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Abstract

Are nominal prices sticky because menu costs prevent sellers from continuously
adjusting their prices to keep up with inflation or because search frictions make
sellers indifferent to any real price over some non-degenerate interval? The paper
answers the question by developing and calibrating a model in which both search
frictions and menu costs may generate price stickiness and sellers are subject to
idiosyncratic shocks. The equilibrium of the calibrated model is such that sellers
follow a (Q,S,s) pricing rule: each seller lets inflation erode the effective real value
of the nominal prices until it reaches some point s and then pays the menu cost and
sets a new nominal price with an effective real value drawn from a distribution with
support [S,Q], with s < S < Q. Idiosyncratic shocks short-circuit the repricing
cycle and may lead to negative price changes. The calibrated model reproduces
closely the properties of the empirical price and price-change distributions. The
calibrated model implies that search frictions are the main source of nominal price
stickiness.
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1 Introduction

The standard explanation for nominal price stickiness is menu costs (see, e.g., Sheshinki

and Weiss 1977, Caplin and Leahy 1997, Dotsey, King and Wolman 1999, etc. . . ). That is,

sellers do not constantly adjust their nominal prices to keep up with inflation because, in

order to change their nominal prices, they need to pay some fixed adjustment cost (a menu

cost). An alternative explanation for nominal price stickiness is search frictions (see, e.g.,

Head et al. 2012, Wang et al. 2017). That is, when the outcome of the process by which

buyers search for sellers is such that some buyers only come into contact with one seller and

others come into contact with multiple sellers, the equilibrium has the property that the

profits of a seller are maximized at any price over some non-degenerate interval. Thus, an

individual seller is perfectly happy to let inflation erode the real value of its nominal price,

as long as this real value remains on the profit-maximizing interval. Whether nominal

price stickiness is due to menu costs or search frictions is critical to understand the extent

to which a monetary authority can “exploit”the stickiness of nominal prices to affect the

real side of the economy. Indeed, if menu costs are the source of stickiness, a monetary

authority can exert some control over the real prices. For instance, by increasing the

quantity of money, the monetary authority can lower real prices as some sellers will not

be willing to pay the menu cost to adjust their prices. If, on the other hand, search

frictions are the source of nominal price stickiness, a monetary authority cannot exploit

such stickiness. If the monetary authority increases the quantity of money, the equilibrium

distribution of prices will respond to fully neutralize the monetary injection leaving real

prices unaffected. Some individual sellers may not change their prices as a matter of

indifference, but the overall nominal price distribution must immediately reach its new

equilibrium.

The first attempt at answering the question of whether price stickiness is due to

menu costs or search frictions is made by Burdett and Menzio (2017). Burdett and

Menzio (2017) develop a model which allows for both the menu cost explanation of price

stickiness—by positing that sellers may need to pay a menu cost to adjust their nominal

price—and the search frictions explanation of price stickiness—by positing that the outcome

of the search process is such that some buyers may come into contact with only one seller

while others may come into contact with multiple sellers. Burdett and Menzio (2017) find

that, as long as the fractions of buyers with one and multiple contacts are both positive

and menu costs are not too large, the equilibrium is such that sellers follow a (Q,S,s)

pricing rule. According to this rule, each seller lets inflation erode the real value of its

nominal price until it reaches some point s. Then the seller pays the menu cost, changes

the nominal price so that the real value of the nominal price is randomly drawn from some
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distribution with support [S,Q], with Q > S > s. In a (Q,S,s) equilibrium, both search

frictions and menu costs contribute to the stickiness of nominal prices. As inflation drives

the real value of the price from Q to S, the seller would not want to change its nominal

price even if it could do it for free because, due to search frictions, the seller’s profit is

maximized everywhere over the interval [S,Q]. As inflation drives the real value of the

price from S to s, the seller would like to change its nominal price but chooses not to so

as to avoid paying the menu cost. Burdett and Menzio (2017) then calibrate the model to

match the average duration of prices and the average dispersion of prices in the data and

find that, indeed, its equilibrium is of the (Q,S,s) variety. They then use the calibrated

model to measure how much of the price stickiness that we observe in the data is due

to menu costs and how much to search frictions. Their finding is very stark: almost all

of price stickiness is due to search frictions and almost none of price stickiness is due to

menu costs.

The main flaw of Burdett and Menzio (2017) is that their model predicts a grossly

counterfactual distribution of prices and a grossly counterfactual distribution of price

changes. Their model predicts a distribution of prices with a decreasing density, while

empirically the price distribution is hump-shaped (Kaplan and Menzio 2015). Their model

predicts a distribution of price changes featuring only positive changes, while empirically

the price change distribution features both positive and negative changes (Nakamura

and Steinsson 2008). This flaw of Burdett and Menzio (2017) is not only problematic

on its own, but it also casts some doubt on their measurement of the contribution of

menu costs and search frictions to price stickiness. In fact, the observation that as many

as 30% of price changes are negative suggests that sellers have additional motives for

changing their prices besides keeping up with inflation. If a model abstracts from these

additional motives—as is the case in Burdett and Menzio (2017)—then such a model will

likely underestimate the magnitude of menu costs and, in turn, the contribution of menu

costs to nominal price stickiness.

In this paper, we generalize the model of Burdett and Menzio (2017) to allow for

seller-specific shocks. In our model, sellers are subject to shocks to the value of the

amenities that they offer to their customers (e.g., quality of the salesmen, lighting in

the store, etc. . . ). The value of the amenities offered by a seller increases proportionally

the customers’utility from purchasing the good, the seller’s cost of producing the good,

and the seller’s menu cost. Shocks to the amenity value give sellers a second motive for

changing their nominal prices besides keeping up with inflation and can induce sellers to

actually lower their nominal prices. Shocks to the amenity value introduce an additional

source of price dispersion which we empirically identify with the dispersion of the store-
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component of prices.

In the first part of the paper, we define and characterize the properties of a (Q,S,s)

equilibrium for our model. We show that the structure of the (Q,S,s) equilibrium is as

simple as in Burdett and Menzio (2017), even though sellers are heterogeneous. In fact,

a buyer’s decision on where to purchase is based on the ranking of sellers’effective real

prices (which are defined as real prices divided by amenity values). Similarly, a seller’s

pricing strategies is only based on the effective real value of its nominal price, not on

the real value of the price and the value of the amenities separately. As a result, in a

(Q,S,s) equilibrium, every seller follows the same pricing rule irrespective of the value of

its amenities. The seller lets inflation erode the effective real value of its price until it

reaches some point s, then pays the menu cost and chooses a new nominal price so that

the effective real value of the price is a random draw from some distribution with support

[S,Q]. The cyclical repricing process gets short-circuited when the seller is hit by the

amenity shock. In a (Q,S,s) equilibrium, both menu costs and search frictions contribute

to nominal price stickiness. As inflation drives the effective real value of the nominal price

from Q to S, the seller has no desire to change its price as its profit remains maximized.

Only as inflation drives the effective real value of the nominal price from S to s, the seller

would like to change its price but does not to avoid paying the menu cost.

In the second part of the paper, we calibrate our model. We choose the parameter

values so as to match the extent of price dispersion observed in the data, the extent of

price stickiness observed in the data and the fraction of price changes that, in the data,

are negative. We find that the calibrated model closely reproduces the properties of the

empirical distribution of prices and of the empirical distribution of price changes, even

though it has only a handful of parameters. In particular, the model generates a price

distribution that, as in the data, is hump-shaped and leptokurtic. Further, the model

generates a distribution of price changes that, as in the data, features both positive and

negative price changes, both small and large price changes and is leptokurtic. We then

use the calibrated model to break down the observed stickiness of nominal prices into a

component due to menu costs and a component due to search frictions. We find that,

in agreement with Burdett and Menzio (2017), search frictions are the main source of

price stickiness. However, we find that menu costs contribute to a larger fraction of price

stickiness than in Burdett and Menzio (2017).

Our model adds seller-specific shocks to the (Q,S,s) model of Burdett and Menzio

(2017) in order to account for the observation that a large fraction of price changes are

negative and, hence, cannot be driven by the sellers’desire to keep up with inflation. The

(Q,S,s) model of Burdett and Menzio (2017) is not the only model that cannot rationalize
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negative price changes absent idiosyncratic shocks. Indeed, the same is true of all (S,s)

models. The (S,s) literature typically rationalizes negative price changes by introducing

shocks to the cost that a particular seller has to bear to produce a given good (see,

e.g., Golosov and Lucas 2007 or Midrigan 2011). Our approach is different because we

introduce shocks to the value of the services offered by a seller to its customers together

with all the sellers’products. Thus, instead of introducing shocks that are specific to a

seller/good combination, we introduce shocks that are specific to a seller but common to

all of the seller’s goods.

We believe that our approach is preferable. Seller-specific shocks can be identified from

the data without using information on the distribution of price changes. In fact, seller-

specific shocks can be identified from the seller component of prices (which is observed in

the data). The price change distribution can then be used as a test of the model. Here, we

do not follow this approach fully, as we calibrate the stochastic process of seller-specific

shocks to match the cross-sectional dispersion of the store component of prices and the

fraction of negative price changes (rather than another moment of the store component

of prices). However, we believe that we would obtain similar results if we targeted the

autocorrelation of the store component of prices instead of the fraction of negative price

changes, as both in our calibrated model and in the data the autocorrelation of the store

component of prices is very high. In contrast, shocks that are specific to a seller-good

combination do not have an immediate counterpart in the data and have to be inferred

directly from the price change distribution. Moreover, we find it hard to believe that

retailers operating in the same market and often purchasing from the same wholesaler

would face very different costs for the same item.

2 Environment

We generalize the model of Burdett and Menzio (2017)—which is a dynamic and monetary

version of a model of imperfect competition in the spirit of Butters (1977), Varian (1980)

and Burdett and Judd (1983)—by introducing seller-specific shocks.

More specifically, we consider the market for an indivisible good. On one side of the

market, there is a population of long-lived sellers with measure 1. Each seller chooses

the nominal price d at which it sells the good so as to maximize the present value of real

profits discounted at the rate r > 0. Sellers are heterogeneous with respect to the value

x ∈ R+ of amenities that they provide to their customers. A seller of type x produces
the good at the constant marginal cost kx, with k > 0. A seller of type x can change its

nominal price by paying the real menu cost cx, with c > 0. Sellers are subject to two types

5



of idiosyncratic shocks: amenity shocks and death shocks. In particular, a seller of type

x is hit by an amenity shock at the rate λ ≥ 0. Upon being hit by the amenity shock, the
value of the seller’s amenities moves to x(1+ ε) with probability 1/2 and to x(1− ε) with
probability 1/2, where ε ∈ (0, 1). Furthermore, upon being hit by the amenity shock, the
seller resets the nominal price of its good for free. A seller of type x is hit by a death shock

at the rate δ, with δ ≥ 0. Upon being hit by the death shock, the seller permanently exits
the market. In every interval of time of length dt, a measure δ · dt of new sellers enters
the market, thus maintaining the overall measure of sellers in the market at 1. All new

sellers start with an amenity value of x0 = 1.

The other side of the market is populated by a continuum of short-lived buyers. In

every interval of time of length dt, a measure b · dt of buyers enters the market. Each
buyers searches for sellers. The outcome of the search process is such that the buyer

comes into contact with one randomly-selected seller with probability α, and he comes

into contact with two randomly-selected sellers with probability 1− α, where α ∈ (0, 1).
If the buyer comes into contact with one seller, we say that he is captive. If the buyer

comes into contact with two sellers, we say that he is non-captive. The buyer observes

the prices posted and the amenities offered by each of the contacted sellers and decides

whether and where to purchase the good. If the buyer purchases the good at a nominal

price of d from a seller with an amenity level of x, he attains a utility of Qx−µ(t)d, where
Qx is the buyer’s valuation of the good together with amenities x and µ(t)d is the buyer’s

valuation of d dollars in period t. If the buyer does not purchase the good, he attains a

utility of zero. Whether the buyer purchases the good from the contacted sellers or not,

he exits the market.

The utility value of a dollar declines at the constant rate π, with π > 0. Therefore,

if a nominal price remains unchanged during an interval of time of length dt, the real

value of the price falls by exp(−π · dt). In this paper, we do not describe the demand
and supply of dollars. It would, however, be straightforward to embed our model into

either a standard cash-in-advance framework (see, e.g., Lucas and Stokey 1987) or in a

standard money-search framework (see, e.g., Lagos and Wright 2005) and show that, in a

stationary equilibrium, the depreciation rate π is equal to the growth rate of the money

supply.

The environment described above generalizes the one studied by Burdett and Menzio

(2017) along two dimensions.1 The first generalization is to allow for idiosyncratic shocks

1The environment generalizes several models. Burdett and Judd (1983) is a static version of our model
without inflation or menu costs (π = c = 0). Bénabou (1988) is essentially a version of our model in
which all buyers are captive (α = 1) and sellers do not face idiosyncratic shocks (λ = δ = 0). Head et
al. (2012) is a version of our model in which menu costs are set to zero (c = 0) and sellers do not face
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to the value of the amenities offered by a seller to its customers, i.e. λ > 0. The amenity

shock gives the seller a second reason for changing its nominal price besides keeping up

with inflation. More importantly, the amenity shock gives the seller a reason for lowering

its nominal price, an event that would never occur if the seller only changed its price to

keep up with inflation. We assume that the level of amenities x scales up the seller’s cost

of producing the good, the seller’s cost of resetting prices and the buyers’valuation of

the good. Also, we assume that, upon being hit by an amenity shock, the new value of

the seller’s amenities is, in expectation, equal to the old value of the seller’s amenities.

These assumption guarantee that the present value of the seller’s profits is homogeneous

of degree 1 in x. We interpret amenities as the services provided by the seller to its

customers, such as the quality of the personnel tending to the customers, the quality of

the refrigeration system, etc. . . It is then natural to think of amenities as being specific

to the seller, and not to a particular seller/good combination. Given our interpretation

of amenities, we will identify the stochastic process for x from the store component of

prices. Given our interpretation of amenities it is also natural to assume that, upon being

hit by the amenity shock, the seller can readjust the price of all of its goods for free.2 The

second generalization of Burdett and Menzio (2017) is to allow for the entry and exit of

sellers, i.e. to allow for δ > 0. The assumption guarantees that, even though the level

of amenities of a particular seller follows a martingale, the cross-sectional distribution of

sellers’amenities has an ergodic distribution.

3 Definition and Properties of Equilibrium

In this section, we define a (Q,S,s) equilibrium and an (S,s) equilibrium for our generalized

version of Burdett and Menzio (2017) described in Section 2. We then solve for the (Q,S,s)

equilibrium and show that it features the same properties as in Burdett andMenzio (2017).

In particular, the (Q,S,s) equilibrium is such that both menu costs and search frictions

contribute to nominal price stickiness.

3.1 Definition of Equilibrium

We begin by defining a stationary (Q,S,s) equilibrium. In a stationary (Q,S,s) equilibrium,

each seller lets inflation erode the effective real value z of its nominal price d—effective real

price which is defined as the real value of the nominal price µ(t)d divided by the value

idiosyncratic shocks (λ = δ = 0).
2The assumption is meant to capture the idea that, when a seller is hit by an amenity shock, it incurs

some fixed cost of reorganizing the store and that, upon paying such fixed cost, the marginal cost of
changing the price of a particular good is zero.
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x of the amenities offered by the seller—until it reaches some point s ∈ (0, Q). Then, the
seller pays the menu cost and changes its nominal price. The effective real value of the

seller’s new nominal price is randomly drawn from a distribution G with support [S,Q],

where s < S < Q. This cyclical repricing process is short-circuited if the seller is hit by

the death shock δ, in which case the seller exits the market, or if the seller is hit by the

amenity shock λ, in which case the seller resets the effective real value of its nominal price

by drawing from the distribution G. We denote as F the cumulative distribution function

of real effective prices across sellers.3 We find it useful to define z(t) as Q exp(−πdt). In
words, z(t) is the current real value of a nominal price that had a real value of Q t units

of time ago. We also find it useful to define T1 as log(Q/S)/π and T2 as log(S/s)/π. In

words, T1 is the time it takes for inflation to drive the real value of a nominal price down

from Q to S, and T2 is the time it takes for inflation to drive the real value of a nominal

price down from S to s.

Consider the flow profit R(z(t), x) enjoyed by a seller that has an effective real price

of z(t) ∈ [0, Q] and an amenity value of x > 0. The seller’s flow profit is given by

R(z(t), x) = b [α + 2(1− α)(1− F (z(t)))] (z(t)x− kx) . (1)

The above expression is easy to understand. The arrival rate of captive buyers at the

seller’s location is bα. Each one of these buyers purchases the good from the seller with

probability 1. For each sale made to a captive buyer, the seller enjoys a real profit of

z(t)x − kx. The arrival rate of non-captive buyers at the seller’s location is 2b(1 − α).
Each one of these buyers purchases the good from the seller if and only if his second

contact is a supplier with an effective real price greater than z(t), an event which occurs

with probability 1−F (z(t)). For each sale made to a non-captive buyer, the seller enjoys
a real profit of z(t)x− kx. Note that the seller’s flow profit R(z(t), x) is homogeneous of
degree 1 in x. That is, R(z(t), x) = xR(z(t), 1).

Now, consider the present value of profits V (t, x) for a seller that has effective real

price of z(t) ∈ [0, Q] and an amenity value of x > 0. The seller’s present value of profits
is given by

V (t, x) = maxT
∫ T
t
e−(r+λ+δ)(τ−t) [R(z(τ), x) + λEV ∗(x̂)] dτ

+e−(r+λ+δ)(T−t) [V ∗(x)− cx].
(2)

The above expression is also easy to understand. After τ − t units of time, the seller has
not yet been hit by the death or amenity shock with probability exp(−(δ + λ)(τ − t)).

3Note that F must be a continuous distribution function. In fact, there cannot be a positive measure
of sellers with the same effective real price z in a stationary equilibrium in which each seller follows the
same (Q,S,s) rule.
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In this case, the seller’s nominal price has an effective real value of z(τ) and the seller

enjoys a flow profit of R(z(τ), x). Conditional on not having been yet hit by the amenity

or death shocks, the seller faces the hazard δ of receiving the death shock. If the seller

is hit by the death shock, it exits the market and enjoys a continuation present value of

profits of zero. The seller also faces the hazard λ of receiving the amenity shock. If the

seller is hit by the amenity shock, the new value x̂ of the seller’s amenities is x(1 + ε)

with probability 1/2 and x(1− ε) with probability 1/2. Then, the seller resets its nominal
price for free and enjoys the maximized continuation present value of profits of V ∗(x̂). If

after T − t units of time it has not yet been hit by a shock, an event which occurs with
probability exp(−(δ + λ)(T − t)), the seller pays the menu cost cx, changes its nominal
price, and enjoys the maximized continuation present value of profits V ∗(x).

The present value of profits V (t, x) for a seller with an effective real price of z(t) and

an amenity value of x, as well as the maximized present value of profits V ∗(x) for a seller

with an amenity value of x are functions that are homogeneous of degree 1 in x. To see

why, note that V ∗(x) is given by

V ∗(x) = maxt,T
∫ T
t
e−(r+λ+δ)(τ−t) [R(z(τ), x) + λEV ∗(x̂)] dτ

+e−(r+λ+δ)(T−t) [V ∗(x)− cx].
(3)

It is immediate to verify that the value function V ∗ is the fixed-point of a contraction

map. It is also immediate to see that the contraction maps value functions that are

homogeneous of degree 1 in x into value functions that are also homogeneous of degree 1

in x. From these observations, it follows that V ∗(x) is homogeneous of degree 1 in x. It

then follows from (2) that V (t, x) is homogeneous of degree 1 in x.

In a (Q,S,s) equilibrium, a seller of type x chooses to pay the menu cost when the

effective real value of its nominal price is equal to s = z(T1 + T2). The seller finds it

optimal to pay the menu cost when the effective real value of its price is s only if

x [R(s, 1) + λV ∗(1)] = (r + δ + λ)x [V ∗(1)− c] . (4)

The expression in (4) is the first-order condition with respect to T of the seller’s maxi-

mization problem in (2), evaluated at T = T1 + T2. The expression is independent of x

because x multiplies both the left and the right hand sides of (4). The expression is easy

to understand. The left-hand side of (4) is the marginal benefit of delaying a nominal

price adjustment by an instant, which is given by the flow profit R(s, 1) plus the arrival

rate of the amenity shock times the expected continuation value conditional on being hit

by the shock λV ∗(1). The right-hand side of (4) is the marginal cost of delaying a nominal

price adjustment by an instant, which is given by the annuitized value of paying the menu
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cost and attaining the maximized present value of profits, i.e. (r+ δ+λ) [V ∗(1)− c]. The
expression in (4) then states that the seller finds it optimal to pay the menu cost at s only

if the marginal benefit of delaying a price adjustment equals the marginal cost. Condition

(4) is also suffi cient if4

R(z(t), 1) + λV ∗(1) ≥ (r + δ + λ) [V ∗(1)− c] , ∀t ∈ [0, T1 + T2]. (5)

In a (Q,S,s) equilibrium, a seller of type x resets its nominal price so that the effective

real value of the new price is drawn from the distribution G with support [S,Q]. The

seller finds it optimal to follow this strategy if and only if the present value of profits

attains its maximum for all effective real prices z ∈ [S,Q] and it is non-greater than the
maximum for all effective real prices z ∈ [s, S]. That is5,

xV (t, 1) = xV ∗(1), ∀t ∈ [0, T1], (6)

xV (t, 1) ≤ xV ∗(1), ∀t ∈ [T1, T1 + T2]. (7)

Note that the conditions (6) and (7) are independent of x because x multiplies both the

left and the right hand sides. It is convenient to restate condition (6) as

R(z(t), 1) = (r + δ)V ∗(1), ∀t ∈ [0, T1], (8)

and
V ∗(1) =

∫ T1+T2
T1

e−(r+λ+δ)(τ−T1) [R(z(τ), 1) + λV ∗(1)] dτ

+e−(r+λ+δ)T2 [V ∗(1)− c].
(9)

Let us explain the two conditions above. Suppose that (6) holds. In this case, the present

value of profits for a seller with an effective real price of S = z(T1) and amenity value of

1 is equal to V ∗(1). This is condition (9). Moreover, the derivative of the present value

of profits with respect to the age t of the price is equal to zero for all t ∈ [0, T1]. Since
∂V (t, 1)/∂t = (r + δ + λ)V (t, 1) − R(z(t), 1) − λV ∗(1) and V (t, 1) = V ∗(1), we obtain

condition (8). Conversely, if (8) and (9) hold, V (t, 1) = V ∗(1) for all t ∈ [0, T1].

The cross-sectional distribution F of effective real prices is stationary if and only

if, during an arbitrarily small interval of time of length dt, the measure of sellers whose

effective real price enters the interval [s, z] is equal to the measure of sellers whose effective

real price exits the interval [s, z] for any z ∈ [s,Q]. For z ∈ (s, S), the inflow-outflow
4Formally, one would also have to check R(z(t), 1) + λV ∗(1) ≤ (r + δ + λ)[V ∗(1)− c] for t > T1 + T2.

It is straightforward to verify that this inequality is always satisfied.

5Formally, one would also have to check V (t, 1) ≤ V ∗(1) for all t < 0. It is straightforward to verify
that this inequality is always satisfied.
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equation is given by [
F (zeπdt)− F (z)

]
e−(δ+λ)dt

=
[
F (seπdt)− F (s)

]
e−(δ+λ)dt + F (z)

[
1− e−(λ+δ)dt

]
.

(10)

The term on the left-hand side of (10) is the flow of sellers into the interval [s, z], which is

given by the measure of sellers that currently have an effective real price between z and

z exp(πdt) and that, in the next dt units of time, are not hit by the death or amenity

shocks. In fact, every one of these sellers is pushed by inflation into the [s, z] interval. The

term on the right-hand side of (10) is the flow of sellers out of the interval [s, z], which

is made up of two groups. The first group is composed by the sellers that currently have

an effective real price between s and s exp(πdt) and that, in the next dt units of time,

are not hit by any shock. In fact, every one of these sellers reaches the point s, pays the

menu cost and resets the effective real value of its nominal price to some point above z.

The second group is composed by the sellers that currently have an affective real price

below z and, in the next dt units of time, are hit by the amenity or death shock. In fact,

the sellers that are hit by the amenity shock reset the effective real value of their nominal

price somewhere above z. The sellers that are hit by the death shock exit the market and

are replaced by new sellers with an effective real price above z.

For z ∈ (S,Q), the inflow-outflow equation is given by[
F (zeπdt)− F (z)

]
e−(δ+λ)dt + [1− F (z)]

[
1− e−(λ+δ)dt

]
G(z)

=
{[
F (seπdt)− F (s)

]
e−(δ+λ)dt + F (z)

[
1− e−(λ+δ)dt

]}
(1−G(z)).

(11)

The term on the left-hand side of (11) is the flow of sellers into the interval [s, z], which

is made up of two groups. The first group is composed by the sellers that currently have

an effective real price between z and z exp(πdt) and that, in the next dt units of time,

are not hit by any shock. In fact, each of these sellers is pushed by inflation in the [s, z]

interval. The second group is composed by a fraction G(z) of the sellers that currently

have an effective real price above z and are hit by a shock. In fact, if a seller with a real

price above z is hit by the amenity shock, there is a probability G(z) that it will set a

new effective real price below z. Similarly, if a seller with a real price above z is hit by the

death shock, there is a probability G(z) that the seller that replaces it will set an effective

real price below z. The term on the right-hand side of (11) is the flow of sellers out of

the interval [s, z], which is also made up of two groups. The first group is composed by a

fraction 1 − G(z) of the sellers that currently have an effective real price between s and
s exp(πdt) and that, in the next dt units of time, are not hit by the amenity or death

shock. The second group is composed by a fraction 1−G(z) of the sellers that currently
have an effective real price smaller than z and that, in the next dt units of time, are hit
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by either the amenity or the death shock.

Dividing by dt and taking the limit for dt → 0, the inflow-outflow condition (10)

becomes

F ′(z)z = F ′(s)s+ θF (z), ∀z ∈ (s, S), (12)

where θ is defined as (δ + λ)/π. Similarly, the inflow-outflow condition (11) becomes

F ′(z)z + θ(1− F (z))G(z) = {F ′(s)s+ θF (z)} (1−G(z)), ∀z ∈ (S,Q). (13)

Condition (12) is a differential equation for F over the interval (s, S). Condition (13) is a

differential equation for F over the interval (S,Q). The boundary conditions associated

with these differential equations are

F (s) = 0, F (Q) = 1, F (S−) = F (S+). (14)

Intuitively, F (s) = 0 as there are no sellers who let their price fall below s and the

distribution F is continuous. Similarly, F (Q) = 1 as there are no sellers who reset the

effective real value of their nominal price above Q. Finally, F (S−) = F (S+) as the

cross-sectional distribution of effective real prices is continuous.

We are now in the position to define a (Q,S,s) equilibrium.

Definition 1: A stationary (Q,S,s) equilibrium is a cumulative distribution of effective

real prices F : [s,Q] → [0, 1], a cumulative distribution of effective real new prices G :

[S,Q]→ [0, 1], a pair of prices (s, S) with 0 < s < S < Q, and a maximized present value

of seller’s profits V ∗(1) that satisfy the optimality conditions (4), (5), (7), (8), (9) and

the stationarity conditions (12)-(14).

For the sake of completeness, it is also useful to define a stationary (S,s) equilibrium.

In an (S,s) equilibrium, each seller lets inflation erode the effective real value z of its

nominal price d until it reaches some value s ∈ (0, Q). Then, the seller pays the menu
cost and changes its nominal price so that its effective real value is Q. This cyclical

repricing process is interrupted if the seller is hit by either the death or the amenity

shocks. Basically, one can think of an (S,s) equilibrium as a (Q,S,s) equilibrium in which

S = Q.

Formally, the definition an (S,s) equilibrium is as follows.

Definition 2: A stationary (S,s) equilibrium is a cumulative distribution of effective real

prices F : [s,Q] → [0, 1], a pair of prices (s, S) with 0 < s < S = Q, and a maximized

present value of seller’s profits V ∗(1) that satisfy the optimality conditions (4), (5), (7),

(9) and the stationarity conditions (12) and (14).
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3.2 Solution of equilibrium

In this section, we solve for the (Q,S,s) equilibrium. Consider the optimality condition (8),

which guarantees that the derivative of the seller’s present value of profits with respect to

the age t of the price is zero for all t ∈ [0, T1]. For t = 0, (8) states that the flow profit of
a seller with an effective real price of Q is equal to the annuitized maximum present value

of seller’s profits, i.e. R(Q, 1) = (r+ δ)V ∗(1). Since a seller with an effective real price of

Q only trades with captive buyers, it enjoys a flow profit of R(Q, 1) = bα(Q− k). Using
this observation, we can solve R(Q, 1) = (r + δ)V ∗(1) with respect to V ∗(1) and find

V ∗(1) = bα
Q− k
r + δ

. (15)

Consider again the optimality condition (8). For t ∈ [0, T1], (8) states that the flow
profit of a seller with an effective real price of z ∈ [S,Q] is equal to the annuitized

maximum present value of seller’s profits, i.e. R(z, 1) = (r + δ)V ∗(1). Since R(z, 1)

is given by b[α + 2(1 − α)(1 − F (z))](z − k) and V ∗(1) is given by (15), we can solve

R(z, 1) = (r + δ)V ∗(1) with respect to the price distribution F . We then find

F (z) = 1− α

2(1− α)
Q− z
z − k , ∀z ∈ (S,Q). (16)

Note that this is the same price distribution that emerges in Burdett and Judd (1983).

This finding is easy to understand. In Burdett and Judd (1983), the price distribution is

such that the seller’s flow profit is the same everywhere on the support of the distribution.

Here, the price distribution fulfills the same function over the interval [S,Q] and, hence,

it has the same shape.

Now, consider the stationarity condition (12), which is a differential equation for the

price distribution F over the interval (s, S). Solving the differential equation (12) using

the boundary conditions F (s) = 0 and F (S−) = F (S+), we find

F (z) =

[
1− α

2(1− α)
Q− S
S − k

]
zθ − sθ
Sθ − sθ , ∀z ∈ (s, S), (17)

where θ = (δ + λ)/π. Note that this is the price distribution that would emerge in an

(S, s) model in which sellers die at a rate of δ+λ. In fact, here as in such an (S, s) model,

sellers enter the interval [s, S] from S, they exit the interval from s, they travel through

the interval at the speed of π and, while travelling through the interval, they exit with an

hazard of δ + λ.

Next, consider the stationarity condition (13), which is a differential equation for the

price distribution F over the interval (S,Q). Using the fact that F is given by (16) and
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(17), we can solve (13) with respect to the new price distribution G and find

G(z) =
θF (z) + F ′(s)s− F ′(z)z

θ + F ′(s)s
, ∀z ∈ (S,Q). (18)

As it is clear from its construction, the role of G is to generate the price distribution F

that keeps the seller’s flow profit constant (and, consequently, the seller’s present value

of profits) constant for all effective real prices z in the interval [S,Q]. Note that, in order

to fulfill its role, G has mass points at both S and Q. These mass points are respectively

given by

χ(S) =
θF (S) + F ′(s)s− F ′(S)S

θ + F ′(s)s
,

χ(Q) = 1− θ + F ′(s)s− F ′(Q)Q
θ + F ′(s)s

.

(19)

Finally, we need to solve for the cutoff prices s and S. The optimality condition

(4) states that, when the seller’s effective real price is s, the benefit of delaying the

price adjustment by an instant is equal to the cost of delaying the price adjustment by

an instant. Formally, (4) states that R(s, 1) + λV ∗(1) equals (r + δ + λ)[V ∗(1) − c].

Since a seller with an effective real price of s sells to all of the customers it meets,

R(s, 1) = b[α + 2(1 − α)](s − k). Using this observation and the fact that V ∗(1) is

given by (15), we can solve condition (4) with respect to s and find

s = k +
α

2− α (Q− k)−
r + δ + λ

2− α
c

b
. (20)

The optimality condition (9) states that a seller with an effective real price of S must

attain the maximized present value of profits V ∗(1). After substituting F , V ∗(1) and s,

we can write the optimality condition (9) as an equation of the form ϕ(S) = 0. The only

candidate (Q,S,s) equilibria are such that S is a solution of the equation ϕ(S) = 0 such

that S ∈ (s,Q), V ∗(1) is given by (15), F is given by (16) and (17), G is given by (18)

and s is given by (20). A candidate (Q,S,s) equilibrium is indeed an equilibrium if it also

satisfies the optimality conditions (5) and (7) and G is a proper cumulative distribution

function. These additional conditions can be checked numerically once a candidate (Q,S,s)

equilibrium is found.

We have thus established the following proposition.

Proposition 1: Any stationary (Q,S,s) equilibrium is a tuple {F,G, S, s, V ∗(1)} such
that: S is a solution to the equation ϕ(S) = 0 in the interval (s,Q), F is given by (16)

and (17), G is given by (18) and is a proper cumulative distribution function, s is given

by (20). If the tuple {F,G, S, s, V ∗(1)} also satisfies the optimality conditions (5) and
(7), then it is a (Q,S,s) equilibrium.
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Burdett and Menzio (2017) show that a (Q,S,s) equilibrium of their basic model exists

and there is no other type of equilibrium if the menu cost c is small enough and/or the

inflation rate π is small enough. They also show that, if the menu cost c is large enough

and/or the inflation rate π is high enough, any equilibrium is an (S,s) equilibrium. For

intermediate values of c and π, they show that a (Q,S,s) equilibrium may coexist with an

(S,s) equilibrium. We do not attempt to extend these theoretical results to our general

model. However, our numerical analysis makes us believe that these results do indeed

apply to our model as well.

3.3 Illustration of equilibrium

Before embarking on the quantitative analysis, it is useful to illustrate the properties of

the (Q,S,s) equilibrium with a numerical example. The illustration is carried out using

the parameter values associated with our benchmark calibration and reported in Section

4. Panel (a) of Figure 1 illustrates the present value of profits for a seller with an effective

real price of z and an amenity value of 1. Inflation drives down the effective real value

of the seller’s nominal price, so we shall read the figure from right to left. As inflation

pushes the value of the price from Q to S, the present value of the seller’s profits remains

constant at its maximum V ∗(1). As inflation pushes the value of the price from S to s,

the present value of the seller’s profits declines monotonically. When inflation drives the

price to s, the present value of the seller’s profits is V ∗(1)− c. Then, the seller pays the
menu cost and adjusts its nominal price so that the effective real value of the new nominal

price is drawn from the distribution G with support [S,Q]. This cyclical repricing process

is short-circuited when the seller is either hit by the death shock (in which case, it is

replaced by a new seller starting with an effective real price drawn from G) or hit by the

amenity shock (in which case, the seller automatically resets its nominal price).

Panel (b) of Figure 1 illustrates the flow profit for a seller with an effective real price

of z and an amenity value of 1. Again, we read the figure from right to left. As inflation

pushes the value of the price from Q to S, the seller’s flow profit remains constant at

(r+ δ)V ∗(1). As inflation pushes the value of the price from S to s, the seller’s flow profit

increases at first, peaks and then declines monotonically. As explained in Burdett and

Menzio (2017), the fact that the seller’s flow profit reaches its maximum at a price smaller

than S is what makes the seller indifferent between resetting the effective real value of its

nominal price to any point in the interval [S,Q]. Indeed, if the seller resets the effective

real value of the price to S, it will pay the menu cost sooner but it will also enjoy the

highest flow profit sooner. If the seller resets the effective real value of the price to Q, it

will pay the menu cost later but it will also enjoy the highest flow profit later.
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(a) Present Value (b) Flow Profit

Notes: The present value of profits V and the flow profit as a function of the effective real price
z given the parameter values r = .05, π = .03, b = 1, Q = 1, k = .63, λ = .61, ε = .021,
α = .183, c = .014.

Figure 1: Present value of profits and flow profit

Panel (a) of Figure 2 illustrates the density of the cross-sectional distribution F of

effective real prices. Over the interval [S,Q], the density of F is such that the seller’s

flow profit remains constant. Over the interval [s, S], the density of F is the same as in a

standard (S,s) model with an exogenous exit hazard of λ+ δ. There is a discontinuity in

the density of F at S. Specifically, the density of F to the right of S is strictly smaller

than the density of F to the left of S, i.e. F ′(S+) < F ′(S−). As explained in Burdett and
Menzio (2017), the discontinuity in the density of F implies that the derivative of seller’s

flow profit jumps up as the real value of the price falls below S. In turn, this implies that

the seller’s flow profit starts increasing as the real value of the price falls below S.

Panel (b) of Figure 2 illustrates the density of the distribution G of effective real new

prices, together with the two mass points at S and Q. As explained in Burdett and

Menzio (2017), the mass point at S is what generates a discontinuity in the density of F ,

which is necessary to guarantee that the seller’s flow profit increases when the effective

real price falls below S. The mass point at Q is what guarantees that the density of the

cross-sectional price distribution F is strictly positive at Q, which is necessary in order to

guarantee that the seller’s flow profit is constant for effective real prices in a neighborhood

of Q.

The numerical illustration reveals that the (Q,S,s) equilibrium of the generalized model

studied in this paper has the same qualitative properties as the (Q,S,s) equilibrium of the

basic model analyzed in Burdett and Menzio (2017). Most importantly, as in Burdett and

Menzio (2017), the (Q,S,s) equilibrium is such that both menu costs and search frictions

contribute to price stickiness. Indeed, consider a seller who just reset its nominal price
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(a) Distribution of Effective Real Prices (b) Distribution of New Effective Real Prices

Notes: The densities of the equilibrium distribution of effective real prices and of the equilibrium
distribution of new effective real prices given the parameter values r = .05, π = .03, b = 1, Q = 1,
k = .63, λ = .61, ε = .021, α = .183, c = .014.

Figure 2: Price distributions

to an effective real value of Q. Conditional on not being hit by a shock, the seller keeps

the nominal price unchanged until inflation drives the value of the price down to s. As

inflation drives the value of the price from Q to S, the seller would not want to change

its nominal price even if it could do it for free. Indeed, as inflation pushes the value

of the price from Q to S, the seller’s present value of profits remains maximized. Only

as inflation drives the value of the price from S to s, the seller would like to change its

nominal price but does not do so to avoid paying the menu cost. The overall duration of

the seller’s nominal price is T1 + T2 = log(Q/s)/π. Only the last T2 units of time in the

life of the price are due to menu costs. The first T1 units of time in the life of the price

are due to search frictions—and, specifically, to the coexistence of captive and non-captive

buyers in the market—which create, in equilibrium, an entire interval of prices over which

the seller’s profits are maximized.

There are two critical differences between the (Q,S,s) equilibrium of the generalized

model studied in this paper and the (Q,S,s) equilibrium of the basic model of Burdett and

Menzio (2017). The first difference is that the properties of equilibrium in the generalized

model apply to effective real prices, while they apply to real prices in the basic model.

Importantly, in the generalized model, the price distribution F is a distribution of effective

real prices, while F is a distribution of real prices in the basic model. In the generalized

model, the distribution of real prices—which is what we observe in the data—depends on

the distribution of effective real prices and on the distribution of amenities across sellers

with different effective real prices. The second difference between our generalized model

and the basic model of Burdett and Menzio (2017) is that, in our model, sellers change
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(a) Effective Real Price and Amenity (b) Nominal Price

Notes: Simulation of prices and amenities for a seller in economy with r = .05, π = .03, b = 1,
Q = 1, k = .63, λ = .61, ε = .021, α = .183, c = .014.

Figure 3: Sample path of prices and amenities

their nominal price in response to idiosyncratic amenity shocks. Figure 3 illustrates a

sample path for the effective real price of an individual seller, the value of the seller’s

amenities, and the seller’s nominal price. The seller changes the nominal price to keep

up with inflation (it does so when the effective real price reaches s) and to respond to

idiosyncratic shocks to the value of its amenities (it does so automatically whenever the

amenity value changes). While the price changes carried out to keep up with inflation

are always positive, the price changes carried out to respond to amenity shocks may also

be negative. Indeed, the reader can see in Figure 3 that, when the value of the amenities

falls, the seller sometimes lowers the nominal price.

4 Quantitative Analysis

In this section, we calibrate our model to match the extent of price dispersion observed

in the data, the extent of price stickiness observed in the data, and the fraction of price

changes that, in the data, are negative. We show that—in contrast to the basic model of

Burdett and Menzio (2017)—the calibrated version of our model reproduces quite closely

the key properties of the empirical distribution of prices and the key properties of the

empirical distribution of price changes, even though it has very few parameters. We

then show that—similarly to the basic model of Burdett and Menzio (2017)—the calibrated

version of our model implies that search frictions and not menu costs are the main cause

of nominal price stickiness.
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4.1 Calibration

The parameters of the model are the following: the real interest rate, r, the inflation rate,

π, the arrival rate of buyers, b, the fraction of captive buyers, α, the buyer’s valuation

of the good, Q, the seller’s menu cost, c, and the seller’s cost of producing the good, k,

the arrival rate of the amenity shock, λ, the magnitude of the amenity shock, ε, and the

arrival rate of the death shock, δ.

We set the real interest rate r to 5% and the inflation rate π to 3%. We set the death

rate δ to 1/20, so that the average life of a seller is 20 years.6 We note that the equilibrium

objects F , G, S and s increase by a factor ρ whenever the parameters Q, k and c increase

by the same factor ρ.7 For this reason, Q is simply a choice of units of measure and we

can normalize it to 1. Next, we note that the equilibrium objects F , G, S and s depend

on c and b only though their ratio c/b.8 For this reason, we can normalize the inflow of

buyers b to 1 and interpret the seller’s menu cost as a fraction of b. We calibrate k so

that the average mark-up in the model is 15%.9 We calibrate the remaining parameters

α, c, λ and ε to match empirical measures of price stickiness and price dispersion, as well

as to match the fraction of negative price changes observed in the data.

Nakamura and Steinsson (2008) measure the extent of price stickiness for consumer

goods using the Bureau of Labor Statistics microdata underlying the Consumer Price

Index. During the 1998-2005 period, they find that the average duration of nominal

prices is 7.7 months if sales and product substitutions are included in the data, and 13

months if sales and product substitutions are excluded. Nakamura and Steinsson (2008)

also measure the fraction of nominal price changes that are negative. During the 1998-2005

period, Nakamura and Steinsson (2008) find that the fraction of negative price changes is

6We choose 5% for r, as this is a common choice for the real interest rate. We choose 3% for π, as this
is close to the aggregate rate of inflation over the period 1998-2014, from which the data on the duration
of prices and on the dispersion of prices is collected. The choice of δ is meant to capture the idea that
sellers are long-lived relative to prices. However, the particular choice of δ is somewhat arbitrary. Using
alternative values for δ does not significantly affect our findings.

7Formally, the following homogeneity property holds: Let (F,G, s, S, V ∗(1)) be a (Q,S,s) equilibrium
given the parameters Q, k and c. Then, for all ρ > 0, (F̂ , Ĝ, ŝ, Ŝ, V̂ ∗(1)) is a (Q,S,s) equilibrium given the
parameters ρQ, ρk and ρc, where F̂ (ρz) = F (z), Ĝ(ρz) = G(z), ŝ = ρs, Ŝ = ρS, and V̂ ∗(1) = ρV ∗(1).
An analogous property holds for an (S,s) equilibrium.

8Formally, the following homogeneity property holds: Let (F,G, s, S, V ∗(1)) be a (Q,S,s) equilibrium
given the parameters b and c. Then, (F,G, s, S, V ∗(1)) is a (Q,S,s) equilibrium given the parameters ρb
and ρc, for all ρ > 0. An analogous property holds for an (S,s) equilibrium.

9The empirical literature on markups has not reached a consensus on the magnitude of the ratio
between price and marginal cost. Basu and Fernald (1997) find gross markups between .66 and 1.32
depending on the sector and use of instrumental variables. They conclude that the typical industry has
small markups over marginal cost. Klette (1999) reaches a similar conclusion using a different estimation
technique. De Loecker and Warzynski (2012) find gross markups between 1.03 and 1.22 depending on the
estimation strategy. In our benchmark calibration, the markup is 15%. When we target a higher (lower)
markup, the calibrated value of the menu cost and its contribution to price stickiness falls (increases).
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around 40% if sales are included in the data, and around 30% if sales are excluded.

Kaplan et al. (2016) measure the extent of price dispersion for consumer goods using

the Kielts-Nielsen Homescan Dataset. They measure the standard deviation of prices

(measured in logs) for the same item (defined by its Unique Product Code) in the same

market (defined as a Scantrack Metro Area) in the same week. They find that the average

standard deviation of prices is 15%. Then they decompose the price of each good at each

store into a store component and a store-good component, and estimate an ARMA process

for each of the two components. The estimation reveals that the variance of the store

component accounts for 15.5% and the variance of the store-good component accounts

for 84.5% of the overall variance of the price for the same good in the same market and

in the same week. The estimation also reveals that 36% of the variance of the store-

good component is due to persistent differences in the store-good component of prices,

while 64% is due to temporary differences. The temporary differences in the store-good

component of prices presumably reflect temporary sales.

Our model abstracts from temporary sales and product substitutions. For this reason,

we target an average duration of nominal prices of 13 months and a fraction of negative

price changes of 30%, which are measures constructed by Nakamura and Steinsson (2008)

excluding sales and substitutions. We interpret the seller’s amenity x as a bundle of

services that are provided with each one of the seller’s goods. Under this interpretation,

the seller’s amenity x is the component of the seller’s prices pi = zix that is common to

each of the seller’s goods i and, hence, it is the model-equivalent of the store-component

of the price in the data. For this reason, we target a standard deviation of x across sellers

of 5.9%, which is the standard deviation of the store-component of prices in the data

(the square root of 15.5% of the overall variance of prices of 0.152). Similarly, under our

interpretation of amenities, the effective real price z of a seller for a particular good is the

model equivalent of the store-good component of the price. Thus, we target a standard

deviation of z across sellers of 8.2%, which is the standard deviation of the persistent part

of the store-good component of prices in the data (the square root of 36% of 84.5% of the

overall variance of prices of 0.152). We target the standard deviation of only the persistent

part of the store-good component of prices, as the temporary part is presumably due to

temporary sales.

The above targets define our benchmark calibration. However, we also consider some

alternative targets, as there is a lot of heterogeneity across different types of goods with

respect to the extent of price stickiness and the extent of price dispersion. For example,

Nakamura and Steinsson (2008) find that, excluding sales and product substitutions,

the duration of nominal prices is 3.5 months for unprocessed food and 27.3 months for
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Table 1: Calibration Targets and Outcomes, Full Model

Calibration Targets (1) (2) (3) (4) (5)
Std store/good component of prices 8.2% 8.2% 8.2% 5.5% 11.0%
Std store component of prices 5.9% 5.9% 5.9% 3.9% 7.8%
Average duration of prices 13 mo. 10 mo. 16 mo. 13 mo. 13 mo.
Fraction negative price changes 30% 30% 30% 30% 30%
Average markup 15% 15% 15% 15% 15%

Calibration Outcomes (1) (2) (3) (4) (5)
Captive buyers α 18.3% 16.4% 20.3% 38.2% 10.4%
Menu cost c 1.4% .03% 6.5% 5.3% .80%
Production cost k .63 .62 .64 .75 .52
Arrival rate idiosyncratic shock λ .61 .72 .61 .80 .57
Magnitude idiosyncratic shock ε 2.1% 2.1% 2.1% 1.3% 2.9%

Contribution of c to stickiness (1) (2) (3) (4) (5)
Average time spent in [s, S] 51% 18% 67% 68% 46%
Counterfactual with c = 0 14% 1% 29% 28% 11%
Counterfactual with α = 1 6% 7% 5% 6% 6%

apparel. Similarly, Kaplan and Menzio (2015) find that the standard deviation of prices

for Health&Beauty products is roughly 3 times larger than for Alcoholic Beverages.

4.2 Properties of the calibrated model

The first column of Table 1 reports the outcomes of our benchmark calibration. Under

this calibration, we find that the fraction of captive buyers α is 18%, the menu cost c is

0.014, the production cost k is 0.63, the arrival rate of seller’s idiosyncratic shocks λ is

0.61, and ε is 0.021. Given these parameter values, the equilibrium is such that sellers

follow (Q,S,s) pricing strategies with s = 0.66, S = 0.70 and Q = 1.

The dark histogram in Figure 4 is the cross-sectional distribution of normalized real

prices generated by the calibrated model, where the normalized price is constructed as

the difference between the log of the real price and the average log real price. The

model-generated price distribution matches quite well the key features of the typical price

distribution in the data as documented by Kaplan and Menzio (2015). First, the model-

generated price distribution is hump-shaped. Kaplan and Menzio (2015) find that this is

also the shape of the typical price distribution in the data. Second, the model-generated

price distribution is leptokurtic. That is, compared to a Gaussian distribution with the

same mean and variance (Gaussian distribution which is plotted as the light histogram in

Figure 4), the cross-sectional price distribution has more mass around the mode as well as
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Notes: Dark histogram: Distribution of log prices measured in differences from the average log
price. Light histogram: Normal distribution with same mean and variance as the distribution
of log prices generated by the model.

Figure 4: Price distribution

more mass in the tails. Kaplan and Menzio (2015) find that the typical price distribution

in the data is also leptokurtic.

The dark histogram in Figure 5 is the price-change distribution generated by the

calibrated model, where price changes are measured in percentage deviations. The model-

generated price-change distribution fits quite well the key features of the empirical price

change distribution. First, the model-generated price change distribution matches the

fraction of price changes that are positive (70%) and negative (30%) in the data. This

is not surprising, as the fraction of negative price changes was used as a target for the

calibration. Second, the model-generated price-change distribution features both small

and large price changes. Indeed, the model generates several price changes as large as 20%

and a large number of price changes smaller than 5%. The co-existence of small and large

price changes is also a feature of the empirical price-change distribution, as documented

by Klenow and Kryvtsov (2008). Third, the model-generated price-change distribution is

leptokurtic, with a kurtosis of approximately 4. Again, this means that, compared with

the Gaussian distribution with the same mean and variance (Gaussian distribution that is

plotted as the light histogram in Figure 5), the model-generated price-change distribution

has more mass around the model and in the tails. As documented in Alvarez, Le Bihan

and Lippi (2016) the empirical price-change distribution is also leptokurtic.

The fact that our calibrated model matches so well the features of the empirical price

and price-change distributions is surprising. After all, our model is a simple generalization

of the model in Burdett and Menzio (2017), and their model cannot match these features.
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Notes: Dark histogram: Distribution of price changes measured in percentage deviations for the
benchmark calibration. Light histogram: Normal distribution with same mean and variance as
the distribution of price changes generated by the model.

Figure 5: Price change distribution

First, the model of Burdett and Menzio (2017) generates a price distribution with a

strictly decreasing density. Our model generates a hump-shaped distribution of prices

because the introduction of seller-specific shocks generates a hump-shaped distribution of

effective real prices and then adds hump-shaped noise to such distribution. Without seller-

specific shocks, the distribution of effective real prices would have a decreasing density.

The density would be decreasing over the interval [S,Q], as this feature is necessary to

keep the seller’s flow profit constant. The density would be decreasing over the interval

[s, S], as the distribution associated with sellers entering the interval from S, exiting from

s and travelling from S to s at a constant speed of π is log-uniform and a log-uniform

distribution has decreasing density. With seller-specific shocks, the density of the effective

real price distribution remains decreasing over the interval [S,Q]. However, the density

of the distribution becomes upward sloping over the interval [s, S], leading to an overall

hump-shape as seen in Figure 2(a). In fact, seller-specific shocks cause sellers to exit the

interval [s, S] as they travel from S to s and, when this exit rate is high enough, they lead

to a density than is increasing over [s, S]. Moreover, the introduction of seller-specific

shocks adds some hump-shaped noise to the distribution of effective prices. Indeed, the

distribution of prices p is basically given by the distribution of effective prices z plus a

hump-shaped disturbance term due to the distribution of amenity values x across sellers.

Second, the model of Burdett and Menzio (2017) generates a price-change distribution

with only positive price changes. Our model generates a price-change distribution with

both negative and positive price changes by introducing amenity shocks. Intuitively,
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in Burdett and Menzio (2017), the only reason for changing prices is keeping up with

inflation. Thus, all price changes are positive. In our model, sellers also change price in

response to amenity shocks. Since sellers may find it optimal to lower their price when

the value of their amenities falls, our model can generate negative price changes alongside

positive price changes.

We now use our calibrated model—which does much better than the model of Burdett

and Menzio (2017) in fitting the distributions of prices and price changes—to revisit their

key quantitative exercise. That is, we break down the average duration of nominal prices

in a component due to menu costs and one due to search frictions. We carry out this

break-down using three alternative measures of the contribution of menu costs to price

stickiness. The first measure is the fraction of time that, on average, a nominal price

spends in the [s, S] interval. This is a measure of the contribution of menu costs to price

stickiness because, only in the [s, S] interval, the seller does not change its nominal price

to avoid the menu cost. The second measure is obtained by setting the menu cost c to

zero. Specifically, we compute the complement to 1 of the ratio between the average

duration of prices in the counterfactual model with c = 0 and the average duration of

prices in the properly calibrated model (which, by construction, is equal to the average

duration of prices in the data). The third measure is obtained by setting the fraction α of

captive buyers to 1. Specifically, we compute the ratio of the average duration of prices

in the counterfactual model with α = 1 to the average duration of prices in the properly

calibrated model. This is a measure of the contribution of menu costs to price stickiness

because, when α = 1, all buyers are captive, all sellers are monopolists and, just like in

Sheshinski and Weiss (1977) or Bénabou (1988), search frictions do not cause any price

stickiness. The contribution of search frictions can be recovered as the fraction of price

stickiness not accounted for by menu costs.

The last three rows in the first column of Table 1 report the contribution of menu

costs to price stickiness for the benchmark calibration of the model. We find that menu

costs contribute to approximately half of the empirical duration of nominal prices, if we

measure their contribution as the time spent by prices in the [s, S] interval. In words, we

find that half of the time a seller does not change its nominal price because it does not

want to incur the menu cost. We find that menu costs contribute to 14% of the empirical

duration of nominal prices, if we measure their contribution using the counterfactual

where c = 0. In words, we find that, in a counterfactual world where menu costs are

zero, the average duration of prices is only 14% lower than in the data. Finally, we find

that menu costs contribute to only 6% of empirical duration of nominal prices, if we

measure their contribution using the counterfactual where α = 1. In words, we find that,
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in a counterfactual world where search frictions do not play any role in generating price

stickiness, the average duration of prices is 6% of what it actually is in the data.

Columns (2) through (5) of Table 1 report the parameter values and the contribution

of menu costs to price stickiness using alternative calibration targets. Column (2) reports

the results of a calibration in which we consider some product with a duration of prices of

10 months, which is lower than the average duration of 13 months. Under this calibration,

menu costs are smaller and their contribution to the duration of nominal prices tends to be

lower than in the benchmark calibration. Column (3) reports the results of a calibration

in which we consider some product with an above-average price duration of 16 months.

Under this calibration, menu costs are larger and their contribution to price stickiness

tends to be bigger than in the benchmark calibration. These findings are very intuitive.

As explained in Head et al. (2012), our model generates some price stickiness simply

because of search frictions. The lower (higher) is the targeted duration of nominal prices,

the smaller (greater) is the menu cost that needs to be added on top of the search frictions

in order to match the target, and the smaller (greater) is the contribution of menu costs

to price stickiness.

Column (4) reports the results of a calibration in which we consider some product with

a standard deviation of prices of 10%, which is lower than the average standard deviation

of prices in the data (15%). Using the fact that the store component of prices accounts

for 15.5% and the (persistent) store-good component of prices accounts for 30% of the

overall variance of prices, we target a standard deviation of x of 3.9% and a standard

deviation of z of 8.2%. Under this calibration, menu costs are larger relative to the

benchmark calibration and so is their contribution to price stickiness. Column (5) reports

the results of a calibration in which we consider some product with an above-average

standard deviation of prices of 20% (which implies that we target a standard deviation of

x of 7.8% and a standard deviation of z of 11%). Under this calibration, menu costs are

smaller and so is their contribution to price stickiness. Also these findings are intuitive.

The extent of price stickiness generated by search frictions is greater the larger is the

targeted dispersion of prices. In turn, this implies that the larger is the targeted dispersion

of prices, the smaller are the menu costs required to match the observed duration of prices,

and the smaller is the contribution of menu costs to price stickiness.

The take-away of Table 1 is that both menu costs and search frictions contribute to

the observed stickiness of nominal prices, although search frictions are the relatively more

important factor. Qualitatively, this is the same finding as in Burdett and Menzio (2017).

Quantitatively, though, the contribution of menu costs to price stickiness is larger than

what found by Burdett and Menzio (2017). It is easy to understand why this is the case.
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In Burdett and Menzio (2017), sellers only change their nominal price to keep up with

inflation. In our model, sellers also change their nominal price to respond to idiosyncratic

shocks. For this reason, in order to match the same empirical duration of nominal prices,

our model requires a larger menu cost than Burdett and Menzio (2017). In turn, this

implies that the contribution of menu costs to price stickiness is larger in our model than

in Burdett and Menzio (2017).

5 Conclusions

In this paper, we developed a generalized version of the model by Burdett and Menzio

(2017) in order to answer the question of whether nominal price stickiness is due to menu

costs (which prevent sellers from freely adjusting their nominal prices to keep up with

inflation) or to search frictions (which make sellers indifferent between every real price

over an entire interval). Our model generalizes Burdett and Menzio (2017) by introducing

idiosyncratic shocks to the value of the amenities offered by a seller to its customers. These

shocks give sellers a second reason to change their nominal prices in addition to keeping

up with inflation and lead to the possibility of negative price changes. We calibrated

the model to match the extent of price dispersion, price stickiness and the fraction of

negative price changes observed in the data. We found that, in the equilibrium of the

calibrated model, sellers follow a (Q,S,s) pricing rule as in Burdett and Menzio (2017).

This implies that both menu costs and search frictions contribute to the stickiness of

nominal prices. We found that, in contrast to Burdett and Menzio (2017), our model

reproduces quite closely the properties of the empirical price distribution (hump-shape

and excess kurtosis) as well as the properties of the empirical price change distribution

(both negative and positive price changes, both small and large price changes, and excess

kurtosis). We also found that, in agreement with Burdett and Menzio (2017), our model

implies that search frictions are the main cause of price stickiness. However, our model

implies that menu costs account for a larger fraction of price stickiness than what found

by Burdett and Menzio (2017).
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