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1 Introduction

In the last couple of years there have been numerous papers in Econometrics on inference in

partially identified models, many of which focused on inference about the identifiable parame-

ters in models defined by moment inequalities (see, among others, Imbens and Manski (2004),

Romano and Shaikh (2008), Rosen (2008), Andrews and Guggenberger (2009b)(AG from now

on), Andrews and Soares (2010)(AS from now on), Bugni (2010), and Canay (2010)). As a

consequence, there are currently several different methods to construct confidence sets (CSs)

based on test inversion that have been compared in terms of asymptotic confidence size and

length properties (e.g. Andrews and Jia (2008), AG, AS, Bugni (2010) and Canay (2010)).

In this paper we are interested in the relative robustness of CSs with respect to their asymp-

totic confidence size distortion when moment (in)equalities are potentially locally violated.

Intuition might suggest that CSs that tend to be smaller under correct model specification

are more size distorted under local model misspecification, that is, less robust to small per-

turbations of the true model.1 We show that this is true for CSs based on plug-in asymptotic

(PA) critical values compared to subsampling and generalized moment selection (GMS, see

AS), as well as for the modified methods of moments (MMM) test statistic compared to the

quasi likelihood ratio (QLR). However, the two main contributions of this paper lie behind

two results that go beyond such intuition. First, we show that CSs based on subsampling and

GMS critical values share the same level of asymptotic distortion under mild assumptions,

despite the fact that the latter leads to smaller CSs under correct model specification, see AS.

Second, we show that CSs based on the QLR test statistic have arbitrarily worse asymptotic

confidence size distortion than CSs based on the MMM test statistic under certain conditions.

The motivation behind the interest in misspecified models stems from the view that most

econometric models are only approximations to the underlying phenomenon of interest and

are therefore intrinsically misspecified. This is, it is typically impossible to do meaningful

inference based on the data alone and therefore the researcher has no choice but to impose

some structure and include some assumptions. The partial identification approach to infer-

ence (in particular, moment inequality models) allows the researcher to conduct inference

on the parameter of interest in a way that is robust to certain fundamental assumptions

(typically related to the behavior of economic agents), while keeping a second group of less

fundamental assumptions as given (typically related to parametric functional forms). For

example, in a standard simultaneous entry game where firms have profit functions given by

πl = (ul − θlW−l)I(Wl = 1), (1.1)

1 A test is locally more powerful if it rejects sequences of parameters that are local to the null hypothesis.
Under local misspecification, these sequences are part of the perturbed set of null parameters and so rejecting
them introduces size distortion. It is worth noting that the study of properties under local misspecification
introduces additional complications as all sequences of local alternatives matter and, in particular, finding the
worst sequence becomes an essential part of the analysis.
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Wl is a binary entry indicator and ul is firm’s l benefit of entry, moment inequality models have

been used in applied work to deal with the existence of multiple equilibria (e.g. Grieco (2009)

and Ciliberto and Tamer (2010)). However, the linear structure and the parametric family

of distributions for uj are typically taken as given. One justification for this asymmetry in

the way assumptions are treated lies behind the idea that there are certain assumptions that

directly affect the behavior of the agents in the structural model (and partial identification

aims to perform robust inference with respect to this group of assumptions), while there

are other assumptions that are made out of computational and analytical convenience (i.e.,

functional forms and distributional assumptions). Here we will not discuss the nature of a

certain assumption,2 but rather we will take the set of moment (in)equalities as given and

study how different inferential methods perform when the maintained set of assumptions is

allowed to be violated (i.e., when we allow the model to be misspecified). There are two basic

approaches to such an analysis that we briefly describe below.

First, if the nature of the misspecification remains constant throughout the sample, we

say that the model is globally misspecified. In this context, the object of interest becomes

a pseudo-true value of the parameter of interest, which is typically defined as the parameter

value associated with the distribution that is closest (according to some metric) to the true

data generating process (e.g., in the case of standard maximum likelihood estimation the

pseudo-true value minimizes the Kullback-Leibler discrepancy between the true model and

the incorrect parametric model). An extensive discussion of this type of misspecification in the

context of over-identified moment equality models can be found in Hall and Inoue (2003). In

the context of partially identified models, Ponomareva and Tamer (2009) discuss the impact

of global misspecification on the set of identifiable parameters and show that parameters

obtained from methods designed for incomplete models do not match those obtained from

the same models had those been complete.

Second, if the data do not satisfy the population moment condition for any finite sample

size, but do so in the limit as the sample size goes to infinity, we say that the model is

locally misspecified. By its very nature, this type of analysis provides guidance in situations

where the truth is just a small perturbation away from the assumed model. Such an anal-

ysis was applied in the context of over-identified moment equality models by Newey (1985).

More recently Guggenberger (2009) studied the properties of linear IV estimators under local

violations of exogeneity conditions, while Kitamura, Otsu, and Evdokimov (2009) consid-

ered local deviations within shrinking topological neighborhoods of point identified moment

equality models and proposed an estimator that achieves optimal minimax robust properties.

Since the limit of locally misspecified models equals the correctly specified model, the object

of interest under local misspecification and correct specification coincides. This facilitates the

interpretation relative to pseudo true values that are present in globally misspecified models.

2 For an extensive discussion on the role of different assumptions and partial identification in general see
Manski (2003) and Tamer (2009).
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Therefore, if we believe that the probability law generating the observations is in fact a small

perturbation of the true law, then it is of interest to seek for an inference procedure that it

robust against such slight perturbation in the observed data. This is the approach that we

take in this paper.

The paper is organized as follows. Section 2 introduces the model and notation, and

provides two examples that illustrate the nature of misspecification we capture in our analysis.

Section 3 provides asymptotic confidence size distortion results across different test statistics

and critical values. Section 4 presents simulation results that support the main findings of

this paper. We include the assumptions and proofs of the results in the Appendix.

Throughout the paper we use the notation h = (h1, h2), where h1 and h2 are allowed

to be vectors or matrices. We also use R+ = {x ∈ R : x ≥ 0}, R+,+∞ = R+ ∪ {+∞},
R+∞ = R ∪ {+∞}, R±∞ = R ∪ {±∞}, Kp = K × · · · × K (with p copies) for any set K,

∞p = (+∞, . . . ,+∞) (with p copies), 0k for a k-vector of zeros and Ik for a k × k identity

matrix.

2 Locally Misspecified Moment Equality/Inequality Models

The moment inequality/equality model assumes the existence of a true parameter vector θ0

(∈ Θ ⊂ Rd) that satisfies the moment restrictions

EF0mj(Wi,θ0) ≥ 0 for j = 1, . . . , p and

EF0mj(Wi,θ0) = 0 for j = p+ 1, . . . , p+ v ≡ k, (2.1)

where {mj(·, θ)}kj=1 are known real-valued moment functions and {Wi}ni=1 are observed i.i.d.

random vectors with joint distribution F0. We consider confidence sets (CSs) for θ0 obtained

by inverting tests of the hypothesis

H0 : θ0 = θ vs. H1 : θ0 6= θ. (2.2)

This is, if we denote by Tn(θ) a generic test statistic for testing (2.2) and by cn(θ, 1− α) the

critical value of the test at nominal size α, then the 1− α CS for θ0 is

CSn = {θ ∈ Θ : Tn(θ) ≤ cn(θ, 1− α)}. (2.3)

Several CSs have been suggested in the literature whose asymptotic confidence size is greater

than or equal to the nominal coverage size under mild technical conditions. The test statistics

include modified method of moments (MMM), quasi likelihood ratio (QLR) or generalized

empirical likelihood (GEL) statistics. Critical values include plug-in asymptotic (PA), sub-

sampling, and generalized moment selection (GMS) implemented via asymptotic approxima-
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tions or the bootstrap.3

To assess the relative advantages of these procedures the literature has mainly focused

on asymptotic size and power in correctly specified models. Bugni (2010) shows that GMS

tests have more accurate asymptotic size than subsampling tests. AS establish that GMS

tests have asymptotic power greater than or equal to that of subsampling tests and strictly

greater power than subsampling tests for certain local alternatives. Furthermore, subsampling

has greater than or equal power than PA tests for all local alternatives and strictly greater

power for certain local alternatives. Andrews and Jia (2008) compare different combinations

of tests statistics and critical values and provide a recommended test based on the QLR

statistic and a refined moment selection (RMS) critical value which involves a data-dependent

rule for choosing the GMS tuning parameter. Additional results on power include those in

Canay (2010). Here we are interested in ranking the resulting CSs in terms of asymptotic

confidence size distortion when the moment (in)equalities in (2.1) are potentially locally

violated. Consider the following examples as illustrations.

Example 2.1 (Missing Data). Suppose that the economic model indicates that

EF0 (Y |X = x) = G (x, θ0) ,∀x ∈ SX , (2.4)

where θ0 is the true parameter value and SX = {xl}dxl=1 is the (finite) support of X. The

sample is affected by missing data on Y . Denote by Z the binary variable that takes value

of one if Y is observed and zero if Y is missing. Conditional on X = x, Y has logical lower

and upper bounds given by YL (x) and YH (x), respectively. When the observed data Wi =

(YiZi, Zi, Xi) comes from the model in (2.4), the true θ0 satisfies the following inequalities,

EF0ml,1(Wi, θ0) = EF0 [(Y Z + YH(xl)(1− Z)−G(xl, θ0))I(X = xl)] ≥ 0,

EF0ml,2(Wi, θ0) = EF0 [(G(xl, θ0)− Y Z − YL(xl)(1− Z))I(X = xl)] ≥ 0, (2.5)

for l = 1, . . . , dx. Now suppose that in fact the data come from a local perturbation Fn of

the true model F0 such that

EFn (Y |X = x) = Gn (x, θ0) ,∀x ∈ SX , (2.6)

and for a vector r ∈ Rk+

|Gn(xl, θ0)−G(xl, θ0)| ≤ rln−1/2, ∀l = 1, 2, . . . , dx. (2.7)

The last condition says that the true function Gn is not too far from the model G used by

3 The details of the test statistics and critical values are presented in the next section.
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the researcher. After a few manipulations, it follows that

EFnml,1(Wi, θ0) = EFn [(Y Z + YH(xl)(1− Z)−G(xl, θ0))I(X = xl)] ≥ −rln−1/2,

EFnml,2(Wi, θ0) = EFn [(G(xl, θ0))− Y Z − YL(xl)(1− Z))I(X = xl)] ≥ −rln−1/2, (2.8)

for l = 1, . . . , dx. Therefore, under the true distribution of the data the original moment

conditions in (2.5) may be locally violated at θ0. �

Example 2.2 (Entry Game). Suppose firm l ∈ {1, 2} generates profits

πl,i(θl,W−l,i) = ul,i − θlW−l,i (2.9)

when entering market i ∈ {1, . . . , n}. Here Wl,i = 0 or 1 denotes “not entering” or “ entering”

market i by firm l, respectively, a subscript −l denotes the decision of the other firm, the

random variable ul,i denotes the profit of firm l in market i if W−l,i = 0, and θl ∈ [0, 1] is

the profit reduction incurred by firm l if W−l,i = 1. If firm l does not enter market i then

its profit in this market is 0. We assume (ui)
n
i=1 = (u1,i, u2,i)

n
i=1 are i.i.d. , with realizations

restricted to [0, 1]2, and continuous distribution. Therefore, if the other firm does not enter

then entering is always profitable.

Define Wi = (W1,i,W2,i) and θ0 = (θ1, θ2). There are four possible outcomes: (i) Wi =

(1, 1) is the unique Nash Equilibrium (NE) if ul,i > θl for l = 1, 2; (ii) Wi = (1, 0) is the

unique NE if u1,i > θ1 and u2,i < θ2; (iii) Wi = (0, 1) is the unique NE if u1,i < θ1 and

u2,i > θ2, and; (iv) there are multiple equilibria if ul,i < θl for l = 1, 2 as both Wi = (1, 0)

and Wi = (0, 1) are NE. It follows that

Pr(Wi = (1, 0)) ≤ Pr(π2,i < 0) = Pr(u2,i < θ2) ≡ G1(θ0),

Pr(Wi = (1, 0)) ≥ Pr(π1,i > 0 & π2,i < 0) = Pr(u1,i ≥ θ1 & u2,i < θ2) ≡ G2(θ0),

Pr(Wi = (1, 1)) = Pr(π1,i > 0 & π2,i > 0) = Pr(u1,i ≥ θ1 & u2,i ≥ θ2) ≡ G3(θ0), (2.10)

where the notationG1(θ0), G2(θ0), G3(θ0) is used if ui ∼ G. The resulting moment (in)equalities

are

EF0m1(Wi, θ0) = EF0 [G1(θ0)−W1,i(1−W2,i)] ≥ 0,

EF0m2(Wi, θ0) = EF0 [W1,i(1−W2,i)−G2(θ0)] ≥ 0,

EF0m3(Wi, θ0) = EF0 [W1,iW2,i −G3(θ0)] = 0, (2.11)

where F0 denotes the true distribution of Wi that must be compatible with the true joint

distribution of ui according to the restrictions (i)-(iv) above.

To do inference on θ0, the econometrician assumes G is the joint distribution of the

unobserved random vector ui. Suppose the econometrician’s assumption is “close to the truth
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but not quite the truth”. More specifically, suppose that for a r = (r1, r2, r3)
′ ∈ R3

+

|Gj(θ0)−Gnj(θ0)| ≤ rjn−1/2, j = 1, 2, 3, (2.12)

where Gn denotes the true distribution of ui for sample size n and Gnj(θ0) is defined as

Gj(θ0) above when ui ∼ Gn rather than ui ∼ Gn. Denote by Fn the true distribution of

Wi that must be compatible with the true joint distribution of ui ∼ Gn. Then, combining

Equations (2.10) and (2.11) we obtain

EFnm1(Wi, θ0) = EFn [G1(θ0)−W1,i(1−W2,i)] ≥ −r1n−1/2,

EFnm2(Wi, θ0) = EFn [W1,i(1−W2,i)−G2(θ0)] ≥ −r2n−1/2,

|EFnm3(Wi, θ0)| = |EFn [W1,iW2,i −G3(θ0)]| ≤ −r3n−1/2. (2.13)

Thus, under the distribution Fn the moment conditions may be “locally violated” at θ0. �

Remark 2.1. Note that in both examples the parameter θ0 has a meaningful interpretation

independent of the potential misspecification of the model of the type considered above.

However, by assuming a slightly incorrect parametric structure the moment (in)equalities are

potentially violated for a given sample size n at the true θ0.

Remark 2.2. In Example 2.2 the differences between Gj(θ0) and Gj,n(θ0) in Equation (2.12)

could arise due to misspecification in the distribution of ui, due to misspecification in the

profit function πn,j,i(θ,W−j,i), or due to both. This is, let πn,j,i(θ,W−j,i) be a perturbed

profit function that results in G1,n(θ) ≡ Pr(πn,2,i < 0) and so on. If Equation (2.12) holds,

then the representation in (2.13) would follow as in the example.

Examples 2.1 and 2.2 illustrate that local misspecification in moment inequality models

can be represented by a parameter space that allows the moment conditions to be slightly

violated, i.e., slightly negative in the case of inequalities and slightly different from zero

in the case of equalities. We capture this idea in the definition below, where m(Wi, θ) =

(m1(Wi, θ), . . . ,mk(Wi, θ)) and (θ, F ) denote generic values of the parameters.

Definition 2.1 (Parameter Space). The parameter space Fn ≡ Fn (r, δ,M,Ψ) for (θ, F ) is

6



the set of all tuplets (θ, F ) that satisfy

(i) θ ∈ Θ,

(ii) σ−1F,j(θ)EFmj(Wi, θ) ≥ −rjn−1/2, j = 1, . . . , p,

(iii) |σ−1F,j(θ)EFmj(Wi, θ)| ≤ rjn−1/2, j = p+ 1, . . . , k,

(iv) {Wi}ni=1 are i.i.d. under F,

(v) σ2F,j(θ) = V arF (mj(Wi, θ)) ∈ (0,∞), j = 1, . . . , k,

(vi) CorrF (m(Wi, θ)) ∈ Ψ, and,

(vii) EF |mj(Wi, θ)/σF,j(θ)|2+δ ≤M, j = 1, . . . , k, (2.14)

where Ψ is a specified closed set of k × k correlation matrices (that depends on the test

statistic; see below), M <∞ and δ > 0 are fixed constants, and r = (r1, . . . , rk) ∈ Rk+.

As made explicit in the notation, the parameter space depends on n. It also depends on

the number of moment restrictions k and the “upper bound” on the local moment/moment

inequality violation r. Conditions (ii)-(iii) are modifications of (3.3) in AG (or (2.2) in AS)

to account for local model misspecification. Note that this captures the situations illustrated

in Examples 2.1 and 2.2. Finally, we use

r∗ ≡ max{r1, . . . , rk} (2.15)

to measure the amount of misspecification.

Remark 2.3. The parameter space in (2.14) includes the space F0 ≡ Fn(0k, δ,M, ψ) for all

n ≥ 1, which is the set of correctly specified models. The content of the theorems in the next

section continue to hold if we alternatively define Fn enforcing that at least one moment is

strictly violated. One way of doing this is by adding the restriction

(viii) σ−1F,j(θ)EFmj(W, θ) = −rjn−1/2 and rj > 0 for some j = 1, . . . , k. (2.16)

The asymptotic confidence size of CSn in Equation (2.3) is defined as

AsyCS = lim inf
n→∞

inf
(θ,F )∈Fn

Prθ,F (Tn(θ) ≤ cn(θ, 1− α)), (2.17)

where Prθ,F (·) denotes the probability measure when the true value of the parameter is θ

and the true distribution equals F . This is the limit of the exact size of the test, which is the

magnitude one aims to control in finite samples. We know that AsyCS ≥ 1 − α for certain

subsampling, PA, and GMS tests when r∗ = 0. Here we are interested in deriving AsyCS

for these CSs when r∗ is strictly positive and rank them according to their level of distortion,

defined as

max{1− α−AsyCS, 0} (2.18)

7



Before doing this, we present the different test statistics and critical values in the next

subsection.

2.1 Test Statistics and Critical Values

We now present several test statistics Tn(θ) and corresponding critical values cn(θ, 1− α) to

test (2.2) or, equivalently, to construct (2.3). Define the sample moment functions

m̄n(θ) = (m̄n,1(θ), . . . , m̄n,k(θ)), where

m̄n,j(θ) = n−1
n∑
i=1

mj(Wi, θ) for j = 1, . . . , k. (2.19)

Let Σ̂n(θ) be a consistent estimator of the asymptotic variance matrix, Σ(θ), of n1/2m̄n(θ).

Under our assumptions, a natural choice is

Σ̂n(θ) = n−1
n∑
i=1

(m(Wi, θ)− m̄n(θ))(m(Wi, θ)− m̄n(θ))′. (2.20)

The statistic Tn(θ) is defined to be of the form

Tn(θ) = S(n1/2m̄n(θ), Σ̂n(θ)), (2.21)

where S is a real function on Rp+∞ × Rv × Vk×k, the set Vk×k is the space of k × k variance

matrices and S satisfies Assumption A.1 in Appendix A.

We now describe two popular choices of test functions. The first test function S is

S1(m,Σ) =

p∑
j=1

[mj/σj ]
2
− +

k∑
j=p+1

(mj/σj)
2, (2.22)

where [x]− = xI(x < 0), m = (m1, . . . ,mk) and σ2j is the jth diagonal element of Σ. For

this function, the parameter space Ψ for the correlation matrices in condition (v) of (2.14)

is not restricted. That is, (2.14) holds with Ψ = Ψ1, where Ψ1 contains all k × k correlation

matrices. The function S1 leads to the test statistic

T1,n(θ) = n

p∑
j=1

[m̄n,j(θ)/σ̂n,j(θ)]
2
− + n

k∑
j=p+1

(m̄n,j(θ)/σ̂n,j(θ))
2, (2.23)

where σ̂2n,j(θ) is the jth diagonal element of Σ̂n(θ). This statistic gives positive weight to

moment inequalities only when they are violated.

The second test function is a Gaussian quasi-likelihood ratio (or minimum distance) func-
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tion defined by

S2(m,Σ) = inf
t=(t1,0v):t1∈Rp

+,+∞

(m− t)′Σ−1(m− t). (2.24)

This function requires Σ to be non-singular so we take Ψ = Ψ2,ε, where Ψ2,ε contains all k×k
correlation matrices whose determinant is greater than or equal to ε > 0, for some ε > 0.

The function S2 leads to the test statistic

T2,n(θ) = inf
t=(t1,0v):t1∈Rp

+,+∞

(n1/2m̄n(θ)− t)′Σ̂n(θ)−1(n1/2m̄n(θ)− t). (2.25)

The functions S1 and S2 satisfy Assumptions A.1-A.3 in Appendix A that are slight

generalizations of Assumptions 1-4 in AG to our setup.4 AG discusses additional examples

of test functions.

We next describe three popular choices of critical values. Assuming the limiting correla-

tion matrix of m(Wi, θ) is given by Ω, Equations (2.1) hold, and these expectations do not

change with n, it follows from Lemma B.1 in Appendix B that

Tn(θ)→d S(Ω1/2Z + h1,Ω), where Z ∼ N(0k, Ik), (2.26)

and h1 is a k-vector with jth component equal to 0 when j > p, and equal to 0 or ∞ for

j ≤ p when the jth moment inequality is binding or not binding, respectively, see Lemma

B.1. Therefore, ideally one would like to use the 1−α quantile of S(Ω1/2Z + h1,Ω), denoted

by ch1(Ω, 1−α) or, at least, a consistent estimator of it. This requires knowledge of h1, which

cannot be estimated consistently, and so some approximation to ch1(Ω, 1− α) is necessary.

Under the assumptions in the Appendix, the asymptotic distribution in (2.26) is stochasti-

cally largest over distributions in F0 (i.e., correctly specified models) when all the inequalities

are binding (i.e., hold as equalities). As a result, the least favorable critical value can be shown

to be c0(Ω, 1 − α), the 1 − α quantile of S(Ω1/2Z,Ω) where h1 = 0k. PA critical values are

based on this “worst case” and are defined as consistent estimators of c0(Ω, 1− α). Define

Ω̂n(θ) = D̂−1/2n (θ)Σ̂n(θ)D̂−1/2n (θ), (2.27)

where D̂n(θ) = Diag(Σ̂n(θ)) and Σ̂n(θ) is defined in (2.20). The PA test rejects H0 if Tn(θ) >

c0(Ω̂n(θ), 1− α), where the PA critical value is

c0(Ω̂n(θ), 1− α) ≡ inf{x ∈ R : Pr(S(Ω̂n(θ)1/2Z, Ω̂n(θ)) ≤ x) ≥ 1− α}, (2.28)

and Z ∼ N(0k, Ik) with Z independent of {Wi}ni=1.

4 Note S1(m,Σ) is increasing in |mj | for j = p+1, . . . , k, while S2(m,Σ) is not. To see this take p = 0, k = 2,
and Σ with ones in the diagonal and σ12 off diagonal. Then S2(m,Σ) = (1− σ2

12)−1(m2
1 +m2

2 − 2m1m2σ12).
Taking partial derivatives yields the result.
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We now define the GMS critical value introduced in AS. To this end, let

ξn(θ) = κ−1n D̂−1/2n (θ)n1/2m̄n(θ), (2.29)

for a sequence {κn}∞n=1 of constants such that κn → ∞ as n → ∞ at a suitable rate, e.g.

κn = (2 ln lnn)1/2. For every j = 1, . . . , p, the realization ξn,j(θ) is an indication of whether

the jth inequality is binding or not. A value of ξn,j(θ) that is close to zero (or negative)

indicates that the jth inequality is likely to be binding. On the other hand, a value of ξn,j(θ)

that is positive and large, indicates that the jth inequality may not be binding. As a result,

GMS tests replace the parameter h1 in the limiting distribution with the k-vector

ϕ(ξn(θ), Ω̂n(θ)), (2.30)

where ϕ = (ϕ1, . . . , ϕp, 0v) ∈ Rk[+∞] is a function chosen by the econometrician that is assumed

to satisfy assumption A.4 in the Appendix. Examples include ϕ
(1)
j (ξ,Ω) = ∞I(ξj > 1),

ϕ
(2)
j (ξ,Ω) = ψ(ξj), ϕ

(3)
j (ξ,Ω) = [ξj ]+, and ϕ

(4)
j (ξ,Ω) = ξj for j = 1, . . . , p, where ψ(·) is a

non-decreasing function that satisfies ψ(x) = 0 if x ≤ aL, ψ(x) ∈ [0,∞] if aL < x < aU , and

ψ(x) = ∞ if x > aU for some 0 < aL ≤ aU ≤ ∞. We use the convention ∞0 = 0 for ϕ
(1)
j .

See AS for additional examples. The GMS test rejects H0 if Tn(θ) > ĉn,κn(θ, 1 − α), where

the GMS critical value is

ĉn,κn(θ, 1−α) ≡ inf{x ∈ R : Pr(S(Ω̂1/2
n (θ)Z +ϕ(ξn(θ), Ω̂n(θ)), Ω̂n(θ)) ≤ x) ≥ 1−α}, (2.31)

and Z ∼ N(0k, Ik) with Z independent of {Wi}ni=1.

Finally, we define subsampling critical values, see Politis and Romano (1994) and Politis,

Romano, and Wolf (1999). Let b = bn denote the subsample size when the sample size is n.

Throughout the paper we assume b → ∞ and b/n → 0 as n → ∞. The number of different

subsamples of size b is qn. With i.i.d. observations, there are qn = n!/((n − b)!b!) different

subsamples of size b. The subsample statistics used to construct the subsampling critical

value are {Tn,b,s(θ)}qns=1, where Tn,b,s(θ) is a subsample statistic defined exactly as Tn(θ) is

defined but based on the sth subsample of size b rather than the full sample. The empirical

distribution function of {Tn,b,s(θ)}qns=1 is

Un,b(θ, x) = q−1n

qn∑
s=1

I(Tn,b,s(θ) ≤ x) for x ∈ R. (2.32)

The subsampling test rejects H0 if Tn(θ) > ĉn,b(θ, 1−α), where the subsampling critical value

is

ĉn,b(θ, 1− α) ≡ inf{x ∈ R : Un,b(θ, x) ≥ 1− α}. (2.33)

Having introduced the different test statistics and critical values, we devote the next
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section to the analysis of the asymptotic properties of the different tests under the locally

misspecified models defined in Definition 2.1.

3 Asymptotic Confidence Size Distortions

We divide this section in two parts. First, we take the test function S as given and compare

how PA, GMS, and subsampling perform under our local misspecification assumption. In

this case we write AsyCSPA, AsyCSGMS , and AsyCSSS for PA, GMS, and subsampling

CSs to make explicit the choice of critical value. Second, we take the critical value as given

and compare how the test functions S1 and S2 perform under local misspecification. In this

case we write AsyCS
(1)
l and AsyCS

(2)
l , for l ∈ {PA,GMS, SS}, to denote the asymptotic

confidence size of the test functions S1 and S2, respectively.

3.1 Comparison across Critical Values

The following Theorem presents the main result of this section, which provides a ranking of

PA, subsampling and GMS tests in terms of asymptotic confidence size distortion. In order

to keep the exposition as simple as possible, we present and discuss the assumptions and

technical details in Section A of the Appendix, respectively.

Theorem 3.1. Suppose the same assumptions hold as in Lemma B.2. Then:

1. We have

AsyCSPA ≥ AsyCSSS and AsyCSPA ≥ AsyCSGMS . (3.1)

Therefore, PA CSs are at least as robust as GMS and subsampling CSs under local

violations of the moment (in)equalities.

2. Under Assumption A.6 in Appendix A we have

AsyCSPA < 1− α. (3.2)

By (3.1) it follows that AsyCSSS < 1− α and AsyCSGMS < 1− α.

3. Under Assumption A.5 and κ−1n n1/2/b1/2 →∞, it follows that

AsyCSSS = AsyCSGMS . (3.3)

Therefore, subsampling CSs and GMS CSs are equally robust under local violations of

the moment (in)equalities.

Theorem 3.1 follows as a corollary of Lemma B.2 in Appendix B. Assumptions A.6 and

A.5 ensure the model is rich enough. These are mild assumptions and we verify them for the
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two lead examples in Section D of the Appendix. Under a reasonable set of assumptions, the

theorem concludes that

AsyCSGMS = AsyCSSS ≤ AsyCSPA < 1− α. (3.4)

This equation summarizes several important results. First, it shows that, under the presence

of local misspecification and relatively mild conditions, all of the inferential methods are

asymptotically distorted, that is, as the sample size grows, all of the tests over-reject the null

hypothesis and therefore lead to CSs that under-cover the true parameter value. Second,

the equation reveals that the PA test suffers the least amount of asymptotic confidence size

distortion. This is expected, since this test constructs its critical values in a conservative

fashion, treating each inequality as binding without using information in the data.

Equation (3.4) also shows that the subsampling and GMS CSs share the same amount of

asymptotic distortion. From the results in AS, we know that GMS tests are as powerful as

subsampling tests along any sequence of local alternative models. One would then expect the

GMS CS to have greater or equal asymptotic distortion than the subsampling CS. Moreover,

AS show that GMS tests are strictly more powerful than subsampling tests along some se-

quences of local alternative models. One might then suspect that this results would translate

in the GMS CS having a strictly larger asymptotic distortion than the subsampling CS in

the context of locally misspecified models. Equation (3.4) shows that this is not the case.

Intuitively, even though the GMS and subsampling tests differ in their asymptotic behavior

along certain sequences of locally misspecified models, these sequences turn out not to be the

relevant ones for the computation of the asymptotic confidence sizes, i.e., the ones that attain

the infimum in (2.17). In particular, along the sequences of locally misspecified models that

minimize their respective limiting coverage probability, the two CSs share the value of the

asymptotic confidence size. When combined with the results regarding power against local

alternatives in AS, our results indicate that the GMS test is preferable to the subsampling

test: there is a gain in asymptotic power against certain local alternatives without sacrificing

in terms of asymptotic confidence size when the model is locally misspecified.

According to Equation (3.4), the PA CS is the most robust among the test considered in

this section. However, PA CSs are conservative in many cases in which GMS and subsampling

CSs are not, and so the price for being robust against local misspecification can be quite high

if the model is correctly specified.

3.2 Comparison across Test Statistics

In this section we analyze the relative performance in terms of asymptotic confidence size of

CSs based on the test functions S1 and S2 defined in (2.22) and (2.24), respectively. The

main result of this section has two parts. First, we show that the AsyCS of the test function

S1 is strictly positive for any PA, GMS or subsampling critical value. Second, we show that
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the AsyCS of the test function S2 can be arbitrarily close to zero, again for all critical values.

The next theorem states these results formally.

Theorem 3.2. Suppose the assumptions in Lemma B.2 hold.

1. There exists B > 0 such that whenever r in the definition of Fn in Equation (2.14)

satisfies r∗ ≤ B
AsyCS

(1)
GMS > 0. (3.5)

2. Suppose also that Assumption A.7 holds. Then, for every r in the definition of Fn with

r∗ > 0 and every η > 0, there exists ε > 0 in Ψ2,ε such that

AsyCS
(2)
PA ≤ η. (3.6)

There are several important lessons from Theorem 3.2. First, by Theorems 3.1 and 3.2

it follows that the asymptotic confidence size of the CSs based on S1 are positive for any

critical value, provided the level of misspecification is not too big, i.e. r∗ ≤ B. Second, by

Theorems 3.1 and 3.2 it follows that the test function S2 results in CSs whose asymptotic

confidence size are arbitrarily small as ε in Ψ2,ε is chosen small. This is, the test function S2

is severely affected by the smallest amount of misspecification while the test function S1 has

a positive confidence size. Combining these two results we derive the following corollary.

Corollary 3.1. Suppose all the assumptions in Theorems 3.1 and 3.2 hold. Then, for l ∈
{PA,GMS, SS} there exists B > 0 and ε > 0 such that whenever r∗ ≤ B,

AsyCS
(2)
l < AsyCS

(1)
l . (3.7)

The corollary states that the test function S1 results in CSs that are more robust than

those based on the test function S2 for any PA, GMS and subsampling critical value. It is

known from Andrews and Jia (2008) that tests based on S2 have higher power than tests based

on S1, so intuition suggests Equation (3.7) should hold. However, Theorem 3.2 quantifies

this relationship by showing that the cost of having higher power under correct specification

is an arbitrarily low asymptotic confidence size under local misspecification.

Remark 3.1. Given that generalized empirical likelihood (GEL) test statistics are asymp-

totically equivalent to T2,n(θ) up to first order (see AG and Canay (2010)), the results from

Theorem 3.2 also hold for CSs based on GEL test statistics.

To understand the intuition behind Theorem 3.2 it is enough to consider the case where

p = k = 2 together with the limit of the PA critical value c0(Ω, 1 − α). In this simple case,

it follows from Lemma B.1 that

AsyCS
(1)
PA ≤ Pr([Z?1 − r1]2− + [−Z?1 ]2− ≤ c0(Ω, 1− α)), (3.8)
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where Z? ∼ N(0,Ω) and Ω ∈ Ψ1 is a correlation matrix with off-diagonal elements ρ = −1.

Theorem 3.2 shows that AsyCS
(1)
PA is strictly positive provided the amount of misspecification

is not too big (i.e., r∗ ≤ B). The reason why some condition on r∗ must be placed is evident:

if the amount of misspecification is really big there is no way to bound the asymptotic

distortion. To illustrate this, suppose r1 > (2c0(Ω, 1 − α))1/2 and let A ≡ [Z?1 − r1]2− and

B ≡ [−Z?1 ]2− so that the RHS of Equation (3.8) is Pr(A+B ≤ c0(Ω, 1−α)). On the one hand,

if Z?1 /∈ [0, r1] it follows that either B = 0 and A > c0(Ω, 1−α) or A = 0 and B > c0(Ω, 1−α).

On the other hand, if Z?1 ∈ [0, r1], A+B = (Z?1 − r1)2 + Z?21 ≥ r21/2 > c0(Ω, 1− α). We can

then conclude that

Pr([Z?1 − r1]2− + [−Z?1 ]2− ≤ c0(Ω, 1− α)) = 0, (3.9)

meaning that AsyCS
(1)
PA = 0 when r∗ > (2c0(Ω, 1−α))1/2. For this level of r∗, AsyCS

(2)
PA = 0

as well so both test statistics suffer from the maximum amount of distortion. Therefore, in

order to get meaningful results we must restrict the magnitude of r∗ as in Theorem 3.2.

In addition, Theorem 3.2 shows that AsyCS
(2)
PA can be arbitrarily close to zero when ε in

the space Ψ2,ε is small. To illustrate this, consider the case where p = k = 2 together with

the limit of the PA critical value c0(Ω, 1−α). By Ω ∈ Ψ2,ε, the off-diagonal element ρ of the

correlation matrix Ω has to lie in [−(1− ε)1/2, (1− ε)1/2]. It follows from Lemma B.1 that

AsyCS
(2)
PA ≤ Pr(S̃2(Z

?, r1,Ω) ≤ c0(Ω, 1− α)), (3.10)

where Z? ∼ N(0,Ω), Ω ∈ Ψ2,ε with ρ = −(1− ε)1/2 and

S̃2(Z
?, r1,Ω) =

1

ε
inf

t∈R2
+,+∞

{
2∑
j=1

(Z?j −r1− tj)2 +2(1−ε)1/2(Z?1 −r1− t1)(Z?2 −r1− t2)}. (3.11)

The solution to the above optimization problem can be divided in four cases (see Lemma B.3

for details), depending on the value of the realizations (z1, z2) of (Z?1 , Z
?
2 ). However, there

exists a set A ⊂ R2 such that for all (z1, z2) ∈ A

S̃2(z, r1,Ω) = S̃2(z, 0,Ω) +
2

1− (1− ε)1/2
[−r1(z1 + z2 − r1)], (3.12)

[−r1(z1 + z2− r1)] > 0 and Pr(Z? ∈ A)→ 1 as ε→ 0. It is immediate to see from the second

term in Equation (3.12) that when ε is small (i.e., correlation close to −1), small distortions

will shift the location of S̃2(Z
?, r1,Ω) upwards arbitrarily on A. As a result

Pr(S̃2(Z
?, r1,Ω) ≤ c0(Ω, 1− α)|A)→ 0, (3.13)

as ε → 0 since it can be shown that the critical value c0(Ω, 1 − α) is uniformly bounded in

Ω ∈ Ψ2. Therefore, Equation (3.10) implies that CSs based on S2 have asymptotic confidence
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size arbitrarily close to zero when ε is small.

AsyCS
(1)
PA AsyCS

(2)
PA

p r∗ ε = 0.10 ε = 0.05

0.25 0.888 0.637 0.351
2 0.50 0.800 0.101 0.003

1.00 0.502 0.000 0.000

0.25 0.866 0.588 0.314
4 0.50 0.739 0.071 0.001

1.00 0.256 0.000 0.000

0.25 0.847 0.631 0.347
6 0.50 0.674 0.091 0.002

1.00 0.153 0.000 0.000

0.25 0.830 0.713 0.441
8 0.50 0.617 0.134 0.009

1.00 0.082 0.000 0.000

0.25 0.804 0.720 0.461
10 0.50 0.571 0.124 0.010

1.00 0.050 0.000 0.000

Table 1: Asymptotic Confidence Size for CSs based on the test functions S1 and S2 with a PA
critical value. Computations were carried over 15000 random correlation matrices in Ψ1 and Ψ2,ε,
respectively.

We quantify the results in Theorem 3.2 by numerically computing the asymptotic confi-

dence size of the CSs based on S1 and S2 using the formulas provided in Lemma B.2. Table 1

reports the cases where p ∈ {2, 4, 6, 8, 10}, k = 0, ε ∈ {0.10, 0.05} and r∗ ∈ {0.25, 0.50, 1.00}.
Since the computation of AsyCS involves taking an infimum over correlation matrices (see

Lemma B.2), we compute this magnitude numerically by taking the infimum over 15000

randomly generated correlation matrices in Ψ1 and Ψ2,ε.

Table 1 shows that S2 is significantly distorted even for values of ε that are big, i.e.,

ε = 0.1. For example, when p = 2 and r∗ = 0.5, the AsyCS of the test function S1 is

0.80 while the AsyCS of S2 is 0.10 at best. Note that the coverage should deteriorate as p

increases. Table 1 shows this clearly for S1, but less clear for S2. The reason is that finding

the worst possible correlation matrix becomes more complicated as the dimension increases,

and so for p ≥ 8 the results are relatively optimistic for S2. However, even for these cases

the AsyCS of S2 is significantly below that of S1.

4 Numerical Simulations

To be added soon.
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Appendices

Appendix A Additional Notation and Assumptions

To determine the asymptotic confidence size (2.17) of the CSs we calculate the limiting coverage
probability along a sequence of “worst case parameters” {θn, Fn}n≥1 with (θn, Fn) ∈ Fn,∀n ∈ N. See
also Andrews and Guggenberger (2009a,b,2010a,b). The following definition provides the details.

Definition A.1. For a subsequence {ωn}n≥1 of N and h = (h1, h2) ∈ Rk+∞ ×Ψ we denote by

γωn,h = {θωn,h, Fωn,h}n≥1, (A-1)

a sequence that satisfies (i) γωn,h ∈ Fωn for all n, (ii) ω
1/2
n σ−1

Fωn,h,j
(θωn,h)EFωn,hmj(Wi, θωn,h)→ h1,j

for j = 1, . . . , k, and (iii) CorrFωn,h(m(Wi, θωn,h))→ h2 as n→∞, if such a sequence exists. Denote

by H the set of points h = (h1, h2) ∈ Rk+∞ ×Ψ for which sequences {γωn,h}n≥1 exist.
Denote by GH the set of points (g1, h) ∈ Rk+∞ ×H such that there is a subsequence {ωn}n≥1 of

N and a sequence {γωn,h}n≥1 = {θωn,h, Fωn,h}n≥1 that satisfies5

b1/2ωn σ
−1
Fωn,h,j

(θωn,h)EFωn,hmj(Wi, θωn,h)→ g1,j (A-2)

for j = 1, . . . , k, where g1 = (g1,1, . . . , g1,k). Denote such a sequence by {γωn,g1,h}n≥1.
Denote by ΠH the set of points (π1, h) ∈ Rk+∞ ×H such that there is a subsequence {ωn}n≥1 of

N and a sequence {γωn,h}n≥1 = {θωn,h, Fωn,h}n≥1 that satisfies

κ−1
ωnω

1/2
n σ−1

Fωn,h,j
(θωn,h)EFωn,hmj(Wi, θωn,h)→ π1,j (A-3)

for j = 1, . . . , k, where π1 = (π1,1, . . . , π1,k). Denote such a sequence by {γωn,π1,h}n≥1.

Our assumptions imply that elements of H satisfy certain properties. For example, for any h ∈ H,
h1 is constrained to satisfy h1,j ≥ −rj for j = 1, . . . , p and |h1,j | ≤ rj for j = p + 1, . . . , k, and h2

is constrained to satisfy the conditions on the correlations matrix. Note that the set H depends on
the choice of S through Ψ. Note that b/n → 0 implies that for (g1, h) ∈ GH it follows that g1,j = 0
whenever h1,j is finite (j = 1, . . . , k). In particular, g1,j = 0 for j > p by (2.14)(iii). Analogous
statements hold for ΠH.

Lemma B.2 in the next section shows that worst case parameter sequences for PA, GMS and sub-
sampling CSs are of the type {γn,h}n≥1, {γωn,π1,h}n≥1, and {γωn,g1,h}n≥1, respectively and provides
explicit formulas for the asymptotic confidence size of various CSs.

Definition A.2. For h = (h1, h2), let

Jh ∼ S(h
1/2
2 Z + h1, h2) (A-4)

where Z = (Z1, . . . , Zk) ∼ N(0k, Ik). The 1− α quantile of Jh is denoted by ch1(h2, 1− α).

Note that c0(h2, 1−α) is the 1−α quantile of the asymptotic null distribution of Tn(θ) when the
moment inequalities hold as equalities and the moment equalities are satisfied.

The following Assumptions A.1-A.3 are taken from AG with Assumption 2 strengthened.
Assumption A.4(a)-(c) combines Assumptions GMS1 and GMS3 in AS. In the assumptions below,
the set Ψ is as in condition (v) of Equation (2.14).

5 Note that the definitions of the sets H and GH differ somewhat from the ones given in AG. E.g. in AG,
GH is defined as a subset of H ×H whereas here, we do not repeat the component h2. Also, the dimension
of h2 in AG is smaller than here replacing h2 by vech∗(h2) (which denotes the vector of elements of h2 that
lie below the main diagonal). We use h2 as defined because it simplifies notation.
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Assumption A.1. The test function S satisfies,

(a) S ((m1,m
∗
1) ,Σ) is non-increasing in m1, ∀(m1,m

∗
1) ∈ Rp × Rv and variance matrices Σ ∈

Rk×k,

(b) S (m,Σ) = S (∆m,∆Σ∆) for all m ∈ Rk, Σ ∈ Rk×k, and positive definite diagonal ∆ ∈ Rk×k,
(c) S (m,Ω) ≥ 0 for all m ∈ Rk and Ω ∈ Ψ,

(d) S (m,Ω) is continuous at all m ∈ Rp+∞ × Rv and Ω ∈ Ψ.

Assumption A.2. For all h1 ∈ [−rj ,+∞]pj=1 × [−rj , rj ]kj=p+1, all Ω ∈ Ψ, and Z ∼ N (0k,Ω) , the
distribution function (df) of S (Z + h1,Ω) at x ∈ R is,

(a) continuous for x > 0,

(b) strictly increasing for x > 0 unless p = k and h1 =∞p,

(c) less than or equal to 1/2 at x = 0 whenever v ≥ 1 or v = 0 and h1,j = 0 for some j = 1, . . . , p.

Assumption A.3. S(m,Ω) > 0 if and only if mj < 0 for some j = 1, . . . , p, or mj 6= 0 for some
j = p+ 1, . . . , k, where m = (m1, . . . ,mk)′ and Ω ∈ Ψ.

Assumption A.4. Let ξ = (ξ1, . . . , ξk)′. For j = 1, . . . , p we have:

(a) ϕj(ξ,Ω) is continuous at all (ξ,Ω) ∈ (Rp[+,∞] × Rv±∞)×Ψ for which ξj ∈ {0,∞}.

(b) ϕj(ξ,Ω) = 0 for all (ξ,Ω) ∈ (Rp[+,∞] × Rv±∞)×Ψ with ξj = 0.

(c) ϕj(ξ,Ω) =∞ for all (ξ,Ω) ∈ (Rp[+,∞] × Rv±∞)×Ψ with ξj =∞.

(d) ϕj(ξ,Ω) ≥ 0 for all (ξ,Ω) ∈ (Rp[+,∞] × Rv±∞)×Ψ with ξj ≥ 0.

Assumption A.5. For any sequence {γωn,g1,h}n≥1 in Definition A.1 there exists a sequence
{γω̃n,g̃1,h}n≥1 for some subsequence {ω̃n}n≥1 of N and for a vector g̃1 ∈ Rk+∞ that satisfies g̃1,j =∞
when h1,j =∞ for j = 1, . . . , p.

Assumption A.6. There is a h∗ = (h∗1, h
∗
2) ∈ H for which Jh∗(c0(h∗2, 1− α)) < 1− α.

Assumption A.7. Let k ≥ 2. For any Ω ∈ Ψ2,ε with smallest off diagonal element equal to −
√

1 + ε,
there exists a subsequence {ωn}n≥1 of N and a sequence {θωn , Fωn}n≥1 with (θωn , Fωn) ∈ Fωn for every

n ∈ N, such that CorrFωn (m(W, θωn)) → Ω as n → ∞, ω
1/2
n σ−1

Fωn,j
(θωn)EFωn (mj(W, θωn)) → h1,j as

n→∞, and h1,j < 0 for at least two values of j = 1, . . . , k.

We do not impose Assumption 4 in AG because it is implied by the other assumptions in our
paper. More specifically, note that by Assumption A.1(c) c0(Ω, 1 − α) ≥ 0. Also, by Assumption
A.2(c) c0(Ω, 1 − α) = 0 implies v = 0 and h1,j 6= 0 for j = 1, . . . , p and therefore this case does not
occur in Assumption 4 in AG. Therefore, Assumption 4(a) in AG follows from our Assumption A.2(a).
Regarding Assumption 4(b) in AG, note that it is enough to establish pointwise continuity of c0(Ω, 1−
α) because by assumption Ψ is a closed set and trivially bounded. To do so, consider a sequence
{Ωn}n≥1 such that Ωn → Ω for a Ω ∈ Ψ. We need to show that c0(Ωn, 1−α)→ c0(Ω, 1−α). Let Zn
and Z normal zero mean random vectors with covariance matrix equal to Ωn and Ω, respectively. By
Assumption A.1(d) and the continuous mapping theorem we have S(Zn,Ωn)→d S(Z,Ω). The latter
implies that Pr(S(Zn,Ωn) ≤ x) → Pr(S(Z,Ω) ≤ x) for all continuity points x ∈ R of the function
f(x) ≡ Pr(S(Z,Ω) ≤ x). The convergence therefore certainly holds for all x > 0. Furthermore,
by Assumption A.2(b) f is strictly increasing for x > 0. By Assumption A.2(c) it follows that
c0(Ω, 1− α) > 0. By Lemma 5(a) in AG, it then follows that c0(Ωn, 1− α)→ c0(Ω, 1− α).

Note that S1 and S2 satisfy Assumption A.2 which is a strengthened version of Assumption 2 from
AG using the same proof as in AG. Assumption 3 implies that S(∞p,Ω) = 0 when v = 0. Assumption
A.6 holds by Assumption A.1 if Jh∗(c0(h∗2, 1 − α)) < J(0,h∗2)(c0(h∗2, 1 − α)) for a h∗ ∈ H. Also note
that by Assumption A.1(a), a h∗ ∈ H as in Assumption A.6 needs to have h∗1,j < 0 for some j ≤ p or
h∗1,j 6= 0 for some j > p. Assumption A.7 guarantees that correlation matrices with strong negative
correlations can be achieved by a sequence that implies some level of misspecification. Requiring that
any Ω can be achieved is stronger than needed but simplifies the proofs significantly.
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Appendix B Auxiliary Lemmas

Lemma B.1. Assume the parameter space is given by Fn in Equation (2.14) and S satisfies As-
sumption A.1. Under any sequence {γωn,h}n≥1 = {θωn,h, Fωn,h}n≥1 defined in definition A.1 for a
subsequence {ωn}n≥1 and h = (h1, h2), it follows

Tωn(θωn,h)→d Jh ∼ S(h
1/2
2 Z + h1, h2), (B-1)

where Tn(·) is the test statistic associated with S and Z = (Z1, . . . , Zk) ∼ N(0k, Ik).

Lemma B.2. Consider confidence intervals with nominal confidence size 1 − α for 0 < α < 1/2.
Assume the nonempty parameter space is given by Fn in (2.14) for some r ∈ Rk with nonnegative
components, δ > 0, and M <∞. Assume S satisfies Assumptions A.1-A.3 in Appendix A. For GMS
type CSs assume that ϕ(ξ,Ω) satisfies Assumption A.4 and that κn → ∞ and κ−1

n n1/2 → ∞. For
subsampling CSs suppose bn →∞ and bn/n→ 0. It follows that

AsyCSPA = inf
h=(h1,h2)∈H

Jh(c0(h2, 1− α)),

AsyCSGMS ∈
[

inf
(π1,h)∈ΠH

Jh(cπ∗1 (h2, 1− α)), inf
(π1,h)∈ΠH

Jh(cπ∗∗1 (h2, 1− α))

]
,

AsyCSSS = inf
(g1,h)∈GH

Jh(cg1(h2, 1− α)), (B-2)

where Jh(x) = P (Jh ≤ x) and π∗1 , π∗∗1 ∈ Rk+∞ with j-th element defined by

π∗1,j =∞I(π1,j > 0) and π∗∗1,j =∞I(π1,j =∞), j = 1, . . . , k. (B-3)

Lemma B.3. For any a ∈ (0, 1) and ρ ∈ [−1 + a, 1− a] let f(z1, z2, ρ) be defined as follows,

f(z1, z2, ρ) = (1− ρ2)−1 min
(u1,u2)∈R2

+,∞

{
(z1 − u1)2 + (z2 − u2)2 − 2ρ(z1 − u1)(z2 − u2)

}
. (B-4)

Then f(z1, z2, ρ) takes values according to the following four cases:

1. z1 ≥ 0, z2 ≥ 0. Then, f(z1, z2, ρ) = 0.

2. z1 ≥ 0, z2 < 0. If ρ ≤ z1/z2, then

f(z1, z2, ρ) = (1− ρ2)−1[z2
1 + z2

2 − 2ρz1z2]. (B-5)

If ρ > z1/z2, then f(z1, z2, ρ) = z2
2 .

3. z1 < 0, z2 ≥ 0. If ρ ≤ z2/z1, then Equation (B-5) holds. Otherwise f(z1, z2, ρ) = z2
1 .

4. z1 < 0, z2 < 0. If ρ ≤ min{z1/z2, z2/z1}, then Equation (B-5) holds. Otherwise
f(z1, z2, ρ) = max{z2

1 , z
2
2}.

Lemma B.4. Suppose that k = p = 2 and for any β > 0 let H̄β be defined as,

H̄β ≡ {(h1, h2) ∈ R2 ×Ψ1 : h1,1 ≤ −β, h1,2 ≤ −β, h2 = (1, ρ; ρ, 1), ρ ≤ −β}. (B-6)

Also, define the set Ah1,ρ ≡ Aah1,ρ
∪Abh1,ρ

⊆ R2, where

Aah1,ρ ={z ∈ R2 : z1 ≥ 0, z2 < 0, z1 − ρz2 ≤ −h1,1 + ρh1,2} (B-7)

Abh1,ρ ={z ∈ R2 : z1 < 0, z2 ≥ 0, z2 − ρz1 ≤ −h1,2 + ρh1,1}. (B-8)

Then,

1. ∀η > 0, ∃ρ̄ > −1 such that inf(h1,h2=h̄2)∈H̄β Pr(Zh̄2
∈ Ah1,ρ̄) ≥ 1− η, where h̄2 = (1, ρ̄; ρ̄, 1).
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2. There exists a function τ(z, h1, h2) such that ∀z ∈ Ah1,ρ, inf(h1,h2)∈H̄β τ(z, h1, h2) > 0 and

S2(z + h1, h2) = S2(z, h2) +
1

1− ρ2
τ(z, h1, h2). (B-9)

Appendix C Proof of the Lemmas and Theorems

Proof of Lemma B.1. The proof follows along the lines of the proof of Theorem 1 in AG. By
Lemma 1 in AG we have for any s ∈ N

Ts(θs) = S
(
D̂−1/2
s (θs)s

1/2m̄s(θs), D̂
−1/2
s (θs)Σ̂s(θs)D̂

−1/2
s (θs)

)
. (C-1)

For j = 1, . . . , k, define As,j = s1/2(m̄s,j(θs)−EFsm̄s,j(θs))/σFs,j(θs). As in Lemma 2 in AG, applied
to (A.3)(x) in that paper, we have that

(i) Aωn = (Aωn,1, . . . , Aωn,k)′ →d Zh2
= (Zh2,1, . . . , Zh2,k)′ ∼ N(0k, h2) as n→∞,

(ii) σ̂ωn,j(θωn,h)/σFωn,h,j(θωn,h)→p 1 as n→∞ for j = 1, . . . , k,

(iii) D̂−1/2
ωn (θωn,h)Σ̂ωn(θωn,h)D̂−1/2

ωn (θωn,h)→p h2 as n→∞. (C-2)

under any sequence γωn,h = {θωn,h, Fωn,h}n≥1. These results follow after completing the subsequence
γωn,h = {θωn,h, Fωn,h}n≥1. For s ∈ N define the sequence {θs, Fs}s≥1 as follows. For any s ≤ ω1,
(θs, Fs) = (θω1,h, Fω1,h). For any s > ω1 and since {ωn}n≥1 is a subsequence of N, there exists a unique
m ∈ N such that ωm−1 < s ≤ ωm. For every such s, set (θs, Fs) = (θωm,h, Fωm,h). Now let {Wi}i≤n be
i.i.d. under Fs. By construction, ∀s ∈ N, (θs, Fs) ∈ Fωm for some m ∈ N and CorrFs(m(Wi, θs))→ h2.
Then, the results (i)-(iii) of Equation (C-2) hold from standard CLT and LLN with ωn, θωn,h, and
Fωn,h replaced by s, θs, and Fs respectively. But the convergence results along {θs, Fs}s≥1 then imply
convergence along the subsequence {θωn,h, Fωn,h}n≥1 as by construction the latter coincides with the
former on indices s = ωn.

From (C-2), the jth element of D̂
−1/2
ωn (θωn,h)ω

1/2
n m̄ωn(θωn,h) equals (Aωn,j +

ω
1/2
n EFωn,hm̄ωn,j(θωn,h)/σFωn,h,j(θωn,h)) ×(1 + op(1)). We next consider a k-vector-valued function

of D̂
−1/2
ωn (θωn,h)ω

1/2
n m̄ωn(θωn,h) that converges in distribution whether or not some elements of h1

equal ∞. Write the right-hand side of (C-1) as a continuous function of this k-vector and apply
the continuous mapping theorem. Let G(·) be a strictly increasing continuous df on R, such as the
standard normal df, and let G(∞) = 1. For j = 1, . . . , k, we have

Gωn,j ≡ G
(
σ̂−1
ωn,j

(θωn,h)ω1/2
n m̄ωn,j(θωn,h)

)
= G

(
σ̂−1
ωn,j

(θωn,h)σFωn,h,j(θωn,h)
[
Aωn,j + ω1/2

n EFωn,hm̄ωn,j(θωn,h)/σFωn,h,j(θωn,h)
])
. (C-3)

If h1,j <∞ then
Gωn,j →d G (Zh2,j + h1,j) (C-4)

by (C-3), (C-2), the definition of γωn,h, and the continuous mapping theorem. If h1,j =∞ (which can
only happen for j = 1, . . . , p), then

Gωn,j = G
(
σ̂−1
ωn,j

(θωn,h)ω1/2
n m̄ωn,j(θωn,h)

)
→p 1 (C-5)

by (C-3), Aωn,j = Op(1), and G(x) → 1 as x → ∞. The results in (C-4)-(C-5) hold jointly and
combine to give

Gωn ≡ (Gωn,1, . . . , Gωn,k)′ →d (G(Zh2,1 + h1,1), . . . , G(Zh2,k + h1,k))′ ≡ G∞, (C-6)

where G(Zh2,j + h1,j) = 1 by definition when h1,j = ∞. Let G−1 denote the inverse of G. For x =
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(x1, . . . , xk)′ ∈ Rp+∞×Rv, let G(k)(x) = (G(x1), . . . , G(xk))′ ∈ (0, 1]p× (0, 1)v. For y = (y1, . . . , yk)′ ∈
(0, 1]p × (0, 1)v, let G−1

(k)(y) = (G−1(y1), . . . , G−1(yk))′ ∈ Rp+∞ × Rv. Define S∗(y,Ω) = S(G−1
(k)(y),Ω)

for y ∈ (0, 1]p× (0, 1)v and Ω ∈ Ψ. By Assumption 1(d) in AG, S∗(y,Ω) is continuous at all (y,Ω) for
y ∈ (0, 1]p × (0, 1)v and Ω ∈ Ψ. We now have

Tωn(θωn,h) = S
(
G−1

(k)(Gωn), D̂−1/2
ωn (θωn,h)Σ̂ωn(θωn,h)D̂−1/2

ωn (θωn,h)
)

= S∗
(
Gωn , D̂

−1/2
ωn (θωn,h)Σ̂ωn(θωn,h)D̂−1/2

ωn (θωn,h)
)

→d S∗(G∞, h2)

= S(G−1
(k)(G∞), h2)

= S(Zh2
+ h1, h2) ∼ Jh, (C-7)

where the convergence holds by (C-2), (C-6), and the continuous mapping theorem, the last equality
holds by the definitions of G−1

(k) and G∞ and the last line hold by definition of Jh.

Proof of Lemma B.2. For any of the CSs considered in Section 2.1, there is a sequence {θn, Fn}n≥1

with (θn, Fn) ∈ Fn, ∀n ∈ N such that AsyCS = lim infn→∞ Prθn,Fn(Tn(θn) ≤ cn(θn, 1− α)). We can
then find a subsequence {ωn}n≥1 of N such that

lim
n→∞

Prθωn ,Fωn (Tωn(θωn) ≤ cωn(θωn , 1− α)) = AsyCS (C-8)

and condition (i) in Definition A.1 holds. Conditions (ii)-(iii) in Definition A.1 also hold for
{θωn , Fωn}n≥1 by possibly taking a further subsequence. That is, {θωn , Fωn}n≥1 is a sequence of
type {γωn,h}n≥1 = {θωn,h, Fωn,h}n≥1 for a certain h = (h1, h2) ∈ Rk+∞×Ψ. For GMS and SS CSs, we
can find subsequences {ωn}n≥1 (potentially different for GMS and SS CSs) such that the worst case
sequence {θωn , Fωn}n≥1 is of the type {γωn,π1,h}n≥1 or {γωn,g1,h}n≥1.

This proves that in order to determine the asymptotic confidence size of the CSs, we only have
to be concerned about the limiting coverage probabilities under sequences of the type {γωn,h}n≥1 for
PA, {γωn,π1,h}n≥1 for GMS, and {γωn,g1,h}n≥1 for SS. From Lemma B-1 we know that the limiting
distribution of the test statistic under a sequence {γωn,h}n≥1 is Jh ∼ S(Zh2

+h1, h2). By Assumption
A.1(a) it follows that for given h2 the 1 − α quantiles of Jh do not decrease as h1,j decreases (for
j = 1, . . . , p).

PA critical value: The PA critical value is given by c0(ĥ2,ωn , 1− α), where

ĥ2,ωn = Ω̂ωn(θωn,h) (C-9)

and Ω̂s(θ) = (D̂s(θ))
−1/2Σ̂s(θ)(D̂s(θ))

−1/2. From (C-2)(iii) we know that under {θωn,h, Fωn,h}n≥1,

we have ĥ2,ωn →p h2. This together with Assumption A.1 implies c0(ĥ2,ωn , 1 − α) →p c0(h2, 1 − α).
Furthermore, by Assumption A.2(c), c0(h2, 1 − α) > 0 and by Assumption A.2(a), Jh is
continuous for x > 0. Using the proof of Lemma 5(ii) and the comment to Lemma 5 in

AG, we have Prγωn,h(Tωn(θωn) ≤ c0(ĥ2,ωn , 1 − α)) → Jh(c0(h2, 1 − α)) and therefore also

limn→∞ Prγωn,h(Tωn(θωn) ≤ c0(ĥ2,ωn , 1 − α)) = Jh(c0(h2, 1 − α)). As a result, AsyCSPA =
Jh(c0(h2, 1 − α)) for some h ∈ H, which implies AsyCSPA ≥ infh∈H Jh(c0(h2, 1 − α)). However,

Equation (C-8) implies that AsyCSPA = infh∈H limn→∞ Prγωn,h(Tωn(θωn) ≤ c0(ĥ2,ωn , 1 − α)). This
expression equals infh=(h1,h2)∈H Jh(c0(h2, 1− α)), completing the proof.

GMS critical value: To simplify notation, we write {γωn} = {θωn , Fωn} instead of
{γωn,π1,h}n≥1 = {θωn,π1,h, Fωn,π1,h}n≥1. Recall that the GMS critical value ĉωn,κωn (θωn , 1 − α) is

the 1 − α quantile of S(ĥ
1/2
2,ωn

Z + ϕ(ξωn(θωn , ĥ2,ωn)), ĥ2,ωn) for Z ∼ N(0k, Ik). We first show the
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existence of random variables c∗ωn and c∗∗ωn such that under {γωn}

ĉωn,κωn (θωn , 1− α) ≥ c∗ωn →p cπ∗1 (h2, 1− α),

ĉωn,κωn (θωn , 1− α) ≤ c∗∗ωn →p cπ∗∗1 (h2, 1− α). (C-10)

We begin by showing the first line in Equation (C-10). Suppose cπ∗1 (h2, 1 − α) = 0, then,
ĉωn,κωn (θωn , 1 − α) ≥ 0 = cπ∗1 (h2, 1 − α) under {γωn}n≥1 by Assumption A.1(c). Now suppose

cπ∗1 (h2, 1 − α) > 0. For given π1 ∈ Rk+,∞ and for (ξ,Ω) ∈ Rk × Ψ let ϕ∗(ξ,Ω) be the k-vector with
j-th component given by

ϕ∗j (ξ,Ω) =

 ϕj(ξ,Ω) if π1,j = 0 and j ≤ p,
∞ if π1,j > 0 and j ≤ p,
0 if j = p+ 1, . . . , k.

(C-11)

Define c∗ωn as the 1−α quantile of S(ĥ
1/2
2,ωn

Z +ϕ∗(ξωn(θωn , ĥ2,ωn)), ĥ2,ωn). As ϕ∗j ≥ ϕj it follows from
Assumption A.1(a) that c∗ωn ≤ ĉωn,κωn (θωn , 1− α) a.s. [Z] under {γωn}n≥1. Furthermore, by Lemma
2(a) in the Supplementary Appendix of AS we have c∗ωn →p cπ∗1 (h2, 1 − α) under {γωn}n≥1. This
completes the proof of the first line in Equation (C-10).

Next consider the second line in Equation (C-10). Suppose that either v ≥ 1 or v = 0 and
π∗∗1 6=∞p. Define

ϕ∗∗j (ξ,Ω) =

 min{0, ϕj(ξ,Ω)} if π1,j <∞ and j ≤ p,
ϕj(ξ,Ω) if π1,j =∞ and j ≤ p,

0 if j = p+ 1, . . . , k,
(C-12)

and define c∗∗ωn as the 1−α quantile of S(ĥ
1/2
2,ωn

Z+ϕ∗∗(ξωn(θωn , ĥ2,ωn)), ĥ2,ωn). Note that the definition
of ϕ∗∗j (ξ,Ω) implies that ϕ∗∗j ≤ ϕj . The same steps as in the proof of Lemma 2(a) of AS can be used
to prove the second line of Equation (C-10). In particular, note that by Assumption A.4 ϕ∗∗(ξ,Ω)→
ϕ∗∗(π1,Ω0) for any sequence (ξ,Ω) ∈ Rk+∞ ×Ψ for which (ξ,Ω)→ (π1,Ω0) and Ω0 ∈ Ψ.

Suppose now that v = 0 and π∗∗1 = ∞p. It follows that cπ∗∗1 (h2, 1 − α) = 0 by Assumption
A.3 and that π1 = ∞p. In that case define c∗∗ωn = ĉωn,κωn (θωn , 1 − α) which converges to zero

in probability because by Assumption A.3, π1 = ∞p, and by Assumption A.4, 0 ≤ S(ĥ
1/2
2,ωn

Z +

ϕ(ξωn(θωn , ĥ2,ωn)), ĥ2,ωn)→p 0 . This implies the second line in Equation (C-10).
Having proven Equation (C-10), we now prove the second line in Equation (B-2). Consider first

the case (π1, h) ∈ ΠH such that cπ∗1 (h2, 1− α) > 0. In this case, it follows from (C-10) and Lemma 5
in AG that

lim inf
n→∞

Prγωn,h(Tωn(θωn) ≤ ĉωn,κωn (θωn , 1− α)) ≤ lim inf
n→∞

Prγωn,h(Tωn(θωn) ≤ c∗∗ωn)

= Jh(cπ∗∗1 (h2, 1− α)). (C-13)

Likewise lim infn→∞ Prγωn,h(Tωn(θωn) ≤ ĉωn,κωn (θωn , 1− α)) ≥ Jh(cπ∗1 (h2, 1− α)).
Next consider the case (π1, h) ∈ ΠH such that cπ∗1 (h2, 1 − α) = 0. By Assumption A.2(c) and

α < 0.5, this implies v = 0 and π∗1,j > 0 for all j = 1, . . . , p. By definition of π∗1 , it follows that π1,j > 0
for all j = 1, . . . , p and, since κn →∞, this implies h1 =∞p. Under any sequence {γωn,π1,h}n≥1 with
h = (∞p, h2) we have

1 ≥ lim inf
n→∞

Prγωn (Tωn(θωn) ≤ ĉωn,κωn (θωn , 1− α)) ≥ lim inf
n→∞

Prγωn (Tωn(θωn) ≤ 0) = Jh(0) = 1,

(C-14)
where we apply the argument in (A.12) of AG for the first equality and use Assumption A.3 for the
second equality. Therefore, lim infn→∞ Prγωn (Tωn(θωn) ≤ ĉωn,κωn (θωn , 1 − α)) = 1. Note that when
h1 = ∞p, Jh(c) = 1 for any c ≥ 0. The last statement and Equations (C-8), (C-13), and (C-14)
complete the proof of the lemma.
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Subsampling critical value: Instead of {γωn,g1,h}n≥1 = {θωn,g1,h, Fωn,g1,h}n≥1 we write
{γωn} = {θωn , Fωn} to simplify notation. We first verify Assumptions A0, B0, C, D, E0, F, and
G0 in AG. Following AG, define a vector of (nuisance) parameters γ = (γ1, γ2, γ3) where γ3 = (θ, F ),
γ1 = (σ−1

F,j(θ)EFmj(Wi, θ))
k
j=1 ∈ Rk, and γ2 = CorrF (m(Wi, θ)) ∈ Rk×k for (θ, F ) introduced in the

model defined in (2.14). Then, Assumption A0 in AG clearly holds. With {γωn,h}n≥1 and H defined
in definition A.1, Assumption B0 then holds by Lemma B.1. Assumption C holds by assumption on
the subsample blocksize b. Assumptions D, E0, F, and G0 hold by the same argument as in AG using
the strengthened version of Assumption A.2(b) and (c) for the argument used to verify Assumption
F. Therefore, Theorem 3(ii) in AG applies with their GH replaced by our GH and their GH∗ (defined
on top of (9.4) in AG) which is the set of points (g1, h) ∈ GH such that for all sequences {γwn,g1,h}n≥1

lim inf
n→∞

Prγwn,g1,h(Twn(θwn,g1,h) ≤ cwn,bwn (θwn,g1,h, 1− α)) ≥ Jh(cg1(h2, 1− α)). (C-15)

By Theorem 3(ii) in AG and continuity of Jh at positive arguments, it is then enough to show that the
set {(g1, h) ∈ GH\GH∗; cg1(h2, 1− α) = 0} is empty. To show this, note that by Assumption A.2(c)
cg1(h2, 1 − α) = 0 implies that v = 0 and by Assumption A.1(a) it follows that ch1(h2, 1 − α) = 0.
Using the same argument as in AG, namely the paragraph including (A.12) with their LBh equal to
0, shows that any (g1, h) ∈ GH with cg1(h2, 1− α) = 0 is also in GH∗.

Proof of Lemma B.3. The FOC associated with the minimizers u1 and u2 in Equation (B-4) are

f ′u1
= −2(z1 − u1) + 2ρ(z2 − u2) ≥ 0, u1 × f ′u1

= 0, u1 ≥ 0, (C-16)

f ′u2
= −2(z2 − u2) + 2ρ(z1 − u1) ≥ 0, u2 × f ′u2

= 0, u2 ≥ 0. (C-17)

The SOC are immediately satisfied as the function on the RHS of Equation (B-4) is strictly convex
for ρ ∈ [−1 + a, 1− a].

Consider Case 1. In this case, u1 = z1 and u2 = z2 satisfies Equations (C-16) and (C-17) and
f(z1, z2, ρ) = 0 regardless of the value of ρ.

Now consider Case 2. First we note that u1 ≥ 0, u2 > 0 is not a feasible solution as this results in
u2 = z2 < 0 which is contradictory. The solution must then be of the form u1 ≥ 0 and u2 = 0. Then,
it follows from the conditions in Equation (C-16) that u1 ≥ z1 − ρz2, so that u1 = max{z1 − ρz2, 0}
and u2 = 0. In addition, from the conditions in Equation (C-17) it follows that

z2 − ρz1 + ρu1 ≤ 0. (C-18)

If u1 = 0, then we need z2 − ρz1 ≤ 0 for Equation (C-18) to hold. However, u1 = 0 is a valid solution
provided z1 − ρz2 ≤ 0 which implies ρ ≤ z1/z2. This is possible only if z1/z2 ≥ −1 + a which implies
z2 +z1 < 0 and then z2−ρz1 < z2 +z1 < 0 satisfying Equation (C-18). Thus, if ρ ≤ z1/z2, the unique
solution is (u1, u2) = (0, 0) and the objective function is given by Equation (B-5).

The additional possibility is that ρ > z1/z2 so that u1 = z1 − ρz2 > 0. In this case, Equation
(C-18) holds immediately as z2− ρz1 + ρu1 = (1− ρ2)z2 ≤ 0. Therefore, (u1, u2) = (z1− ρz2, 0) is the
unique solution and

f(z1, z2, ρ) = (1− ρ2)−1
{

(z1 − z1 + ρz2)2 + z2
2 − 2ρ(z1 − z1 + ρz2)(z2)

}
= z2

2 . (C-19)

Case 3 is exactly analogous to Case 2 by exchanging the subindices 1 and 2. Consider Case 4
then. First, we note again that u1 > 0 and u2 > 0 is not a feasible solution by the same arguments
as before. Second, we note that (u1, u2) = (0, 0) is a solution provided ρ ≤ min{z1/z2, z2/z1}, as this
condition implies the correct sign of the derivatives in Equations (C-16) and (C-17). The remaining
case is either ρ > z1/z2 or ρ > z2/z1. By similar steps as those used in Case 2 it follows that the
solution for these cases are (u1, u2) = (z1 − ρz2, 0), f(z1, z2, ρ) = z2

2 and (u1, u2) = (0, z2 − ρz1),
f(z1, z2, ρ) = z2

1 respectively. This completes the proof.

Proof of Lemma B.4. We begin by proving (1). Consider the set Aah1,ρ
. Note that we can always
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write Zh2,1 − ρZh2,2 =
√

1− ρ2W for Zh2,2 ⊥ W ∼ N(0, 1). Then, since −h1,1 + ρh1,2 ≥ β > 0 for
(h1, h2) ∈ H̄β , it follows that

Pr(Zh2
∈ Aah1,ρ) = Pr

(
Zh2,2 ≤ min{0,

√
1− ρ2W

−ρ
},W ≤ −h1,1 + ρh1,2√

1− ρ2

)
→ 1/2, as ρ→ −1.

(C-20)
The same analysis applies for the set Abh1,ρ

and the result immediately follows by continuity in ρ.
We now prove (2). Note that

S2(z + h1, h2) = (1− ρ2)−1 min
u∈R2

+,∞

{
(z1 + h1,1 − u1)2 + (z2 + h1,2 − u2)2

−2ρ(z1 + h1,1 − u1)(z2 + h1,2 − u2)} , (C-21)

is the same optimization problem as the one in Lemma B.3 by letting z̄j = zj + h1,j . It follows from
Lemma B.3 that the solution of Equation (C-21) is,

S2(z + h1, h2) = (1− ρ2)−1[(z1 + h1,1 − z2 − h1,2)2 + 2(1− ρ)(z1 + h1,1)(z2 + h1,2)], (C-22)

whenever z ∈ Aah1,ρ
and ρ < 0. Consider first the following partition of the subset Aah1,ρ

,

Aa1h1,ρ
≡ {z ∈ R2 : z1 ≥ 0, z2 < 0, 0 < z1 − ρz2 ≤ −h1,1 + ρh1,2} (C-23)

Aa2h1,ρ
≡ {z ∈ R2 : z1 ≥ 0, z2 < 0, z1 − ρz2 ≤ 0}. (C-24)

Lemma B.3 implies that for z ∈ Aa1h1,ρ
, S2(z, h2) = z2

2 and thus after some algebraic manipulations

S2(z + h1, h2) = S2(z, h2) +
1

1− ρ2
τ1(z, h1, h2), (C-25)

where
τ1(z, h1, h2) = (z1 + h1,1 − ρ(z2 + h1,2))2 + (1− ρ2)(h2

1,2 + 2z2h1,2). (C-26)

The term τ1(z, h1, h2) is clearly positive for all z ∈ Aa1h1,ρ
and (h1, h2) ∈ H̄β . We now show the

statement for z ∈ Aa2h1,ρ
. Lemma B.3 implies that for z ∈ Aa2h1,ρ

, S2(z, h2) = z2
1 + (z2 − ρz1)2/(1− ρ2).

Doing some algebraic manipulations it follows that

S2(z + h1, h2) = S2(z, h2)
1

1− ρ2
τ2(z, h1, h2), (C-27)

where

τ2(z, h1, h2) = (h1,1 − h1,2)2 + 2((z1 − ρz2)(h1,1 − ρh1,2) + h1,2z2(1− ρ2) + (1− ρ)h1,1h1,2) (C-28)

is positive for all z ∈ Aa2h1,ρ
and (h1, h2) ∈ H̄β . This proves that (2) holds for Aah1,ρ

= Aa1h1,ρ
∪ Aa2h1,ρ

.

A symmetric argument can be used for the subset Abh1,ρ
and this completes the proof.

Proof of Theorem 3.1. The proof makes use of the results in Lemma B-2. We first prove (1). Note
that for h ∈ H and κn → ∞, there exists a subsequence {ωn}n≥1 and a sequence {γωn,π1,h}n≥1 for
some π1 ∈ Rk∞ with π1,j ≥ 0 for j = 1, . . . , p and π1,j = 0 for j = p+ 1, . . . , k. By definition π∗∗1 ≥ 0.
Assumption A.1(a) then implies that c0(h2, 1−α) ≥ cπ∗∗1 (h2, 1−α) and so AsyCSPA ≥ AsyCSGMS .
The result for subsampling CSs is verified analogously.

We now prove (2). Note that AsyCSPA = infh=(h1,h2)∈H Jh(c0(h2, 1−α)) ≤ Jh∗(c0(h∗2, 1−α)) <
1− α.

Finally, we prove (3). First, assume (g1, h) ∈ GH. By Assumption A.1(a), it is enough to show
that there exists a (π1, h) ∈ ΠH with π∗∗1,j ≥ g1,j for all j = 1, . . . , p. We have g1,j ≥ 0 for j = 1, . . . , p
and g1,j = 0 for j = p + 1, . . . , k. By definition, there exists a subsequence {ωn}n≥1 and a sequence
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{γωn,g1,h}n≥1. Because κ−1
n n1/2/b1/2 → ∞ it follows that there exists a subsequence {vn}n≥1 of

{ωn}n≥1 such that under {γvn,g1,h}n≥1

κ−1
vn v

1/2
n σ−1

Fvn,h,j
(θvn,h)EFvn,hmj(Wi, θvn,h)→ π1,j , (C-29)

for some π1,j such that for j = 1, . . . , p, π1,j = ∞ if g1,j > 0 and π1,j ≥ 0 if g1,j = 0 and π1,j = 0
for j = p+ 1, . . . , k. We have just shown the existence of a sequence {γvn,π1,h}n≥1. For j = 1, . . . , k,
if π1,j = ∞ then by definition π∗∗1,j = ∞ and if π1,j ≥ 0 then π∗∗1,j ≥ 0. Therefore, π∗∗1,j ≥ g1,j for all
j = 1, . . . , p and therefore AsyCSSS ≥ AsyCSGMS .

Second, assume (π1, h) ∈ ΠH so that {γωn,π1,h}n≥1 exists. It is enough to show that there
exists {γω̃n,g̃1,h}n≥1 such that π∗1,j ≤ g̃1,j for j = 1, . . . , k. Note that is is possible to take a further
subsequence {vn}n≥1 of {ωn}n≥1 such that on {vn}n≥1 the sequence {γωn,π1,h}n≥1 is a sequence
{γvn,g1,h}n≥1 for some g1 ∈ Rk. By Assumption A.5 there then exists a sequence {γω̃n,g̃1,h}n≥1 for
some subsequence {ω̃n}n≥1 of N and a g̃1 that satisfies g̃1,j = ∞ when h1,j = ∞ and g̃1,j ≥ 0 for
j = 1, . . . , k. Clearly, for all j = 1, . . . , p for which h1,j =∞ this implies π∗1,j ≤ g̃1,j =∞. In addition,
if h1,j < ∞ it follows that π1,j = 0 and thus, by definition, π∗1,j = 0 ≤ g̃1,j . This is, for j = 1, . . . , k
we have that π∗1,j ≤ g̃1,j and, as a result, AsyCSSS ≤ AsyCSGMS . This completes the proof.

Proof of Theorem 3.2. Part 1. By Lemma B.2

AsyCS
(1)
GMS ≥ inf

(π1,h)∈ΠH
Pr
(
S1(h

1/2
2 Z + h1, h2) ≤ cπ∗1 (h2, 1− α)

)
, (C-30)

where Z ∼ N(0k, Ik), h2 ∈ Ψ1, cπ∗1 (h2, 1 − α) is the 1 − α quantile of S1(h
1/2
2 Z + π∗1 , h2), and π∗1 is

defined in Lemma B.2. Recall that

S1(h
1/2
2 Z + h1, h2) =

p∑
j=1

[h
1/2
2 (j)Z + h1,j ]

2
− +

k∑
j=p+1

(h
1/2
2 (j)Z + h1,j)

2, (C-31)

where h
1/2
2 (j) ∈ Rk denotes the jth row of h

1/2
2 . If we denote by h

1/2
2 (j, s) the sth element of the

vector h
1/2
2 (j), the following properties hold

h
1/2
2 (j, s) = 0, ∀s > j, j ≥ 1, (C-32)

k∑
s=1

(h
1/2
2 (j, s))2 = 1, (C-33)

|h1/2
2 (j, s)| ≤ 1, ∀s ≥ 1, j ≥ 1, (C-34)

where Equation (C-32) follows from h
1/2
2 being lower triangular, Equation (C-33) follows by h2 having

ones in the main diagonal, and Equation (C-34) is a consequence of Equation (C-33).
To prove the result, we first show that there exists a function S̃1(Z, h) such that

Pr(S1(h
1/2
2 Z + h1, h2) ≤ x) ≥ Pr(S̃1(Z, h) ≤ x), (C-35)

for all h ∈ H and x ∈ R. To this end, we first derive three useful inequalities.
The first inequality is as follows. For any z ∈ Rk and j = 1, . . . , k,

(h
1/2
2 (j)z + h1,j)

2 =

(
j∑
s=1

h
1/2
2 (j, s)zs +

j∑
s=1

(h
1/2
2 (j, s))2h1,j

)2

=

(
j∑
s=1

h
1/2
2 (j, s)[zs + h

1/2
2 (j, s)h1,j ]

)2

,

≤
j∑

m=1

(h
1/2
2 (j,m))2

j∑
s=1

(zs + h
1/2
2 (j, s)h1,j)

2 =

j∑
s=1

(zs + h
1/2
2 (j, s)h1,j)

2, (C-36)
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where the first equality follows from Equations (C-32) and (C-33), the inequality from the Cauchy-
Schwarz inequality, and the last equality from Equation (C-33) again. On the other hand, using
similar arguments it follows that

[h
1/2
2 (j)z + h1,j ]

2
− ≤ (h

1/2
2 (j)z + h1,j)

2 ≤
j∑
s=1

(zs + h
1/2
2 (j, s)h1,j)

2, (C-37)

[h
1/2
2 (j)z + h1,j ]

2
− ≤ [h

1/2
2 (j)z]2− ≤

j∑
s=1

z2
s , provided h1,j ∈ (0,∞). (C-38)

Therefore, for every z ∈ Rk and h ∈ H we define

S̃1(z, h) =

p∑
j=1

j∑
s=1

z2
sI(h1,j ∈ (0,∞)) +

p∑
j=1

j∑
s=1

(zs + h
1/2
2 (j, s)h1,j)

2I(h1,j ≤ 0)

+

k∑
j=p+1

j∑
s=1

(zs + h
1/2
2 (j, s)h1,j)

2, (C-39)

and it follows from Equations (C-36), (C-37), and (C-38) that S̃1(z, h) ≥ S1(h
1/2
2 z + h1, h2) for all

z ∈ Rk. From this, Equation (C-35) follows.
For the next step let B > 0 and

AB ≡ {zs ∈ R : |zs| ≤ B} and AkB = AB × · · · ×AB (with k copies). (C-40)

Since AB has positive length on R, it follows that for Z ∼ N(0k, Ik),

Pr(Z ∈ AkB) =

k∏
s=1

Pr(Zs ∈ AB) > 0. (C-41)

For the next step let {π1,l, hl}l≥1 be a sequence such that (π1,l, hl) ∈ ΠH for all l ∈ N and

inf
(π,h)∈ΠH

Pr(S1(h
1/2
2 Z + h1, h2) ≤ cπ∗1 (h2, 1− α)) = lim

l→∞
Pr(S1(h

1/2
2,l Z + h1,l, h2,l) ≤ cπ∗1,l(h2,l, 1− α)),

and define the sequence {Bl}l≥1 as 2B2
l = cπ∗1,l(h2,l, 1− α)/k(k + 1).

Consider the case where lim inf l→∞ cπ∗1,l(h2,l, 1 − α) > 0 and let B = lim inf l→∞Bl > 0. Then,

there exists L such that for all l ≥ L, Bl ≥ B/2 and when r∗ ≤ B/2, it follows that r∗ ≤ Bl for all
l ≥ L. In addition, when |h1,j | ≤ rj it follows that for all zs ∈ ABl and j = 1, . . . , k

(zs + h
1/2
2 (j, s)h1,j)

2 ≤ B2
l + r∗2 + 2Blr

∗, (C-42)

and then for all z ∈ AkBl and l ≥ L

S̃1(z, hl) ≤
k∑
j=1

j∑
s=1

4B2
l = 2k(k + 1)B2

l = cπ∗1,l(h2,l, 1− α). (C-43)

As a result, for all l ≥ L

Pr(S̃1(Z, hl) ≤ cπ∗1,l(h2,l, 1− α)) ≥ Pr(Z ∈ AkBl) > 0. (C-44)
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It follows from Equations (C-35), (C-41), and (C-44) that,

AsyCS
(1)
GMS ≥ inf

(π,h)∈ΠH
Pr(S1(h

1/2
2 Z + h1, h2) ≤ cπ∗1 (h2, 1− α))

= lim
l→∞

Pr(S1(h
1/2
2,l Z + h1,l, h2,l) ≤ cπ∗1,l(h2,l, 1− α)).

≥ lim
l→∞

Pr(S̃1(Z, hl) ≤ cπ∗1,l(h2,l, 1− α)).

≥ lim
l→∞

Pr(Z ∈ AkBl) > 0, (C-45)

completing the proof for the case of a GMS critical value when lim inf l→∞Bl = B > 0.
Now consider the case lim inf l→∞ cπ∗1,l(h2,l, 1 − α) = 0. Then there exists a subsequence {ωl}l≥1

of N such that liml→∞ cπ∗1,ωl
(h2,ωl , 1 − α) = 0. Since π∗1,j,ωl ∈ {0,∞} for j = 1, . . . , p and π∗1,j,ωl = 0

for j = p + 1, . . . , k, there exists a further subsequence {ω̃l}l≥1 such that π∗1,l = π̄∗1 for some vector

π̄∗1 ∈ Rk+,+∞. Since liml→∞ cπ̄∗1 (h2,ω̃l , 1 − α) = 0, Assumption A.2 implies π̄∗1 = ∞p. It follows

immediately that h1,ω̃l = ∞p and S1(h
1/2
2,ω̃l

Z + h1,ω̃l , h2,ω̃l) = 0 a.s. along the subsequence. This
completes the proof.

Part 2. By Lemma B.2, the PA asymptotic confidence size of the test function S2 is

AsyCS
(2)
PA = inf

h∈H
Pr
(
S2(h

1/2
2 Z + h1, h2) ≤ c0(h2, 1− α)

)
, (C-46)

where h
1/2
2 Z ∼ N(0k, h2), c0(h2, 1 − α) is the 1 − α quantile of S2(h

1/2
2 Z, h2) and H is the space

defined in definition A.1. The function S2 is defined in Equation (2.24).
Consider the following correlation matrix h2

h2 =

[
A B
B′ D

]
, A =

[
1 ρ
ρ 1

]
, ρ = corr(Zh2,1, Zh2,2). (C-47)

Since h2 ∈ Ψ2, then ρ ∈ [−
√

1− ε,
√

1− ε] and det(A) = 1 − ρ2 ≥ ε > 0. Thus, det(h2) =
det(A) det(D − B′A−1B). Furthermore, consider the case where B = 02×(k−2) and D = Ik−2, so
that det(h2) = det(A) = 1− ρ2. The inverse of h2 is

h−1
2 =

[
A−1 02×(k−2)

0(k−2)×2 Ik−2

]
, where A−1 = (1− ρ2)−1

[
1 −ρ
−ρ 1

]
. (C-48)

In what follows we let h?2 be the matrix defined in Equation (C-47) with B = 02×(k−2) and D = Ik−2.
By assumption A.7, there exists h1 such that (h1, h

?
2) ∈ H. To simplify notation let Z? ∼ N(0k, h

?
2)

so that

S2(Z? + h1, h
?
2) = inf

t∈Rp+,+∞

{
(1− ρ2)−1[(Z?1 + h1,1 − t1)2 + (Z?2 + h1,2 − t2)2

−2ρ(Z?1 + h1,1 − t1)(Z?2 + h1,2 − t2)] +

p∑
j=3

(Z?j + h1,j − tj)2

+

k∑
j=p+1

(Z?j + h1,j)
2. (C-49)

At the infimum, tj = max{Z?j + h1,j , 0} for j = 3, . . . , p and so

S2(Z? + h1, h
?
2) = inf

t∈R2
+,+∞

{
(1− ρ2)−1[(Z?1 + h1,1 − t1)2 + (Z?2 + h1,2 − t2)2

−2ρ(Z?1 + h1,1 − t1)(Z?2 + h1,2 − t2)]}+

p∑
j=3

[Z?j + h1,j ]
2
− +

k∑
j=p+1

(Z?j + h1,j)
2. (C-50)

The optimization problem in the RHS of Equation (C-50) is the same as the one in Lemma B.3 and,
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by that lemma, the solution can be divided in four cases depending on whether Z?1 and Z?2 are positive
or negative. We focus on the set of Z? that yield the solution in Equation (B-5) in Lemma B.3 and
show that such solution holds with probability one. To do this let r∗ > 0 be given. By assumption
A.7 there are at least two j = 1, . . . , k such that h1,j < 0, so wlog assume h1,1 < 0 and h1,2 < 0. Now,
for some β > 0, let

H̄β ≡ {(h1, h
?
2) ∈ H : h1,1 ≤ −β, h1,2 ≤ −β, ρ ∈ [−

√
1− ε,−β]}.

H̄β does not restrict h1,j for j = 3, . . . , k. Next define the event Ah1,ρ = Aah1,ρ
∪Abh1,ρ

, where

Aah1,ρ ≡ {z ∈ Rk : z1 ≥ 0, z2 < 0, z1 − ρz2 ≤ −h1,1 + ρh1,2}, (C-51)

Abh1,ρ ≡ {z ∈ Rk : z2 ≥ 0, z1 < 0, z2 − ρz1 ≤ −h1,2 + ρh1,1}. (C-52)

Note that z ∈ Ah1,ρ does not restrict zj for j = 3, . . . , k. To further simplify notation let Pr(Ah1,ρ) ≡
Pr(Z? ∈ Ah1,ρ) and h?2 denote the matrix h?2 for the value ρ = ρ ≡ −

√
1− ε. It follows from Lemma

B.4 that ∀η > 0, ∃ε > 0 such that

inf
(h1,h?2=h?2)∈H̄β

Pr(Ah1,ρ) ≥ 1− η. (C-53)

For the next step define the function

S̃2(Z?, ρ) = inf
t∈R2

+,+∞

{
(1− ρ2)−1[(Z?1 − t1)2 + (Z?2 − t2)2 − 2ρ(Z?1 − t1)(Z?2 − t2)]

}
, (C-54)

and note that Lemma B.4 implies that there exists a function τ(z, h1, h2) > 0 such that

S2(z + h1, h
?
2) ≥ S̃2(z, ρ) +

1

1− ρ2
τ(z, h1, h

?
2), for all z ∈ Ah1,ρ. (C-55)

We wish to show that ∀η > 0, ∃ε > 0 such that

inf
ρ∈[−

√
1−ε,−β]

(c0(h2, 1− α)− 1

1− ρ2
τ(z, h1, h

?
2)) ≤ −η. (C-56)

To this end, note that by Lemma B.3 it follows that with probability one

S2(Z?, h?2) =

p∑
j=3

[Z?j ]2− +

k∑
j=p+1

(Z?j )2 + f(Z?1 , Z
?
2 , ρ) ≤

p∑
j=3

[Z?j ]2− +

k∑
j=p+1

(Z?j )2 + (Z?1 )2 +W 2, (C-57)

where f(·) is defined in Lemma B.3 (Equation (B-5)) and satisfies f(Z?1 , Z
?
2 , ρ) ≤ (Z?1 )2 + W 2 with

probability one for all ρ ∈ [−
√

1− ε,−β] and ε > 0, and Z?1 ⊥ W ∼ N(0, 1). As a result, the
1 − α quantile of S2(Z?, h?2), c0(h2, 1 − α), is bounded above by the 1 − α quantile of the RHS of
Equation (C-57), denoted by c̃0(1 − α). Note that c̃0(1 − α) does not depend on ρ. It then follows
that c0(h2, 1− α) ≤ c̃0(1− α) <∞ and Equation (C-56) follows immediately from

inf
ρ∈[−

√
1−ε,−β]

(c̃0(1− α)− 1

1− ρ2
τ(z, h1, h

?
2)) < 0, (C-58)

for ε > 0 small enough, as inf(h1,h?2)∈H̄β τ(z, h1, h
?
2) > 0. Finally, to complete the proof we note that
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for every η > 0, ∃ε > 0 such that

AsyCS
(2)
PA ≤ inf

h∈H̄β
Pr (S2(Z? + h1, h

?
2) ≤ c0(h?2, 1− α)) ,

= 1− sup
h∈H̄β

Pr (S2(Z? + h1, h
?
2) > c0(h?2, 1− α)) ,

≤ 1− sup
h∈H̄β

Pr (S2(Z? + h1, h
?
2) > c0(h?2, 1− α)|Ah1,ρ) Pr(Ah1,ρ),

≤ 1− sup
h∈H̄β

Pr

(
S̃2(Z?, ρ) > c0(h?2, 1− α)− 1

1− ρ2
τ(Z?, h1, h

?
2)|Ah1,ρ

)
Pr(Ah1,ρ),

≤ η, (C-59)

where the first inequality follows from H̄β ⊆ H, the second inequality from Ah1,ρ ⊆ Rk, the third one

from Equation (C-55) and the last one from Equations (C-53), (C-56) and S̃2(z, ρ) ≥ 0, ∀z ∈ Rk.

Proof of Corollary 3.1. By Theorem 3.2(1) there exists B > 0 such that for all r∗ ≤ B,

AsyCS
(1)
GMS > 0. Pick η = AsyCS

(1)
GMS/2 > 0. By Theorem 3.2(2) there exists ε such that

AsyCS
(2)
PA ≤ η = AsyCS

(1)
GMS/2. Therefore, by Theorem 3.1

AsyCS
(2)
GMS = AsyCS

(2)
SS ≤ AsyCS

(2)
PA < AsyCS

(1)
GMS = AsyCS

(1)
SS ≤ AsyCS

(1)
PA. (C-60)

Appendix D Verification of the Assumptions in Examples

D.1 Example 2.1

We start by writing the example using the notation in Definition 2.1. For simplicity, assume YL(xj) =
0, YH(xj) = 1 and let Pn denote the probability with respect to the distribution Fn so that

γ1,2j−1,n ≡ σ−1
2j−1,nEFnm2j−1(Wi, θn)

= σ−1
2j−1,nEFn [(Y Z −G(xj , θn) + 1− Z)I(X = xj)] ≥ −r2j−1n

−1/2,

γ1,2j,n ≡ σ−1
2j,nEFnm2j(Wi, θn)

= σ−1
2j,nEFn [(G(xj , θn)− Y Z)I(X = xj)] ≥ −r2jn

−1/2. (D-1)

for j = 1, . . . , k. This model satisfies the following relationship

m2j(Wi, θn) = (1− Z)I(X = xj)−m2j−1(Wi, θn), (D-2)

for j = 1, . . . , k, so that

γ1,2j,n = σ−1
2j,n(1− πn)pj,n − σ−1

2j,nσ2j−1,nγ1,2j−1,n, (D-3)

where pj,n = Pn(X = xj). Also, assume minj≤k pj,n ≥ c for all n ≥ 1 and some c > 0.
The are two fixed sequences that are important. If π = 1 (i.e., there is no missing data) then

ρ2j,2j−1 = CorrF (m2j ,m2j−1) = −1, and σ2
j = V ar(Y ) ∈ (0,∞) for j = 1, . . . , k. Also, if π = 0 (i.e.,

all data are missing) then ρ2j,2j−1 = 0 and σ2
j = 0. Any other value of π results in ρ2j,2j−1 ∈ (0, 1)

and σ2
j ∈ (0,∞) as Y is bounded and non-degenerate.

Let n1/2γ1,2j,n → h1,2j , n
1/2γ1,2j−1,n → h1,2j−1, λj = limn1/2σ−1

2j,n(1 − πn)pj,n ≥ 0 and δj =

limσ−1
2j,nσ2j−1,n ∈ (0,∞) for j = 1, . . . , k. By (D-3)

h1,2j + δjh1,2j−1 = λj ∈ R+,∞. (D-4)
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Equation (D-4) shows that h1,2j < 0 implies h1,2j−1 > 0 and that it is impossible to have both strictly
negative. The fact that δj ∈ (0,∞) follows from

σ2
2j,n

σ2
2j−1,n

= 1 +
(1− πn)(1− EFn(Y |Z = 1))

VFn(Y |Z = 1) + EFn(Y |Z = 1)2(1− πn)
→ C > 0, (D-5)

holding for any (θn, Fn) and some C > 0. Note that πn → 1 implies ρ2j,2j−1,n → −1 and σj,n → σj > 0
for all j ≤ k. Thus, either λj = 0, λj = ∞, or λj ∈ (0,∞) for all j ≤ k, depending on the rate at
which πn goes to 1. Also πn → 0 implies σj,n → 0 for all j ≤ k, meaning that λj = ∞ for all j ≤ k.
Finally, πn → (0, 1) implies σj,n → (0, 1) for all k and then λj =∞ for all j ≤ k.

D.1.1 On Assumption A.5

Since the analysis is the same for all j = 1, . . . , k, we focus on the case k = 1. Assume h1,1 < 0 and

h1,2 =∞.6 In this case g1,1 = lim b
1/2
n γ1,1,n = 0, and

g1,2 = lim b1/2n γ1,2,n = lim{b1/2n σ−1
2,n[(1− πn)p1,n − σ1,nγ1,1,n]} ∈ [0,∞]. (D-6)

If πn → π < 1, then g1,2 = ∞ and Assumption A.5 holds. Suppose then that the sequence (θn, Fn)

is such that 1− πn = cb
−1/2
n for c ∈ [0,∞) and g1,2 <∞. In such case we can find another sequence

(θ′n, F
′
n) such that θ′n = θn and F ′n induces 1 − π′n = 1 − EF ′n(Z) = c/ log bn. This new sequence is

such that g1,2 = lim b
1/2
n σ−1

2,n(1 − π′n)p1 = ∞. We can do the same for a sequence (θn, Fn) such that

1− πn = o(b
1/2
n ). Therefore, Assumption A.5 holds in this example.

D.1.2 On Assumption A.6

Consider the function S1 and let c0(h∗2, 1− α) be the 1− α quantile of

S1(Zh∗2 , h
∗
2) = [Z1]2− + [−Z1]2− = Z2

1 , Zh∗2 = (Z1, Z2) ∼ N(0, h∗2), (D-7)

where h∗2 has ones in the diagonal and ρ2,1 = −1 (i.e., Z2 = −Z1) off-diagonal. Choose a sequence of
parameters with λ∗ = 0 and h∗1,1 = −h∗1,2 < 0, following Equation (D-4). It follows that

S1(Zh∗2 + h∗1, h
∗
2) = [Z1 + h∗1,1]2− + [−Z1 − h∗1,1]2− = (Z1 + h∗1,1)2 (D-8)

and Pr((Z1 + h∗1,1)2 ≤ c0(h∗2, 1 − α)) < 1 − α, since Pr((Z1 + h∗1,1)2 ≤ x) < Pr(Z2
1 ≤ x) for h∗1,1 < 0.

Assumption A.6 then holds.

D.2 Example 2.2

We start again by writing the example using the notation in Definition 2.1. Let θn = (θ1,n, θ2,n) and
Pn denote the probability with respect to the distribution Fn. Define

γ1,1,n ≡ σ−1
1,nEFnm1(Wi, θn) = σ−1

1,nEFn [G1(θn)−W1,i(1−W2,i)], (D-9)

γ1,2,n ≡ σ−1
2,nEFnm2(Wi, θn) = σ−1

2,nEFn [W1,i(1−W2,i)−G2(θn)], (D-10)

γ1,3,n ≡ σ−1
3,nEFnm3(Wi, θn) = σ−1

3,nEFn [W1,iW2,i −G3(θn)].

6 The case where h1,1 =∞ and h1,2 < 0 or h1,1 = h1,2 =∞ is similar.

29



For the variances use the notation pjk,n = Pn(W1 = j,W2 = k) so that

σ2
2,n = σ2

1,n ≡ V arFn [m1(Wi, θn)] = p10,n(1− p10,n) ∈ [0, 1],

σ2
3,n ≡ V arFn [m3(Wi, θn)] = p11,n(1− p11,n) ∈ [0, 1],

ρ12,n ≡ CorrFn [m1,m2] = −1,

ρ13,n ≡ CorrFn [m1,m3] =
p11,np10,n

σ1,nσ3,n
,

ρ23,n ≡ CorrFn [m2,m3] = −p11,np10,n

σ1,nσ3,n
. (D-11)

This model satisfies the following relationship

m2(W, θn) = ∆G(θn)−m1(W, θn), (D-12)

where ∆G(θ) = G1(θ)−G2(θ) = Pr(u1,i < θ1, u2,i < θ2). This results in

γ1,2,n = σ−1
2,n∆G(θn)− γ1,1,n. (D-13)

The misspecified parameter space imposes for (r1, r2, r3) > 0

n1/2γ1,1,n ≥ −r1, n1/2γ1,2,n ≥ −r2, |n1/2γ1,3,n| ≤ r3. (D-14)

Let n1/2γ1,j,n → h1,j for j = 1, 2, 3 and λ = limn1/2σ−1
2,n∆G(θn) ≥ 0. By (D-13),

h1,2 + h1,1 = λ ∈ R+,∞. (D-15)

Equation (D-15) shows that h1,1 < 0 implies h1,2 > 0, and that it is impossible to have both strictly
negative. Also note that σ2,n → 0 iff p10,n → 0 or p10,n → 1. In addition

1. ∆G(θ) = 0 iff θ1 = 0 or θ2 = 0, and ∆G(θ) = 1 iff θ = (1, 1).

2. G2(θ) = 0 iff θ1 = 1 or θ2 = 0, and G2(θ) = 1 iff (θ1, θ2) = (0, 1).

Since G2,n(θn) ≤ p10,n ≤ G1,n(θn), it follows that p10,n ∈ (0, 1) whenever θk,n → θk ∈ (0, 1) for all
k = 1, 2. Also, p10,n → 0 iff θ2,n → 0 and p10,n → 1 iff (θ1,n, θ2,n)→ (0, 1).

D.2.1 On Assumption A.5

Consider a sequence (θn, Fn) with limits λ = ∞, h1,3 = r3 and h1,1 < 0.7 Equation (D-15) implies

that h1,2 =∞. In this case g1,1 = lim b
1/2
n γ1,1,n = 0, and

g1,2 = lim b1/2n γ1,2,n = lim b1/2n σ−1
2,n∆G(θn) ∈ [0,∞]. (D-16)

If θk,n → θk ∈ (0, 1) for k = 1, 2 then g1,2 =∞ and Assumption A.5 holds. Suppose instead that the
sequence (θn, Fn) is such that θk,n → θk, where θk = 0 for at least one k = 1, 2, and that

σ−1
2,n∆G(θn) = O(b−1/2

n ). (D-17)

In such case, we can find another sequence (θ′n, F
′
n) such that θ′k,n → θk at a much slower rate and

therefore implying g1,2 = ∞. Choosing F ′n appropriately guarantees that γ′n converges to the same
limit (h1, h2). Thus, Assumption A.5 holds in this case.

Finally consider a sequence (θn, Fn) with λ <∞, h1,3 = r3 and h1,1 < 0. Since λ <∞ it follows
that h1,2 = λ− h1,1 ∈ (0,∞) and Assumption A.5 is not relevant for this sequence.

7 The case in which h1,2 < 0 is symmetric.
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D.2.2 On Assumption A.6

Consider the function S1 and let c0(h∗2, 1− α) denote the 1− α quantile of

S1(Zh∗2 , h
∗
2) = [Z1]2− + [−Z1]2− + Z2

3 = Z2
1 + Z2

3 , Zh∗2 = (Z1, Z2, Z3) ∼ N(0, h∗2), (D-18)

where h∗2 is a correlation matrix with ρ12 = −1. Choose a sequence of parameters with λ∗ = 0,
h∗1,1 = h∗1,2 < 0 and h∗1,3 = 0. It follows that

S1(Zh∗2 + h∗1, h
∗
2) = [Z1 + h∗1,1]2− + [−Z1 − h∗1,1]2− + Z2

3 = (Z1 + h∗1,1)2 + Z2
3 (D-19)

and
Pr((Z1 + h∗1,1)2 + Z2

3 ≤ c0(h∗2, 1− α)) < 1− α, (D-20)

since Pr((Z1 + h∗1,1)2 + Z2
3 ≤ x) < Pr(Z2

1 + Z2
3 ≤ x) for h∗1,1 < 0. Assumption A.6 then holds.

31



References

Andrews, D. W. K., and P. Guggenberger (2009a): “Hybrid and size-corrected subsample
methods,” Econometrica, 77(3), 721–762.

(2009b): “Validity of Subsampling and “Plug-in Asymptotic” Inference for Parameters De-
fined by Moment Inequalities,” Econometric Theory, 25, 669–709.

(2010a): “Asymptotic Size and a Problem with Subsampling and with the m Out of n
Bootstrap,” Econometric Theory, 26, 426–468.

(2010b): “Applications of Hybrid and Size-Corrected Subsampling Methods,” Journal of
Econometrics, forthcoming.

Andrews, D. W. K., and P. Jia (2008): “Inference for Parameters Defined by Moment Inequalities:
A Recommended Moment Selection Procedure,” manuscript, Yale University.

Andrews, D. W. K., and G. Soares (2010): “Inference for Parameters Defined by Moment
Inequalities Using Generalized Moment Selection,” Econometrica, 78(1), 119–158.

Bugni, F. A. (2010): “Bootstrap Inference in Partially Identified Models Defined by Moment In-
equalities: Coverage of the Identified Set,” Econometrica, 78(2), 735–753.

Canay, I. A. (2010): “EL Inference for Partially Identified Models: Large Deviations Optimality and
Bootstrap Validity,” Journal of Econometrics, 156, 408–425.

Ciliberto, F., and E. Tamer (2010): “Market Structure and Multiple Equilibria in Airline Indus-
try,” Econometrica, 77(6), 1791–1828.

Grieco, P. (2009): “Discrete Games with Flexible Information Structures: An Application to Local
Grocery Markets,” manuscript, Northwestern University.

Guggenberger, P. (2009): “On the Asymptotic Size Distortion of Tests When Instruments Locally
Violate the Exogeneity Assumption,” Manuscript, UCSD.

Hall, A. R., and A. Inoue (2003): “The Large Sample Behaviour of the Generalized Method of
Moments Estimator in Misspecified Models,” Journal of Econometrics, 114(2), 361–394.

Imbens, G., and C. F. Manski (2004): “Confidence Intervals for Partially Identified Parameters,”
Econometrica, 72(6), 1845–1857.

Kitamura, Y., T. Otsu, and K. Evdokimov (2009): “Robustness, Infinitesimal Neighborhoods,
and Moment Restrictions,” CFDP 1720.

Manski, C. F. (2003): Partial Identification of Probability Distributions. Springer-Verlag, New York.

Newey, W. K. (1985): “Generalized Method of Moments Specification Testing,” Journal of Econo-
metrics, 29, 229–256.

Politis, D. N., and J. P. Romano (1994): “Large sample confidence regions based on subsamples
under minimal assumptions,” Annals of Statistics, 22, 2031–2050.

Politis, D. N., J. P. Romano, and M. Wolf (1999): Subsampling. Springer, New York.

Ponomareva, M., and E. Tamer (2009): “Misspecification in Moment Inequality Models: Back
to Moment Equalities?,” manuscript, Northwestern University.

Romano, J. P., and A. M. Shaikh (2008): “Inference for Identifiable Parameters in Partially
Identified Econometric Models,” Journal of Statistical Planning and Inference, 138(9), 2786–2807.

Rosen, A. (2008): “Confidence Sets for Partially Identified Parameters that Satisfy a Finite Number
of Moment Inequalities,” Journal of Econometrics, 146(1), 107–117.

Tamer, E. (2009): “Partial Identification in Econometrics,” manuscript, Northwestern University.

32


	Introduction
	Locally Misspecified Moment Equality/Inequality Models 
	Test Statistics and Critical Values

	Asymptotic Confidence Size Distortions
	Comparison across Critical Values
	Comparison across Test Statistics

	Numerical Simulations
	Appendices
	Appendix Additional Notation and Assumptions
	Appendix Auxiliary Lemmas
	Appendix Proof of the Lemmas and Theorems
	Appendix Verification of the Assumptions in Examples
	Example 2.1
	On Assumption A.5
	On Assumption A.6

	Example 2.2
	On Assumption A.5
	On Assumption A.6


	References

