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Abstract

We study preferences over lotteries that pay a specific prize at uncertain future dates: time
lotteries. The standard model of time preferences, Expected Discounted Utility (EDU),
implies that individuals must be risk seeking in this case. As a motivation, we show in an
incentivized experiment that most subjects exhibit the opposite behavior, i.e., they are risk
averse over time lotteries (RATL). We then make two theoretical contributions. First, we
show that RATL can be captured by a generalization of EDU that is obtained by keeping
the postulates of Discounted Utility and Expected Utility. Second, we introduce a new
property termed Stochastic Impatience, a risky counterpart of standard Impatience, and
show that not only the model above, but also substantial generalizations that allow for
non-Expected Utility and non-exponential discounting, cannot jointly accommodate it and
RATL, showing a fundamental tension between the two.
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1 Introduction

Consider a choice between (i) receiving a prize in period ¢ for sure, or (i) receiving
the same prize in a random period ¢ with mean ¢. For example, the choice may involve
receiving a desirable outcome (such as $100 or a dinner at a fancy restaurant) in 10
weeks for sure versus receiving it in either 5 or 15 weeks with equal probability. Both
options deliver the same prize and have the same expected delivery date, but in one
of them the date is uncertain. What would, or should, the individual choose? This
paper studies these decisions, which we call time lotteries!!]

Many real life decisions involve uncertainty about timing. For example, is an in-
vestment that will start paying dividends in five years better than another investment
that will start paying in five years on average? Is it worthwhile to pay an extra fee
to ensure that a package is delivered on a guaranteed date?

According to the standard model in economics, Expected Discounted Utility
(EDU), subjects should always pick the option with an uncertain payment date —
they must be Risk Seeking over Time Lotteries (RSTL). To see why, note that if u is
the utility function over prizes and [ is the discount factor, the value of receiving x
at time ¢ is S'u(z), while that of the lottery with random date is E[S*]u(x). Since /3
is convex in ¢, Jensen’s inequality implies that the latter option must be preferred.

The main contribution of our paper is theoretical. However, we start with an
incentivized experiment on time lotteries to motivate our theoretical analysis. We
find that only a minuscule fraction of subjects are consistently RSTL; most subjects
are Risk Averse over Time Lotteries (RATL) ] We also find that risk attitudes towards
time lotteries are highly correlated with attitudes towards risk in standard lotteries
(i.e., atemporal lotteries over money). While perhaps intuitive, this connection is
missing from EDU, where the curvature of the utility function over prizes u plays no
role for time lotteries.

We present two theoretical results on modeling RATL, focusing on a setup of lot-
teries over dated rewards, that is, pairs of the form (x,t), where z is a monetary prize
and t is the time in which it is received | First, we show that one can accommodate
RATL while maintaining the main properties used to motivate EDU. EDU can be
seen as merging the functional form of discounted utility without risk with the one
of Expected Utility. Instead of merging their functional forms, we instead impose
the axioms that are known to guarantee discounted utility without risk (Outcome
Monotonicity, Impatience, and Stationarity, in addition to Continuity) with those of
Expected Utility (Independence and Continuity). We show that these axioms do not

1 Choices of this type are analyzed in |Chesson and Viscusi (2003)) and |Onay and Onciiler (2007);
we discuss them below.

2While there exist surveys about attitudes towards time lotteries on humans (Chesson and Vis-
cusi, [2003; (Onay and Onciiler, 2007) and other animals (Kacelnik and Bateson, {1996)), to our knowl-
edge ours is the first incentivized experiment to investigate it. See below for a discussion.

3We focus on this setup for simplicity. In Appendix [Bf we show that our main results extend to
preferences over lotteries of consumption streams.



characterize EDU: rather, they lead to a more general model, which we call General-
ized EDU (GEDU), in which there is a strictly increasing utility function over prizes
u, a discount factor 3, and a strictly increasing function ¢, such that preferences are
represented by

E[6(8'u(x))].

GEDU is similar to models that have been adopted in the literature (in partic-
ular, Kihlstrom and Mirman| 1974 applied to time). Importantly, it follows directly
from standard axioms, showing how merging functional forms may add implicit as-
sumptions. In GEDU, intertemporal substitution is regulated by u and g, while risk
preferences are regulated by a combination of ¢, u, and [.

Unlike EDU, GEDU can accommodate different attitudes towards time lotteries.
We show that the individual is RATL if and only if ¢ is more concave than the log
function. This result implies that one can easily accommodate violations of RSTL
without having to drop the key motivations behind EDU (Discounted Utility and
Expected Utility). In fact, we show that, together with a strengthening of Stationarity
to risk, RSTL is the additional property needed to obtain EDU from GEDU. Thus,
RSTL is the implicit assumption that is made when one merges the functional forms
from Discounted Utility and Expected Utility.

The second part of our analysis considers a new property, called Stochastic Impa-
tience, and presents a number of impossibility results that highlight a fundamental
incompatibility between this property and RATL. Intuitively, Stochastic Impatience
states that, when facing lotteries that pay in different periods with the same proba-
bility, the individual prefers receiving higher payments earlier. Consider, for example,
two prizes x > y and two time periods ty < t;. Stochastic Impatience requires the
individual to prefer the 50/50 lottery that pays either (x,ty) or (y,t;) over the 50/50
lottery that pays either (y,to) or (x,t;). More generally, the individual is Stochas-
tically Impatient if, for any uniform distribution over dated rewards, he prefers to
pair the i"* highest outcome with the i** earliest time. This property may be seen
as a counterpart of the standard Impatience assumption under risk. Indeed, the two
notions coincide under EDU.

We then examine the relationship between violations of RSTL and Stochastic
Impatience. We first show that, within GEDU, Stochastic Impatience holds if and
only if the individual is RSTL. Intuitively, RATL and Stochastic Impatience push in
opposite directions: in terms of discounted utils, the distribution of the 50/50 lottery
between (z,ty) and (y,t;) has a higher mean but is also more spread out than the
distribution of the 50/50 lottery between (x,t;) and (y, t); in particular, it contains
in its support the worst possible outcome, (y, t1), meaning that the individual cannot
be too risk averse — again, over discounted utils— to prefer it. We show that the
additional concavity imposed by the function ¢ to accommodate RATL is just enough
to tilt preferences against Stochastic Impatience.

Crucially, this relationship holds much more generally. We show that within a
very broad class of models, observing a single violation of RSTL is enough to allow us



to construct a violation of Stochastic Impatience. This class of models further gen-
eralizes GEDU by allowing general forms of non-Expected Utility (local bi-linearity,
which includes many popular models such as Rank-Dependent Utility, Quiggin|1982);
Cumulative Prospect Theory, [T'versky and Kahneman| [1992; and Disappointment
Aversion, |Gul [1991)) and general forms of discounting. Thus, the fundamental ten-
sion between RATL and Stochastic Impatience cannot be resolved within a very broad
class of models. In Appendix[C] we show that a similar impossibility holds also for the
model of |[Epstein and Zin| (1989), which can accommodate local versions of RATL,
but in those cases must also violate Stochastic Impatience. Dillenberger et al.| (2017))
discusses the broader relation between this model and Stochastic Impatience.

To summarize, our incentivized experiment indicates that RATL is a widespread
preference pattern, and we investigate models that can accommodate it. If one is
not concerned with Stochastic Impatience, we propose a model that allows for RATL
while maintaining the key properties at the base of EDU — except that it is built
starting from axioms instead of merging functional forms. However, if one also wishes
to maintain Stochastic Impatience, we show that it is not possible to accommodate
RATL within a very broad class of models.

We conclude the introduction with a discussion of the literature. To our knowl-
edge, the first discussion of time lotteries appears in |Chesson and Viscusi| (2003), who
show that EDU implies a preference for uncertain timing. They hypothesize that
risk aversion over time may be due to high risk aversion or hyperbolic discounting.
The latter is proven impossible by |Onay and Onciiler (2007), who generalize their
theoretical results, pointing out that (what we call) RSTL holds for any convex dis-
count function. They link this to probability distortions. Ebert| (2017) extends the
analysis to higher-order risk preferences (prudence and temperance).ﬁ We show that
RATL can be accommodated within Expected Utility, but if one wants to preserve
Stochastic Impatience, then not even allowing for probability distortions is sufficient.

For experimental evidence, (Chesson and Viscusi (2003) conduct a hypothetical
survey with business owners and find that about a third of them are RATL. |Onay and
Onciiler (2007) run an un-incentivized survey with large hypothetical payments and
find that most subjects are RATL. By contrast, Kacelnik and Bateson| (1996)) shows
evidence that animals in foraging decisions tend to be RSTL. [Eliaz and Ortoleva,
(2016)) show that subjects are ambiguity averse when timing is ambiguous.

The remainder of the paper is organized as follows. Section [2| formalizes risk
attitudes towards time lotteries and briefly describes the results of the experiment.
Section [3] includes the analysis of GEDU and how it accommodates RATL. Section
defines Stochastic Impatience and presents the impossibility results. Section |5| con-
cludes. The Appendix includes the proofs of the results in the text, the extension to
consumption streams and to the model of |Epstein and Zin (1989)), and the experimen-
tal analysis. The Supplementary Appendix contains a discussion of local notions of
RATL, the proofs of the results in the Appendix, and screenshots of the experiment.

4Chen| (2013) also shows that EDU implies RSTL.



2 Risk Aversion over Time Lotteries

Consider an interval of monetary prizes [w,b] C Ry, and a set of dates T" that is
either a set of non-negative integers (“discrete time”) or an interval of non-negative
numbers (“continuous time”), with 0 € 7" in both cases. We interpret each element of
[w,b] x T as a dated reward, where (z,t) indicates receiving the monetary prize x in
t periods (or at time ¢; the distinction is irrelevant here). Let A be the set of simple
lotteries over [w, b] x T" endowed with the topology of weak convergence, and let ;)
denote the degenerate lottery that gives (z,t) with certainty.E] We study a complete
and transitive preference relation > over A, where ~ and > denote its symmetric and
asymmetric parts.

A time lottery is a lottery p, € A that pays a fixed monetary prize x at a random
date. For example, a lottery that pays $10 in either ten or twenty periods with equal
probability is a time lottery. For any = € [w, b], we say that p, is a time lottery with
prize z if y = x for any (y,t) in its support.

We start by defining attitudes towards time lotteries:

Definition 1. = is Risk Averse over Time Lotteries (RATL) if for all x € [w,b] and
all time lotteries p, with prize z, if t = >__p,(x,7) x 7 then

5(x,ﬂ = Pz

Analogously, > is Risk Seeking over Time Lotteries (RSTL) or Risk Neutral over
Time Lotteries (RNTL) if the above holds with < or ~, respectively.

In words, the individual is RATL if he always prefers to receive a certain amount
in a sure time to receiving the same amount on a random time with the same mean.
The individual is RSTL if he always prefers to receive it in the random time with the
same mean, and he is RNTL if he is always indifferent between them.

The standard model to study risk and time is the Expected Discounted Utility
model (EDU), according to which lotteries are evaluated by

V(p) = E,[f'u(x)]. (1)

where u is a utility function over monetary outcomes and 5 € (0,1) is a discount
factor. Note that for any fixed x, EDU evaluates a time lottery with prize x as
E,[B"]u(z). Since B is a convex function of ¢, it follows from Jensen’s inequality that,
independently of u, any preference relation in EDU must be RSTL. In fact, since this
argument only relies on the convexity of the discount function, it holds more generally
than for exponential discounting. Suppose preferences are represented by

V(p) = E,[D(t)u(x)], (2)

5We focus on monetary prizes for simplicity. It is easy to generalize the results to arbitrary sets.




where D is a strictly positive and strictly decreasing function with D(0) = 1. Then,
preferences are RSTL if and only if D is convex[| Notice that all discount functions
used in practice — including exponential, hyperbolic, and quasi-hyperbolic — are con-
veX.|Z| Moreover, when 7" is unbounded, no strictly decreasing function D : T — (0, 1]
can be concave. Thus, in this case no preference relation represented by can be
globally RATL ]

The impossibility of EDU to accommodate different attitudes towards time lotter-
ies can be understood with an analogy to the classic work of Yaari| (1987). Within the
(atemporal) Expected Utility framework, diminishing marginal utility of income and
risk aversion are bound together via the curvature of the utility function over prizes.
But, as Yaari argues, these two properties are “horses of different colors” and hence,
as a fundamental principle, a theory that keeps them separate may be desirable. In
our setting, convex discounting, which is a property of deterministic settings, implies
RSTL, a property of stochastic settings. There is no fundamental reason why the
two should be related. Moreover, even though diminishing marginal utility of income
and risk aversion relate to two different phenomena, they are both reasonable and
documented properties. In our case, however, while convex discounting is a plausible

and documented behavioral property, we now provide evidence that most people are
not RSTL.

2.1 Experimental evidence of RATL

We now describe the results of an experiment that measures attitudes towards time
lotteries using incentivized questions. Because the purpose of this section is primarily
to motivate the theoretical results that will be presented later, we postpone many
details and additional analysis to Appendix [E]

A total of 197 subjects took part in an experiment run at the Wharton Behavioral
Lab. The experiment has three parts. Part I asks subjects to choose between different
time lotteries: they were offered two options that paid the same prize at different
dates, and the distribution of payment dates of one option was a mean preserving
spread of that of the other. For example, the first question asked them to choose
between $15 in 2 weeks or $15 in 1 week with probability .75 and in 5 weeks with
probability .25. Subjects answered five questions of this kind. In three of them, one

6See the Supplementary Appendix for the definition of convexity when T is discrete.

"We also test convexity in our experiment (below) and find that the vast majority of subject
satisfy it. Note that convex discounting is for example implied by requiring diminishing Impatience
(or no future bias), a property that holds if for any 7 > 0, the ratio % is not increasing in t.
This holds if and only if the function In o D is convex, which, in turns, implies that D itself must
be convex.

8The risk attitudes towards time lotteries in Definition [1| are defined for arbitrary periods and
prizes. In Supplementary Appendix [A] we introduce their local counterparts, relate it to the local
convexity/concavity of the discount function, and show that preferences represented by must be

locally-RSTL in all but a finite number of periods.



Table 1: Attitude Towards Time Lotteries in Part I

% of RATL choices Long Short

Question 1 65.7 56.0

All questions 60.6 47.9

Both dates random 69.0 45.6

# of RATL Long Short

choices Percent Cum. Percent Cum.
2.9 2.9 9.9 9.9
9.5 124 16.4 26.3
22.9 35.2 24.3 50.6

23.8 59.0 26.4 76.9
28.6 87.6 19.8 96.7
124 100.0 3.3 100.0

U W N = O

of the options had a known date; in the others, both options had random payment
dates. Table [2]in Appendix [E]lists the questions.

Parts IT and IIT use the multiple price list (MPL) method to measure time and risk
preferences separately. Part IT measures standard time preferences as well as attitudes
towards time lotteries. Part III measures atemporal risk preferences, with payments
taking place immediately at the end of the session. These include measures of regular
risk aversion, as well as Allais’ common-ratio-type questions to test and quantify
violations of Expected Utility. Procedures in this part follow standard practice.

At the end of the experiment, one question was randomly selected for payment.
The order of parts and of questions was partly randomized, except that all subjects
received Part I first, and all subjects received the same first question first in a separate
sheet of paper. The answer to this question is a key indication of the subjects’
preferences, as it captures their immediate reaction to this choice, uncontaminated
by other questions.

We ran two treatments: a long delay treatment (‘Long’) with 91 subjects and
a short delay treatment (‘Short’) with 105 subjects. The only difference between
treatments is the length of the delay in payments. In the Long treatment, some
payments were delayed by up to 12 weeks, while in the Short treatment the maximum
delay was 5 weeks.

Our main results pertain to the attitude towards time lotteries in Part I. Table
presents the percentage of RATL choices in (i) Question 1 of Part I, (ii) all questions,
and (iii) only questions in which both lotteries pay at random dates. It also shows the
distribution of the number of RATL answers that each subject gave (where 0 means
never RATL, 5 means always RATL).

Only a minuscule (2.86% or 9.89%) fraction of subjects are consistently RSTL,
whereas the majority of subjects choose according to RATL in the majority of ques-



tions. This pattern holds also in the first question and when both options are risky.
Moreover, in most questions, RATL is stronger in the Long rather than in the Short
treatment. That there is a difference is intuitive: when the time horizon is relatively
short, the two options are closer in value and thus the choices are closer to an even
split. But under EDU, in the Long treatment the values become more different in fa-
vor of more random dates, which should mean more frequency of RSTL. The opposite
holds in our data.

We then analyze the relationship between RATL, convexity of discounting (mea-
sured using the questions on time preferences), atemporal risk aversion, and violations
of Expected Utility (see Appendix |E| for details). We find that 82% of our subjects
exhibit convex discounting, in line with previous findings. We also find that 39.89%
choose approximately according to Expected Utility throughout. Even focusing on
subjects in either of these two groups, RATL is still prevalent, with almost identical
proportions as the entire sample. Regression analysis confirms that certainty bias or
convexity of discounting are generally uncorrelated with RATL

Lastly, we test the relation between the tendency to exhibit RATL and atemporal
risk aversion. Here we find a significant correlation: subjects who are more (atempo-
rally) risk averse, also tend to be more RATL. While this is intuitive since they are
both forms of risk aversion, it is hard to reconcile this connection within EDU.

3 Modeling RATL under Expected Utility

We now investigate whether RATL can be obtained with a model that maintains the
two core motivations behind EDU, that is, a model that coincides with exponentially
discounted utility when there is no risk and that evaluates risk by taking expectations.
To posit the former, consider the following conditions over degenerate lotteries (sure
outcomes):

Axiom 1 (Outcome Monotonicity). For all z,y € [w,b], and s € T, if x > y then
Oz,s) 7 O(y.s)-

Axiom 2 (Impatience). For all x € [w,b] and s,t € T, if s <t then d(z5) > d(z)-

Axiom 3 (Stationarity). For all x € [w,b], s,t € T, 7 € R withs+,t+7 €T, if
Ozt ~ Oy,itr) then Ozs) ~ Oy,str)-

Outcome Monotonicity states that, holding the time fixed, higher prizes are better.
Impatience states that earlier payments of the same size are better. Stationarity posits
that the preference between x in t periods and y in ¢t + 7 periods does not depend
on t, a standard condition known to lead to exponential discounting. [Fishburn and

9As shown in Section [2| this is not compatible with EDU, where RSTL is connected with the
convexity of discounting. These results also indicate that RATL may not be due to violations of
Expected Utility, as suggested by |(Chesson and Viscusi| (2003) and |Onay and Onciiler| (2007).



Rubinstein| (1982)) show that these axioms, together with continuity (below), are
necessary and sufficient to guarantee that the restriction of > to degenerate lotteries
is represented by a discounted utility representation, V (0, 4) = S'u(z).

Next, we posit the key postulate for Expected Utlhty, Independence, as well as
continuity assumptions:

Axiom 4 (Independence). For all p,q,r € A and X € (0,1),
pr=q SAp+(1=XNr=X+(1—-Nr

Axiom 5 (Continuity). For all (y,s) € [w,b] x T the sets {(x,t) € [w,b] X T : d(z4) =
Oy, ; and {(z,t) € [w,b] X T : (5 = dzp} are closed. Moreover, for all p,q,r € A,
if p > q > r there exist a,b € (0,1) such that ap+ (1 —a)r > q and ¢ = bp+ (1 —b)r.

Note that Independence is imposed on all lotteries, and not only on lotteries with
a fixed payment dateH By standard arguments, these last two postulates ensure that
the individual evaluates lotteries according to the Expected Utility criterion.

The following theorem characterizes the model that satisfy all the above postu-
lates.

Theorem 1. The following are equivalent:

1. > satisfies Outcome Monotonicity, Impatience, Stationarity, Independence, and
Continuity;

2. > 1is represented by
V(p) = Ep(¢(B'ulx)),
1), w [w,b] — Ry is strictly increasing and continuous, and

where 3 € 1
) — R s strictly mcreasmgl

¢ : Im((B)

We call this representation a Generalized Ezpected Discounted Utility model (GEDU)
and identify it with the triple (u, 8, ¢). GEDU is similar to existing models in the lit-
erature. In particular, it can be seen as an application of the multi-attribute function
of Kihlstrom and Mirman| (1974) to the context of time[?]

Theorem (1| shows that combining the axioms that lead to exponential discounting
without risk with the axioms that lead to Expected Utility does not generate EDU.
Rather, it leads to a model that includes one additional curvature, captured by the
function ¢, applied after discounting has taken place. The model only coincides with
EDU when ¢ is affine.

(

10WWhile weaker versions have been proposed, we focus on this complete version since it is satisfied
by EDU, and is often necessary for desired results (e.g., to guarantee the existence of Nash equilibria).

UTm((BCu(-)) is the image of Stu(x) over [w,b] x T.

12A similar functional form was used, but not derived, by |Andersen et al. (2017), to study in-
tertemporal utility and correlation aversion, by |Abdellaoui et al.| (2017)), to study different questions
on time and risk, as well as by [Edmans and Gabaix| (2011)) and |Garrett and Pavan| (2011)).



Under EDU, time and risk preferences are both governed solely by the curvature
of w. This is no longer the case for GEDU. Intertemporal substitution is governed
by w and B: without risk, the individual evaluates a prize x payed at time ¢ by
5tu(x)E| Atemporal risk preferences, for lotteries with only immediate payments,
are instead governed by ¢ o u: a lottery p that pays only at time 0 is evaluated by
E,(¢(u(x))). Thus, under GEDU, intertemporal substitution and risk aversion differ
— the difference captured by the curvature of ¢. One possible interpretation is that
u represents the individual’s utility function over deterministic payments, while ¢
represents risk attitude towards variations in ‘discounted utils.’

It is important to highlight that Theorem [I] follows directly from entirely standard
arguments: it is a consequence of the fact that one cannot assume that the Bernoulli
utility used in the Expected Utility form is, cardinally, the discounted utilityﬂ

The significance of this model is that, unlike EDU, GEDU does not constrain
preferences to be RSTL.

Proposition 1. Consider = that admits a GEDU representation (u, 3, $). Then:

1.

Y

1s RSTL if and only if ¢ is a convex transformation of In;

2. = is RNTL if and only if ¢ is an affine transformation of In;

3. = is RATL if and only if ¢ is a concave transformation of In.

Proposition [1| follows from noticing that if ¢ = In, then ¢(S'u(x)) = ¢In(Su(z)),
a linear function of ¢, implying risk neutrality. If ¢ is “more concave than the log,”
preferences are RATL; if it is “more convex than the log,” preferences are RSTL.
Note also that the curvature of ¢ affects both risk attitudes towards time lotteries
and atemporal risk aversion. As discussed in Section [2 the connection between these
two forms of risk aversion is supported by our experimental results.

It is worth mentioning that RSTL is not only a property implied by EDU. In
Appendix [A] we show that, in addition to Risk Stationarity — a stationarity assump-
tion on risky prospects — RSTL is the characterizing feature of EDU among the class
of preferences that admit a GEDU representation. On the other hand, under Risk

13 According to the model, she evaluates (z,t) by ¢(Bu(z)), which is a strictly increasing trans-
formation of S'u(z).

14 Recall that from [Fishburn and Rubinstein| (1982), we know that Axioms 1-3 and Continuity
guarantee that there exist a utility function u and a discount factor § such that degenerate lotteries
are ranked according to discounted utility. Independence and Continuity guarantee that there exists
a utility function over prize-dates pairs, v : [w,b] x T'— R, such that preferences over lotteries follow
Expected Utility using Bernoulli utility v. The key observation is that v(x,t) need not coincide
with Stu(z): they must be ordinally, but not necessarily cardinally, equivalent. Thus, there must
exist a strictly increasing function ¢ such that v(z,t) = ¢(Stu(z)). Put differently, the function ¢ is
needed because the curvature emerging from discounted utility, S%u(z), may not be the correct one
to capture the risk preferences.



Stationarity, RATL characterizes preferences that admit a “negative EDU represen-
tation”: EDU except that the discount factor g exceeds 1 and the utility function
over outcomes u takes negative values (such as, for example, CRRA functions more
concave than the log)[]

Since RSTL is implicitly assumed whenever one uses EDU, it is natural to ask if
this is a reasonable property. From a positive point of view, we saw that most subjects
violate RSTL. From a normative point of view, we contend that this assumption does
not have the same appeal of the postulates imposed above: while Outcome Mono-
tonicity, Impatience, and Independence have well-known normative appeal, and while
both Stationarity and Risk Stationarity can be justified based on dynamic consistency,
we find no equivalent arguments to justify why individuals should necessarily be risk
seeking over time lotteries.

4 RATL and Stochastic Impatience: Impossibility
Results

Thus far we have analyzed the extent to which we can relax the global restriction of
RSTL by properly combining the postulates of discounted utility over sure outcomes
with the ones of Expected Utility under risk. In this section, we show that relaxing
RSTL generally comes at the ‘cost’ of violating a plausible novel property we term
Stochastic Impatience. We establish this result first within the context of GEDU;
then, we show that it holds in a much more general class of models, highlighting a
fundamental connection between RSTL and Stochastic Impatience.

4.1 Stochastic Impatience

Suppose that an individual is asked to choose between the following two alternatives:

e A: Receive either $100 today or $20 tomorrow, with probability 0.5 each.
e B: Receive either $20 today or $100 tomorrow with probability 0.5 each.

Both options involve the same prizes, probabilities, and dates, but in the first
one the higher prize is paid earlier, keeping the same odds. One could imagine that,
to the extent that the individual prefers higher payments sooner, this latter option
should be preferred. Therefore, Stochastic Impatience can be seen as the analogue
of Impatience for risky environments and apply the same descriptive and normative
arguments to justify the choice of Option A.

We formalize this in the following axiom, which we call Stochastic Impatience.
A companion paper, Dillenberger et al.| (2017), provides experimental tests of this

15Since u is negative, earlier payments are better despite the fact that 3 > 1, so this model also
satisfies Impatience.
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condition as well as a discussion on its relation to models that separate risk and time
preferences. To our knowledge, this is a novel condition.

Axiom 6 (Stochastic Impatience). Let t = (t1,ts,...,t,) be any finite collection of
n time periods, with t; < ty <,... < t,, and x = (x1, T3, ...,x,) be any collection of
n outcomes such that xy > w3 >, ... > x,. Let w(t) be a permutation of t and 7'(x)
be a permutation of x. Preferences satisfy Stochastic Impatience if for any n-ordered
sequences t, X with corresponding perturbations w(t) and 7'(x),

— 1 —~ 1
; 55(%@) = ; Ed(xw/—l(i)’tw—lu))

In words, the individual is Stochastically Impatient if and only if for any uniform
distribution over dated rewards, he always prefers to pair the 7*" highest outcome
with the i** earliest time.

Impatience and Stochastic Impatience are equivalent when lotteries are evaluated
by E[D(t)u(x)] for some weakly decreasing (but not constant) D[f] Thus, in the
particular case of EDU, these are also equivalent conditions.

4.2 RATL and Stochastic Impatience under GEDU

Our next result shows that in the context of GEDU, Stochastic Impatience is incom-
patible with RATL; in fact, it is equivalent to RSTL.

Proposition 2. Suppose that = admits a GEDU representation (u, ¢, ). The fol-
lowing are equivalent:

1. The relation > satisfies Stochastic Impatience;

2. The relation > satisfies Risk Seeking over Time Lotteries;

This result shows a fundamental incompatibility between RATL and Stochastic
Impatience. To get an intuition, recall Options A and B in the previous example, and
observe that the two prizes offered by Option B ($20 today or $100 tomorrow) are,
in terms of desirability, strictly in between the two prizes offered by Option A ($100
today or $20 tomorrow). There is a sense in which Option A is ‘more spread out,’
in discounted utility terms, although it has a higher mean. Under EDU, this spread
does not matter, and Option A is preferred. Under GEDU the additional curvature
through ¢ adds a layer of intertemporal risk aversion — precisely what allowed it to

6To see this, let A := Y7 D(t), set u(zp41) = 0, and adopt the convention that
Z;L n1D(E; ) = 0. Note that 37" u(z;)D(t;) = >, Z;‘L:iJrlD(tj)} [u(w;) —u(ziy1)] >

Dy [A = i1 D)) | [u (i) = u(zi1)] = Y u(@ar-1()) D(tr-1(5)), with equality if and
only if D(t) =1 for all ¢.
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capture RATL. But this is also what makes the individual sensitive to the spread in
utilities of Option A. In particular, if the curvature of ¢ is very high (the individual
has a high additional risk aversion) then the value of each option will be close to
that of its worst possible outcome, in which case Option B will be preferred, violating
Stochastic Impatience. Put differently, the same additional curvature that allowed us
to capture RATL also pushes against satisfying Stochastic Impatience.

In fact, Proposition [2] shows not only that RATL and Stochastic Impatience push
in opposite directions, but that the latter is equivalent to the opposite of the former
under GEDU. To see why, recall that we have already seen how, when ¢ = In, GEDU
becomes linear with respect to time; higher concavity leads to RATL, lower to RSTL.
Similarly, if ¢ = In, the individual is indifferent between Options A and B above, since
0.51n [4(100)] + 0.51In [fu(20)] = 0.51n [u(20)] 4+ 0.5 1In [Bu(100)]. But the distribution
of the 50/50 lottery between In [Su(20)] and In [u(100)] is a mean-preserving spread
of that between In[u(20)] and In[Bu(100)]. Thus, any expected utility maximizer
with utility function ¢ = goln for some convex (resp., concave) function g will prefer
Option A over Option B (resp., B over A). Thus Stochastic Impatience goes hand in
hand with RSTL, whereas the opposite property corresponds to RATL.

The equivalence in Proposition [2| can also be understood through the lens of
matching theory; in fact, our general proof is an application of a familiar result about
supermodular functions['’| Consider a general two-sided matching model with equal
number of participants in each side, sorted according to a one-dimensional character-
istic that represents their type. Denote by f(a,b) the match output between type a
and type b, where f is increasing. It is well-known (e.g., [Becker|[1973)) that positive
assortative matching — where the i*"-highest type a pairs with the i"-highest type b
— maximizes the sum of match outputs when f is supermodular, i.e., % (a,b) >0
In our context, let a = u(x), b = f*, and f (u(x), ") = ¢(u(z)p") = g(ln (u(x)s)),
and note that W< u(x), ) = % > 0 if and only if g is convex — thus
when ¢ is more convex than In, which is equivalent to preferences being RSTL. Put
differently, both Stochastic Impatience and RSTL imply, and are implied by, super-
modularity between the size of the prize (as captured by the utility function) and the
time it is received (as captured by the discount factor).

4.3 Beyond Expected Utility: still an impossibility

Having seen that RATL is incompatible with Stochastic Impatience under GEDU,
it is natural to ask whether they can be simultaneously accommodated in a more
general model. If possible, this result would suggest that one should move beyond
GEDU to allow for both properties. As we have mentioned, previous papers have
suggested that RATL is related to non-expected utility. We show below, however,
that accommodating both remains impossible in a much larger class of models.

1T"We thank Rakesh Vohra for pointing out this connection.
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To prove our general result, we consider a model that we call Generalized Local Bi-
linear Discounted Utility (GL-BDU). To study risk, this model generalizes Expected
Utility by focusing on a local specification of the bilinear (or biseparable) model of
Ghirardato and Marinacci (2001)). In general, bilinearity holds if there is an increas-
ing onto function 7 : [0,1] — [0,1], and a function f that evaluates (arbitrary)
prizes, such that the prospect that yields  with probability a and y otherwise, with
f(z) > f(y), is evaluated by 7 (a) f (z) + [1 — 7 («)] f (y). Since our goal is to be as
general as possible, we only require preferences to be bilinear for equally likely binary
lotteries (a = 0.5) — the local bilinear model (Dean and Ortoleval, 2017) ['¥ This is an
extremely general model of preferences under risk, the most general one that com-
pletely separates tastes (over generic outcomes) from beliefs. It includes as special
cases popular models such as those of probability weighting (Rank-Dependent Utility,
Quiggin 1982, and Cumulative Prospect Theory, Tversky and Kahneman|1992)) and
Disappointment Aversion (Gul, [1991)[7]

To generalize the treatment of time preferences, we posit that dated prizes are
evaluated by ¢(D(t)u(z)), where ¢ is as in GEDU, and D is a strictly decreasing
discount function (with D(0) = 1) that satisfies Strong Diminishing Impatience, i.e.,
Dﬁ(ﬂ) > Dﬁtsi)r) if # >t and 7 > 0. This version of the discount function includes as
special cases not only exponential discounting, but also many well-known alternative
specifications, such as hyperbolic and quasi-hyperbolic discounting.

Taken together, these generalizations lead to the following.

Definition 2. We say that > admits a Generalized Local Bilinear Discounted Utility
(GL-BDU) representation if there are continuous, increasing functions v : X — R and
¢ : Im(D(-)u(-)) — R, and a strictly decreasing function D : T" — (0, 1] satisfying
Strong Diminishing Impatience, such that for 7(0.5) € (0,1), p = 0.50(z¢) + 0.5z 1)
with D(t)u(z) > D(t')u(z’) is evaluated according to:

V(p) = w(0.5)6( D(B)u(x)) + (1 = w(0.5))é( D(t)u(a"))

To reiterate, a GL-BDU representation is a very general model that subsumes the
vast majority of commonly used models. For risk preferences, it restricts only how the
individual evaluates 50/50 prospects, generalizing both Cumulative Prospect Theory
and Disappointment Aversion. For time preferences, it allows for any discount func-
tion with Strong Diminishing Impatience, allowing, for example, for both hyperbolic
and quasi-hyperbolic discounting. And, for the interaction between time and risk, it

18That is, preferences are not restricted to be bilinear in general, but only that there exists some
bilinear representation for 50/50 lotteries.

19Tt also allows for generalizations of Rank-Dependent Expected Utility, e.g., the minimum from a
set of probability distortions (Dean and Ortoleval [2017)). On the other hand, it does not encompass
all known models of risk preferences (e.g., it does not encompass Cautious Expected Utility, Cerreia-
Vioglio et al.|[2015).
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includes the distortion ¢, which we have seen under GEDU.@

The main result of this section is that even in this very general class of models,
RATL is still incompatible with Stochastic Impatience. As GL-BDU only restricts
preferences over binary and equal-chance lotteries, we will focus on this type of lot-
teries.

Theorem 2. Suppose = admits a GL-BDU representation. If d(z4,) = 0.50(z) +
0.50(z45) for some x and ty = B3 and D(t3)u(b) > D(t))u(w), then = violates
Stochastic Impatience.

The intuition for this result is the same as the one for Proposition the ad-
ditional ‘risk aversion’ that leads to RATL — through the additional curvature ¢,
the probability distortion 7, or a combination of both — must lead to a violation of
Stochastic Impatience.As opposed to Proposition [2] however, the result is not an if
and only if statement: there exist instances of the model above that violate Stochastic
Impatience and still satisfy RSTL.

We should also highlight that the proof of Theorem [2]is constructive and does not
require extreme values. If we observe an instance of RATL, we can design a choice
problem involving binary lotteries, with similar outcomes and delivery times, in which
the individual violates Stochastic Impatience”]]

In light of the results above, a natural question is whether it is possible to reconcile
the two properties of RATL and Stochastic Impatience by going beyond preferences
over lotteries over streams and allowing more complicated preferences — for example,
as in the popular model of Epstein and Zin| (1989) which is defined over temporal
lotteries. It is well-known that this richer setup allows more freedom to accommodate
otherwise conflicting properties. The following remark partly addresses this question.

Remark 1. In Appendiz [(] we show that a similar impossibility holds also for the
common specification of |Epstein and Zin| (1989) — with Expected Utility and CRRA
preference. While this model can accommodate local versions of RATL, in those cases

it must also violate Stochastic Impatience. That is, we have the same impossibility as
in Theorem [2P2

The main message of this section is that if Stochastic Impatience is a property
one wants to keep, then, within a very large class of models, it is impossible to allow
for any violation of RSTL.

20The only similar generalization we are aware of appears in [Abdellaoui et al.| (2017) that study
preferences over risk and time using a model that generalizes GEDU (for streams) allowing for
cumulative probability weighting (following Rank-Dependent Expected Utility).

21Our construction requires a minimal richness condition on the space of prizes, D(t3)u(b) >
D(t1)u(w), which guarantees that, at least for the ¢; and ¢35 considered, u(w) and w(b) are distant
enough. This would be always satisfied were we to include a zero element (e.g., u(w) = 0).

22We refer to [Dillenberger et al.| (2017) for a discussion of the broader relation between Epstein
and Zin| (1989)) and Stochastic Impatience.
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Similarly to the discussion at the end of Section [2| the results in this section
emphasize that the seemingly obvious link between Impatience and Stochastic Impa-
tience could be more subtle, due to the presence of risk. Recall the intuition given
right after the statement of Proposition [2 In the context of risk and time, Stochastic
Impatience not only sorts the time-payoff pairs in a way that is most consistent with
Impatience, but it also maximizes the spread, in terms of discounted utils, among
all other possible combinations. This additional spread is inconsequential in EDU
because of its additively separable structure, but it may matter if there is comple-
mentary between outcomes/” To the extent that the individual cares about such
spread, the descriptive validity of Stochastic Impatience may not be obvious.

5 Conclusion

This paper studies time lotteries and makes three contributions. First, as a motiva-
tion, it shows in an incentivized experiment that subjects are typically Risk Averse
over Time Lotteries (RATL), which is not compatible with the standard Expected
Discounted Utility model (EDU).

Second, it shows that this behavior can be accommodated by a model that pre-
serves many of the motivating features of EDU, reducing to exponentially discounted
utility without risk and using Expected Utility for risk, but adding an additional cur-
vature. This model, which we refer to the Generalized Expected Discounted Utility
model (GEDU), is characterized by the axioms of Discounted and Expected Utility,
with no other assumptions.

Third, it shows a fundamental tension between RATL and a new property called
Stochastic Impatience. Within GEDU, individuals satisfy one if and only if they
violate the other. But this incompatibility extends well beyond GEDU. We provide
a similar impossibility result for a much larger class of preferences that allows for a
broad class of non-Expected Utility behavior and non-exponential discounting.

Overall, the message of the paper can be summarized as follows. Despite what
is predicted by EDU, most subjects appear to be RATL. If maintaining Stochastic
Impatience is not a concern, then one can preserve the main features of EDU in
a model that allows for RATL. If, however, maintaining Stochastic Impatience is

important, then even if we consider large generalizations, it is not possible to allow
for RATL.

23This resembles the idea in [Machinal (2009)) of seeing ambiguity aversion as a manifestation of
event-nonseparability.
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Appendix

This appendix contains some extensions, as well as proofs of the results in the main
text. All proofs of the new results below are in the Supplementary Appendix ]

A Obtaining EDU via RSTL

In the characterization of GEDU in Section [3| we imposed stationarity only on trade-
offs involving deterministic payments (Axiom 3). One may consider a stronger notion
that includes risky prospects, so that the ranking between two lotteries would not
change if we move all payments in the support of the lotteries by the same number
of periods. Formally, for any p € A, let p., denote the lottery in which each prize is
shifted by 7 periods: pi,((z,t + 7)) = p((x,t)) for all (x,t) € [w,b] x T.

Axiom 7 (Risk Stationarity). For every p,q € A and T such that py,,q., €T,

D= q < Pir = Qir

It is not obvious that Risk Stationarity is a desirable property: its normative
appeal, linked to dynamic consistency, is to be contrasted with robust evidence of its
violations [*]

It is easy to see that Risk Stationarity is satisfied by EDU. As the next proposition
shows, however, EDU is not the only case of GEDU preferences that satisfies Risk
Stationarity. Rather, starting from GEDU, EDU is characterized by imposing both
Risk Stationarity and RSTL.

Proposition 3. Suppose T' is an interval and consider = that admits a GEDU rep-
resentation and satisfies Risk Stationarity. Then:

1. = is RSTL (and not RNTL) if and only if it admits an EDU representation.

24The Supplementary Appendix is available online here.

2>Typical findings are that subjects are more risk tolerant for delayed payments (Shelley, [1994%
Sagristano et al., |2002; Noussair and Wul |2006; [Baucells and Heukampl}, |2010; |Coble and Lusk} 2010
Abdellaoui et al. [2011)), a pattern that violates Risk Stationarity but is compatible with GEDU: if
¢ exhibits (strictly) increasing relative risk aversion, then 3= exhibits (strictly) higher risk tolerance
for delayed rewards, i.e., if p ~ (z,t) then for all 7 we have py,(>) > (x,t + 7). Intuitively, under
GEDU pushing all rewards to the future is akin to “shrinking them” by the discount factor 3; and if
the individual has a increasing relative risk aversion she should have higher risk tolerance for these
smaller amounts. A natural functional form for this is ¢(x) = 1 —e™7® for some v € R;,. With
this functional form, the individual would be averse to time lotteries with large enough prizes (since,
in this case, the exponential function is more risk averse than the log). Note that if u is CRRA
and ¢ is CARA, then their combination ¢ ou exhibits increasing relative risk aversion, which, under
GEDU, must be the case for atemporal risk preferences. This prediction appears to be supported by
recent experimental evidence (Binswanger, [1981; [Kachelmeier and Shehata), [1992; |Bosch-Domenech
and Silvestre], [1999; [Holt and Laury} |2002; [Fehr-Duda et al.| 2010).
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2. = is RATL (and not RNTL) if and only if there exists B > 1 and a strictly
increasing u : [w,b] — R__ such that = is represented by V(p) = E,(B'u(x)).
We call this a Negative-EDU representation.

The proposition above shows that RSTL is not only implied by EDU: it is the
characterizing feature of EDU in the class of preferences that satisfy the axioms from
Expected Utility and Risk Stationarity.

The proposition also shows that there are other GEDU preferences that allow for
RATL while maintaining Risk Stationarity: the Negative-EDU model, which takes
£ > 1 and a negative utility (such as, for example, any CRRA function more concave
than the log) — a minor twist over EDU and probably just as tractable. It is easy to
see that earlier payments are still preferred, despite the fact that g > 1, because u is
negative. Thus, the model still satisfies Impatience.

B Extension to consumption streams

We now extend our results to lotteries over consumption streams. We begin with
the characterization of GEDU for this case. Our analysis is identical to the one in
the main body of the paper, with one exception: To posit discounted utility without
risk, instead of imposing the postulates of Fishburn and Rubinstein| (1982), we use
the axioms of Bleichrodt et al.| (2008) (based on Koopmans||1960), further adapted to
our framework and imposed only on degenerate lotteries over streams.

Consider the interval [w,b] of prizes and a set of dates ' = N¥| A consumption
program = = (xg,x1, ... ) yields consumption z; € [w,b] in period t € T'. A program z
is ultimately constant if there exists a € [w, b] and t € N such that z; = a for all t > t.
Let X; denote the set of all ultimately constant program that are constant starting
from period t + 1, and let X denote the set of all ultimately constant programsE]
Let A(X) be the set of all simple probability measures over X'. Our primitive is a
complete and transitive preference relation >’ over A(X).

As a final piece of notation, if a € [w,b] and = € X, denote by d,, the degenerate
lottery that returns a stream that pays a in the first period, and then coincides with
x, translated by one period (i.e., the stream pays a at t = 1 and x;_; at t > 1).

Axiom 8 (Stream Independence). For all p,q,r € A(X), X € (0,1)
pr'qg ©Xp+(1—=XNr =" Mg+ (1= N)r.

Axiom 9 (Monotonicity). For all x,y € X, if x;, >y, for allt € T, then §, =" 0,. If
the inequality is strict for some t, then 6, >’ 6,.

26For brevity we here focus on discrete time and infinite horizon. The case of continuous time is
identical with the adapted formalism. For the finite horizon case, we would need to adapt to this
framework the axioms in [Fishburn| (1970, Th. 7.5), which is an easy exercise.

2"The restriction to ultimately constant programs guarantees that the discounted utility is well-
defined.
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Axiom 10 (Stream Stationarity). For all z,y € X, a € [w, b
Oaz ' 0y & 0, =0y
Axiom 11 (Initial Trade-off Independence). For all x,y € X, f, g, h,l € [w,b]
Otge =" Oniz < gy = Oy

Axiom 12 (Ultimate Continuity). =’ is continuous on each set of degenerate lotteries
on Xy, that is, for each t € N, x € Xy, the sets {y € Xy : 0, =" 6.} and {y € Xy
0z =" 0y} are closed.

Axiom 13 (Archimedean Continuity). For all p,q,r € A(X) such that p =" q =" r
there exist o, 5 € (0,1) such that

ap+ (I —a)r="q¢>" Bp+ (1 —pB)r.

The interpretations of Stream Independence, Monotonicity, and Stream Station-
arity are straightforward. Initial Trade-off Independence is a postulate, necessary
to derive an additive form, that guarantees that intertemporal tradeoffs between two
periods are independent of what the outcomes are in other periods. We then conclude
with two separate continuity axioms, one for lotteries (Archimedean Continuity) and
one for streams. (See Bleichrodt et al| (2008) for a discussion about the continuity
properties of the discounted utility model.)

Theorem 3. Consider a complete and transitive binary relation =" over A(X). The
following are equivalent:

1. ¥’ satisfies Monotonicity, Initial-Tradeoff Independence, Stream Stationarity,
Ultimate Continuity, Stream Independence, Archimedean Continuity.

2. There exist a continuous and strictly increasing u : [w,b] = R, f € (0,1), and
a strictly increasing ¢ : Ry — R such that >’ is represented by

()]

We now turn to extend our other results to this setup of streams: first, we show
that this model can accommodate RATL; then, we show that even if we generalize it
by allowing for non-Expected Utility, we have an incompatibility between Stochastic
Impatience and RATL.

To discuss these results, we need to extend our notions of RATL and Stochastic
Impatience to consumption streams. To do so, let ¢ € [w, b] denote the consumption
in the absence of any prizes (“background consumption”). In this context, a binary

V(P) =E,

18



lottery axd(xy,t1)+(1 — a) xd(xq, ta) gives with probability « the stream of consump-
tion {c, ¢, ...,c+ 1, ¢, ...}, and with probability 1—« the stream {c,c,...,c + x9,¢, ...},
t to
where ¢ + z; € [w,b]. (We will omit the requirement that all ¢ + z; € [w,b] in the
definitions below). A time lottery p, with prize x is to be understood as a lottery
over such objects. Our preference relation over lotteries over consumption streams >’
would then induce a preference over such lotteries, one for any given background con-
sumption c¢. We denote this induced preference relation by »=/. Our main properties
extend to this domain as follows:

Definition 3. We say that =" is Risk Averse over Time Lotteries’ (RATL’) if for all
z,c € [w,b] and all time lotteries p, with prize z, if t = )" _p,(z,7) x 7 then

Definition 4. Let t = (¢4, s, ...,t,) be any finite collection of n time periods, with
t <ty <,... <ty, and x = (21,9, ..., T,) be any collection of n outcomes such that
xy > X9 >,... > x,. Let m(t) be a permutation of t and 7'(x) be a permutation of
x. We say that =’ satisfies Stochastic Impatience if for any n-ordered sequences t, x
with corresponding perturbations 7(t) and 7’(x) and for any ¢ € [w, b],

!/
Zﬁé(xwtw) tC Zﬁé(xﬂ-/*l(i)vtﬂ-*l(i))
=1 =1

It is easy to see that the model above can accommodate RATL. In particular, if ¢
is concave enough then the value of the non-degenerate lottery gets arbitrary close to
the value of the worst consumption stream in the support (that is, the one in which
the prize x is received in the latest possible time), compared to which the individual
would prefer to receive x instead in the average time ¢. In the case of lotteries over
streams, however, risk attitude towards time lotteries may — due to the additive
terms — depend on the magnitude of z and ¢ (and not only on the curvature of
¢). Therefore, there is no counterpart to Proposition 2l Theorem 2] on the other
hand, is readily extended to this domain. To see this, first note that the GL-BDU
representation becomes:

Definition 5. We say that =’ admits a Generalized Local Bilinear Discounted Utility
(GL-BDU) representation, if for any ¢ € |[w,b] there are continuous increasing func-
tionsu: X - R, ¢: R, — R, and a strictly decreasing D : T — (0, 1] which exhibits
Strong Diminishing Impatience, such that for m(0.5) € (0, 1), 0.56z,¢) + 0.50(, 4y With
D(t)u(z +c) + >, Dt)ulc) > D' )u(x' + ) + >, D(t)u(c) is evaluated by:

7(0.5)8( DHyula-+e)+3, . D(r)u(e) ) +(1=m(0.5)6 (D Yu(a'+e)+ 3, ., D(r)u(e))
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Theorem 4. Suppose =" admits a GL-BDU representation. If §(z1,) =t 0.50(z.4,) +
0.50(z,15) for some x,c € [w,b] and ty = 852 and if either

D(t1)(u(w + ¢) — u(c)) < D(t2)(u(z + ¢) — u(c))

or

D(t3)(u(b) — u(c)) > D(t2)(u(x + ¢) — u(c)),

then =, wviolates Stochastic Impatience.

The constructive proof follows the exact same steps as in the case for lotteries over
dated rewards, and the richness condition (that is now written in a weaker version as
two separate inequalities) plays the exact same role in it.

C Epstein-Zin 1989 preferences

In this appendix we show that the model of |[Epstein and Zin| (1989) (henceforth, EZ)
with CRRA Expected Utility preferences and CES aggregator cannot accommodate
violations of RSTL without also violating Stochastic Impatience. We adopt the formal
recursive setup of their paper, which for brevity we don’t discuss here (see |[Epstein
and Zin||1989). Consider a preference relation = over the recursive framework that
admits a recursive representation of the form:

V= {1 - By Ci 4 5 (Vi) ) ®

where C; denotes consumption at time ¢, a > 0 is the coefficient of relative risk aver-
sion, and p > 0 is the inverse of the elasticity of intertemporal substitution (with
a # 1 and p # 1, so that the formula is well-defined). It is well-known that EZ
coincides with EDU when o = p, but in general it separates risk aversion and the
elasticity of intertemporal substitution, making EZ widely used in macroeconomics,
asset pricing, and portfolio choice. This distinction is, in the model, related to pref-
erences for early or late resolution of uncertainty: early resolution of uncertainty is
preferred if and only if o > p. Again, we refer to Epstein and Zin (1989) for in-depth
discussion.

We now turn to discuss whether EZ can accommodate Stochastic Impatience and
RATL. Since this model is defined over consumption streams, we use the definitions
of Stochastic Impatience and RATL for streams as introduced in Appendix [B] In this
setup we also need to specify when the uncertainty is resolved: for all the lotteries
in question, we assume that the uncertainty is resolved immediately after the current
period.

We first show that EZ allows for violations of RSTL although it cannot accom-
modate RATL:
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Proposition 4. Under EZ, for any B, p, and x, there exists &, p, > max{p, 1} such
that 8¢z 4=0.50(34—1) + 0.50 (5 41y if and only if & > &, g,. Moreover, limg @), =
+00.

Proposition 4| shows that, controlling for discounting (3, elasticity of intertemporal
substitution 1/p, and the size of the prize x, more risk averse individuals are more
likely to prefer the safe lottery.[7_8] That is, as with GEDU, there is also a connection
between risk aversion over time lotteries and risk aversion over temporal lotteries
in EZ. Moreover, the risky lottery is always preferred if the utility function is less
concave than a logarithmic function (o < 1) and if a < pF_g]. Proposition {4] also
shows that lim,\ o &, 3, = +00, which means that, when the prize z is small enough,
the risky time lottery is always preferred. That is, EZ preferences cannot be RSTL.

Our main result is that EZ cannot accommodate violations of RSTL without also
violating SI:

Proposition 5. Suppose that = admits an EZ representation. Then, if = satisfies
Stochastic Impatience, it also satisfies RSTL.

This result shows that even in this richer setting, the impossibility result estab-
lished with Theorem [2| continues to hold. The intuition is very similar to the one
previously given: the extra “intertemporal” risk aversion needed to accommodate
RATL is going to generate a violation of Stochastic Impatience. We refer to Dil-
lenberger et al. (2017) for an in-depth discussion of the implications of Stochastic
Impatience for EZ.

D Proofs of the Results in the text

D.1 Proof of Theorem (1

Necessity is immediate. To show sufficiency, note that by Continuity, for all (z,t) €
[w, b] x T the sets {(z,t) € [w,b] X T : 4y = Oy} and {(z,t) € [w,b] X T : 0y =
¢z} are closed in the product topology on [w,b] x T'. Define =’ on [w,b] x T" by
(x,s) =" (y,t) if and only if 0,5 >= d(,), and note that >’ satisfies Axioms A0-A5
in Fishburn and Rubinstein (1982). Then, by Theorem 2 in that paper, there exist
B € (0,1) and a strictly increasing and continuous u : [w, b] — R, ; such that

5(:13,5) = 5(y,t) < (1’,8) i/ (yvt) And Bsu(y) > /Btu(l‘)

28That is, o/ > a implies that if the decision maker with coefficient of risk aversion o prefers the
safe lottery over the risky one, so does the decision maker with o’ (holding other parameters fixed).

29Gtarting with Kreps and Porteus (1978), a large literature has studied preferences over the
timing of resolution of uncertainty. With EZ, early resolution of uncertainty is preferred if and only
if a > p (Epstein et al., |2014). Proposition [4] then implies that this condition is also needed for the
safe time lottery to be preferred.

30Recall that our domain includes only strictly positive prizes, so that we do not add the require-
ments for u on weakly negative outcomes.
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By Independence and Continuity there exists U : [w,b] x T'— R such that
p=q = E(U) 2 E, ().

By Continuity, U is also continuous.

It follows that for all (z,s),(y,t) € [w,b] x T, f*u(x) > Llu(y) if and only if
U(x,s) > Uly,t). Let F(x,t) = fu(x). The existence of ¢ : F([w,b] x T) — R
such that U(z,t) = ¢(F (z,t)) follows from standard arguments, as both U and F
represent the same preferences. The continuity of ¢ is also immediate. We are left
with showing that such ¢ is strictly increasing. Suppose not. Then there exists
a,b € F([w,b] x T) such that a > b but ¢(a) = ¢(b). Since a,b € F([w,b] x T), there
exist (z,t), (y,s) € [w,b] x T such that F(z,t) =a > b= F(y,s), thus dus > 6y,
But since ¢(a) = ¢(b) then we must have U(x,t) = Ul(y,s), thus 6y ~ 0(y.s), @
contradiction. [}

D.2 Proof of Proposition
Let r, be a time lottery which yields z in a random time ¢ with E, (t) = ¢t. Then

V(own) = o (8u())

and
V(r,) = B¢ (8'u(x))

Note that if ¢ = In, then V(d(, 7)) = V(r,) = tIn f+ Inu(z). Since the distribution of
t is a mean-preserving spread of the distribution of ¢, Jensen inequality implies that
V() > (resp., <) V(r,) whenever there is a concave (resp., convex) function h
such that ¢ = holog.

Since r, was arbitrary, the concavity (resp., convexity) of g should be global to
ensure no violation of RATL (resp., RSTL). [

D.3 Proof of Proposition

That > is RSTL if an only if ¢ is a convex transformation of In has been established
in Proposition [1| of Section |3} We now show that > displays Stochastic Impatience
if an only if ¢ is a convex transformation of In. To see this, let t' = (5, 52, ..., 5'n)
for € (0,1) and t; < ty < ... < tp, and X' = (u(x1),u(x3),...,u(x,)) for strictly
increasing and positive-valued u over X and z; > x5 >,... > z,,. Let m(t’) be a
permutation of t’ and 7, (x’) be a permutation of x'. If ¢ = In then, and only then,
S L) ~ Z?ﬂ%5(%/—1@),%—1@))- But note that f (u(z), 5) := g(In (u(z), %)) is
supermodular if and only if ¢ is convex. By [Becker (1973)), supermodularity of f is
both a necessary and sufficient condition for the positive assortative pairing — that
is, a positive correlation in sorting between the values of u(x) and S —- to maximize
the sum of the f (u(z), 5") terms across all possible permutations. |
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D.4 Proof of Theorem [2

Let t] < ty < t3 with t9 = % and for some prize x consider the two time lotteries
O(zts) and 7, = 0.50(54,) + 0.50(z,4,). According to the GL-BDU representation we
have

V(0 t2)) = o(D(t2)u(x))
and
V(ry) = m(0.5)¢(D(tr)ul(x)) + (1 — m(0.5))¢(D(ts)u(x))
Let 7(0.5) be the value such that V(d(;4,)) = V(r5), or

P(D(t2)u(r)) — ¢(D(ts)u(x))
P(D(t)u(x)) — ¢(D(ts)u(x))

The richness condition D(t;)u(w) < D(t3)u(b) guarantees that either (i) there is
x’ < xsuch that D(t))u(z") = D(t2)u(x); or (i) there is ' > x such that D(t3)u(z') =
D(ta)u(z); or both.

Consider first case (1). Take 2’ < x such that D(t1)u(z’) = D(t2)u(x). Let
P = 0.50(z¢) + 0.50(2 1,) and ¢ = 0.50(7 4, + 0.50(z,1,). We have

V(p) = 7(0.5)p(D(tr)u(x)) + (1 = (0.5))p(D(t2)u(z"))

7(0.5) =

€ (0,1)

and

V() = o(D(t2)u())
Let 7@ be the value such that V(p) = V(q), or

~(05) = (D(t2)u(z)) — ¢(D(tz)u(2’))
¢(D(tr)u(x)) — ¢(D(t2)u(z'))

Note that 7(0.5) > 77/(0?) implies V(p) > V(q) while 7(0.5) < 7(0.5) implies
V(0(z1s)) > V(r). Since ¢ is strictly increasing, we will be done if we show that

€ (0,1)

D(t2)u(z") < D(t3)u(z), since this implies that 7T/(0\5) > m(0.5), so that Stochastic
Impatience and RATL contradict one another. But by Strong Diminishing Impatience
and the definition of 2’ we have

or D(to)u(z") < D(t3)u(x).

If case (i) is not satisfied, then consider now case (i7). Take 2’ > x such that
D(tz)u(z") = D(ta)u(x). Let p = 0.56 (5 1,) + 0.50(3,15) and q¢ = 0.56(z,1,) + 0.50(3 1)
We have

V(p) = m(0.5)p(D(t2)u(z’)) + (1 = 7(0.5))(D(ts)u(x))
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and

Let 7@ be the value such that V(p) = V(g

), or
—— 4(D(tule)) — H(D(ts)u(x))
05 = BBy — o(DE)u) - Y

If D(ty)u(2’) < D(t1)u(x) then we have 7(0.5) > 7(0.5). By Strong Diminishing
Impatience and the definition of 2’ we have
D(ty) < D(ts) _ u(z’)

D(tz) = D(ts)  u(x)
or D(to)u(z") < D(t;)u(x). This completes the proof. |

E Experiment: additional information

A total of 197 subjects took part in an experiment run at the Wharton Behavioral
Lab at the Wharton School of the University of Pennsylvania. We used a paper-and-
pencil questionnaire. Some questions involved immediate payments, that were made
at the end of each session. Others involved payments to be made in the future; for
these, subjects were told that their payment would be available to pick up from the
lab starting from the date indicated F]

We ran two treatments: ‘long delay’ and ‘short delay,” labeled Long and Short in
what follows. A total of 91 and 105 subjects participated in each, respectively. The
only difference was the length of delays in some of the questions: in the Long treat-
ment, some payments were delayed by up to 12 weeks, while in the Short treatment
the maximum delay was 5 weeks [

31 All payment dates were expressed in weeks, with the goal of reducing heterogeneity in transaction
costs between the dates, under the assumption that students have a regular schedule each week
during the semester. An email was then sent to remind them of the approaching date (they were
told they would receive it). Subjects were also given the contact details of one of the authors,
at the time a full-time faculty at Wharton. Returning to the lab to collect the payment involve
transaction costs, a typical concern. However, in our experiment all payments related to time
lotteries were designed to take place in future dates, thus holding constant the transaction cost.
A second concern is that our questions involve payments of different amounts of money over time,
which may be problematic (Augenblick et al., forthcoming). However, typical issues do not apply to
our experiment (for example, the curvature of the utility function is inconsequential on ranking of
time lotteries, as we have seen). Moreover, as we shall see we are interested in studying the relation
between risk aversion over time lotteries and atemporal risk aversion. Since atemporal risk aversion
is only defined for monetary lotteries, we focus our experiment on lotteries over money and leave for
future research an investigation of time lotteries involving different objects.

32Testing both treatments allows us to study long times spans, where differences between time
lotteries become more pronounced; as well as shorter ones, where students’ schedules are more stable,
reducing heterogeneous sources of variation. In the Short version all payments were scheduled before
the end of the semester; no payment was scheduled during exam week.
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Table 2: Questions in Part I

Long Delay Short Delay
Q. $8  Option 1 vs.  Option 2 $$  Option 1 vs.  Option 2
1 %20 2wk 5% 1 wk, 26% 5wk  $20 2wk 75% 1 wk, 25% 5 wk
2 $15 3wk 90% 2 wk, 10% 12 wk $15 3wk 50% 1 wk, 50% 5 wk
3 $10 2wk 50% 1 wk, 50% 3 wk $10 2wk 50% 1 wk, 50% 3 wk
4 $20 50% 2 wk, 50% 3 wk 50% 1 wk, 50% 4 wk  $20 50% 2 wk, 50% 3 wk 5% 2 wk, 25% 4 wk
5 $15 50% 2 wk, 50% 5 wk 75% 1 wk, 25% 11 wk  $10 50% 2 wk, 50% 5 wk 75% 3 wk, 25% 5 wk

Notes. Each lottery pays the same prize with different delays (in weeks). Subjects in the long delay
treatment chose between ‘Option 1" and ‘Option 2, Long Delay.” Those in the short delay treatment
chose between ‘Option 1’ and ‘Option 2, Short Delay.’

The experiment has three parts@ Part T asks subjects to choose between different
time lotteries and it is the main part of our experiment. For example, the first question
asked them to choose between $15 in 2 weeks or $15 in 1 week with probability .75 and
in 5 weeks with probability .25. Subjects answered five questions of this kind. Table
lists the questions asked in each treatment. All questions offered two options that
paid the same prize at different dates, where the distribution of payment dates of one
option was a mean preserving spread of that of the other. In three questions, one of
the options had a known date; in the others, both options had random payment dates.
All subjects received the same first question (Question 1 in Table [2) in a separate
sheet of paper. The answer to this question is a key indication of the subjects’
preferences, as it captures their immediate reaction to this choice, uncontaminated
by other questions /]

Parts II and III use the multiple price list (MPL) method of Holt and Laury| (2002)
to measure time and risk preferences separatelyﬂ Part Il measures standard time

33Subjects received general instructions and specific instructions about the first part when they
entered the room. Separate instructions were distributed before each of the following parts. The
order of parts and of questions was partly randomized, as we discuss below.

340One potential concern with offering a list of similar questions is that subjects may ‘try’ different
answers even if they have a mild preference in one direction with some hedging concern in mind
(Agranov and Ortoleval 2017]).

9°In a MPL, each question has a table with two columns and multiple rows. The subject is asked
to make a choice in each row. One of the options is always the same, while the other gets better and
better as we proceed down the rows. These questions are typically interpreted as follows: if a subject
chooses the option on the left for all rows above a point, and the option on the right below that point,
then the indifference point should be where the switching takes place. Subjects who understand the
procedure should not switch more than once. This is indeed the case for the large majority of
answers: 13% of subjects gave a non-monotone answer in at least one of the 12 MPL questions, and
only 4.6% gave non-monotone answers in more than one. These are substantially lower numbers (i.e.,
fewer violations) than what previous studies have found (Holt and Laury, 2002)). The non-monotone
behavior did not concentrate in any specific question. Following the typical approach, these answers
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Table 3: Questions in Part II

Long Delay Short Delay
Q. Option 1 Option 2 Option 1 Option 2
6  $10 today z in 2 wk $10 today z in 2 wk
7  $10in 1 wk z in 2 wk $10 in 1 wk x in 2 wk
8 $10in 1 wk zin 5 wk $10 in 1 wk T in 3 wk
9 $10in 1 wk z in 12 wk $10 in 1 wk z in 4 wk
10 $20 in 4 wk $20, x% in 2wk, (1-x)% in 12wk  $25 in 3 wk $25, x% in 2wk, (1-x)% in 5wk
11 $25in 2 wk $25, x% in 1wk, (1-x)% in 5wk $25 in 2 wk $25, x% in 1wk, (1-x)% in 5wk

Notes. Questions 6-9 ask the amount $x that would make subjects indifferent between each option.
Questions 10-11 ask the probability % that would make subjects indifferent between each option. These

amounts were determined using MPL.

Table 4: Questions in Part III

Q. Option 1 vs.  Option 2

12 $15 x% of $20, (1-x)% of $8
13 50% of $15, 50% of $8 x% of $20, (1-x)% of $8
14 20% of $15, 80% of $8 x% of $20, (1-x)% of $8
15 $20 x% of $30, (1-x)% of $5
16 50% of $20, 50% of $5 x% of $30, (1-x)% of $3
17 10% of $20, 90% of $5 x% of $30, (1-x)% of $3

Notes. Questions ask the probability % that would make subjects indifferent between each option,

determined using MPL. All payments were scheduled for the day of the experiment.

preferences as well as attitudes towards time lotteries (Question 10 and 11). Part III
measures atemporal risk preferences, with payments taking place immediately at the
end of the session. These include questions to measure regular risk aversion, as well
as Allais’ common-ratio-type questions, that allow us to test and quantify violations
of Expected Utility theory. Tables|3|and {4]include the list of questions asked in these
two parts.

At the end of the experiment one question was randomly selected from Parts I, 11,
and III for payment. The randomization of the question selected for payment, as well
as the outcome of any lottery, was resolved with diceﬂ Crucially, all uncertainty was
resolved at the end of the experiment, including the one regarding payment dates.

are disregarded. Alternatively, we could have dropped any subject that exhibits a non-monotone
behavior at least once; this leave our results essentially unchanged.

36 Specifically, one participant was selected as ‘the assistant,” using the roll of a die. This subject
was then in charge of rolling the die and checking the outcomes. This was done to reduce the fear
that the experimenter could manipulate the outcome. All was clearly explained beforehand.
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The instructions explicitly stated that subjects would know all payment dates before
leaving the room.

The order of parts and of questions within parts was partly randomized at a session
level. Because Part I is the key one, all subjects saw it first to avoid contamination.
For the same reason, within Part I, Question 1 was always the same. All other
elements were randomized 7| We find no significant effects of ordering ¥

We conclude by noting that our incentive scheme, the random payment mecha-
nism, as well as the multiple price list method, are incentive compatible for Expected
Utility maximizers, but not necessarily for more general preferences over riskﬂ Since
this is the procedure used by most studies, a significant methodological work has
been done to examine whether this creates relevant differences, with some reassuring
results ]

E.1 Results

We start from the main variable of interest: risk attitude towards time lotteries. This
can be measured in three different ways. First, we can measure it using Question 1
of Part I, the first question that subjects see. Second, we can look at the answers to
all five questions in Part I and ask whether subjects exhibited RATL in the majority
of them (for the purpose of this section, we say that subjects are RATL in a given
question if, in that question, they chose the option with the smallest variance of the

37Specifically: for questions in Part I other than the first, half of the subjects answered questions
in one specific order (the one used above), while the other half used a randomized order. In each of
them, which option appears on the left and which on the right was also determined randomly. The
order of Parts II and III was randomized. For both parts, it was determined randomly whether in the
MPL the constant option would appear on the left or on the right. This was done (independently)
for each part, but not for each question within a part: in Part II or III the constant option of
the MPL was either on the left or on the right for all questions of that part. This is typical for
experiments that use the MPL method, as it makes the procedure easier to explain.

38The only exception is that out of the five questions in the first part, subjects have a significant
(moderate) preference for the option on the right in the second question. While this is most likely a
spurious significance (due to the large number of tests run), the order was randomized for all sessions
and thus this should have no impact on our analysis.

39Holt| (1986) points out that a subject who obeys the Reduction of compound lotteries but
violates the Independence axiom may make different choices under a randomly incentivized elicitation
procedure than he would make in each choice in isolation. Conversely, if the decision maker treats
compound lotteries by first assessing the certainty equivalents of all first stage lotteries and then
plugging these numbers into a second stage lottery (as in|Segal,|1990)), then this procedure is incentive
compatible. |Karni and Safra) (1987) prove the non-existence of an incentive compatible mechanism
for general non-Expected Utility preferences.

49Beattie and Loomes (1997), Cubitt et al.|(1998)) and Hey and Lee (2005) all compare the behavior
of subjects in randomly incentivized treatments to those that answer just one choice, and find little
difference. Also encouragingly, Kurata et al,| (2009)) compare the behavior of subjects that do and
do not violate Expected Utility in the Becker-DeGroot-Marschak procedure (which is strategically
equivalent to MPL) and find no difference. On the other hand, [Freeman et al.| (2015) find that
subjects tend to choose the riskier lottery more often in choices from lists than in pairwise choices.
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payment date). A third way is to look at the answers given in Questions 10 and 11
of Part II, that compute RATL using MPL.

Table [5| presents the percentage of RATL answers for each of these measures.
The results are consistent: in most questions, especially in the Long treatment, the
majority of subjects are RATL. Note that most subjects are still RATL when both
options are risky but one of the options is a mean preserving spread of the other
(Questions 4 and 5). Thus, the data suggest an aversion to mean preserving spreads,
not simply an attraction towards certainty.

Table 5: Percentage of RATL in
each question
Table 6: Frequency of RATL answers in Part I

Question Long Short :
Frequency o L Del Short Del
1 6571 56.04  RATL ons oAy oo
2 50.48 54.95 Percent Cum. Percent Cum.
3 48.57 37.36 5 5
4 64.76  38.46 0 .86 .86 9.89 9.89
5 73.33  52.75 1 9.52 12.38 16.48 26.37
2 22.86 35.24 24.28 50.55
Majority in 1-5 64.76 49.45 3 23.81 59.05 26.37 76.92
10 44.93  54.44 4 28.57 87.62 19.78 96.70
11 5798 4111 5 12.38 100.00 3.30 100
Either in 10 or 11 64.07 66.66

In most questions, RATL is stronger in the Long rather than in the Short treat-
ment. This is intuitive: when the time horizon is relatively short, the difference
between the options decreases and subjects should become closer to being indifferent
— and their choices closer to an even split. In the Long treatment the difference in
time horizon increases, and so does the differences between the options. While the
standard model suggests that this should push more strongly towards RSTL, the
opposite holds in our data.

While most answers are consistent with RATL, it could be that a non-trivial
fraction of our subjects still consistently chooses the risky option, as predicted by
EDU. Table [0 shows that this is not the case: the fraction of subjects who does so is
minuscule in the Long treatment (2.86%) and very small in the Short one (9.89 %).
By contrast, in the Long treatment almost 41% give risk averse answers at least 4 out
of 5 times, and 59% at least three times. (These numbers are about 23% and 48.45%
in the Short treatment.)

Overall, these finding are not compatible with RSTL and thus with EDU: only
a minuscule fraction of subjects is consistently risk seeking over time lotteries, while
the majority is tends to be risk averse over time lotteries. Thus, the assumption of
risk seeking overt time lotteries, implicitly present when using EDU, does not seem
to be have a positive appeal.
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E.2 RATL, Convexity, Expected Utility, and Risk Aversion

We now turn to analyze the relationship between RATL and convex discounting,
violations of Expected Utility, and atemporal risk aversion. Under EDU, all subjects
with convex discounting should be RSTL; in turn, this means that such tendency
should be negatively related to convexity of the discount function. Under GEDU,
RATL should be positively correlated with atemporal risk aversion. Finally, if RATL
were due to violations of Expected Utility, as suggested by Chesson and Viscusi (2003)
and Onay and Onciiler| (2007), then it should be linked to certainty bias and violations
of Expected Utility.

We quantify convexity of the discount function, violations of Expected Utility,
and atemporal risk aversion using the MPL measures collected in Parts IT and III.
We determine which subjects have convex discounting based on their answers in
Part II (see Questions 7, 8, and 9 in Table . Unsurprisingly, we find that 82% of
our subjects exhibit it (this is an established finding). From the questions in Part
ITI we can construct two related measures of violations of Expected Utility. First,
we can determine if subjects exhibit certainty bias (Kahneman and Tversky, |1979),
which is implied by pessimistic probability weighting['I| We find that a small number
of subjects exhibit it (15.71%).@ Second, we can use the same three questions to
determine whether the subjects give answers that are jointly consistent with Expected
Utility. Since this is a very demanding requirement — it is well-known that these
measures are very noisy —, we consider as “approximately Expected Utility” those
subjects who would abide by Independence across all three questions if we changed
their answer in at most one of the lines. These are 39.89% of the pool.

Table [7] shows that, based on the four different measures, subjects are still RATL
in each of the subsamples above. The table also shows the results of Chi-squared
tests on whether subjects in each of subsample are statistically different from those
outside of it. We find a majority of RATL for subjects who have convex discounting,
who have no certainty bias, who are “Approximately EU.” In most cases there is

41 This could be done using Questions 12 and 13, or 12 and 14 (see Table [d). Suppose that in
Question 12 the subject switches at z15, while in Question 13 she switches at x13. If the subject
follows Expected Utility, we should have 2z13 = x12. A certainty-biased subject would instead have
12 > 2x13; because she is attracted by the certainty of Option 1 in Question 12, she demands
a high probability of receiving the high prize in Option 2 to be indifferent. Thus, the answers to
Question 12 and 13 allow us to identify subjects who are certainty biased and to quantify it. In
what follows, when we need to identify subjects who are certainty biased, we use this measure. A
similar measure can be obtained from the answers to Questions 12 and 14: the results using it are
essentially identical and are reported in Section When we need to quantify certainty bias (in
the regression analysis), we use instead the principal component of the two measures, which should
reduce the observation error (essentially identical results hold using either of the two measures or
their average).

42These small numbers are not surprising: it is a stylized fact that certainty bias is less frequent
when stakes are small, as in this part of our experiment (Conlisk}, |1989; |Camerer| [1989; |Burke et al.|
1996; |[Fanl 2002} Huck and Miiller}, 2012)). See the discussion in [Cerreia-Vioglio et al.| (2015]).
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Table 7: Proportion of RATL subjects

Sample Convex Discounting  Approximately Exp. Ut. No Certainty Bias
Treatment Long  Short Long  Short Long  Short
Question 1 67.78 50.70* 66.67  60.61 67.50  55.00
Majority in Q1-5 65.56  43.66** 64.29  60.61* 68.75*  50.00
Question 10 46.07 52.86 54.76*  68.75** 47.50  51.90
Question 11 57.95 44.29** 64.29  56.25 54.43  48.10
Observations 90 71 42 33 80 80

Notes. The first row measures RATL using Question 1. The second row identifies as RATL subjects
who chose the safe option in the majority of Questions 1-5. The third and fourth rows use answers
to MPL Questions 10 and 11. Columns present the proportion of RATL subjects in the subsamples
of subjects with convex discounting, approximately Expected Utility, and those with no Certainty
Bias as measured using Questions 12 and 13. * and ** denote significance at the 10% and 5% level

in a Chi-squared test of whether each subset is different from its complement.

no significant difference in the proportions of RATL between these groups and their
complement. These results are in direct contrast with the predictions of EDU, and
with the explanation of RATL suggested by |Chesson and Viscusi (2003)) and [Onay
and Onciiler (2007) based on probability weighting: according to the former, there
should be no RATL with convex discounting; according to the latter, there should be
no RATL without certainty bias, or for subjects that (approximately) follow Expected
Utility. In Section [E.3| we present regression analysis to confirm these results, where
we show how certainty bias or convexity of discounting is generally not related, or
poorly related, to the tendency to exhibit RATL: see Table [10]

All our findings thus far are compatible with the GEDU model. However, as
we pointed out GEDU makes one additional prediction, which allows us to test it
in our data: RATL should be related to standard atemporal risk aversion. Table
presents the coefficients from a Probit regression with our four RATL measures as
dependent variables and the degree of risk aversion (as measured in Question 12) as
the independent variable. Consistently with the model, the coefficients are positive
and, with the exception of the Short treatment in Question 1, they are all statistically
significant at the 5% level. (Similar results hold constructing risk aversion from other
questions, e.g., Question 15, or using a linear probability model.)

To summarize, we find that subjects who exhibit convex discounting, no certainty
bias, or are approximately Expected Utility also have a tendency to be RATL. In fact,
the proportions in these groups are almost identical to the one in the overall popu-
lation. Regression analysis shows that RATL is unrelated to violations of Expected
Utility and generally unrelated to convexity. It is, however, related to (atemporal)
risk aversion. These findings are not compatible with RSTL, EDU, or to explanations
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Table 8: Probit Regressions: RATL and Atemporal Risk Aversion

Dep. Variable RATL Q.1 RATL Majority Q.1-5 RATL Q.10 RATL Q.11
Treatment Long Short Long Short Long Short Long Short
(Probit) (1) (2) 3) (4) (5) (6) (7) (8)
Risk Aversion, .336** .175 308*  .341** A59*F* - 435%*F DT 2397
Atemporal (2.41)  (1.30) (2.27)  (2.40) (3.27)  (2.91) (3.81)  (1.75)
Constant .07 -.01 .07 -.34* -.60%** =27 =37 -.19
(0.38)  (-0.07) (0.38)  (-1.79) (-3.01)  (-1.47) (-1.87)  (-1.08)
Pseudo-R? 0.047 0.014 0.040 0.049 0.083 0.076 0.121 0.025
Observations 101 90 101 90 101 89 100 89

Notes. Dependent variables are indicated in the first row. Atemporal risk aversion measure is

obtained from Question 12. RATL measures were obtained from Question 1 (Regressions 1 and 2),

having chosen the safe option in the majority of Questions 1-5 (Regressions 3 and 4), and MPL
* k%

Questions 10 and 11 (Regressions 5-8). Coefficients in brackets are z-statistics. *, **, and *** denote
significance at the 10%, 5% and 1% level.

based on probability weighting, but they are compatible with GEDU.
E.3 Additional Analysis

Table 9: Proportion of RATL subjects

Sample No Cert. Bias (12-13) No Cert. Bias (12-14)
Treatment Long  Short Long Short
Question 1 67.50  55.00 62.50 54.17
Majority in Q1-5 68.75* 50.00 63.89 47.22

MPL in Q10 47.50  51.90 45.83  50.00

MPL in Q11 54.43  48.10 56.94 48.61
Observations 80 80 72 72

Notes. Same as Table m including certainty bias measure from Questions 12 and 14 (see footnote

).
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Table 10: Probit Regressions: RATL and Convexity and Certainty Bias

Dep. Variable  RATL Q1 RATL Majority Q1-5 RATL Q10 RATL Q11
Treatment Long Short Long Short Long Short Long Short
(Probit) (1) (2) (3) (4) (5) (6) (7) (8)
Certainty Bias  -.25* .18 -.20 .18 -.03 A4F .16 .23
(-1.94) (1.17) (-1.60) (1.20) (-.25) (2.77) (1.42)  (1.52)
Convexity 4.27* -4.45 .06 -11.10*** 3.47 -1.77 .99 =773
(1.82)  (-1.29) (.03) (-2.86) (1.64) (-1.29) (.46) (-2.16)
Constant .19 .28* .39 .19 -.26 .16 .19 12
(1.or) (1.82) (2.15)  (1.20) (-1.52)  (1.03) (1.08)  (.79)
Pseudo- R? .06 .02 .02 .01 .02 .07 .02 .06
Obs. 92 86 92 86 92 85 92 85

Notes. Dependent variables are indicated in the first row. Coefficients in brackets are z-statistics. *

** and *** denote significance at the 10%, 5% and 1% level.

)

Table 11: Probit Regressions: RATL and Atemporal Risk Aversion

Dep. Var. RATL Q.1 RATL Majority Q.1-5
Treatment  Long Short Long Short
(Probit) (1) (2) (3) (4) (5) (6) (7) (8)
Cert. Bias -.19 18 -.21 12
(-1.56) (1.20) (-1.71) (0.82)
Convexity 3.73* -4.17 -.39 -10.60***
(1.68) (-1.25) (-0.19) (-2.83)
Constant .22 A40** 25* .19 A1 3715 .01
(1.35) (2.93) (1.67) (1.41) (2.50) (2.75) (1.02) (.09)
Pseudo-R? .02 .02 .01 .01 .01 .03 .07 .01
Obs. 101 95 88 88 101 95 88 88

Notes. Same as Table[I0] Each regression excludes one dependent variable.
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Table 12: Probit Regressions: RATL and Convexity and Certainty Bias

Dep. Var. RATL Q.10 RATL Q.11
Treatment  Long Short Long Short
(Probit) (1) (2) (3) (4) (5) (6) (7) (8)
Convexity 3.63* -1.59 1.13 -7.59**

(1.73) (-2.83) (-0.53) (-2.20)
Cert. Bias -.06 A5 19* 18

(-0.52) (2.84) (1.71) (1.23)

Constant -.29* -.11 13 13 12 .24% 12 .18

(-1.79) (-.88)  (.88) (.92)  (0.75)  (1.80) (.81) (1.23)
Pseudo-R? .02 .01 .01 .07 .01 .02 .04 .01
Obs. 101 95 87 87 101 95 87 87

Notes. Same as Table[I0] Each regression excludes one dependent variable.
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