ple statistics that behave similarly under the null and the alternative hypotheses. In
particular, {eTn,b,i : i = 1, ..., qn} often are defined to satisfy the following condition.
Assumption Sub1. eTn,bn,i = Tn,bn,i(eθn) for all i ≤ n, where eθn is an estimator of θ.
The estimator eθn is usually chosen to be a consistent estimator of θ whether or not the
null hypothesis holds. Assumption Sub1 can be applied to t statistics as well as to LR
and LM statistics, among others.

If consistent estimation of θ is not possible when γ = 0, as occurs when θ is not
identified when γ = 0, then taking {eTn,bn,i} to satisfy Assumption Sub1 is not desirable
because eθn is not necessarily close to θ0 when γ is close to 0. For example, this occurs in
the weak IV example, see Guggenberger and Wolf (2004). In such cases, it is preferable
to take {eTn,bn,i} to satisfy the following assumption.2
Assumption Sub2. eTn,bn,i = Tn,bn,i(θ0) for all i ≤ n.

The results given below for subsample tests allow for subsample statistics {eTn,b,i}
that satisfy Assumption Sub1 or Sub2 or are defined in some other way.

2.4 Asymptotic Size

The exact size, ExSzn(θ0), of an FCV or subsample test is the supremum over
γ ∈ Γ of the null rejection probability under γ:

ExSzn(θ0) = sup
γ∈Γ

RPn(θ0, γ), where RPn(θ0, γ) = Pθ0,γ(Tn(θ0) > c1−α),

c1−α = cFix(1− α) or c1−α = cn,b(1− α), (2.8)

and Pθ,γ(·) denotes probability when the true parameters are (θ, γ).3

2When Assumption t1 holds, subsample statistics { eTn,bn,i} that satisfy Assumption Sub2 typically
yield nontrivial power because the normalization constant τn satisfies τbn/τn → 0.

3We remind the reader that the size of a test is equal to the supremum of its rejection probability
under the null hypothesis and a test is of level α if its size is less than or equal to α.

6



We are interested in the “asymptotic size” of the test defined by

AsySz(θ0) = lim sup
n→∞

ExSzn(θ0). (2.9)

This definition should not be controversial. Our interest is in the exact finite sample
size of the test. We use asymptotics to approximate this. Uniformity over γ ∈ Γ, which
is built into the definition of AsySz(θ0), is necessary for the asymptotic size to give a
good approximation to the finite sample size.4

If AsySz(θ0) > α, then the nominal level α test has asymptotic size greater than
α and the test does not have correct asymptotic level.

To a lesser extent, we are also interested in the minimum rejection probability of
the subsample test and its limit:

MinRPn(θ0) = inf
γ∈Γ

RPn(θ0, γ) and AsyMinRP (θ0) = lim inf
n→∞ MinRPn(θ0). (2.10)

The quantity α−MinRPn(θ0) is the maximum amount of under-rejection of the test
over points in the null hypothesis for fixed n. If α − AsyMinRP (θ0) > 0, then the
subsample test is not asymptotically similar and, hence, may sacrifice power.

3 Assumptions

This section introduces the assumptions that we employ. The assumptions are
verified in several examples below.

3.1 Parameter Space

First, we introduce some notation. Let e denote the left endpoint of an interval that
may be open or closed at the left end. Define f analogously for the right endpoint. Let
R+ = {x ∈ R : x ≥ 0}, R− = {x ∈ R : x ≤ 0}, R+,∞ = R+∪{∞}, R−,∞ = R−∪{−∞},
R∞ = R∪{±∞}, Rp+ = R+× ...×R+ (with p copies), and R

p∞ = R∞× ...×R∞ (with p
copies). Let cl(I) denote the closure of an interval I = eI1, I2f ⊂ R with respect to R∞.
(In particular, if I = eI1,∞) for I1 > −∞, then cl(I) = [I1,∞)∪ {∞}; if I = (−∞, I2f
for I2 <∞, then cl(I) = (−∞, I2] ∪ {−∞}; and if I = R, then cl(I) = R∞.)

The model is indexed by a parameter γ that has up to three components: γ =
(γ1, γ2, γ3). The points of discontinuity of the asymptotic distribution of the test sta-
tistic of interest are determined by the first component, γ1 ∈ Rp. Through repara-
metrization we can assume without loss of generality that the discontinuity occurs at
γ1 = 0. Thus, γ1 determines how close the parameter γ is to a point of discontinu-
ity. The value of γ1 affects the limit distribution of the test statistic of interest. The
parameter space for γ1 is Γ1 ⊂ Rp.

4Note that the definition of the parameter space Γ is flexible. In some cases, one might want to
define Γ so as to bound γ away from points in Rp that are troublesome. This is reasonable, of course,
only if one has prior information that justifies the particular definition of Γ.
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The second component, γ2 (∈ Rq), of γ also affects the limit distribution of the
test statistic, but does not affect the distance of the parameter γ to the point of
discontinuity. The parameter space for γ2 is Γ2 ⊂ Rq.

The third component, γ3, of γ is assumed to be an element of an arbitrary space T3.
Hence, it may be finite or infinite dimensional. By assumption, the third component γ3
does not affect the limit distribution of the test statistic (which is why no structure on
the space T3 is required). For example, in a linear model, a test statistic concerning one
regression parameter may be invariant to the value of some other regression parameters.
The latter parameters are then part of γ3. Infinite dimensional γ3 parameters also arise
frequently. For example, error distributions are often part of γ3. Due to the operation
of the central limit theorem it is often the case that the asymptotic distribution of a
test statistic does not depend on the particular error distribution–only on whether the
error distribution has certain moments finite. Such error distributions are part of γ3.
The parameter space for γ3 is Γ3(γ1, γ2) (⊂ T3), which as indicated may depend on γ1
and γ2.

The parameter space for γ is

Γ = {(γ1, γ2, γ3) : γ1 ∈ Γ1, γ2 ∈ Γ2, γ3 ∈ Γ3(γ1, γ2)}. (3.1)

In Section 4 below we provide two main theorems. The first theorem relies on weaker
assumptions than the second, but gives weaker results. We label the assumptions
to correspond to these two theorems. An Assumption that ends with 1 is used in
Theorem 1. An Assumption that ends in 2 is used in Theorem 2 and is stronger than
a corresponding assumption that ends in 1. (For example, Assumption A2 implies
Assumption A1.) All other assumptions are used in both Theorems 1 and 2.

Assumption A1. (i) Γ satisfies (3.1), where Γ1 ⊂ Rp, Γ2 ⊂ Rq, and Γ3(γ1, γ2) ⊂ T3
for some arbitrary space T3. (ii) The zero p-vector, 0, is in Γ1.
Assumption A2. (i) Assumption A1(i) holds. (ii) Γ1 =

Tp
j=1 Γ1,j , where Γ1,j =

eaj , bjf for some −∞ ≤ aj < bj ≤ ∞ that satisfy aj ≤ 0 ≤ bj for j = 1, ..., p.
Under Assumption A2, the parameter space Γ1 includes the point γ1 = 0 as well as

values γ1 that are arbitrarily close to 0.
5

Next, we define an index set for the different asymptotic null distributions of the
test statistic Tn(θ0) of interest. Define

H = H1 ×H2, H1 =
p\
j=1

⎧⎨⎩
R+,∞ if aj = 0
R−,∞ if bj = 0
R∞ if aj < 0 and bj > 0,

and H2 = cl(Γ2), (3.2)

where cl(Γ2) is the closure of Γ2 with respect to R
q∞. For example, if p = 1, a1 = 0,

and Γ2 = Rq, then H1 = R+,∞, H2 = Rq∞, and H = R+,∞ ×Rq∞.
5The results below allow for the case where there is no subvector γ1 of γ, i.e., p = 0. In this case,

there is no discontinuity of the asymptotic distribution of the test statistic of interest, see below.

8



3.2 Convergence Assumptions

This subsection and the next introduce the high-level assumptions that we employ.
The high-level assumptions are verified in several examples below.

Throughout this section, the true value of θ is the null value θ0 and all limits are
as n → ∞. For an arbitrary distribution G, let G(·) denote the distribution function
(df) of G and let C(G) denote the continuity points of G(·). Define the 1−α quantile,
q(1 − α), of a distribution G by q(1 − α) = inf{x : G(x) ≥ 1 − α}. For a df G(·), let
G(x−) = limε�0G(x− ε), where “limε�0 ” denotes the limit as ε > 0 declines to zero.
Note that G(x+) = limε�0G(x+ ε) equals G(x) because dfs are right continuous. The
distributions Jh and Jh0 considered below are distributions of proper random variables
that are finite with probability one.

For a sequence of constants {κn : n ≥ 1}, let κn → [κ1,∞,κ2,∞] denote that κ1,∞ ≤
lim infn→∞ κn ≤ lim supn→∞ κn ≤ κ2,∞.

Let r > 0 denote a rate of convergence index such that when the true value of γ1
satisfies nrγ1 → h1, then the test statistic Tn(θ0) has an asymptotic distribution that
depends on the localization parameter h1. In most examples, r = 1/2.

Definition of {γn,h : n ≥ 1}: Given r > 0 and h = (h1, h2) ∈ H, let {γn,h =
(γn,h,1, γn,h,2, γn,h,3) : n ≥ 1} denote a sequence of parameters in Γ for which nrγn,h,1 →
h1, γn,h,2 → h2, and γn,h,3 ∈ Γ3(γn,h,1, γn,h,2) for all n ≥ 1.
The sequence {γn,h : n ≥ 1} is defined such that under {γn,h : n ≥ 1}, the asymptotic
distribution of Tn(θ0) depends on h and only h, see Assumptions B1 and B2 below. For
a given model, there is a single fixed r > 0. Hence, for notational simplicity, we do not
index {γn,h : n ≥ 1} by r. In addition, the limit distributions under {γn,h : n ≥ 1} of
the test statistics of interest do not depend on γn,h,3, so we do not make the dependence
of γn,h on γn,h,3 explicit.

In models in which the asymptotic distribution of the test statistic of interest is
continuous in the model parameters, we apply the results below with no parameter γ1
(or γn,h,1), i.e., p = 0.We refer to this as the continuous limit case. On the other hand,
in the discontinuous limit case–which is the case of main interest in this paper, we
apply the results with p ≥ 1.

Given any h = (h1, h2) ∈ H, define h0 = (0, h2) ∈ H, where h2 ∈ H2.
We use the following assumptions.

Assumption B1. (i) For some r > 0, some h ∈ Rp, some sequence {γn,h : n ≥ 1},
and some distribution Jh, Tn(θ0)→d Jh under {γn,h : n ≥ 1}, and (ii) for all sequences
{γn,h0 : n ≥ 1} and some distribution Jh0 , Tn(θ0)→d Jh0 under {γn,h0 : n ≥ 1} (where
r is the same as in part (i) and h0 depends on the vector h given in part (i)).

Assumption B2. For some r > 0, all h ∈ H, all sequences {γn,h : n ≥ 1}, and some
distributions Jh, Tn(θ0)→d Jh under {γn,h : n ≥ 1}.

If γn,h does not depend on n (which necessarily requires h1 = 0), Assumption B1(i)
is a standard assumption in the subsampling literature. For example, it is imposed
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in the basic theorem in PRW (1999, Thm. 2.2.1, p. 43) for subsampling with iid
observations and in their theorem for stationary strong mixing observations, see PRW,
Thm. 3.2.1, p. 70. If γn,h does depend on n, Assumption B1(i) usually can be verified
using the same sort of argument as when it does not. Similarly, Assumption B1(ii)
usually can be verified using the same sort of argument and, hence, is not restrictive.

Assumption B2 holds in many examples, but it can be restrictive. It is for this
reason that we introduce Assumption B1. Theorem 1 only requires Assumption B1,
whereas Theorem 2 requires Assumption B2. In the “continuous limit” case (where
Assumption B2 holds with p = 0 and H = H2), the asymptotic distribution Jh may
depend on h but is continuous in the sense that one obtains the same asymptotic
distribution for any sequence {γn,h : n ≥ 1} for which γn,h,2 converges to h2 ∈ H2.

3.3 Subsample Assumptions

The assumptions above are all that are needed for FCV tests. For subsample tests,
we require the following additional assumptions:

Assumption C. (i) bn →∞, and (ii) bn/n→ 0.

Assumption D. (i) {Tn,bn,i(θ0) : i = 1, ..., qn} are identically distributed under any
γ ∈ Γ for all n ≥ 1, and (ii) Tn,bn,i(θ0) and Tbn(θ0) have the same distribution under
any γ ∈ Γ for all n ≥ 1.
Assumption E. For all sequences {γn ∈ Γ : n ≥ 1}, Un,bn(x) − Eθ0,γnUn,bn(x) →p 0
under {γn : n ≥ 1} for all x ∈ R.
Assumption F1. For all ε > 0, Jh0(ch0(1−α)− ε) < 1−α and Jh0(ch0(1−α)+ ε) >
1− α, where ch0(1− α) is the 1− α quantile of Jh0 and h

0 is as in Assumption B1(ii).

Assumption F2. For all ε > 0 and h ∈ H, Jh(ch(1− α)− ε) < 1− α and Jh(ch(1−
α) + ε) > 1− α, where ch(1− α) is the 1− α quantile of Jh.

Assumption G1. For the sequence {γn,h : n ≥ 1} in Assumption B1(i), Ln,bn(x) −
Un,bn(x)→p 0 for all x ∈ C(Jh0) under {γn,h : n ≥ 1}.
Assumption G2. For all h ∈ H and all sequences {γn,h : n ≥ 1}, if Un,bn(x)→p Jg(x)
under {γn,h : n ≥ 1} for all x ∈ C(Jg) for some g ∈ R

p∞, then Ln,bn(x)−Un,bn(x)→p 0
under {γn,h : n ≥ 1} for all x ∈ C(Jg).

Assumptions C and D are standard assumptions in the subsample literature, e.g.,
see PRW, Thm. 2.2.1, p. 43, and are not restrictive. The sequence {bn : n ≥ 1}
can always be chosen to satisfy Assumption C. Assumption D necessarily holds when
the observations are iid or stationary and subsamples are constructed in the usual way
(described above).

Assumption E holds quite generally. For iid observations, the condition in Assump-
tion E when γn,1 = 0 and (γn,2, γn,3) does not depend on n (where γn = (γn,1, γn,2, γn,3))
is verified by PRW (1999, p. 44) using a U-statistic inequality of Hoeffding. It holds
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for any triangular array of row-wise iid [0,1]-valued random variables by the same ar-
gument. Hence, Assumption E holds automatically when the observations are iid for
each fixed γ ∈ Γ when the subsample statistics are defined as above.

For stationary strong mixing observations, the condition in Assumption E when
γn,1 = 0 and (γn,2, γn,3) does not depend on n (where γn = (γn,1, γn,2, γn,3)) is verified
by PRW (1999, pp. 71-72) by establishing L2 convergence using a strong mixing co-
variance bound. It holds for any sequence {γn ∈ Γ : n ≥ 1} and, hence, Assumption E
holds, by the same argument as in PRW provided

sup
γ∈Γ

αγ(m)→ 0 as m→∞, (3.3)

where {αγ(m) : m ≥ 1} are the strong mixing numbers of the observations when the
true parameters are (θ0, γ).

Assumptions F1 and F2 are not restrictive. They hold in all of the examples that
we have considered. In particular, Assumption F1 holds if either (i) Jh0(x) is strictly
increasing at x = ch0(1−α) or (ii) Jh0(x) has a jump at x = ch0(1−α) with Jh0(ch0(1−
α)) > 1−α and Jh0(ch0(1−α)−) < 1−α. Sufficient conditions for Assumption F2 are
analogous. Condition (i) holds in most examples. But, if Jh0 is a pointmass, as occurs
with the example of a CI based on a super-efficient estimator with constant a = 0 (see
Section 11.2 below), then condition (i) fails, but condition (ii) holds.

Assumptions G1 and G2 hold automatically when {eTn,bn,i} satisfy Assumption
Sub2.

To verify that Assumption G1 or G2 holds when {eTn,bn,i} satisfy Assumption Sub1
and Tn(θ0) is a non-studentized t statistic (i.e., Assumptions t1 and t2 hold), we use
the following assumption.

Assumption H. τ bn/τn → 0.

This is a standard assumption in the subsample literature, e.g., see PRW, Thm. 2.2.1,
p. 43. In the leading case where τn = ns for some s > 0, Assumption H follows from
Assumption C(ii) because τ bn/τn = (bn/n)

s → 0.

Lemma 1 (a) Assumptions B1(i), t1, t2, Sub1, and H imply Assumption G1.
(b) Assumptions B2, t1, t2, Sub1, and H imply Assumption G2.

Comment. Lemma 1 is a special case of Lemma 5, which is stated in Section 10 for
expositional convenience and is proved in the Appendix. Lemma 5 does not impose
Assumption t2 and, hence, covers studentized t statistics.

The assumptions above have been designed to avoid the requirement that Jh(x)
is continuous in x because this assumption is violated in some applications, such as
boundary problems, for some values of h and some values of x.
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4 Asymptotic Results

The first result of this section concerns the asymptotic null behavior of FCV and
subsample tests under a single sequence {γn,h : n ≥ 1}.

Theorem 1 Let α ∈ (0, 1) be given.
(a) Suppose Assumption B1(i) holds. Then,

Pθ0,γn,h(Tn(θ0) > cFix(1− α))→ [1− Jh(cFix(1− α)), 1− Jh(cFix(1− α)−)].

(b) Suppose Assumptions A1, B1, C-E, F1, and G1 hold. Then,

Pθ0,γn,h(Tn(θ0) > cn,b(1− α))→ [1− Jh(ch0(1− α)), 1− Jh0(ch0(1− α)−)].

Comments. 1. If 1 − Jh(cFix(1 − α)) > α, then the FCV test has AsySz(θ0) > α,
i.e., its asymptotic size exceeds its nominal level α.

2. Analogously, for the subsample test, if 1− Jh(ch0(1−α)) > α, then the test has
AsySz(θ0) > α.

3. If 1 − Jh(cFix(1 − α)−) < α, then the FCV test has AsyMinRP (θ0) < α and
it is not asymptotically similar. Analogously, if 1 − Jh(ch0(1 − α)−) < α, then the
subsample test has AsyMinRP (θ0) < α and it is not asymptotically similar.

4. If Jh(x) is continuous at x = cFix(1− α) (which typically holds in applications
for most values h but not necessarily all), then the result of Theorem 1(a) becomes
Pθ0,γn,h(Tn(θ0) > cFix(1−α))→ 1−Jh(cFix(1−α)). Analogously, if Jh(x) is continuous
at x = ch0(1− α), then the result of Theorem 1(b) becomes Pθ0,γn,h(Tn(θ0) > cn,b(1−
α))→ 1− Jh(ch0(1− α)).

5. In the “continuous limit” case, h0 = h because no parameter γ1 appears. Hence,
the result of Theorem 1(b) for the subsample test is Pθ0,γn,h(Tn(θ0) > cn,b(1−α))→ α,
provided Jh(x) is continuous at x = ch(1− α). That is, the pointwise asymptotic null
rejection rate is the desired nominal rate α.

6. Typically Assumption B1(i) holds for an infinite number of values h, say h ∈ H∗
(⊂ Rp). In this case, Comments 1-5 apply for all h ∈ H∗.

We now use the stronger Assumptions A2, B2, F2, and G2 to establish more pre-
cisely the asymptotic sizes and asymptotic minimum rejection probabilities of sequences
of FCV and subsample tests. For FCV tests, we define

MaxFix(α) = sup
h∈H

[1− Jh(cFix(1− α))] and

Max−Fix(α) = sup
h∈H

[1− Jh(cFix(1− α)−)]. (4.1)

Define MinFix(α) and Min
−
Fix(α) analogously with “ inf ” in place of “ sup .”
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For subsample tests, define

GH = {(g, h) ∈ H ×H : g = (g1, g2), h = (h1, h2), g2 = h2 and for j = 1, ..., p,

(i) g1,j = 0 if |h1,j | <∞, (ii) g1,j ∈ R+,∞ if h1,j = +∞, and
(iii) g1,j ∈ R−,∞ if h1,j = −∞}, (4.2)

where g1 = (g1,1, ..., g1,p)
� ∈ H1 and h1 = (h1,1, ..., h1,p)

� ∈ H1. Note that for (g, h) ∈
GH, we have |g1,j | ≤ |h1,j | for all j = 1, ..., p. In the “continuous limit” case (where
there is no γ1 component of γ) GH simplifies considerably: GH = {(g2, h2) ∈ H2×H2 :
g2 = h2}.

Define

MaxSub(α) = sup
(g,h)∈GH

[1− Jh(cg(1− α))] and

Max−Sub(α) = sup
(g,h)∈GH

[1− Jh(cg(1− α)−)]. (4.3)

Define MinSub(α) and Min
−
Sub(α) analogously with “ inf ” in place of “ sup .” In the

“continuous limit” case, MaxSub(α) simplifies to suph∈H [1 − Jh(ch(1 − α))], which is
less than or equal to α by the definition of ch(1− α).

Theorem 2 Let α ∈ (0, 1) be given.
(a) Suppose Assumptions A2 and B2 hold. Then, an FCV test satisfies

AsySz(θ0) ∈ [MaxFix(α),Max−Fix(α)] and
AsyMinRP (θ0) ∈ [MinFix(α),Min−Fix(α)].

(b) Suppose Assumptions A2, B2, C-E, F2, and G2 hold. Then, a subsample test
satisfies

AsySz(θ0) ∈ [MaxSub(α),Max−Sub(α)] and
AsyMinRP (θ0) ∈ [MinSub(α),Min−Sub(α)].

Comments. 1. If Jh(x) is continuous at the appropriate value(s) of x, thenMaxFix(α)
=Max−Fix(α) and MaxSub(α) =Max

−
Sub(α) and Theorem 2 gives the precise value of

AsySz(θ0) and analogously for AsyMinRP (θ0). Even for FCV tests, we are not aware
of general results in the literature that establish the limit of the finite sample size
of tests. REFERENCES WOULD BE WELCOME. WE SUSPECT THAT THERE
MUST BE SOME RESULTS OF THIS SORT IN THE LITERATURE FOR FCV
TESTS.

2. Given Theorem 2(b) and the definition of Max−Sub(α), sufficient conditions for
a nominal level α subsample test to have asymptotic level α are the following: (a)
cg(1−α) ≥ ch(1−α) for all (g, h) ∈ GH and (b)Max−Sub(α) =MaxSub(α).

6 Condition

6Under these conditions, Max−Sub(α) =MaxSub(α) = sup(g,h)∈GH [1−Jh(cg(1−α))] ≤ suph∈H [1−
Jh(ch(1− α))] ≤ α.
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(a) necessarily holds in “continuous limit” examples and it holds in some “discontinuous
limit” examples. But, it often fails in “discontinuous limit” examples. Condition (b)
holds in most examples.

3. The same argument as used to prove Theorem 2 can be used to prove slightly
stronger results than those of Theorem 2. Namely, for FCV and subsample tests,

ExSzn(θ0)→ [MaxType(α),Max
−
Type(α)] (4.4)

for Type = Fix and Sub, respectively. (These results are stronger because they imply
that lim infn→∞ExSzn(θ0) ≥MaxType(α), rather than just lim supn→∞ExSzn(θ0) ≥
MaxType(α).) Hence, when MaxType(α) =Max

−
Type(α), we have

lim
n→∞ExSzn(θ0) =MaxType(α) for Type = Fix and Sub. (4.5)

4. Theorem 2 does not provide asymptotic confidence levels of CIs that are obtained
by inverting FCV or subsample tests. The reason is that the level (and asymptotic level)
of a CI depends on uniformity of the coverage probability over nuisance parameters
and over the parameter of interest θ, whereas the level (and asymptotic level) of a
test concerning θ only depends on uniformity of the null rejection rate over nuisance
parameters (because the null value of the parameter of interest, θ, is fixed). See Section
9 for analogous results for the asymptotic levels of CIs.

5 Hybrid Tests

In this section, we define a hybrid test that is useful when a test statistic has a
limit distribution that is discontinuous in some parameter and a FCV or subsample test
over-rejects asymptotically under the null hypothesis. The critical value of the hybrid
test is the maximum of the subsample critical value and a certain fixed critical value.
The hybrid test is quite simple to compute, in some situations has asymptotic size
equal to its nominal level α, and in other situations over-rejects the null asymptotically
less than either the standard subsample test or a certain fixed critical value test. In
addition, at least in some scenarios, the power of the hybrid test is quite good relative
to FCV and subsample tests, see Section 7 below.

We suppose the following assumption holds.

Assumption J. The asymptotic distribution Jh in Assumption B2 is the same distri-
bution, call it J∞, for all h = (h1, h2)

� ∈ H for which h1,j = ±∞ for all j = 1, ..., p,
where h1 = (h1,1, ..., h1,p)�.

In examples, Assumption J often holds when Tn(θ0) is a studentized statistic (i.e.,
Assumption t1 holds, but t2 does not) or an LM or LR statistic. In such cases, J∞
typically is a standard normal, absolute standard normal, or chi-square distribution.
Let c∞(1− α) denote the 1− α quantile of J∞.
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The hybrid test with nominal level α rejects the null hypothesis H0 : θ = θ0 when

Tn(θ0) > c
∗
n,b(1− α), where

c∗n,b(1− α) = max{cn,b(1− α), c∞(1− α)}. (5.1)

The hybrid test simply takes the critical value to be the maximum of the usual sub-
sample critical value and the critical value from the J∞ distribution, which is usually
known.7 Hence, it is straightforward to compute. Obviously, the rejection probability
of the hybrid test is less than or equal to those of the standard subsample test and
the FCV test with cFix(1 − α) = c∞(1 − α). Hence, the hybrid test over-rejects less
often than either of these two tests. Furthermore, it is shown in Lemma 3 below that
the hybrid test of nominal level α has asymptotic level α (i.e., AsySz(θ0) ≤ α) pro-
vided the quantile function cg(1− α) is maximized at a boundary point. For example,
this occurs if cg(1 − α) is monotone increasing or decreasing in g1 for fixed g2, where
g = (g1, g2) (i.e., c(g1,g2)(1 − α) ≤ c(g∗1 ,g2)(1 − α) when g1 ≤ g∗1 element by element or
c(g1,g2)(1− α) ≥ c(g∗1 ,g2)(1− α) when g1 ≤ g2 element by element).

Define

Max−Hyb(α) = sup
(g,h)∈GH

[1− Jh(max{cg(1− α), c∞(1− α)}−)]. (5.2)

Define MaxHyb(α) analogously, but without “−” at the end of the expression.
The following Corollary to Theorems 1(b) and 2(b) establishes the asymptotic size

of the hybrid test.

Corollary 1 Let α ∈ (0, 1) be given.
(a) Suppose Assumptions A1, B1, C-E, F1, G1, and J hold. Then,

Pθ0,γn,h(Tn(θ0) > c
∗
n,b(1− α))

→ [1− Jh(max{ch0(1− α), c∞(1− α)}), 1− Jh0(max{ch0(1− α), c∞(1− α)}−)].

(b) Suppose Assumptions A2, B2, C-E, F2, G2, and J hold. Then, the hybrid test
based on Tn(θ0) has AsySz(θ0) ∈ [MaxHyb(α),Max−Hyb(α)].

Comments. 1. If 1− Jh(max{ch0(1− α), c∞(1− α)}) > α, then the hybrid test has
AsySz(θ0) > α.

2. Assumption J is not actually needed for the results of Corollary 1 to hold–in
the definition of c∗n,b(1 − α)), c∞(1 − α) could be any constant. Assumption J is just
used to motivate the particular choice of c∞(1− α) given above, as the 1− α quantile

7Hybrid tests can be defined even when Assumption J does not hold. For example, we can define
c∗n,b(1−α) = max{cn,b(1−α), suph∈H ch∞(1−α)}, where ch∞(1−α) is the 1−α quantile of Jh∞ and,
given h ∈ H, h∞ = (h∞,1,1, ..., h∞,1,p, h∞,2) ∈ H is defined by h∞,1,j = +∞ if h1,j > 0, h∞,1,j = −∞
if h1,j < 0, h∞,1,j = +∞ or −∞ (chosen so that h∞ ∈ H) if h1,j = 0 for j = 1, ..., p, and h∞,2 = h2.
When Assumption J holds, this reduces to the hybrid critical value in (5.1). We utilize Assumption J
because it leads to a particularly simple form for the hybrid test.
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of J∞. Assumption J also is used in results given below concerning the properties of
the hybrid test.

3. Corollary 1 holds by the proof of Theorems 1(b) and 2(b) with cn,b(1 − α)
replaced by max{cn,b(1−α), c∞(1−α)} throughout using a slight variation of Lemma
6(b) in the Appendix.

The hybrid test has better size properties than the subsample test for the following
reason.

Lemma 2 Suppose Assumptions A2, B2, C-E, F2, G2, and J hold. Then, either (i)
the addition of c∞(1 − α) to the subsample critical value is irrelevant asymptotically
(i.e., ch(1−α) ≥ c∞(1−α) for all h ∈ H, Max−Hyb(α) =Max

−
Sub(α), andMaxHyb(α) =

MaxSub(α)), or (ii) the nominal level α subsample test over-rejects asymptotically (i.e.,
AsySz(θ0) > α) and the hybrid test reduces the asymptotic over-rejection for at least
some parameter values.

Theorem 3 in Section 7 below shows that the nominal level α hybrid test has asymp-
totic level α (i.e., AsySz(θ0) ≤ α) if ch(1 − α) is monotone increasing or decreasing
in h (see Comment 1 to Theorem 3). Here we show that if p = 1, which occurs in
many examples, then the hybrid test has correct size asymptotically under the more
general condition that ch(1−α) is maximized at either h0 or h∞, where h∞ = (∞, h�2)�
or (−∞, h�2)�. For example, the latter condition is satisfied if ch(1 − α) is monotone
increasing or decreasing in h1, is bowl-shaped in h1, or is wiggly in h1 with global max-
imum at 0 or ±∞. The precise condition is the following. (Here, “Quant” abbreviates
“quantile.”)

Assumption Quant0. Either (i) (a) for all h ∈ H, c∞(1 − α) ≥ ch(1 − α) and (b)
suph∈H [1 − Jh(c∞(1 − α)−)] = suph∈H [1 − Jh(c∞(1 − α))]; or (ii) (a) p = 1, (b) for
all h ∈ H, ch0(1 − α) ≥ ch(1 − α), (c) J∞(c∞(1 − α)−) = J∞(c∞(1 − α)), and (d)
suph∈H [1− Jh(ch(1− α)−)] = suph∈H [1− Jh(ch(1− α))].

(In Assumption Quant0(ii), h0 = (0, h2) given h = (h1, h2).) The main force of As-
sumption Quant0 is parts (i)(a), (ii)(a), and (ii)(b). Parts (i)(b), (ii)(c), and (ii)(d)
only require suitable continuity of Jh.

Lemma 3 Let α ∈ (0, 1) be given. Suppose Assumptions A2, B2, C-E, F2, G2, J, and
Quant0 hold. Then, the hybrid test based on Tn(θ0) has AsySz(θ0) ≤ α.

6 Size-Corrected Tests

In this section, we use Theorem 2 to define size-corrected (SC) FCV, subsample,
and hybrid tests. These tests are useful when a test statistic has a distribution with
“discontinuous limit.” The SC tests only apply when Assumption B2 holds. Typically
they do not apply if the asymptotic size of the FCV, subsample, or hybrid test is one.
The method of this section applies to CIs as well, see Section 9 below.
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The size-corrected fixed critical value (SC-FCV), subsample (SC-Sub), and hybrid
(SC-Hyb) tests with nominal level α are defined to reject the null hypothesisH0 : θ = θ0
when

Tn(θ0) > cv(1− α),

Tn(θ0) > cn,b(1− ξ(α)) and

Tn(θ0) > c∗n,b(1− ξ∗(α)), (6.1)

respectively, where cv(1−α), ξ(α) (∈ (0,α]), and ξ∗(α) (∈ (0,α]) are constants defined
such that

sup
h∈H

[1− Jh(cv(1− α)−)] ≤ α,

Max−Sub(ξ(α)) ≤ α and

Max−Hyb(ξ
∗(α)) ≤ α, (6.2)

respectively. If more than one such value cv(1 − α) exists, we take cv(1 − α) to be
the smallest value.8 If more than one such value ξ(α) (or ξ∗(α)) exists, we take ξ(α)
(or ξ∗(α), respectively) to be the largest value.9 If suph∈H [1− Jh(cFix(1− α)−)] ≤ α
(or Max−Sub(α) = α or Max−Hyb(α) = α), then (i) no size correction is needed, (ii)
cv(1−α) = cFix(1−α) (or ξ(α) = α or ξ∗(α) = α, respectively), and (iii) the SC-FCV
test (or SC-Sub test or SC-Hyb test, respectively) is just the uncorrected test.10

We assume that cv(1− α), ξ(α), and ξ∗(α) values exist that satisfy (6.2):

Assumption K. Given α ∈ (0, 1), there exists a constant cv(1 − α) < ∞ such that
suph∈H [1− Jh(cv(1− α)−)] ≤ α.

Assumption L. Given α ∈ (0, 1), there exists ξ(α) ∈ (0,α] such thatMax−Sub(ξ(α)) ≤
α.

Assumption M. Given α ∈ (0, 1), there exists ξ∗(α) ∈ (0,α] such thatMax−Hyb(ξ
∗(α))

≤ α.

Assumptions K, L, and M usually are not restrictive given Assumption B2. On the
other hand, Assumption B2 is restrictive and may be violated in some examples of
interest. In such cases, it may not be possible to construct size-corrected tests.

In most cases, Assumption K holds with

cv(1− α) = sup
h∈H

ch(1− α). (6.3)

8 If no such smallest value exists, we take some value that is arbitrarily close to the infimum of the
values that satisfy (6.2).

9 If no such largest value exists, we take some value that is arbitrarily close to the supremum of the
values that satisfy (6.2).
10Note that Max−Sub(α) < α or Max−Hyb(α) < α is not possible because (h0, h0) ∈ GH and

Jh0(ch0(1− α)−) ≤ 1− α for any h0 = (0, h02) ∈ H for some h02 ∈ H2.
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A sufficient condition for this is the following.

Assumption KK. (i) cv(1− α) = suph∈H ch(1− α) < ∞ and (ii) for any h ∈ H for
which ch(1− α) = cv(1− α), Jh(x) is continuous at x = cv(1− α).

Lemma 4 Assumption KK implies Assumption K.

If Assumptions L and M hold andMax−Sub(ξ) andMax
−
Hyb(ξ) are continuous for ξ in

(0,α], then Assumptions L and M hold withMax−Sub(ξ(α)) = α and Max−Hyb(ξ
∗(α)) =

α for some ξ(α) and ξ∗(α) in (0,α] by the intermediate value theorem.
The following Corollary to Theorem 2 shows that the SC tests have asymptotic size

less than or equal to their nominal level α.

Corollary 2 Let α ∈ (0, 1) be given.
(a) Suppose Assumptions A2, B2, and K hold. Then, the SC-FCV test has AsySz(θ0)

≤ α.
(b) Suppose Assumptions A2, B2, and KK hold and suph∈H ch(1 − α) is attained

at some h∗ ∈ H. Then, the SC-FCV test has AsySz(θ0) = α.
(c) Suppose Assumptions A2, B2, C-E, G2, and L hold and Assumption F2 holds

with α replaced by ξ(α). Then, the SC-Sub test has AsySz(θ0) ≤ α. In addition,
AsySz(θ0) = α if MaxSub(ξ(α)) = α.

(d) Suppose Assumptions A2, B2, C-E, G2, J, and M hold and Assumption F2
holds with α replaced by ξ∗(α). Then, the SC-Hyb test has AsySz(θ0) ≤ α. In addition,
AsySz(θ0) = α if MaxHyb(ξ∗(α)) = α.

Comments. 1. The conditions in parts (b)-(d) under which AsySz(θ0) = α hold in
most applications.

2. Projection-based tests (e.g., see Dufour and Jasiak (2001)), typically have as-
ymptotic size less than their nominal level–often substantially less. Because SC tests
typically have asymptotic size equal to their nominal level, they have potentially sub-
stantial power advantages over projection-based tests.

3. A CI for θ constructed by inverting an SC test does not necessarily have asymp-
totic confidence level greater than or equal to 1− α. The reason is that the level of a
CI depends on uniformity over both θ and γ whereas a test of H0 : θ = θ0, such as a
SC test, only requires uniformity over γ. See Section 9 for SC CIs.

4. Corollary 2(a) follows from Theorem 2(a) applied with cFix(1− α) = cv(1− α)
because in this case Max−Fix(α) = suph∈H [1− Jh(cv(1− α)−)] ≤ α by Assumption K.
Corollary 2(b) holds by Assumption KK and (12.22) in the proof of Lemma 4 with h
replaced by h∗ using the assumption in part (b). Corollary 2(c) holds by Theorem 2(b)
with α replaced by ξ(α) because in this case AsySz(θ0) ≤ Max−Sub(ξ(α)) ≤ α using
Assumption L. Corollary 2(d) holds by Theorem 2(b) with (α, cn,b(1−α)) replaced by
(ξ∗(α), c∗n,b(1−ξ∗(α))) throughout, because in this case AsySz(θ0) ≤Max

−
Hyb(ξ

∗(α)) ≤
α using Assumption M.
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To compute cv(1 − α) = suph∈H ch(1 − α), one needs to be able to compute the
1 − α quantile of Jh for each h ∈ H and to find the maximum of the quantiles over
h ∈ H. Computation of quantiles can be done analytically in some cases, by numerical
integration if the density of Jh is available, or by simulation if simulating a random
variable with distribution Jh is possible. The maximization step may range in difficulty
from being very easy to nearly impossible depending on how many elements of h affect
the asymptotic distribution Jh, the shape and smoothness of ch(1−α) as a function of
h, and the time needed to compute ch(1− α) for any given h.

In some examples cv(1− α) can be tabulated for selected values of α. Once this is
done, the SC-FCV test is as easy to apply as the non-corrected FCV test.

To compute ξ(α) for the SC-Sub test, one needs to be able to compute Max−Sub(ξ)
for ξ ∈ (0,α]. For this, one needs to be able to compute ch(1 − ξ) for h ∈ H. Next,
one needs to be able to maximize 1− Jh(cg(1− ξ)−) over (g, h) ∈ GH. Depending on
how many elements of h affect the asymptotic distribution Jh and on the shape and
smoothness of Jh(cg(1− ξ)−) as a function of (g, h), this is more or less difficult to do.

Given a method for computing the function Max−Sub(ξ), the scalar ξ(α) can be
computed using a halving algorithm because Max−Sub(ξ) is nondecreasing in ξ and
ξ(α) ∈ (0,α].11 The halving algorithm has an error bound of α/2a, where a is the
number of evaluations of Max−Sub(ξ). Hence, a = 7 yields a percentage error in the
computed value of ξ(α) of less than 1%.

In some examples, ξ(α) can be tabulated for selected values of α. In other examples,
tabulation of ξ(α) is difficult.

Computation of ξ∗(α) for the SC-Hyb test is analogous to computation of ξ(α) with
1− Jh(max{cg(1− α), c∞(1− α)}−) in place of 1− Jh(cg(1− α)−).

7 Power Comparisons of Size-Corrected Tests

In this section, we compare the asymptotic power of the SC-FCV, SC-Sub, and SC-
Hyb tests. Since all three tests employ the same test statistic Tn(θ0), the asymptotic
power comparison is based on a comparison of the magnitudes of cv(1−α), cn,b(1−ξ(α)),
and c∗n,b(1− ξ∗(α)) for n large. The first of these is fixed. The latter two are random
and their large sample behavior depends on the particular sequence {γn ∈ Γ : n ≥ 1}
of true parameters and may depend on whether the null hypothesis is true or not.
We focus on the case in which they do not depend on whether the null hypothesis is
true or not. This typically holds when the subsample statistics are defined to satisfy
Assumption Sub1 (and fails when they satisfy Assumption Sub2). We also focus on
the case where Assumption KK holds, so that cv(1− α) = suph∈H ch(1− α).

From the definitions of the critical values cn,b(1 − ξ(α)) and c∗n,b(1− ξ∗(α)) of the
SC-Sub and SC-Hyb tests and Lemma 7(e) (in the Appendix), the possible limits of

11The halving algorithm starts with the potential solution set being (0,α]. First, one computes
Max−Sub(α/2). If it exceeds α, the solution set becomes (0,α/2] and one computes Max

−
Sub(α/4); if

not, the solution set becomes [α/2,α) and one computesMax−Sub(3α/4). One continues to convergence.
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the critical values are

cg(1− ξ(α)) and c∗g,∞(1− ξ∗(α)) for g ∈ H, where
c∗g,∞(1− α) = max{cg(1− α), c∞(1− α)}. (7.1)

Hence, we are interested in the relative magnitudes of cv(1 − α), cg(1 − ξ(α)),
and c∗g,∞(1 − ξ∗(α)) for g ∈ H. These relative magnitudes are determined by the
shapes of the quantiles ch(1 − α) and ch(1 − ξ(α)) as functions of h ∈ H. Theorem
3 below essentially shows that (i) if cg(1− ξ(α)) is monotone decreasing in g ∈ H, then
cg(1−ξ(α)) = c∗g,∞(1−ξ∗(α)) ≤ cv(1−α) for all g ∈ H with strict inequality for some g,
(ii) if cg(1− ξ(α)) is monotone increasing in g ∈ H, then cv(1−α) = c∗g,∞(1− ξ∗(α)) ≤
cg(1− ξ(α)) for all g ∈ H with strict inequality for some g, and (iii) if cg(1− ξ(α)) is
not monotone in g ∈ H, then one can have cv(1 − α) ≤ cg(1 − ξ(α)) for some g ∈ H
and cv(1− α) ≥ cg(1− ξ(α)) for some g ∈ H with strict inequalities for some g.

In case (i), the SC-Sub and SC-Hyb tests are equivalent and are more powerful than
the SC-FCV test; in case (ii), the SC-FCV and SC-Hyb tests are equivalent and are
more powerful than the SC-Sub test; and in case (iii), the SC-FCV and SC-Sub tests
cannot be unambiguously ranked.

These results show that the SC-Hyb test has some nice power properties. When
the SC-Sub test dominates the SC-FCV test, the SC-Hyb test behaves like the SC-Sub
test. And when the SC-FCV test dominates the SC-Sub test, SC-Hyb test behave like
SC-FCV test.

We now state three alternative assumptions concerning the shapes of ch(1−α) and
ch(1− ξ(α)), which correspond to cases (i)-(iii) above. (“Quant” refers to “quantile.”)

Assumption Quant1. (i) cg(1 − α) ≥ ch(1 − α) for all (g, h) ∈ GH, and (ii)
Max−Sub(α) =MaxSub(α).

Assumption Quant2. (i) cg(1− α) ≤ ch(1− α) for all (g, h) ∈ GH, and (ii) cg(1 −
ξ(α)) ≤ ch(1− ξ(α)) for all (g, h) ∈ GH.
Assumption Quant3. (i) ch(1−α) is maximized over h ∈ H at some h∗ = (h∗1, h∗2) =
(h∗1,1, ..., h∗1,p, h∗2) ∈ H with h∗1,j 9= 0 and h∗1,j 9= ±∞ for some j = 1, ..., p, (ii) ch∗0(1 −
α) < ch∗(1− α), where h∗0 = (0, h∗2), (iii) Jh∗(x) is continuous at x = ch∗(1− α), and
(iv) ch†(1 − ξ(α)) < ch∗(1 − α) for some h† = (h†1, h

†
2) = ((h†1,1, ..., h

†
1,p, h

†
2) ∈ H with

h†1,j 9= 0 and h
†
1,j 9= ±∞ for some j = 1, ..., p.

Theorem 3 (a) Suppose Assumptions J, KK, L, M, and Quant1 hold. Then, (i)
cv(1 − α) = suph∈H ch0(1 − α) (where h0 = (0, h2) given h = (h1, h2)), (ii) ξ(α) = α,
(iii) ξ∗(α) = α, (iv) c∗g,∞(1− ξ∗(α)) = cg(1− ξ(α)), and (v) cg(1− ξ(α)) ≤ cv(1− α)
for all g ∈ H.

(b) Suppose Assumptions J, KK, L, M, and Quant2 hold. Then, (i) cv(1 − α) =
c∞(1 − α), (ii) ξ∗(α) = α, (iii) c∗g,∞(1 − ξ∗(α)) = cv(1 − α), and (iv) cv(1 − α) ≤
cg(1− ξ(α)) for all g ∈ H.
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(c) Suppose Assumptions KK, L, and Quant3 hold. Then, (i) cv(1−α) = ch∗(1−α),
(ii) ch∗(1− ξ(α)) > cv(1− α), and (iii) ch†(1− ξ(α)) < cv(1− α).

Comments. 1. Theorem 3(a)(ii) shows that the standard subsample test (without
size correction) has correct asymptotic size when the quantile function cg(1 − α) is
monotone increasing in g ∈ H. Theorem 3(a)(iii) and (b)(ii) show that the hybrid test
has correct asymptotic size when the quantile function cg(1−α) is monotone increasing
or decreasing in g ∈ H.

2. If Assumption Quant1(i) holds with a strict inequality for (g, h) = (h0, h) for
some h = (h1, h2) ∈ H, where h0 = (0, h2) ∈ H, then Theorem 3(a)(v) holds with a
strict inequality with g equal to this value of h. If Assumption Quant2(ii) holds with a
strict inequality for (g, h) = (h0, h) for some h = (h1, h2) ∈ H, where h0 = (0, h2) ∈ H,
then the inequality in Theorem 3(b)(iv) holds with a strict inequality with g equal to
this value of h.

3. Assumption J is not needed in Theorem 3(a)(i), (ii), and (v).

The results above are relevant when the subsample statistics satisfy Assumption
Sub1 (because then their asymptotic behavior is the same under the null and the al-
ternative). On the other hand, if Assumption Sub2 holds, then the subsample critical
values typically diverge to infinity under fixed alternatives (at rate b1/2n << n1/2 when
Assumption t1 holds). Hence, in this case, the SC-FCV test is more powerful asymptot-
ically than the SC-Sub test for distant alternatives. For brevity, we do not investigate
the relative magnitudes of the critical values of the SC-FCV and SC-Sub tests for local
alternatives when Assumption Sub2 holds.

8 Equal-tailed t Tests

This section considers equal-tailed two-sided t tests. There are two reasons for
considering such tests. First, equal-tailed tests and CIs are preferred to symmetric
procedures by some statisticians, e.g., see Efron and Tibshirani (1993). Second, given
the potential problems of symmetric t tests documented in Section 4, it is of interest
to see whether equal-tailed tests are subject to the same problems and, if so, whether
the problems are more or less severe than for symmetric procedures.

We suppose Assumption t1(i) holds, so that Tn(θ0) = τn(eθn − θ0)/eσn. An equal-
tailed FCV, subsample, or hybrid t test of H0 : θ = θ0 versus H1 : θ 9= θ0 of nominal
level α (∈ (0, 1/2)) rejects H0 when

Tn(θ0) > c1−α/2 or Tn(θ0) < cα/2, (8.1)

where c1−α is defined in (2.8) for FCV and subsample tests. For hybrid tests, the
critical values in (8.1) are

c1−α/2 = c∗n,b(1− α/2) = max{cn,b(1− α/2), c∞(1− α/2)} and
cα/2 = c∗∗n,b(α/2) = min{cn,b(α/2), c∞(α/2)}. (8.2)
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The exact size, ExSzn(θ0), of the equal-tailed t test is

ExSzn(θ0) = sup
γ∈Γ

�
Pθ0,γ(Tn(θ0) > c1−α/2) + Pθ0,γ(Tn(θ0) < cα/2)

�
. (8.3)

The asymptotic size of the test is AsySz(θ0) = lim supn→∞ExSzn(θ0). The minimum
rejection probability, MinRPn(θ0), of the test is the same as ExSzn(θ0) but with
“ sup ” replaced by “ inf ” and AsyMinRP (θ0) = lim infn→∞MinRPn(θ0).

For equal-tailed subsample t tests, we replace Assumptions F1 and F2 by the fol-
lowing assumptions, which are not very restrictive.

Assumption N1. For all ε > 0, Jh0(ch0(κ) − ε) < κ and Jh0(ch0(κ) + ε) > κ for
κ = α/2 and κ = 1− α/2, where ch0(1− α) is the 1− α quantile of Jh0 and h

0 is as in
Assumption B1.

Assumption N2. For all ε > 0 and h ∈ H, Jh(ch(κ)− ε) < κ and Jh(ch(κ) + ε) > κ
for κ = α/2 and κ = 1− α/2, where ch(1− α) is the 1− α quantile of Jh.

Define

Maxr−ET,Fix(α) = sup
h∈H

[1− Jh(cFix(1− α/2)) + Jh(cFix(α/2)−)],

Max�−ET,Fix(α) = sup
h∈H

[1− Jh(cFix(1− α/2)−) + Jh(cFix(α/2))],

Maxr−ET,Sub(α) = sup
(g,h)∈GH

[1− Jh(cg(1− α/2)) + Jh(cg(α/2)−)], and

Max�−ET,Sub(α) = sup
(g,h)∈GH

[1− Jh(cg(1− α/2)−) + Jh(cg(α/2))]. (8.4)

Here “r−” denotes that the limit from the left “−” appears in the right summand in the
expression forMaxr−ET,Fix(α).Analogously, “c−” denotes that it appears in the left sum-
mand in the expression forMax�−ET,Fix(α). DefineMax

r−
ET,Hyb(α) andMax

�−
ET,Hyb(α) as

Maxr−ET,Sub(α) andMax
�−
ET,Sub(α) are defined, but with max{cg(1−α/2), c∞(1−α/2)}

in place of cg(1 − α/2) and with min{cg(α/2), c∞(α/2)} in place of cg(α/2). Define
Minr−ET,Fix(α), ...,Min

�−
ET,Hyb(α) analogously with “ inf ” in place of “ sup .”

In the “continuous limit” case, Maxr−ET,Sub(α) simplifies to suph∈H [1 − Jh(ch(1 −
α/2)) + Jh(ch(α/2)−)] and likewise for Max�−ET,Sub(α).

The proofs of Theorems 1 and 2 can be adjusted straightforwardly to yield the
following results for equal-tailed FCV, subsample, and hybrid t tests.

Corollary 3 Let α ∈ (0, 1/2) be given. Let Tn(θ0) be defined as in Assumption t1(i).
(a) Suppose Assumption B1(i) holds. Then, an equal-tailed FCV t test satisfies

Pθ0,γn,h(Tn(θ0) > cFix(1− α/2) or Tn(θ0) < cFix(α/2))

→ [1− Jh(cFix(1− α/2)) + Jh(cFix(α/2)−),
1− Jh(cFix(1− α/2)−) + Jh(cFix(α/2))].
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(b) Suppose Assumptions A1, B1, C-E, G1, and N1 hold. Then, an equal-tailed
subsample t test satisfies

Pθ0,γn,h(Tn(θ0) > cn,b(1− α/2) or Tn(θ0) < cn,b(α/2))

→ [1− Jh(ch0(1− α/2)) + Jh(ch0(α/2)−), 1− Jh(ch0(1− α/2)−) + Jh(ch0(α/2))].

(c) Suppose Assumptions A1, B1, C-E, G1, J, and N1 hold. Then, the result of
part (b) holds for an equal-tailed hybrid test with cn,b(1−α/2), cn,b(α/2), ch0(1−α/2),
and ch0(α/2) replaced by c

∗
n,b(1−α/2), c∗∗n,b(α/2), max{ch0(1−α/2), c∞(1−α/2)}, and

min{ch0(α/2), c∞(α/2)}, respectively.
(d) Suppose Assumptions A2 and B2 hold. Then, an equal-tailed FCV t test satisfies

AsySz(θ0) ∈ [Maxr−ET,Fix(α),Max
�−
ET,Fix(α)] and

AsyMinRP (θ0) ∈ [Minr−ET,Fix(α),Min
�−
ET,Fix(α)].

(e) Suppose Assumptions A2, B2, C-E, G2, and N2 hold. Then, an equal-tailed
subsample t test satisfies the result of part (d) with Sub in place of Fix.

(f) Suppose Assumptions A2, B2, C-E, G2, J, and N2 hold. Then, an equal-tailed
hybrid t test satisfies the result of part (d) with Hyb in place of Fix.

Comments. 1. If Jh(x) is continuous at the appropriate value(s) of x, then
Maxr−ET,Fix(α) = Max�−ET,Fix(α) etc. and Corollary 3 gives the precise value of
AsySz(θ0).

2. By Corollary 3(e) and the definition of Max�−ET,Sub(α), sufficient conditions
for a nominal level α equal-tailed subsample test to have asymptotic level α are the
following: (a) cg(1−α/2) ≥ ch(1−α/2) for all (g, h) ∈ GH, (b) cg(α/2) ≤ ch(α/2) for all
(g, h) ∈ GH, and (c) suph∈H [1−Jh(ch(1−α/2)−)+Jh(ch(α/2))] = suph∈H [1−Jh(ch(1−
α/2))+Jh(ch(α/2)−)]. Conditions (a) and (b) automatically hold in “continuous limit”
cases. They also hold in some “discontinuous limit” cases, but often fail in such cases.
Condition (c) holds in most examples. (Note that conditions (a)-(c) are not necessary
for a subsample test to have asymptotic level α.)

3. Theorems 1 and 2 give results concerning the null rejection rates for each tail
separately of an equal-tailed t test. If one is interested in an equal-tailed t test, rather
than a symmetric t test, such rates are of interest.

Size-corrected equal-tailed subsample t tests can be constructed by finding ξ(α) such
that Max�−ET,Sub(ξ(α)) ≤ α. In particular, The equal-tailed SC-Sub test is defined by
(8.1) with c1−α/2 = cn,b(1−ξ(α)/2) and cα/2 = cn,b(ξ(α/2)). Analogously, size-corrected
equal-tailed FCV and hybrid t tests can be constructed by finding ξFix(α) and ξ∗(α),
respectively, such that Max�−ET,Fix(ξFix(α)) ≤ α and Max�−ET,Hyb(ξ

∗(α)) ≤ α. In each
case, this guarantees that the “overall” size of the test is less than or equal to α. It does
not guarantee that the maximum rejection probability in each tail is less than or equal
to α/2. If the latter is desired, then one should size correct the lower and upper critical
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values of the equal-tailed test in the same way as one-sided t tests are size corrected
in Section 6. (This can yield the overall size of the test to be strictly less than α if
the (g, h) vector that maximizes the rejection probability is different for the lower and
upper critical values.)

The equal-tailed SC-FCV, SC-Sub, and SC-Hyb t tests based on ξFix(α), ξ(α),
and ξ∗(α), respectively, have AsySz(θ0) ≤ α under assumptions guaranteeing the ex-
istence of the size-correcting values ξFix(α), ξ(α), and ξ∗(α) and under the assump-
tions in Corollary 3(d), (e), and (f), respectively (with Assumption N2 holding for
(1− ξ(α)/2, ξ(α)/2) and (1− ξ∗(α)/2, ξ∗(α)/2) in place of (1− α/2,α/2) in parts (e)
and (f), respectively).

9 Confidence Intervals

In this section, we consider CIs for a parameter θ ∈ Rd when nuisance parameters
η ∈ Rs and γ3 ∈ T3 may appear. To avoid considerable repetition, we recycle the
definitions, assumptions, and results given in earlier sections for tests, but with θ and η
defined to be part of the vector γ. In previous sections, θ and γ are separate parameters.
Here, θ is a sub-vector of γ. The reason for making this change is that the confidence
level of a CI for θ by definition depends on uniformity over both the nuisance parameters
η and γ3 and the parameter of interest θ. In contrast, the level of a test concerning θ
only depends on uniformity over the nuisance parameters and not over θ (because θ
is fixed under the null hypothesis). By making θ a sub-vector of γ, the results from
previous sections, which are uniform over γ ∈ Γ, give the uniformity results that we
need for CIs for θ. Of course, with this change, the index parameter h, the asymptotic
distributions {Jh : h ∈ H}, and the assumptions are different in any given model in
this CI section from the earlier test sections.

Specifically, we partition θ into (θ�1, θ
�
2)
�, where θj ∈ Rdj for j = 1, 2, and we partition

η into (η�1, η�2)�, where ηj ∈ Rsj for j = 1, 2. Then, we consider the same set-up as in
Section 2 where γ = (γ1, γ2, γ3) with γ1 = (θ

�
1, η

�
1)
� and γ2 = (θ

�
2, η

�
2)
�, where p = d1+s1

and q = p2+s2. Thus, θ and η are partitioned such that θ1 and η1 determine whether γ
is close to the point of discontinuity of the asymptotic distribution of the test statistic
Tn(θ), whereas θ2 and η2 do not, but they still may affect the limit distribution of
Tn(θ). In most examples, either no parameter θ1 or θ2 appears (i.e., d2 = 0 or d1 = 0)
and either no parameter η1 or η2 appears (i.e., s2 = 0 or s1 = 0).

9.1 Basic Results for Confidence Intervals

We consider the same test statistic Tn(θ0) for testing the null hypothesisH0 : θ = θ0
as above. Fixed, subsample, and hybrid critical values are defined as above. We obtain
CIs for θ by inverting tests based on Tn(θ0). When a fixed critical value is employed,
this yields a FCV CI. When a subsample or hybrid critical value is employed, it yields
a subsample or hybrid CI, respectively. Let Θ (⊂ Rd) denote the parameter space for
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θ and let Γ denote the parameter space for γ. The CI for θ contains all points θ0 ∈ Θ
for which the test of H0 : θ = θ0 fails to reject the null hypothesis:

CIn = {θ0 ∈ Θ : Tn(θ0) ≤ c1−α}, (9.1)

where c1−α is a critical value equal to cFix(1− α), cn,b(1− α), or c∗n,b(1− α).
For example, suppose Tn(θ0) is a (i) upper one-sided, (ii) lower one-sided, or (iii)

symmetric two-sided t test of nominal level α (i.e., Assumption t1(i), (ii), or (iii) holds).
Then, the corresponding CI of nominal level α is defined by

CIn = [eθn − τ−1n eσnc1−α,∞),
CIn = (−∞,eθn + τ−1n eσnc1−α], or
CIn = [eθn − τ−1n eσnc1−α,eθn + τ−1n eσnc1−α], (9.2)

respectively.
The coverage probability of the CI defined in (9.1) when γ is the true parameter is

Pγ(θ ∈ CIn) = Pγ(Tn(θ) ≤ c1−α) := 1−RPn(γ), (9.3)

where probabilities are indexed by γ = ((θ�1, η�1)�, (θ
�
2, η

�
2)
�, γ3) here, whereas they are

indexed by (θ, γ) in earlier sections. The exact and asymptotic confidence levels of CIn
are

ExCLn = inf
γ∈Γ
(1−RPn(γ)) and AsyCL = lim inf

n→∞ ExCLn, (9.4)

respectively. Note that the confidence level depends on uniformity over both θ and η
because γ = (γ1, γ2, γ3) = ((θ

�
1, η

�
1)
�, (θ�1, η�1)�, γ3).

We employ the same assumptions as in Section 3 but with the following changes.

Assumption Adjustments for CIs: (i) θ is a sub-vector of γ, rather than a separate
parameter from γ. In particular, γ = (γ1, γ2, γ3) = ((θ�1, η�1)�, (θ

�
2, η

�
2)
�, γ3) for θ =

(θ�1, θ
�
2)
� and η = (η�1, η�2)�.

(ii) Instead of the true probabilities under a sequence {γn,h : n ≥ 1} being {Pθ0,γn,h(·) :
n ≥ 1}, they are {Pγn,h(·) : n ≥ 1}.

(iii) The test statistic Tn(θ0) is replaced in the assumptions under a true sequence
{γn,h : n ≥ 1} by Tn(θn,h), where γn,h = (γn,h,1, γn,h,2, γn,h,3)

� = ((θ�n,h,1, η�n,h,1)
�,

(θ�n,h,2, η�n,h,2)
�, γn,h,3).

(iv) In Assumption D, θ0 in Tn,bn,i(θ0) and Tbn(θ0) is replaced by θ, where θ =
(θ�1, θ

�
2)
� and γ = (γ1, γ2, γ3) = ((θ

�
1, η

�
1)
�, (θ�2, η�2)�, γ3).

(v) θ0 is replaced in the definition of Un,b(x) in (2.7) by θn when the true parameter
is γn = (γn,1, γn,2, γn,3) = ((θ

�
n,1, η

�
n,1)

�, (θ�n,2, η�n,2)�, γn,3) and θn = ((θ
�
n,1, θ

�
n,2)

�.

With these changes in the assumptions and corresponding changes in the proofs,
the proofs of Theorems 1 and 2 go through.12 This yields the following results for FCV,
subsample, and hybrid CIs.
12 In the proofs of Corollary 4(d) and (e), AsySz(θ0) is replaced by 1 − AsyCL, RPn(θ0, γ) is re-

placed by RPn(γ), and one makes use of the fact that infh∈H Jh(cFix(1 − α)−) = 1 −Max−Fix(α),
inf(g,h)∈GH Jh(cg(1− α)−) = 1−Max−Sub(α), etc.
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Corollary 4 Let α ∈ (0, 1) be given. Let the assumptions be adjusted as stated above.
(a) Suppose Assumption B1(i) holds. Then, Pγn,h(Tn(θn,h) ≤ cFix(1 − α)) →

[Jh(cFix(1− α)−), Jh(cFix(1− α))].
(b) Suppose Assumptions A1, B1, C-E, F1, and G1 hold. Then, Pγn,h(Tn(θn,h) ≤

cn,b(1− α))→ [Jh(ch0(1− α)−), Jh(ch0(1− α))].
(c) Suppose Assumptions A1, B1, C-E, F1, G1, and J hold. Then, the result of part

(b) holds with c∗n,b(1− α) and max{ch0(1− α), c∞(1− α)} in place of cn,b(1− α) and
ch0(1− α), respectively.

(d) Suppose Assumptions A2 and B2 hold. Then, the FCV CI satisfies AsyCL ∈
[infh∈H Jh(cFix(1− α)−), infh∈H Jh(cFix(1− α))].

(e) Suppose Assumptions A2, B2, C-E, F2, and G2 hold. Then, the subsample CI
satisfies AsyCL ∈ [inf(g,h)∈GH Jh(cg(1− α)−), inf(g,h)∈GH Jh(cg(1− α))].

(f) Suppose Assumptions A2, B2, C-E, F2, G2, and J hold. Then, the hybrid CI
satisfies the result of part (e) with max{cg(1− α), c∞(1− α)} in place of cg(1− α).

Comment. The result of part (a) shows that if Jh(cFix(1 − α)) < 1 − α for some
h ∈ Rp+q, then the FCV CI has asymptotic level less than its nominal level 1 − α:
AsyCL < 1−α. Similarly, if Jh(ch0(1−α)) < 1−α or Jh(max{ch0(1−α), c∞(1−α)}) <
1 − α, then parts (b) or (c) show that the subsample or hybrid CI, respectively, has
asymptotic level less than its nominal level 1−α: AsyCL < 1−α. Parts (d)-(f) establish
AsyCL precisely.

9.2 Equal-tailed t Confidence Intervals

An equal-tailed FCV or subsample t CI for θ of nominal level α is defined by

CIn = [eθn − τ−1n eσnc1−α/2,eθn − τ−1n eσncα/2]. (9.5)

The following result for such CIs follows from Corollary 3(d)-(f) for equal-tailed t tests,
but with the assumptions adjusted as above. For brevity, we do not give analogues of
Corollary 3(a)-(c) for CIs.

Corollary 5 Let α ∈ (0, 1/2) be given. Let the assumptions be adjusted as described
above Corollary 4.

(a) Suppose Assumptions A2 and B2 hold. Then, an equal-tailed FCV t CI satisfies

AsyCL ∈ [1−Max�−ET,Fix(α), 1−Max
r−
ET,Fix(α)].

(b) Suppose Assumptions A2, B2, C-E, G2, and N2 hold. Then, equal-tailed sub-
sample t CIs satisfy the result of part (a) with Sub in place of Fix. If Assumption J
also holds, then the equal-tailed hybrid t CIs satisfy the result of part (a) with Hyb in
place of Fix.
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9.3 Size-Corrected Confidence Intervals

Size-corrected CIs are defined as in (9.1), but with their critical values c1−α defined
as in Section 6 for SC tests. The assumptions are altered as in the paragraph preceding
Corollary 4. Hence, the asymptotic distributions Jh(·) and quantiles ch(1 − α) that
arise in the formulae for the critical values are those that apply when γ = (γ1, γ2, γ3) =
((θ�1, η�1)�, (θ

�
2, η

�
2)
�, γ3) (and typically are different from those that apply in the testing

sections which rely on the unaltered assumptions).
The SC CIs satisfy the following properties, which follow from Corollary 2.

Corollary 6 Let α ∈ (0, 1) be given. Let the assumptions be adjusted as described
above Corollary 4.

(a) Suppose Assumptions A2, B2, and K hold. Then, the SC-FCV CI satisfies
AsyCL ≥ 1− α, and AsyCL = 1− α if Assumption KK holds and suph∈H ch(1 − α)
is attained at some h∗ ∈ H.

(b) Suppose Assumptions A2, B2, C-E, G2, and L hold and Assumption F2 holds
with α replaced by ξ(α). Then, the SC-Sub CI satisfies AsyCL ≥ 1−α, and AsyCL =
1− α if Max−Sub(ξ(α)) =MaxSub(ξ(α)) = α.

(c) Suppose Assumptions A2, B2, C-E, G2, J, and M hold and Assumption F2
holds with α replaced by ξ∗(α). Then, the SC-Hyb CI satisfies AsyCL ≥ 1 − α, and
AsyCL = 1− α if Max−Hyb(ξ

∗(α)) =MaxHyb(ξ(α)) = α.

10 Studentized t Statistics

In this section we provide sufficient conditions for Assumption G2 for the case
when Tn is a studentized t statistic and the subsample statistics satisfy Assumption
Sub1. This result generalizes Lemma 1 because Assumption t2 is not imposed. The
results apply to models with iid, stationary and weakly dependent, or nonstationary
observations.

Just as Tn,bn,i(θ0) is defined, let (eθn,bn,i, eσn,bn,i) be the subsample statistics that are
defined exactly as (eθn, eσn) are defined, but based on the ith subsample of size bn. In
analogy to Un,bn(x) defined in (2.7), we define

Uσ
n,bn(x) = q

−1
n

qn[
i=1

1(dbneσn,bn,i ≤ x) (10.1)

for a sequence of normalization constants {dn : n ≥ 1}. Although Uσ
n,bn

(x) depends on
{dn : n ≥ 1}, we suppress the dependence for notational simplicity.

We now state modified versions of Assumptions B2, D, E, and H that are used with
studentized statistics when Assumption Sub1 holds.

Assumption BB2. (i) For some r > 0, all h ∈ H, all sequences {γn,h : n ≥ 1}, some
normalization sequences of positive constants {an : n ≥ 1} and {dn : n ≥ 1} such that
τn = an/dn, and some distribution (Vh,Wh) on R2, (an(eθn − θ0), dneσn) →d (Vh,Wh)
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under {γn,h : n ≥ 1}, (ii) Pθ0,γn,h({eσn,bn,i > 0 for all i = 1, ..., qn}) → 1 under all
sequences {γn,h : n ≥ 1} and all h ∈ H, and (iii) Wh(0) = 0 for all h ∈ H.

Assumption DD. (i) {(eθn,bn,i, eσn,bn,i) : i = 1, ..., qn} are identically distributed un-
der any γ ∈ Γ for all n ≥ 1, and (ii) (eθn,bn,1, eσn,bn,1) and (eθbn , eσbn) have the same
distribution under any γ ∈ Γ for all n ≥ 1.
Assumption EE. For all h ∈ H and all sequences {γn,h : n ≥ 1} with corresponding
normalization {dn : n ≥ 1} as in Assumption BB2, Uσ

n,b(x) − Eθ0,γn,hU
σ
n,b(x) →p 0

under {γn,h : n ≥ 1} for all x ∈ R.
Assumption HH. abn/an → 0.

The normalization sequences {an : n ≥ 1} and {dn : n ≥ 1} in Assumption BB2 may
depend on {γn,h : n ≥ 1}. (For notational simplicity, this dependence is suppressed.)
For example, this occurs when the observations may be stationary or nonstationary de-
pending on the value of γ. In particular, it occurs in an autoregressive model with a root
that is less than or equal to one. In a model with iid or stationary strong mixing obser-
vations, one often takes dn = 1 for all n, Wh is a pointmass distribution with pointmass
at the probability limit of eσn, and an = n1/2. MAY NEED TO DELETE THE FOL-
LOWING SENTENCE IF IT TURNS OUT THAT ASSUMPTION HH CANNOT BE
CHANGED. REASON: IF an IS DEFINED AS IN THE FOLLOWING SENTENCE,
THEN ASSUMPTION HH WILL FAIL FOR SOME SEQUENCES OF σn VALUES.
Alternatively, in a such a model one can take dn = 1/σn and an = n1/2/σn, where σn
is the population analogue of eσn, and Wh is a pointmass distribution at one. This is
useful to handle cases in which σn → 0 as n→∞.

Assumption BB2 implies Assumption B2 (by the continuous mapping theorem us-
ing Assumption BB2(ii)). Note that there is a certain redundancy of normalization
constants in Assumption BB2. Without any loss of generality, one could absorb dn
into the definition of eσn and take dn = 1 for all n. We do not do this for two reasons.
First, if there is a conventional definition eσn, then this may preclude its use. Second,
it is convenient to keep the assumptions as close as possible to those of PRW.

Assumption DD implies Assumption D. Assumption DD is not restrictive given the
standard methods of defining subsamples. Assumption EE holds automatically for iid
observations and for stationary strong mixing observations under the condition in (3.3)
when the subsamples are constructed as described in Section 3 (for the same reason
that Assumption E holds in these cases). Assumption HH holds in many examples
when Assumption C holds, as is typically the case. However, it does not hold if θ is
unidentified when γ = 0 (because consistent estimation of θ is not possible in this case
and an = 1 in Assumption BB2(i)). For example, this occurs in a model with weak
instruments.

The following Lemma generalizes Lemma 1. It does not impose Assumption t2.

Lemma 5 Assumptions t1, Sub1, A2, BB2, C, DD, EE, and HH imply Assumption
G2.

28



Comments. 1. Given Lemma 5, the result of Theorem 2(b) holds for studentized t
statistics under Assumptions t1, Sub1, A2, BB2, C, DD, E, EE, F2, and HH. These
Assumptions imply Assumptions B2, D, and G2.

2. The proof of Lemma 5 is a variant of the proofs of Theorems 11.3.1(i) and
12.2.2(i) of PRW to allow for nuisance parameters {γn,h : n ≥ 1} that vary with n and
t statistics that may be one- or two-sided.13

11 Examples

11.1 Testing with a Nuisance Parameter on the Boundary

Here we consider a testing problem where a nuisance parameter may be on the
boundary of the parameter space under the null hypothesis.

Suppose {Xi ∈ R2 : i ≤ n} are iid with distribution F,

Xi =

�
Xi1
Xi2

�
, EFXi =

�
θ
μ

�
, and V arF (Xi) =

�
σ21 σ1σ2ρ
σ1σ2ρ σ22

�
. (11.2)

The null hypothesis is
H0 : θ = 0, (11.3)

i.e., θ0 = 0. (The results below are invariant to the choice of θ0.) The parameter space
for the nuisance parameter μ is R+.

We consider lower and upper one-sided tests and symmetric and equal-tailed two-
sided tests of nominal level α. Each test is based on a studentized test statistic Tn(θ0),
where Tn(θ0) = T ∗n(θ0),−T ∗n(θ0), or |T ∗n(θ0)|, T ∗n(θ0) = τn(eθn− θ0)/eσn1 and τn = n

1/2.
The estimators (eθn, eσn1) of (θ,σ1) are defined below. We consider subsample, FCV,
and hybrid versions of all of these tests. The FCV tests employ the usual standard
normal critical values that ignore the fact that μ may be on the boundary.

The size properties of the tests are given in Table I (as described in more detail
below) and are summarized as follows. For the one-sided tests, we find large size dis-
tortions for the subsample tests, very small size distortions for the FCV tests, and no
size distortions for the hybrid tests for all nominal sizes α ∈ [.01, .2] that we consider.
(Only results for α = .05 are reported.) The upper (lower) one-sided subsample test
over-rejects the null most when the correlation ρ is close to −1 (respectively, 1). Monte
Carlo simulations of its asymptotic null rejection probabilities indicate that its asymp-
totic size equals 1/2 for all nominal sizes α ∈ [.01, .2] that we consider. The symmetric
two-sided subsample, FCV, and hybrid tests are all size-distorted. The Monte Carlo
simulations for α ∈ [.01, .2] suggest that AsySz(θ0) = 2α for all version of these tests,
13Lemma 5 does not assume τbn/τn → 0 (only Assumption HH), although PRW’s results do. A

careful reading of their proof reveals that the assumption abn/an → 0 is enough to show that Un,b(x)
and Ln,b(x) have the same probability limits.
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so size correction is possible. Finally, for the two-sided equal-tailed tests, we find ex-
treme size distortion for the subsample test, no size distortion for the hybrid test (up
to simulation error), and AsySz(θ0) is approximately 2α for the FCV test.

We now define the estimators (eθn, eσn1) of (θ,σ1) used in the test statistic T ∗n(θ0).
Let eσn1, eσn2, and eρn denote any consistent estimators of σ1,σ2, and ρ. Define (eθn, eμn)
to be the Gaussian quasi-ML estimator of (θ,μ) under the restriction that eμn ≥ 0 and
under the assumption that the standard deviations and correlation ofXi equal eσn1, eσn2,
and eρn. This allows for the case where (eθn, eμn, eσn1, eσn2,eρn) is the Gaussian quasi-ML
estimator of (θ,μ,σ1,σ2, ρ) under the restriction eμn ≥ 0. Alternatively, eσn1, eσn2, and eρn
could be the sample standard deviations and correlation ofXi1 andXi2. AKuhn-Tucker
maximization shows thateθn = Xn1 − (eρneσn1)min(0,Xn2/eσn2), where

Xnj = n−1
Sn
i=1Xij for j = 1, 2. (11.4)

Define the vector of nuisance parameters γ = (γ1, γ2, γ3) by γ1 = μ/σ2, γ2 = ρ,
and γ3 = (σ1,σ2, F ). Let r = 1/2. In Assumption A2, set Γ1 = R+, Γ2 = (−1, 1), and
Γ3(γ1, γ2) = (0,∞)× (0,∞)×F(μ, ρ,σ1,σ2), where

F(μ, ρ,σ1,σ2) = {F : EF ||Xi||2+δ ≤M, EFXi = (0,μ)�, V arF (Xi1) = σ21,

V arF (Xi2) = σ22, & CorrF (Xi1,Xi2) = ρ} (11.5)

for some M <∞ and δ > 0.14 Then, H = R+,∞ × [−1, 1].
The following results are all under the null hypothesis, so the true parameter θ

equals zero. For any h = (h1, h2) ∈ H with h1 < ∞ and any sequence {γn,h : n ≥ 1}
of true parameters, consistency of (eσn1, eσn2,eρn) and the CLT imply

n1/2(Xn1/eσn1,Xn2/eσn2)→d (0, h1)
� + Zh2 , (11.6)

where Zh2 = (Zh2,1, Zh2,2)
� ∼ N(0, Vh2) and Vh2 is a 2×2matrix with diagonal elements

1 and off-diagonal elements h2. (For this and the results below, we assume that eσn1, eσn2,
and eρn are consistent in the sense that eσnj/σj,n,h →p 1 for j = 1, 2 and eρn− ρn,h →p 0
under {γn,h = (θn,h, ρn,h, (σ1,n,h,σ2,n,h, Fn,h)) : n ≥ 1}.) By the continuous mapping
theorem, we obtain

T ∗n(θ0) = n
1/2eθn/eσn1 →d J

∗
h under {γn,h}, (11.7)

where J∗h is defined by

Zh2,1 − h2min(0, Zh2,2 + h1) ∼ J∗h. (11.8)

For h ∈ H with h1 =∞, we have eθn = Xn1 wp→1 under {γn,h} because n1/2Xn2/eσn2
→p ∞ under {γn,h}. (The latter holds because n1/2γn,h,1 = n1/2μn/σn2→∞, n1/2(Xn2

14The condition EF ||Xi||2+δ ≤M in F(μ, ρ,σ1,σ2) ensures that the Liapunov CLT applies in (11.6)-
(11.10) below. In F(μ, ρ,σ1,σ2), EFXi1 = 0 because the results given are all under the null hypothesis.
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−EXn2)/eσn2 = Op(1) by the CLT and eσn2/σn2 →p 1, and n1/2EXn2/eσn2 = n1/2μn/eσn2
→p ∞.) Therefore, under {γn,h} with h1 =∞, we have

T ∗n(θ0)→d J
∗
∞, where J

∗
∞ is the N(0, 1) distribution. (11.9)

Note that the limit distributions J∗h and J
∗∞ do not depend on γ3 = (σ

2
1,σ

2
2, F ).

For Tn(θ0) = T ∗n(θ0),−T ∗n(θ0), and |T ∗n(θ0)|, we have

Tn(θ0)→ Jh under {γn,h}, where Jh = J∗h,−J∗h, and |J∗h|. (11.10)

(If Y ∼ J∗h, then by definition, −Y ∼ −J∗h and |Y | ∼ |J∗h|.)Note that J∗h is stochastically
increasing (decreasing) in h1 for h2 < 0 (h2 ≥ 0). Likewise, −J∗h is stochastically
decreasing (increasing) in h1 for h2 < 0 (h2 ≥ 0).

The critical values for FCV tests are given by z1−α, z1−α, and z1−α/2, respectively,
for the upper, lower, and symmetric versions. For subsample tests, critical values are
given by cn,b(1−α) obtained from the subsample statistics {Tn,b,i(eθn) : i ≤ qn}, defined
in (2.6) (i)-(iii) for upper, lower, and two-sided symmetric tests, respectively.15 For the
hybrid tests, critical values are given by max{cn,b(1−α), z1−α} for the upper and lower
one-sided tests and by max{cn,b(1− α), z1−α/2} for the symmetric two-sided test. For
equal-tailed two-sided tests described in (8.1), critical values (cα/2, c1−α/2) for FCV,
subsample, and hybrid tests are given by (zα/2, z1−α/2), (cn,b(α/2), cn,b(1− α/2)), and
(min{cn,b(α/2), zα/2}, max{cn,b(1− α/2), z1−α/2}), respectively.

Below we verify Assumptions A2-G2, J, and N2. By Theorem 2 (a)-(b), Corol-
lary 1(b), and continuity of the distribution functions Jh, the asymptotic size of the
lower and upper one-sided and symmetric two-sided tests is given by AsySz(θ0) =
MaxType(α) for Type = Fix, Sub, and Hyb. By Corollary 3(d)-(f), the asymp-
totic size of the two-sided equal-tailed versions of the test is given by AsySz(θ0) =
Maxr−ET,Type(α) in (8.4) for Type = Fix, Sub, and Hyb.

We first discuss upper one-sided tests. Given that Jh = J∗h is stochastically increas-
ing (decreasing) in h1 for fixed h2 < 0 (h2 ≥ 0), we can show that

MaxFix(α) = sup
h∈H

[1− Jh(cFix(1− α))] = sup
h2∈[0,1]

(1− J(0,h2)(z1−α)),

MaxSub(α) = sup
(g,h)∈GH

[1− Jh(cg(1− α))] = sup
h2∈[−1,0]

(1− J∞(c(0,h2)(1− α))),

MaxHyb(α) = α. (11.11)

The results for lower one-sided tests are analogous with h2 ∈ [0, 1] and h2 ∈ [−1, 0]
replaced by h2 ∈ [−1, 0] and h2 ∈ [0, 1], respectively. To obtain the expression for
MaxSub(α) in (11.11), we use

inf
(g,h)∈GH:h2∈[0,1]

Jh(cg(1− α))

= min{ inf
h1∈[0,∞),h2∈[0,1]

Jh(c(0,h2)(1− α)), inf
h1∈[0,∞],h2∈[0,1]

J∞(c(h1,h2)(1− α))}

= min{1− α, 1− α} = 1− α, (11.12)
15The same results also hold under Assumption Sub2.
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because Jh = J∗h is stochastically decreasing in h1 for fixed h2 ≥ 0.
The values of MaxFix(α) and MaxSub(α) for the upper and lower one-sided tests

are obtained by simulation. (All simulation results are based on 50,000 simulation
repetitions and when maximization over h1 is needed the upper bound is 12 and a grid
of size 0.05 is used.) Table I reports 1 − J(0,h2)(z1−α) and 1 − J∞(c(0,h2)(1 − α)) for
various values of h2 and α = .05 for upper one-sided tests. Because the results for
lower one-sided tests are the same, but with h2 replaced by −h2, the results for lower
one-sided tests are not reported in Table I. Simulation of AsySz(θ0) is very fast because
the two-dimensional maximization over (h1, h2) has been reduced to a one-dimensional
maximization over h2 in (11.11).

For the symmetric two-sided case, where Jh = |J∗h|, we have

MaxFix(α) = sup
h∈H

[1− Jh(z1−α/2)],

MaxSub(α) = max{ sup
h1∈[0,∞),h2∈[−1,1]

[1− Jh(c(0,h2)(1− α))],

sup
h1∈[0,∞],h2∈[−1,1]

[1− J∞(c(h1,h2)(1− α))]}, (11.13)

and similarly for MaxHyb(α) with c(0,h2)(1 − α) and ch(1 − α) replaced by
max{c(0,h2)(1 − α), z1−α/2} and max{ch(1 − α), z1−α/2}, respectively. We use Monte
Carlo simulation to calculate those quantities. Table I reports the values of suph1∈[0,∞][1−
J(h1,h2)(z1−α/2)] appearing in MaxFix(α) for a range of ρ (= h2) values in [−1, 1] and
α = .05. Note that these are the maximum asymptotic null rejection probabilities given
ρ (= h2), where the maximum is over h1 with h2 fixed. Table I also reports the anal-
ogous expressions that depend on ρ (= h2) for the subsample and hybrid tests. The
Table strongly suggests that AsySz(θ0) = 2α for all three types of symmetric two-sided
tests. This implies that the tests are size-distorted but that size correction is possible
by taking the nominal size equal to α/2.

Finally, for the equal-tailed two-sided tests, we calculate Maxr−ET,Type(α) in (8.4)
for Type = Fix, Sub, and Hyb. Table I reports the maximum asymptotic null rejection
probabilities for these tests given ρ (= h2) for a range of ρ values in [−1, 1] and α = .05.
(The maximum is over h ∈ H or (g, h) ∈ GH with h2 fixed.) We find extreme size
distortion for the equal-tailed subsample test, correct size for the hybrid test, and
AsySz(θ0) = 2α for the FCV test.

We now verify Assumptions A2-G2. Assumptions A2, C, and D clearly hold. As-
sumption B2 follows immediately from (11.7), (11.8), and (11.9) with Jh equal to
J∗h,−J∗h, and |J∗h|, respectively, for upper, lower, and symmetric tests. Assumption
E holds by the general argument given in Section 3. For all h ∈ H, the distribu-
tion functions Jh(x) are continuous for x > 0 and increasing at all of their quan-
tiles ch(1 − α) for α < 1/2. This establishes Assumptions F2 and N2 and shows that
Max−Type(α) = MaxType(α) for any α < 1/2 for Type = Fix, Sub, and Hyb. As-
sumption G2 follows by Lemma 5 noting that Assumptions BB2 and HH hold with
an = n1/2/σ1,n,h, dn = 1/σ1,n,h, τn = n1/2, Vh = Jh, and Wh equal to pointmass at
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one. NEED TO FIX THE LAST STATEMMENT. ASSUMPTION HH DOES NOT
NECESSARILY HOLD IF an = n1/2/σ1,n,h BECAUSE σ1,n,h/σ1,bn,h COULD BE ILL-
BEHAVED.

11.2 CI Based on a Super-Efficient Estimator

Here we show that the standard FCV, subsample, and hybrid CIs (of nominal level
1−α for any α ∈ (0, 1)) based on a super-efficient estimator have AsyCL = 0 in a very
simple regular model.

The model is

Xi = θ + Ui, where Ui ∼ iid F for i = 1, ..., n, (11.1)

where F is some distribution with variance one. The super-efficient estimator, eθn, of θ
and the test statistic, Tn(θ0), are defined by

eθn = �
Xn if |Xn| > n−1/4
aXn if |Xn| ≤ n−1/4,

where Xn = n
−1

n[
i=1

Xi,

Tn(θ0) = |n1/2(eθn − θ0)|, (11.2)

and 0 ≤ a < 1. The constant a is a tuning parameter that determines the magni-
tude of shrinkage. The test statistic is a two-sided non-studentized t statistic, so that
Assumptions t1(iii) and t2 hold with τn = n

1/2.
The CI for θ is given by the third equation in (9.2) with c1−α equal to the standard

normal 1− α/2 quantile for the FCV CI: cFix(1− α) = z1−α/2. For the subsample CI,
c1−α is equal to the subsample critical value cn,b(1− α) based on subsample statistics
{Tn,bn,i(eθn) : i = 1, ..., qn} defined in equation (iii) of (2.6) with eσn,b,i = 1. Note that
Assumption Sub1 holds. (The results given below also hold if Assumption Sub2 holds.)
For the hybrid CI, c1−α is equal to the maximum of cn,b(1−α) and c∞(1−α) = z1−α/2.
We take {bn : n ≥ 1} so that Assumption C holds.

We apply Corollary 4(a)-(c) with γ = γ1 = θ = θ1 ∈ R, p = d = 1, and
Γ = Γ1 = Θ = R. (No γ2, γ3, θ2, or η parameters appear in this example.) The
assumptions of Corollary 4(a)-(c) are verified below. We take r = 1/2 and γn,h
(= θn,h) = hn−1/2, where h ∈ R, in Assumption B1. When the true value is θn,h,eθn = aXn with probability that goes to one as n → ∞ (wp→ 1), see (11.7) below.
Hence, wp→ 1, we have

Tn(θn,h) = |n1/2(aXn − θn,h)|
= |an1/2(Xn − θn,h) + (a− 1)h|
→d |aZ + (a− 1)h| ∼ Jh, where Z ∼ N(0, 1) and (11.3)

Jh(x) =

�
Φ(a−1(x+ (1− a)h))− Φ(a−1(−x+ (1− a)h)) if a ∈ (0, 1)
1(x ≥ |h|) if a = 0

,
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using the central limit theorem. Given that p = d = 1, we have h0 = 0 and Jh0 = J0. For
a ∈ (0, 1), we have J0(x) = Φ(a−1x)−Φ(−a−1x) and ch0(1−α) = c0(1−α) = az1−α/2.
For a = 0, J0(x) = 1(x ≥ 0) and ch0(1− α) = c0(1− α) = 0.

For a ∈ (0, 1), Corollary 4(a)-(c) implies that the limits of the coverage probabilities
of the FCV, subsample, and hybrid CIs under γn,h (= θn,h) = hn

−1/2 are

Jh(cFix(1− α)) = Jh(z1−α/2),
Jh(ch0(1− α)) = Jh(az1−α/2), and (11.4)

Jh(max{ch0(1− α), c∞(1− α)}) = Jh(max{az1−α/2, z1−α/2}) = Jh(z1−α/2),

respectively. Using (11.3), for a ∈ (0, 1) and ξ = 1 or ξ = a, we have

lim
h→∞

Jh(ξz1−α/2) = 0. (11.5)

Hence, for a ∈ (0, 1) and h sufficiently large, the asymptotic coverage probabilities of
the symmetric two-sided FCV, subsample, and hybrid CIs is arbitrarily close to zero.
Since h ∈ R is arbitrary, this implies that AsyCL = 0 for these CIs.

For a = 0, the limits of the coverage probabilities of the FCV, subsample, and
hybrid CIs under γn,h (= θn,h) = hn

−1/2 are

Jh(cFix(1− α)) = Jh(z1−α/2) = 1(z1−α/2 ≥ |h|) = 0 for |h| > z1−α/2,
Jh(ch0(1− α)) = Jh(0) = 1(0 ≥ |h|) = 0 for |h| > 0, and

Jh(max{ch0(1− α), c∞(1− α)}) = Jh(max{0, z1−α/2}) = 1(z1−α/2 ≥ |h|) = 0
for |h| > z1−α/2, (11.6)

respectively. Hence, for a = 0, AsyCL = 0 for the FCV, subsample, and hybrid CIs.
We obtain the same result that AsyCL = 0 if one-sided CIs or equal-tailed two-

sided CIs are considered. Furthermore, the size-correction methods of Section 6 do not
work in this example because Assumptions K, L, and M fail. (For example, Assumption
K fails when a = 0 because (i) H = R∞ in this example and (ii) for any constant cv,
we have suph∈H [1− Jh(cv)] = suph∈R[1− 1(cv ≥ |h|)] = 1.)

PERHAPS MOVE THE NEXT PART TO THE APPENDIX.
It remains to verify Assumptions A1, B1, C-E, F1, and G1 for arbitrary choice of

the parameter h. (We need not verify Assumption J because the result of Corollary 4(c)
does not actually require Assumption J, see Comment 2 to Corollary 1.) Assumption
A1 holds because 0 ∈ Γ = R, Assumption C holds by assumption, Assumptions D
and E hold because the observations are iid for each fixed θ ∈ R, Assumption H
holds because τ bn/τn = b

1/2
n /n1/2 → 0 by Assummption C, and Assumption G1 holds

by Lemma 1(a) using Assumption H. For a ∈ (0, 1), Assumption F1 holds because
Jh0(x) = Φ(a

−1x)−Φ(−a−1x) is strictly increasing at ch0(1−α) = az1−α/2. For a = 0,
Assumption F1 holds because Jh0(x) = 1(x ≥ 0) has a jump at x = ch0(1 − α) = 0
with Jh0(ch0(1− α)) = 1 > 1− α and Jh0(ch0(1− α)−) = 0 < 1− α.
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Next, we verify Assumption B1. For any true sequence {γn : n ≥ 1} for which
n1/2γn (= n

1/2θn) = O(1), we have

Pγn(|Xn| ≤ n−1/4) = Pγn(|n
1/2(Xn − θn) + n

1/2θn| ≤ n1/4)
= Pγn(|Op(1) +O(1)| ≤ n

1/4)→ 1 and

Pγn(
eθn = aXn) → 1, (11.7)

where the second equality uses the fact that n1/2(Xn−θn) has mean zero and variance
one and the second convergence result uses the definition of eθn in (11.2). For the
particular sequence γn,h (= θn,h) = hn−1/2 in Assumption B1(i), (11.3) and (11.7)
imply that Assumption B1(i) holds with Jh(x) defined as above. For any sequence
{γn,0 : n ≥ 1} as in Assumption B1(ii), we have γn,0 (= θn,0) = o(n

−1/2) since r = 1/2.
Hence, Pγn,0(

eθn = aXn) → 1 by (11.7), |n1/2θn,0| = o(1), and the same argument as
in (11.3) but with h = 0 implies that Assumption B1(ii) holds with Jh0(x) = J0(x)
defined as above.

11.3 CI for a Restricted Regression Parameter

Here we consider a multiple linear regression model where one regression parameter
θ (∈ R) is restricted to be non-negative. We consider a studentized t statistic based
on the least squares estimator of θ that is censored to be non-negative. We show that
lower one-sided, symmetric two-sided, and equal-tailed two-sided subsample CIs for θ
based on the studentized t statistic do not have correct asymptotic coverage probability.
In particular, these three nominal 1− α CIs have asymptotic confidence levels of 1/2,
1 − 2α, and 1/2 − α/2, respectively. Size-correction (of the type considered above) is
possible for the symmetric subsample CI, but not for the lower one-sided or equal-tailed
two-sided subsample CIs. We also show that upper and lower one-sided, symmetric
two-sided, and equal-tailed two-sided FCV and hybrid CIs have correct AsyCL.

Consider the linear model with dependent variable Yi ∈ R and regressors Xi ∈ Rk
and Zi ∈ R:

Yi = X
�
iβ + Ziθ + Ui (11.8)

for i = 1, ..., n. Assume {(Ui,Xi, Zi) : i ≥ 1} are iid with distribution F and satisfy
EFU

2
i = σ2U > 0 and EFUi(X

�
i, Zi) = 0. We also assume conditional homoskedasticity,

that is, EFU2i (X
�
i, Zi)

�(X �i, Zi) = σ2UQF , where QF = EF (X
�
i, Zi)

�(X �i, Zi) > 0. Decom-
pose QF into matrices QXX , QXZ , QZX , and QZZ in the obvious way. Denote by
Y,Z,U ∈ Rn and X ∈ Rn×k the matrices with rows Yi, Zi, Ui, and X �i, respectively, for
i = 1, ..., n.

We consider inference concerning the parameter θ when the parameter space for θ
is R+ and that for β is Rk. Denote by eθn the censored LS estimator of θ. That is,eθn = max{eθLS , 0}, whereeθLS = (Z �MXZ)

−1Z �MXY and MX = I −X(X �X)−1X �. (11.9)
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We have
n1/2(eθn − θ) = max{n1/2(Z �MXZ)

−1Z �MXU, − n1/2θ}. (11.10)

By the law of large numbers and the CLT,

n1/2(Z �MXZ)
−1Z �MXU →d ζη ∼ N(0, η2), where

η2 = σ2U (QZZ −QZXQ−1XXQXZ)
−1, (11.11)

under F. Denote by eηn the consistent estimator of η that replaces population moments
by sample averages and σ2U by

eσ2U =Sn
i=1

eU2i /n, where eUi = Yi −X �ieβn − Zieθn (11.12)

and (eβn,eθn) are the LS estimators of (β, θ) subject to the restriction θ ≥ 0.
Consider sequences {γn,h = (γn,h,1, γn,h,2, γn,h,3) = (θn,h, ηn,h, (βn,h, Fn,h)) : n ≥ 1}

of true parameters (θ, η, (β, F ))� that satisfy h1 = limn→∞ n1/2θn,h, h2 = limn→∞ ηn,h,

βn,h ∈ Rk, and Fn,h ∈ F(ηn,h) (defined below) for all n ≥ 1. Let h = (h1, h2) ∈
R+,∞ × [ηL, ηU ] for some 0 < ηL < ηU < ∞. Under a sequence {γn,h}, the Liapunov
CLT, the continuous mapping theorem (CMT), and standard asymptotic calculations
imply that the t statistic T ∗n(θ0) = n1/2(eθn − θ0)/eηn satisfies

T ∗n(θn,h)→d max{ζ,−h1/h2}, where ζ = ζη/η ∼ N(0, 1). (11.13)

Note that there are no sequences {θn,h} of true parameters θ for which h1 < 0. The dis-
tribution of max{ζ,−h1/h2} depends on h only through h1/h2. Define the distribution
J∗h by

max{ζ,−h1/h2} ∼ J∗h. (11.14)

As defined, J∗h is standard normal when h1 =∞. When h1 =∞, we also write J∗∞ for
J∗h.

For Tn(θ0) = T ∗n(θ0), −T ∗n(θ0), and |T ∗n(θ0)|, we have

Tn(θn,h)→d Jh, where Jh = J
∗
h, − J∗h, and |J∗h|, (11.15)

respectively, using the CMT. (Here −J∗h and |J∗h| denote the distributions of −S and
|S| when S ∼ J∗h.) The dfs of J∗h, −J∗h, and |J∗h| are given by

J∗h(x) =
�
0 for x < −h1/h2
Φ(x) for x ≥ −h1/h2

, (−J∗h)(x) =
�
Φ(x) for x < h1/h2
1 for x ≥ h1/h2,

, and

|J∗h|(x) =

⎧⎨⎩
0 for x ≤ 0
2Φ(x)− 1 for 0 < x < h1/h2
Φ(x) for x ≥ h1/h2

, (11.16)

where Φ(x) is the standard normal df. A key property of J∗h for the asymptotic prop-
erties of subsample CIs is that J∗h is stochastically decreasing in h1/h2 and −J∗h and
|J∗h| are stochastically increasing in h1/h2.
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We consider upper and lower one-sided and symmetric and equal-tailed two-sided
1−α CIs for θ for α < 1/2. First, we discuss construction of these CIs. For upper and
lower one-sided and symmetric two-sided CIs, FCV CIs for θ are given by the three
equations of (9.2) with c1−α = z1−α, c1−α = z1−α, and c1−α = z1−α/2, respectively,eσn = eηn, and τn = n

1/2. For subsample CIs, c1−α in (9.2) equals cn,b(1− α) obtained
from subsample statistics Tn,b,i(eθn), defined in equations (2.6) (i)-(iii) for upper and
lower one-sided and two-sided symmetric CIs, respectively.16 For the hybrid CIs, we
take c1−α = max{cn,b(1− α), z1−α} for the upper and lower one-sided CI and c1−α =
max{cn,b(1− α), z1−α/2} for the symmetric two-sided CI.

The equal-tailed two-sided FCV, subsample, and hybrid CIs are defined in (9.5) with
(cα/2, c1−α/2) = (zα/2, z1−α/2), (cn,b(α/2), cn,b(1 − α/2)), and (min{cn,b(α/2), zα/2},
max{cn,b(1−α/2), z1−α/2}), respectively. Here the subsample quantiles cn,b(1−α) are

obtained from Tn,b,i(eθn) (or Tn,b,i(θ0)) defined in equation (2.6) (i) with eσn = eηn.
The parameter spaces for θ, η, and β are Θ = R+, [ηL, ηU ], and R

k, respectively.
The parameter space for the distribution F of (Ui,Xi, Zi) is

F(η) = {F : EF |Ui|2+δ ≤M, EFU2i > 0, EFUi(X �i, Zi) = 0, QF > 0, (11.17)

EFU
2
i (X

�
i, Zi)

�(X �i, Zi) = EFU
2
i QF , σ

2
U (QZZ −QZXQ−1XXQXZ)

−1 = η2}

for some δ > 0 and 0 < M < ∞. (The condition EF |Ui|2+δ ≤ M in F(η) guarantees
that the Liapunov CLT applies for sequences {γn,h} in (11.13).) Hence, the parameter
space for γ = (γ1, γ2, γ3) = (θ, η, (β, F )) is

Γ = {γ = (γ1, γ2, γ3) = (θ, η, (β, F )) : γ1 = θ ∈ R+, γ2 = η ∈ [ηL, ηU ],
& γ3 = (β, F ) ∈ Rk ×F(η)}. (11.18)

We take r = 1/2 and H = R+,∞ × [ηL, ηU ].
We now apply Corollaries 4 and 5 to determine AsyCL for each CI. Assumptions

A2-G2 and N2 are verified below.
For upper one-sided CIs, Jh(·) (= J∗h(·)) is continuous at all x > 0 for all h1 ∈ R+,∞

and h2 ∈ [ηL, ηU ] using (11.16). Because the 1 − α quantile of Jh is positive for any
h ∈ H given α < 1/2, the intervals for AsyCL in Corollary 4(d)-(f) collapse to points.
By Corollary 4(d)-(f), we find that the upper one-sided FCV, subsample, and hybrid
CIs all have AsyCL = 1−α for α < 1/2 because the 1−α quantile of Jh for any h ∈ H
equals z1−α using (11.16).

For the lower one-sided FCV CI, Corollary 4(d) implies that AsyCL ∈ [infh∈H
Jh(z1−α−), infh∈H Jh(z1−α)]. In this case, Jh (= −J∗h) is stochastically increasing in
h1/h2. Hence, infh∈H Jh(z1−α) = J∞(z1−α) = Φ(z1−α) = 1 − α using (11.16). Thus,
AsyCL = 1−α for the lower one-sided FCV CI. For the lower one-sided hybrid CI, we
have max{cg(1−α), c∞(1−α)} = c∞(1−α) = z1−α for all g ∈ H because Jh (= −J∗h)
16 In the definition of Tn,b,i(eθn) the role of eσn,b,i is played by the analogously defined expression eηn,b,i.

The results also hold under Assumption Sub2 in which case the subsample statistics are Tn,b,i(θ0).
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is stochastically increasing in h1/h2. Hence, by Corollary 4(f) and the above result for
the FCV CI, AsyCL = 1− α for the lower one-sided hybrid CI.

For the lower one-sided subsample CI, Corollary 4(e) implies that AsyCL ∈
[inf(g,h)∈GH Jh(cg(1− α)−), inf(g,h)∈GH Jh(cg(1− α))]. We have

inf
(g,h)∈GH

Jh(cg(1− α)) = inf
h∈H

Jh(ch0(1− α)) = inf
h∈H

Jh(0) = J∞(0) = 1/2, (11.19)

where the first and third equalities hold because Jh (= −J∗h) is stochastically increasing
in h1/h2, the second equality holds because h0 = (0, h2)

� and Jh0(x) = 1 for all x ≥
0 using (11.16), and the last equality holds because J∞(x) = Φ(x) using (11.16).
Therefore, AsyCL = 1/2 for the lower one-sided subsample CI.

We now discuss the results for symmetric two-sided CIs. By Corollary 4(d), we have
AsyCL ∈ [infh∈H Jh(z1−α/2−), infh∈H Jh(z1−α/2)] for the FCV CI. Because Jh (= |J∗h|)
is stochastically increasing in h1/h2 and using (11.16), we have infh∈H Jh(z1−α/2) =
J∞(z1−α/2) = 2Φ(z1−α/2)− 1 = 1− α. Hence, AsyCL = 1− α for the symmetric two-
sided FCV CI. For the hybrid CI, we have max{cg(1− α), c∞(1− α)} = c∞(1− α) =
z1−α/2 for all g ∈ H because Jh (= |J∗h|) is stochastically increasing in h1/h2 and using
(11.16). Thus, using Corollary 4(f) and the above result for the FCV CI, we have
AsyCL = 1− α for the symmetric two-sided hybrid CI.

For the symmetric two-sided subsample CI, Corollary 4(e) implies that
AsyCL ∈ [inf(g,h)∈GH Jh(cg(1− α)−), inf(g,h)∈GH Jh(cg(1− α))]. We have

inf
(g,h)∈GH

Jh(cg(1− α)) = inf
h∈H

Jh(ch0(1− α)) = inf
h∈H

Jh(z1−α) = J∞(z1−α) = 1− 2α,

(11.20)
where the first and third equalities hold because Jh (= |J∗h|) is stochastically increasing
in h1/h2, the second equality holds because h0 = (0, h2)

� and Jh0(x) = Φ(x) for all
x ≥ 0 using (11.16), and the last equality holds because J∞(x) = (|J∗∞|)(x) = 2Φ(x)−1
using (11.16). Equation (11.20) holds with cg(1 − α)− in place of cg(1 − α). Hence,
the (nominal 1 − α) symmetric two-sided subsample CI has AsyCL = 1 − 2α and
under-covers by α. An SC subsample CI can be constructed by taking ξ(α) = α/2.

Next, we discuss the results for the equal-tailed two-sided CIs. Here, Jh = J∗h. By
Corollary 5, AsyCL ∈ [1−Max�−ET,Type(α), 1−Max

r−
ET,Type(α)] for Type equal to Fix,

Sub, and Hyb for the FCV, subsample, and hybrid CIs, respectively. For the FCV CI,
(cα/2, c1−α/2) = (zα/2, z1−α/2) yields

Maxr−ET,Fix(α) = sup
h∈H

[1− Jh(z1−α/2) + Jh(zα/2−)]

= sup
h∈H

[1− Φ(z1−α/2) + Jh(zα/2−)] = α/2 + J∞(zα/2−)

= α/2 +Φ(zα/2−) = α, (11.21)

where the second equality holds by (11.16), the third equality holds because Jh (=
J∗h) is stochastically decreasing in h1/h2, and the fourth equality holds by (11.16).
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Analogously, Max�−ET,Type(α) = α. It follows that AsyCL = 1− α for the equal-tailed
FCV CI.

For the equal-tailed hybrid CI, the quantities max{cg(1− α/2), c∞(1 − α/2)} and
min{cg(α/2), c∞(α/2)} that appear in Maxr−ET,Hyb(α) equal z1−α/2 and zα/2, respec-
tively, because cg(1− α/2) = z1−α/2 for all g ∈ H provided α ≤ 1/2 using (11.16) and
cg(α/2) ≥ c∞(α/2) = zα/2 for all g ∈ H using the fact that Jh (= J∗h) is stochastically
decreasing in h1/h2 and (11.16). Hence, Maxr−ET,Hyb(α) =Max

r−
ET,Fix(α) and likewise

with c in place of r. In consequence, the result that AsyCL = 1−α for the equal-tailed
FCV CI yields the same result for the equal-tailed hybrid CI.

Lastly, for the equal-tailed subsample CI, we have

Maxr−ET,Sub(α) = sup
(g,h)∈GH

[1− Jh(z1−α/2) + Jh(cg(α/2)−)]

= sup
(g,h)∈GH

[1− Φ(z1−α/2) + Jh(cg(α/2)−)] = α/2 + sup
h∈H

Jh(0−)

= α/2 + J∞(0−) = α/2 +Φ(0) = α/2 + 1/2, (11.22)

where the first equality holds because cg(1 − α/2) = z1−α/2 for all g ∈ H provided
α ≤ 1/2 by (11.16), the second equality holds as in (11.21), the third equality holds
because cg(α/2) ≤ 0 with equality when g = (0, h2)

� for α ≤ 1/2 using (11.16), the
fourth equality holds because Jh (= J∗h) is stochastically decreasing in h1/h2, and the
fifth equality holds because J∞ = J∗∞ = Φ using (11.16). Likewise, Max�−ET,Sub(α) =
α/2 + 1/2. Therefore, AsyCL = 1/2− α/2 for the equal-tailed subsample CI. Clearly,
size-correction (of the type discussed in the paper) is not possible here.

We now verify the assumptions needed to apply Corollaries 4 and 5. First, consider
the case of an upper one-sided CI based on Tn(θ0) = T ∗n(θ0). Assumption A2 holds by
definition of Γ. Assumption B2 follows from (11.13). We choose {bn : n ≥ 1} so that As-
sumption C holds. Assumption D holds by the iid assumption. Assumption E holds by
the general argument given in Section 3. Assumption F2 holds because Jh(x) = J∗h(x)
is strictly increasing for x ≥ 0 and ch(1−α) ≥ 0 for α ≤ 1/2 by (11.16). Assumption G2
follows by Lemma 5 under Assumption Sub1 and follows trivially under Assumption
Sub2. The assumptions for Lemma 5 are verified as follows. Assumption BB2 holds
with (an, dn) = (τn, 1), where Vh is the distribution of max{h2ζ,−h1}, and Wh is a
point mass distribution at h2 > 0 under sequences γn,h = (θn,h, ηn,h, (βn,h, Fn,h))

� such
that h1 ∈ R+,∞ and h2 > 0. Assumptions DD and EE hold by the same arguments
as for Assumptions D and E. Assumption HH holds because an = τn = n1/2. The
verification of the assumptions for the lower one-sided and two-sided cases is analogous
with the exceptions of Assumptions F2 and N2. Using (11.16), one can verify that As-
sumption F2 holds for Jh = −J∗h and Jh = |J∗h| and Assumption N2 holds for Jh = J∗h
because for all h ∈ H either (i) Jh(x) is strictly increasing at x = ch(1−α) or (ii) Jh(x)
has a jump at x = ch(1− α) with Jh(ch(1− α)) > 1− α and Jh(ch(1− α)−) < 1− α
provided α ∈ (0, 1).
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11.4 Confidence Region Based on Moment Inequalities

Here we consider a confidence region (CR) for a true parameter θ0 (∈ Θ ⊂ Rd) that
is defined by moment inequalities and equalities. The true value need not be identified.
The CR is obtained by inverting tests that are based on a generalized method of
moments-type (GMM) criterion function. This method is introduced by Chernozhukov,
Hong, and Tamer (2002) (CHT), who use subsampling to obtain a critical value.17

Shaikh (2005) also considers this method and shows that the limit of finite sample size
is the nominal level in one-sample and two-sample mean problems when a subsample
critical value is employed. In this section, we show that this result holds quite generally
for subsample CRs of this type–no specific assumptions concerning the form of the
moment functions are necessary even though the asymptotic distribution of the test
statistic is discontinuous (in the sense discussed above). Note that the results given
here are for CRs for the true parameter, rather than for the “identified set.”

We also consider CRs based on fixed and “plug-in” critical values–defined below.
These critical values are bounded above as n→ ∞, whereas subsample critical values
diverge to infinity at a rate that depends on the subsample size bn. Hence, the use of
fixed or plug-in critical values leads to more powerful tests and smaller CRs asymptot-
ically than subsample critical values. Furthermore, the plug-in critical values (PCV)
lead to more powerful tests and smaller CRs than the fixed critical values (FCV).
Hence, the results here indicate that PCV is the best choice of critical value.

The test statistic considered below is similar to those considered by (i) Moon and
Schorfheide (2004), who consider an empirical likelihood version of the GMM criterion
function and assume identification of θ0, (ii) Soares (2005), who allows for the plug-in
of preliminary estimators in a GMM and/or empirical likelihood criterion function,
and (iii) Rosen (2005), who considers a minimum distance version of the test statistic.
By similar arguments to those given below, one can show that the limit of the finite
sample size of a subsample CR based on any one of these test statistics equals its
nominal level. The results for fixed and plug-in critical values also extend to these test
statistics. Hence, for these versions of the test statistics as well, we find that the PCV
has the best properties. For brevity, we only outline the arguments.

The model is as follows. The true value θ0 (∈ Θ ⊂ Rd) is assumed to satisfy the
following moment conditions:

EFmj(Wi,θ0) ≥ 0 for j = 1, ..., p and
EFmj(Wi,θ0) = 0 for j = p+ 1, ..., p+ s, (11.23)

where {mj(·, θ) : j = 1, ..., p+ s} are scalar-valued moment functions and {Wi : i ≥ 1}
are stationary random vectors with joint distribution F.
17CHT focus on CRs for the identified set, rather than the true parameter. By definition, the

identfied set, Θ0, is the set of all θ ∈ Θ that satisfy the moment inequalities and equalities when the
true value is θ0. Also, CHT consider a more general criterion function than that considered below.
Their asymptotic results do not establish that the limit of the finite sample size of the CR for the true
value is the nominal level, which is one of the results shown in this section.
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The sample moment functions are

mn,j(θ) = n
−1

n[
i=1

mj(Wi, θ) for j = 1, ..., p+ s. (11.24)

The test statistic that we consider for testing H0 : θ = θ0 is a Anderson—Rubin-type
GMM statistic that gives positive weight to the moment inequalities only when they
are violated:

Tn(θ0) = n

p[
j=1

(mn,j(θ0)/eσn,j(θ0))2− + n p+s[
j=p+1

(mn,j(θ0)/eσn,j(θ0))2, where
(x)− =

�
x if x < 0
0 if x ≥ 0 (11.25)

and eσ2n,j(θ0) is a consistent estimator of σ2F,j(θ0) = limn→∞ V arF (n1/2mn,j(θ0)) for
j = 1, ..., p+ s. For example, with iid observations, one can define eσ2n,j(θ0) = n−1Sn

i=1

(mj(Wi, θ0)−mn,j(θ0))
2.

The subsample statistics are constructed such that Assumption Sub2 holds. (No
consistent estimator of the true parameter exists when the latter is unidentified, so a
subsample procedure that satisfies Assumption Sub1 is not available.)

We now specify γ = (γ1, γ2, γ3) for this example. The moment conditions in (11.23)
can be written as

σ−1F,j(θ0)EFmj(Wi, θ0)− γ1,j,0 = 0 for j = 1, ..., p and

σ−1F,j(θ0)EFmj(Wi, θ0) = 0 for j = p+ 1, ..., p+ s (11.26)

for some γ1,0 = (γ1,1,0, ..., γ1,p,0)
� ∈ Rp+. Let Ω0 = limn→∞CorrF (n1/2mn(θ0)), where

mn(θ0) = (mn,1(θ0), ...,mn,p+s(θ0))
� and CorrF (n1/2mn(θ0)) denotes the (p+s)×(p+s)

correlation matrix of n1/2mn(θ0). Let γ1, Ω, and θ denote generic parameter values
corresponding to the true null parameter values γ1,0, Ω0, and θ0, respectively. We take
γ = (γ1, γ2, γ3) such that γ1 ∈ R

p
+, γ2 = (γ�2,1, γ�2,2)� = (θ�, vech∗(Ω)�)� ∈ Rq, where

vech∗(Ω) denotes vech(Ω) with the diagonal elements of Ω deleted, q = d+(p+ s)(p+
s− 1)/2, and γ3 = F.

We take r = 1/2 and h = (h1, h2), where h1 ∈ Rp+,∞, h2 = (h�2,1, h�2,2)�, h2,1 ∈cl(Θ),
h2,2 ∈cl(Γ2,2), and Γ2,2 is some set of vectors γ2,2 such that γ2,2 = vech∗(C) for some
(p + s) × (p + s) correlation matrix C. Hence, H = Rp+,∞×cl(Θ) ×cl(Γ2,2). Note that
h1 corresponds to γ1 and, hence, h1 measures the extent to which the j = 1, ..., p
moment inequalities deviate from being equalities. Also, h2,1 corresponds to θ and h2,2
corresponds to vech∗(Ω).

The parameter spaces for γ1 and γ2 are Γ1 = R
p
+ and Γ2 = Θ× Γ2,2, respectively.

For given (γ1, γ2) ∈ Γ1 × Γ2, the parameter space for F is

F(γ1, γ2) = {F : σ−1F,j(θ)EFmj(Wi, θ)− γ1,j = 0 for j = 1, ..., p, (11.27)

EFmj(Wi, θ) = 0 for j = p+ 1, ..., p+ s},
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such that {F(γ1, γ2) : (γ1, γ2) ∈ Γ1 × Γ2} satisfies the following “convergence condi-
tion.” By definition, the convergence condition restricts {F(γ1, γ2) : (γ1, γ2) ∈ Γ1×Γ2}
so that under any {γn,h = (γn,h,1, (θ�n,h, vech∗(Ωn,h)�)�, Fn,h) : n ≥ 1} for any h ∈ H,
we have

(An,1, ..., An,p+s)
� →d Zh2,2 ∼ N(0, Vh2,2) as n→∞, where

An,j = n
1/2(mn,j(θn,h)−EFn,hmn,j(θn,h))/σFn,h,j(θn,h), andeσnj(θn,h)/σFn,h,j(θn,h)→p 1 as n→∞ (11.28)

for j = 1, ..., p + s, where Vh2,2 is the (p + s) × (p + s) correlation matrix for which
vech∗(Vh2,2) = h2,2. For example, if the observations {Wi : i ≥ 1} are iid under a fixed γ
and eσ2nj(θ) is defined as above, the convergence condition holds if EF |mj(Wi, θ)|2+δ1 ≤
M and σF,j(θ) ≥ δ2 for j = 1, ..., p+s for some constantsM <∞ and δ1, δ2 > 0 that do
not depend on F. (This holds by straightforward calculations using the CLT and LLN
for inid random vectors that satisfy a uniform 2 + δ1 moment bound.) For dependent
observations, one needs to specify a specific variance estimator eσ2nj(θ), such as a HAC
estimator, before a primitive convergence condition can be stated. For brevity, we do
not do so here.

Given (11.25) and (11.28), Assumption B2 holds because under {γn,h : n ≥ 1} we
have

Tn(θn,h)→d

p[
j=1

(Zh2,2,j + h1,j)
2
− +

p+s[
j=p+1

Z2h2,2,j ∼ Jh (11.29)

for all h ∈ H, where Zh2,2 = (Zh2,2,1, ..., Zh2,2,p+s)
�. (Note that Zh2,2,j� + h1,j� = 0 for

any j� in {1, ..., p} for which h1,j� =∞.)
For (g, h) ∈ GH, we have

Jg ≥ST Jh. (11.30)

This holds because
Sp
j=1(Zh2,2,j + g1,j)

2− ≥ST
Sp
j=1(Zh2,2,j + h1,j)

2− a.s. for all 0 ≤
g1 ≤ h1 due to the (·)− function and, for all (g, h) ∈ GH, we have 0 ≤ g1 ≤ h1 and
g2,2 = h2,2. Furthermore, Jh is continuous at its 1 − α quantile for all α < 1/2, see
below. In consequence, by Corollary 4(e) and Comment 2 following Theorem 2, for the
subsample CR, we have

AsyCL = inf
(g,h)∈GH

Jh(cg(1− α)) = 1− α. (11.31)

Hence, in this example, discontinuity of the limit distribution does not cause size dis-
tortion for the subsample CR.

We now verify the remaining assumptions needed for Corollary 4. Assumption A2
holds with Γ defined as above. Assumption C holds by choice of bn. Assumption D
holds by stationarity and the standard definition of subsample statistics in the iid and
dependent cases. Assumption E holds by the general argument given in Section 3 for iid
observations and stationary strong mixing observations provided supγ∈Γ αγ(m)→ 0 as

42



m → ∞. Assumption F2 holds for all α < 1/2 because if s ≥ 1, then Jh is absolutely
continuous, and if s = 0, then Jh has support R+ and the df Jh(x) has a jump of
height greater than or equal to 1/2 at x = 0 and no other jumps. Assumption G2 holds
automatically because the subsample procedure satisfies Assumption Sub2.

Next, we discuss FCV CRs. Corollary 4(d), combined with the continuity results
concerning Jh given in the discussion of Assumption F2 above and the result above
that Jg ≥ST Jh for (g, h) ∈ GH, imply that for a FCV CR

AsyCL = inf
h∈H

Jh(cFix(1− α)) = inf
h2∈H2

J(0,h2)(cFix(1− α)). (11.32)

Hence, if cFix(1− α) is defined such that

inf
h2∈H2

J(0,h2)(cFix(1− α)) = 1− α, (11.33)

then the FCV CR has asymptotic level 1− α, as desired. By (11.29), the distribution
J(0,h2) only depends on

h2,2 = vech∗( lim
n→∞CorrFn,h(mn(θn,h))). (11.34)

Hence, determination of the value cFix(1−α) that satisfies (11.33) only requires maxi-
mization over the possible asymptotic correlation matrices of n1/2mn(θn,h). For example
if p = 1 and s = 0, then J(0,h2) is the distribution of a random variable that is 0 with
probability 1/2 and is chi-squared with one degree of freedom with probability 1/2.
Hence, no unknown parameter appears. If p+ s = 2, then J(0,h2) depends on the scalar
h2,2, which is the asymptotic correlation between n1/2mn,1(θn,h) and n1/2mn,2(θn,h).
For general p+s, one can determine cFix(1−α) such that the infimum in (11.32) equals
1− α via simulation.

Given (11.32), one can design a data-dependent “plug-in” critical value (PCV) that
yields a more powerful test than the FCV test and, hence, a smaller CR, because it is
closer to being asymptotically similar. Let cPlug(h2,2, 1− α) denote the 1− α quantile
of J(0,h2)(x) (which only depends on h2,2). Let eh2,2,n be a consistent estimator of h2,2.
The PCV is

cPlug(eh2,2,n, 1− α), (11.35)

where eh2,2,n − h2,2 →p 0 and, hence, cPlug(eh2,2,n, 1 − α) − cPlug(h2,2, 1 − α) →p 0 as
n→∞ under {γn,h : n ≥ 1}. For example, in the case of iid observations, one can take

eh2,2,n = vech∗
� eD−1/2n (θ0)eVn(θ0) eD−1/2n (θ0)

�
, where

eVn(θ0) = n−1
n[
i=1

(m(Wi, θ0)−mn(θ0))(m(Wi, θ0)−mn(θ0))
�,

m(Wi, θ0) = (m1(Wi, θ0), ...,mp+s(Wi, θ0))
� andeDn(θ0) = Diag{eσ2n,1(θ0), ..., eσ2n,p+s(θ0)}. (11.36)

43



The PCV, cPlug(eh2,2,n, 1− α), can be computed by simulation.
The use of the PCV yields a CR for the true value θ0 whose finite sample size has

limit equal to 1 − α (using (11.32) with Fix replaced by Plug). The PCV CR is not
asymptotically similar because the limit of its coverage probability exceeds 1−α when
h1 9= 0. However, it is closer to being asymptotically similar than the FCV CR is,
because cPlug(h2,2, 1− α)) ≤ suph2∈H2 cPlug(h2,2, 1− α) = cFix(1− α) for all h2,2 with
strict inequality for some h2,2.

NEED TO CHECK STATEMENTS IN THIS PARAGRAPH. For an empirical
likelihood-based test statistic, as in Moon and Schorfheide (2004) or Soares (2005), the
asymptotic distribution of the test statistic is the same as the GMM-based statistic
above. Hence, the same argument as above leads to (11.31) and the subsample, FCV,
and PCV CRs have the desired asymptotic level. The PCV CR yields the smallest CR
based on an empirical likelihood test statistic.

Next, suppose the population moment functions are of the form EFmj(Wi,θ0, τ0) ≥
0 for j = 1, ..., p and EFmj(Wi,θ0, τ0) = 0 for j = p + 1, ..., p + s, where τ0 is a
parameter for which a preliminary asymptotically normal estimator eτn(θ0) exists, as in
Soares (2005). The sample moment functions are of the form mn,j(θ) = mn,j(θ,eτn(θ)).
In this case, the asymptotic variance of n1/2mn,j(θ), as well as the quantities Ω and
h2,2, take different values than when τ0 appears in place of eτn(θ0). But, the form of the
asymptotic distribution given in (11.29) is the same. (This relies on suitable smoothness
of EFmj(Wi,θ0, τ0) with respect to τ0.) In consequence, by the same argument as above,
we have Jg ≥ST Jh for (g, h) ∈ GH and (11.31), (11.32), and the above PCV CR results
hold. Hence, use of a preliminary estimator in the GMM criterion function does not
cause size distortion for the subsample, FCV, or PCV CRs (provided Jh is properly
defined and takes into account the estimation of τ0 when computing cFix(1 − α) or
cPlug(eh2,2,n, 1− α)).

We now discuss CRs based on a minimum distance test statistic, as in Rosen (2005).
(Rosen (2005) does not consider subsample critical values, but we do here.) The test
statistic is

Tn(θ) = inf
t=(t�1,0s)�:t1∈Rp+

n(mn(θ)− t)� eV −1n (mn(θ)− t), (11.37)

where mn(θ) = (mn,1(θ), ...,mn,p+s(θ))
� and eVn is a consistent estimator of V =

limn→∞ V arF (n1/2mn(θ)) when θ is the true parameter. For this test statistic, γ1 and
γ3 are the same as above and γ2 = (θ

�, vech∗(V )�)�. In this case, under {γn,h : n ≥ 1},
we have

Tn(θn,h)→d L(h) ∼ Jh, where

L(h) = inf
t=(t�1,0s)�:t1∈Rp+

�
Z∗h2,2 −

�
t1 − h1
0s

���
V −1

�
Z∗h2,2 −

�
t1 − h1
0s

��
and

Z∗h2,2 ∼ N(0, V ). (11.38)
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If 0 ≤ g1 ≤ h1, then algebra and Rp+ − g1 ⊂ R
p
+ − h1 give

L(h) = inf
t=(t∗�1 ,0s)�:t

∗
1∈Rp+−h1

�
Z∗h2,2 −

�
t∗1
0s

���
V −1

�
Z∗h2,2 −

�
t∗1
0s

��
≤ inf

t=(t∗�1 ,0s)�:t
∗
1∈Rp+−g1

�
Z∗h2,2 −

�
t∗1
0s

���
V −1

�
Z∗h2,2 −

�
t∗1
0s

��
a.s.(11.39)

Also, for (g, h) ∈ GH, we have 0 ≤ g1 ≤ h1 and g2,2 = h2,2. These results imply
that Jg ≥ST Jh for (g, h) ∈ GH and (11.31) holds. Hence, discontinuity of the limit
distribution also does not cause size distortion for the CR based on the subsample
minimum distance statistic. Analogous results to those above for the FCV and PCV
CRs also hold.

All of the discussion above takes the parameter space for γ1 to be Γ1 = R
p
+. This

is appropriate when any given moment inequality can hold as an equality regardless of
whether other moment inequalities hold as equalitites or not. On the other hand, in
some examples if one moment inequality holds as an equality, then some other moment
inequality cannot hold as an equality. For example, consider a location model with
interval outcomes. For simplicity, suppose the interval endpoints are integer values.
The model is y∗i = θ0 + ui and yi = [y∗i ] for i = 1, ..., n, where [y

∗
i ] denotes the integer

part of y∗i , y
∗
i is not observed, and yi is observed. The interval outcome [yi, yi + 1)

necessarily includes unobserved outcome variable y∗i . Two moment inequalities that
place bounds on θ0 are (i) −Eθ0yi + θ0 ≥ 0 and (ii) Eθ0yi + 1 − θ0 ≥ 0. If the first
inequality holds as an equality, then the second cannot.

Analysis of the interval outcome model can be done using the general results of this
paper as follows. We have (−Eθ0yi+ θ0) ∈ [0, 1].We treat the two cases (a) (−Eθ0yi+
θ0) ∈ [0, 1/2] and (b) (−Eθ0yi + θ0) ∈ (1/2, 1] separately because the asymptotic
distribution of Tn(θn,h) is discontinuous both at −Eθ0yi+ θ0 = 0 and at −Eθ0yi+ θ0 =
1. For case (a), we define γ1 via (−Eθ0yi + θ0) + γ1 = 0 for γ1 ∈ [0, 1/2] and, in
consequence, (Eθ0yi + 1 − θ0) − (1 − γ1) = 0. Using these equalities in place of the
equalities in (11.26), we can analyze this model in the same way as above with p = 2
and s = 0. We obtain the same result as above that the limit of finite sample size
is the nominal level for subsample CRs when (−Eθ0yi + θ0) ∈ [0, 1/2]. For case (b),
we define γ1 via (Eθ0yi + 1 − θ0) − γ1 = 0 for γ1 ∈ [0, 1/2] and, in consequence,
(−Eθ0yi+θ0)+(1−γ1) = 0. Analogously, using these equalities in place of the equalities
in (11.26), we can analyze this model in the same way as above. We obtain the same
result as above that the limit of finite sample size is the nominal level for subsample
CRs when (−Eθ0yi+ θ0) ∈ (1/2, 1]. Combining the results from cases (a) and (b) gives
the same result for the model in which (−Eθ0yi + θ0) ∈ [0, 1].

11.5 Examples under Preparation

EXAMPLES THATWE HAVEN’T FINSHED YET (OR IN SOME CASES HAVE
NOT EVEN STARTED):
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(1) CI FOR A UNIT ROOT AS IN Ch. 12 OF PRW. (ALTERNATIVE METHODS
TO SUBSAMPLING ARE ANDREWS/STOCK TYPE CI METHODS. MIKUSHE-
VA’s RESULTS ARE RELEVANT HERE.) HAVE RESULTS, INCLUDING SIMU-
LATION RESULTS, BUT NOT WRITTEN UP.

(2) POOR IVS/WEAK EXOGENEITY: TESTS CONCERNING RHS PARAME-
TER ON ENDOGENOUS VARIABLEWHEN CORRELATION BETWEEN IV AND
STRUCTURAL ERROR IS γ. SUPPOSE γ = L/n1/2. CLOSELY RELATED TO
MEHMET CANER’s PAPER ON SUBSAMPLING IN THIS CONTEXT. HAVE RE-
SULTS, BUT NOT FINISHED WRITE UP.

(3) WEAK IVs: RELATED TO GUGGENBERGER AND WOLF’s PAPER ON
SUBSAMPLINGWITHWEAK IVs. HAVE SOME RESULTS, BUT NOT FINISHED
WRITE UP. SUBSAMPLING, AFTER SIZE-CORRECTION, MAY BE GOOD FOR
SUBSET INFERENCE ON ENDOGENOUS VARIABLES AND INFERENCE ON
EXOGENOUS VARIABLES. NOT BEST FOR INFERENCE ON WHOLE VECTOR
OF ENDOGENOUS VARIABLES–CONDITIONAL TESTS A LAMOREIRA (2003)
ARE BETTER.

(4) TEST STATISTICS BASEDON POST-MODEL SELECTION ESTIMATORS.
(5) INFERENCE IN REGRESSIONS WITH NEARLY INTEGRATED REGRES-

SORS. PRW MENTION THIS AS A POTENTIAL APPLICATION OF SUBSAM-
PLING, p. 288. A BETTER METHOD THAN SUBSAMPLING MAY BE JANSSON
AND MOREIRA’S METHOD.
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12 Appendix of Proofs

The following Lemmas are used in the proofs of Theorems 1 and 2. (The expressions
κn → [κ1,∞,κ2,∞] and G(x−) used below are defined in Section 3.2.)

Lemma 6 Suppose (i) for some df’s Ln(·) and GL(·) on R, Ln(x) →p GL(x) for all
x ∈ C(GL), (ii) Tn →d GT , where Tn is a scalar random variable and GT is some
distribution on R, and (iii) for all ε > 0, GL(c∞− ε) < 1−α and GL(c∞+ ε) > 1−α,
where c∞ is the 1− α quantile of GL for some α ∈ (0, 1). Then for cn := inf{x ∈ R :
Ln(x) ≥ 1− α}, (a) cn →p c∞ and (b) P (Tn ≤ cn)→ [GT (c∞−),GT (c∞)].

Comments. 1. Condition (iii) holds if GL(x) is strictly increasing at x = c∞ or if
GL(x) has a jump at x = c∞ with GL(c∞) > 1− α and GL(c∞−) < 1− α.

2. If GT (x) is continuous at c∞, then the result of part (b) is P (Tn ≤ cn) →
GT (c∞).

Lemma 7 Let α ∈ (0, 1) be given. Suppose Assumptions A2, B2, C-E, F2, and G2
hold. Let {wn : n ≥ 1} be any subsequence of {n}. Let {γwn = (γwn,1, γwn,2, γwn,3) :
n ≥ 1} be a sequence of points in Γ that satisfies (i) wrnγwn,1 → h1 for some h1 ∈ Rp∞,
(ii) brwnγwn,1 → g1 for some g1 ∈ Rp∞, and (iii) γwn,2 → h2 for some h2 ∈ Rq∞. Let
h = (h1, h2), g = (g1, g2), and g2 = h2. Then, we have

(a) (g, h) ∈ GH,
(b) Eθ0,γwn

Uwn,bwn (x)→ Jg(x) for all x ∈ C(Jg),
(c) Uwn,bwn (x)→p Jg(x) for all x ∈ C(Jg) under {γwn : n ≥ 1},
(d) Lwn,bwn (x)→p Jg(x) for all x ∈ C(Jg) under {γwn : n ≥ 1},
(e) cwn,bwn (1− α)→p cg(1− α) under {γwn : n ≥ 1},
(f) Pθ0,γwn (Twn(θ0) ≤ cwn,bwn (1− α))→ [Jh(cg(1− α)−), Jh(cg(1− α))], and
(g) if |h1,j | < ∞ for all j = 1, ..., p and wn = n for all n ≥ 1, then parts (b)-(f)

hold with Assumptions A2, B2, F2, and G2 replaced by Assumptions A1, B1, F1, and
G1 and (g, h) in parts (b)-(f) equal (h0, h) of Assumption B1.

Comment. If Jh is continuous at cg(1 − α), Pθ0,γwn (Twn(θ0) ≤ cwn,bwn (1 − α)) →
Jh(cg(1− α)).

Lemma 8 Let α ∈ (0, 1) be given. Suppose Assumptions A2, B2, C-E, F2, and G2
hold. Let (g, h) ∈ GH be given. Then, there is a sequence {γn = (γn,1, γn,2, γn,3) : n ≥
1} of points in Γ that satisfy conditions (i)-(iii) of Lemma 7 and for this sequence parts
(b)-(f) of Lemma 7 hold with ωn replaced by n.

Proof of Lemma 6. For ε > 0 such that c∞ ± ε ∈ C(GL) ∩ C(GT ), we have

Ln(c∞ − ε)→p GL(c∞ − ε) < 1− α and

Ln(c∞ + ε)→p GL(c∞ + ε) > 1− α (12.1)
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by assumptions (i) and (iii). This and the definition of cn yield

P (An(ε))→ 1, where An(ε) = {c∞ − ε ≤ cn ≤ c∞ + ε}. (12.2)

There exists a sequence {εk ∈ C(GL) ∩ C(GT ) : k ≥ 1} such that εk → 0 as k → ∞.
Hence, part (a) holds.

Let P (A,B) denote P (A ∩B). For part (b), using the definition of An(ε), we have

P (Tn ≤ c∞ − ε, An(ε)) ≤ P (Tn ≤ cn, An(ε)) ≤ P (Tn ≤ c∞ + ε). (12.3)

Hence,

lim sup
n→∞

P (Tn ≤ cn) = lim sup
n→∞

P (Tn ≤ cn, An(ε))

≤ lim sup
n→∞

P (Tn ≤ c∞ + ε) = GT (c∞ + ε), and

lim inf
n→∞ P (Tn ≤ cn) = lim inf

n→∞ P (Tn ≤ cn, An(ε))

≥ lim inf
n→∞ P (Tn ≤ c∞ − ε, An(ε)) = GT (c∞ − ε) (12.4)

using assumption (ii), c∞ ± ε ∈ C(GT ), and (12.2). Given a sequence {εk : k ≥ 1} as
above, (12.4) establishes part (b).

Proof of Lemma 7. First, we prove part (a). We need to show that g ∈ H, h ∈ H,
g2 = h2, and conditions (i)-(iii) in the definition of GH hold. For j = 1, ..., p, if
aj = 0, then g1,j , h1,j ∈ R+,∞ by conditions (i) and (ii) of the Lemma. Likewise, if
bj = 0, then g1,j , h1,j ∈ R−,∞. Otherwise, g1,j , h1,j ∈ R∞. Hence, by the definition
of H1, g1, h1 ∈ H1. By condition (iii) of the Lemma, h2 ∈cl(Γ2) = H2. Combining
these results gives g, h ∈ H. By assumption of the Lemma, g2 = h2. By conditions (i)
and (ii) of the Lemma and Assumption C(ii), conditions (i)-(iii) of GH hold. Hence,
(g, h) ∈ GH.

Next, we prove part (b). For notational simplicity, we drop the subscript θ0 from
Pθ0,γ and Eθ0,γ . We have

Eγwn
Uwn,bwn (x) = q

−1
wn

qwn[
i=1

Pγwn (Twn,bwn ,i(θ0) ≤ x)

= Pγwn (Twn,bwn ,1(θ0) ≤ x) = Pγwn (Tbwn (θ0) ≤ x), (12.5)

where the first equality holds by definition of Uwn,bwn (x), the second equality holds by
Assumption D(i), and the last equality holds by Assumption D(ii).

We now show that Pγwn (Tbwn (θ0) ≤ x) → Jg(x) for all x ∈ C(Jg) by showing
that any subsequence {tn} of {wn} has a sub-subsequence {sn} for which Pγsn (Tbsn (θ0)
≤ x)→ Jg(x).

Given any subsequence {tn}, select a sub-subsequence {sn} such that {bsn} is
strictly increasing. This can be done because bwn →∞ by Assumption C(i). Because
{bsn} is strictly increasing, it is a subsequence of {n}.
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Below we show that Assumption B2 implies that for any subsequence {un} of {n}
and any sequence {γ∗un = (γ∗un,1, γ∗un,2, γ∗un,3) ∈ Γ : n ≥ 1}, that satisfies (i�) urnγ∗un,1 →
g1 and (ii�) γ∗un,2 → g2 ∈ Rq, we have

Pγ∗un (Tun(θ0) ≤ y)→ Jg(y), (12.6)

for all y ∈ C(Jg). We apply this result with un = bsn , γ∗un = γsn , and y = x to obtain
the desired result Pγsn (Tbsn (θ0) ≤ x)→ Jg(x), where (i�) and (ii�) hold by assumptions
(ii) and (iii) on {γwn : n ≥ 1}.

For the proof of part (b), it remains to show (12.6). Define a new sequence {γ∗∗k =
(γ∗∗k,1, γ

∗∗
k,2, γ

∗∗
k,3) ∈ Γ : k ≥ 1} as follows. If k = un set γ∗∗k equal to γ∗un . If k 9= un, define

the jth component of γ∗∗k,1 to be

γ∗∗k,1,j = 0 if g1,j = 0
γ∗∗k,1,j = max{k−rg1,j , aj/2} if −∞ < g1,j < 0 & aj < 0
γ∗∗k,1,j = min{k−rg1,j , bj/2} if 0 < g1,j <∞ & bj > 0
γ∗∗k,1,j = aj/2 if g1,j = −∞
γ∗∗k,1,j = bj/2 if g1,j = +∞

(12.7)

for j = 1, ..., p, define γ∗∗k,2 = γ∗unk ,2 (∈ Γ2), where nk = max{c ∈ N : u� ≤ k}, and
define γ∗∗k,3 to be any element of Γ3(γ

∗∗
k,1, γ

∗∗
k,2). Note that the parameters {γ∗∗k : k ≥ 1}

are in Γ for all k ≥ 1 and krγ∗∗k,1 → g1 and γ∗∗k,2 → g2 as k →∞. Hence, {γ∗∗k : k ≥ 1} is
of the form {γn,g : n ≥ 1} and Assumption B2 implies that Pγ∗∗k (Tk(θ0) ≤ y)→ Jg(y)
for all y ∈ C(Jg). Because {un} is a subsequence of {k} and γ∗∗k = γ∗un when k = un,
the latter implies that Pγ∗un (Tun(θ0) ≤ y)→ Jg(y), as desired.

Part (c) holds by part (b) and Assumption E.
To prove part (d), we show that Assumptions A2 and G2 imply that

Lwn,bwn (x)− Uwn,bwn (x)→p 0 under {γwn : n ≥ 1} for all x ∈ C(Jg). (12.8)

This and part (c) of the Lemma establish part (d). To show (12.8), define a new
sequence {γ∗k = (γ∗k,1, γ∗k,2, γ∗k,3) ∈ Γ : k ≥ 1} as follows. If k = wn, set γ∗k equal to γwn .
If k 9= wn, define

γ∗k,1,j = max{k−rh1,j , aj/2} if g1,j = 0 & −∞ < h1,j < 0

γ∗k,1,j = min{k−rh1,j , bj/2} if g1,j = 0 & 0 ≤ h1,j <∞
γ∗k,1,j = sgn(h1,j)(bkk)

−r/2 if g1,j = 0 & h1,j = ±∞
γ∗k,1,j = max{b

−r
k g1,j , aj/2} if −∞ < g1,j < 0 & h1,j = −∞

γ∗k,1,j = min{b
−r
k g1,j , bj/2} if 0 < g1,j <∞ & h1,j =∞

γ∗k,1,j = aj/2 if g1,j = h1,j = −∞
γ∗k,1,j = bj/2 if g1,j = h1,j =∞,

(12.9)

where γ∗k,1 = (γ
∗
k,1,1, ..., γ

∗
k,1,p)

�, define γ∗k,2 = γwnk ,2
, where nk = max{c ∈ N : w� ≤ k},

and define γ∗k,3 to be any element of Γ3(γ
∗
k,1, γ

∗
k,2). As defined, γ

∗
k ∈ Γ for all k ≥ 1
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and straightforward calculations show that {γ∗k : k ≥ 1} satisfies (i)-(iii) of Lemma
7 with {wn} replaced by {k}. Hence, by Lemma 7(b) with {wn} replaced by {k},
Uk,bk(x) →p Jg(x) as k → ∞ under {γ∗k : k ≥ 1} for all x ∈ C(Jg). In consequence,
because {γ∗k : k ≥ 1} is of the form {γn,h : n ≥ 1}, Assumption G2 implies that
Lk,bk(x) − Uk,bk(x) →p 0 as k → ∞ under {γ∗k : k ≥ 1} for all x ∈ C(Jg). Since
γ∗k = γwn for k = wn, this implies that (12.8) holds.

Parts (e) and (f) are established by applying Lemma 6 with Ln(x) = Lwn,bwn (x)
and Tn = Twn(θ0) and verifying the conditions of Lemma 6 using (I) part (d), (II)
Twn(θ0) →d Jh under {γwn : n ≥ 1} (which is verified below), and (III) Assumption
F2. The result of (II) holds because {γ∗k : k ≥ 1} in the proof of part (d) is of the form
{γn,h : n ≥ 1} for h as defined in the statement of Lemma 7; this and Assumption B2
imply that Tk(θ0) →d Jh as k → ∞ under {γ∗k : k ≥ 1}; and the latter and γ∗k = γwn
for k = wn imply the result of (II).

Part (g) holds because (I) the proof of part (b) goes through with Assumptions A2
and B2 replaced by Assumptions A1 and B1 given that |h1,j | < ∞ for all j = 1, ..., p,
(II) the proof of part (c) holds without change, (III) part (d) holds immediately by part
(c) and Assumption G1 (in place of Assumption G2) because wn = n for all n ≥ 1, and
(IV) the proof of parts (e) and (f) holds with Assumptions A2, B2, and F2 replaced by
Assumptions A1, B1(i), and F1 given that |h1,j | <∞ for all j = 1, ..., p (which implies
that g1,j = 0 for j = 1, ..., p using conditions (i) and (ii) of the Lemma and Assumption
C(ii)) and wn = n.

Proof of Lemma 8. Define γn,1,j as in (12.9) with n in place of k for j = 1, ..., p and
let γn,1 = (γn,1,1, ..., γn,1,p)

�. Define {γn,2 : n ≥ 1} to be any sequence of points in Γ2
such that γn,2 → h2 as n → ∞. Let γn,3 be any element of Γ3(γn,1, γn,2) for n ≥ 1.
Then, γn = (γn,1, γn,2, γn,3) is in Γ for all n ≥ 1 using Assumption A2. Also, using
Assumption C, straightforward calculations show that {γn : n ≥ 1} satisfies conditions
(i)-(iii) of Lemma 7 with wn = n. Hence, parts (b)-(f) of Lemma 7 hold with wn = n
for {γn : n ≥ 1} as defined above.

Proof of Theorem 1. Part (a) holds by Assumption B1(i) and the definition of
convergence in distribution by considering points of continuity of Jh(·) that are greater
than cFix(1− α) and arbitrarily close to cFix(1− α) as well as continuity points that
are less than cFix(1 − α) and arbitrarily close to it. Part (b) follows from Lemma
7(g) because |h1,j | < ∞ for j = 1, ..., p, wn = n for all n ≥ 1, g in Lemma 7(g)
equals h0 = (0, h2), conditions (i) and (iii) of Lemma 7 hold by the definition of the
sequence {γn,h : n ≥ 1}, and condition (ii) of Lemma 7 holds because nrγn,h,1 → h1
with ||h1|| <∞ implies that brnγn,h,1 → 0 using Assumption C(ii).

Proof of Theorem 2. The proof of part (a) is similar to that of part (b), but
noticeably simpler because cFix(1 − α) is a constant. Furthermore, the proof of the
second result of part (b) is quite similar to that of the first result. Hence, for brevity,
we only prove the first result of part (b).
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We first show that AsySz(θ0) ≥MaxSub(α). Equations (2.8) and (2.9) imply that
for any sequence {γn ∈ Γ : n ≥ 1},

AsySz(θ0) ≥ lim sup
n→∞

[1− Pθ0,γn(Tn(θ0) ≤ cn,b(1− α))]. (12.10)

In consequence, to show AsySz(θ0) ≥ MaxSub(α), it suffices to show that given any
(g, h) ∈ GH there exists a sequence {γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1} such that

lim sup[1−
n→∞

Pθ0,γn(Tn(θ0) ≤ cn,b(1− α))] ≥ 1− Jh(cg(1− α)). (12.11)

The latter inequality holds (as an equality) by Lemma 8.
It remains to show AsySz(θ0) ≤Max−Sub(α). Let {γ∗n = (γ∗n,1, γ∗n,2, γ∗n,3) ∈ Γ : n ≥

1} be a sequence such that lim supn→∞RPn(θ0, γ∗n) = lim supn→∞ supγ∈ΓRPn(θ0, γ)
(= AsySz(θ0)). Such a sequence always exists. Let {vn : n ≥ 1} be a subsequence
of {n} such that limn→∞RPvn(θ0, γ∗vn) exists and equals lim supn→∞RPn(θ0, γ∗n) =
AsySz(θ0). Such a subsequence always exists.

Let γ∗n,1,j denote the jth component of γ
∗
n,1. Either (1) lim supn→∞ |vrnγ∗vn,1,j | <∞

or (2) lim supn→∞ |vrnγ∗vn,1,j | =∞. If (1) holds, then for some subsequence {wn} of {vn}

brwnγ
∗
wn,1,j → 0 and

wrnγ
∗
wn,1,j → h1,j for some h1,j ∈ R. (12.12)

If (2) holds, then either (2a) lim supn→∞ |brvnγ∗vn,1,j | <∞ or (2b) lim supn→∞ |brvnγ∗vn,1,j |
=∞. If (2a) holds, then for some subsequence {wn} of {vn},

brwnγ
∗
wn,1,j → g1,j for some g1,j ∈ R and

wrnγ
∗
wn,1,j → h1,j , where h1,j =∞ or −∞ with sgn(h1,j) = sgn(g1,j). (12.13)

If (2b) holds, then for some subsequence {wn} of {vn},

brwnγ
∗
wn,1,j → g1,j , where g1,j =∞ or −∞, and

wrnγ
∗
wn,1,j → h1,j , where h1,j =∞ or −∞ with sgn(h1,j) = sgn(g1,j). (12.14)

In addition, for some subsequence {wn} of {vn},

γ∗wn,2 → h2 for some h2 ∈ cl(Γ2). (12.15)

By taking successive subsequences over the p components of γ∗vn,1 and γ∗vn,2, we find
that there exists a subsequence {wn} of {vn} such that for each j = 1, ..., p exactly
one of the cases (12.12)-(12.14) applies and (12.15) holds. In consequence, conditions
(i)-(iii) of Lemma 7 hold. In addition, γ∗wn,3 ∈ Γ3(γ∗wn,1, γ∗wn,2) for all n ≥ 1 because
γ∗wn ∈ Γ. Hence,

RPwn(θ0, γ
∗
wn)→ [1− Jh(cg(1− α)), 1− Jh(cg(1− α)−)] (12.16)
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by Lemma 7(f). Also, (g, h) ∈ GH by Lemma 7(a). Since limn→∞RPvn(θ0, γ∗vn) =
AsySz(θ0) and {wn} is a subsequence of {vn}, we have limn→∞RPwn(θ0, γ∗wn) =
AsySz(θ0). This, (12.16) and (g, h) ∈ GH imply that AsySz(θ0) ≤Max−Sub(α), which
completes the proof of the first result of part (b).

Proof of Lemma 2. If ch(1 − α) ≥ c∞(1 − α) for all h ∈ H, then Max−Hyb(α) =
Max−Sub(α) and MaxHyb(α) = MaxSub(α) follows immediately. On the other hand,
suppose “ch(1− α) ≥ c∞(1− α) for all h ∈ H” does not hold. Then, for some g ∈ H,
cg(1 − α) < c∞(1 − α). Given g, define h1 = (h1,1, ..., h1,p)

� ∈ H1 by h1,j = +∞ if
g1,j > 0, h1,j = −∞ if g1,j < 0, h1,j = +∞ or −∞ (chosen so that (g, h) ∈ GH)
if g1,j = 0, and define h2 = g2. Let h = (h1, h2). By construction, (g, h) ∈ GH. By
Assumption J, ch(1− α) = c∞(1− α). Hence, we have

MaxSub(α) ≥ 1− Jh(cg(1− α)) > α, (12.17)

where the second inequality holds because cg(1−α) < c∞(1−α) = ch(1−α) and ch(1−
α) is the infimum of values x such that Jh(x) ≥ 1− α or, equivalently, 1− Jh(x) ≤ α.
Equation (12.17) and Theorem 2(b) imply that AsySz(θ0) > α for the subsample test.
The hybrid test reduces the over-rejection of the subsample test at (g, h) from being at
least 1−Jh(cg(1−α)) > α to being at most 1−Jh(c∞(1−α)) = 1−Jh(ch(1−α)) ≤ α
(with equality if Jh(·) is continuous at ch(1− α)).

Proof of Lemma 3. Suppose Assumption Quant0(i) holds. Then, we have

Max−Hyb(α) = sup
(g,h)∈GH

[1− Jh(max{cg(1− α), c∞(1− α)}−)]

= sup
h∈H

[1− Jh(c∞(1− α)−)] = sup
h∈H

[1− Jh(c∞(1− α))]

≤ sup
h∈H

[1− Jh(ch(1− α))] ≤ α, (12.18)

where the second equality and first inequality hold by Assumption Quant0(i)(a), the
third equality holds by Assumption Quant0(i)(b), and the last inequality holds by the
definition of ch(1− α).

Next, suppose Assumption Quant0(ii) holds. By Assumption Quant0(ii)(a), p = 1.
Hence, given (g, h) ∈ GH either (I) |h1,1| = ∞ or (II) |h1,1| < ∞. When (I) holds,
Jh = J∞ by Assumption J and

1− Jh(max{cg(1− α), c∞(1− α)}−)
≤ 1− J∞(c∞(1− α)−) = 1− J∞(c∞(1− α)) ≤ α, (12.19)

where the equality holds by Assumption Quant0(ii)(c). When (II) holds, g must equal
h0 by the definition of GH. Hence,

1− Jh(max{cg(1− α), c∞(1− α)}−) ≤ 1− Jh(ch0(1− α)−)
≤ sup

h∈H
[1− Jh(ch(1− α)−)] = sup

h∈H
[1− Jh(ch(1− α))] ≤ α, (12.20)
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where the second inequality holds because ch0(1 − α) ≥ ch(1 − α) by Assumption
Quant0(ii)(b) and the equality holds by Assumption Quant0(ii)(d).

Proof of Lemma 4. By Assumption KK(i), cv(1− α) <∞. Now, suppose h ∈ H is
such that ch(1− α) < cv(1− α). Then,

Jh(cv(1− α)−) ≥ Jh(ch(1− α)) ≥ 1− α, (12.21)

where the first inequality holds because Jh(x) is nondecreasing and cv(1 − α) − ε >
ch(1− α) for ε > 0 sufficiently small and the second inequality holds by the definition
of the quantile ch(1− α).

Next, suppose h ∈ H is such that ch(1− α) = cv(1− α). Then,

Jh(cv(1− α)−) = Jh(cv(1− α)) = Jh(ch(1− α)) = 1− α, (12.22)

where the first equality holds by Assumption KK(ii), the second equality holds by the
definition of h, and the third equality holds by the definition of the quantile ch(1− α)
and Assumption KK(ii). The case h ∈ H and ch(1 − α) > cv(1 − α) is not possible
because cv(1−α) = supg∈H cg(1−α). Hence, (12.21) and (12.22) combine to show that
for all h ∈ H, 1− Jh(cv(1− α)−) ≤ α, as desired.

Proof of Theorem 3. The result of part (a)(i) follows from Assumption Quant1(i)
with g = h0 because h ∈ H implies that (h0, h) ∈ GH and cv(1−α) = suph∈H ch(1−α)
by Assumption KK(i). Assumption Quant1(i) also implies that

1− Jh(cg(1− α)) ≤ 1− Jh(ch(1− α)) ≤ α (12.23)

for all (g, h) ∈ GH. Hence, using Assumption Quant1(ii), Max−Sub(α) =MaxSub(α) ≤
α, ξ(α) = α, and part (a)(ii) holds.

The result of part (a)(iii) (i.e., ξ∗(α) = α) follows from

Max−Hyb(α) ≤Max
−
Sub(α) ≤ α, (12.24)

where the second inequality holds by part (a)(ii).
Next, part (a)(iv) holds because

c∗g,∞(1− ξ∗(α)) = c∗g,∞(1− α) = max{cg(1− α), c∞(1− α)}
= cg(1− α) = cg(1− ξ(α)) (12.25)

for all g ∈ H, where the first through fourth equalities hold, respectively, by part
(a)(iii), the definition of c∗g,∞(1− α), Assumption Quant1(i), and part (a)(ii).

Part (a)(v) of the Theorem holds because cg(1− ξ(α)) = cg(1− α) ≤ cg0(1− α) ≤
cv(1−α) for all g ∈ H, where g = (g1, g2) and g0 = (0, g2), by part (a)(ii), Assumption
Quant1(i), and part (a)(i), respectively.

Next, we prove part (b)(i). Given any g = (g1, g2) = (g1,1, ..., g1,p, g2) ∈ H, let
g∞ = (g∞1 , g2) = (g∞1,1, ..., g∞1,p, g2) ∈ H be such that g∞1,j = +∞ if g1,j > 0, g∞1,j = −∞
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if g1,j < 0, g∞1,j = +∞ or −∞ (chosen so that g∞ ∈ H) if g1,j = 0 for j = 1, ..., p. By
Assumption Quant2(i), cg(1−α) ≤ cg∞(1−α) because (g, g∞) ∈ GH. By Assumption J,
cg∞(1−α) = c∞(1−α) for all g ∈ H. Hence, cv(1−α) = suph∈H ch(1−α) = c∞(1−α),
which proves part (b)(i).

We now prove part (b)(ii). Part (b)(i) and c∞(1−α) ≤ c∗g,∞(1−α) (by the definition
of c∗g,∞(1−α)), yields cv(1−α) ≤ c∗g,∞(1−α). The latter implies that ξ∗(α) = α, using
the definition of ξ∗(α), which is the result of part (b)(ii). In turn, ξ∗(α) = α gives

c∗g,∞(1− ξ∗(α)) = c∗g,∞(1− α) = max{cg(1− α), c∞(1− α)} ≤ cv(1− α), (12.26)

where the inequality holds by definition of cv(1− α). Combining this with the reverse
inequality that is given prior to the displayed equation yields c∗g,∞(1−ξ∗(α)) = cv(1−α),
which is the result of part (b)(iii).

We now prove part (b)(iv). By Assumption L, Max−Sub(ξ(α)) = sup(g,h)∈GH [1 −
Jh(cg(1− ξ(α))−)] ≤ α. This implies that

cg(1− ξ(α)) ≥ ch(1− α) (12.27)

for all (g, h) ∈ GH. Given any g ∈ H, define g0 and g∞ as in the previous three
paragraphs. Equation (12.27) with (g, h) = (g0, g∞), Assumption J (which implies
that ch(1−α) = c∞(1−α) for all h = (h1, h2) = (h1,1, ..., h1,p, h2) ∈ H with h1,j = ±∞
for all j = 1, ..., p), and part (b)(i) give

cg0(1− ξ(α)) ≥ cg∞(1− α) = c∞(1− α) = cv(1− α). (12.28)

By Assumption Quant2(ii), cg0(1− ξ(α)) ≤ cg(1− ξ(α)) for all g ∈ H. This and (12.28)
establish part (b)(iv).

Part (c)(i) and (c)(iii) follow immediately from Assumptions Quant3(i) and
Quant3(iv), respectively. Part (c)(ii) is proved as follows. By (12.27) with (g, h) =
(h∗0, h∗), and Assumption Quant3(ii), ch∗0(1 − ξ(α)) ≥ ch∗(1 − α) > ch∗0(1 − α).
Hence, ξ(α) < α. This, Assumption Quant3(iii), and the result of part (c)(i) gives
ch∗(1− ξ(α)) > ch∗(1− α) = cv(1− α).

Proof of Lemma 5. Assume Un,b(x)→p Jg(x) for all x ∈ C(Jg) under {γn,h : n ≥ 1}
for some g ∈ H and h ∈ H. To show Ln,b(x) − Un,b(x) →p 0 for all x ∈ C(Jg) under
{γn,h}, we use the argument in the proofs of Theorems 11.3.1(i) and 12.2.2(i) in PRW.

Define Rn(t) := q−1n
Sqn
i=1 1(|τ bn(eθn − θ0)/eσn,bn,i| ≥ t). Using

Un,b(x− t)−Rn(t) ≤ Ln,b(x) ≤ Un,b(x+ t) +Rn(t) (12.29)

for any t > 0 (which holds for all versions (i)—(iii) of Tn(θ0) in Assumption t1), the
desired result follows once we establish that Rn(t) →p 0 under {γn,h} for any fixed
t > 0. By τn = an/dn, we have

|τ bn(eθn − θ0)/eσn,bn,i| ≥ t iff (abn/an)an|eθn − θ0| ≥ dbneσn,bn,it (12.30)

54



provided eσn,bn,i > 0, which by Assumption BB2(ii) holds uniformly in i = 1, ..., n

wp→1. By Assumption BB2(i) and HH, (abn/an)an|eθn − θ0| = op(1) under {γn,h}.
Therefore, for any δ > 0, Rn(t) ≤ q−1n

Sqn
i=1 1(δ ≥ dbneσn,bn,it) = Uσ

n,bn
(δ/t) wp→1.

Now, by an argument as in the proof of Lemma 7(a) and (b) (which uses Assumption
EE, but does not use Assumption G2) applied to the statistic dneσn rather than Twn(θ0),
we have Uσ

n,bn
(x)→p Wg(x) for all x ∈ C(Wg) under {γn,h}, where g ∈ H is defined as

in Lemma 7 with {γwn} being equal to {γn,h}. Therefore, Uσ
n,bn

(δ/t) →p Wg(δ/t) for
δ/t ∈ C(Wg) under {γn,h}. By Assumption BB2(iii), Wg does not have positive mass
at zero and, hence, Wg(δ/t)→ 0 as δ → 0. We can therefore establish that Rn(t)→p 0
for any t > 0 by letting δ go to zero such that δ/t ∈ C(Wg).
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Table I. Testing with a Nuisance Parameter on the Boundary: Maximum Asymp-
totic Null Rejection Probabilities (×100) as a Function of the True Correlation ρ for
Tests with Nominal Size .05

Upper 1-sided Symmetric 2-sided Equal-tailed 2-sided
ρ Sub FCV Hyb Sub FCV Hyb Sub FCV Hyb

-1.00 50.2 5.0 5.0 9.9 10.1 9.9 52.7 10.1 5.0
-.99 42.8 5.0 5.0 9.9 10.1 9.9 43.2 10.1 5.0
-.95 33.8 5.0 5.0 9.9 10.1 9.9 32.4 10.1 5.0
-.90 27.6 5.0 5.0 9.9 10.1 9.9 25.4 10.1 5.0
-.80 20.2 5.0 5.0 9.3 10.1 9.3 17.4 10.1 5.0
-.60 12.3 5.0 5.0 7.4 10.1 7.4 10.0 10.1 5.0
-.40 8.3 5.0 5.0 6.0 10.1 6.0 6.8 10.1 5.0
-.20 6.2 5.0 5.0 5.2 10.1 5.2 5.3 10.1 5.0
.00 5.0 5.0 5.0 5.0 10.1 5.0 5.0 10.1 5.0
.20 5.0 5.6 5.0 5.2 10.1 5.2 5.4 10.1 5.0
.40 5.0 5.8 5.0 5.9 10.1 5.9 6.7 10.1 5.0
.60 5.0 5.6 5.0 7.5 10.1 7.5 9.9 10.1 5.0
.80 5.0 5.1 5.0 9.6 10.1 9.6 17.3 10.1 5.0
.90 5.0 5.0 5.0 10.1 10.1 10.1 25.2 10.1 5.0
.95 5.0 5.0 5.0 10.1 10.1 10.1 32.4 10.1 5.0
.99 5.0 5.0 5.0 10.1 10.1 10.1 43.0 10.1 5.0
1.00 5.0 5.0 5.0 10.1 10.1 10.1 52.3 10.1 5.0
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