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Abstract
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dynamics are driven by the score.
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1 Introduction

Time series models in which a parameter of a conditional distribution is a
function of past observations are widely used in econometrics. Such models
are termed �observation driven� as opposed to �parameter driven�. Lead-
ing examples of observation driven models are contained within the class of
generalized autoregressive conditional heteroskedasticity (GARCH) models,
introduced by Bollerslev (1986) and Taylor (1986). These models contrast
with stochastic volatility (SV) models which are parameter driven in that
volatility is determined by an unobserved stochastic process. Other exam-
ples of observation driven models which are directly or indirectly related to

1



volatility are duration and multiplicative error models (MEMs); see Engle
and Russell (1998), Engle (2002) and Engle and Gallo (2006). Like GARCH
and SV they are used primarily for �nancial time series, but for intra-day
data rather than daily or weekly observations.
Despite the enormous e¤ort put into developing the theory of GARCH

models, there is still no general uni�ed theory for asymptotic distributions
of maximum likelihood (ML) estimators. To quote a recent review by Zivot
(2009, p 124): �Unfortunately, veri�cation of the appropriate regularity con-
ditions has only been done for a limited number of simple GARCHmodels,...�.
The class of exponential GARCH, or EGARCH, models proposed by Nelson
(1991) takes the logarithm of the conditional variance to be a linear function
of the absolute values of past observations and by doing so eliminates the
di¢ culties surrounding parameter restrictions since the variance is automat-
ically constrained to be positive. However, the asymptotic theory remains
a problem; see Linton (2008). Apart from some very special cases studied
in Straumann (2005), the asymptotic distribution of the ML estimator1 has
not been derived. Furthermore, EGARCH models su¤er from a signi�cant
practical drawback in that when the conditional distribution is Student�s t
(with �nite degrees of freedom) the observations from stationary models have
no moments.
This paper proposes a formulation of observation driven volatility models

that solves many of the existing di¢ culties. The �rst element of the approach
is that time-varying parameters (TVPs) are driven by the score of the con-
ditional distribution. This idea was suggested independently in papers2 by
Creal et al (2010) and Harvey and Chakravarty (2009). Creal et al (2010)
went on to develop a whole class of score driven models, while Harvey and
Chakravarty (2009) concentrated on EGARCH. However, in neither paper
was the asymptotic theory for the estimators addressed.
It is shown here that when the conditional score is combined with an

exponential link function, the asymptotic distribution of the maximum like-
lihood estimator of the dynamic parameters can be derived. The theory is
much more straightforward than it is for GARCH models; see, for example,
Straumann and Mikosch (2006). Furthermore an analytic expression for the
asymptotic covariance matrix can be obtained and the conditions for the

1Some progress has been made with quasi-ML estimation applied to the logarithms of
squared observations; see Za¤aroni (2010).

2Earlier versions of both papers appeared as discussion papers in 2008.
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asymptotic theory to be valid are easily checked.
The exponential conditional volatility models considered here have a num-

ber of attractions, apart from the fact that their asymptotic properties can
be established. In particular, an exponential link function ensures positive
scale parameters and enables the conditions for stationarity to be obtained
straightforwardly. Furthermore, although deriving a formula for an auto-
correlation function (ACF) is less straightforward than it is for a GARCH
model, analytic expressions can be obtained and these expressions are more
general. Speci�cally, formulae for the ACF of the (absolute values of ) the
observations raised to any power can be obtained. Finally, not only can
expressions for multi-step forecasts of volatility be derived, but their con-
ditional variances can be also found and the full conditional distribution is
easily simulated.
After introducing the idea of dynamic conditional score (DCS) models in

section 2, the main result on the asymptotic distribution is set out in section
3. The conditional distribution of the observations in the Beta-t-EGARCH
model, studied by Harvey and Chakravarty (2009), is Student�s t with �
degrees of freedom. The volatility is driven by the score, rather than absolute
values, and, because the score has a Beta distribution, all moments of the
observations less than � exist when the volatility process is stationary. The
Beta-t-EGARCH model is reviewed in section 4 and the conditions for the
asymptotic theory to go through are set out. The complementary Gamma-
GED-EGARCH model is also analyzed. Leverage is introduced into the
models and the asymptotic theory extended to deal with it.
Section 5 proposes DCS models with an exponential link function for the

time-varying mean when the conditional distribution has a Gamma, Weibull,
Burr or F- distribution. The results in section 3 yield obtain the asymp-
totic distribution of the ML estimators. Section 6 reports �tting a Beta-
t-EGARCH model to daily stock index returns and compares the analytic
standard errors with numerical standard errors.

2 Dynamic conditional volatility models

An observation driven model is set up in terms of a conditional distribution
for the t� th observation. Thus

p(ytj�tjt�1; Yt�1); t = 1; ::::; T (1)
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�t+1jt = g(�tjt�1; �t�1jt�2; :::; Yt)

where Yt denotes observations up to, and including yt; and �tjt�1 is a para-
meter that changes over time. The second equation in (1) may be regarded
as a data generating process or as a way of writing a �lter that approximates
a nonlinear unobserved components (UC) model. In both cases the notation
�t+1jt stresses its status as a parameter of the conditional distribution and as
a �lter, that is a function of past observations. The likelihood function for
an observation driven model is immediately available since the joint density
of a set of T observations is

L( ) =
TY
t=1

p(ytj�tjt�1; Yt�1; );

where  denotes a vector of unknown parameters.
The �rst-order Gaussian GARCH model is an observation driven model

in which �tjt�1 = �2tjt�1: As such it may be written

yt j Yt�1 � NID
�
0; �2tjt�1

�
�2t+1jt = � + ��2tjt�1 + �vt; � > 0; � � �; � � 0; (2)

where � = �+ � and vt = y2t � �2tjt�1 is a martingale di¤erence (MD).
The distributions of returns typically have heavy tails. Although the

GARCH structure induces excess kurtosis in the returns, it is not usually
enough to match the data. As a result, it is now customary to assume that
the conditional distribution has a Student t�-distribution, where � denotes
degrees of freedom. The GARCH-t model, which was originally proposed by
Bollerslev (1987), is widely used in empirical work and as a benchmark for
other models. The t-distribution is employed in the predictive distribution
of returns and used as the basis for maximum likelihood (ML) estimation
of the parameters, but it is not acknowledged in the design of the equation
for the conditional variance. The speci�cation of the conditional variance as
a linear combination of squared observations is taken for granted, but the
consequences are that it responds too much to extreme observations and the
e¤ect is slow to dissipate. These features of GARCH are well-known and
the consequences for testing and forecasting have been explored in a number
of papers; see, for example, Franses, van Dijk and Lucas (2004). Other
researchers, such as Muler and Yohai (2008), have been prompted to develop
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procedures for robusti�cation.
In a dynamic conditional score (DCS) model, �t+1jt depends on current

and past values of a variable, ut; that is de�ned as being proportional to the
(standardized) score of the conditional distribution at time t. This variable
is a MD by construction. When yt has a conditional t-distribution with
� degrees of freedom, the DCS modi�cation replaces vt in the conditional
variance equation, (2), by another MD, vt = �2tjt�1ut; where

ut =
(� + 1)y2t

(� � 2)�2tjt�1 + y2t
� 1; �1 � ut � �; � > 2: (3)

This model is called Beta-t-GARCH because ut is a linear function of a
variable with a conditional Beta distribution.
Figure 1 plots the conditional score function, ut; against yt=� for t�distributions

with � = 3 and 10 and for the normal distribution (� = 1). When � = 3
an extreme observation has only a moderate impact as it is treated as com-
ing from a t�� distribution rather than from a normal distribution with an
abnormally high variance. As jytj ! 1; ut ! � so �tpt�1 is bounded for
�nite �, as is the robust conditional variance equation proposed by Muler
and Yohai (2008, p 2922).
The use of an exponential link function means that the dynamic equation

is set up for ln�2t+1jt = �t+1jt: The �rst-order model is

�t+1jt = � + ��tjt�1 + �ut; t = 1; ::::; T (4)

and when the conditional distribution is t� ; (3) is rede�ned as by replacing
(�� 2)�2tjt�1 by � exp(�tjt�1): The class of models obtained by combining the
conditional score with an exponential link function is called Beta-t-EGARCH:
A complementary class is based on the general error distribution (GED)
distribution. The conditional score then has a Gamma distribution, leading
to the name Gamma-GED-EGARCH.
The structure of the above model is similar to the stochastic volatility

(SV) models where the logarithm of the variance is driven by an unobserved
process. The �rst-order model for yt; t = 1; ::; T; is

yt = �t"t; �2t = exp (�t) ; "t � IID (0; 1) (5)

�t+1 = � + ��t + �t; �t � NID
�
0; �2�

�
with "t and �t mutually independent. SV models are parameter driven and
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Figure 1: Impact of ut for t� with � = 3 (thick), � = 10 (thin) and � = 1
(dashed).
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unlike GARCH models, which are observation driven, direct ML is not pos-
sible. A linear state space form can be obtained by taking the logarithms
of the absolute values of the observations to give the following measurement
equation:

ln jytj = �t=2 + ln j"tj ; t = 1; ::; T:

The parameters can be estimated by QML, using the Kalman �lter, as in
Harvey, Ruiz and Shephard (1994). However, there is a loss in e¢ ciency
because the distribution of ln j"tj is far from Gaussian. E¢ cient estimation
can be achived by computer intensive methods, as described in Durbin and
Koopman (2001). The exponential DCS model can be regarded as an ap-
proximation to the SV model or as a model in its own right.
Similar considerations arise when dealing with location/scale models for

non-negative variables. While the DCS approach for a Gamma distribution
is consistent with a conditional mean dynamic equation that is linear in
the observations, it can suggest a dampening down of the impact of a large
observation from a Weibull, Burr and F distributions.

3 ML estimation of DCS models

In DCS models, some or all of the parameters in � are time-varying, with the
dynamics driven by a vector that is equal or proportional to the conditional
score vector, @ lnLt=@�. This vector may be the standardized score - ie
divided by the information matrix - or a residual, the choice being largely a
matter of convenience. A crucial requirement - though not the only one - for
establishing results on asymptotic distributions is that It(�) does not depend
on parameters in � that are subsequently allowed to be time-varying. The
ful�llment of this requirement may require a careful choice of link function
for �:
Suppose initially that there is just one parameter, �; in the static model.

Let k be a �nite constant and de�ne

ut = k:@ lnLt=@�; t = 1; :::; T:

Since ut is proportional to the score, it has zero mean and �nite variance,
�2u; when standard regularity conditions hold. The information quantity, I;
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for a single observation is

I = �E(@2 lnLt=@�2) = E[(@ lnLt=@�)
2] = E(u2t )=k

2 = �2u=k
2 <1: (6)

Suppose that, for a particular choice of link function, I does not depend on
�: More generally, consider the following assumption.

Condition 1 The distribution of ut in the static model does not depend on
�.

Now let � = �tpt�1 evolve over time as a function of past values of the
score. The score can be broken down into two parts:

@ lnLt
@ 

=
@ lnLt
@�tpt�1

@�tpt�1
@ 

; (7)

where  denotes the vector of parameters governing the dynamics. Since
�tpt�1 and its derivatives depend only on past information, the distribution of
ut conditional on information at time t� 1 is the same as its unconditional
distribution and so is time invariant.
The above decomposition carries over into the following lemma.

Lemma 1 Consider a model with a single time-varying parameter, �tpt�1;
which satis�es an equation that depends on variables which are �xed at time
t � 1: The process is governed by a set of �xed parameters,  . If condition
1 holds, then the score for the t-th observation, @ lnLt=@ ; is a MD with
conditional covariance matrix

Et�1

��
@ lnLt
@ 

��
@ lnLt
@ 

�0�
= I:

�
@�tpt�1
@ 

@�tpt�1
@ 0

�
; t = 2; ::::; T: (8)

Proof. The fact that the score in (7) is a MD is con�rmed by the fact that
@�tpt�1=@ is �xed at time t � 1 and the expected value of the score in the
static model is zero.
Write the outer product as�
@ lnLt
@�tpt�1

@�tpt�1
@ 

��
@ lnLt
@�tpt�1

@�tpt�1
@ 

�0
=

�
@ lnLt
@�tpt�1

�2�
@�tpt�1
@ 

@�tpt�1
@ 0

�
:
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Now take expectations conditional on information at time t�1: IfEt�1 (@ lnLt/@�tpt�1)2
does not depend on �tpt�1; it is �xed and equal to the unconditional expec-
tation in the static model. Therefore, since �tpt�1 is �xed at time t� 1;

Et�1

��
@ lnLt
@�tpt�1

@�tpt�1
@ 

��
@ lnLt
@�tpt�1

@�tpt�1
@ 

�0�
=

"
E

�
@ lnLt
@�

�2#
@�tpt�1
@ 

@�tpt�1
@ 0

:

3.1 Information matrix for the �rst-order model

In theorem 1 below, the unconditional covariance matrix of the score at time
t is derived for the �rst-order model,

�tpt�1 = � + ��t�1pt�2 + �ut�1; j�j < 1; � 6= 0; t = 2; :::; T; (9)

and shown to be constant and p.d. when the model is identi�able. Identi�-
ability requires � 6= 0: Such a condition is hardly surprising since if � were
zero there would be no dynamics. The assumption that j�j < 1 enables �tpt�1
to be expressed as an in�nite moving average in the u0ts. Since the u

0
ts are

MDs and hence WN, �tpt�1 is weakly stationary with an unconditional mean
of �=(1 � �) and an unconditional variance of �2u=(1 � �2): Note that the
process is assumed to have started in the in�nite past, though for practical
purposes we may set �1p0 equal to the unconditional mean, �=(1� �).
The complications arise because ut�1 depends on �t�1pt�2 and hence on

the parameters in  : The vector @�tpt�1=@ is

@�tpt�1
@�

= �
@�t�1pt�2
@�

+ �
@ut�1
@�

+ ut�1 (10)

@�tpt�1
@�

= �
@�t�1pt�2
@�

+ �
@ut�1
@�

+ �t�1pt�2

@�tpt�1
@�

= �
@�t�1pt�2

@�
+ �

@ut�1
@�

+ 1:

However,
@ut
@�

=
@ut

@�tpt�1

@�tpt�1
@�

;
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and similarly for the other two derivatives. Therefore

@�tpt�1
@�

= xt�1
@�t�1pt�2
@�

+ ut�1 (11)

@�tpt�1
@�

= xt�1
@�t�1pt�2
@�

+ �t�1pt�2

@�tpt�1
@�

= xt�1
@�t�1pt�2

@�
+ 1:

where

xt = �+ �
@ut

@�tpt�1
; t = 1; ::::; T: (12)

The next condition, which generalizes condition 1, is needed for the in-
formation matrix of  to be derived.

Condition 2 The conditional joint distribution of ut and u0t; where u
0
t =

@ut=@�tpt�1; is time invariant with �nite second moment, E(u2�kt u0kt ) < 1;
k = 0; 1; 2; that is, E(utu0t) <1 and E(u02t ) <1 as well as E(u2t ) <1.

The following de�nitions are needed:

a = Et�1(xt) = �+ �Et�1

�
@ut

@�tpt�1

�
= �+ �E

�
@ut
@�

�
(13)

b = Et�1(x
2
t ) = �2 + 2��E

�
@ut
@�

�
+ �2E

�
@ut
@�

�2
� 0

c = Et�1(utxt) = �E

�
ut
@ut
@�

�
The expectations in the above formulae exist in view of condition 2. Because
they are time invariant the unconditional expectations can replace condi-
tional ones.
The following lemma is a pre-requisite for theorem 1.
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Lemma 2 When the process for �tpt�1 starts in the in�nite past and jaj < 1;

E

�
@�tpt�1
@�

�
= 0; t = 2; :::; T; (14)

E

�
@�tpt�1
@�

�
=

�

(1� a)(1� �)
;

E

�
@�tpt�1
@�

�
=

1

1� a
:

Proof. Applying the law of iterated expectations (LIE) to (11)

Et�2

�
@�tpt�1
@�

�
= Et�2

�
xt�1

@�t�1pt�2
@�

+ ut�1

�
= a

@�t�1pt�2
@�

+ 0

and

Et�3Et�2

�
@�tpt�1
@�

�
= aEt�3

�
@�t�1pt�2
@�

�
= aEt�3

�
xt�2

@�t�2pt�3
@�

+ ut�2

�
= a2

@�t�2pt�3
@�

Hence, if jaj < 1;

lim
n!1

Et�n

�
@�tpt�1
@�

�
= 0; t = 1; :::; T:

Taking conditional expectations of @�tpt�1=@� at time t� 2 gives

Et�2

�
@�tpt�1
@�

�
= a

@�t�1pt�2
@�

+ �t�1pt�2: (15)

We can continue to evaluate this expression by substituting for @�t�1pt�2=@�,
taking conditional expectations at time t�3; and then repeating this process.
Once a solution has been shown to exist, the result can be con�rmed by taking
unconditional expectations in (15) to give

E

�
@�tpt�1
@�

�
= aE

�
@�t�1pt�2
@�

�
+

�

1� �
;
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from which

E

�
@�tpt�1
@�

�
=

�

(1� a)(1� �)
:

As regards �;

Et�2

�
@�tpt�1
@�

�
= a

@�t�1pt�2
@�

+ 1 (16)

and taking unconditional expectations gives the result.
The above lemma requires that jaj < 1: The result on the information

matrix below requires b < 1 and ful�llment of this condition implies jaj < 1:
That this is the case follows directly from the Cauchy-Schwartz inequality
Et�1(x

2
t ) � [Et�1(xt)]

2 :

Theorem 1 Assume that condition 2 holds and that b < 1: Then the covari-
ance matrix of the score for a single observation is time-invariant and given
by

D( ) = D

0@ e�e�e�
1A =

1

1� b

24 A D E
D B F
E F C

35 (17)

with

A = �2u

B =
2a�(� + �c)

(1� �)(1� a)(1� a�)
+

1 + a�

(1� a�)(1� �)

�
�2

1� �
+
�2�2u
1 + �

�
C = (1 + a)=(1� a)

D =
c�

(1� �)(1� a)
+

a��2u
1� a�

E = c=(1� a)

F =
� � a��+ a� � a2��+ a�c� a�c�

(1� �)(1� a)(1� a�)

and the information matrix for a single observation is

I( ) = I:D( ) = (�2u=k
2)D( ): (18)

Proof. The information matrix is obtained by taking unconditional expecta-
tion of (8) and then combining it with the formula forD( ); which is derived
in appendix A. The derivation of the �rst term, A, is given here to illustrate
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the method. This term is the unconditional expectation of the square of the
�rst derivative in (11). To evaluate it, �rst take conditional expectations at
time t� 2; to obtain

Et�2

�
@�tpt�1
@�

�2
= Et�2

�
xt�1

@�t�1pt�2
@�

+ ut�1

�2
= b

�
@�t�1pt�2
@�

�2
+ 2c

@�t�1pt�2
@�

+ �2u: (19)

It was shown in lemma 2 that the unconditional expectation of the second
term is zero. Eliminating this term, and taking expectations at t� 3 gives

Et�3

�
@�tpt�1
@�

�2
= bEt�3

�
xt�2

@�t�2pt�3
@�

+ ut�2

�2
+ �2u

= b2
�
@�t�2pt�3
@�

�2
+ 2cb

@�t�2pt�3
@�

+ b�2u + �2u:

Again the second term can be eliminated and it is clear that

lim
n!1

Et�n

�
@�tpt�1
@�

�2
=

�2u
1� b

:

Taking unconditional expectations in (19) gives the same result. The deriv-
atives are all evaluated in this way in appendix A.

Remark 1 The condition � = 0 was imposed on the model at the outset,
since otherwise there are no dynamics. If � is zero, then D(�; �; �) is sin-
gular, and the parameters � and � are not identi�ed. When � 6= 0; all three
parameters are identi�ed even3 if � = 0.

3.2 Consistency and asymptotic normality of the ML
estimator

We now move on to prove consistency and asymptotic normality of the ML
estimator for the �rst-order model.

3But if � is set to zero rather than being estimated, ie the lag of �tpt�1 does not appear
in the dynamic equation, then both � and � are identi�able even when � = 0:
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Theorem 2 The ML estimator, e ; is consistent when D( ); and hence
I( ); is p.d.

Proof. The conditional score is a MD with a constant unconditional covari-
ance matrix given by D( ): Hence the weak law of large numbers (WLLN)
applies; see4 Davidson (2000, p.123-4, p 272-3).

Lemma 3 When condition 1 holds, ut is IID(0,�2u) and so the process �tpt�1
in (9) is strictly stationary.

Lemma 4 When condition 1 holds and jaj < 1, the sequences of the deriva-
tives in @�tpt�1=@ ; are strictly stationary.

Proof. The derivatives, (11), are stochastic recurrence equations and strict
stationarity follows from standard results on such equations; see Straumann
and Mikosch (2006, p 2450-1) and Vervaat (1979). In fact the necessary
condition for strict stationarity is E(ln jxtj) < 0: This condition is satis�ed
if jaj < 1 because jaj = jE(xt)j � E(jxtj) and, from Jensen�s inequality,
lnE(jxtj) � E(ln jxtj): Although it appears that strict stationarity can be
achieved without jaj < 1; this condition is needed for the �rst moment to
exist.

Remark 2 Strict stationarity is not actually necessary to prove asymptotic
normality of the ML estimator when, as for most of the models considered
here, all the moments of the score and its �rst derivative are �nite.

The next condition is just an extension of condition 2, while the one after
is a standard regularity condition.

Condition 3 The conditional joint distribution of (ut; u0t)
0 is time invariant

with �nite fourth moment, that is, E(u4�kt u0kt ) <1; k = 0; 1; ::; 4:

Condition 4 The elements of  do not lie on the boundary of the parameter
space.

4Theorem 6.2.2, which is similar to Khinchine�s theorem, can be applied. The mo-
ment condition, (ii), holds so it is unnecessary to invoke strict stationarity. Since second
moments are �nite, Chebyshev�s theorem also applies; see p 124.
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Theorem 3 Assume conditions 3 and 4. De�ne

d = E(�+ �:@ut=@�)
4 � 0: (20)

Provided that d < 1; the limiting distribution of
p
T e ; where e is the ML

estimator of  , is multivariate normal with mean
p
T and covariance ma-

trix
V ar(e ) = I�1( ) = (k2=�2u)D�1( ): (21)

Proof. From lemma 1, the score vector is a MD with conditional covariance
matrix, (8). For a single element in the score,

@ lnLt
@ i

; i = 1; 2; 3;

where  i is the i� th element of  ; we may write

Et�1

"�
@ lnLt
@ i

�2#
= I:

�
@�tpt�1
@ i

�2
= �2it; t = 1; ::::; T;

From Davidson (2000, pp 271-6), proof of the CLT requires that

p limT�1
X

�2it = �2i <1: (22)

From theorem 1, each �2i ; i = 1; 2; 3 is �nite if D( ) is p.d.
In order to simplify notation let wit = @�tpt�1=@ i. (Since I is constant,

attention can be concentrated on wit rather than the score). Unlike the w0its
the w20its are not MDs. However, they are strictly stationary and also weakly
stationary provided they have �nite unconditional variance. This being the
case, the w20its satisfy the WLLN by Chebychev theorem and (22) is true; see
Davidson (2000, p42, p124).
The �nite variance condition for the w20its is ful�lled if the w

0
its have �nite

unconditional fourth moment, that is

E

�
@�tpt�1
@ i

�4
= E (wit)

4 <1: i = 1; 2; 3
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The �rst element in (11) is

@�tpt�1
@�

= xt�1
@�t�1pt�2
@�

+ ut�1

The �rst subscript in w1t can be dropped without creating any ambiguity,
enabling us to write

wt = xt�1wt�1 + ut�1; t = 2; :::; T:

Hence

w4t = (xt�1wt�1 + ut�1)
4

= u4t�1 + 4u
3
t�1wt�1xt�1 + 6u

2
t�1w

2
t�1x

2
t�1 + 4ut�1w

3
t�1x

3
t�1 + w4t�1x

4
t�1

As in the earlier proofs, conditional expectations are taken at time t � 2 to
give

Et�2(w
4
t ) = Et�2(u

4
t�1) + 4wt�1Et�2(u

3
t�1xt�1) + 6w

2
t�1Et�2(u

2
t�1x

2
t�1)

+4w3t�1Et�2(ut�1x
3
t�1) + w4t�1Et�2(x

4
t )

Now take unconditional expectations so that

E(w4t ) = E(u4t�1) + 4wt�1E(u
3
t�1xt�1) + 6w

2
t�1E(u

2
t�1x

2
t�1)

+4w3t�1E(ut�1x
3
t�1) + dw4t�1

where

d = E(x4t ) = �4E(u04t ) + 4�
3�E(u03t ) + 6�

2�2E(u02t ) + 4��
3E(u0t) + �4; (23)

and, as before, u0t denotes @ut=@�: Because of condition 3, the terms E(u
0k
t );

k = 1; ::; 4; and E(ut�1x
3
t�1); E(u

2
t�1x

2
t�1); E(u

3
t�1xt�1) are �nite uncondi-

tional expectations. Hence the unconditional fourth moment of wt is �nite
i¤ d < 1: Note that d < 1 is su¢ cient for the �rst, second and third moments
to exist.The above argument is similar to that in Vervaat (1979, p 773-4).
The argument extends to @�tpt�1=@�; where �tpt�1 replaces ut; because

�tpt�1 is stationary and, since it depends on ut; the necessary moments exist.
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The condition d < 1 implicitly imposes constraints on the range of �: The
nature of the constraints will be investigated for the various models. On the
whole they do not appear to present practical di¢ culties.

3.3 Nonstationarity

If � = 1; the matrix D( ); and hence I( ); is no longer p.d. The usual
asymptotic theory does not apply as the model contains a unit root. However,
if the unit root is imposed, so that � is set equal to unity, then standard
asymptotics apply. The following result is a corollary to theorems 1, 2 and
3.

Corollary 1 When � is taken to be unity but b < 1; the information matrix
for e� and e� is

I(e�;e�) = �2u
k2(1� b)

�
�2u

c
1�a

c
1�a

1+a
1�a

�
; (24)

with a = 1� ��2u=k and

b = 1� 2��2u=k + �2E[(@ut=@�)
2]; (25)

and the ML estimators of e� and e� are consistent. Furthermore pT (e�;e�)0 has
a limiting normal distribution with mean

p
T (�; �)0 and covariance matrix

I�1(e�;e�) provided that d < 1:
It can be seen from (25) that � > 0 is a necessary condition for b < 1:

Hence it is also necessary for d < 1:

3.4 Extensions

Lemma 1 can be extended to deal with n parameters in � and a generalization
of theorem 1 then follows. The lemma below is for n = 2 but this is simply
for notational convenience.

Lemma 5 Suppose that there are two parameters in �, but that �j;tpt�1 =
f( j); j = 1; 2 with the vectors  1 and  2 having no elements in common.
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When the information matrix in the static model does not depend on �1 and
�2

I( 1; 2) = E

" 
@ lnLt
@�1

@�1
@ 1

@ lnLt
@�2

@�2
@ 2

! 
@ lnLt
@�1

@�1
@ 1

@ lnLt
@�2

@�2
@ 2

!0#
(26)

=

24 E
�
@ lnLt
@�1

�2
E
�
@�1
@ 1

@�1
@ 01

�
E
�
@ lnLt
@�1

@ lnLt
@�2

�
E
�
@�1
@ 1

@�2
@ 02

�
E
�
@ lnLt
@�1

@ lnLt
@�2

�
E
�
@�2
@ 2

@�1
@ 01

�
E
�
@ lnLt
@�2

�2
E
�
@�2
@ 2

@�2
@ 02

�
35 :

The above matrix is p.d. if I(�) and D( 1; 1) are both p.d.

The conditions for the above lemma will rarely be satis�ed. A more
useful result concerns the case when � contains some �xed parameters. As
in theorem 1, it will be assumed that there is only one TVP, but if there are
more it is straightforward to combine this result with the previous one.

Lemma 6 When �2 contains n � 1 � 1 �xed parameters and the terms in
the information matrix of the static model that involve �1, including cross-
products, do not depend on �1;

I( 1;�2) =

24 E
�
@ lnLt
@�1

�2
E
�
@�1
@ 1

@�1
@ 01

�
E
�
@�1
@ 1

�
E
�
@ lnLt
@�1

@ lnLt
@�02

�
E
�
@ lnLt
@�1

@ lnLt
@�2

�
E
�
@�1
@ 01

�
E
�
@ lnLt
@�2

@ lnLt
@�02

�
35 : (27)

The conditions for asymptotic normality are as in theorem 3.

When n = 2; the information matrix for the �rst-order model is

I( 1;�2) =

26664 E
�
@ lnLt
@�1

�2
D( 1) E

�
@ lnLt
@�1

@ lnLt
@�2

�0@ 0
�

(1�a)(1��)
1=(1� a)

1A
E
�
@ lnLt
@�1

@ lnLt
@�2

��
0 �

(1�a)(1��)
1
1�a

�
E
�
@ lnLt
@�2

�2
37775

where D( 1) is the matrix in (17).
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4 Exponential GARCH

In the EGARCH model

yt = �tjt�1"t; t = 1; :::; T; (28)

where "t is serially independent with unit variance. The logarithm of the
conditional variance in (28) is given by

ln�2tjt�1 = 
 +
1X
k=1

 kg ("t�k) ;  1 = 1; (29)

where 
 and  k; k = 1; ::;1; are real and nonstochastic. The model may
be generalized by letting 
 be a deterministic function of time, but to do so
complicates the exposition unnecessarily. The analysis in Nelson (1991), and
in almost all subsequent research, focusses on the speci�cation

g ("t) = ��"t + � [j"tj � E j"tj] ; (30)

where � and �� are parameters: the �rst-order model was given in (??). By
construction, g ("t) has zero mean and so is a MD. Indeed the g ("t)

0 s are
IID.

Theorem 2.1 in Nelson (1991, p. 351) states that for model (28) and
(29), with g (�) as in (30); �2tjt�1; yt and ln�2tjt�1 are strictly stationary and
ergodic, and ln�2tjt�1 is covariance stationary if and only if

P1
k=1  

2
k <1: His

theorem 2.2 demonstrates the existence of moments of �2tjt�1 and yt for the
GED(�) distribution with � > 1: The normal distribution is included as it is
GED(2): Nelson notes that if "t is t� distributed, the conditions needed for
the existence of the moments of �2tjt�1 and yt are rarely satis�ed in practice.

4.1 Beta-t-EGARCH

When the observations have a conditional t-distribution,

yt = "t exp(�tpt�1=2); t = 1; ::::; T; (31)

where the serially independent, zero mean variable "t has a t��distribution
with positive degrees of freedom, �. Note that "t di¤ers from "t in (28) in
that the variance is not unity.
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The (conditional score) variable

ut =
(� + 1)y2t

� exp(�tpt�1) + y2t
� 1; �1 � ut � �; � > 0: (32)

may be expressed as
ut = (� + 1)bt � 1; (33)

where

bt =
y2t =� exp(�tpt�1)

1 + y2t =� exp(�tpt�1)
; 0 � bt � 1; 0 < � <1; (34)

is distributed as Beta(1=2; �=2); a Beta distribution of the �rst kind; see
Stuart and Ord (1987, ch 2). Since E(bt) = 1=(�+1) and V ar(bt) = 2�=f(�+
3)(� + 1)2g; ut has zero mean and variance 2�=(� + 3):
The properties of Beta-t-EGARCH may be derived by writing �tpt�1 as

�tpt�1 = 
 +
1X
k=1

 kut�k; (35)

where the  0ks are parameters, as in (29), but  1 is not constrained to be
unity. Since

ut =
(� + 1)"2t
� + "2t

� 1;

it is a function only of the IID variables, "t; and hence is itself an IID se-
quence. When � 2k <1 and 0 < � <1; �tpt�1 is covariance stationary, the
moments of the scale, exp (�tpt�1=2) ; always exist and the m � th moment
of yt exists for m < �. Furthermore, for � > 0; �tpt�1 and exp (�tpt�1=2) are
strictly stationary and ergodic, as is yt. The proof is straightforward. Since
ut has bounded support for �nite �, all its moments exist; see Stuart and Ord
(1987 p215). Similarly its exponent has bounded support for 0 < � <1 and
so E [exp (aut)] <1 for jaj <1. Strict stationarity of �tpt�1 follows imme-
diately from the fact that the u0ts are IID. Strict stationarity and ergodicity
of yt holds for the reasons given by Nelson (1991, p92) for the EGARCH
model.
Analytic expression for the moments and the autocorrelations of the ab-

solute values of the observations raised to any power can be derived as in
Harvey and Chakravary (2009). Analytic expressions for the `� step ahead
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conditional moments can be similarly obtained. However, it is easy to sim-
ulate the ` � step ahead predictive distribution. When �tpt�1 has a moving
average representation in MDs, the optimal estimator of

�T+`pT+`�1 = 
 +
`�1X
j=1

 juT+`�j +

1X
k=0

 `+kuT�k; ` = 2; 3; :

is its conditional expectation

�T+`pT = 
 +

1X
k=0

 `+kuT�k; ` = 2; 3; :: (36)

Hence the di¤erence between �T+`pT+`�1 and its estimator is
P`�1

j=1  juT+`�j:
Hence the distribution of yT+`; ` = 2; 3; ::::; conditional on the information
at time T; is the distribution of

yT+` = "T+` exp(�T+`pT+`�1=2) = "T+`

"
`�1Y
j=1

e j((�+1)bT+`�j�1)=2

#
e�T+`pT =2

Simulating the predictive distribution of the scale and observations is striagt-
forward as the term in square brackets is made up of `� 1 independent Beta
variates and these can be combined with a draw from a t-distribution to
obtain a value of "T+` and hence yT+`: In contrast to convential GARCH
models, it is not necessary to simulate the full sequence of observations from
yT+1 to yT+`; see the discussion in Andersen et al (2006, p 810-811).

4.2 Maximum likelihood estimation and inference

The log-likelihood function for the Beta-t-EGARCH model is

lnL = T ln � ((� + 1) =2)� T

2
ln � � T ln � (�=2)� T

2
ln �

�1
2

TX
t=1

�tpt�1 �
(� + 1)

2

TX
t=1

ln

�
1 +

y2t
�e�tpt�1

�
:

It is assumed that uj = 0; j � 0 and that �1p0 = 
 (though, as is common
practice, �1p0 may be set equal to the logarithm of the sample variance minus
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ln(�=(� � 2); assuming that � > 2:) The ML estimates are obtained by
maximizing lnL with respect to the unknown parameters, which in the �rst-
order model are �; �; � and �:
Apart from a special case (� = 0); analyzed in Straumann (2005, p125),

no formal theory of the asymptotic properties of ML for EGARCH models
has been developed. Nevertheless, ML estimation has been the standard
approach to estimation of EGARCH models ever since it was proposed by
Nelson (1991).
Straumann and Mikosch (2006) give a de�nitive treatment of the as-

ymptotic theory for GARCH models. The mathematics are complex. The
emphasis is on quasi-maximum likelihood and on p 2452 they state �A �nal
treatment of the QMLE in EGARCH is not possible at the time being, and
one may regard this open problem as one of the limitations of this model.�
As will be shown below the problem lies with the classic formulation of the
EGARCH model and the attempt to estimate it by QML.
Straumann and Mikosch (2006, p 2490) also note the di¢ culty of deriv-

ing analytic formulae for asymptotic standard errors: �In general, it seems
impossible to �nd a tractable expression for the asymptotic covariance ma-
trix...even for GARCH(1,1)�. They suggest the use of numerical expressions
for the �rst and second derivatives, as computed by recursions5.
It was noted below (35) that the u0ts are IID. Di¤erentiating (32) gives

@ut
@�tpt�1

=
�(� + 1)y2t � exp(�tpt�1)
(� exp(�tpt�1) + y2t )

2
= �(� + 1)bt(1� bt);

and since, like ut; this depends only on a Beta variable, it is also IID. All
moments of ut and @ut=@� exist and this is more than enough to satisfy
condition 3. The expression for d is

d = �4�4�3�(�+1)b(1; 1)+6�2�2(�+1)2b(2; 2)�4��3(�+1)3b(3; 3)+�4(�+1)4b(4; 4)
(37)

where b(h; k) = E(bh(1� b)k); as de�ned in Appendix B.

5QML also requires that an estimate the fourth moment of the standardized distur-
bances be computed.
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Proposition 1 Let k = 2 in the Beta-t-EGARCH model and de�ne

a = �� �
�

� + 3

b = �2 � 2�� �

� + 3
+ �2

3�(� + 1)(� + 2)

(� + 7)(� + 5)(� + 3)

c = �
2�(1� �)

(� + 5)(� + 3)
; � > 0:

Provided that d < 1; the limiting distribution of
p
T times the ML estimators

of the parameters in the stationary �rst-order model, (4), is multivariate
normal with covariance matrix

V ar( 1; �) =

26664
1

2(�+3)
D( 1)

1
2(�+3)(�+1)

0@ 0
�

(1�a)(1��)
1=(1� a)

1A
1

2(�+3)(�+1)

�
0 �

(1�a)(1��)
1
1�a

�
h(�)=2

37775
�1

where D( 1) is the matrix in (17).

Proof. From appendix B,

Et�1

��
@ut

@�tpt�1

��
= �(� + 1)E(bt(1� bt)) =

��
� + 3

;

which is ��2u=2: For b and c;

Et�1

"�
@ut

@�tpt�1

�2#
= (� + 1)2E(b2t (1� bt)

2) =
3�(� + 1)(� + 2)

(� + 7)(� + 5)(� + 3)

and

Et�1

�
ut

�
@ut

@�tpt�1

��
= �Et�1 [((� + 1)bt � 1)(� + 1)bt(1� bt)]

= �(� + 1)2Et�1(b2t (1� bt)) + (� + 1)Et�1(bt(1� bt))

=
�3�(� + 1)
(� + 5)(� + 3)

+
�

� + 3
=

2�(1� �)

(� + 5)(� + 3)
:

These formulae are then substituted in (13). The ML estimators of � and �
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are not asymptotically independent in the static model. Hence the expression
below (27) is used with �2 = �, together with (14).
The above result does not require the existence of moments of the con-

ditional t�distribution. However, a model with � � 1 has no mean and so
would probably be of little practical value.

Corollary 2 When � is set to unity in the �rst-order model, it follows, as a
corollary to proposition 1, that, provided that d < 1;

p
T (e�;e�)0 has a limiting

normal distribution with mean
p
T (�; �)0 and covariance matrix I�1(e�;e�);as

in (35), with a = 1� ��=(� + 3) and

b = 1� 2� �

� + 3
+ �2

3�(� + 1)(� + 2)

(� + 7)(� + 5)(� + 3)
:

4.3 Leverage

The standard way of incorporating leverage e¤ects into GARCH models is
by including a variable in which the squared observations are multiplied by
an indicator, I(yt < 0); taking the value one for yt < 0 and zero otherwise;
see Taylor (2005, p 220-1). In the Beta-t-EGARCH model this additional
variable is constructed by multiplying (� + 1)bt = ut + 1 by the indicator.
Alternatively, the sign of the observation may be used, so the �rst-order
model, (4), becomes

�tpt�1 = � + ��t�1pt�2 + �ut�1 + ��sgn(�yt�1)(ut + 1): (38)

Taking the sign of minus yt means that the parameter �� is normally non-
negative for stock returns. With the above parameterization �tpt�1 is driven
by a MD, as is apparent by writing (38) as

�tpt�1 = � + ��t�1pt�2 + g(ut�1); (39)

where g(ut) = �ut + �
�sgn(�yt)(ut + 1): The mean of �tpt�1 is as before, but

E(�2tpt�1) = �2=(1� �)2 + �2�2u=(1� �2) + ��2(�2u + 1)=(1� �2): (40)

Although the statistical validity of the model does not require it, the restric-
tion � � �� � 0 may be imposed in order to ensure that an increase in the
absolute value of a standardized observation does not lead to a decrease in
volatility.
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Proposition 2 Provided that d� < 1; and the parameter � is known, the
limiting distribution of

p
T times the ML estimators of the parameters in

the stationary �rst-order model, (38), is multivariate normal with covariance
matrix

V ar

0BB@
e�e�e�e��
1CCA =

k2(1� b�)

�2u

2664
A D E 0
D B� F � D�

E F � C E�

0 D� E� A�

3775
�1

(41)

where A;C;D and E are as in (21), F � is F with �c expanded to become
�c+ ��c�;

A� = �2u + 1

B� =
2a�(� + �c)

(1� �)(1� a)(1� a�)
+

1 + a�

(1� a�)(1� �)

�
�2

1� �
+
�2�2u
1 + �

+
��2(�2u + 1)

1 + �

�
E� = c�=(1� a)

D� =
�c�

(1� �)(1� a)
+
a��(�2u + 1)

1� a�
;

with a as in proposition 1,

b� = �2 � 2��� �

� + 3
+ (�2 + ��2)

3�(� + 1)(� + 2)

(� + 7)(� + 5)(� + 3)
;

c� = ��E

�
ut
@ut
@�

�
+ ��E

�
@ut
@�

�
= ��

2�(1� �)

(� + 5)(� + 3)
+ ��

�

� + 3

and

d� = �4�4�3�(�+1)b(1; 1)+6�2(�2+��2)(�+1)2b(2; 2)�4��3(�+1)3b(3; 3)+(�4+��4)(�+1)4b(4; 4);

where the notation is as in (37).

Proof.

@�tpt�1
@��

= �
@�t�1pt�2
@��

+ �
@ut�1
@��

+ ��sgn(�yt�1)
@ut�1
@��

+ sgn(�yt�1)(ut�1 + 1)

= x�t�1
@�t�1pt�2
@��

+ sgn(�yt�1)(ut�1 + 1)
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where

x�t = �+ (�+ ��sgn(�yt))
@ut

@�tpt�1

Since yt is symmetric and ut depends only on y2t , E(sgn(�yt�1)(ut�1+1)) = 0;
and so

E(
@�tpt�1
@��

) = 0:

The derivatives in (10) are similarly modi�ed by the addition of the deriv-
atives of the leverage term, so x�t replaces xt in all cases. However

Et�1(x
�
t ) = �+ Et�1

�
(�+ ��sgn(�yt))

@ut
@�tpt�1

�
= a

and the formulae for the expectations in (14) are unchanged.
The expected values of the squares and cross-products in the extended

information matrix are obtained in much the same way as in appendix A.
Note that

x�t sgn(�yt)(ut + 1) = (�+ ((�+ ��sgn(�yt))
@ut

@�tpt�1
)(sgn(�yt)(ut + 1))

= (�+ �
@ut

@�tpt�1
)(sgn(�yt)(ut + 1) + ��

@ut
@�tpt�1

(ut + 1)

so

c� = Et�1(x
�
t sgn(�yt)(ut + 1)) = ��Et�1

�
@ut

@�tpt�1
(ut + 1)

�
:

The formulae for b� and d� are similarly derived. Further details can be found
in appendix F.

Corollary 3 When � is estimated by ML in the Beta-t-EGARCH model,
the asymptotic covariance matrix of the full set of parameters is given by
modifying the covariance matrix in a similar way to that in proposition 1.
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4.4 Gamma-GED-EGARCH

The probability density function (pdf) of the general error distribution, de-
noted GED(�), is

f (y;'; �) =
�
21+1=�'�(1 + 1=�)

��1
exp(� j(y � �)='j� =2); ' > 0; � > 0;

(42)
where ' is a scale parameter, related to the standard deviation by the formula
� = 21=�(� (3=�) =� (1=�))1=2'; and � is a tail-thickness parameter. Let �tpt�1
in (4) evolve as a linear function of ut de�ned as

ut = (�=2) jyt= exp(�tpt�1)j� =� 1; t = 1; :::; T; (43)

and let yt j Yt�1 have a GED, (42), with parameter 'tjt�1 = exp(�tpt�1); that
is (31) becomes yt = "t exp(�tpt�1); where "t � GED(�):When � = 1; ut is a
linear function of jytj. The response is less sensitive to outliers than it is for
a normal distribution, but it is far less robust than is Beta-t-EGARCH with
small degrees of freedom.
The name Gamma-GED-EGARCH is adopted because ut = (�=2)gt � 1;

where gt has a Gamma(1=2, 1=�) distribution. The variance of ut is �:
Moments, ACFs and predictions can be made in much the same way as for
Beta-t-EGARCH; see Harvey and Chakravary (2009).
The conditional joint distribution of ut and its derivative

@ut
@�tpt�1

= �(�2=2) jytj� = exp(�tpt�1�) = �(�2=2)gt (44)

is time invariant. Hence the asymptotic distribution of the ML estimators is
easily obtained.

Proposition 3 For a given value of �; and provided that d < 1; the limiting
distribution of

p
T times the ML estimators of the parameters in the station-

ary �rst-order model, Gamma-GED-EGARCH model, (43), is multivariate
normal with covariance matrix as in (21) with k = 1 and

a = �� ��

b = �2 � 2��� + 4�2(� + 1)
c = ���2:

Proof. Taking conditional expectations of (44) gives ��; which is ��2u: In
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addition,

Et�1

"�
@ut

@�tpt�1

�2#
= (�2=2)2Et�1 (gt) = 4(� + 1)

and

Et�1

�
ut

�
@ut

@�tpt�1

��
= ��(� + 1) + � = ��2:

Important special cases are the normal distribution, � = 2; and the
Laplace distribution, � = 1: However, as with the Beta-t-EGARCH model,
the asymptotic distribution of the dynamic parameters changes when � is
estimated since the ML estimators of � and � are not asymptotically inde-
pendent in the static model.

Remark 3 In the equation for the logarithm of the conditional variance,
�2tpt�1; in the Gaussian EGARCH model (without leverage) of Nelson (1991),
ut is replaced by [j"tj � E j"tj] where "t = yt=�tpt�1. The di¢ culties arise
because, unless � = 1; the conditional expectation of [j"tj � E j"tj] depends on
�tpt�1:

Remark 4 If the location is non-zero, or more generally dependent on a set
of exogenous explanatory variables, and the whole model is estimated by ML,
the asymptotic distribution for the dynamic scale parameters are una¤ected;
see Zhu and Zinde-Walsh (2010). The same is true if a constant location is
�rst estimated by the mean or median. These results require � � 1:

The formula for d is

d = �4�4�3�(�2=2)E(gt)+6�2�2(�2=2)2E(gt)�4��3(�2=3)3E(gt)+�4(�2=4)4E(gt)

where E(gt) = 2k�(k + ��1)=�(��1): For a Gaussian distribution

d = 105�4 � 142: 22�3�+ 72�2�2 � 8��3 + �4

For the Laplace distribution,

d = 1:5�4 � 7:11�3�+ 12�2�2 � 4��3 + �4

which, perhaps surprisingly, permits a wider range for �, even though the
Laplace distribution has heavier tails than does the normal.
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Figure 2: d against � for � = 0:98 and (i) t�distribution with � = 6 (solid),
(ii) normal (thin dash), (iii) Laplace (thick dash).

Figure 2 shows d plotted against � for � = 0:98 and t6; normal and Laplace
distributions. Since � is typically less than 0:1, the constraint imposed by
d is unlikely ever to be violated, though for low degrees of freedom the t-
distribution can clearly accomodate much bigger values of �:

5 Non-negative variables

Engle (2002) introduced a class of multiplicative error models (MEMs) for
modeling non-negative variables, such as duration, realized volatility and
spreads. In these models, the conditional mean, �tpt�1; and hence the condi-
tional scale, is a GARCH-type process and the observations can be written

yt = "t�tpt�1; 0 � yt <1; t = 1; ::::; T;

where "t has a distribution with mean one. The leading cases are the Gamma
and Weibull distributions. Both include the exponential distribution as a
special case.
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The use of an exponential link function, �tpt�1 = exp(�tpt�1); not only
ensures that �tpt�1 is positive, but also allows theorem 1 to be applied. The
model can be written

yt = "t exp(�tpt�1); t = 1; ::::; T; (45)

with dynamics as in (4).

5.1 Gamma distribution

The pdf of a Gamma(�; 
) variable, gt(�; 
); is

f(y) = �
y
�1e��y=�(
); 0 � y <1; �; 
 > 0; (46)

where 
 is the shape parameter and � is the scale. The pdf can be parame-
terized in terms of the mean, � = 
=�; by writing

f(y;�; 
) = 

��
y
�1e�
y=�=�(
); 0 � y <1; �; 
 > 0;

see, for example, Engle and Gallo (2006). The variance is �2=
: The expo-
nential distribution is a special case in which 
 = 1:
For a dynamic model, the log-likelihood function for the t�th observation

is

lnLt( ; 
) = 
 ln 
 � 
 ln�tpt�1 + (
 � 1) ln yt � 
yt=�tpt�1 � ln �(
)

and the exponential link function gives a conditional score of 
ut; where

ut = (yt � exp(�tpt�1))= exp(�tpt�1) = yt exp(��tpt�1)� 1; (47)

with �2u = 1=
: Note that ut is the standardized conditional score.
Expressions for moments, ACFs and predictions may be obtained in the

same way as for the Beta-t-EGARCH model.
The asymptotic distribution of the ML estimators is easily established

since ut = "t � 1 and

@ut
@�tpt�1

= �yt exp(��tpt�1) = �"t;

where, as in (45), "t is Gamma (
; 
) distributed.
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Proposition 4 Consider the �rst-order model, (4). Provided that j�j < 1
and d < 1; where

d = �4
�3(1+
)(2+
)(3+
)�4�3�
�2(1+
)(2+
)+6�2�2
�1(1+
)�4��3+�4;

the limiting distribution of
p
T (e �  ; e
 � 
) is multivariate normal with

covariance matrix

V ar

0BB@
e�e�e�e

1CCA =

�

�1D�1( ) 0

0  0(
)� 1=


�

where  0(
) is the trigamma function and Dt( ) is as in (17) with

a = �� �

b = �2 � 2��+ �2(1 + 
)=


c = ��=


and �2u = 1=
: The asymptotic distribution of e is the same whether or not

 is estimated.

Proof. Since @ut=@�tpt�1 is Gamma(
; 
) distributed, its conditional expec-
tation is minus one. Furthermore

Et�1

"�
@ut

@�tpt�1

�2#
= Et�1

�
(�yt exp(��tpt�1))2

�
= E("2t ) = (1 + 
)=
;

and

Et�1

�
ut

�
@ut

@�tpt�1

��
= E

�
"2t � "t

�
= �1=
:

Note that b = (�� �)2 + �2=
:
The expression for d is rather simple here as

u0kt = (�1)k(yt exp(��))k = (�1)k"kt ; k = 1; ::; 4

Thus

E(u0kt ) = (�1)kE("kt ) = (�1)k
�(k + 
)


k�(
)
; k = 1; ::; 4
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The independence of the ML estimators of � and 
 follows on noting
that E(@2 lnLt=@�@
) = 0: Indeed this must be the case because the ML
estimator of � in the static model is just the logarithm of the sample mean.
The derivation of V ar(e
) is left to the reader.
Corollary 4 The limiting distribution of

p
T (e �  ) for the exponential

distribution can be obtained by setting 
 = 1:

For the exponential

d = 24�4 � 24�3�+ 12�2�2 � 4��3 + �4

and with � = 0:98 and � = 0:1 the value of d is 0:640:
Engle and Gallo (2006) estimate their MEM models with leverage. In-

formation on the direction of the market is available from previous returns.
Such e¤ects may be introduced into the models of this section using (38).
The asymptotic distribution of the ML estimators is obtained in the same
way as for Beta-t-EGARCH.

5.2 Weibull distribution

The pdf of a Weibull distribution is

f(y;�; �) =
�

�

� y
�

���1
exp (�(y=�)�) ; 0 � y <1; �; � > 0:

where � is the scale parameter and � is the shape parameter. The mean is
� = ��(1+1=�) and the variance is �2�(1+2=�)��2: Re-arranging the pdf
gives

f(yt) = (�=yt)wt exp (�wt) ; 0 � yt <1; � > 0;

where
wt = (yt=�tpt�1)

� ; t = 1; :::; T;

when the scale is time-varying.
The exponential link function, �tpt�1 = exp(�tpt�1); yields the following

log-likelihood function for the t� th observation:

lnLt = ln � � ln yt + � ln(yte
��tpt�1)� (yte��tpt�1)� :
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Hence the score is

@ lnLt
@�tpt�1

= �� + �(yte
��tpt�1)� = �� + �wt:

A convenient choice for ut in the equation for �tpt�1 is

ut = wt � 1; t = 1; :::; T;

and since wt has a standard exponential distribution, E(ut) = 0 and �2u = 1:
Furthermore

@ut
@�tpt�1

= ��[(yte��tpt�1)� ] = ��wt

and so condition 3 is ful�lled.

Proposition 5 For the �rst-order model with j�j < 1 and d < 1; where

d = 24�4�4 � 24�3�3�+ 12�2�2�2 � 4���3 + �4

the limiting distribution of
p
T (e �  ; e� � �) is multivariate normal with

covariance matrix as in (21) with

a = �� ��

b = �2 � 2��� + 2�2�2

c = ���

and k = 1=�:
Proof. Since wt has an exponential distribution,

Et�1

�
@ut

@�tpt�1

�
= ��Et�1(wt) = ��

while

Et�1

�
@ut

@�tpt�1

�2
= �2Et�1

�
(yte

��tpt�1)2�
�
= �2Et�1(w

2
t ) = 2�

2

and

Et�1

�
ut

@ut
@�tpt�1

�
= ��Et�1

�
w2t � wt

�
= ��:
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More generally E(u0k) = (�1)k�kE(wkt ) and the formula for d follows easily
from that for the exponential distribution (and reduces to it when � = 1):

In contrast to the Gamma case, estimation of the shape parameter does
make a di¤erence to the asymptotic distribution of the ML estimators of the
dynamic parameters, since the information matrix for � and � in the static
model is not diagonal.

5.3 Burr distribution

The generalized Burr distribution with scale parameter � has pdf

p(y) = 
��1y
�1
h� y

��

�

+ 1
i���1

; �; 
; � > 0 (48)

To model changing scale we can let �tpt�1 = ��1=
 exp(�tpt�1): Then

lnLt = ln � + ln 
 + �
�tpt�1 + (
 � 1) ln yt � (� � 1) ln(y
t + exp(
�tpt�1)

and so
@ lnLt
@�tpt�1

= 
� � 
(� + 1)
exp(
�tpt�1)

y
t + exp(
�tpt�1)
= 
ut

where
ut = � � (� + 1)bt(�; 1) (49)

and

bt(�; 1) =
exp(
�tpt�1)

y
t + exp(
�tpt�1)

is distributed as Beta(�; 1); the result may be shown directly by change of
variable. The formula for the mean of the Beta con�rms that E(ut) = 0:
A plot of ut is shown in �gure 3 for � = 2 and 
 = 1: The dashed line

shows the response for Gamma. The scale parameter has been set so that
the mean is one in all cases. The Weibull response for a mean of one is
�(x�(1 + 1=�))� � 1); it coincides with the Gamma response when � = 1; in
which case it is an exponential distribution. The graph shows � = 0:5: Note
that the Weibull and Burr responses are less sensitive to large values of the
standardized observations. In the case of this particular Burr distribution,
the second moment does not exist.
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Figure 3: Plot of ut against a standardized observation for Burr with � = 2
and 
 = 1 (thick) and Weibull for � = 0:5; together with gamma (dashed).
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Di¤erentiating the score gives

@ut
@�tpt�1

= �(� + 1)bt(1� bt)

and so the asymptotic theory is very similar to that for the Beta-t-EGARCH
model.

Proposition 6 For a conditional Burr distribution with � and 
 �xed and
a �rst-order dynamic model with j�j < 1 and d < 1; the limiting distribution
of
p
T (e � ) is multivariate normal with covariance matrix as in (21) with

a = �� �
�

� + 2
(50)

b = �2 � 2�� �

� + 2
+ �2

2�(� + 1)2

(� + 4)(� + 3)(� + 2)

c = �� �(� � 1)
(� + 3)(� + 2)

and k = 1=�:
Proof. Since

E[bh(1� b)k] =
�k

� + h+ k

�(� + h)�(k)

�(� + h+ k)
;

taking conditional expectations gives

Et�1

�
@ut

@�tpt�1

�
=

��
� + 2

while

Et�1

�
@ut

@�tpt�1

�2
=

2�(� + 1)2

(� + 4)(� + 3)(� + 2)

and

Et�1

�
ut

@ut
@�tpt�1

�
=

��(� � 1)
(� + 3)(� + 2)
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The formula for d is obtained by noting that

E(u0kt ) = (�1)k(� + 1)k
�k�(k + �)�(k)

(� + 2k)�(� + 2k)
; k = 1; ::; 4 (51)

When � is estimated, the information matrix for a given value of 
 is
easily shown to be

I( ; �; 
) =

�
�
�+2
D( ) �


�+1
�

�+1

��2

�
Remark 5 Grammig and Maurier (2000) give �rst derivatives for dynamics
of the GARCH form. These are relatively complex.

5.4 F-distribution

If centered returns have a t�-distribution, their squares will be distributed
as F (1; �): This observation suggests the F - distribution as a candidate for
modeling various measures of daily volatility. In general, the F - distribution
depends on two degrees of freedom parameters and is denoted F (�1; �2):
The log-likelihood function for the t-th observation from an F (�1; �2)

distribution is

lnLt =
�1
2
ln �1yte

��tpt�1 +
�2
2
ln �1 +

�1 + �2
2

ln(�1yte
��tpt�1 + �2)

� ln yte��tpt�1 � lnB(�1=2; �2=2)

Hence the score is

@ lnLt
@�tpt�1

=
�1 + �2
2

bt(�1=2; �2=2)�
�1
2
;

where

bt(�1=2; �2=2) =
�1yte

��tpt�1=�2
1 + �1yte��tpt�1=�2

=
�1"t=�2

1 + �1"t=�2

is distributed as Beta(�1=2; �2=2). Taking expectations con�rms that the
score has zero mean since E(bt(�1=2; �2=2)) = �1=(�1 + �2).
The moments and ACF can be found from the properties of the Beta

distribution. As regards the asymptotic distribution, di¤erentiating the score
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gives
@ut

@�tpt�1
= ��1 + �2

2
bt(1� bt)

and so a; b; c and d are easily found. The formulae are like those for the Burr
distribution, except that (�1 + �2)=2 replaces (� + 1):

6 Daily Hang-Seng and Dow-Jones returns

The estimation procedures were programmed in Ox 5 and the sequential
quadratic programming (SQP) maximization algorithm for nonlinear func-
tions subject to nonlinear constraints, MaxSQP()in Doornik (2007), was used
throughout. The conditional variance or scale was initialized using the sam-
ple variance of the returns as in the G@RCH package of Laurent (2007).
Standard errors were obtained from the inverse of the Hessian matrix com-
puted using numerical derivatives.
The parameter estimates are presented in tables 1 to 5, together with

the maximized log-likelihood and the Akaike information criterion (AIC),
de�ned as (�2 lnL + 2� number of parameters)=T . The Bayes (Schwartz)
information criteria were also calculated but they are very similar and so are
not reported.
Table 1 reports estimates for Beta-t-EGARCH (1,0), with leverage. The

ML estimates and associated numerical standard errors (SEs) were reported
in Harvey and Chakravarty (2009). The asymptotic SEs are close to the
numerical SEs. For both series the leverage parameter, ��, has the expected
(positive) sign. The likelihood ratio statistic is large in both cases and it
easily rejects6 the null hypothesis that �� = 0 against the alternative that
�� > 0: The same conclusion is reached if the standard errors are used to
construct (one-sided) tests based on the standard normal distribution. ( A
Wald test ). The values of d are also given in table 1: for both series they
are well below unity.

6For a two-sided alternative the LR statistic is asymptotically �21; while for a one-sided
alternative the distibution is a mixture of �21 and �

2
0 leading to a test at the �% level of

signi�cance being carried out with the 2�% signi�cance points.
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Hang Seng DOW-JONES
Parameter Estimates (num. SE) Asy. SE Estimates (num. SE) Asy. SE

� 0.006 (0.0020) 0.0018 -0.005 (0.001) 0.0026
� 0.993 (0.003) 0.0017 0.989 (0.002) 0.0028
� 0.093 (0.008) 0.0073 0.060 (0.005) 0.0052
�� 0.042 (0.006) 0.0054 0.031 (0.004) 0.0038
� 5.98 (0.45) 0.355 7.64 (0.56) 0.475
d (a; b) 0.775 (0.931, 0.876) 0.815 (0.946,0.898)
lnL -9747.6 -11180.3
AIC 3.474 2.629
Table 1 Parameter estimates for Beta-t-EGARCH models with leverage.

Table 2 gives the estimates and standard errors for the benchmark GARCH-
t model obtained with the G@RCH program of Laurent (2007). The lever-
age is captured by the indicator variable, but using the sign gives essentially
the same result. If it is acknowledged that the conditional distribution is
not Gaussian then the estimates computed under the assumption that it is
conditionally Gaussian - denoted in table 2 simply as GARCH - are best de-
scribed as quasi-maximum likelihood (QML). The columns at the end show
the estimates for Beta-t-GARCH converted from the parameterization used
in this article. The maximized log-likelihoods for Beta-t-GARCH are greater
than those for GARCH-t.
While the condition for covariance stationarity of the GARCH-t �tted

to Hang Seng is satis�ed, as the estimate of � + � + ��=2 = � is 0.982,
the condition for the existence of the fourth moment is violated because
the relevant statistic takes a value of 1.021 and so is greater than one. On
the other hand, the fourth moment condition for the Beta-t-GARCH model,
(??), is 0:997:
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Hang Seng DOW-JONES
Parameter GARCH-t GARCH B-t-G GARCH-t GARCH B-t-G

� 0.048 (0.011) 0.081 0.035 0.011(0.002) 0.017 0.010
� .888 (.014) .845 .884 0.936 (0.007) 0.919 0.927
� .051 (0.008) .053 .050 0.027(0.004) 0.027 0.050
�� .087 (0.021) 0.151 .108 0.052(0.010) 0.076 0.076
� 5.87 (0.54) - 5.97 7.21 (0.62) - 7.64
LogL -9770.1 -9991.0 -9748.6 -11192.8 -11428.8 -11182.4
AIC 3.473 3.548 3.465 2.620 2.673 2.618
Table 2 Parameter estimates for GARCH-t and GARCH with leverage,

together with Beta-t-GARCH estiamtes

Plots of the conditional standard deviations (SDs) produced by the Beta-
t-GARCH and Beta-t-EGARCH models are di¢ cult to distinguish and the
only marked di¤erences between their conditional standard deviations and
those obtained from conventional EGARCH and GARCH-t models are after
extreme values. Figure 4 shows the SDs of Dow-Jones produced by Beta-t-
EGARCH and GARCH-t, both with leverage e¤ects, around the Great Crash
of 1987. (The largest value is 22.5 but the y axis has been truncated). The
GARCH-t �lter reacts strongly to the extreme observations and then returns
slowly to the same level as Beta-t-EGARCH.

7 Conclusions

This article has established the asymptotic distribution of maximum like-
lihood estimators for a class of exponential volatility models and provided
an analytic expression for the asymptotic covariance matrix. The models
include a modi�cation of EGARCH that retains all the advantages of the
original EGARCH while eliminating disadvantages such as the absence of
moments for a conditional t-distribution. The asymptotics carry over to
models for duration and realized volatility by simply employing an exponen-
tial link function. The uni�ed theory is attractive in its simplicity. Only the
�rst-order model has been analyzed, but this model is the one used in most
situations. Clearly there is work to be done to extend the results to more
general dynamics.
The analysis shows that stationarity of the (�rst-order) dynamic equation

is not su¢ cient for the asymptotic theory to be valid. However, it will be
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Figure 4: Dow-Jones absolute (de-meaned) returns around the great crash
of October 1987, together with estimated conditional standard deviations for
Beta-t-EGARCH and GARCH-t, both with leverage. The horizontal axis
gives the year and month.
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su¢ cient in most situations and the other conditions are easily checked. If
a unit root is imposed on the dynamic equation the asymptotic theory can
still be established.
The analytic expression obtained for the information matrix establishes

that it is positive de�nite. This is crucial in demonstrating the validity of
the asymptotic distribution of the ML estimators. In practice, numerical
derivatives may be used for computing ML estimates. However, the analytic
information matrix for the �rst-order model may be of value in enabling ML
estimates to be computed rapidly, by the method of scoring, as well as in
providing accurate estimates of asymptotic standard errors; see the comments
made by Fiorentini et al (1996) in the context of GARCH estimation.
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APPENDIX

A Derivation of the formulae for theorem 1

The LIE is used to evaluate the outer product form of the D( ) matrix, as
in (17). The formula for � was derived in the main text. For �

Et�2

�
@�tpt�1
@�

�2
= Et�2

�
xt�1

@�t�1pt�2
@�

+ �t�1pt�2

�2
(52)

= b

�
@�t�1pt�2
@�

�2
+ �2t�1pt�2 + 2a

@�t�1pt�2
@�

�t�1pt�2
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The unconditional expectation of the last term is found by writing (shifted
forward one period)

Et�2

�
@�tpt�1
@�

�tpt�1

�
= Et�2

�
xt�1

@�t�1pt�2
@�

+ �t�1pt�2

�
(��t�1pt�2 + � + �ut�1)

= �Et�2

�
xt�1

@�t�1pt�2
@�

�t�1pt�2

�
+ ��2t�1pt�2 + �Et�2

�
xt�1

@�t�1pt�2
@�

�
+��t�1pt�2 + �Et�2

�
ut�1xt�1

@�t�1pt�2
@�

�
+ �Et�2(ut�1�t�1pt�2)

The last term is zero. Taking unconditional expectations and substituting
for E(�tpt�1) gives

E

�
@�tpt�1
@�

�tpt�1

�
=
�E(�2tpt�1)

1� a�
+


(� + �c)

(1� a)(1� a�)
(53)

Taking unconditional expectations in (52) and substituting from (53) gives

E

�
@�tpt�1
@�

�2
= bE

�
@�t�1pt�2
@�

�2
+E(�2tpt�1)+

2a�E(�2tpt�1)

1� a�
+

2a�(� + �c)

(1� a)(1� �)(1� a�)

which leads to B on substituting for

E
�
�2tpt�1

�
= �2=(1� �)2 + �2u�

2=(1� �2):

Now consider �

Et�2

�
@�tpt�1
@�

�2
= b

�
@�t�1pt�2

@�

�2
+ 2a

�
@�tpt�1
@�

�
+ 1:

Unconditional expectations give

E

�
@�tpt�1
@�

�2
=

1 + a

(1� a)(1� b)
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As regards the cross-products

Et�2

�
@�tpt�1
@�

@�tpt�1
@�

�
= Et�2

��
xt�1

@�t�1pt�2
@�

+ ut�1

��
xt�1

@�t�1pt�2
@�

+ �t�1pt�2

��
= Et�2

�
x2t�1

@�t�1pt�2
@�

@�t�1pt�2
@�

�
+ Et�2

��
xt�1ut�1

@�t�1pt�2
@�

��
+Et�2

��
xt�1

@�t�1pt�2
@�

�t�1pt�2

��
+ Et�2 [�t�1pt�2ut�1]

= b

�
@�t�1pt�2
@�

@�t�1pt�2
@�

�
+ c

@�t�1pt�2
@�

+ a

�
@�t�1pt�2
@�

�t�1pt�2

�
+ 0

The unconditional expectation of the last (non-zero) term is found by writing
(shifted forward one period)

Et�2

�
@�tpt�1
@�

�tpt�1

�
= Et�2

��
xt�1

@�t�1pt�2
@�

+ ut�1

�
(��t�1pt�2 + � + �ut�1)

�
= a�E

�
@�t�1pt�2
@�

�t�1pt�2

�
+ ��2u

Thus

E

�
@�tpt�1
@�

�tpt�1

�
=

��2u
1� a�

leading to D.

Et�2

�
@�tpt�1
@�

@�tpt�1
@�

�
= Et�2

��
xt�1

@�t�1pt�2
@�

+ 1

��
xt�1

@�t�1pt�2
@�

+ �t�1pt�2

��
= b

�
@�t�1pt�2

@�

@�t�1pt�2
@�

�
+ �t�1pt�2 + a

@�t�1pt�2
@�

+ a
@�t�1pt�2

@�
�t�1pt�2

For � and �; taking unconditional expectations gives

E

�
@�tpt�1
@�

@�tpt�1
@�

�
= bE

�
@�t�1pt�2

@�

@�t�1pt�2
@�

�
+
+

a


1� a
+aE

�
@�t�1pt�2

@�
�t�1pt�2

�
(54)
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but we require

Et�1

�
@�tpt�1
@�

�tpt�1

�
= Et�1

��
xt�1

@�t�1pt�2
@�

+ 1

�
(� + ��t�1pt�2 + �ut�1)

�
= a�

�
@�t�1pt�2

@�
�t�1pt�2

�
+ �a

@�t�1pt�2
@�

+ � + ��t�1pt�2

+Et�1

�
xt�1ut�1

@�t�1pt�2
@�

�
+ �Et�1(ut�1)

= a�

�
@�t�1pt�2

@�
�t�1pt�2

�
+ �a

@�t�1pt�2
@�

+ � + ��t�1pt�2 + �c
@�t�1pt�2

@�
+ 0

Taking unconditional expectations in the above expression yields

E

�
@�tpt�1
@�

�tpt�1

�
= a�E

�
@�t�1pt�2

@�
�t�1pt�2

�
+

�a

1� a
+ � + �
 +

�c

1� a

= a�E

�
@�t�1pt�2

@�
�t�1pt�2

�
+
� � a�� + �c� ��c

(1� a)(1� �)

and so

E

�
@�tpt�1
@�

�tpt�1

�
=

� � a�� + �c� ��c

(1� a�)(1� a)(1� �)

and substituting in (54) gives F (divided by 1� b).
Finally

Et�2

�
@�tpt�1
@�

@�tpt�1
@�

�
= Et�2

��
xt�1

@�t�1pt�2
@�

+ 1

��
xt�1

@�t�1pt�2
@�

+ ut�1

��
Expanding and taking unconditional expectations gives E.

B Functions of beta

When b has a Beta(1=2; �=2) distribution, the pdf is

f(b) =
1

B(1=2; �=2)
b�1=2(1� b)�=2�1;
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where B(:; :) is the beta function. Hence

E(bh(1� b)k) =
1

B(1=2; �=2)

Z
bh(1� b)kb�1=2(1� b)�=2�1db

=
B(1=2 + h; �=2 + k)

B(1=2; �=2)

1

B(1=2 + h; �=2 + k)

Z
b�1=2+h(1� b)�=2�1+kdb

=
B(1=2 + h; �=2 + k)

B(1=2; �=2)

Now B(�; �) = �(�)�(�)=�(�+ �): Thus

E(b(1� b)) =
B(1=2 + 1; �=2 + 1)

B(1=2; �=2)
=
�(1=2 + 1)�(�=2 + 1)

�(1=2 + �=2 + 2)

�(1=2 + �=2)

�(1=2)�(�=2)

=
(1=2)(�=2)

(1=2 + �=2 + 1)(1=2 + �=2)
=

�

(3 + �)(� + 1)

and

E(b2(1� b)) =
B(1=2 + 2; �=2 + 1)

B(1=2; �=2)
=

3�

(� + 3)(� + 1)(� + 5)
:

C Proof of proposition 2

To derive B�; �rst observe that the conditional expectation of the last term
in expression (52), that is Et�2 (�tpt�1:@�tpt�1=@�) ; is now

Et�2

�
x�t�1

@�t�1pt�2
@�

+ �t�1pt�2

�
(��t�1pt�2 + � + �ut�1 + ��sgn(�yt�1)(ut�1 + 1))

= �Et�2

�
x�t�1

@�t�1pt�2
@�

�t�1pt�2

�
+ ��2t�1pt�2 + �Et�2

�
x�t�1

@�t�1pt�2
@�

�
+��t�1pt�2 + �Et�2

�
ut�1x

�
t�1

@�t�1pt�2
@�

�
+ �Et�2(ut�1�t�1pt�2)

+��Et�2

�
x�t�1

@�t�1pt�2
@�

sgn(�yt�1)(ut�1 + 1)
�
+ ��Et�2(sgn(�yt�1)(ut�1 + 1)�t�1pt�2)
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The last term is zero, but the penultimate term is not. Taking unconditional
expectations, and substituting for E(�t�1pt�2); which is unchanged, gives

E

�
@�tpt�1
@�

�tpt�1

�
=
�E(�2tpt�1)

1� a�
+

(� + �c+ ��c�)

(1� a)(1� a�)

Substituting in (52) and noting that E(�2tpt�1) is now given by (40) gives B
�:
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