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Abstract

We study a model of sequential learning, where agents choose what kind of

information to acquire from a large, fixed set of Gaussian signals with arbitrary

correlation. In each period, a short-lived agent acquires a signal from this set of

sources to maximize an individual objective. All signal realizations are public.

We study the community’s asymptotic speed of learning, and characterize the

set of sources observed in the long run. A simple property of the correlation

structure guarantees that the community learns as fast as possible, and more-

over that a “best” set of sources is eventually observed. When the property

fails, the community may get stuck in an inefficient set of sources and learn

(arbitrarily) slowly. There is a specific, diverse set of possible final outcomes,

which we characterize.

1 Introduction

Individuals have access to more sources of information than they can devote attention

to. Thus, they must decide which sources to listen to. When individuals choose

sources of information, what are the externalities on future agents, especially on their

signal acquisitions? Will a community of short-lived agents eventually choose to

acquire the “best” sources of information, or can its eventual demand for information

focus on self-reinforcing sources that yield inefficiently slow learning?
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We study these questions within a model of sequential learning, with the new

feature that individuals choose what kind of signal to observe out of a large set of

information sources. There is a unidimensional payoff-relevant state, and additionally

K − 1 possible biases or confounding terms. Sources are modeled as different linear

combinations of these K unknown states, plus an independent Gaussian error. We

focus mainly on “informational overabundance,” a situation in which not all sources

must be observed to learn the payoff-relevant state.

Agents, indexed by t ∈ N, move sequentially. Each agent chooses a source from

which to acquire information (modeled as observation of an independent realization

of that signal) and then chooses an action to maximize an individual objective. We

assume that objectives may differ across agents. Each agent’s choices are based on all

signal choices and realizations thus far. Thus, all information is public in our setting,

in contrast to the classic sequential learning model (Banerjee, 1992; Bikhchandani,

Hirshleifer and Welch, 1992; Smith and Sorenson, 2000). Our main results character-

ize two (exhaustive) long-run outcomes, and the forces that determine which obtains.

In certain informational environments, communities with different priors eventually

observe different—potentially sub-optimal—sets of sources (in this case, we character-

ize the potential long-run observation sets). In others, all communities, irrespective

of prior belief, eventually observe the same “best” set of sources. Which of these out-

comes obtains turns out to depend on a simple property of the correlation structure

across sources.

To fix ideas, consider agents who want to learn about a political leader’s prin-

ciples. There are many kinds of information that can shed light on this question:

for example information about the leader’s breaches of executive power, about his

mis-management of domestic crises, and about his private indiscretions. Importantly,

there are externalities to information acquisition: current information acquisitions

affect what information future agents would like to learn. For example, news that the

political leader requested a government official to drop a sensitive investigation may

inspire interest in the fine details of “obstruction of justice.” Alternatively, evidence

of private indiscretions can spur enduring interest in the personal lives of the leader

and his family. These topics differ in how ultimately revealing they are about the

political leader, and they also differ in how easy they are to understand. Indeed, it

may be that information that is most potentially revealing—that the political leader

did in fact overreach executive power, for example—is poorly understood without

prior acquisition of information explaining the limits of executive power.
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Two long run outcomes may occur. First, the community may eventually con-

verge to acquisition of information about the “most revealing” topics. Alternatively,

acquisition of easily understood information may distract from issues of greater con-

sequence and informativeness; indeed, the public may become “trapped” acquiring

information about different angles of a relatively uninformative issue. Our results

characterize the role of the correlation across topics in determining which of these

outcomes obtains.

Our main analysis characterizes the evolution of society’s acquisitions. Formally,

for each period t, define a count vector m(t) = (m1(t), . . . ,mN(t)), where each mi(t)

is the number of times that source i has been observed prior to time t. Our focus is

on the asymptotic frequency vector limt→∞m(t)/t describing how often each source is

observed in the long run, and also the implied asymptotic speed of learning, meaning

the speed at which the community learns the payoff-relevant unknown.

A key feature of “overabundant” sources is that there is a multiplicity of ways to

learn the payoff-relevant state. We refer to each (minimal) set that reveals the state

as a minimal spanning set. Although asymptotic learning of the payoff-relevant state

occurs if agents exclusively observe any minimal spanning set, the speed of learning

can differ substantially across such sets.

We evaluate welfare by comparing society’s acquisitions against an “optimal”

benchmark, which we construct as follows. First, we show that for every number

of observations t, there is an optimal division n(t) = (n1(t), . . . , nN(t)) of t observa-

tions across signals, where ni(t) is the number of counts of signal i. This allocation is

more informative (in the Blackwell sense) than any other allocation of t observations.

Taking the limit limt→∞ n(t)/t yields optimal asymptotic frequencies. We show that if

there is a uniquely “best” minimal spanning set (a generic case that we define), then

this limit is well-defined, and admits a simple closed-form expression. This optimal

asymptotic frequency vector has several properties of independent interest. First, only

sources that belong to the “best” minimal spanning set are observed with positive

frequency in the long run. Second, a comparative static result shows that conditional

on being viewed with strictly positive frequency, each signal’s asymptotic frequency

is (locally) decreasing in that its precision. Loosely, this means that sources are most

frequently observed if they are least informative within the most informative set.

We turn next to our main analysis regarding whether long-run information ac-

quisitions converge to the optimal asymptotic frequencies described above. We show

that this outcome depends critically on whether there exists a minimally spanning
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set that is of lower-dimension than the state space. The key intuition refers back to

Sethi and Yildiz (2016); recall that an agent who observes a biased source learns both

about the payoff-relevant state and also about the source’s own bias. When biases

across sources are correlated, there is a further spillover effect: learning from a biased

source helps agents to understand the biases of all sources that are correlated with

it.1 Suppose now that agents repeatedly observe a set of sources that is of “full rank,”

meaning that the sources collectively reveal all K unknown states. Then, every time

an agent observes a source from this set, he also improves society’s understanding

about all sources that are outside of the set. It can be shown that eventually agents

come to evaluate sources by objective asymptotic values (which are independent of

the community’s prior). We thus present the following positive result: if every mini-

mal spanning set is of full rank, then long-run acquisitions are optimal, independently

of the prior belief.

In contrast, if there is some minimal spanning set of lower dimension, then in-

efficient long-run learning may obtain. Intuitively, continued observation of sources

from a set of dimension k < K provides limited positive spillovers for sources outside

of the set. This is because agents can at most learn k unknown states from these

sources, while the other sources may depend on the remaining K−k states. Thus, the

community’s understanding of sources outside of the set need not improve. Formally,

we show that for every minimal spanning set that is “best” in a lower-dimensional

subspace, there is an open set of priors such that this set is observed in the long run.

The implied inefficiency—measured as the ratio of the optimal speed of learning and

the achieved speed of learning—can be an arbitrarily large constant.

Our work combines ideas from two literatures. First, recent work (Sethi and

Yildiz, 2016; Che and Mierendorff, 2017; Fudenberg, Strack and Strzalecki, 2017;

Liang, Mu and Syrgkanis, 2017; Mayskaya, 2017; Sethi and Yildiz, 2017) studies

choice of information from a finite set of information sources. We build specifically

upon our prior paper Liang, Mu and Syrgkanis (2017), which characterized optimal

signal acquisitions from correlated Gaussian sources under the assumption of “exact-

identification” (all sources must be observed to recover the state). Our work also

builds on Sethi and Yildiz (2016, 2017), which study long-run acquisitions from a

large number of Gaussian sources. There are a few key modeling differences: first, the

related papers consider stochastic error variances, so that the “best” sources vary from

1This appears also in Sethi and Yildiz (2017), which studies a model in which biases are correlated

across sources within a group, but not across groups.
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period to period, while we fix noise variances, so that there is (generically) a unique

“best” asymptotic set; second, Sethi and Yildiz (2016, 2017) focus on correlation

structures that fall under our Theorem 2, for which long-run acquisitions do not

necessarily achieve efficient learning, while we explore also those correlation structures

that lead to optimal learning.2 Thus, the welfare comparisons that we make here are

particular to our framework.

Finally, our model contributes to the social learning literature. This literature

has focused on the classic friction that decision-makers only observe coarse summary

statistics of past information acquisitions. We assume instead that all information

is perfectly passed on to future agents. It is immediate that asymptotic learning

will occur, but we show that learning can be inefficiently slow when agents choose

what kind of information to observe. Our paper relates in particular to Burguet and

Vives (2000), Ali (2017), and Mueller-Frank and Pai (2016), who introduced costly

information acquisition to the sequential learning model. We consider here choice

from a set of information sources, and demonstrate the role of correlations across

sources in determining speed of learning.

2 Model

There are K persistent states θ1, . . . , θK ∼ N (µ0, V 0), where the prior covariance

matrix V 0 is of full rank.3 Agents have access to N different sources of information,

and observation of source i corresponds to an independent realization of the signal

X t
i = 〈ci, θ〉+ εti, εti ∼ N (0, 1).

Each ci = (ci1, . . . , cik)
′ is a constant K × 1 vector and θ = (θ1, . . . , θK)′ is the vector

of unknown states. The noise terms εti are independent from each other and over

time. Our assumption that noise terms have unit variance is without loss since the

coefficients ci are unrestricted. Allowing N > K is key: this means that observation

of all of the sources is not necessary for asymptotic learning of θ1. We let C denote

the N ×K matrix whose i-th row is c′i.

A countably infinite number of agents, indexed by t ∈ N, moves sequentially.

Each agent t acquires an independent realization of one of the N signals, and then

2Specifically, Sethi and Yildiz (2016) focuses on signals with independent biases, and Sethi and

Yildiz (2017) focuses on signals that can be partitioned into groups (see Section 6).
3This rules out linear dependence across the states. If indeed some states are linearly dependent,

we may work with a smaller set of states without changing the model.
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chooses an action a ∈ A to maximize an individual objective ut(a, θ). He bases his

action on his own signal acquisitions, as well as the history of signal acquisitions and

realizations thus far. (Thus, all signal realizations are public.)

Payoff functions may differ across agents, but we impose the following restrictions.

First, there is a single payoff-relevant state.

Assumption 1 (Single Payoff-Relevant State). For every t,

ut(a, θ1, θ−1) = ut(a, θ1) does not depend on θ−1.

Thus, states θ2, . . . , θK are not directly payoff-relevant. However, agents maintain

beliefs over the complete K-dimensional state vector, since the payoff-irrelevant states

can be important for interpreting signal realizations.

Additionally, we assume that the decision problems are non-trivial in the following

way.

Assumption 2 (Payoff Sensitivity to Mean). For every t, any variance σ2 > 0

and any action a∗ ∈ A, there exists a positive measure of µ1 for which a∗ does not

maximize E[ut(a, θ1) | θ1 ∼ N (µ1, σ
2)].

In words, holding the belief variance fixed, the expected value of θ1 affects the optimal

action to take.

A sufficient condition for Assumption 2 is that for every agent t and every action

a∗, there exists some other action â such that ut(â, θ1) > ut(a
∗, θ1) as θ1 → +∞ or as

θ1 → −∞. That is, we require that the two limiting states θ1 → +∞ and θ1 → −∞
yield different optimal actions. This is true for all natural applications.

We use throughout the key concept of spanning sets. Let [N ] = {1, . . . , N} index

the set of signals and let [K] = {1, . . . , K} index the set of K states. A set of signals

S ⊂ [N ] is spanning or a spanning set if the vectors {ci : i ∈ S} span e1. Thus, it is

possible to learn θ1 by exclusively observing signals from S. The set S is minimally-

spanning or a minimal spanning set if it is spanning, and moreover has the property

that no proper subset is spanning. Note that if a set S is minimally spanning, then

it contains no more than K signals, and moreover we can write

e1 =
∑
i∈S

βi · ci

for (unique) nonzero coefficients βi.

We assume throughout that θ1 is revealed by the full set of signals.
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Assumption 3. The complete set of signals [N ] is spanning.

This assumption allows for two interesting cases. Say that payoff-relevant state

θ1 is exactly identified if [N ] is minimally spanning. Additionally, say that payoff-

relevant state θ1 is overidentified if [N ] is spanning but not minimally spanning.

Except for trivial cases, this latter setting corresponds to N > K.4

2.1 Interpretations and Examples

We mention below a few interpretations for this informational model.

Correlated biases. The most straightforward interpretation takes θ2, . . . , θK (the

states that are not payoff-relevant) to be different biases. In examples throughout

this paper, we often invoke this interpretation more explicitly by relabeling the states

θ2, . . . , θK as b1, . . . , bK−1. Then, each source provides a biased signal about θ1, where

the biases are potentially correlated across sources. For example, news sources CNN,

NYTimes, and MSNBC share a left-leaning bias, but to different degrees. The coef-

ficient matrix C determines the precise structure of this correlation.

Groups. A special kind of correlation is one in which signals can be partitioned

into different groups, with group-specific unknowns.

Example 1. The unknown states are θ1, θ2, θ3, where only θ1 is payoff-relevant. The

sources are

X1 = θ1 + θ2 + ε1

X2 = θ2 + ε1

X3 = θ1 + θ3 + ε3

X4 = θ3 + ε4

Then, there are two “groups” of sources, each of which is associated with a group-

specific unknown. For example, the states θ2 and θ3 may represent comprehension of

language or culture corresponding to the respective group. An agent who does not

understand the language of the first group perceives X1 to be a noisy signal about θ1

4It is possible for θ1 to be overidentified from a set of N ≤ K signals, e.g. X1 = θ1 + ε1,

X2 = θ1 + θ2 + θ3 + ε2, and X3 = θ2 + θ3 + ε3. In this case, the set {X1, X2, X3} is spanning, but

not minimally spanning since both of its subsets {X1} and {X2, X3} are also spanning. Although

N = K = 3 in this example, it is equivalent to a model in which there are two states θ1 and

θ̃2 = θ2 + θ3, and the three signals are rewritten X1 = θ1 + ε1, X2 = θ1 + θ̃2 + ε2 and X3 = θ̃2 + ε3.

Then, we do have N > K in this alternative model.
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(because of the large variance on θ2). As observations of signal X2 accumulate (which

improve understanding of θ2), the informativeness of signal X1 increases. Observe

that the state θ1 is revealed by signals from either group.

Composite of unknowns. A third interpretation takes the payoff-relevant state

θ1 to be a linear combination of unknowns θ̃1, . . . , θ̃K about which the agents can

learn independently. In this case, we can interpret sources as experts with different

specializations.

Example 2. The unknown states are θ̃1, θ̃2, θ̃3, where θ̃1 + θ̃2 + θ̃3 is payoff-relevant.

The sources are

X1 = θ̃1 + ε1

X2 = θ̃2 + ε2

X3 = θ̃3 + ε3

Then, source 1 is an expert regarding θ̃1, source 2 is an expert regarding θ̃2, and

source 3 is an expert regarding θ̃3.

Linear best responses. A final interpretation micro-founds the signals as actions

taken by another set of agents. Specifically, suppose that there are N “types” of

agents (corresponding to the N sources). Each period, a new agent of each type i is

born and receives a (Gaussian) signal

θ + ηi,

where ηi is a K-dimensional vector of independent standard normal noise terms. He

then takes an action ai to match the private objective

−(ai − 〈ci, θ〉)2)

Then, each agent i’s best response follows the distribution 〈ci, θ〉 + εi where εi =

〈ci, ηi〉. It is important in this interpretation that agents are not long-lived, so that

the distribution of best responses does not change.

3 Information Acquisition

Let [N ] = {1, 2, . . . , N} denote the set of all signals. Each agent faces a history

ht−1 ∈ ([N ] × R)t−1 = H t−1 consisting of all past signal choices and realized signal
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values. A strategy for the agent moving at time t is a measurable map from all

(t− 1)-length histories to signals—that is, S : H t−1 → [N ], where S(ht−1) represents

the signal choice in period t following history ht−1.5

Each agent’s marginal belief about θ1, updated to his own signal acquisition and

all information revealed by past agents, is Gaussian. Write θ1 ∼ N (µ1, V11) for this

belief. His maximum payoff is

max
a∈A

E[ut(a, θ1) | θ1 ∼ N (µ1, V11)] (1)

Each agent chooses the signal that maximizes (1) in expectation. We use a result

from Liang, Mu and Syrgkanis (2017) to characterize this signal choice. First observe

that since beliefs are Gaussian, the agent’s posterior variance V11 about θ1 following

qi observations of each signal i can be written as a deterministic function

V11 = f(q1, . . . , qN).

In particular, the posterior variance does not depend on signal realizations; see Ap-

pendix B for the complete (closed-form) expression. It was shown in Liang, Mu and

Syrgkanis (2017) that the signal that yields the greatest reduction in posterior vari-

ance Blackwell dominates the remaining signals. Thus, the signal choice that achieves

the greatest reduction in posterior variance also maximizes expected payoffs.

Lemma 1 (Liang, Mu and Syrgkanis (2017)). The optimal signal acquisition for

every agent, at every history, is the signal that minimizes current posterior variance

about θ1.

Using this lemma, we can track “society’s acquisitions” in the following way. Write

m(t) = (m1(t), . . . ,mN(t)) for the division over signals at time t, where mi(t) is the

number of times signal i has been observed up to and including time t. Then, m(t)

evolves deterministically according to the following rule: m(0) = 0 and for t ≥ 0,

mi(t+ 1) = mi(t) + 1 if f(mi(t) + 1,m−i(t)) ≤ f(mj(t) + 1,m−j(t)) ∀j.

and mj(t+1) = mj(t) for all other signals j.6 We are primarily interested in the long-

run acquisitions. Specifically, we will refer to the asymptotic frequency limt→∞mi(t)/t

with which source i is observed, and the asymptotic observation set, meaning the set

5Since information is public, agents do not need to additionally condition on past actions.
6We allow ties to be broken arbitrarily, so there may be multiple paths m(t).
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of signals that are observed with positive frequency in the long-run. Our subsequent

results in Section 5 show that these limits are well-defined.

We will compare these long-run acquisitions against the following “optimal” bench-

mark. For each t, define

argmin
(q1,...,qK):qi∈Z+,

∑
i qi=t

f(q1, . . . , qK).

to be the division(s) of t observations that minimizes posterior variance about θ1. Be-

low, we write n(t) = (n1(t), . . . , nN(t)) for a typical optimal division of t observations,

where generically n(t) is unique. Applying Lemma 3 from Liang, Mu and Syrgkanis

(2017), we have that n(t) Blackwell dominates any other set of t observations and in

fact maximizes the expected payoff of agent t. Thus, the sequence (n(t))t≥1 point-

wise (weakly) improves upon any other sequence (m(t))t≥1, and for this reason we will

use it as an optimal benchmark. We also define the “optimal” asymptotic frequency

with which source i is observed to be limt→∞ ni(t)/t, and the optimal observation set

to be the signals that have positive optimal asymptotic frequency. These limits are

well-defined under a simple condition, which we describe in the next section.

Note that a planner who has control over the agents’ signal choices could dictate

choosing signals according to their optimal frequencies (modulo adjustments to ac-

commodate discrete time periods). Doing so would ensure that the signal counts at

every time t are approximately given by n(t). Thus, for a planner who is trying to

maximize a discounted sum of agent’s payoffs, the overall discounted payoff approxi-

mates the optimal benchmark associated with the sequence (n(t))t≥1 in the infinitely

patient limit. This justifies n(t) as the right benchmark to study.

4 Optimal Benchmark

We begin by characterizing optimal asymptotic acquisitions, which we will subse-

quently use as a benchmark. We break up this characterization into two cases: in

Section 4.1 we discuss the exact identification, where all sources are observed infinitely

often; in Section 4.2 we turn to our primary case of interest, where asymptotic learning

can occur from a strict subset of sources.
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4.1 The Exactly-Identified Case

Suppose first that the number of signals and sources is the same (N = K); then, we

return to the problem considered in our prior work Liang, Mu and Syrgkanis (2017),

where the following was shown:

Proposition 1 (Liang, Mu and Syrgkanis (2017)). Suppose N = K and θ1 is exactly

identified. Then for 1 ≤ i ≤ K, ni(t) = λ∗i · t+O(1), where

λ∗i =
|[C−1]1i|∑K
j=1 |[C−1]1j|

. (2)

Note that in this case C is a K ×K square matrix.

To interpret these frequencies, observe the vector identity

e1 =
K∑
i=1

[C−1]1i · ci, (3)

This represents the payoff-relevant state as a (unique) linear combination of the avail-

able signals. Thus λ∗i ∝ |[C−1]1i| is a measure of signal i’s contribution in this linear

combination.

As a second and related intuition, observe that the random vector consisting of a

single realization of each signal can be written

Y = (y1, . . . , yK)′ = Cθ + ε

where ε is the K × 1 vector of error terms. The best linear unbiased estimate for the

state vector is

(θ̂1, . . . , θ̂K)′ = C−1Y. (4)

Suppose now that we perturb each realization yi by δi. Then, the estimate in (4) for

the payoff-relevant state θ1 changes by [C−1]1i ·δi. This means that the larger |[C−1]1i|
is, the more θ̂1 responds to changes in the realization of yi. So (2) says that signals

whose realizations more strongly influence the best linear estimate of θ1 are observed

more often in the long run.

In fact, the above result extends to N < K when θ1 is exactly identified, under

an appropriate transformation of the problem. For example, suppose the signals are

X1 = θ1 + θ2 + θ3

X2 = θ1 − θ2 − θ3
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so that N = 2 and K = 3. We can define a new state θ̃2 = θ2 + θ3 and rewrite

X1 = θ1 + θ̃2

X2 = θ1 − θ̃2

Then N = K = 2 in this equivalent model. This transformation applies in general:

we can always choose N new states (including θ1), each a linear combination of the

original K states, and re-define the original N signals to be linear combinations of

the new N states. This alternative model is equivalent to the original problem, but

satisfies the conditions of Proposition 1. Thus, dropping the requirement that N = K,

we obtain the following corollary:

Corollary 1. Suppose θ1 is exactly identified. Write

e1 =
N∑
i=1

βi · ci

with nonzero coefficients βi. Then for 1 ≤ i ≤ N ,

ni(t) =
|βi|∑N
j=1|βj|

· t+O(1).

Moreover, the minimum posterior variance after t observations satisfies the following

approximation:

f(n(t)) = min∑N
i=1 qi=t

f(q1, . . . , qN) ∼

(
N∑
i=1

|βi|

)2

/t.

Here and throughout the text, the notation “F (t) ∼ G(t)” means limt→∞
F (t)
G(t)

= 1.

Given this asymptotic formula for the posterior variance, we can interpret the sum∑N
i=1|βi| as representing the speed of learning : the smaller this sum is, the smaller

the posterior variance at large t, and the faster society learns.

4.2 The Over-Identified Case

We turn now to our primary case of over-identification, where the number of signals

exceeds the number of states (N > K).

For each minimal spanning set S, we define the asymptotic standard deviation

Asd(S) =
∑
i∈S

|βi|.
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By Corollary 1, agents who optimally choose from signals in S approximates a pos-

terior variance of (Asd(S))2/t at all large times t. Thus the smaller Asd(S) is, the

faster society learns. Notice that for any signal of the form

X = αθ1 + ε

the set {X} is minimally spanning, and Asd({X}) = 1/|α|.
We can extend this definition to arbitrary set of signals A ⊂ [N ] (not necessarily

minimally-spanning) as follows. For any set that contains a minimal spanning set,

define

Asd(A) = min
S⊂A

Asd(S),

where the minimum is taken over all minimal spanning sets S contained in A. If such

S does not exist (i.e., A is not itself spanning), we let Asd(A) =∞. In particular,

Asd([N ]) = min
S⊂[N ]

Asd(S)

represents the minimum asymptotic standard deviation achieved by observing only

those signals in some minimal spanning set. A priori, it is possible to do better by

combining observations from multiple spanning sets. However, it will follow from

Theorem 1 below that this is not the case when the following assumption on the

coefficient matrix C is met:

Assumption 4 (Unique Minimizer). Asd(S) has a unique minimizer S∗ among min-

imal spanning sets S ⊂ [N ].

This assumption, which holds for generic coefficient matrices C, says that there is a

unique minimal spanning set that maximizes speed of learning.

Under Assumption 4, let us write e1 =
∑

i∈S∗ β
∗
i · ci. Define the frequencies

λ∗ ∈ ∆N−1 by

λ∗i =
|β∗i |∑
j∈S∗|β∗j |

, ∀ i ∈ S∗ (5)

and λ∗i = 0 for i /∈ S∗. Our first theorem is now stated.

Theorem 1. Suppose that the coefficient matrix C satisfies Unique Minimizer, with

S∗ uniquely minimizing Asd(S). Let λ∗ be given by (5). Then ni(t) ∼ λ∗i · t for each

signal 1 ≤ i ≤ N .7

7We conjecture that the stronger conclusion ni(t) = λ∗i · t + O(1) also holds. In Remark 2, we

prove this result assuming |S∗| = K.
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The conclusion can be loosely interpreted as stating that λ∗ is the “most efficient

linear representation” of the payoff-relevant state in terms of the signal coefficients.8

We point out the following comparative static.

Corollary 2. Suppose that the coefficient matrix C satisfies Unique Minimizer. Write

each signal as Xi = α〈ci, θ〉+ εi, so that the precision of signal Xi is increasing in α.

Then, either λ∗i = 0 or λ∗i is locally decreasing in α.

That is, if signal i is viewed with positive frequency in the long run, then its asymp-

totic frequency is decreasing in its precision. This implies loosely that a signal is most

frequently viewed when it is least informative subject to being in the most informative

set.

The necessity of Assumption 4 for Theorem 1 is trivially seen by considering two

duplicate sources, for example:

X1 = θ1 + ε1

X2 = θ1 + ε2

given which all divisions across signals are equally optimal. We show in the example

below that it is possible for infinite observations of N > K signals to be strictly

optimal.

Example 3. There are K = 3 states θ1, θ2, θ3 independently drawn with prior variances
1
α
, 1
β
, 1
γ
. N = 4 signals are available, and they are respectively

X1 = θ1 + θ2 + ε1

X2 = θ2 + ε2 + ε2

X3 = θ1 + θ3 + ε3

X4 = θ3 + ε4

with standard normal errors. Note that the former two signals and the latter two

signals are both spanning, and these two sets generate the same asymptotic variance.

Thus Assumption 4 is not satisfied.

8Specifically, consider the following constrained minimization problem:

min

N∑
i=1

|βi| subject to

N∑
i=1

βi · ci = e1.

It can be shown by linear programming that the minimum is attained exactly when βi = β∗i —that

is, when focusing on a single minimal spanning set.
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The posterior variance about θ1 as a function of the number of observations

q1, q2, q3, q4 of each signal type can be derived as follows. First, given q2 observa-

tions of signal X2 and q4 observations of signal X4, posterior variance about θ2 and

θ3 are 1/(q2 +β) and 1/(q4 +γ) respectively. Consider now q1 additional observations

of X1; this provides the same information about the payoff-relevant state θ1 as the

signal θ1 +ε′, where ε′ is an independent noise term with variance 1
q1

+ 1
q2+β

. Similarly,

q3 additional observations of X3 are equivalent to the signal θ1 + ε′′, where ε′′ is an

independent noise term with variance 1
q3

+ 1
q4+γ

. From this we deduce that posterior

variance about θ1 is

f(q1, q2, q3, q4) = 1

/(
α +

1
1
q1

+ 1
q2+β

+
1

1
q3

+ 1
q4+γ

)
.

The optimal division vector thus seeks to maximize

1
1
q1

+ 1
q2+β

+
1

1
q3

+ 1
q4+γ

(6)

It is useful to rewrite (6) in the following way:

1

4

(
q1 + q2 + β + q3 + q4 + γ − (q1 − q2 − β)2

q1 + q2 + β
− (q3 − q4 − γ)2

q3 + q4 + γ

)
.

Then, since q1 + q2 + β+ q3 + q4 + γ = t+ β+ γ is fixed at any time t, it is equivalent

to choose q1, q2, q3, q4 to minimize the sum of ratios

(q1 − q2 − β)2

q1 + q2 + β
+

(q3 − q4 − γ)2

q3 + q4 + γ
.

Ideally, if signals were perfectly divisible, the optimum would be to choose q1 = q2 +β

and q3 = q4+γ. But as each qi is restricted to integer values, this continuous optimum

is not feasible whenever β and γ are not integers.

The solution to this integer optimization problem is involved, and the details

are relegated to Appendix A.1. To express the solution, we need some additional

notation. Let r be the integer that minimizes |r − β| (the distance to β) and let s

be the integer that minimizes |s − γ|. Further, let 〈β〉 and 〈γ〉 be the value of these

absolute differences. We show that when the parity of t and r + s are the same, the

optimal (q1, q2, q3, q4) satisfy

q1, q2 ≈
〈β〉

2〈β〉+ 2〈γ〉
· t; q3, q4 ≈

〈γ〉
2〈β〉+ 2〈γ〉

· t.
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and otherwise the optimal (q1, q2, q3, q4) satisfy

q1, q2 ≈
〈β〉

2〈β〉+ 2− 2〈γ〉
· t; q3, q4 ≈

1− 〈γ〉
2〈β〉+ 2− 2〈γ〉

· t.

Thus, all four signals are observed with positive frequencies in the long run according

to the optimal criterion.

Although the example is involved, its intuition is simple: we’d most like to set

q1 = q2 + β and q3 = q4 + γ, but this is not feasible when β and γ are not integers.

Thus, there is inevitably some loss from the ideal case where signals are continuously

divisible. This loss turns out to be convex in signal counts, so to minimize total loss,

both groups of signals are observed infinitely often.

The conclusion of Theorem 1 fails to hold in a strong sense in the example above,

since all signals are observed infinitely often. Appendix A provides another example

that does not satisfy Assumption 4 where, in contrast, the conclusion of Theorem

1 holds qualitatively. Specifically, the conclusion of the theorem is shown to hold

for λ∗ defined with respect to some set S∗ that minimizes Asd. The difference in

these two examples, and in addition the complexity of derivation of the asymptotic

frequencies above suggest that characterization of optimal acquisitions is in general

difficult without Assumption 4.

5 Main Results

We move on now to our main analysis: characterization of long-run acquisitions,

and when these converge to the optimal acquisitions discussed above. We show that

whether society’s acquisitions m(t) eventually approximate the optimal acquisitions

n(t) depends critically on how many signals are required to identify θ1.

To state our results, we need one more definition. For any spanning set of signals

A, let A ⊆ [N ] be the set of available signals whose coefficient vectors belong to the

subspace spanned by signals in A. Notice in particular that A contains A. We say a

minimal spanning set S is efficient in its subspace if it uniquely minimizes Asd among

subsets of S. For example, if the available signals are

X1 = θ1/2 + ε1

X2 = θ1 + ε2

then {X1} is a minimal spanning set, but it is not efficient in its subspace.9

9X2 belongs to the subspace spanned by X1, and Asd({X2}) < Asd({X1}).
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Theorem 2. Suppose minimal spanning set S is efficient in its subspace. Then, there

exists an open set of prior beliefs under which long-run frequencies are strictly positive

for signals in S, and zero everywhere else.10

A simpler to interpret special case of this result is the following.

Definition 1. Say that the coefficient matrix C satisfies Linear Independence if N ≥
K and every K ×K submatrix of C is of full rank.

Corollary 3. Suppose that the coefficient matrix satisfies Linear Independence. For

any minimal-spanning set that contains less than K signals, there exists an open set

of prior beliefs under which each agent observes a signal from this set.

Thus, assuming Linear Independence, the possibility of inefficiency hinges on whether

there exists a minimal spanning set with fewer than K signals.

The content of this theorem is illustrated in the example below, which shows how

sequential information acquisition can become “stuck” in a sub-optimal spanning set.

Example 4. There are two states θ1, θ2 and three signals which are

X1 = θ1/2 + ε1

X2 = θ1 + θ2 + ε2

X3 = θ1 − θ2 + ε3

where ε1, ε2, ε3 are independent standard Gaussian noise terms. Note that

Asd({X1}) = 2 > 1 = Asd({X2, X3})

so the latter two signals maximize speed of learning.

However, consider a prior belief such that θ1, θ2 are independent, and the variance

about θ2 is larger than 3. Prior to any observations, the first signal θ1
2

+ ε1 has

precision 1
4

about θ1, whereas the latter two signals θ1 + θ2 + ε2 and θ1 − θ2 + ε3 each

has less precision. Thus the best choice in the first period is to observe X1. Since this

observation does not affect the variance of θ2, the same argument shows that every

agent observes signal 1.

10As shown in Liang, Mu and Syrgkanis (2017), these frequencies are the same as the optimal

frequencies when only signals in S are available.
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Theorem 2 generalizes this example to show that different priors can lead to

different “absorbing sets.” We note that the speed of learning from a sub-optimal set

can be arbitrarily slower than the optimal speed, even though both have rate O(1/t).

Specifically, for any positive number L, there exists an environment in which

Asd(S)/Asd(S∗) > L

where S is the asymptotic observation set and S∗ is the optimal asymptotic obser-

vation set. This can be proved by direct construction: modify the example above so

that

X1 = θ1/2 + ε1

X2 = cθ1 + θ2 + ε2

X3 = cθ1 − θ2 + ε3

with c > L
2
. We note that the set of “inefficient” priors (which result in sub-optimal

learning) does decrease in size as the level of inefficiency increases.

Converse to Theorem 2, our next result shows that starting from any prior, infor-

mation acquisition eventually concentrates on a set of signals that is most efficient in

its subspace. We use an assumption which strengthens Unique Minimizer.

Assumption 5 (Unique Minimizer in Every Subspace). For any spanning set A ⊂
[N ], argminS⊂AAsd(S) has a unique solution, where the minimum is taken over

minimal spanning sets S.

This says that in every spanning subspace, there exists a unique minimal spanning

subset S that minimizes asymptotic speed of learning. It is obviously guaranteed if

different minimal spanning sets correspond to different values of Asd.

Theorem 3. Suppose that the coefficient matrix C satisfies Assumption 5. Given

any prior belief, long-run frequencies exist for every signal. Moreover, if S denotes

the signals viewed with positive frequencies, then S is a minimal spanning set that is

efficient in its subspace.

As a special case of this theorem, notice that if every minimal spanning set is of

size K, then all minimal spanning sets belong to the same subspace. Furthermore, if

Unique Minimizer holds, there can only be one minimal spanning set that is efficient in

its subspace, and moreover this is the “best” set (in the sense of Section 4). It is then

a simple corollary of the above result that under these conditions, all communities

(irrespective of their prior) converge to the optimal asymptotic acquisitions.
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Corollary 4. Suppose that the coefficient matrix C satisfies Unique Minimizer and

that every minimal spanning set has size K. Then, starting from any prior belief, it

holds that mi(t) ∼ λ∗i · t, ∀i.

One may argue that if coefficient vectors are drawn at random from a full-support

distribution over RK , then it holds with probability 1 that every minimal spanning

set is of size K. While this consideration shows the efficiency result in Corollary 4

holds “generically,” this notion of genericity ignores the fact that in many economic

situations, information sources are not determined by a random process. Indeed, if we

expect that sources are endogenous to design or strategic motivations, then important

informational environments may be “non-generic.” For example, the existence of any

source that directly reveals θ1 (that is, X = cθ1 + ε) is non-generic by the above

definition, but plausible in practice. Sets of signals that partition into different groups

(as described in Section 2.1) are also economically interesting but non-generic.11 Our

earlier Theorem 2 shows that inefficiency is a likely outcome in these cases.

The intuition for the above results, and in particular the role of “low-dimensional”

minimal spanning sets, is roughly as follows. If every minimal spanning set is of full

rank, then as agents accumulate observations from any minimal spanning set, they

learn not only about θ1 but also about all other states. The aggregated information

in the community must then eventually swamp the prior, so that agents’ asymptotic

evaluation of the value of different signals cannot be prior-dependent. In fact, this

asymptotic evaluation returns the optimal comparisons in Section 4.

The argument above is no longer valid when there is a lower-dimensional set of

signals that is minimally spanning. Intuitively, observation of k < K signals can be

self-reinforcing, since at most k unknown states are revealed from these sources. Thus,

any uncertainty in the prior about the other K−k states can persist, despite infinitely

many observations of the k signals. Suppose that the remaining sources depend on

these K− k “poorly-understood” states. Agents may never acquire information from

these sources, and thus never come to learn about these states.

Returning to our example in the introduction, in which we considered a commu-

nity’s acquisition of news about a political leader, recall that there were two possible

11Note that the set of coefficient matrices that satisfy Assumption 5 is “generic” in the following

stronger sense: fixing the directions of coefficient vectors (as in Corollary 2), and suppose that the

precisions are drawn at random, then different minimal spanning sets achieve different Asd values. In

contrast, whether every minimal spanning set has size K is a condition on the directions themselves,

so this stronger notion of genericity does not apply.
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outcomes. One possible long run outcome is that the community acquires information

about the “most revealing” topics—for example, whether the political leader broke

laws limiting executive power. Alternatively, the community may become stuck read-

ing about “decoy” topics that are easily understood, but which allow for inefficiently

slow learning—for example, information about his personal indiscretions.

Our results suggest that the key property that separates these two long-run out-

comes is whether the decoy topics are revealing—so that given sufficiently many

articles about this topic, the community will learn if the leader is unprincipled—and

moreover self-contained—so that in the intermediate term, they provide no infor-

mation that would help the reader to better understand other relevant topics. In

contrast, optimal long-run learning would occur if for example, coverage of personal

indiscretions led also to better understanding of the limits of executive power, in

which case readers would eventually divert attention to reporting about breaches of

these limits.

Although not a focus of this paper, the described mechanism above suggests a

distortion in information demand, and new considerations for the welfare analysis of

news production. Insofar as the media has incentives to provide information that is

of greatest immediate interest, provision of information to satisfy immediate demand

may not be socially optimal. In contrast, limitation of news sources to investigative

pieces—whose “intermediate steps,” if released, would not be of public interest, but

which are illuminating about the payoff-relevant unknown at the end—may allow for

efficient long-run learning.

We sketch below the proof for Theorem 3, relegating the complete proof to the

appendix.

5.1 Proof Sketch for Theorem 3

Instead of working directly with the posterior variance function f(q1, . . . , qN), we

work with the function

f ∗(λ1, . . . , λN) = lim
t→∞

t · f(λ1t, . . . , λN t)

which is defined on frequency vectors. Lemma 8 relates this function to the posterior

variance function, stating that as each qi grows large,

f(q1, . . . , qN) ∼ 1

t
· f ∗

(q1

t
, . . . ,

qN
t

)
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where t =
∑N

i=1 qi is the total number of observations. Thus, division vectors

(q1, . . . , qN) which minimize f ∗ will asymptotically also minimize the posterior vari-

ance function f .

Several properties of the function f ∗ are relevant. First, the function f ∗ is convex

in λ. Additionally, under the assumption of a “best” minimal spanning set S∗, the

function f ∗ is uniquely minimized at the vector λ∗ which assigns to each signal in

S∗ its asymptotic frequency, and puts 0 everywhere else (Lemma 6). The question

of whether optimal long-run acquisitions are achieved is equivalent to the question of

whether signal acquisition frequencies converge to λ∗.

Society’s acquisitions follow “pseudo”-gradient descent, where the vector λ(t) =

m(t)/t evolves according to

λ(t+ 1) =
t

t+ 1
λ(t) +

1

t+ 1
ei.

The vector ei is the coordinate vector that yields the greatest (immediate) reduction

in f (and roughly the greatest reduction in f ∗). Unlike standard gradient descent, the

descent here can occur only along a finite set of feasible directions. This limitation

is without loss if f ∗ is continuously differentiable, which implies that the partial

derivative in any direction is a convex combination of partial derivatives along basis

vectors.

However, the function f ∗ can fail to be continuously differentiable at vectors with

fewer than K nonzero coordinates. In particular, even when the derivative in the

direction of λ∗ − λ is strictly positive, the directional derivative can be 0 along every

coordinate vector. This results in agents becoming “stuck” at a sub-optimal point

under the pseudo-gradient descent, as reflected in Theorem 2.

We show, however, that f ∗ is continuously differentiable at all vectors that have at

least K nonzero coordinates, and moreover that agents will always eventually observe

some minimal spanning set. Thus, if every minimal spanning set has size K, descent

is well-behaved and ends at the global minimum f ∗. This proves Corollary 4, and

Theorem 3 follows from a similar argument.

6 Special Correlation Structures

Below, we apply the above results to characterize long-run acquisitions in special

informational environments. We first consider an island model.
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Definition 2. Information sources with coefficient matrix C constitute an island

model if the different minimal spanning sets S1, . . . ,SM satisfy M > 1 and moreover,

Sm = Sm for every m.

An island model was introduced previously in Example 1 in Section 2.1, in which

there were two disjoint minimal spanning sets (groups) with two signals each. The

different groups may also be unbalanced in the following way:

Example 5. The unknown states are θ1, b1, b2, b3, where only θ1 is payoff-relevant. The

sources are

X1 = θ1 + b1 + ε1

X2 = b1 + b2 + ε1

X3 = b2 + ε3

X4 = θ1 + b3 + ε4

X5 = b3 + ε5

Then, {X1, X2, X3} and {X4, X5} constitute the only minimal spanning sets.

While this example and Example 1 both have the property that minimal spanning

sets are disjoint (and partition [N ]), this need not be the case, as shown in the

following example:

Example 6. The unknown states are θ1, b1, b2, b3, where only θ1 is payoff-relevant. The

sources are

X1 = θ1 + b1 + ε1

X2 = b1 + b2 + ε1

X3 = b2 + ε3

X4 = b1 + b3 + ε4

X5 = b3 + ε5

Note that only X4 differs from the previous example. Here, the only minimal spanning

sets are {X1, X2, X3} and {X1, X4, X5}, which span different subspaces.

A direct application of Theorem 2 yields:

Corollary 5. For every island model, there is an open set of priors given which the

agents eventually (sub-optimally) observes signals in S 6= S∗.
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Proof. By assumption, S = S for any minimally spanning set S. Thus for any other

minimally spanning set S ′, it holds that S ′ ( S = S. This shows S is the only

minimal spanning set in its subspace, and it must be efficient in that subspace. Now

choose any S 6= S∗. Theorem 2 yields the desired conclusion.

Thus, inefficiency is possible in every island model.

Another special case is a symmetric model, in which there are M groups of K

signals that are rotationally symmetric around the vector e1.

Definition 3. Information sources with coefficient matrix C constitute a symmetric

model if the rows [N ] can be partitioned into M groups of size K, where each group

can be ordered c1, . . . , cK such that

ck = Rk−1c1, ∀k

with R a rotation matrix around e1 satisfying RK = I and Rk 6= I for every k ∈
{1, . . . , K − 1}.12

An example of a symmetric model is given below:

Example 7. The unknown states are θ, b, where only θ is payoff-relevant. The sources

are

X1 = θ1 + b+ ε1

X2 = 2θ1 + b+ ε2

X3 = θ1 − b+ ε3

X4 = 2θ1 − b+ ε4

Then, the signals {X3, X4} correspond to a rotation of {X1, X2} around e1 using the

rotation matrix R =

(
1 0

0 −1

)
.

The following is a corollary of Theorem 2:13

12A rotation matrix around e1 is any matrix of the form

R =

[
1 0

0 ON−1

]
with ON−1 an arbitrary orthonormal matrix.

13One can show that in symmetric models, the optimal observation set must be itself symmetric,

and Unique Minimizer is satisfied whenever different symmetric minimal spanning set yield different

speeds of learning.
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Corollary 6. Fix a symmetric model. If there is a final observation set S 6= S∗

consisting of signals from distinct groups, then at least K + 1 different sets could be

eventually observed depending on the prior.

Proof. The rotated versions of S could all be eventually observed. They are pairwise

distinct by the assumption that S contains signals from distinct groups, and they are

also distinct from S∗ since S necessarily has less than K signals.

Thus, there can be a sharp discontinuity in the possible long-run outcomes in sym-

metric models. Either all communities converge to the optimal set S∗, or communities

with different priors end up in a range of final observation sets.14

7 Information Interventions

Section 5 demonstrated the possibility for sequential information acquisition to result

in inefficient learning. We ask now whether it is possible for a benevolent outside

party to help society achieve efficient learning by providing a one-time injection of

free information. Naturally, this question applies only when agents (on their own)

could eventually achieve a sub-optimal speed of learning. The conditions under which

this occurs are given in Theorem 2.

Formally, suppose a policy-maker chooses M signals

〈pj, θ〉+N (0, 1)

where each ‖pj‖2 ≤ γ, so that signal precisions are bounded by γ2. At time 0, this

information is made public. All subsequent agents update their prior beliefs based on

this free information, and also on the history of signal acquisitions thus far. The goal

of the policy-maker is to maximize the community’s asymptotic speed of learning.

Below, we use efficient learning to mean the case in which the asymptotic speed of

learning achieves the optimum—that is, the final observation set is S∗ and long-run

frequencies are λ∗.

Is there a sufficient number of (kinds of) signals, such that efficient learning can be

guaranteed? We answer in the affirmative below: K − 1 precise signals are sufficient

to produce efficient learning:

14When K is prime, the conclusion of Corollary 6 holds unconditionally. That is, the number of

possible final observation sets is either 1, or at least K.
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Proposition 2. For any prior, there exists γ and K − 1 signals with ‖pj‖2 ≤ γ such

that with these free signals at t = 0, society achieves efficient learning.

Intuitively, as long as the free signals make agents’ beliefs about states θ2, . . . , θK

sufficiently precise, they can preclude the situation in which agents get stuck in a

sub-optimal set as in Example 4. Notice that optimal information intervention does

not need to teach directly about θ1 (the parameter of interest), which the agents will

learn on their own. Rather, the planner should provide auxiliary information that

helps agents to better interpret the sources.

8 Related Literature

In addition to the references mentioned in the introduction, our results build on

prior work regarding speed of learning (Vives, 1992; Golub and Jackson, 2012; Harel

et al., 2017; Hann-Caruthers, Martynov and Tamuz, 2017), and is related also to

the experimental design literature in statistics (see Chernoff (1972) for a survey).

Specifically, our results in Section 4 are related to c-optimality, in which t experiments

are chosen to minimize the posterior variance of a linear combination of the unknown

states (in our case, simply the posterior variance of the first unknown state). Theorem

1 can be seen as an integer design version of the problem considered in Chaloner

(1984). Chaloner (1984) showed that a c-optimal Bayesian continuous design exists

on at most K points, but does not provide a construction of this design. Extending

this, we supply a characterization of the optimal design itself; this improves on the

prior result by showing uniqueness of the optimal design, and demonstrating that

for certain correlational structures, the Bayesian continuous design exists on strictly

fewer than K points.

9 Extensions

Non-Persistent i.i.d. States. So far, we have considered persistent states

θ1, . . . , θK . All of our results extend if new states θt1, . . . , θ
t
K are independently drawn

each period according to θtk = θk + γtk, and the signals are X t
i =

∑K
i=1 cikθk + εti as

before. The noise terms γtk and εti are independent from one another. We assume

that agent t has payoff function ut(a, θ
t
1), which depends on the payoff-relevant state

at that time. To see that our results extend, simply notice that the agent’s posterior
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variance about θt1 is the sum of his posterior variance about θ1 and the variance of

γt1. Because the latter cannot be controlled by the agent, his optimal information

acquisition strategy is unchanged.

Multiple Payoff-Relevant States. So far we have considered a single payoff

relevant state θ1. In Liang, Mu and Syrgkanis (2017), we pointed out that the reduc-

tion argument used in Section 3, which allows for general decision problems, relies on

unidimensional payoff-relevant uncertainty. Nevertheless, in Liang, Mu and Syrgka-

nis (2017) we extended the main results to multiple states for the specific problem

of prediction of the unknown states. When there are more sources than states, even

the latter extension is quite challenging. We offer limited comments on this case in

Appendix G, primarily characterizing bounds on the speed of asymptotic learning.

10 Conclusion

We study a model of sequential learning, where agents choose what kind of informa-

tion to acquire from a large set of information sources. The key force of interest is

the externality that current informational choices generate on future agents.

Our main results characterize two starkly different possibilities and the conditions

under which either obtains: (1) the externality is beneficial : past information ac-

quisitions help future agents to discern which sources are most informative, and in

the long run, agents converge to acquiring information only from the most informa-

tive sources; (2) the externality is harmful : past information acquisitions increase

the value of “low-quality” sources relative to “high-quality” sources, pushing future

agents to acquire information from a set of sources that yields inefficiently slow learn-

ing. A simple property of the correlation structure across sources determines when

such “learning traps” emerge, and which sources are a part of them.

When a community is stuck observing inefficient sources, what kind of information

interventions might push the community towards efficient learning? One possibility

is to limit the number of sources, and especially to remove “decoy” sources that are

low-quality but self-reinforcing. Another possibility is to provide agents with free

information. We show that a policy-maker can guarantee efficient long-run learning

if he provides a sufficient number of sufficiently precise signals. The optimal informa-

tion intervention does not inform directly about the payoff-relevant state, but rather

provides auxiliary information that helps agents to interpret the best sources (so that
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these are subsequently observed). This intervention may require educating agents

along many different dimensions: we conjecture that provision of a single kind of

information (no matter how precise) can be ineffective in a large number of environ-

ments. This points to the potential long-run ineffectiveness of information campaigns

that are very informative but limited in scope.

Finally, although in this paper we focus on informational demand given a fixed set

of information sources, one may also consider the reverse question of what kinds of

information will be endogenously provided by strategic sources. Our results suggest

that the answer to this question can be subtle: information sources most frequently

viewed in the long run are those that are “least informative in a most informative

set.” Thus, a source that wants to maximize frequency of viewership has two com-

peting incentives: first, to be viewed at all within the competitive market, it must

provide sufficiently useful information; second, conditional on being viewed, it wants

to reveal information slowly (so as to increase the number of observations). We leave

characterization of the supply of information in an “informationally overabundant”

environment for future work.
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A Examples Failing Assumption 4

A.1 Details for Example 3

To solve this integer optimization problem, let r be the integer that minimizes |r − β|
(the distance to β) and let s be the integer that minimizes |s − γ|. Further, let 〈β〉 and

〈γ〉 be the value of these absolute differences. We assume 2β, 2γ are not integers, so that

0 < 〈β〉, 〈γ〉 < 1
2 . We also assume 〈β〉 6= 〈γ〉, and by symmetry focus on the case of

〈β〉 < 〈γ〉.
With these assumptions, it is clear that when q1, q2 are integers, the minimum value of

|q1 − q2 − β| is 〈β〉, achieved if and only if q1 = q2 + r. Similarly the minimum value of

|q3 − q4 − γ| is 〈γ〉, achieved when q3 = q4 + s. Now if the total number of observations t

has the same parity as r + s, it is possible to choose q1, q2, q3, q4 such that their sum is t

and q1 = q2 + r, q3 = q4 + s—any pair q2, q4 with sum t−r−s
2 leads to such a solution. Given

these constraints, then, the optimum is to choose q2, q4 to minimize 〈β〉2
2q2+r+β + 〈γ〉2

2q4+s+γ . The

optimal q2 and q4 satisfy q2/q4 ≈ 〈β〉/〈γ〉, which together with q2 + q4 = t−r−s
2 implies

q1, q2 ≈
〈β〉

2〈β〉+ 2〈γ〉
· t; q3, q4 ≈

〈γ〉
2〈β〉+ 2〈γ〉

· t.

On the other hand, suppose t has the opposite parity to r + s. In this case q1 = q2 + r

and q3 = q4 + s cannot both hold, thus |q1− q2−β| and |q3− q4− γ| cannot both take their

minimum values 〈β〉 and 〈γ〉. It turns out that the best one can do is choose q1 = q2 + r

and q3 = q4 + s±1 so that |q1− q2−β| = 〈β〉 and |q3− q4−γ| = 1−〈γ〉. Then, the optimal

choice of q2, q4 with sum t−r−s∓1
2 to minimize 〈β〉2

2q2+r+β + (1−〈γ〉)2
2q4+s+γ±1 . This yields

q1, q2 ≈
〈β〉

2〈β〉+ 2− 2〈γ〉
· t; q3, q4 ≈

1− 〈γ〉
2〈β〉+ 2− 2〈γ〉

· t.

Hence, in this example, all four signals are observed with positive frequencies in the

long run according to the optimal criterion.

A.2 A Second Example: Qualitative Conclusion of Theorem

1 Holds

We give another example in which Assumption 4 (Unique Minimizer) is violated. How-

ever, the qualitative conclusion of Theorem 1 still holds. Namely, the t-optimal strategy

eventually observes no more than K signals.

Consider two states θ1, θ2 independently drawn with variance 1
a and 1

b respectively.

There are three signals θ1 + ε1, θ2 + ε2 and θ1+θ2
2 + ε3, where each noise term is standard
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normal. We assume that the payoff relevant state is θ1+θ2
2 .15 Observe that the first two

signals are sufficient to identify the payoff-relevant state, and Asd({1, 2}) = 1. Meanwhile,

the third signal itself is also spanning, with Asd({3}) also equal to 1. Thus Assumption 4

fails.

We claim that for generic values of a and b, t-optimality at large t requires society to

focus on the first two signals. Intuitively, this is because one observation of θ1 + ε1 and one

observation of θ2 + ε2 contain at least as much information as their sum θ1 + θ2 + ε1 + ε2,

which is the same as two observations of θ1+θ2
2 + ε3. Thus, devoting any level of attention

to the third signal is weakly worse than splitting that attention evenly between the first

two signals. Furthermore, the combination of the first two signals also informs about the

difference θ1 − θ2, which is correlated with the payoff-relevant state θ1+θ2
2 whenever the

prior variances about θ1 and θ2 differ. Thus, society optimally “ignores” the third signal if

its (prior and posterior) beliefs about θ1 and θ2 are asymmetric. As we show below, this

occurs precisely when a− b is not an integer.

To formalize the above intuition, we observe that given q1 observations of signal 1 and q2

observations of signal 2, society’s posterior variance about θ1+θ2
2 is

(
1

q1+a + 1
q2+b

)
/4. Thus,

with q3 additional observations of θ1+θ2
2 + ε3, society’s posterior variance becomes

f(q1, q2, q3) = 1

/(
4

1
q1+a + 1

q2+b

+ q3

)
.

The optimal problem at time t reduces to the following maximization:

max
q1,q2,q3∈Z+,q1+q2+q3=t

4
1

q1+a + 1
q2+b

+ q3.

The maximand can be rewritten as

4
1

q1+a + 1
q2+b

+ q3 = q1 + a+ q2 + b+ q3 −
(q1 + a− q2 − b)2

q1 + a+ q2 + b
.

Note that q1 + a+ q2 + b+ q3 = t+ a+ b is fixed, so society chooses q1, q2 to minimize the

ratio (q1+a−q2−b)2
q1+a+q2+b .

Suppose a − b is not an integer, let 〈a − b〉 denote its distance to the nearest integer.

Then, as q1, q2 are restricted to integers, the difference |q1 +a−q2−b| takes minimum value

〈a− b〉 > 0. It follows that (q1+a−q2−b)2
q1+a+q2+b is uniquely minimized by choosing q1, q2 such that

|q1 + a− q2− b| = 〈a− b〉 and q1 + q2 is as large as possible. Hence, both q1 and q2 are close

to t
2 , and our earlier claim is verified.

15It is straightforward to linearly transform this environment into one that fits our model exactly,

but we will not do that.
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B Preliminaries

First, we review and extend a basic result from Liang, Mu and Syrgkanis (2017). Specifically,

we show that the posterior variance weakly decreases over time, and the marginal value of

any signal decreases in its signal count.

Lemma 2. Given prior covariance matrix V 0 and qi observations of each signal i, society’s

posterior variance about θ1 is given by

f(q1, . . . , qN ) =
[
((V 0)−1 + C ′QC)−1

]
11

(7)

where Q = diag(q1, . . . , qN ). The function f is decreasing and convex in each qi whenever

these arguments take non-negative real values.

Proof. Note that (V 0)−1 is the prior precision matrix, and C ′QC =
∑N

i=1 qi · [cic′i] is the

total precision from the signals. Thus (7) simply represents the fact that for Gaussian

prior and signals, the posterior precision matrix is the sum of prior and signal precision

matrices. To prove the monotonicity of f , consider the partial order � on positive semi-

definite matrices where A � B if and only if A−B is positive semi-definite. As qi increases,

the matrix Q and C ′QC increase in this order. Thus the posterior covariance matrix

((V 0)−1 +C ′QC)−1 decreases in this order, which implies that the posterior variance about

θ1 decreases. Intuitively, more information always improves the decision-maker’s estimates.

To prove f is convex, it suffices to prove f is midpoint-convex since the function is clearly

continuous. Take q1, . . . , qN , r1, . . . , rN ∈ R+ and let si = qi+ri
2 . Define the corresponding

diagonal matrices to be Q, R, S. Observe that Q+R = 2S. Thus by the AM-HM inequality

for positive-definite matrices, we have in matrix order

((V 0)−1 + C ′QC)−1 + ((V 0)−1 + C ′RC)−1 � 2((V 0)−1 + C ′SC)−1.

Using (7), we conclude

f(q1, . . . , qN ) + f(r1, . . . , rN ) ≥ 2f(s1, . . . , sN ).

This proves the convexity of f .

Second, we provide a definition of [X−1]11 for positive semi-definite matrices X. When

X is positive definite, its eigenvalues are strictly positive, and its inverse matrix is defined

as usual. In general, we can apply the spectrum theorem to write

X = UDU ′
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with U being a K × K orthogonal matrix whose columns are eigenvectors of X, and D

being a K × K diagonal matrix consisting of non-negative eigenvalues. Even if some of

these eigenvalues are zero, we can think of X−1 as

X−1 = (UDU ′)−1 = UD−1U ′ =

K∑
j=1

1

dj
· [uju′j ]

with uj being the j-th column vector of U . We thus define

[X−1]11 =
K∑
j=1

(〈uj , e1〉)2

dj
, (8)

with the convention that 0
0 = 0. Note that by this definition,

[X−1]11 = lim
ε→0+

 K∑
j=1

(〈uj , e1〉)2

dj + ε

 = [(X + εIK)−1]11

since the matrix X + εIK has the same set of eigenvectors as X, with eigenvalues increased

by ε. Hence our definition of [X−1]11 is a continuous extension of the usual definition to

positive semi-definite matrices. Note that we allow [X−1]11 to be infinite.

C Proof of Theorem 1

C.1 Characterization of Asymptotic Variance

We first approximate the posterior variance as a function of the frequencies with which each

signal is observed. Specifically,

Lemma 3. For any λ1, . . . , λN ≥ 0, let Λ = diag(λ1, . . . , λN ). Then

f∗(λ1, . . . , λN ) := lim
t→∞

t · f(λ1t, . . . , λN t)

=[(C ′ΛC)−1]11

(9)

Note that the matrix C ′ΛC is positive semi-definite. So the value of [(C ′ΛC)−1]11 is well

defined, see (8).

Proof. Recall that f(q1, . . . , qN ) =
[
((V 0)−1 + C ′QC)−1

]
11

with Q = diag(q1, . . . , qN ).

Thus

tf(λ1t, . . . , λN t) =

[(
1

t
(V 0)−1 + C ′ΛC

)−1
]

11

.

Hence by the continuity of [X−1]11 in the matrix X, we obtain the lemma.
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We note that C ′ΛC is the Fisher Information Matrix when the signals are observed

according to frequencies λ. Thus the above lemma can also be seen as an application of the

Bayesian Central Limit Theorem.

C.2 Reduction to the Study of f ∗

The development of the function f∗ is useful for the following reason:

Lemma 4. Suppose λ̂ uniquely minimizes f∗(λ) subject to λ ∈ ∆N−1 (the N−1-dimensional

simplex), then the t-optimal divisions satisfy ni(t) ∼ λ̂i · t for each i.

Proof. Fix any increasing sequence of times t1, t2, . . . . It suffices to show that whenever the

limit λi := limm→∞
ni(tm)
tm

exists for each i, this limit λ must be λ̂. Suppose not, then by

assumption f∗(λ) > f∗(λ̂). For ε > 0, define another vector λ̃ ∈ RN+ with λ̃i = λi + ε, ∀i.
By the continuity of f∗, it holds that f∗(λ̃) > f∗(λ̂) for sufficiently small ε.

Since λi = limm→∞
ni(tm)
tm

, there exists M sufficiently large such that ni(tm) ≤ λ̃i · tm
for each i and m ≥M . Hence, for m ≥M ,

tm · f(n1(tm), . . . , nN (tm)) ≥ tm · f(λ̃1 · tm, . . . , λ̃N · tm)→ f∗(λ̃1, . . . , λ̃N )

The first inequality uses the monotonicity of f . On the other hand,

tm · f(λ̂1 · tm, . . . , λ̂N · tm)→ f∗(λ̂1, . . . , λ̂N ).

Comparing the above two displays, we see that for sufficiently largem, f(n1(tm), . . . , nK(tm)) >

f(λ̂1 · tm, . . . , λ̂N · tm). But this contradicts the t-optimality of the division n(tm), as society

could do better by following frequencies λ̂. The lemma is thus proved.

C.3 Crucial Lemma about the Structure of Signal Vectors

We pause to demonstrate the following lemma:

Lemma 5. Suppose S∗ = {1, . . . ,K} uniquely minimizes Asd(S) and suppose [(C∗)−1]1j

is positive for 1 ≤ j ≤ K. Consider any i > K and write ci =
∑K

j=1 αj · cj . Then

|
∑K

j=1 αj | < 1.

Proof. By assumption, we have the vector identity

e1 =

K∑
j=1

xj · cj with xj = [(C∗)−1]1j > 0.
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Suppose for contradiction that
∑K

j=1 αj ≥ 1 (the opposite case where the sum is ≤ −1 can

be similarly treated). In particular, some αj is positive. Without loss of generality, we

assume α1
x1

is the largest among such ratios. Then α1 > 0 and

e1 =

K∑
j=1

xj · cj =

 K∑
j=2

(xj −
x1

α1
· αj) · cj

+
x1

α1
·

 K∑
j=1

αj · cj


This represents e1 as a linear combination of the vectors c2, . . . , cK and ci, with coefficients

x2 − x1
α1
·α2, . . . , xK − x1

α1
·αK and x1

α1
. Observe that these coefficients are non-negative: for

each 2 ≤ j ≤ K, xj − x1
α1
·αj is clearly positive if αj ≤ 0 (since xj > 0). And if αj > 0, then

by assumption
αj

xj
≤ α1

x1
and xj − x1

α1
· αj is again non-negative.

By definition, Asd({2, . . . ,K, i}) is the sum of the absolute value of these coefficients.

This sum is

K∑
j=2

(xj −
x1

α1
· αj) +

x1

α1
=

K∑
j=1

xj +
x1

α1
· (1−

K∑
j=1

αj) ≤
K∑
j=1

xj .

But then Asd({2, . . . ,K, i}) ≤ Asd({1, 2, . . . ,K}), leading to a contradiction. Hence the

lemma must be true.

C.4 Proof of Theorem 1 when |S∗| = K

Given Lemma 4, Theorem 1 will follow once we show that λ∗ uniquely minimizes f∗(λ) over

the simplex—recall that λ∗ denotes the optimal asymptotic frequencies for the minimal

spanning set S∗ that minimizes Asd. In this section, we prove λ∗ is indeed the unique

minimizer whenever this “best” subset S∗ contains exactly K signals. Later on we will prove

the same result even when |S∗| < K, but that proof will require additional techniques.

Lemma 6. Suppose S∗ = {1, . . . ,K} is the unique minimizer of Asd(S) over minimal

spanning sets. Define λ∗ ∈ ∆N−1 by

λ∗i =
|[(C∗)−1]1i|∑K
j=1|[(C∗)−1]1j |

, 1 ≤ i ≤ K

with C∗ = C[K][K],
16 and λ∗i = 0,∀i > K. Then f∗(λ∗) < f∗(λ) for any λ ∈ ∆N−1, λ 6= λ∗.

Proof. First, we will assume that [(C∗)−1]1i is positive for 1 ≤ i ≤ K. This is without loss

because we can always work with the “negative” of any signal (replace ci with −ci), which

does not affect agents’ behavior.

16For any subset I ⊂ [N ] and J ⊂ [K], write CIJ for the sub-matrix of C with row indices in I
and column indices in J . Likewise, let C−IJ be the sub-matrix of C after deleting rows in I and

columns in J .
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Since f(q1, . . . , qN ) is convex in its arguments, f∗(λ) = limt→∞ t ·f(λ1t, . . . , λN t) is also

convex in λ. To show f∗(λ∗) < f∗(λ), we only need to show f∗(λ∗) < f∗((1− ε)λ∗+ ελ) for

some ε > 0. In other words, it suffices to show f∗(λ∗) < f∗(λ) for λ in an ε-neighborhood

of λ∗. By assumption, S∗ is minimally-spanning and so its signals are linearly independent.

Thus its signals must span all of the K states. From this it follows that the K ×K matrix

C ′Λ∗C is positive definite, and by (9) the function f∗ is continuously differentiable near λ∗

(not just continuous, see Remark 1 below).

We claim that the partial derivatives of f∗ satisfy the following inequality:

∂Kf
∗(λ∗) < ∂if

∗(λ∗) ≤ 0, ∀i > K. (**)

Once this is proved, we will have, for λ close to λ∗,

f∗(λ1, . . . , λK , λK+1, . . . , λN ) ≥ f∗(λ1, . . . , λK−1, λK + λK+1 + · · ·+ λN , 0, . . . , 0) ≥ f∗(λ∗).
(10)

The first inequality is based on (**) and continuous differentiability of f∗, while the second

inequality is because λ∗ uniquely minimizes f∗ if society only observes the first K signals.

Moreover, when λ 6= λ∗, one of these inequalities is strict so that f∗(λ) > f∗(λ∗) strictly.

To prove (**), we recall that

f∗(λ1, . . . , λN ) = e′1(C ′ΛC)−1e1.

Since Λ = diag(λ1, . . . , λN ), its derivative is ∂iΛ = ∆ii, which is an N × N matrix whose

(i, i)-th entry is 1 and all other entries are zero. Using properties of matrix derivatives, we

obtain

∂if
∗(λ) = −e′1(C ′ΛC)−1C ′∆iiC(C ′ΛC)−1e1.

As the i-th row vector of C is c′i, C
′∆iiC is the K ×K matrix cic

′
i. The above simplifies to

∂if
∗(λ) = −[e′1(C ′ΛC)−1ci]

2.

At λ = λ∗, the matrix C ′ΛC further simplifies to (C∗)′ · diag(λ∗1, . . . , λ
∗
K) · (C∗), which is a

product of K ×K invertible matrices. We thus deduce that

∂if
∗(λ∗) = −

[
e′1 · (C∗)−1 · diag

(
1

λ∗1
, . . . ,

1

λ∗K

)
· ((C∗)′)−1 · ci

]2

.

It is crucial for our analysis that the term in the brackets is a linear function of ci. To ease

notation, we write v′ = e′1 · (C∗)−1 · diag
(

1
λ∗1
, . . . , 1

λ∗K

)
· ((C∗)′)−1 and γi = 〈v, ci〉. Then

∂if = −γ2
i , 1 ≤ i ≤ N. (11)
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For 1 ≤ i ≤ K, ((C∗)′)−1 · ci is just ei. Thus, using the assumption [(C∗)−1]1j > 0,∀j,
we have

γi = e′1·(C∗)−1·diag

(
1

λ∗1
, . . . ,

1

λ∗K

)
·ei =

[(C∗)−1]1i
λ∗i

=

K∑
j=1

[(C∗)−1]1j = Asd(S∗), 1 ≤ i ≤ K.

(12)

On the other hand, choosing any i > K, we can uniquely write the vector ci as a linear

combination of c1, . . . , cK . By Lemma 5, for any i > K we have

γi = 〈v, ci〉 =

K∑
j=1

αj · 〈v, cj〉 =

K∑
j=1

αj · γj = Asd(S∗) ·
K∑
j=1

αj . (13)

The last equality uses (12). Since |
∑K

j=1 αj | < 1, the absolute value of γi for any i > K is

strictly smaller than the absolute value of γK . This together with (11) proves the desired

inequality (**), and the lemma follows.

Remark 1. The essence of this proof is the following non-obvious fact: the subset {1, . . . ,K}
uniquely minimizes Asd among all subsets of size K if and only if

Asd({1, . . . ,K}) < Asd({1, . . . ,K} ∪ {i}\{j}), ∀1 ≤ j ≤ K < i ≤ N.

That is, if a set of K signals does not minimize Asd, then we can improve the speed of

learning simply by adding one signal to replace one existing signal. This property enables

us to reduce the general problem with N signals to the much simpler problem with K + 1

signals, and we are able to use calculus to resolve the latter problem, see (**).

However, the above fact relies on the original set containing exactly K signals. To

see this, consider two states and three signals with coefficient vectors c1 = (0.5, 0), c2 =

(1, 1), c3 = (1,−1). If we start with the first signal alone, adding either of the latter two

signals does not decrease Asd. However, the latter two signals combined yield a faster speed

of learning, as Asd({2, 3}) = 1 < 2 = Asd({1}). On the technical level, this occurs because

f∗ is not continuously differentiable at (1, 0, 0). Thus, even though the partial derivatives

satisfy (**), we cannot deduce that any directional derivative similarly satisfies (**). It is

for this reason that we need a different proof of Lemma 6 when |S∗| < K, which we present

later.

Remark 2. Still assuming that the “best” subset S∗ contains exactly K signals, we now

show ni(t) = λ∗i · t + O(1), ∀i, thus improving upon the conclusion of Theorem 1. First,

we can apply Lemma 5 to find a positive constant η < 1 such that for each i > K, if

ci =
∑K

j=1 αjcj then |
∑K

j=1 αj | ≤ 1− η. By (11), (12) and (13), we have

∂1f(λ∗) = · · · = ∂Kf(λ∗) = −Asd(B∗)2; ∂if(λ∗) ≥ −(1− η)2 ·Asd(B∗)2, ∀i > K. (14)
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For any λ ∈ ∆N−1, the convexity of f∗ implies17

f∗(λ) ≥ f∗(λ∗) +
N∑
i=1

(λi − λ∗i ) · ∂if∗(λ∗)

= f∗(λ∗) +

N∑
i=1

(λi − λ∗i ) · (∂if∗(λ∗) +Asd(B∗)2)

≥ f∗(λ∗) + (2η − η2) ·Asd(B∗)2 ·
N∑

i=K+1

λi.

(15)

The second line uses
∑N

i=1(λi − λ∗i ) = 0 and the last inequality is due to (14).

Consider any division (q1, . . . , qN ) at time t. A straightforward refinement of Lemma 3

gives that whenever f∗(λ) is finite, t · f(λt) approaches f∗(λ) at the rate of 1
t . In particular

f(λ∗ · t) = 1
t · f

∗(λ∗) + O( 1
t2

). For (q1, . . . , qN ) to be a t-optimal division, it is necessary

that f(q1, . . . , qN ) ≤ f(λ∗ · t). Thus

f∗
(q1

t
, . . . ,

qN
t

)
≤ f∗(λ∗) +O

(
1

t

)
. (16)

By (15) and (16), any t-optimal division n(t) must satisfy ni(t) = O(1) for each signal

i > K. Conditional on these signal counts, society’s optimal choice over signals 1 through

K must satisfy ni(t) = λ∗i · t + O(1), ∀1 ≤ i ≤ K, as shown in Proposition 1. This is what

we desire to prove here.

C.5 A Perturbation Argument

We have shown that whenever Asd(S) is uniquely minimized by a set S containing K

signals,

min
λ∈∆N−1

f∗(λ) = f∗(λ∗) = min
S⊂[N ]

Asd(S)2 = Asd([N ])2

We now show this equality holds more generally.

Lemma 7. For any coefficient matrix C,

min
λ∈∆N−1

f∗(λ) = Asd([N ])2. (17)

Proof. We assume that θ1 is identified from the available signals; otherwise f∗(λ) and

Asd([N ]) are both infinite and equality holds trivially. Because society can choose to focus

17As mentioned in Remark 1, it is crucial that f∗ is continuously differentiable at λ∗. The argument

here relies on the directional derivative in the direction λ − λ∗ being well-defined and equal to a

linear sum of partial derivatives.
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on any a minimal spanning set, it is clear that minλ f
∗(λ) ≤ Asd([N ])2 = minS(Asd(S))2.

It remains to prove f∗(λ) ≥ Asd([N ])2 for any fixed λ ∈ ∆N−1. By Lemma 3, we need to

show [(C ′ΛC)−1]11 ≥ Asd([N ])2.

This was already proved for generic coefficient matrices C; specifically, those for which

Asd(S) is minimized by a set of K signals. But even if C is “non-generic”, we can approx-

imate it by a sequence of “generic” matrices Cm.18 Along this sequence, we have

[(C ′mΛCm)−1]11 ≥ Asdm([N ])2

where Asdm is the speed of learning from the N signals given by Cm. As m → ∞,

the LHS above approaches [(C ′ΛC)−1]11. Thus the lemma will follow once we show that

lim supm→∞Asdm([N ]) ≥ Asd([N ]).

For this we invoke the following characterization

Asd([N ]) = min
β∈RN

N∑
i=1

|βi| s.t. e1 =

N∑
i=1

βi · ci.

If e1 =
∑

i β
(m)
i · c(m)

i along the sequence, then e1 =
∑

i βi · ci for any limit point β of β(m).

This enables us to conclude lim infm→∞Asdm([N ]) ≥ Asd([N ]), which is more than we

needed.

C.6 Proof of Theorem 1 when |S∗| < K

Here we prove Theorem 1 for the case where the “best” subset S∗ contains less than K

signals. To be precise, let S∗ = {1, . . . , k} and define λ∗ ∈ ∆N−1 to be the optimal

frequencies when only the first k signals are observed. We will show ni(t) ∼ λ∗i · t,∀i.
By Lemma 4, we only need to show that λ∗ uniquely minimizes f∗(λ) over the simplex.

Since f∗(λ∗) = Asd(S∗)2 = Asd([N ])2 by definition, we know from Lemma 7 that λ∗ does

minimize f∗(λ).

It remains to show that λ∗ is the unique minimizer. Suppose for contradiction that

f∗(λ∗) = f∗(λ̃) for some λ̃ ∈ ∆N−1 distinct from λ∗. For η ∈ R, define λη = λ∗+η ·(λ̃−λ∗),
so that λ0 = λ∗, λ1 = λ̃. Observe that when η ∈ (0, 1), λη is a convex combination between

λ∗ and λ̃. Thus the convexity of f∗ implies

f∗(λη) ≤ (1− η)f∗(λ∗) + ηf∗(λ̃) = f∗(λ∗)

18First, we may add repetitive signals to ensure N ≥ K. This does not affect the value of

min f∗(λ) or Asd([N ]). Whenever N ≥ K, it is generically true that every minimal spanning set

contains exactly K signals. Moreover, the equality Asd(S) = Asd(S̃) for S 6= S̃ induces a non-trivial

polynomial equation over the entries in C. This means we can always find C(m) close to C such that

for the coefficient matrix C(m), different subsets S (of size K) attain different values of Asd(S).
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Since f∗(λ∗) is minimal, we must then have f∗(λη) = f∗(λ∗) for η ∈ (0, 1). But for fixed λ∗

and λ, (9) shows that the value of f∗(λη) is a rational function (quotient of two polynomials)

of η. Thus this rational function is itself a constant. Consequently, f∗(λη) = f∗(λ∗) for all

η (not just those in the unit interval) such that λη ∈ ∆N−1.

Because λ̃ 6= λ∗, there exists some j ∈ {1, . . . , k} such that λ̃j < λ∗j . Without loss,

we assume λ̃1
λ∗1

is the smallest among such ratios. Let η =
λ∗1

λ∗1−λ̃1
, then the vector λη

has first-coordinate 0 and all other coordinates non-negative. By our preceding analysis,

f∗(λη) = f∗(λ∗) for this η. However, since λη “ignores” signal 1, Lemma 7 implies that

f∗(λη) ≥ min
λ∈∆N−1, λ1=0

f∗(λ) = Asd([N ]\{1})2.

By assumption, S∗ = {1, . . . , k} is the unique minimal spanning set that minimizes Asd.

Thus the RHS above is strictly larger than Asd(S∗)2 = f∗(λ∗), leading to the contradictory

result f∗(λη) > f∗(λ∗).

This contradiction shows λ∗ must uniquely minimize f∗(λ), and the proof of Theorem

1 is complete.

D Proof of Theorem 2

Let signals 1, . . . , k (with k ≤ K) be a minimally spanning set that is efficient in its subspace.

We will demonstrate an open set of prior beliefs given which all agents observe these k

signals. Since these signals are minimally spanning, they must be linearly independent.

Thus we can consider linearly transformed states θ̃1, . . . , θ̃K such that these k signals are

simply θ̃1, . . . , θ̃k plus standard Gaussian noise. This linear transformation is invertible,

so any prior over the original states is bijectively mapped to a prior over the transformed

states. Thus it is without loss to work with the transformed model and look for prior beliefs

over the transformed states.

By identifiability, the payoff-relevant state θ1 becomes a linear combination w1θ̃1 + · · ·+
wkθ̃k. We may without loss assume the weights wi are all positive; otherwise simply replace

θ̃i with −θ̃i. Now, by assumption, the first k signals are efficient in its subspace. Thus

Lemma 5 implies that any signal j > k that belongs to the subspace of θ̃1, . . . , θ̃k can be

written as
k∑
i=1

αiθ̃i + N (0, 1)

with |
∑k

i=1 αi| < 1. On the other hand, if a signal j > k does not belong to this subspace,

it must take the form of
K∑
i=1

βiθ̃i + N (0, 1)
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with βk+1, . . . , βK not all equal to zero.

Now consider a prior belief such that θ̃1, . . . , θ̃K are independent from each other. Given

prior variances v1, . . . , vK , the reduction in the variance of w1θ̃1 + · · ·+wkθ̃k by any signal∑k
i=1 αiθ̃i +N (0, 1) is

(
∑k

i=1 αiwivi)
2

1 +
∑k

i=1 α
2
i vi

If v1, . . . , vk are small positive numbers and if the product wivi is approximately constant

across 1 ≤ i ≤ k, then the above is approximately (
∑k

i=1 αi)
2w2

1v
2
1. Since |

∑k
i=1 αi| < 1,

we deduce that any signal j > k that belongs to the subspace of the first k signals is worse

than signal 1 (in the first period), whose variance reduction is
w2

1v
2
1

v1+1 .

Meanwhile, take any signal j > k that does not belong to the subspace. The variance

reduction by such a signal
∑K

i=1 βiθ̃i +N (0, 1) is

(
∑k

i=1 βiwivi)
2

1 +
∑K

i=1 β
2
i vi

As βk+1, . . . , βK are not all zero, the denominator above can be arbitrarily large if vk+1, . . . , vK

are chosen to be large. Then again this signal is worse than signal 1 for the first agent, just

as we showed in Example 4.

To summarize, we have shown that whenever the prior variances v1, . . . , vK satisfy the

following three conditions, the first agent chooses among the first k signals:

1. v1, . . . , vk are close to 0;

2. w1v1, . . . , wkvk have pairwise ratios close to 1;

3. vk+1, . . . , vK are large.19

To show that the signal choice stays among the first k signals in every period, it suffices

to check that starting from any prior satisfying the above conditions, the posterior after

observing a signal continues to satisfy these conditions. Since variances decrease over time,

the first condition is obviously satisfied. By independence, learning about θ̃1, . . . , θ̃k does

not affect the variances of the remaining states. So vk+1, . . . , vK are unchanged, and the

third condition is verified. Finally, the second condition holds for the posterior because the

signal i that is chosen has the greatest value of
w2

i v
2
i

vi+1 . This choice ensures that vi ∝ 1
wi

, as

shown also in Liang, Mu and Syrgkanis (2017). Theorem 2 is proved.20

19Formally, we require that for some ξ > 0, it holds that v1, . . . , vk < ξ; max1≤i≤k wivi ≤ (1 + ξ) ·
min1≤i≤k wivi; and vk+1, . . . , vK > 1

ξ .
20Strictly speaking, the above construction does not provide an open set of prior beliefs given

which agents always observe the first k signals. This is because we restricted attention to priors
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E Proof of Theorem 3

E.1 Preliminaries

Given any prior, let A ⊂ [N ] be the set of signals that are observed by infinitely many

agents. We first show that A is a spanning set.

Indeed, by definition we can find some period t after which agents only observe signals

in A. Also note that the variance reduction of any signal approaches zero as its signal

count gets large. Thus, along society’s signal path, the variance reduction is close to zero

at sufficiently late periods.

If A is not spanning, society’s posterior variance remains bounded away from zero. Thus

in the limit where each signal in A has infinite signal counts, there still exists some signal

j outside of A whose variance reduction is strictly positive.21 By continuity, at sufficiently

late periods, observing signal j would reduce the variance by a positive amount. This is a

profitable deviation from observing some signal in A, leading to a contradiction!

Now that A is spanning, we can take S to be the efficient minimal spanning set in the

subspace spanned by A. To prove Theorem 3, we will show the long-run frequencies are

positive precisely for the signals in S. Ignoring the initial periods, it is without loss to

assume that only signals in A are available. It suffices to show that whenever the signals

observed infinitely often span the entire subspace, agents eventually observe the efficient

subset S. To ease notation, we assume this subspace is the entire RK , and prove the

following result:

Theorem 3 Restated. Suppose that the signals observed infinitely often span RK . Then

society eventually observes signals in S∗ with frequencies λ∗.

The next sections are devoted to the proof of this restatement.

that are independent over θ̃1, . . . , θ̃K . But it could be shown that the argument extends to mild

correlation across states. We omit the somewhat cumbersome details, which do not add any further

intuition.
21Formally, let s1, . . . , sN denote the limit signal counts, where si =∞ if and only if i ∈ A. Then

there exists j such that f(sj + 1, s−j) < f(sj , s−j). This is because if f(sj + 1, s−j) = f(sj , s−j) for

each j, then the partial derivatives of f at s are all zero. Since f is continuously differentiable, this

would imply all directional derivatives of f are also zero. By the convexity of f , f(s) must achieve

minimum value. But by assumption there exists a spanning set, so f(q) = 0 if q1, . . . , qN are all

infinite. This contradicts f(s) > 0.
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E.2 Controlling the Derivatives

To study the posterior variance function f , it will be convenient to instead work with the

homogenous function f∗ we introduced in Lemma 3. We formalize this connection as follows:

Lemma 8. Suppose that signals in A span RK . Then, as qi →∞ for each i ∈ A,

f(q1, . . . , qN ) ∼ 1

t
· f∗

(q1

t
, . . . ,

qN
t

)
with t =

N∑
i=1

qi

The partial derivatives and second partial derivatives also satisfy the approximations

∂jf(q1, . . . , qN ) ∼ 1

t2
· ∂jf∗

(q1

t
, . . . ,

qN
t

)
∂jjf(q1, . . . , qN ) ∼ 1

t3
· ∂jjf∗

(q1

t
, . . . ,

qN
t

)
Proof. Recall that

f(q1, . . . , qN ) =
[
((V 0)−1 + C ′QC)−1

]
11
.

Since qi →∞ for i ∈ A, the least eigenvalue of the matrix C ′QC approaches infinity. That

is, for any ε > 0, it holds eventually that (V 0)−1 � ε · C ′QC in matrix order. Then

1

1 + ε
· [(C ′QC)−1]11 ≤ f(q1, . . . , qN ) ≤ [(C ′QC)−1]11.

Equivalently, this shows

1

(1 + ε)t
· f∗

(q1

t
, . . . ,

qN
t

)
≤ f(q1, . . . , qN ) ≤ 1

t
· f∗

(q1

t
, . . . ,

qN
t

)
.

Similar approximation holds for the derivatives, proving the lemma.

Lemma 9. Under the same assumptions as in Lemma 8, it holds that

∂jjf(q1, . . . , qN )

∂jf(q1, . . . , qN )
→ 0

and similarly
∂jjf

∗ ( q1
t , . . . ,

qN
t

)
t · ∂jf∗

( q1
t , . . . ,

qN
t

) → 0

Proof. It suffices to prove the first result. From f(q1, . . . , qN ) = e′1 · [(V 0)−1 +C ′QC]−1 · e1

we compute that

∂jf = −e′1 · [(V 0)−1 + C ′QC]−1 · cj · c′j · [(V 0)−1 + C ′QC]−1 · e1

and

∂jjf = 2e′1 · [(V 0)−1 +C ′QC]−1 · cj · c′j · [(V 0)−1 +C ′QC]−1 · cj · c′j · [(V 0)−1 +C ′QC]−1 · e1.
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Let γj = e′1 · [(V 0)−1 + C ′QC]−1 · cj , which is a number. Then the above shows

∂jf = −γ2
j ; ∂jjf = 2γ2

j · c′j · [(V 0)−1 + C ′QC]−1 · cj .

Again, all eigenvalues of the matrix (V 0)−1 + C ′QC become large as qi → ∞ for i ∈ A.

Thus for arbitrarily large constant L, eventually (V 0)−1 +C ′QC � L · cjc′j in matrix norm.

Then the number c′j · [(V 0)−1 +C ′QC]−1 ·cj is arbitrarily small, and the above display shows

∂jjf is small compared to ∂jf .

The above lemmata imply that at sufficiently late periods along society’s signal path,

the variance reduction of any discrete signal can be approximated by the continuous partial

derivative of f (or f∗). A direct corollary is the following:

Lemma 10. For any ε > 0, there exists sufficiently large t(ε) such that if signal j is observed

in any period t+ 1 later than t(ε), then

∂jf
∗
(
m(t)

t

)
≤ (1− ε) min

1≤l≤N
∂lf
∗
(
m(t)

t

)
.

That is, the signal choice in any sufficiently late period almost minimizes the directional

derivative of f∗.

E.3 (Pseudo) Gradient Descent of f ∗

We define λ(t) = m(t)
t ∈ ∆N−1. If j is the signal choice in period t + 1, then it is easily

checked that

λ(t+ 1) =
t

t+ 1
λ(t) +

1

t+ 1
ej .

The frequencies λ(t) move in the direction of ej , which is the direction where f∗ decreases

almost the fastest (by Lemma 10). Thus, the evolution of λ(t) over time resembles the

gradient descent dynamics—the value of f∗(λ(t)) roughly decreases over time, and we can

expect that eventually λ(t) approaches the unique minimizer λ∗ of f∗.

To formalize this intuition, we consider (for fixed ε > 0 and sufficiently large t)

f∗(λ(t+ 1)) = f∗
(

t

t+ 1
λ(t) +

1

t+ 1
ej

)
= f∗

(
t

t+ 1
λ(t)

)
+

1

t+ 1
· ∂jf∗

(
t

t+ 1
λ(t)

)
+O

(
1

(t+ 1)2
· ∂jjf∗

(
t

t+ 1
λ(t)

))
≤ f∗

(
t

t+ 1
λ(t)

)
+

1− ε
t+ 1

· ∂jf∗
(

t

t+ 1
λ(t)

)
=
t+ 1

t
· f∗(λ(t)) +

(1− ε)(t+ 1)

t2
· ∂jf∗(λ(t))

≤ f∗(λ(t)) +
1

t
· f∗(λ(t)) +

1− 2ε

t
· min

1≤l≤N
∂lf
∗(λ(t)).

(18)
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The first inequality uses Lemma 9, the next equality uses the homogeneity of f∗, and the

last inequality uses Lemma 10.

Write λ = λ(t) for short. Observe that f∗ is continuously differentiable at λ, since

λi(t) > 0 for i ∈ A, which spans the entire space. Thus the convexity of f∗ yields

f∗(λ∗) ≥ f∗(λ) +
N∑
j=1

(λ∗j − λj) · ∂jf∗(λ).

The homogeneity of f∗ implies
∑N

j=1 λj · ∂jf∗(λ) = −f∗(λ). This enables us to rewrite the

above display as
N∑
j=1

λ∗j · ∂jf∗(λ) ≤ f∗(λ∗)− 2f∗(λ).

Thus, in particular,

min
1≤l≤N

∂lf
∗(λ(t)) ≤ f∗(λ∗)− 2f∗(λ). (19)

Combining (18) and (19), we have for all large t:

f∗(λ(t+ 1)) ≤ f∗(λ(t)) +
1

t
· [(1− 2ε) · f∗(λ∗)− (1− 4ε) · f∗(λ(t))]. (20)

We claim this implies f∗(λ(t)) ≤ (1 + 4ε) · f∗(λ∗) holds for all large t. Indeed, if this holds

for some t, then (20) implies the same is true at future periods. It thus suffices to show

the opposite inequality f∗(λ(t)) > (1 + 4ε) · f∗(λ∗) cannot hold at every large t. By (20),

that would give f∗(λ(t + 1)) ≤ f∗(λ(t)) − ε·f∗(λ∗)
t . But since the harmonic series diverges,

f∗(λ(t)) would then decrease without bound, leading to a contradiction!

Hence we have shown that for any fixed ε, f∗(λ(t)) ≤ (1 + 4ε) · f∗(λ∗) eventually. As λ∗

is the unique minimizer of f∗, this implies λ(t)→ λ∗, which proves Theorem 3.

E.4 A Stronger Result

In the above, we showed that if the signals observed infinitely often span RK , then the

signals observed with positive frequencies are exactly those in the best minimally spanning

set S∗. However, this leaves open the possibility that some signals outside of S∗ are observed

infinitely often, yet with zero long-run frequency. Below we show this is not possible when

|S∗| = K. More specifically, suppose |S∗| = K and mi(t) ∼ λ∗i ·t,∀i, then in fact the stronger

conclusion mi(t) = λ∗i · t + O(1) also holds.22 Together with Remark 2, this suggests that

the difference between mi(t) and the optimal ni(t) remains bounded.23

22Thus, the conclusion of Corollary 4 can be strengthened.
23We believe but cannot prove that mi(t) = λ∗i · t+O(1) holds more generally, even if |S∗| < K.

Equivalently, we conjecture that any signal with zero long-run frequency is in fact only observed

finitely many times.
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So let us assume |S∗| = K. Without loss, S∗ = {1, . . . ,K} is the first K signals. By the

previously established (**), the first K partial derivatives of f∗ are equal at λ∗ and they are

strictly smaller (i.e., more negative) than the other partial derivatives. Since these partial

derivatives are continuous, we can find ε > 0 such that whenever λ is within ε distance from

λ∗, it holds that

∂if
∗(λ) < (1 + ε) · ∂jf∗(λ), ∀1 ≤ i ≤ K < j

By assumption we have λ(t) = m(t)
t → λ∗. Thus at sufficiently late periods, Lemma 10

implies that the signal choice must be within the first K signals. This shows signals outside

of S∗ are observed finitely often, as desired. And for any signal i in S∗, its signal count

satisfies mi(t) = λ∗i · t + O(1) by Proposition 1. This completes the proof of the stronger

result here.

F Proof of Proposition 2

We will prove that given any prior belief, the policy-maker can provide K − 1 sufficiently

precise signals so that once they are processed, society eventually observes the best set S∗.
In fact, the following argument shows that the planner can provide these free signals at any

time t, not necessarily before endogenous information acquisition takes place.

The proof of the proposition closely resembles the proof of the restated Theorem 3, see

Appendix E. Indeed, with sufficiently high precision on the free signals, it is as if each free

signal has unit precision but is observed many times. Thus, as long as the K−1 free signals

span θ2, . . . , θK , the restated Theorem 3 applies since society eventually learns θ1 anyways.

Of course, the assumption of that theorem is not exactly satisfied, and one may wonder

whether observing a signal many times has the same consequence as observing it infinitely

often. In what follows we show how to resolve this concern.

Consider for simplicity that the planner provides L i.i.d. free signals in A ⊂ [N ] (which

spans θ2, . . . , θK), where we are free to choose L by making γ sufficiently large. This

corresponds to restricting mi(t) ≥ L for each i ∈ A. Fix any ε > 0, there exists such an L

that the approximations in Lemma 8 and 9 hold up to a margin of error no more than ε.

That is, for Lemma 8, we now have

(1− ε) · f(q1, . . . , qN ) ≤ 1

t
· f∗

(q1

t
, . . . ,

qN
t

)
≤ (1 + ε) · f(q1, . . . , qN )

etc., and we similarly modify Lemma 9 to

∂jjf(q1, . . . , qN )

∂jf(q1, . . . , qN )
≤ ε.

These hold because the signal precision matrix C ′QC eventually dominates the prior pre-

cision matrix (V 0)−1.
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Then, Lemma 10 still holds, with fixed ε and sufficiently large L. We could then derive

(18), (19) and (20) in the same way as before. This enables us to conclude f∗(λ(t)) ≤
(1 + 4ε) · f∗(λ∗) at every late period t. Note that ε has been fixed. Thus, the inequality

f∗(λ(t)) ≤ (1 + 4ε) · f∗(λ∗)

does not by itself imply that λ(t) → λ∗. However, if we had chosen ε to be sufficiently

small, then λ(t) eventually belongs to a small neighborhood of λ∗. In particular, we could

have chosen ε so that the above inequality implies λi(t) ≥
λ∗i
2 > 0 for each i ∈ S∗.

For such a choice of ε and corresponding L, we know that society observes each signal

in S∗ with positive frequencies. But Theorem 3 shows that the set of signals with positive

frequencies is a minimal spanning set. So this set must be S∗ itself, and the long-run

frequencies must be λ∗. This proves that any intervention with a sufficiently large L achieves

efficient learning. Proposition 2 follows.

G Multiple Payoff-Relevant States

In this appendix, we consider optimal long-run acquisitions for the problem of predicting

multiple states. We assume that society seeks to minimize the sum of his belief variances

about θ1, . . . , θK . His objective function is to minimize

F (q1, . . . , qN ) = Tr
[
((V 0)−1 + C ′QC)−1

]
.

subject to the signal counts qi being integers and summing up to t. We use “Tr” to denote

the trace of a matrix.

The solution to this minimization problem turns out to be very complex when N > K.

To make the problem more tractable, we impose a further assumption that the signal

coefficient vectors ci have the same norm. This allows us to focus the analysis on the

directions of the signals, rather than their precisions.

Assumption 6 (Unit Norm). Each vector ci ∈ RK has norm 1.

Given this assumption, a basic question is to understand how fast society can jointly

learn about different states. If the signals are simply θ1 + ε1, . . . , θK + εK , then society

cannot do better (in the long run) than spending the same number ( t
K ) of observations on

each signal. In so doing, its posterior variance at time t about each state θi is approximately
K
t , and the sum of these variances is K2

t . Our next result shows this is asymptotically best,

even when additional signals are available.

Proposition 3. Under Assumption 6, we have

lim inf
q1+···+qN→∞

(q1 + · · ·+ qN ) · F (q1, . . . , qN ) ≥ K2.
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For the special case of K = 2, we are able to determine the exact asymptotic variance

(the value of the LHS above) for any given set of signals, see later in this Appendix. Deriving

the analogous result for general K is left for future work.

We highlight that unlike the case of a single payoff-relevant state, here the minimum

asymptotic variance can in general be achieved by more than one vector of frequencies.

Thus, the above results only describe agents’ payoffs at large t, but they do not pin down

agents’ optimal behavior. When qi is not restricted to integer values, Chaloner (1984)

showed that the minimum posterior variance at any fixed time t is achieved by focusing

on at most K(K+1)
2 signals. However, it is not known whether the same subset of K(K+1)

2

signals are observed for all large t, and her result also does not extend to our integer design

problem.

G.1 Proof of Proposition 3

We first show that

F ∗(λ) := lim
t→∞

t · F (λt) = Tr
[
(C ′ΛC)−1

]
(21)

If at least K of λ1, . . . , λN are positive, this follows from the previous formula for F . Suppose

instead that only λ1, . . . , λk are positive, with k < K. Consider the limit of Tr
[
(C ′ΛC)−1

]
as λk+1, . . . , λN approaches zero. In this limit, the K ×K matrix C ′ΛC approaches a rank

k matrix, so an eigenvalue of C ′ΛC approaches zero. This means an eigenvalue of (C ′ΛC)−1

approaches infinity, and since all its eigenvalues are non-negative by positive-definiteness,

we deduce Tr
[
(C ′ΛC)−1

]
→ ∞. Meanwhile, F (λt) is bounded away from zero since the

first k signals cannot identify all of the states θ1, . . . , θK . Thus (21) always hold.

We need to show that if each signal coefficient vector ci has norm 1, then F ∗(λ) ≥ K2

for all λ ∈ ∆N−1. For this, consider the positive-definite K ×K matrix C ′ΛC. Let its K

(positive) eigenvalues be β1, . . . , βK , then we have

β1 + · · ·+ βK = Tr(C ′ΛC) =

N∑
i=1

λi

K∑
j=1

c2
ij =

N∑
i=1

λi = 1,

Observe that the eigenvalues of the inverse matrix (C ′ΛC)−1 are simply 1
β1
, . . . , 1

βK
. Thus,

by (21) and Cauchy-Schwartz inequality,

F ∗(λ) = Tr
[
(C ′ΛC)−1

]
=

1

β1
+ · · ·+ 1

βK
≥ K2

β1 + · · ·+ βK
= K2.

This proves Proposition 3.
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G.2 Characterization of Asymptotic Variance when K = 2

Suppose there are just two states and each signal has unit norm, we determine here the

exact value of minλ∈∆N−1 F ∗(λ) for any given coefficient matrix C. By what we have shown,

this value (divided by t) approximates the minimum of the objective function F that can

be achieved given t observations.

Applying Lemma 3 and adding up the variances about θ1 and θ2, we have for K = 2,

F ∗(λ) =

∑N
i=1 λi(x

2
i + y2

i )∑
1≤i<j≤N λiλj(xiyj − xjyi)2

,

where each signal coefficient vector ci = (xi, yi)
′. By Assumption 6, x2

i + y2
i = 1 for each

i. Thus the numerator above is exactly 1, and we only need to maximize the denominator.

It will be convenient to parametrize (xi, yi) = (cosφi, sinφi), with φi ∈ [0, π) distinct from

one another.24 Then, the denominator becomes∑
1≤i<j≤N

λiλj(xiyj − xjyi)2 =
∑

1≤i<j≤N
λiλj sin2(φi − φj) =

1

4
·
∑

1≤i<j≤N
λiλj(2− 2 cos(2φi − 2φj))

=
1

4
(λ1 + · · ·+ λN )2 − 1

4

N∑
i=1

λ2
i −

1

4

∑
1≤i<j≤N

λiλj2 cos(2φi − 2φj)

=
1

4
−

N∑
i,j=1

λiλj cos(2φi − 2φj)

=
1

4
−

(
N∑
i=1

λi cos 2φi

)2

−

(
N∑
i=1

λi sin 2φi

)2

.

This recovers the result of Proposition 3 that F ∗(λ) ≥ 4. More generally, given

φ1, . . . , φN , let ui = (cos 2φi, sin 2φi) be a vector/point lying on the unit circle. Then

society seeks to minimize (
∑N

i=1 λi cos 2φi)
2 +(

∑N
i=1 λi sin 2φi)

2, which is the squared norm

of the vector
∑N

i=1 λiui. Taking a geometric perspective, this problem is to choose a point in

the convex hull of points u1, . . . , uN that is closest to the origin. There are two possibilities:

1. Suppose the points u1, . . . , uN lie on a semi-circle. Without loss, we label u1 as the

point closest to one end of this semi-circle and u2 being closest to the other end. Then

the point in Conv(u1, . . . , uN ) that is closest to the origin is the mid-point between u1

and u2. In this case F ∗ is uniquely minimized at λ = (1
2 ,

1
2 , 0, . . . , 0). The minimum

value of F ∗ is strictly larger than 4 except when u1 = −u2 (equivalently, when the

original signal coefficients c1, c2 are orthogonal).

24φi ∈ [π, 2π) can be replaced by φi − π, corresponding to replacing the vector ci by −ci.

48



2. Suppose the points u1, . . . , uN do not lie on a semi-circle. Then their convex hull

contains the origin in the interior and in particular N > 2. We can find three of these

N points, say u1, u2, u3, such that the triangle connecting these three points contains

the origin. Then, F ∗ is minimized at λ = (λ1, λ2, λ3, 0, . . . , 0), where λ1, λ2, λ3 are

unique weights such that λ1u1 + λ2u2 + λ3u3 = 0. In this case the minimum value of

F ∗ is exactly 4.

We note that in the latter case, whenever N > 3, there is not a unique set of three

points whose convex hull contains the origin. Thus F ∗ is not uniquely minimized, and we

cannot use the analogue of Lemma 4 to characterize society’s optimal divisions.
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