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Abstract

Here, we study games of incomplete information, and argue that it is important to correctly

specify the “context” within which hierarchies of beliefs lie. We consider a situation where

the players understand more than the analyst, in the following sense: It is transparent to the

players–but not to the analyst–that certain hierarchies of beliefs are precluded. In particular,

the players’ type structure can be viewed as a strict subset of the analyst’s type structure. How

does this affect a Bayesian equilibrium analysis? One natural conjecture is that this doesn’t

change the analysis–i.e., every equilibrium of the players’ type structure can be associated with

an equilibrium of the analyst’s type structure. We show two reasons why this conjecture is

wrong. So, Bayesian Equilibrium fails, what we call, the Extension Property. We go on to

discuss specific situations in which the Extension Property is satisfied. This involves restrictions

on the game and the type structures.
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For me context is the key—from that comes the understanding of everything.

– Kenneth Noland [31]

1 Introduction

This paper is concerned with the analysis of incomplete information games. For these games, the

analyst must specify the players’ choices, payoff functions, and hierarchies of beliefs (about the

payoffs of the game). The importance of correctly specifying players’ actual payoff functions and/or

hierarchies of beliefs is well understood. (See, for instance, Kreps-Wilson [25, 1982], Milgrom-

Roberts [29, 1982], Geanakoplos-Polemarchakis [18, 1982], Monderer-Samet [30, 1989], Rubinstein

[35, 1989], Fudenberg-Tirole [17, 1991], Carlsson-van Damme [10, 1993], Aumann-Brandenburger [3,

1995], Kajii-Morris [22, 1997], Oyama-Tercieux [32, 2005], and Weinstein-Yildiz [39, 2007], among

many others.) Here, we argue that it is also important to correctly specify the “context” within

which the given hierarchies lie.

Ann

Bob

Ann

Bob

High Low

Nature

Figure 1.1

To understand this idea, let us take an example. Refer to Figure 1.1. Nature tosses a coin,

whose realization is either High or Low. (This can, for instance, reflect a buyer having a High or

Low valuation.) The realization of this toss results in distinct matrices (or payoff functions). Each

of two players, resp. Ann (a) and Bob (b), faces uncertainty about the realization of this coin toss.

What choices should Ann and Bob make here? Presumably, Ann’s choice will depend on her

belief about the realization of the coin toss–after all, the realization influences which matrix is

being played. But, presumably, Ann’s choice will also depend on what she thinks about Bob’s belief

about the realization of the coin toss. After all, Bob’s belief (about the realization of the coin toss)

should influence his action, too. And, Ann is concerned not only with what matrix is being played,

but also with what choice Bob is making within the matrix.

To analyze the situation, we must amend the description of the game to reflect these hierarchies

of beliefs. In particular, we append to the game a type structure. One such type structure is given

in Figure 1.2. Here, there are two possible types of Ann, viz. ta and ua, and one possible type of
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Bob, viz. tb. Type ta (resp. ua) of Ann assigns probability one to Nature choosing High (resp.

Low) and Bob’s type being tb. Type tb of Bob assigns probability 1
2 to “Nature choosing High and

Ann being type ta” and probability 1
2 to “Nature choosing Low and Ann being type u

a.” So, type tb

of Bob assigns probability 1
2 to “Nature choosing High and Ann assigning probability one to High”

and probability 1
2 to “Nature choosing Low and Ann assigning probability one to Low.” And so on.

High Lowλa(ta)

tb 1 0

High Lowλa(ua)

tb 0 1

High Lowλb(tb)

ua

ta

0

0

Figure 1.2

For a given type structure, as in Figure 1.2, we can analyze the game associated with Figure 1.1.

We defer an analysis for now. Instead, we point to a particular feature of the type structure in

Figure 1.2. Here, there are only two possible hierarchies of beliefs that Ann can hold and only one

possible hierarchy of beliefs that Bob can hold. In particular, the type structure does not contain

all hierarchies of beliefs.

What is the rationale for limiting the type structure in this way? The specified game is only

one part of the picture–a small piece of a larger story. The game sits within a broader strategic

situation. That is, there is a history to the game, and this history influences the players. As

Brandenburger-Friedenberg-Keisler [9, 2008, p. 319] put it:

We think of a particular . . . structure as giving the “context” in which the game is played.

In line with Savage’s Small-Worlds idea in decision theory [36, 1954, pp. 82-91], who the

players are in the given game can be seen as a shorthand for their experiences before the

game. The players’ possible characteristics–including their possible types–then reflect

the prior history or context.

Under this view, the type structure, taken as a whole, reflects the context of the game. (Section 7b

expands on this point, and discusses the relationship to other views of game theory.)

Here, we are concerned with the case where the players understand more than the analyst, in

a particular sense. We imagine the following scenario: The analyst looks at the strategic situation

and the history. Perhaps, even, the analyst deduces that certain hierarchies are inconsistent with

the history. But, to the players, it is transparent that other–that is, even more–hierarchies are
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inconsistent with the history. Put differently, players rule out hierarchies the analyst hasn’t ruled

out.

High Lowλb(tb)

ua

ta

0

0

High Lowλb(ub)

ua

ta

1 0

High Lowλa(ta)

ub

tb

0 1

High Lowλa(ua)

ub

tb

Figure 1.3

Return to the earlier example. Consider the case in which the players’ type structure is as given

in Figure 1.2. Suppose the analyst misspecifies the type structure, and instead studies the structure

in Figure 1.3. Here, there is one extra type of Bob, viz. ub. Type ub is associated with some belief,

distinct from type tb’s belief. The particular belief is immaterial. What is important is that each

of Ann’s types assigns zero probability to this type of Bob. More to the point, each of Ann’s types

is associated with the exact same beliefs as in the players’ type structure. So, the players’ type

structure can be viewed as a subset (or substructure) of the analyst’s type structure.

How does this affect an analysis? Take the solution concept of Bayesian Equilibrium, applied to

the game in Figure 1.1 and the type structure in Figure 1.3. For a given Bayesian Equilibrium, the

analyst will have a prediction associated with the type ub–i.e., a type that the players have ruled

out. But the analyst will also have a prediction for the types ta, ua, and tb. These are types in the

players’ structure, namely Figure 1.2.

The question is: How does the analyst’s predictions for these types relate to the predictions

he would have, if he had analyzed the game using the players’ type structure? Presumably, the

analyst’s predictions shouldn’t change. After all, the beliefs associated with ta, ua, and tb have not

changed at all. So, we can associate any equilibrium of the players’ actual type structure with an

equilibrium of the analyst’s type structure, and vice versa.

Implicit, in the above, is that Bayesian Equilibrium satisfies Extension and Pull-Back Properties.

Let us state these properties semi-formally.

Fix a type structure, viz. Λ, associated with type sets T a and T b. We will think of Λ as the
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players’ type structure. Now, consider another type structure Λ∗, associated with type sets T
a
∗ and

T b∗ . Suppose there is a map ha : T a → T a∗ (resp. h
b : T b → T b∗) so that each ta and ha (ta) (resp. tb

and hb
(
tb
)
) induces the same hierarchies of beliefs. We will think of Λ∗ as the analyst’s structure.

In our setting, we can then view the players’ type structure Λ as a subset (or a substructure) of

the analyst’s structure Λ∗.
1 (See Lemmata 3.2 and A2.) Now, we can state the Extension and

Pull-back Properties.

The Equilibrium Extension Problem. Fix an equilibrium of Λ. Does there exist

an equilibrium of Λ∗ so that each ha (ta) ∈ T a∗ and each hb
(
tb
)
∈ T b∗ plays the same

strategy as do ta and tb (under the original equilibrium of Λ)?

The Equilibrium Pull-Back Problem. Fix an equilibrium of Λ∗. Does there exist

an equilibrium of Λ so that each ta ∈ T a and each tb ∈ T b plays the same strategy as do

ha (ta) and hb
(
tb
)
(under the original equilibrium of Λ∗)?

Return to the question of whether the analyst can study the game in Figure 1.3. The answer is

yes, provided the analyst won’t lose any predictions and the analyst won’t introduce any new pre-

dictions. The question of losing predictions is the Extension Problem. The question of introducing

new predictions is the Pull-Back Problem.

We will see that the answer to the Extension Problem is no. This is surprising, as “types

associated with the players’ structure,” viz. ha (T a) (resp. hb
(
T b
)
), assign zero probability to “types

that are in the analyst’s structure but not associated with the players’ structure,” viz. T b∗\h
b
(
T b
)

(resp. T a∗ \h
a (T a)). What, then, goes wrong?

The problem arises from the types that are in the analyst’s structure but not in the players’

structure. (Or, more formally, not in the structure induced by the players’ type structure, viz.

ha (T a) and hb
(
T b
)
.) There are two possible cases, each associated with a distinct problem.

(i) These types assign zero probability to types in the players’ type structure.

(ii) Some of these types assign strictly positive probability to types in the players’ type

structure.

In the first case, we may have a problem extending any equilibrium associated with the players’

type structure. This will occur if and only if there is no equilibrium associated with the analyst’s

type structure. (Note, there may be no equilibrium associated with the analyst’s type structure,

despite the fact that there is an equilibrium associated with the players’ type structure.) See

Sections 4.1 and 5.

In the second case, we may have a problem extending some equilibrium associated with the

players’ type structure, despite the fact that there is an equilibrium associated with the analyst’s

type structure. Section 4.2 will expand on this point.

1Formally, we assume that no two types induce the same hierarchies of beliefs. Section 3 (specifically, Lemma 3.2)
discusses what this assumption delivers formally. Section 7a discusses what this assumption delivers conceptually.

5



These two problems shed light on what a ‘large’ type structure must look like–at least, if the

goal of this ‘large’ structure is to capture all possible predictions of a Bayesian equilibrium analysis.

One question is how this ‘large’ structure relates to the so-called universal type structure–e.g., of

Mertens-Zamir [28, 1985] and Brandenburger-Dekel [8, 1993].2 (Recall, this structure is terminal,

in the sense that it contains each possible type structure as a subset or substructure.3) The

first problem will suggest that the universal structure is too big, relative to this large structure.

The second problem will suggest that the universal structure is too small, relative to this large

structure. Sections 4.3 and 7d will expand on this last point. In particular, there, we will discuss

the implications of the negative results for a Bayesian Equilibrium analysis of games. We will see

that the necessary construction is distinct from constructions already suggested in the literature.

Many papers have asked whether type structures can be embedded in larger type structures.

(See, for instance, Böge-Eisle [7, 1979], Mertens-Zamir [28, 1985], Heifetz-Samet [21, 1998], and

Meier [27, 2006].) But, to the best of our knowledge, no paper has directly addressed the implication

for behavior. Indeed, one contribution of this paper is to spell out the Equilibrium Extension and

Pull-Back Problems.

The paper proceeds as follows. Section 2 gives notation. The Extension and Pull-Back Proper-

ties are formally defined in Section 3. There, we also state the Pull-Back result. Section 4 shows the

negative results, and discusses their implications. Then we turn to positive results. By restricting

both the type structure and the game, the Extension Property will obtain. The main restriction

in Section 5 is on the type structure. The main restriction in Section 6 is on the game. Section 7

concludes by discussing some conceptual and formal aspects of the paper.

2 Bayesian Games

Throughout the paper, we adopt the following conventions. We will endow the product of topological

spaces with the product topology, and a subset of a topological space with the induced topology.

Given a Polish space Ω, endow Ω with the Borel sigma-algebra. Write∆(Ω) for the set of probability

measures on Ω. Endow ∆(Ω) with the topology of weak convergence, so that it is again Polish.

Let Θ be a Polish set, to be interpreted as a set of payoff types or the parameter set. A Θ-

based game is then some Γ =
〈
Θ;Ca, Cb;πa, πb

〉
. Here, the players are a (or Ann) and b (or Bob).

(The restriction to two-player games is irrelevant.) The sets Ca and Cb are choice or action sets;

they are taken to be Polish. Payoff functions are measurable maps, viz. πa : Θ×Ca × Cb → R

and πb : Θ × Ca × Cb → R, whose ranges are bounded from above and below. Extend πa, πb to

Θ×∆(Ca)×∆
(
Cb
)
in the usual way. (Note, the extended functions are measurable and bounded.)

To analyze the game, we will need to append to the game a Θ-based interactive type structure.

2See, also, Ambruster-Böge [2, 1979] and Heifetz [20, 1993].
3Recall from Footnote 1 that we assume no two types induce the same hierarchy of beliefs. Then, this statement

follows from Theorem 2.9 in Mertens-Zamir [28, 1985] and Proposition 3 in Battigalli-Siniscalchi [4, 1999].
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Definition 2.1 A Θ-based interactive type structure is some Λ =
〈
Θ;T a, T b;λa, λb

〉
, where

T a, T b are Polish sets and λa, λb are measurable maps with λa : T a → ∆
(
Θ× T b

)
and λb : T b →

∆(Θ× T a). We call T a, T b (interactive) type sets.

A Θ-based Bayesian game consists of a pair (Γ,Λ), where Γ is a Θ-based game and Λ is a

Θ-based interactive type structure. The Bayesian game induces strategies. A strategy for Ann,

viz. sa, is a measurable map from T a to ∆(Ca). Let Sa be the set of strategies for Ann. And

similarly for Bob.

Fix strategies sa, sb and also a type ta ∈ T a. Then, πa
(
·, sa (ta) , sb (·)

)
can be viewed as a mea-

surable map fromΘ×T b to R. (See Lemma C1 in the Online Appendix.) Since πa
(
·, sa (ta) , sb (·)

)
:

Θ × T b → R is measurable and bounded, we can extend πa to a map Πa : T a × Sa × Sb → R, so

that

Πa
(
ta, sa, sb

)
=

∫

Θ×T b
πa
(
θ, sa (ta) , sb

(
tb
))

dλa (ta) .

The map Πb : T b × Sa × Sb → R is defined analogously. Note, the maps Πa,Πb are defined relative

to both Γ and Λ.

Definition 2.2 Say
(
sa, sb

)
is a Bayesian equilibrium if, for all ta ∈ T a,

Πa
(
ta, sa, sb

)
≥ Πa

(
ta, ra, sb

)
for all ra ∈ Sa

and, for all tb ∈ T b,

Πb
(
tb, sa, sb

)
≥ Πb

(
tb, sa, rb

)
for all rb ∈ Sb.

3 The Extension and Pull-Back Properties

The purpose of this section is to define the Extension and Pull-Back Properties. For the definitions–

and indeed throughout the paper–we will restrict attention to particular type structures, namely

type structures that are non-redundant. A type structure is non-redundant if any two distinct

types, viz. ta and ua (resp. tb and ub), induce distinct hierarchies of beliefs. We won’t need to give

a formal definition. Instead, we use consequences that follow from this assumption. (To be clear:

We always take the definition of a type structure to be a non-redundant structure.)

Fix two Θ-based structures Λ =
〈
Θ;T a, T b;λa, λb

〉
and Λ∗ =

〈
Θ;T a∗ , T

b
∗ ;λ

a
∗, λ

b
∗

〉
. We want to

capture the idea that there is a hierarchy morphism from Λ to Λ∗, i.e., for each type ta in T a

(resp. tb in T b), there is a type ta∗ in T a∗ (resp. t
b
∗ in T b∗ ) that induces the same hierarchy of beliefs.

The next definition allows us to capture this idea without explicitly describing hierarchies of beliefs.

Given a measurable map f : Ω→ Φ, write f : ∆ (Ω)→ ∆(Φ) where f(µ) is the image measure.

Given maps f1 : Ω1 → Φ1 and f2 : Ω2 → Φ2, write f1 × f2 for the map from Ω1 ×Ω2 to Φ1 ×Φ2 so

that (f1 × f2) (ω1, ω2) = (f1 (ω1) , f2 (ω2)). Let id : Θ→ Θ be the identity map.
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Definition 3.1 (Mertens-Zamir [28, 1985]) Let ha : T a → T a∗ and hb : T b → T b∗ be measurable

maps, so that id×hb ◦ λa = λa∗ ◦ h
a and id×ha ◦ λb = λb∗ ◦ h

b. Then
(
ha, hb

)
is called a type

morphism (from Λ to Λ∗).

Definition 3.1 can be illustrated in Figure 3.1: A type morphism, viz.
(
ha, hb

)
, requires that the

diagram commutes.

ha

λa λa
*

id × hb

Figure 3.1

Taken together, Heifetz-Samet [21, 1998; Proposition 5.1] and Friedenberg-Meier [15, 2008; Corollary

6.2] show that
(
ha, hb

)
is a type morphism if and only if ha and hb are hierarchy morphisms. (This

uses the fact that the structures are Polish and non-redundant–it may not be true otherwise.) As

a consequence of non-redundancy and this characterization, we have the following properties.4

Property 3.1 If
(
ha, hb

)
is a type morphism from Λ to Λ∗, then ha and hb are injective and uniquely

defined.

A measurable map is said to be bimeasurable if the image of each measurable set is itself mea-

surable.

Property 3.2 If
(
ha, hb

)
is a type morphism from Λ to Λ∗, then ha and hb are bimeasurable.

Property 3.3 If
(
ha, hb

)
is a type morphism from Λ to Λ∗, then ha and hb are measurable em-

beddings. If, in addition,
(
ha∗, h

b
∗

)
is a type morphism from Λ∗ to Λ, then the maps ha and hb are

measurable isomorphisms with ha = (ha∗)
−1 and hb =

(
hb∗
)−1

.

With Property 3.3 in mind, we give the following definitions.

Definition 3.2 Say Λ can be embedded into Λ∗ (via
(
ha, hb

)
) if there is a type morphism, viz.

(
ha, hb

)
, from Λ to Λ∗. Say Λ and Λ∗ are isomorphic if Λ can be embedded into Λ∗ and Λ∗ can

be embedded into Λ. Say Λ can be properly embedded into Λ∗, if Λ can be embedded into Λ∗ but

Λ∗ cannot be embedded into Λ.

We note:
4Proofs for this section are straightforward and so relegated to the Online Appendix.
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Lemma 3.1 Fix Θ-based structures Λ and Λ∗, so that Λ can be properly embedded into Λ∗ via
(
ha, hb

)
. Then, either ha (T a) � T a∗ , h

b
(
T b
)
� T b∗ , or both.

Lemma 3.2 states a consequence of embedding type structures. (See, also, Lemma A2 for a

stronger result.)

Lemma 3.2 Fix Θ-based structures Λ and Λ∗, where Λ can be embedded into Λ∗ via
(
ha, hb

)
.

Then, ha (T a)× hb
(
T b
)
forms a belief-closed subset of T a∗ × T b∗ , i.e., for each ha (ta) ∈ ha (T a),

λa∗ (h
a (ta))

(
Θ× hb

(
T b
))
= 1, and likewise with a and b interchanged.

Lemma 3.2 says that, if Λ can be embedded into Λ∗ via
(
ha, hb

)
, we can view Λ as a belief-

closed subset of Λ∗. This belief-closed subset can be viewed as a “type structure” in its own right.

We’ll call such a type structure the structure induced by Λ. This structure will consist of
〈
Θ;ha (T a) , hb

(
T b
)
;κa, κb

〉
. Note, by Property 3.2, ha (T a) (resp. hb

(
T b
)
) is a Borel subset of

the Polish space T a∗ (resp. T b∗ ). The map κa : ha (T a) → ∆
(
Θ× hb

(
T b
))
(resp. κb : hb

(
T b
)
→

∆(Θ× ha (T a))) is defined so that κa (ta∗) (E) = λa∗ (t
a
∗) (E) (resp. κb

(
tb∗
)
(E) = λb∗

(
tb∗
)
(E)) for

each event E in Θ× hb
(
T b
)
(resp. Θ× ha (T a)).5

Given a Θ-based game Γ, write sa (resp. sb) for a strategy of Ann (resp. Bob) in the Bayesian

Game (Γ,Λ), and write sa∗ (resp. s
b
∗) for a strategy of Ann (resp. Bob) in the Bayesian Game (Γ,Λ∗).

Now we can state the Equilibrium Extension and Pull-Back Properties.

Definition 3.3 Let Λ and Λ∗ be two Θ-based interactive type structures, so that Λ can be embedded

into Λ∗ via
(
ha, hb

)
. Then the pair 〈Λ,Λ∗〉 satisfies the Equilibrium Extension Property for

the Θ-based game Γ if the following holds: If
(
sa, sb

)
is a Bayesian Equilibrium of (Γ,Λ), then

there exists a Bayesian Equilibrium of (Γ,Λ∗), viz.
(
sa∗, s

b
∗

)
, so that sa = sa∗ ◦ h

a and sb = sb∗ ◦ h
b.

Say the pair 〈Λ,Λ∗〉 satisfies the Equilibrium Extension Property if it satisfies the Equilibrium

Extension Property for each Θ-based game Γ.

Definition 3.4 Let Λ and Λ∗ be two Θ-based interactive type structures, so that Λ can be embedded

into Λ∗ via
(
ha, hb

)
. Then the pair 〈Λ,Λ∗〉 satisfies the Equilibrium Pull-Back Property if,

for each Θ-based game Γ, the following holds: If
(
sa∗, s

b
∗

)
is a Bayesian Equilibrium of (Γ,Λ∗), then

(sa∗ ◦ h
a, sb∗ ◦ h

b) is a Bayesian Equilibrium of (Γ,Λ).

Section 4 will show that the Equilibrium Extension Property may fail. Sections 5-6 will provide

conditions under which the Equilibrium Extension Property is satisfied, i.e., for a particular game

Γ. On the other hand, the Equilibrium Pull-Back Property is always satisfied.

Proposition 3.1 Let Λ and Λ∗ be two Θ-based interactive type structures, so that Λ can be embedded

into Λ∗ via
(
ha, hb

)
. Then, the pair 〈Λ,Λ∗〉 satisfies the Equilibrium Pull-Back Property.

5Note, hb
(
T
b
)
is Borel in T b∗ and endowed with the induced topology. So, if E is Borel in Θ× hb

(
T
b
)
, then it

is Borel in Θ× T b∗ . As such, the map κa is well-defined. That said, formally, the structure induced by Λ need not
be an interactive structure in the sense of Definition 2.1. The sets ha (Ta) and hb

(
T b
)
may not be Polish. This will

be immaterial for our analysis.
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The proof of Proposition 3.1 can be found in Friedenberg-Meier [16, 2008]. It makes use of

Property 3.2.

Taken together, the Pull-Back Property and Property 3.3 have an immediate consequence for

the Extension Property.

Corollary 3.1 Let Λ and Λ∗ be two isomorphic Θ-based interactive type structures. Then, the pair

〈Λ,Λ∗〉 satisfies the Equilibrium Extension Property.

Note, non-redundancy is an important condition here. For the redundant case, amend Definitions

3.3-3.4 to directly reflect hierarchy morphisms. Then, examples in Ely-Peski [14, 2006] and Dekel-

Fudenberg-Morris [12, 2007], show that Proposition 3.1 and Corollary 3.1 do not follow. Section 7a

discusses this further.

In light of Corollary 3.1, we will focus on the case in which Λ can be properly embedded into Λ∗.

4 The Negative Results

There are two reasons that Equilibrium Extension may fail–or, at least, two reasons that are known

to us. (In Section 7f, we point out that there may be another form of an extension failure.) These

reasons will be presented by way of two examples. In the example of Section 4.1, we cannot extend

any equilibrium. The reason is that, in that case, there is no equilibrium associated with the

analyst’s structure. In the example of Section 4.2, we will be able to extend some equilibrium, but

not all equilibria. So, there, we will fail the Extension Property, despite the fact that there is an

equilibrium of the analyst’s structure.

The first example is quite simple. It is essentially a corollary of non-existence of Bayesian

equilibrium. The example is well-understood–it is, so to speak, “in the air.”6 We present it

only for completeness. The second example is more involved and, arguably, novel. To show non-

extension here, we will use non-existence of Bayesian Equilibrium. However, this second example

is not an immediate corollary of non-existence. In particular, it makes direct use of the Bayesian

equilibrium concept, i.e., it need not hold under any solution concept that fails existence. See

Section 7c for a discussion.

We will present these two examples and then discuss their distinct implications. Both examples

will use a Bayesian Game—satisfying certain properties—to construct a new Bayesian Game (with a

different parameter set). That is, we won’t be interested in the starting game perse. Rather, it will

serve as a “germ,” i.e., it will aid in constructing the game of interest. The “germ” is a Bayesian

Game that has no equilibrium. (See Section 7c for an example. But, note, the particular game

used is irrelevant.) Write Θ0 for the parameter set of the germ game, and write (Γ0,Λ0) for the

Θ0-based Bayesian Game. That is, Θ0, Γ0 =
〈
Θ0;Ca0 , C

b
0;π

a
0, π

b
0

〉
, and Λ0 =

〈
Θ0;T a0 , T

b
0 ;λ

a
0, λ

b
0

〉

are chosen, so that (Γ0,Λ0) has no Bayesian equilibrium.

6That said, to the best of our knowledge, no one has asked the question of the Extension Problem, and so no one
has formally shown this result.
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Recall, we take type structures to be non-redundant. As such, we are careful to choose Λ0 so

that it is non-redundant. We also normalize the game Γ0 so that the ranges of the payoff functions

lie in [1, 2].

4.1 The First Extension Failure

This is an example where “types in the analyst’s structure but not in the players’ structure” assign

zero probability to “types in the players’ structure.”

Start with the Θ0-based Bayesian Game (Γ0,Λ0). Construct Θ1 = Θ0 ∪ {θ1} so that Θ0 � Θ1.

We will use the game Γ0 to build a Θ1-based game Γ1 =
〈
Θ1;C

a
1 , C

b
1;π

a
1 , π

b
1

〉
. Let Ca1 = Ca0 ∪ {c

a
1}

and Cb1 = Cb0 ∪
{
cb1
}
, where Ca

0 � Ca1 and Cb0 � Cb1. Ann’s payoff function is depicted in Figure

4.1. First, consider the left-hand panel, which depicts the matrix for any given θ ∈ Θ0. (We call

this matrix the θ-section of a game.) Here, πa1
(
θ, ca, cb

)
= πa0

(
θ, ca, cb

)
, for all

(
ca, cb

)
∈ Ca0 ×Cb

0.

For all cb ∈ Cb
1, π

a
1

(
θ, ca1, c

b
)
= 0. For all ca ∈ Ca0 , π

a
1

(
θ, ca, cb1

)
= 1. Next, consider the case

of θ1, i.e., the right-hand panel of Figure 4.1. Here, πa1
(
θ1, c

a, cb
)
= 1 if

(
ca, cb

)
=
(
ca1, c

b
1

)
, and

πa1
(
θ1, ca, cb

)
= 0 otherwise. Bob’s payoffs are defined by reversing a and b.

Bob

0

1

1

00

Ann

0 0

0 0

0

0

0

10

Bob

Ann

Figure 4.1

Fix a Θ1-based structure, viz. Λ1, defined as follows. The type sets are T a1 = {ta1} and

T b1 =
{
tb1
}
. The measures λa1 (t

a
1) and λb1

(
tb1
)
are concentrated on

(
θ1, t

b
1

)
and (θ1, t

a
1), respectively.

Then (Γ1,Λ1) has some equilibrium–in fact, many.

Now, consider another Θ1-based structure, viz. Λ2, depicted in Figure 4.2. The type sets are

T a2 = T a0 ∪ T a1 and T b2 = T b0 ∪ T b1 , where we take t
a
1 /∈ T a0 and tb1 /∈ T b0 . The left-hand panel depicts

the measure λa2 (t
a), for ta ∈ T a0 . It simply agrees with λa0 (t

a), i.e., for each event E in Θ1 × T b2 ,

λa2 (t
a) (E) equals λa0 (t

a)
(
E ∩

(
Θ0 × T b0

))
. The right-hand panel depicts the measure λa2 (t

a
1), which

now agrees with λa1 (t
a
1), i.e., for each event E in Θ1×T b2 , λ

a
2 (t

a
1) (E) equals λ

a
1 (t

a
1)
(
E ∩

(
Θ1 × T b1

))
.
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The map λb2 is defined analogously.

0

0

0

00 0

0

0

10

0 0

0 0

Figure 4.2

Note, Λ2 is non-redundant. To see this, recall that Λ0 is non-redundant, so that types in T a0
induce distinct hierarchies of beliefs in Λ2. We also have that λa2 (t

a)
(
Θ0 × T b2

)
= 1, for each

ta ∈ T a0 , and that λ
a
2 (t

a
1)
(
{θ1} × T b2

)
= 1. As such, types in T a0 have distinct first-order beliefs

from the type ta1.

Next, note:

Remark 4.1 The structure Λ1 can be embedded into Λ2 via (ida, idb), where ida : T a1 → T a2 and

idb : T b1 → T b2 are the identity maps.

That said, there is no equilibrium of (Γ1,Λ2), and so no equilibrium of (Γ1,Λ1) can be extended

to an equilibrium of (Γ1,Λ2). For the idea, suppose otherwise. Recall, for each ta ∈ T a0 , λ
a
2 (t

a)

assigns probability 1 to Θ0 × T b2 , and likewise for types t
b ∈ T b0 . Moreover, the choice c

a
1 is strongly

dominated in any θ-section of the game, for θ ∈ Θ0. So, if there is a Bayesian equilibrium, viz.(
sa2, s

b
2

)
, for the game (Γ1,Λ2), each type ta ∈ T a0 assigns probability 1 to Ca0 . And, likewise for

types tb ∈ T b0 . But then, the restrictions of sa2 and sb2 to (Γ0,Λ0) would have been a Bayesian

equilibrium of the original game. (The Online Appendix gives a proof.) As a consequence:

Proposition 4.1 The pair 〈Λ1,Λ2〉 (as defined in this subsection) fails the Equilibrium Extension

Property.

Indeed, we can go further. No equilibrium of (Γ1,Λ1) can be extended to an equilibrium of

(Γ1,Λ2). That is, for any equilibrium
(
sa1 , s

b
1

)
of (Γ1,Λ1), we cannot find an equilibrium

(
sa2 , s

b
2

)
of

(Γ1,Λ2) with sa1 = sa2 ◦ id
a and sb1 = sb2 ◦ id

b.

4.2 The Second Extension Failure

This is an example where “types in the analyst’s structure but not in the players’ structure” assign

positive probability to “types in the players’ structure.”
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Bob

0

1

1

10

Ann

x x

x x

0

0

0

y0

Bob

Ann

Figure 4.3

Again, start with the Θ0-based Bayesian Game (Γ0,Λ0). Let Θ1 be as in Section 4.1. Now,

construct a Θ1-based game Γ1 similar to above. Specifically, C
a
1 and Cb1 are as in Section 4.1. But

now the payoff functions are different. Ann’s payoff function is depicted in Figure 4.3. First, consider

the left-hand panel, where θ ∈ Θ0. Here, π
a
1

(
θ, ca, cb

)
= πa0

(
θ, ca, cb

)
, for all

(
ca, cb

)
∈ Ca

0×Cb
0. For

all ca ∈ Ca1 , let π
a
1

(
θ, ca, cb1

)
= 1. For all cb ∈ Cb0, π

a
1

(
θ, ca1, c

b
)
= 0. Next, consider the case of θ1.

This is the right-hand panel of Figure 4.3. Here, for all
(
ca, cb

)
∈ Ca

0 ×Cb0, π
a
1

(
θ1, c

a, cb
)
= x where

x > 0. Also, πa1
(
θ1, c

a
1, c

b
1

)
= y, where y > 0. For all other pairs of

(
ca, cb

)
, πa1

(
θ1, c

a, cb
)
= 0.

Bob’s payoff function is defined by reversing a and b.

For each θ-section of the game Γ1, the choice profile
(
ca1, c

b
1

)
is a pure strategy Nash equilibrium.

As such, for any Θ1-based structure Λ, (Γ1,Λ) has a Bayesian equilibrium, where each type of Ann

chooses ca1 with probability 1, and each type of Bob chooses c
b
1 with probability 1.

Nonetheless, we construct Θ1-based structures Λ1 and Λ2, where Λ1 can be embedded into Λ2,

but some equilibrium of (Γ1,Λ1) cannot be extended to an equilibrium of (Γ1,Λ2). (Of course,

there will be another equilibrium of (Γ1,Λ1) that can be extended to an equilibrium of (Γ1,Λ2), i.e.,

the one just mentioned above.)

Let Λ1 be as in Section 4.1. There is an equilibrium in which types ta1 and tb1 play ca1 and cb1 with

probability 1. Yet, there is also an equilibrium, viz.
(
sa1, s

b
1

)
, in which sa1 (t

a
1) assigns probability 1

to Ca
0 and sb1

(
tb1
)
assigns probability 1 to Cb

0. (In fact, there are many such equilibria since C
a
0 and

Cb0 must be non-singletons. See Section 6.)

For the structure Λ2, refer to Figure 4.4. As in Section 4.1, let T
a
2 = T a0 ∪ T a1 , where T

a
0 � T a2 .

And likewise for Bob. Fix some p ∈ (0, 1) and consider a type ta ∈ T a0 . (Note, p is chosen

to be the same for each ta ∈ T a0 .) For this type, define λa2 (t
a) as follows. Fix an event E in

Θ1 × T b2 . If
(
θ1, tb1

)
∈ E, let λa2 (t

a) (E) = pλa0
(
E ∩

(
Θ0 × T b0

))
+ (1− p). If

(
θ1, tb1

)
/∈ E, let

13



λa2 (t
a) (E) = pλa0

(
E ∩

(
Θ0 × T b0

))
. It is readily verified that this is indeed a probability measure.

Next, consider the type ta1 and define λa2 (t
a
1) so that, for each event E in Θ1 × T b2 , λ

a
2 (t

a
1) (E) =

λa1 (t
a
1)
(
E ∩

(
Θ1 × T b1

))
. Define λb2 analogously.

0

0

0

1-p0 0

0

0

10

0 0

0 0

Figure 4.4

Note, Λ2 is non-redundant. To see this, recall that Λ0 is non-redundant, so that types in T a0
induce distinct hierarchies of beliefs in Λ2. We also have that λa2 (t

a)
(
Θ0 × T b2

)
> 0, for each

ta ∈ T a0 , and λa2 (t
a
1)
(
Θ0 × T b2

)
= 0. As such, types in T a0 have distinct first-order beliefs from the

type ta1.

Just as in Section 4.1, we have:

Remark 4.2 The structure Λ1 can be embedded into Λ2 via (ida, idb), where ida : T a1 → T a2 and

idb : T b1 → T b2 are the identity maps.

Nonetheless, we will show:

Lemma 4.1 If
(
sa2, s

b
2

)
is a Bayesian Equilibrium of (Γ1,Λ2), then either sa2 (t

a
1) (C

a
0 ) < 1 or

sb2
(
tb1
) (

Cb0
)
< 1 (or both).

Proof. Fix a Bayesian Equilibrium, viz.
(
sa2, s

b
2

)
. Suppose the result is false, i.e., sa2 (t

a
1) (C

a
0 ) = 1

and sb2
(
tb1
) (

Cb0
)
= 1.

Fix a type ta ∈ T a0 . For this type, the expected payoffs from choosing some ca0 ∈ Ca0 are

E(ta, ca0) = p

∫

Θ0×T b0

πa1
(
θ0, c

a
0, s

b
2

(
tb0
))

dλa0 (t
a) + (1− p)x.

This type’s expected payoffs from choosing ca1 are

E(ta, ca1) = p

∫

Θ0×T b0

πa1
(
θ0, c

a
1, s

b
2

(
tb0
))

dλa0 (t
a) .

Also, note that, for each
(
θ0, tb0

)
∈ Θ0 × T b0 ,

πa1
(
θ0, c

a
0, s

b
2

(
tb0
))
≥ πa1

(
θ0, c

a
1, s

b
2

(
tb0
))

.
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(If sb2
(
tb0
) (

Cb
0

)
> 0, then the inequality is strict.) So,

∫

Θ0×T b0

πa1
(
θ0, c

a
0, s

b
2

(
tb0
))

dλa0 (t
a) ≥

∫

Θ0×T b0

πa1
(
θ0, c

a
1, s

b
2

(
tb0
))

dλa0 (t
a) .

Indeed, since 1 > p and x > 0,

E(ta, ca0) > E(t
a, ca1).

This says that, for each ta ∈ T a0 , s
a
2 (t

a) (Ca0 ) = 1. An analogous argument gives that, for each

tb ∈ T b0 , s
b
2

(
tb
) (

Cb
0

)
= 1.

Now, we will construct a map sa0 : T
a
0 → ∆(Ca0 ) from the map sa2. To do so, we will use

the fact that sa2 (t
a) (Ca0 ) = 1 for all ta ∈ T a0 . Specifically, for each ta ∈ T a0 and each event E in

Ca0 , let s
a
0 (t

a) (E) = sa2 (t
a) (E). Note that sa0 (t

a) defines a probability measure. Moreover, sa0 is

measurable (Lemma E1 in the Online Appendix), and so is a strategy of the Bayesian game (Γ0,Λ0).

Define sb0 analogously. With this,

Πa2
(
ta, sa2, s

b
2

)
= pΠa0

(
ta, sa0, s

b
0

)
+ (1− p)x for all ta ∈ T a0 .

And similarly with a and b interchanged.

Fix a strategy of Ann for the game (Γ0,Λ0), viz. ra0 : T
a
0 → ∆(Ca0 ). This strategy can be

extended to a strategy for the game (Γ1,Λ2), viz. ra2 : T
a
2 → ∆(Ca1 ). Specifically, for each type

ta ∈ T a0 and each event E in Ca
1 , set r

a
2 (t

a) (E) = ra0 (t
a) (E ∩Ca

0 ). Choose r
a
2 (t

a
1) to be any element

of ∆(Ca1 ) with ra2 (t
a
1) (C

a
0 ) = 1. Then, r

a
2 is measurable (Lemma E1 in the Online Appendix), and

so a strategy for the Bayesian game (Γ1,Λ2). Under this extension,

Πa2
(
ta, ra2 , s

b
2

)
= pΠa0

(
ta, ra0 , s

b
0

)
+ (1− p)x for all ta ∈ T a0 .

And similarly define strategies rb2.

Return to the fact that
(
sa2, s

b
2

)
is a Bayesian equilibrium for the game (Γ1,Λ2). Then, using

the above, for each ta ∈ T a0 and each ra0 ∈ Sa0 ,

pΠa0
(
ta, sa0 , s

b
0

)
+ (1− p)x = Πa2

(
ta, sa2, s

b
2

)

≥ Πa2
(
ta, ra2 , s

b
0

)

= pΠa0
(
ta, ra0 , s

b
0

)
+ (1− p)x,

where ra2 is defined as above. It follows that, for each ta ∈ T a0 ,

Πa0
(
ta, sa0, s

b
0

)
≥ Πa0

(
ta, ra0 , s

b
0

)
for all ra0 ∈ Sa0 .
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And, likewise, for each tb ∈ T b0 ,

Πb0
(
tb, sa0, s

b
0

)
≥ Πb0

(
tb, sa0, r

b
0

)
for all rb0 ∈ Sb0.

This says that
(
sa0 , s

b
0

)
is a Bayesian equilibrium for the game (Γ0,Λ0), a contradiction.

The negative result is an immediate implication of Lemma 4.1.

Theorem 4.1 The pair 〈Λ1,Λ2〉 (as defined in this subsection) fails the Equilibrium Extension

Property.

Proof. Consider a strategy profile
(
sa1 , s

b
1

)
of the game (Γ1,Λ1), with s

a
1 (t

a
1) (C

a
0 ) = sb1

(
tb1
) (

Cb0
)
= 1.

This is a Bayesian equilibrium of that game. Fix a Bayesian equilibrium
(
sa2, s

b
2

)
of the game (Γ1,Λ2).

By Lemma 4.1, either sa1 �= (s
a
2 ◦ id

a), or sb1 �= (s
b
2 ◦ id

b), or both.

In this case, some equilibrium of (Γ1,Λ1) can be extended to an equilibrium of (Γ1,Λ2). But

this does not hold for every equilibrium.

4.3 Implications

Can the analyst use a ‘larger’ type structure to analyze the game, and maintain predictions associated

with the players’ actual ‘smaller’ type structure? Now we see that the answer is no.

Let’s review why. Refer back to the examples in Sections 4.1-4.2. There, the types that are

in the analyst’s structure but not in the players’ structure, viz. T a0 × T b0 , impose an equilibrium

restriction on the types in the players’ structure, viz. T a1 × T b1 . In the first example (Section 4.1),

this alone imposes a difficulty for extension. (Specifically, because there is no equilibrium among the

types in T a0 ×T b0 , there can be no equilibrium for the whole structure.) In the second example, this

does not necessarily cause a problem for the extension. (There is some equilibrium of the structure

Λ1 that can be extended to an equilibrium of Λ2.) But, there, types in the players’ structure also

impose an equilibrium restriction on types in the analyst’s structure. For certain equilibria, this

causes a conflict.

Of course, if the analyst recognizes that he misspecified the players’ type structure (in a particular

way), he can simply use the players’ type structure to analyze the game. Here, we study the case

in which the analyst doesn’t recognize this. As the “meta-analyst” or the “super-analyst,” we ask:

What are the implications of this result? There are two possible routes that we, the super-analyst,

can take.

(i) Change the type structure, but not the analysis.

(ii) Change the analysis, but not the type structure.
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We now discuss each of these two approaches.

(i) This route takes the idea of Bayesian Equilibrium as given–i.e., it doesn’t alter the definition or

application. Given this, as the super-analyst, we may want to find a large type structure–one in

which we can maintain all possible predictions associated with the players’ actual type structures.

One possibility, often suggested in the literature, is to use the canonical construction of the

universal type structure (e.g., the bottom-up construction of Mertens-Zamir [28, 1985] and/or the

top-down construction of Brandenburger-Dekel [8, 1993]). After all, these constructions ‘contain’

any type structure as a belief-closed subset. But the examples in Sections 4.1-4.2 suggest that this

will not do. In particular, there are two problems. The first example suggests that the universal

construction may be too large, and the second suggests that the universal construction may be too

small.

Begin with the example in Section 4.1. There, the structure Λ2 is a belief-closed subset of

the universal type structure. This suggests that, for a particular game such as Γ1, the universal

structure may be too large–if the goal is to obtain one large structure that contains all possible

predictions. For this purpose, we may want to ‘remove’ certain types from the large construction.

In particular, we will want to do so if those types are associated with a type structure (such as Λ0)

that has no equilibrium relative to the given game (just as (Γ0,Λ0) has no equilibrium). But notice

that this large structure will be based not only on the parameter set, but also on the particular

game being studied. (For a Θ0-based game Γ, distinct from Γ0, (Γ,Λ0) may very well have an

equilibrium. The types in Λ0 should not be excluded for the game Γ.) As such, the construction

is quite different from the universal construction. Recall, the universal structure depends on the

parameter set–not on the game itself.

Now, turn to the example in Section 4.2. What should the large structure look like here?

Certainly, the large structure should have a prediction associated with each type in Λ2. After all,

there is a Bayesian equilibrium associated with the game (Γ1,Λ2), and we would like to understand

how each type in Λ2 would behave under an equilibrium analysis. Note, to maintain the hierarchies

of beliefs associated with types in T a0 ×T b0 ⊆ T a2 ×T b2 , in the large structure, some types must assign

probability (1− p) to T a1 × T b1 ⊆ T a2 × T b2 .

But, we would also like to maintain each prediction associated with (Γ1,Λ1). It would seem

that, for this, the types T a0 × T b0 ⊆ T a2 × T b2 must assign zero probability to the types T
a
1 × T b1 .

Given that our goal is to (i) have a prediction for each type associated with Λ2, and (ii) maintain

each of the predictions associated with Λ1, we must have two copies of the types T
a
1 × T b1 in our

structure: one copy that gets positive probability under T a0 × T b0 and another copy that gets zero

probability under T a0 × T b0 . Figure 4.5 illustrates this structure.

Note, we begin by looking at predictions associated with non-redundant structures. We, the

super-analyst, then ask for a large type structure–i.e., one that can capture all of these predictions.

What we see is that the structure may need to contain two belief-closed subsets that are ‘identical’
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(and so induce the same hierarchies of beliefs). So, the output is a particular form of a redundant

structure.

0 0

0

0

1-p

0

0

0

0

0

0

1

0

0

00 0

0

0

0

0

0

10

Figure 4.5

The canonical constructions of universal structures are all non-redundant. So, if our goal is to

retain all possible predictions, then the universal structure may be too small.

It is important to note that the redundancies introduced here are distinct from the redundancies

already mentioned in the literature. Section 7d discusses this further.

(ii) There is another possible route. Instead of asking for an analysis relative to a particular ‘large’

type structure, we can change the method of analysis. We can define the concept of Bayesian

Equilibrium relative to belief-closed subsets of a given type structure. Then, we can analyze a

Bayesian Game (Γ,Λ) relative to each belief-closed subset of Λ. As such, our analysis may not be

“completed” when we find the Bayesian Equilibria associated with the given type structure.

5 Restrictions on Type Structures

Now, we turn to exploring conditions under which the Extension Property is satisfied. We begin

with conditions on the type structure.

Let’s begin by reviewing the failure of the Equilibrium Extension Property in Section 4.2. There,

we had structures Λ1 and Λ2. The structure Λ1 can be embedded into Λ2 via the identity maps. So,
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referring to Figure 5.1, the structure Λ1 can be viewed as a belief-closed subset of the structure Λ2.

Types in this subset impose an equilibrium restriction on types outside of this subset–i.e., on types

in T a0 = T a2 \T
a
1 and T b0 = T b2\T

b
1 . This is because these latter types assign positive probability

to types associated with Λ1. This problem would not arise if types in T a0 (resp. T b0 ) assigned

probability 1 to types in T b0 (resp. T
a
0 ).

Figure 5.1

Suppose we instead have a type structure, viz. Λ∗, that can be viewed as the union of two

type structures. For a given game, can we extend an equilibrium associated with one of these

structures to an equilibrium associated with Λ∗? The answer will be yes if and only if there exists

an equilibrium associated with the other structure.

We formalize this idea and then state a general result. But is it interesting to study the case

where Λ∗ can be viewed as the union of two type structures? We go on to show that this arises

naturally in one special case–where the analyst’s structure satisfies a common prior assumption.

5.1 Decomposing Type Structures

We now formalize the idea that a type structure Λ∗ can be viewed as the union of some structure Λ

and some ‘remaining structure,’ which we’ll call the difference structure.

Definition 5.1 Fix Θ-based structures Λ and Λ∗, so that Λ can be embedded into Λ∗ via
(
ha, hb

)
.

Say Λ induces a decomposition of Λ∗ (via
(
ha, hb

)
) if (T a∗ \h

a (T a)) ×
(
T b∗\h

b
(
T b
))

is closed

(in T a∗ × T b∗ ) and forms a belief-closed subset of T a∗ × T b∗ .

Note, by definition, Λ induces a decomposition of Λ∗ only if Λ can be embedded into Λ∗. When

Λ induces a decomposition of Λ∗, Λ∗ can be viewed as the union of two type structures. The first

is the structure induced by Λ. (Refer back to Section 3 for the definition.) The second we’ll call
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the difference structure. This consists of

(Λ∗\Λ) =
〈
Θ;T a∗ \h

a (T a) , T b∗\h
b
(
T b
)
;κa∗, κ

b
∗

〉
.

Here, T a∗ \h
a (T a) (resp. T b∗\h

b
(
T b
)
) is a closed subset of the Polish space T a∗ (resp. T b∗), and

so Polish. The map κa∗ : (T
a
∗ \h

a (T a)) → ∆
(
Θ×

(
T b∗\h

b
(
T b
)))

(resp. κb∗ :
(
T b∗\h

b
(
T b
))
→

∆(Θ× (T a∗ \h
a (T a)))) is defined so that κa∗ (t

a
∗) (E) = λa∗ (t

a
∗) (E) (resp. κb∗

(
tb∗
)
(E) = λb∗

(
tb∗
)
(E))

for each event E in Θ×
(
T b∗\h

b
(
T b
))
(resp. Θ× (T a∗ \h

a (T a))).7 The difference structure is indeed

a type structure, in the sense of Definition 2.1. Lemma A1 in Appendix A establishes this formally.

Here is the result.8

Lemma 5.1 Fix Θ-based structures Λ and Λ∗, so that Λ induces a decomposition of Λ∗. Fix,

also, a Θ-based game Γ so that (Γ,Λ) has an equilibrium. Then, 〈Λ,Λ∗〉 satisfies the Equilibrium

Extension Property for Γ if and only if there is an equilibrium of the difference game (Γ, (Λ∗\Λ)).

Note, Lemma 5.1 fits with the Extension failure in Section 4.1. There, Λ1 may induce a decom-

position of Λ2. We have that 〈Λ1,Λ2〉 fails the Extension Property for Γ1, precisely because the

difference game, viz. (Γ1, (Λ2\Λ1)), fails existence.

As a consequence of Lemma 5.1 and the Pull-Back Property, we have the following:

Proposition 5.1 Fix Θ-based structures Λ and Λ∗, so that Λ induces a decomposition of Λ∗. Fix,

also, a Θ-based game Γ, so that (Γ,Λ) has an equilibrium. Then, 〈Λ,Λ∗〉 satisfies the Equilibrium

Extension Property for Γ if and only if there is an equilibrium for the game (Γ,Λ∗).

5.2 Mutual Absolute Continuity and The Common Prior Assumption

Now, we turn to the question: Is it of interest to consider the case where Λ induces a decomposition

of Λ∗? We will show that there is a notable case in which Λ does induce a decomposition of Λ∗.

As an intermediate step, consider the following restriction on the type structure.

Definition 5.2 Say a Θ-based interactive type structure Λ =
〈
Θ;T a, T b;λa, λb

〉
is countable if

T a and T b are countable and endowed with the discrete topology.

Definition 5.3 (Stuart [38, 1997]) Say a Θ-based interactive type structure Λ =
〈
Θ;T a, T b;λa, λb

〉

is mutually absolutely continuous if Λ is countable and

(i) for each ta ∈ T a, λa (ta)
(
Θ×

{
tb
})

> 0 implies λb
(
tb
)
(Θ× {ta}) > 0, and

(ii) for each tb ∈ T b, λb
(
tb
)
(Θ× {ta}) > 0 implies λa (ta)

(
Θ×

{
tb
})

> 0.9

7Note, if E is Borel in Θ×
(
T b∗\h

b
(
T b
))
, then it is Borel in Θ× T b∗ . As such, the map κ

a
∗ is well-defined.

8Proofs for this section can be found in Appendix A.
9As Stuart [38, 1997] points out, this is not quite mutual absolute continuity, in the sense of probability theory.
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The condition of mutual absolute continuity has an important relationship to the Equilibrium

Extension Property. Suppose we can embed a structure Λ =
〈
Θ;T a, T b;λa, λb

〉
into a structure

Λ∗ =
〈
Θ;T a∗ , T

b
∗ ;λ

a
∗, λ

b
∗

〉
. Further, assume that Λ∗ is mutually absolutely continuous. Then, a

type of Ann, viz. ta∗, assigns strictly positive probability to a type of Bob, viz. t
b
∗, if and only if t

b
∗

also assigns strictly positive probability to ta∗. Now, consider a type t
a
∗ that is not contained in the

structure induced by Λ. Can the type ta∗ assign strictly positive probability to a type of Bob in

the structure induced by Λ? No. The structure induced by Λ is a belief-closed subset. So, types

in this structure cannot assign positive probability to the type ta∗, which is what mutual absolute

continuity would require. As such, the type ta∗ must assign probability one to types in the difference

structure. That is, Λ induces a decomposition of Λ∗

Indeed, we have the following result.

Proposition 5.2 Fix Θ-based structures Λ and Λ∗, so that Λ can be properly embedded into Λ∗ and

so that Λ∗ satisfies mutual absolute continuity. Fix, also, a Θ-based game Γ, so that (Γ,Λ) has an

equilibrium. Then, 〈Λ,Λ∗〉 satisfies the Equilibrium Extension Property for Γ if and only if there is

an equilibrium for the game (Γ,Λ∗).

Economic models often impose the condition of a common prior assumption (CPA). The idea of

the CPA is that differences in beliefs reflect only differences in information. That is, if an outside

observer looks at the situation, he would be able to understand the different beliefs (i.e., associated

with different types) as reflecting some underlying belief, common to both players. Each type of

each player reflects the conditional of this belief on certain information.

In this situation, what does Ann think Bob thinks about Ann? Can a type of Ann consider

it possible that Bob considers that type of Ann impossible? The answer would seem to be no.

In particular, this appears to require that Ann considers it possible that Bob has learned certain

information that is inconsistent with the information she herself learned. This suggests that, if a

type structure satisfies the CPA, then it is mutually absolutely continuous. Indeed, this is the case,

and so the CPA has important implications for the Equilibrium Extension Property.

Let us formalize this idea. Fix a Θ-based type structure Λ =
〈
Θ;T a, T b;λa, λb

〉
. Write

[ta] for the event Θ × {ta} × T b, and likewise with a and b interchanged. Given a measure µ ∈

∆
(
Θ× T a × T b

)
with µ ([ta]) > 0, write µ (·|| [ta]) for conditional of µ on [ta] and write margΘ×T b µ

for the marginal of µ on Θ× T b.

Definition 5.4 Fix a Θ-based interactive type structure Λ =
〈
Θ;T a, T b;λa, λb

〉
. Call µ ∈ ∆

(
Θ× T a × T b

)

a common prior (for Λ) if Λ is countable and, for all ta ∈ T a,

(i) µ ([ta]) > 0,

(ii) λa (ta) = margΘ×T b µ (·|| [t
a]),

and, likewise, with a and b reversed. Say the structure Λ admits a common prior if there is a

common prior for Λ.
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Lemma 5.2 Fix a Θ-based interactive type structure Λ =
〈
Θ;T a, T b;λa, λb

〉
, where Λ admits a

common prior. Then, Λ it is mutually absolutely continuous.

Proof. Now, let µ be a common prior for Λ. Note that

λa (ta)
(
Θ×

{
tb
})
=

µ
(
Θ× {ta} ×

{
tb
})

µ (Θ× {ta} × T b)
.

So, λa (ta)
(
Θ×

{
tb
})

> 0 if and only if µ
(
Θ× {ta} ×

{
tb
})

> 0. But an analogous argument gives

that λb
(
tb
)
(Θ× {ta}) > 0 if and only if µ

(
Θ× {ta} ×

{
tb
})

> 0. This establishes the result.

As a corollary of Lemma 5.2:

Corollary 5.1 Fix Θ-based structures Λ and Λ∗, so that Λ can be properly embedded into Λ∗ and

so that Λ∗ admits a common prior. Fix, also, a Θ-based game Γ, so that (Γ,Λ) has an equilibrium.

Then, 〈Λ,Λ∗〉 satisfies the Equilibrium Extension Property for Γ if and only if there is an equilibrium

for the game (Γ,Λ∗).

Note, Corollary 5.1 involves a restriction on the type structure. Namely, it requires that the

structure Λ be embedded into the (countable) structure Λ∗, where Λ∗ admits a common prior. But

this does not imply that 〈Λ,Λ∗〉 satisfies the Equilibrium Extension Property. Rather, it says that

〈Λ,Λ∗〉 satisfies the Equilibrium Extension Property for a given game Γ, provided that (Γ,Λ∗) has

a Bayesian Equilibrium. So, the result involves a restriction on the game, too. In this sense, we

have a limited Equilibrium Extension Property.

Again, recall, Corollary 5.1 is false absent the common prior restriction (or absent the conditions

in Propositions 5.1-5.2). In the example of Section 4.2, 〈Λ1,Λ2〉 fails the Equilibrium Extension

Property for Γ1, despite the fact that there is an equilibrium of the Bayesian Game (Γ1,Λ2).

6 Restrictions on Games

In Section 5, we considered restrictions on the type structure. It was shown that, when the type

structure satisfies certain conditions, we do get an Equilibrium Extension Property, albeit in a

limited sense. Now, we show that, when the game itself satisfies certain conditions, we again get a

limited Extension Property.

Refer back to the negative results in Section 4. Both results began the construction with a

Θ0-based game Γ0 =
〈
Θ0;C

a
0 , C

b
0;π

a
0, π

b
0

〉
and a Θ0-based structure Λ0 =

〈
Θ0;T

a
0 , T

b
0 ;λ

a
0, λ

b
0

〉
, so

that (Γ0,Λ0) has no Bayesian Equilibrium. We can go further, and take Θ0, Ca0 , and Cb0 to be

compact metrizable, and T a0 and T b0 to be singletons. (See Section 7c.) In this case, Glicksberg’s

Theorem [19, 1952] says that one of the payoff functions–i.e., πa0 or πb0–must be discontinuous.

With this, each of the constructed Θ1-based games (i.e., the games called Γ1 in Sections 4.1-4.2)

also has a discontinuous payoff function.
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What if the game studied is continuous? For some such games, there is indeed an Extension

Property.

Definition 6.1 Say a Θ-based game, viz. Γ =
〈
Θ;Ca, Cb;πa, πb

〉
, is compact and continuous if

Ca and Cb are each compact and πa and πb are each continuous.

Proposition 6.1 Fix Θ-based structures Λ and Λ∗, so that Λ can be properly embedded into Λ∗ via
(
ha, hb

)
and T a∗ \h

a (T a) , T b∗\h
b
(
T b
)
is finite. If Γ is compact and continuous, then 〈Λ,Λ∗〉 satisfies

the Equilibrium Extension Property for Γ.

The proof can be found in Appendix B. Here, we give the idea. Doing so will illuminate why

we require T a∗ \h
a (T a) and T b∗\h

b
(
T b
)
to be finite.

Suppose Λ can be embedded into Λ∗ via
(
ha, hb

)
. Fix an equilibrium

(
sa, sb

)
of the Bayesian

Game (Γ,Λ). We want to show that there is a Bayesian Equilibrium of the game (Γ,Λ∗), viz.(
sa∗, s

b
∗

)
, that extends the equilibrium

(
sa, sb

)
, i.e., that satisfies sa = sa∗ ◦ h

a and sb = sb∗ ◦ h
b.

We will begin by constructing a certain game of complete information, viz. G, that depends on the

game Γ and the equilibrium
(
sa, sb

)
. There will be many players in this game, each corresponding

to a type in T a∗ \h
a (T a) and T b∗\h

b
(
T b
)
. As such, there are a finite number of players in this

game. Each such player gets to make a choice from Ca or Cb, as in Γ. The payoff functions will

be constructed in a specific way. In particular, they will depend on Γ and the equilibrium
(
sa, sb

)
.

The complete information game G is compact and continuous. Compactness follows from the

fact that the underlying game is compact. Continuity uses the fact that the underlying game is

continuous–but does not follow immediately from this fact. (Recall, the payoff functions depend

on the equilibrium and any given equilibrium may be discontinuous.)

Now we have a compact and continuous complete information game G, with a finite number of

players. As such, there is a mixed strategy equilibrium of G.

Finally, we return to the Bayesian game (Γ,Λ∗). We consider the strategies that extend the

equilibrium
(
sa, sb

)
of (Γ,Λ). We show that, in a certain sense, these strategies correspond to the

mixed strategies of the complete information game G. As such, we can use the fact that there is

a mixed strategy equilibrium of G to show that there is an equilibrium of (Γ,Λ∗) that extends the

equilibrium
(
sa, sb

)
of (Γ,Λ).

7 Discussion

This section discusses the relationship to the literature, and further discusses some of the results in

the paper.

a. Misspecifying the Type Structure: The idea that the analyst can misspecify the type

structure is not new to this paper. It can also be found in the robustness and interim rationalizability

literatures. Let us review the canonical questions in these areas:
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(i) What if the analyst misspecifies players’ actual higher-order beliefs?

(ii) What if the analyst misspecifies the players’ parameter set?

For (i): The sensitivity of an analysis to players’ higher-order beliefs has a long history in game

theory. This insight goes back to Geanakoplos-Polemarchakis [18, 1982], followed by Monderer-

Samet [30, 1989], Rubinstein [35, 1989], and Carlsson-van Damme [10, 1993]. Kajii-Morris [22,

1997] shows how misspecification of these beliefs matter for a Bayesian Equilibrium analysis.

The idea is that players may think that only parameters in E (a subset of Θ) are possible, they

may think that others think the same, etc..., up to some mth-order belief. In this case, we will

say (informally) that the event E satisfies mutual belief up to level m. The analyst looks at this

situation and incorrectly deduces that the event E satisfies mutual belief at all levels. But, in fact,

Ann’s (m+ 1)th-order belief considers the possibility that E is not mutually believed up to level m.

As such, the analyst misspecifies players’ hierarchies of beliefs–even if only by a little bit.

Here, we do not change players’ hierarchies of beliefs. Return to our examples. Note that

types ta1 and tb1 induce the exact same hierarchies of beliefs in both Λ1 and Λ2. The only difference

between the two situations is the context within which they lie.

For (ii): This question is discussed in papers such as Battigalli-Siniscalchi [5, 2003], Ely-Peski [14,

2006] and Dekel-Fudenberg-Morris [12, 2007].

The idea is that players may observe signals external to the game as specified. By condition-

ing their choices on these external signals, new choices may be consistent with equilibrium play.

Formally, this is the idea that the analyst’s parameter set is Θ, while the players’ parameter set is

Θ × Σ, where Σ is a payoff-irrelevant extra dimension of uncertainty. Liu [26, 2004] shows that

this is equivalent to the case in which the analyst uses a non-redundant Θ-based structure, but the

players, in fact, use a redundant Θ-based structure (as formalized in Battigalli-Siniscalchi [5, 2003],

Ely-Peski [14, 2006] and Dekel-Fudenberg-Morris [12, 2007]).

Here, we implicitly assume that the analyst ‘understands’ the players’ parameter set (or the

signals the players may see). To see this, note that we restrict attention to non-redundant structures.

Return to our negative results in Sections 4.1-4.2. Note that both the Θ1-based structures Λ1 and

Λ2 are non-redundant.10

Why do we restrict attention to non-redundant structures? The reason is to separate two diffi-

culties: By doing so, we see that, even if the analyst correctly specifies the signals the players may

observe, the analyst’s predictions may still differ from the players’ predictions. This can happen if

the analyst fails to ‘understand’ the context of the game.

10One could ask: The structure Λ1 also induces a {θ1}-based structure. Perhaps the structure Λ2 induces a
redundant {θ1}-based structure? If this were the case, we could not say that we restrict attention to non-redundant
structures.
But, note carefully that Λ2 does not induce a {θ1}-based structure. The parameteris in Θ1\ {θ1} are assigned

strictly postive probability, under the construction. Moreover, importantly, θ1 and the parameters in Θ1\ {θ1} induce
distinct payoffs. As such, Λ2 cannot be viewed as a redundant structure, where the underlying space of uncertainty
is the payoff matrix associated with θ1.
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b. The Context of the Game: There are two distinct views of a game. Under the first view, the

game itself is a complete description of all interactions past, present, and future. See, for instance,

the discussion in Kohlberg-Mertens [24, 1986, pp. 1005]. Under the second view, it is impractical

to write down “the big game.” Instead, the game studied represents a snapshot of the strategic

situation. This is a game-theoretic analog to Savage’s [36, 1954] Small Worlds view in decision

theory.

Our position is that each of these views is of interest–both deserve to be studied. Here, we

focus on the second view, where there is a history prior to the given game. As such, it seems natural

to consider the case where the history influences which hierarchies of beliefs players can hold. That

is, it seems natural to consider the case in which the history determines the context of the game.

In this case, two robustness questions arise. First, what if the players know more than the

analyst? This is the question we focused on here. But, we can also address a second question.

What if the analyst rules out more hierarchies than the players? In this case, the main result here

says that the analyst will not loose any predictions–instead, the analyst may introduce extraneous

predictions.

c. The Construction: The negative results in Section 4 constructed Bayesian Games based on

a “germ game” that had no equilibrium. The particular game used is irrelevant to the analysis.

What is important, however, is that such a game exists. To see that we can find such a game, recall

that Sion-Wolfe [37, 1957] provides an example of a complete information game in which there is no

mixed strategy equilibrium. Turn this into a Bayesian Game, with a singleton parameter set and

singleton type sets. This game has no Bayesian Equilibrium.

Both negative results make use of this non-existence “germ game.” As we pointed out, the

example in Section 4.1 can be viewed as a corollary of non-existence of equilibrium in Bayesian

Games. But, importantly, the example in Section 4.2 cannot. In particular, that game does have

an equilibrium–indeed, there, each belief closed subset of Λ2 induced a Bayesian Game with an

equilibrium! Moreover, we may not be able to construct this extension failure for other solution

concepts that fail existence in some “germ game.”

To see this last claim, think of the correlated rationalizability solution concept. There are games

for which the set of rationalizable strategy is empty. (See Example 2 in Dufwenberg-Stegeman [13,

2002].) Yet, we have the following result.

Result: Fix Θ-based structures, Λ and Λ∗, so that Λ can be properly embedded into

Λ∗. Fix also a Θ-based game Γ. If the rationalizable strategies are non-empty in both

the game (Γ,Λ) and (Γ,Λ∗), then 〈Λ,Λ∗〉 satisfies rationalizable extension and pull-back

properties.11

11The proof can be found in the Online Appendix. Dekel-Fudenberg-Morris [12, 2007] show an analogous result,
when the parameter and action sets are finite.
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As such, we cannot use the example in Dufwenberg-Stegeman as a “germ game” to resurrect the

second extension failure. (Note, carefully, in Section 4.2, both (Γ1,Λ1) and (Γ1,Λ2) did have an

equilibrium, and we still failed extension.)

In sum: The second extension failure not only makes use of a “germ game.” It also makes use

of the fact that, in a Bayesian Equilibrium, each type has a correct belief.

d. Large Type Structures: In Section 4.3, we said that, if we want a type structure that captures

all possible predictions, this structure may need to be redundant, i.e., may need to contain two types

that induce the same hierarchies of beliefs. Redundant structures have also played a role in other

papers. Refer to part a(ii) above and note that redundancy may also be appropriate if the analyst

misspecifies the players’ parameter sets.

It is important to note that these two types of redundancies are quite different. If the question

is misspecifying the context of the game, as here, we would introduce redundancies by adding a

belief-closed subset that is “identical” to one already present. (Refer to Figure 4.5 on this point.)

This would not be appropriate if the question is misspecifying the players’ parameter sets.

U 5,   0 0,   0

D 3,   0 3,   0

Ann

RL
Bob

U 0,   0 5,   0

D 3,   0 3,   0

Ann

RL
Bob

θ1-section θ2-section

Figure 7.1

To see this last claim: Refer to Example 7.1, which is essentially Example 1 in Dekel-Fudenberg-

Morris [12, 2007]. First, consider the structure Λ, with T a = {ta}, T b =
{
tb
}
, λa (ta) ({

(
θ1, tb

)
}) =

λa (ta) ({
(
θ2, t

b
)
}) = 1

2 , and λb
(
tb
)
({(θ1, t

a)}) = λb
(
tb
)
({(θ2, t

a)}) = 1
2 . In any Bayesian Equi-

librium here, ta plays Down. If we add a belief closed subset to this structure, as in Fig-

ure 4.5, we have new types ua and ub with λa (ua) ({
(
θ1, u

b
)
}) = λa (ua) ({

(
θ2, u

b
)
}) = 1

2 , and

λb
(
ub
)
({(θ1, u

a)}) = λb
(
ub
)
({(θ2, u

a)}) = 1
2 . Again, each type of Ann plays Down.

Consider instead the structure Λ∗, with T a∗ = {t
a
∗}, T

b
∗ =

{
tb∗, u

b
∗

}
, λa∗ (t

a
∗) ({

(
θ1, t

b
∗

)
}) =

λa∗ (t
a
∗) ({

(
θ2, u

b
∗

)
}) = 1

2 , λ
b
∗

(
tb∗
)
({(θ1, t

a
∗)}) = λb∗

(
tb∗
)
({(θ2, t

a
∗)}) =

1
2 , and λb∗

(
ub∗
)
({(θ1, t

a
∗)}) =

λb∗
(
ub∗
)
({(θ2, ta∗)}) =

1
2 . Note, the type ta∗ induces the same hierarchies of beliefs as the type ta

above. And, likewise, for types tb∗, u
b
∗ relative to the type t

b above. But, now there is an equilibrium
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where ta∗ plays Up, tb∗ plays Left, and ub∗ plays Right. (Again, Liu [26, 2004] tells us that we can

interpret this equilibrium as an equilibrium where the parameter space is, in fact, {θ1, θ2} × Σ, for

some payoff-irrelevant parameter space Σ.)

In sum: If the question is robustness to misspecifying the context of the game, we would add

redundancies so that the “new” types assign zero probability to the “old” types. However, if the

question is robustness to misspecifying the parameter set, we would add redundancies so that the

“new” types assign strictly positive probability to the “old” types.

e. The Common Prior Assumption: Definition 5.4 states that the CPA reflects two require-

ments, a common prior requirement and a positivity requirement.

Consider the sets [ta] = Θ×{ta} × T b and note that these sets form a partition of Θ× T a × T b.

Write τa for the subalgebra generated by this partition. Given a measure µ ∈ ∆
(
Θ× T a × T b

)
and

an event E in Θ × T a × T b, write µ (E, ·||τa) for a version of µ-conditional probability of E given

τa. (Note, since the conditioning events for Ann and Bob are distinct, the versions of conditional

probability will also be distinct.) The common prior requirement is: There exists a measure

µ ∈ ∆
(
Θ× T a × T b

)
and a version of µ-conditional probability of E given τa so that, for any type

ta and any event E in [ta], λa (ta)
(
projΘ×T b E

)
= µ (E, [ta] ||τa). (Note, µ (E, ·||τa) is constant on

[ta].) Positivity requires that, in addition, µ ([ta]) > 0, for each type ta ∈ T a.

The positivity requirement is important for Corollary 5.1. To see this, return to the type

structure Λ2, in Section 4.2. Per part c above, we can take Θ0, T
a
0 , and T b0 to be singletons, so

that Θ1 = {θ0, θ1}, T a2 = {ta0, t
a
1}, and T b2 =

{
tb0, t

b
1

}
. This structure satisfies the common prior

requirement. In particular, we can choose the common prior µ so that µ(θ1, t
a
1, t

b
1) = 1.

Let us verify that this measure µ is indeed a common prior. To see this, fix an event E in

Θ1×T a2 ×T b2 . For any state (·, t
a
0 , ·) ∈ [t

a
0 ], let µ (E, (·, ta0, ·) ||τ

a) equal 1−p (resp p) if
(
θ1, t

a
0, t

b
1

)
∈ E

and
(
θ0, ta0, t

b
0

)
/∈ E (resp.

(
θ1, ta0, t

b
1

)
/∈ E and

(
θ0, ta0 , t

b
0

)
∈ E). Let µ (E, (·, ta0, ·) ||τ

a) equal 1 if
(
θ0, t

a
0 , t

b
0

)
,
(
θ1, t

a
0, t

b
1

)
∈ E. Otherwise, let µ (E, (·, ta0, ·) ||τ

a) equal 0. Next, consider a state

(·, ta1, ·) ∈ [t
a
1]. For any such state, let µ (E, (·, ta1, ·) ||τ

a) equal 1 if
(
θ1, ta1, t

b
1

)
∈ E. Otherwise,

set µ (E, (·, ta1, ·) ||τ
a) equal to 0. It is readily verified that this map satisfies the requirements of a

(regular and proper) version of µ-conditional probability.

So, we do indeed have a common prior for Λ2. This prior is not positive–it assigns zero

probability to [ta0] and
[
tb0
]
. Of course, Corollary 5.1 tells us it cannot be. Put differently, we can

now see that the common prior requirement alone does not suffice for Corollary 5.1. We also need

the positivity requirement.

The need for the positivity requirement is important from the perspective of generalizing Corol-

lary 5.1. In particular, if T a is uncountably infinite, there is no probability measure that assigns

strictly positive probability to each event [ta]. This suggests a limitation to Corollary 5.1. (Al-

ternatively, this might suggest that other tools are needed to study the case of uncountably infinite

spaces–i.e., lexicographic probability systems [6, 1991], conditional probability systems [34, 1955],
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or non-standard probabilities.)

There is an interesting connection to be made at the conceptual level. Does a non-positive

common prior fit with the CPA? Arguably not. Recall, the idea of the CPA is that differences

in probabilities only reflect differences in information. As a consequence, the only personalistic

features of probability come from informational differences. But, there may be many (regular and

proper) versions of conditional probability. Given this, the common prior requirement (as specified

above) need not pin down the beliefs (i.e., each λa (ta) , λb
(
tb
)
). Indeed, in the example above, there

are many Θ-based structures Λ corresponding to the common prior µ. In fact, choosing distinct

probabilities p gives just such structures.

f. Restrictions on the Game: Section 6 showed an Equilibrium Extension Property for games

that are compact and continuous. Of course, many games of interest, e.g., auction and voting

games, fail the continuity property, despite the fact that they do have an equilibrium.

While Proposition 6 gives a positive result, it does not say that the Equilibrium Extension Prop-

erty is satisfied whenever the game is compact and continuous. The result also imposes a condition

on the type structure–it requires that there are a finite number of types in T a∗ \h
a (T a) , T b∗\h

b
(
T b
)
.

We conjecture, but do not know, that the result does not obtain absent this condition.
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Appendix A Proofs for Section 5

Lemma A1 Suppose Λ induces a decomposition of Λ∗. Consider the difference structure, viz.

(Λ∗\Λ) =
〈
Θ;T a∗ \h

a (T a) , T b∗\h
b
(
T b
)
;κa∗, κ

b
∗

〉
.

Then, (Λ∗\Λ) is an interactive type structure, in the sense of Definition 2.1.

Proof. First, (T a∗ \h
a (T a)) and

(
T b∗\h

b
(
T b
))
are Polish. To see this, note that (T a∗ \h

a (T a)) ×
(
T b∗\h

b
(
T b
))
is closed in T a∗ × T b∗ , and so (T

a
∗ \h

a (T a)) (resp.
(
T b∗\h

b
(
T b
))
) is closed in T a∗ (resp.

T b∗). Since (T a∗ \h
a (T a)) (resp.

(
T b∗\h

b
(
T b
))
) is a closed subsets of a Polish space, it is Polish

(Aliprantis-Border [1, 1999; page 73]).

Now, we turn to show that κa∗ and κb∗ are measurable. We will show this for κa∗; an analogous

argument can be made for κb∗.

Fix an event E in ∆
(
Θ×

(
T b∗\h

b
(
T b
)))
. We want to show that (κa∗)

−1 (E) is an event in

T a∗ \h
a (T a). To show this, it suffices to find an event F in ∆

(
Θ× T b∗

)
so that (κa∗)

−1 (E) =

(λa∗)
−1 (F ). If so, then the measurability of κa∗ follows from the measurability of λa∗ and the fact

that we endow T a∗ \h
a (T a) with the induced topology.

Let F be the set of measures µ ∈ ∆
(
Θ× T b∗

)
so that there is some measure ν ∈ E, with

µ (G) = ν (G) for every event G in Θ×
(
T b∗\h

b
(
T b
))
. Then F is an event in ∆

(
Θ× T b∗

)
. (This is

an immediate consequence of Lemma 14.16 in Aliprantis-Border [1, 1999].)

To show that (κa∗)
−1 (E) = (λa∗)

−1 (F ): Fix a type ta∗ ∈ T a∗ \h
a (T a) with κa∗ (t

a
∗) ∈ E. Then, cer-

tainly, there is some measure µ ∈ F so that µ (G) = κa∗ (t
a
∗) (G) for each event G in Θ×

(
T b∗\h

b
(
T b
))
.

By construction, µ = λa∗ (t
a
∗), so that ta∗ ∈ (λa∗)

−1 (F ). Conversely, fix a type ta∗ ∈ T a∗ with

λa∗ (t
a
∗) ∈ F . Then, there is some measure ν ∈ E with λa∗ (t

a
∗) (G) = ν (G) for every event G in

Θ ×
(
T b∗\h

b
(
T b
))
. In particular, λa∗ (t

a
∗)
(
Θ×

(
T b∗\h

b
(
T b
)))

= ν
(
Θ×

(
T b∗\h

b
(
T b
)))

= 1, and so

ta∗ ∈ T a∗ \h
a (T a). By construction, κa∗ (t

a
∗) = ν. With this, ta∗ ∈ (κ

a
∗)
−1 (E), as required.

The next lemma will be of use throughout the appendices.

Lemma A2 Let Λ and Λ∗ be two Θ-based interactive type structures, so that Λ can be embedded

into Λ∗ via
(
ha, hb

)
. Then, for each ta ∈ T a, λa (ta) (E) = λa∗ (h

a (ta))
((
id×hb

)
(E)

)
for every

event E in Θ× T b.

Proof. Fix some ta ∈ T a and some event E in Θ× T b. Property 3.2 gives that
(
id×hb

)
(E) is an

event in Θ × T b∗ , and E = (id×hb)−1
((
id×hb

)
(E)

)
. Now, using the fact that

(
ha, hb

)
is a type

morphism,

λa∗ (h
a (ta))

((
id×hb

)
(E)

)
= λa (ta)

(
(id×hb)−1

((
id×hb

)
(E)

))
= λa (ta) (E) ,

as required.
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Proof of Lemma 5.1. Suppose Λ induces a decomposition of Λ∗ via
(
ha, hb

)
. Write

Λ
(
ha, hb

)
=
〈
Θ;ha (T a) , hb

(
T b
)
;κa, κb

〉

for the structure induced by Λ, and write

(Λ∗\Λ) =
〈
Θ;T a∗ \h

a (T a) , T b∗\h
b
(
T b
)
;κa∗, κ

b
∗

〉

for the difference structure. By Lemma A1, the difference structure is a well-defined type structure.

Fix a Θ-based game Γ and an equilibrium
(
sa, sb

)
for the Bayesian Game (Γ,Λ). Suppose there

exists an equilibrium for the difference game (Γ, (Λ∗\Λ)), viz.
(
sa
�
, sb
�

)
. Construct a strategy, viz.

sa∗, for Ann in (Γ,Λ∗), as follows. For each ta ∈ T a, let sa∗ (h
a (ta)) = sa (ta). (This is well-defined,

since ha is injective.) For each ta∗ ∈ T a∗ \h
a (T a), let sa∗ (t

a
∗) = sa

�
(ta∗). Likewise for Bob.

Note that sa∗ is measurable, and so a strategy of (Γ,Λ∗): To see this, fix an event E in ∆(Ca).

Note (sa∗)
−1 (E) = (sa

�
)−1 (E)∪ ha((sa)−1 (E)). Since ha is bimeasurable (Property 3.2) and sa∗, s

a
�

are measurable, (sa∗)
−1 (E) is the union of two measurable sets and so measurable.

We will now show that
(
sa∗, s

b
∗

)
is an equilibrium for the game (Γ,Λ∗).

First, fix a type ha (ta) ∈ ha (T a). Given a strategy ra∗ : T
a
∗ → ∆(Ca), write ra for the strategy

ra : T a → ∆(Ca) with ra (ua) = ra∗ (h
a (ua)) for all ua ∈ T a. Likewise for b. Then, using Lemma

A2, for any strategies ra∗ and rb∗,

∫

Θ×T b
∗

πa
(
θ, ra∗ (h

a (ta)) , rb∗
(
tb∗
))

dλa∗ (h
a (ta)) =

∫

Θ×T b
πa
(
θ, ra (ta) , rb

(
tb
))

dλa (ta) .

So, using the fact that
(
sa, sb

)
is a Bayesian Equilibrium of (Γ,Λ),

∫

Θ×T b
∗

πa
(
θ, sa∗ (h

a (ta)) , sb∗
(
tb∗
))

dλa∗ (h
a (ta)) ≥

∫

Θ×T b
∗

πa
(
θ, ra∗ (h

a (ta)) , sb∗
(
tb∗
))

dλa∗ (h
a (ta)) ,

(A1)

for all strategies ra∗ of the game (Γ,Λ∗).

Turn to a type ta∗ ∈ T a∗ \h
a (T a). Given a strategy ra∗ : T

a
∗ → ∆(Ca), write ra

�
for the strategy

ra
�
: T a∗ \h

a (T a)→ ∆(Ca) with ra
�
(ta∗) = ra∗ (t

a
∗) for all t

a
∗ ∈ T a∗ \h

a (T a). Likewise for b. Certainly,

∫

Θ×T b
∗

πa
(
θ, ra∗ (t

a
∗) , r

b
∗

(
tb∗
))

dλa∗ (t
a
∗) =

∫

Θ×T b
∗
\hb(T b)

πa
(
θ, ra

�
(ta∗) , r

b
�

(
tb∗
))

dλa∗ (t
a
∗) .

So, using the fact that
(
sa
�
, sb
�

)
is a Bayesian Equilibrium of (Γ,Λ∗\Λ),

∫

Θ×T b
∗

πa
(
θ, sa∗ (t

a
∗) , s

b
∗

(
tb∗
))

dλa∗ (t
a
∗) ≥

∫

Θ×T b
∗

πa
(
θ, ra∗ (t

a
∗) , s

b
∗

(
tb∗
))

dλa∗ (t
a
∗) , (A2)

for all strategies ra∗ of the game (Γ,Λ∗).
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Taking Equations A1-A2, together with analogous statements for player b, gives that
(
sa∗, s

b
∗

)
is

an equilibrium for the game (Γ,Λ∗). The converse follows immediately from the Pull-Back Property,

i.e., Proposition 3.1.

Proof of Proposition 5.1. If 〈Λ,Λ∗〉 satisfies the Extension Property for Γ, then it is immediate

that there is an equilibrium for the game (Γ,Λ∗). Conversely, suppose there is an equilibrium for

the game (Γ,Λ∗). By the Pull-Back Property (Proposition 3.1), there is an equilibrium for the

difference game (Γ, (Λ∗\Λ)). Now, using Lemma 5.1, 〈Λ,Λ∗〉 satisfies the Equilibrium Extension

Property for Γ.

Lemma A3 Fix non-redundant Θ-based structures Λ and Λ∗, so that Λ can be properly embedded

into Λ∗ via
(
ha, hb

)
. If Λ∗ is mutually absolutely continuous, then Λ induces a decomposition of

Λ∗ via
(
ha, hb

)
.

Proof. By Lemma 3.1, we can take T a∗ \h
a (T a) to be non-empty. In particular, fix ta∗ ∈ T a∗ \h

a (T a).

Recall, since Λ∗ is mutually absolutely continuous, it is countable. As such, we can find some t
b
∗ ∈ T b∗

with λa∗ (t
a
∗)
(
Θ×

{
tb∗
})

> 0. Again using the fact that Λ∗ is mutually absolutely continuous,

λb∗
(
tb∗
)
(Θ× {ta∗}) > 0. So, by Lemma A2, t

b
∗ ∈ T b∗\h

b
(
T b
)
. That is, λa∗ (t

a
∗)
(
Θ×

(
T b∗\h

b
(
T b
)))

=

1. In addition, we have established that T b∗\h
b
(
T b
)
is non-empty. Reversing the argument for

tb∗ ∈ T b∗\h
b
(
T b
)
, we get also that λb∗

(
tb∗
)
(Θ× (T a∗ \h

a (T a))) = 1. This establishes the result.

Proof of Proposition 5.2. Immediate from Lemma A3 and Proposition 5.1.

Appendix B Proofs for Section 6

This appendix is devoted to proving Proposition 6.1. Fix two (non-redundant) Θ-based type

structures Λ =
〈
Θ;T a, T b;λa, λb

〉
and Λ∗ =

〈
Θ;T a∗ , T

b
∗ ;λ

a
∗, λ

b
∗

〉
. Suppose, further, that Λ can be

properly embedded into Λ∗ via
(
ha, hb

)
, so that T a∗ \h

a (T a) and T b∗\h
b
(
T b
)
are finite (and possibly

empty). By Lemma 3.1, it is without loss of generality to assume that T a∗ \h
a (T a) is non-empty.

Write T a∗ \h
a (T a) = {1, . . . ,M}. The set T b∗\h

b
(
T b
)
may or may not be empty. We will begin by

assuming that T b∗\h
b
(
T b
)
is non-empty, and can be written as T b∗\h

b
(
T b
)
= {1, . . . , L}. We later

discuss the case in which T b∗\h
b
(
T b
)
is empty.

Consider a Θ-based compact and continuous game Γ =
〈
Θ;Ca, Cb;πa, πb

〉
. Fix a Bayesian

Equilibrium of the game (Γ,Λ), viz.
(
sa, sb

)
. We want to show that there is a Bayesian Equilibrium

of the game (Γ,Λ∗), viz.
(
sa∗, s

b
∗

)
, with sa = sa∗ ◦ h

a and sb = sb∗ ◦ h
b.

Section 6 gives the idea of the proof. In particular, we begin by constructing the game of complete

information, namely G. The game has M + L players, corresponding to T a∗ \h
a (T a) = {1, . . . ,M}

and T b∗\h
b
(
T b
)
= {1, . . . , L}. Write m for a player in {1, . . . ,M} and l for a player in {1, . . . , L}.

The choice set for a player m ∈ T a∗ \h
a (T a) is Ca, and the choice set for a player l ∈ T b∗\h

b
(
T b
)
is

Cb.
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We now define the payoff functions. In particular, we will have certain maps νm : Ca → R and

wm : Ca ×
[
Cb
]L
→ R, which we will soon specify. Then, we will define the payoff function for

player m as um : [Ca]M ×
[
Cb
]L
→ R, where

um
(
ca1 , . . . , c

a
m, . . . , caM , cb1, . . . , c

b
L

)
:= vm (cam) +wm

(
cam, cb1, . . . , c

b
L

)
.

The payoff function for player l is defined analogously.

Now, we turn to specifying vm and wm. Recall, hb : T b → T b∗ is injective and bimeasurable

(Properties 3.1-3.2). As such, we can define a bijective and bimeasurable map gb : hb
(
T b
)
→ T b,

so that gb
(
hb
(
tb
))
= tb. Now, we define vm : Ca → R so that

vm (ca) :=

∫

Θ×hb(T b)

πa
(
θ, ca, sb

(
gb
(
tb∗
)))

dλa∗ (m) .

We also define wm : Ca ×
[
Cb
]L
→ R so that

wm
(
ca, cb1, . . . , c

b
L

)
:=

∫

Θ×(T b
∗
\hb(T b))

πa(θ, ca,−→c b
(
tb∗
)
)dλa∗ (m) ,

where −→c b
(
tb∗
)
= cbl , if t

b
∗ = l.

To show that the payoff function um is continuous, we show that vm and wm are continuous.

The proof will make use of two technical results.

Lemma B1 Fix metrizable spaces Ω1,Ω2. Let f : Ω1 ×Ω2 → R be a bounded continuous function

and define F : Ω1 → R so that

F (ω1) =

∫

E2

f (ω1, ω2) dµ,

where E2 is some event in Ω2 and µ ∈ ∆(Ω2). Then, F is a bounded continuous function.

Proof. The fact that F is bounded follows directly from the fact that f is bounded and µ (E2) ≤ 1.

We focus on showing that F is continuous. For this, fix a sequence (ω1,n : n = 1, 2, . . .) contained

in Ω1 and suppose ω1,n → ω1,∗. To show that F is continuous, it suffices to show that F (ω1,n)→

F (ω1,∗).

Write f∗ (·) : Ω2 → R for the ω1,∗-section of the map f . Also, for each n, write fn (·) : Ω2 → R

for the ω1,n-section of the map f . Let’s point to two properties of these maps: First, since f is

continuous, each of f∗, f1, f2, . . . is measurable (Aliprantis-Border [1, 1999; Theorem 4.47]). Second,

since f is bounded, f∗ is bounded and the sequence (fn : n = 1, 2, . . .) is uniformly bounded. Given

this, it suffices to show that fn → f∗. If so, then, by the Bounded Convergence Theorem, F (ω1,n)→

F (ω1,∗). (See Doob [11, 1993; pages 83-84].)

To show that fn → f∗: Note that ω1,n → ω1,∗. So, for any ω2, (ω1,n, ω2) → (ω1,∗, ω2). Given

that f is continuous, it follows that fn → f∗, as desired.
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Lemma B2 Fix topological spaces Ω1, . . . ,ΩN ,Φ. Let J be an integer between 1 and N , and write

proj for the projection of Ω1× . . .×ΩN onto Ω1× . . .×ΩJ . If f : Ω1× . . .×ΩJ → Φ is continuous,

then f ◦ proj is also continuous.

Proof. Note that proj is a continuous function. Since f ◦ proj is the composite of two continuous

functions, it is continuous.

Lemma B3 The function vm is continuous.

Proof. Fix a sequence (can : n ∈ N) in Ca that converges to ca ∈ Ca. It suffices to show that, for

each ε > 0, there exists some n with |vm (can)− vm (ca)| < ε for all n > n. For this, it will be useful

to recall that πa is bounded, and so we can write πa
(
Θ×Ca ×Cb

)
⊆ [−ρ, ρ] where ρ > 0.

Consider the map sb ◦ gb and note that this is a measurable map from a metrizable space to a

Polish space. So, by Lusin’s Theorem (see Kechris [23, 1995; Theorem 17.12]), there exists a closed

set F ⊆ hb
(
T b
)
with

λa∗ (m)
(
Θ×

(
hb
(
T b
)
\F
))

<
ε

4ρ

and so that (sb ◦ gb)|F is continuous. As such, the map Θ×Ca × F → Θ×Ca ×∆
(
Cb
)
, given by

(
θ, ca, tb∗

)
�→ (θ, ca, sb

(
gb
(
tb∗
))
), is also continuous. With this and the fact that πa is continuous,

we can define a continuous mapping from Θ×Ca × F to R by
(
θ, ca, tb∗

)
�→ πa(θ, ca, sb

(
gb
(
tb∗
))
).

Note, Θ×Ca × F is metrizable. As such, using Lemma B1, there exists an n such that, for all

n > n,

∣∣∣∣

∫

Θ×F

πa
(
θ, can, s

b
(
gb
(
tb∗
)))

dλa∗ (m)−

∫

Θ×F

πa
(
θ, ca, sb

(
gb
(
tb∗
)))

dλa∗ (m)

∣∣∣∣ <
ε

2
.

Now note:

|vm (can)− vm (ca)| =

∣∣∣∣∣

∫

Θ×hb(T b)

[πa
(
θ, can, s

b
(
gb
(
tb∗
)))

− πa
(
θ, ca, sb

(
gb
(
tb∗
)))
]dλa∗ (m)

∣∣∣∣∣

≤

∣∣∣∣

∫

Θ×F

[πa
(
θ, can, s

b
(
gb
(
tb∗
)))

− πa
(
θ, ca, sb

(
gb
(
tb∗
)))
]dλa∗ (m)

∣∣∣∣

+

∣∣∣∣∣

∫

Θ×(hb(T b)\F )

[πa
(
θ, can, s

b
(
gb
(
tb∗
)))

− πa
(
θ, ca, sb

(
gb
(
tb∗
)))
]dλa∗ (m)

∣∣∣∣∣

<
ε

2
+ 2ρ(

ε

4ρ
)

= ε,

as desired.

Lemma B4 The map wm is continuous.
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Proof. For l ∈ {1, . . . , L}, define wm,l : Ca ×Cb → R by

wm,l
(
ca, cb

)
=

∫

Θ×{l}

πa
(
θ, ca, cb

)
dλa∗ (m) .

Since πa is continuous, Lemma B1 gives that each wm,l is continuous. Note:

wm
(
ca, cb1, . . . , c

b
L

)
= wm,1

(
ca, cb1

)
+ . . .+wm,l

(
ca, cbl

)
+ . . .+wm,L

(
ca, cbL

)
.

So, using Lemma B2 and the fact that a finite sum of continuous functions is continuous, we have

that wm is continuous.

Lemma B5 The payoff functions um are each continuous.

Proof. Use Lemmata B3, B4, and B2, to get that um is the sum of two continuous functions. So,

um is continuous.

We extend the payoff functions um to [∆ (Ca)]M ×
[
∆
(
Cb
)]L

in the usual way. And, likewise,

for the payoff functions ul.

Lemma B6 There exists some mixed choice equilibrium for the game G.

Proof. Note, Ca and Cb are compact metrizable. By Lemma B5, each um and ul is continuous.

So, the result follows from Glicksberg’s Theorem [19, 1952].

Let S
a

∗ be the set of all strategies ra∗ of (Γ,Λ∗) satisfying ra∗ ◦ h
a = sa. Note, this is indeed

well-defined since ha is injective. Likewise define S
b

∗.

A standard argument establishes the next remark. (Specifically, it involves two steps. First, it

changes the order of integration. Second, it uses the fact that ha is bimeasurable to get: Any map

ra∗ : T
a
∗ → ∆(Ca) satisfying (ra∗ |h

a (T a)) = sa ◦ ga is measurable if and only if ra∗ | (T
a
∗ \h

a (T a)) is

measurable.)

Remark B1 Fix some m ∈ T a∗ \h
a (T a). For any

(
ra∗ , r

b
∗

)
∈ S

a

∗ × S
b

∗,

Πa
(
m, ra∗ , r

b
∗

)
= um

(
ra∗ (1) , . . . , r

a
∗ (m) , . . . , r

a
∗ (M) , rb∗ (1) , . . . , r

b
∗ (L)

)
.

Conversely, given some (σa1, . . . , σ
a
M ) ∈ [∆ (C

a)]M and some
(
σb1, . . . , σ

b
L

)
∈
[
∆
(
Cb
)]L

, there exists

a unique
(
ra∗ , r

b
∗

)
∈ S

a

∗ × S
b

∗ with (ra∗ (1) , . . . , r
a
∗ (M)) = (σa1 , . . . , σ

a
M ) and

(
rb∗ (1) , . . . , r

b
∗ (L)

)
=

(
σb1, . . . , σ

b
L

)
. In this case,

Πa
(
m, ra∗ , r

b
∗

)
= um

(
σa1, . . . , σ

a
m, . . . , σaM , σb1, . . . , σ

b
L

)
.

Lemma B7 Fix Θ-based structures Λ and Λ∗, so that Λ can be properly embedded into Λ∗ via
(
ha, hb

)
and T a∗ \h

a (T a), T b∗\h
b
(
T b
)
are each finite and non-empty. The pair 〈Λ,Λ∗〉 satisfies the

Equilibrium Extension Property for Γ.
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Proof. Consider the game G constructed above. By Lemma B6, there exists a mixed strategy

profile, viz.
(
σa1, . . . , σ

a
M , σb1, . . . , σ

b
L

)
, that is an equilibrium for this game. Now, by Remark B1,

we can find a strategy profile
(
sa∗, s

b
∗

)
∈ S

a

∗ × S
b

∗ so that (s
a
∗ (1) , . . . , s

a
∗ (M)) = (σa1, . . . , σ

a
M ) and(

sb∗ (1) , . . . , s
b
∗ (L)

)
=
(
σb1, . . . , σ

b
L

)
. We will show that

(
sa∗, s

b
∗

)
is a Bayesian Equilibrium for the

game (Γ,Λ∗).

First, fix some type ha (ta) ∈ ha (T a). Given any strategy qa∗ : T
a
∗ → ∆(Ca), we have

∫

Θ×T b
∗

πa
(
θ, qa∗ (h

a (ta)) , sb∗
(
tb∗
))

dλa∗ (h
a (ta)) =

∫

Θ×hb(T b)

πa
(
θ, qa∗ (h

a (ta)) , sb∗
(
tb∗
))

dλa∗ (h
a (ta))

∫

Θ×T b
πa
(
θ, qa∗ (h

a (ta)) , sb∗
(
hb
(
tb
)))

dλa (ta) ,

where we repeatedly use Lemma A2. Using this and the fact that
(
sa, sb

)
=
(
sa∗ ◦ h

a, sb∗ ◦ h
b
)
is a

Bayesian equilibrium for the game (Γ,Λ), we have that

∫

Θ×T b
∗

πa
(
θ, sa∗ (h

a (ta)) , sb∗
(
tb∗
))

dλa∗ (h
a (ta)) =

∫

Θ×T b
πa
(
θ, sa∗ (h

a (ta)) , sb∗
(
hb
(
tb
)))

dλa (ta)

≥

∫

Θ×T b
πa
(
θ, qa∗ (h

a (ta)) , sb∗
(
hb
(
tb
)))

dλa (ta)

=

∫

Θ×T b
∗

πa
(
θ, qa∗ (h

a (ta)) , sb∗
(
tb∗
))

dλa∗ (h
a (ta)) ,

for all strategies qa∗ of the game (Γ,Λ∗).

Next, fix some type m ∈ T a∗ \h
a (T a). Note, for any strategy qa∗ of the game, there exists a

strategy pa∗ ∈ S
a

∗ with qa∗ (m) = pa∗ (m) and, so, Π
a
(
m, qa∗ , s

b
∗

)
= Πa

(
m, pa∗, s

b
∗

)
. By Remark B1 and

the fact that
(
σa1, . . . , σ

a
M , σb1, . . . , σ

b
L

)
is an equilibrium, we have that Πa

(
m, sa∗, s

b
∗

)
≥ Πa

(
m, qa∗ , s

b
∗

)
,

for all strategies qa∗ of the game (Γ,Λ∗).

We can repeat the argument, reversing a and b. This gives that, for each type tb∗ ∈ T b∗ ,

Πb
(
tb∗, s

a
∗, s

b
∗

)
≥ Πb

(
tb∗, s

a
∗, q

b
∗

)
,

for all strategies qb∗ of the game (Γ,Λ∗).

As such,
(
sa∗, s

b
∗

)
is a Bayesian equilibrium of (Γ,Λ∗). Moreover, s

a
∗ ◦ h

a = sa and sb∗ ◦ h
b = sb,

as required.

Now, consider the case where T b∗\h
b
(
T b
)
= ∅. Here, the game G has M players. We define

each um so that

um
(
ca1, . . . , c

a
m, . . . , caM , cb1, . . . , c

b
L

)
:= vm (cam) .

Then, we can repeat the above argument to get the following Lemma.

Lemma B8 Fix Θ-based structures Λ and Λ∗, so that Λ can be properly embedded into Λ∗ via
(
ha, hb

)
and T b∗\h

b
(
T b
)
= ∅. The pair 〈Λ,Λ∗〉 satisfies the Equilibrium Extension Property for Γ.
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Proof of Proposition 6.1. Immediate from Lemmata B7-B8.
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