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Abstract

We study stochastic choice as the outcome of deliberate randomization. After first deriving
a general representation of a stochastic choice function with such property, we proceed to
characterize a model in which the agent has preferences over lotteries that belong to the
Cautious Expected Utility class (Cerreia-Vioglio et al., 2015a), and the stochastic choice
is the optimal mix among available options. This model links stochasticity of choice and
the phenomenon of Certainty Bias, with both behaviors stemming from the same source:
multiple utilities and caution. We show that this model is behaviorally distinct from models
of Random Utility, as it typically violates the property of Regularity, shared by all of them.
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1 Introduction

A robust finding in the study of individual decision-making is the presence of stochas-
tic, or random, choice: when subjects are asked to choose from the same set of options
multiple times, they often make different choices.1 An extensive literature has doc-
umented this pattern in many experiments, in different settings and with different
populations, both in the lab and in the field. It often involves a significant fraction of
the choices, even when subjects have no value for experimentation (e.g., when there
is no feedback), or when there are no bundle or portfolio effects (e.g., when only one
choice is paid).2 It thus appears incompatible with the typical assumption in eco-
nomics that subjects have a complete and stable preference ranking over the available
alternatives and consistently choose the option that maximizes it.

A large body of theoretical work has developed models to capture stochastic be-
havior. Most of these models can be ascribed to one of two classes. First, models of
“Random Utility/Preferences,” according to which subjects’ answers change because
their preferences change stochastically.3 Second, models of “bounded rationality,” or
“mistakes,” according to which subjects have stable and complete preferences, but
may fail to always choose the best option and thus exhibit a stochastic pattern.4

While according to the interpretations above the stochasticity of choice happens
involuntarily, a third possible interpretation is that stochastic choice is a deliberate
decision of the agent: she may choose to report different answers. The goals of this
paper are: 1) to develop axiomatically models in which stochastic choice follows this
interpretation; 2) to show how stochastic choice can be seen as stemming from the
same source as known violations of Expected Utility, like the Certainty Bias; and
3) to identify whether, and how, such models of deliberate randomization can be
behaviorally distinguished from existing models of stochastic choice.

A small existing literature has suggested why subjects may wish to report stochas-
tic answers. Machina (1985) notes that this is precisely what the agent may wish to do

1To avoid confusion, note that these terms are used to denote two different phenomena: 1) one
person faces the same question multiple times and gives different answers; 2) different subjects
answer the same question only once, but subjects who appear similar, given the available data,
make different choices. In this paper we focus on the first one.

2The pattern of stochastic choice was first reported in Tversky (1969). A large literature followed:
focusing on choices between risky gambles (as in our model), see Camerer (1989), Starmer and
Sugden (1989), Hey and Orme (1994), Ballinger and Wilcox (1997), Hey (2001), Regenwetter et al.
(2011), Regenwetter and Davis-Stober (2012), and Agranov and Ortoleva (2017).

3Thurstone (1927), Luce (1959), Harsanyi (1973), Falmagne (1978), Cohen (1980), Barberá and
Pattanaik (1986), McFadden and Richter (1991), Loomes and Sugden (1995), Clark (1996), McFad-
den (2006), Gul and Pesendorfer (2006), Ahn and Sarver (2013), Fudenberg and Strzalecki (2015).

4Models of this kind appear in economics, psychology and neuroscience, including the well-known
Drift Diffusion model: among many, Busemeyer and Townsend (1993), Harless and Camerer (1994),
Hey and Orme (1994), Camerer and Ho (1994), Wu and Gonzalez (1996), Ratcliff and McKoon
(2008), Gul et al. (2014), Manzini and Mariotti (2014), Woodford (2014), Fudenberg and Strzalecki
(2015). For surveys, Ratcliff and Smith (2004), Bogacz et al. (2006), Johnson and Ratcliff (2013).
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if her preferences over lotteries or acts are convex, that is, exhibit affinity towards ran-
domization between equally good options. Crucially, convexity is a property shared
by many existing models of decision making under risk, and it captures ambiguity
aversion in the context of decision making under uncertainty. Convexity of prefer-
ences also has experimental support (Becker et al., 1963; Sopher and Narramore,
2000). Different reasons for stochastic choice to be deliberate were suggested by Mar-
ley (1997) and Swait and Marley (2013), who follow lines similar to Machina (1985);
Dwenger et al. (2016), that suggest it may be due to a desire to minimize regret; and
Fudenberg et al. (2015), who connect it to uncertain taste shocks. In Section 4 we
discuss these papers in detail.

Recent experimental evidence supports the interpretation of stochastic choice as
deliberate. Agranov and Ortoleva (2017) show how subjects give different answers
also when the same question is asked three times in a row and subjects are aware of
the repetition; they seem to explicitly choose to report different answers.5 Dwenger
et al. (2016) find that a large fraction of subjects choose lotteries between available al-
locations, indicating an explicit preference for randomization. They also show similar
patterns using the data from a clearinghouse for university admissions in Germany,
where students must submit multiple rankings of the universities they would like to
attend. These are submitted at the same time, but only one of them matters, chosen
randomly. They find that a significant fraction of students report inconsistent rank-
ings, even when there are no strategic reasons to do so. A survey among applicants
supports the interpretation that these random allocations are chosen intentionally,
and show that they are correlated with an explicit preference for randomization.6

We develop axiomatically models of stochastic choice over lotteries as the outcome
of a deliberate desire to report a stochastic answer. We aim to capture and formalize
the intuition of Machina (1985) that such a desire may be a rational reaction if the
underlying preferences over lotteries are convex; in particular, we aim to show how
both stochasticity of choice and violations of Expected Utility in line with the well-
known Allais paradoxes may be seen as stemming from the same source. We consider
a stochastic choice function over sets of lotteries over monetary outcomes, which
assigns to any set a probability distribution over its elements. We focus on lotteries
not for technical reasons, but because we are interested in linking stochastic choice
to features of preferences over lotteries in general, and violations of Expected Utility
in particular. The presence of lotteries is thus essential to make the connection.

We begin our analysis with a very general representation theorem: we show that
a rationality-type condition on stochastic choice, reminiscent of the acyclicity of the
revealed preference relation used in choice from limited datasets, guarantees that it

5In a survey conducted at the end of the experiment, most subjects report choosing different
answers deliberately. These results hold true also in robustness tests with unusually high stakes.

6Kircher et al. (2013) consider a version of the dictator game in which dictators can choose
between 7.5 euros for themselves and 0 to the recipient, 5 to both, or a lottery between them.
About one third of the subjects chooses to randomize.
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can be represented as if the agent were choosing the optimal mixing over the existing
options given an underlying complete and transitive preference relation over the final
monetary lotteries. In this model the stochasticity has a purely instrumental value for
the agent: she does not value the randomization per se, but rather because it allows
her to obtain the lottery over final outcomes she prefers. Implicit in this approach
is that agents evaluate mixtures of lotteries by looking at the distribution over final
outcomes they induce, rather than as compound lotteries.

The very general representation above imposes only minimal requirements on the
underlying preferences. To obtain more structure, we note that a desire to mix must
derive from violations of Expected Utility. Additional structure will thus result from
imposing regularities on when such violations can occur. Since one of the most robust
findings of such violations is the Certainty Bias, as captured by both Allais paradoxes
(Common-Ratio and Common-Consequence effects), we posit that violations cannot
occur in ways that are explicitly in the opposite direction – strictly certainty “averse”
– at least in the extreme case in which the stochastic choice function is degenerate.7

The main result of the paper is to show that this postulate, together with continu-
ity and risk aversion, characterizes the special case of the model above in which the
underlying preferences are represented by the Cautious Expected Utility model of
Cerreia-Vioglio et al. (2015a): the agent has a set of utility functions over outcomes,
and evaluates each lottery p by displaying a cautious behavior. She computes the cer-
tainty equivalent of p with respect to each possible function in the set, and then picks
the smallest one. These preferences are convex, and thus display (weak) preference
for mixing. Intuitively, the desire to mix between options emerges from the agent’s
subjective uncertainty of how to evaluate lotteries; she may benefit from ‘hedging’ in
a similar way to how an ambiguity averse agent may benefit from hedging between
two acts. We call this the Cautious Stochastic Choice model.

Note that in the Cautious Stochastic Choice model there are multiple utilities
being considered, which is similar to what happens with models of Random Utility,
where one utility is randomly picked each time a choice is made. Here, instead, all
utilities are considered at the same time, and the agent uses the one that returns the
lowest certainty equivalent. It is as if the agent were aware – or meta-cognitive – of
the presence of multiple utilities and acted with caution given this awareness.

The Cautious Stochastic Choice model tightly links stochasticity of choice and
violations of Expected Utility as the Certainty Bias. Both stem from the presence of
multiple utilities and the use of caution. This connection is formal. We show that as
long as there are finitely many utilities, agents have a strict desire to randomize if and
only if they violate Expected Utility in line with the Certainty Bias, which in turn

7Our axiom will be reminiscent of Negative Certainty Independence of Dillenberger (2010). But
while the latter is imposed on preferences, here preferences are not observable. Our axiom will be
instead imposed only in the extreme situations in which the stochastic choice function is degenerate;
it posits no restrictions when the stochastic choice function is not degenerate. It is thus conceptually
much weaker.
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holds if and only if her set of utilities contains more than one element. Our model thus
belongs to the small literature that suggests some unification of different deviations
from the ‘standard’ model, linking them to the same source: here stochastic choice
and Certainty Bias are both due to the presence of multiple utilities and caution.8

Our last set of results relates the Cautious Stochastic Choice model with exist-
ing models of stochastic choice. We begin by considering a well-known property of
stochastic choice, widely used in the literature: Regularity. It posits that the prob-
ability of choosing p from a set cannot decrease if we remove elements from it. We
show that adding Regularity to our model implies that the agent acts as if she had
one utility and randomized only in the cases of indifference – in all other cases the
stochastic choice must be degenerate.9 Thus, a strict desire to hedge implies viola-
tions of Regularity. Intuitively, our agent may choose from a set A two options that,
together, allow her to “hedge.” But this holds only if they are both chosen: they
are complementary to each other. If either option is removed from A, the possibility
of hedging disappears and the agent no longer has incentive to pick the remaining
one. This generates a violation of Regularity. The key observation is that the agent
considers all the elements chosen as a whole, for the general hedging they provide
together. By contrast, Regularity is based on the assumption that the appeal of each
option is independent from the other options present in the menu or in the choice.
Thus a violation of Regularity is an essential feature of the hedging behavior that we
aim to capture.

That the Cautious Stochastic Choice model is inconsistent with Regularity has
direct implications on its relation with Random Utility. Since it is well-known that
the latter must satisfy Regularity, the only behavior that can be represented by both
models is one of a degenerate random utility (only one utility), where randomization
occurs only in the case of indifference. Thus, the conceptual difference highlighted
above is reflected in a substantial behavioral difference, via the property of Regularity,
which is very easily testable in experiments. Since also the models in Fudenberg et al.
(2015) satisfy Regularity, the same relation holds between our model and theirs.

We conclude the introduction by emphasizing that our agent acts as if she foresees
the final consequences of each possible randomization over lotteries and chooses the
best one; a model which may be only partially realistic. One may thus see our
results as providing a ‘rational’ model of stochastic choice as the outcome of deliberate
randomization of subjects whose only deviation from standard behavior is possible
violations of Expected Utility – all other possible deviations are ruled out.10

8See Dillenberger (2010), Ortoleva (2010), Andreoni and Sprenger (2010), Epper and Fehr-Duda
(2015), Dean and Ortoleva (2015), Dean and Ortoleva (2017).

9In particular, we show that adding Regularity implies that the underlying preference satisfies a
property called Betweenness (Dekel, 1986; Chew, 1989), which amounts to having linear indifference
curves and thus gives the agent no incentive to randomize. See Section 4 for a discussion.

10In particular, our agents also do not fail to reduce compound lotteries, a property that has been
both theoretically (Segal, 1992) and empirically (Dean and Ortoleva, 2017) shown to be disjunct
from violations of Expected Utility.
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The remainder of the paper is organized as follows. Section 2 presents the gen-
eral Deliberate Stochastic Choice model. Section 3 presents the Cautious Stochastic
Choice model and Section 4 discusses the relation with existing models. All proofs
appear in the Appendix.

2 A General Model of Deliberately Stochastic Choice

2.1 Framework and Foundations

Let [w, b] ⊂ R be an interval of monetary prizes and let ∆ be the set of lotteries (Borel
probability measures) over [w, b], endowed with the topology of weak convergence.
We use x, y, z and p, q, r for generic elements of [w, b] and ∆, respectively. Denote
by δx ∈ ∆ the degenerate lottery (Dirac measure at x) that gives the prize x ∈ [w, b]
with certainty. If p and q are such that p strictly first order stochastically dominates
q, we write p >FOSD q.

Denote byA the collection of all finite and nonempty subsets of ∆. For any A ∈ A,
co(A) denotes the convex hull of A, that is, co(A) = {

∑
j αjpj : pj ∈ A and αj ∈

[0, 1],
∑

j αj = 1}.
The primitive of our analysis is a stochastic choice function ρ over A, i.e., a map ρ

that associates to each A ∈ A a probability measure ρ(A) over A. For any stochastic
choice function ρ, A ∈ A, and p ∈ A, suppρ(A) denotes the support of ρ(A), and we
write ρ(A)(p) to denote the probability ρ assigns to p in menu A.

As a final bit of notation, since ρ(A) is a probability distribution over lotteries,
thus a compound lottery, we can compute the induced lottery over final monetary
outcomes. Denote it by ρ(A) ∈ ∆, that is,

ρ(A) =
∑
q∈A

ρ(A)(q)q.

Note that by construction, the convex hull of a set A, co(A), will also correspond to
the set of all monetary lotteries that can be obtained by choosing a specific ρ and
computing the distribution over final prizes it induces.11

We can now discuss our first axiom. Our goal is to capture behaviorally an agent
who is deliberately choosing her stochastic choice function following an underlying
preference relation over lotteries. When asked to choose from a set A, she considers
all lotteries that can be obtained from A by randomizing: using our notation above,
she considers the whole co(A), and the lottery ρ(A) can be seen as her ‘choice.’

Our axiom is a rationality-type postulate for this case. Consider two sets A1 and
A2, and suppose that ρ(A2) ∈ co(A1). This means that the lottery chosen from A2

could be obtained also from A1. Standard rationality posits that the ‘choice’ from

11That is, by construction we must have co(A) = {p ∈ ∆ : p = ρ(A) for some stochastic choice
function ρ}.
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A1, ρ(A1), must then be at least as good as anything that can be obtained from A2.
Since we do not observe the preferences, we cannot impose this; but at the very least
we can say that there cannot be anything in A2 that strictly first order stochastically
dominates ρ(A1). This is the content of our axiom, extended to any sequence of
length k of sets.

Axiom 1 (Rational Mixing). For each k ∈ N\{1} and A1, . . . , Ak ∈ A, if

ρ(A2) ∈ co(A1), . . . , ρ(Ak) ∈ co(Ak−1),

then q ∈ co(Ak) implies q ≯FOSD ρ(A1).

Rational Mixing is related to conditions of rationality and acyclicity typical in the
literature on revealed preferences with limited observations, along the lines of Afriat’s
condition and the Strong Axiom of Revealed Preferences (Chambers and Echenique,
2016). Intuitively, the ability to randomize allows the agent to choose any option in
the convex hull of all sets; thus, it is as if we could only see the choices from convex
sets, and posit a rationality condition for this case.

Note that Rational Mixing implicitly 1) includes a form of coherence with strict
first order stochastic dominance, and 2) assumes that the agent cares only about
the induced distribution over final outcomes, rather than the procedure in which it is
obtained. That is, for the agent the stochasticity is instrumental to obtain a better
distribution over final outcomes, rather than being valuable per se. This implies a
form of reduction of compound lotteries, which we will maintain throughout.

2.2 Deliberate Stochastic Choice Model

Definition 1. A stochastic choice function ρ admits a Deliberate Stochastic Choice
representation if there exists a complete preorder (a transitive and reflexive binary
relation) % over ∆ such that:

1. For every A ∈ A
ρ(A) % q for every q ∈ co(A);

2. For every pair p, q ∈ ∆, p >FOSD q implies p � q.

Theorem 1. A stochastic choice function ρ satisfies Rational Mixing if and only if
it admits a Deliberate Stochastic Choice representation.

A Deliberate Stochastic Choice model captures a decision maker who has pref-
erences % over monetary lotteries and chooses deliberately the randomization that
generates the optimal mixture among existing options. This is most prominent when
% is convex and, in particular, if there exist some p, q ∈ ∆ and α ∈ (0, 1) such that
αp+(1−α)q � p, q. When faced with the choice from {p, q}, she would strictly prefer
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to randomly choose rather than to pick either of the two options. The stochasticity
is thus an expression of the agent’s preferences.

Note that the Deliberate Stochastic Choice model is very general and does not
restrict preferences to be convex. It permits desire for randomization, in regions where
strict convexity holds; indifference to randomization, e.g., when % follows Expected
Utility, or satisfies Betweenness;12 or even aversion to randomization, e.g., if % are
Rank Dependent Expected Utility (RDU) preferences with pessimistic distortions:
in these cases the agent has no desire to mix and the stochastic choice function is
degenerate.13

Note also that the Deliberate Stochastic Choice model puts no restriction on
the way the agent resolves indifferences: when multiple alternatives maximize the
preference relation, any could be chosen. Although it is a typical approach not to
rule how indifferences are resolved, this may however lead to discontinuities.14

Remark 1. Our framework implicitly assumes that we observe the stochastic choice
function ρ for all sets in A. This is very demanding, and a natural question is what
tests are required if we observe only limited data. In fact, the Rational Mixing axiom
is necessary and sufficient in any dataset that includes all doubletons {p, q} such that
p >FOSD q. Consider any B ⊂ A such that {p, q} ∈ B whenever p >FOSD q and
denote by ρB the restriction of ρ on B. Then, ρB satisfies Rational Mixing if and
only if ρB admits a Deliberate Stochastic Choice representation. (The proof follows
exactly the same steps as the proof of Theorem 1.)

Remark 2. The preference relation in a Deliberate Stochastic Choice model need
not admit a utility representation. For this we need a form of continuity. Proposition
7 in Appendix B gives a sufficient condition for that: in words, we need to add the
additional requirement that the binary relation R, defined as pRq if p = ρ(A) for
some A such that q ∈ co(A), has a transitive closure that is a closed set.

3 The Cautious Stochastic Choice Model

Theorem 1 has the benefits and drawbacks of generality: it captures stochastic choice
as the deliberate desire to report a stochastic answer, with few further assumptions;

12That is, p ∼ q ⇒ αp+ (1− α)q ∼ q for all p, q ∈ ∆, α ∈ (0, 1). See Dekel (1986); Chew (1989).
13If we order the prizes in the support of a finite lottery p, with x1 < x2 < ... < xn, then the func-

tional form for RDU is: V (p) = u(xn)f(p (xn) ) +
∑n−1

i=1 u(xi)[f(
∑n

j=i p (xj))− f(
∑n

j=i+1 p (xj))],
where f : [0, 1]→ [0, 1] is strictly increasing and onto and u : [w, b]→ R is increasing. We say that
distortions are pessimistic if f is convex, which implies aversion to randomization.

14While with choice correspondences the continuity of the underlying preference relation implies
continuity of the choice correspondence (i.e., satisfies the closed graph property), here it is as if
we observed also the outcome of how indifference is resolved (which may be stochastic). This
will necessarily imply discontinuities of ρ, following standard arguments. An alternative, although
significantly less appealing, approach would be to consider a stochastic choice correspondence, which
could be fully continuous.
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but it puts only minimal restrictions on preferences over lotteries, thus providing
limited predictive power. We now turn to a special case in which we give a specific
functional form representation to the underlying preferences %.

Recall that the agent may strictly prefer to mix only if the underlying preferences
violate Expected Utility – otherwise no mixing is beneficial. To gain more structure,
we can restrict how these violations may occur. One of the most robustly docu-
mented instances of violation of Expected Utility is the so-called Certainty Effect, as
captured, for example, by Allais’ Common Ratio and Common Consequences effects:
intuitively, agents violate the Independence axiom by over-valuing degenerate lotter-
ies. In desiring to restrict violations of Expected Utility, it is thus natural to posit
that such violations cannot be in the unequivocally opposite direction.

Suppose that {p} = suppρ({p, δx}): from the set {p, δx}, the agent always chooses
p uniquely. This means that p is more attractive than δx, even though the latter is
a degenerate lottery and thus potentially very attractive for an agent who may be
certainty biased. Suppose now that we mix both options with a lottery q, obtaining
{λp + (1 − λ)q, λδx + (1 − λ)q}. By doing so we are transforming the sure amount
into a lottery. And if p was appealing against it before, the mixture of p should be all
the more appealing now that the alternative is no longer certain. And if we replace
δx with δy for some y < x in the mixture, then this should be even more true. This
leads us to the following axiom.

Axiom 2 (Weak Stochastic Certainty Effect). For each p, q ∈ ∆, x, y ∈ [w, b] with
x > y, and λ ∈ (0, 1], if

{p} = suppρ({p, δx}),
then

{λp+ (1− λ)q} = suppρ({λp+ (1− λ)q, λδy + (1− λ)q}).

While the axiom above would be satisfied by any agent with Expected Utility
preferences, it would also be satisfied by an agent who is certainty biased, as defined,
for example, in Kahneman and Tversky (1979). What the axiom rules out are agents
who are strictly certainty “averse,” as they may choose p uniquely when the alter-
native is δx, but may pick a mixture of the latter if it is no longer degenerate. For
example, the axiom rules out violations of Expected Utility that are the opposite of
those in Allais’ paradoxes.

Weak Stochastic Certainty Effect is related to Negative Certainty Independence,
or NCI (Dillenberger, 2010; Cerreia-Vioglio et al., 2015a), which is imposed on pref-
erences over lotteries. NCI requires that if p is preferred to δx, then a mixture of p
and q should be weakly preferred to a mixture (with the same proportions) of δx and
q. Both axioms follow a similar logic in ruling out the opposite of Certainty Bias.
Where they differ, however, is that NCI is imposed on preferences, which here we
cannot observe. Weak Stochastic Certainty Effect is instead imposed on a stochas-
tic choice function and, crucially, only in the extreme case in which the stochastic
choice function is degenerate. It imposes no restrictions on behavior for sets where the
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stochastic choice function is not degenerate, and it holds vacuously if ρ is never de-
generate. It is thus conceptually much weaker than imposing NCI on the underlying
preferences – even if there was a way to do so.

We are left with two standard postulates: Continuity and Risk Aversion. Since
we posit no restrictions on what the agent does in the case of indifferences, we have
to allow for discountinuities of ρ due to this, as we have discussed above (see footnote
14).

Axiom 3 (Continuity). Let (pm) ∈ ∆∞ and (xm) ∈ [w, b]∞ be convergent sequences
with pm → p and xm → x. Let y ∈ (w, x) and q ∈ ∆ be such that q >FOSD p. Then:

- {pm} = suppρ({pm, δx}) for every m implies {p} = suppρ({p, δy}). Similarly,
δy ∈ suppρ({pm, δy}) for every m implies {δx} = suppρ({p, δx});

- {p} = suppρ({p, δxm}) for every m implies {q} = suppρ({q, δx}). Similarly,
δxm ∈ suppρ({q, δxm}) for every m implies {δx} = suppρ({p, δx}).

Next, we impose Risk Aversion – noting that this is imposed here for purely tech-
nical reasons, as it is behaviorally distinct from deliberate stochasticity.15 Consider
two lotteries p and q such that q is a mean preserving spread of p, and suppose that
the agent consistently picks q against some δx. Now suppose that we replace q with
p, and δx with δy where y < x. We are making the unchosen option worse (as y < x);
and if the agent is risk averse, since q is a mean preserving spread of p, we are also
making the chosen option better. We thus posit that p should be chosen against δy.

Axiom 4 (Risk Aversion). For each p, q ∈ ∆, if q is a mean preserving spread of
p and {q} = suppρ({q, δx}) for some x ∈ (w, b], then {p} = suppρ({p, δy}) for each
y ∈ [w, x).

3.1 Representation Theorem

We are now ready to introduce the second main representation in the paper. For this,
denote the set of continuous functions from [w, b] into R by C([w, b]) and metrize it
by the supnorm. Given a lottery p ∈ ∆ and a function v ∈ C([w, b]), we write Ep(v)
for the Expected Utility of p with respect to v, that is, Ep(v) =

∫
[w,b]

vdp.

15This is needed again because we do not restrict how indifference is broken. Risk aversion
guarantees the compactness of the set of utilities in our representation below, which guarantees
strict monotonicity with respect to first order stocastic dominance, which, in turn, is essential to
identify indifferences. Alternatively, we could replace risk aversion with a technical condition that
guarantees compactness; we would obtain a similar representation but without the requirement that
all functions are concave.
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Definition 2. A stochastic choice function ρ admits a Cautious Stochastic Choice
representation if there exists a compact set W ⊆C([w, b]) such that every function
v ∈ W is strictly increasing and concave and

ρ(A) ∈ arg max
p∈co(A)

min
v∈W

v−1(Ep(v)),∀A ∈ A. (1)

Theorem 2. Let ρ be a stochastic choice function on ∆. The following statements
are equivalent:

(i) The stochastic choice function ρ satisfies Rational Mixing, Weak Stochastic Cer-
tainty Effect, Continuity, and Risk Aversion;

(ii) There exists a Cautious Stochastic Choice representation of ρ.

In a Cautious Stochastic Choice model, the agent has a set of utility functionsW ,
all of which are continuous, strictly increasing, and concave. It is as if she were unsure
of which utility function to use to evaluate lotteries. She then proceeds as follows:
for each lottery p, she computes the certainty equivalent with respect to every utility
v in W , and picks the smallest one. Note that if for some u, v ∈ W and p, q ∈ ∆ we
have Ep(u) > Eq(u) but Ep(v) < Eq(v), i.e., p is better for one utility but q is better
for another, then the agent may prefer to mix p and q: this way, she obtains a lottery
that is “not too bad” according to either u or v. This is similar to how, in the context
of decision making under uncertainty, hedging may make an ambiguity averse agent
better off. It is easy to see that these preferences are weakly convex, and – locally –
may be strictly convex. The cautious criterion may thus generate a strict desire to
mix existing options, leading to Deliberate Stochastic Choice.

The choice procedure the agent uses in the Cautious Stochastic Choice model
is a special case of the Cautious Expected Utility model of Cerreia-Vioglio et al.
(2015a).16 This is derived here by imposing Weak Stochastic Certainty Effect, which
is reminiscent of NCI, which in turn characterizes the Cautious Expected Utility
model. However, we have seen that Weak Stochastic Certainty Effect does not apply
to the (unobserved) underlying preference, but constrains behavior only in extreme
situations where the stochastic choice function is degenerate. It is thus conceptually
much weaker than imposing NCI on the whole underlying preferences. The theorem
above shows, however, that this is actually equivalent: within the context of stochastic
choice, ruling out the opposite of Certainty Bias in such extreme cases is sufficient
to guarantee the existence of a Cautious Expected Utility representation, and thus
the whole underlying preferences abide by NCI. Put differently: within the context
of stochastic choice, the Cautious Expected Utility model emerges by only restricting
behavior on extreme cases.

16It is a special case in that W is compact and all utilities are concave. (The latter follows from
risk aversion.)
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The Cautious Stochastic Choice model is also conceptually related to models of
Random Utility, where the agent has a probability distribution over possible utility
functions and, for each decision, one utility is chosen randomly.17 Here we also have
multiple utilities, but it is as if the agent took into account all utilities at the same
time – as if she were aware, or meta-cognitive, of this multiplicity – and reacted
with caution, by using only the utility with the lowest certainty equivalent. That is,
instead of using one random utility, only the most ‘cautious’ one is employed.

In terms of uniqueness, the relation % induced by a Cautious Stochastic Choice
representation is unique.

Proposition 1. Consider two Cautious Stochastic Choice representationsW andW ′
of some stochastic choice function ρ. Then, for each q ∈ ∆

min
v∈W

v−1(Eq(v)) = min
v∈W ′

v−1(Eq(v)).

Less straightforward is the uniqueness ofW . These are similar uniqueness proper-
ties as in Cerreia-Vioglio et al. (2015a), to which we refer for further detail. Suppose
that W is a Cautious Stochastic Choice representation of a given stochastic choice
function ρ. First, we can normalize all functions v ∈ W so that v(w) = 0 and v(b) = 1;
call this a normalized Cautious Stochastic Choice model. Second, the closed convex
hull of W , co(W), would represent the same preferences. Lastly, we can always add
redundant functions to the set without changing the representation, like a v̄ that is a
continuous, strictly increasing, and strictly convex transformation of some v ∈ W . To
obtain uniqueness, we have to remove these redundant functions and aim to obtain
a “minimal” set. Our next result establishes that there exists a Cautious Stochastic
Choice representation with a minimal, normalized, and convex set of utilities.

Proposition 2. Let ρ be a stochastic choice function that admits a Cautious Stochas-
tic Choice representation. Then, there exists a normalized and convex Cautious
Stochastic Choice representation Ŵ of ρ such that, for any other normalized and
convex Stochastic Choice representation of ρ, we have Ŵ ⊆ W.

We conclude this discussion by suggesting a method that can be used by exper-
imental and applied researchers to identify from choice data the set of utilities of
a Cautious Stochastic Choice model. Assume that our data can be described by a
Cautious Stochastic Choice representationW , and consider an arbitrary concave and
strictly increasing function v∗ ∈ C([w, b]). Now suppose that x ∈ [w, b] and p ∈ ∆
are such that p ∈ suppρ({p, δx}). By the representation of ρ, this can happen only if

min
v∈W

v−1(Ep(v)) ≥ x.

But then, if Ep(v∗)) < v∗(x), we can be sure that v∗ does not belong to W . This
discussion can be summarized by the following proposition:

17A formal comparison between these models appears in Section 4.
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Proposition 3. Let ρ be a stochastic choice function that admits a Cautious Stochas-
tic Choice representation and let v∗ ∈ C([w, b]) be strictly increasing and concave. If
there exist x ∈ [w, b] and p ∈ ∆ such that p ∈ suppρ({p, δx}) and Ep(v∗) < v∗(x),
then v∗ /∈ W for every Cautious Stochastic Choice representation W of ρ.

This result shows how utilities can be easily excluded from the set W , helping
the identification of the set. Specifically, to exclude a function v∗, all one needs to
do is to: 1) find a lottery p and a certain amount x such that p ∈ suppρ({p, δx}) ; 2)
compare the magnitudes of Ep(v∗) and v∗(x). The proposition shows that if v∗(x) is
strictly greater than Ep(v∗), then v∗ cannot belong to W .

3.2 Stochastic Choice and Certainty Bias

In the Cautious Stochastic Choice model, the underlying preferences of the agent fol-
low Cautious Expected Utility, and it is the multiplicity of utilities together with the
agent’s caution that generates the desire to choose stochastically. On the other hand,
Cautious Expected Utility was developed to address the Certainty Bias, where again
the multiplicity of utilities and the caution generate this behavior: non-degenerate
lotteries are evaluated with caution, while degenerate ones are not, since their cer-
tainty equivalent is the same no matter which utility is used. This suggests that our
model of stochastic choice may entail a relation between the Certainty Bias and the
stochasticity of choice. We will now formalize this intuition.

First, we say that an agent exhibits a non-degenerate stochastic choice function
if stochasticity is present not only when the agent is indifferent: if we can find some
p and q such that the agent randomizes between them and also when either is made
a “little bit worse” by mixing with δw (the worst possible outcome).

Definition 3. We say that a stochastic choice function ρ is non-degenerate if there
exist p, q ∈ ∆ with |suppρ({p, q})| 6= 1 and λ ∈ (0, 1) such that

|suppρ({λp+ (1− λ)δw, q})| 6= 1 and |suppρ({p, λq + (1− λ)δw})| 6= 1.

We can also define the case in which the stochastic choice shows at least one
instance of ‘strict’ Certainty Bias, where a strict advantage is given to certainty.

Definition 4. We say that a stochastic choice function ρ is Certainty Biased if there
exist A ∈ A, x, y ∈ [w, b], with x > y, r ∈ ∆, and λ ∈ (0, 1) such that

{δy} = suppρ(A ∪ {δy}) and {λδx + (1− λ)r} 6= suppρ(λ(A ∪ {δx}) + (1− λ)r).

Proposition 4. Consider a stochastic choice function ρ that admits a Cautious
Stochastic Choice representation. Then the following holds:

1. If ρ is a non-degenerate stochastic choice function, then ρ is Certainty Biased
and all Cautious Stochastic Choice representations of ρ must have |W| > 1.
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2. If ρ is Certainty Biased and it admits a Cautious Stochastic Choice representa-
tion with |W| <∞ and cl(co(W)) = Ŵ, where Ŵ is a set as in Proposition 2,
then ρ is a non-degenerate stochastic choice function and all Cautious Stochastic
Choice representations W of ρ must have |W| > 1.

The proposition above shows a connection between Certainty Bias and stochas-
ticity of choice. If ρ admits a canonical representation with finitely many utilities
(|W| < ∞ and cl(co(W)) = Ŵ), we observe stochastic choice in cases beyond those
of indifference if, and only if, we observe at least one instance of strict Certainty Bias.
These take place if, and only if, all representations must involve more than one utility
(|W| > 1): it is the joint presence of multiple utilities as well as caution that leads to
both stochastic choice as well as Certainty Bias.

When any canonical representation of ρ (cl(co(W)) = Ŵ) contains infinitely many
utilities, we may have Certainty Bias but ρ may not be non-degenerate. For example,
if the preferences induced byW satisfy Betweenness, which implies linear indifference
curves (and convex indifference sets), then ρ will never be non-degenerate, but it
could well be Certainty Biased (e.g., if the underlying preference follows Gul, 1991’s
model of disappointment aversion). However, as the proposition above shows, this
is not possible if |W| < ∞: it can be shown that in this case preferences must
violate Betweenness, thus admitting areas of strict convexity, where non-degenerate
stochastic choice can be found.

We note also that the link between the Certainty Bias and stochasticity suggested
above finds experimental support in Agranov and Ortoleva (2017), where the stochas-
ticity of answers is correlated with the tendency to exhibit Allais-like behavior.

4 Relation with Models in the Literature

Regularity. In this section we compare the Cautious Stochastic Choice model with
existing models of stochastic choice. To this end, it will be useful to first discuss
the relation with a well-known property of stochastic choice, extensively used in the
literature.

Axiom 5 (Regularity). For each A,B ∈ A and p ∈ A, if A ⊆ B, then ρ(B)(p) ≤
ρ(A)(p).

Intuitively, Regularity states that if we remove some element from a set, the
probability of choosing the remaining elements cannot decrease. Conceptually, it is
related to notions of independence of irrelevant alternatives applied to a stochastic
setting: the removal of any element, chosen or unchosen, cannot ‘hurt’ the chances of
choice of any of the remaining ones. In other words, the attractiveness of an option
should not depend on the availability of other ones.

The next proposition shows that postulating that the Cautious Stochastic Choice
model satisfies Regularity completely eliminates any benefit from mixing.
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Proposition 5. Suppose that ρ is a stochastic choice function that admits a Cautious
Stochastic Choice representation W and, in addition, satisfies Regularity. Define the
function V : ∆→ R by

V (p) = min
v∈W

v−1(Ep(v)).

Then the following is true:

1. For each A ∈ A,
suppρ(A) ⊆ arg max

p∈A
V (p).

2. For every p, q ∈ ∆ and λ ∈ (0, 1),

V (p) ≥ V (q) =⇒ V (p) ≥ V (λp+ (1− λ)q) ≥ V (q).

The proposition above shows that adding Regularity to the Cautious Stochastic
Choice representation leads to a model in which the agent exhibits stochastic behavior
only when she is indifferent : in (1), the support of the stochastic choice function
includes only the lotteries that maximize V in the original set A, and not in its
convex hull. This implies that the agent never randomizes (except for indifference).
This is also clear from (2), which shows that in this case the agent has no benefit from
hedging: mixing between two lotteries can never yield a higher utility than the best
one of them – in particular, the preference relation induced by V satisfies Betweenness
(See footnote 12).18

Proposition 5 implies that in any Cautious Stochastic Choice model, if randomiza-
tion happens for a genuine desire to mix and not due to indifference, or, equivalently,
the agents’ preferences violate Betweenness, then the stochastic choice must violate
Regularity. This is a crucial feature of the model. To illustrate this point, consider
the following example:

Example 1. Let X = [0, 20] and define functions u and v from X into R by

u(x) =

{
x if x ≤ 5
1
5
x+ 4 if x ≥ 5

and

v(x) =

{
6x− 10 if x ≤ 2

x if x ≥ 2
.

18In fact, statements 1 and 2 in Proposition 5 are equivalent to each other (even in the absence of
Regularity), so for the Cautious Stochastic Choice model randomizing only in case of indifferences
and the impossibility of getting better off by mixing are the same thing. We prove this observation in
Proposition 8. We also show, in Proposition 9, that Regularity is compatible with any Betweenness
preference. In other words, from a preferential point of view, Regularity does not impose any
additional restrictions beyond Betweenness.
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Consider the lotteries p and q such that p(0) = 1/5, p(5) = 4/5, q(2) = 4/5 and
q(12) = 1/5. Note that u−1(Ep(u)) = 4, v−1(Ep(v)) = 2, u−1(Eq(u)) = 72/25 and
v−1(Eq(v)) = 4. Note that if ρ is a stochastic choice function with a Cautious Stochas-
tic Choice representation W = {u, v}, then:

suppρ({p, δ3}) = {δ3} and suppρ({q, δ3}) = {δ3}.

However, we must also have suppρ({p, q, δ3}) = {p, q}:19 the agent has a strict desire
to mix between p and q. This implies two violations of Regularity: we have 0 =
ρ({p, δ3})(p) < ρ({p, q, δ3})(p) as well as 0 = ρ({q, δ3})(q) < ρ({p, q, δ3})(q).

Intuitively, in the example above when both p and q are present, the agent has an
incentive to choose both, mixing them. This allows her to hedge and obtain a higher
utility. The two lotteries are, in a way, complementary to each other. But if p is re-
moved, the agent can no longer hedge, and she is thus no longer interested in choosing
q. This generates a violation of Regularity. The crucial aspect is that the ability of
choosing both p and q at the same time renders them appealing, while they would not
be appealing in isolation. This is a fundamental aspect of when hedging is advanta-
geous: the whole set of chosen elements is relevant for the agent, for the hedging it
provides as a whole. Such complementarity between alternatives violates standard in-
dependence of irrelevant alternatives arguments, according to which chosen elements
should be appealing in isolation, which is also reflected in the Regularity axiom. For
that reason, violations of Regularity are a “structural” feature of our model.

One crucial aspect of this argument is that Regularity prescribes that the choice
probability of any element should not decrease if we remove any other element, in-
cluding chosen ones. Our model would in general satisfy a weaker version that posits
that choice probabilities do not decrease if we remove unchosen elements – violations
of this may occur only for different ways of breaking ties.

Random Utility. Proposition 5 can be used to easily compare the Cautious Ex-
pected Utility model with models of Random Utility. Formally, we say that a stochas-
tic choice function ρ admits a Random Utility representation if there exists a prob-
ability measure over utilities such that for each alternative s in a choice problem A,
the probability of choosing s from A, ρ(A)(s), equals the probability of drawing a
utility function u such that s maximizes u in A.20

It is well-known that a stochastic choice function that admits a Random Utility
representation must satisfy Regularity. This is intuitive: if an option is the best ac-
cording to one utility, its choice cannot be made less likely by removing alternatives.

19In particular, we have ρ({p, q, δ3})(p) = 14/39 and ρ({p, q, δ3})(q) = 25/39.
20Stochastic choice functions over a finite space of alternatives that admit a Random Utility

representation were axiomatized by Falmagne (1978) (see also Barberá and Pattanaik, 1986). An
issue arises when the utility functions allow for indifferences; assumptions are needed on how they
are resolved. Two approaches have been suggested. First, to impose that the measure of the set of
utility functions such that the maximum is not unique is zero for every choice problem. Second, to
impose a tie-breaking rule that is independent of the choice problem.
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(In models of Random Utility, there is no complementarity between the chosen ele-
ments.) But then, Proposition 5 above shows a sharp distinction between our model
and models of Random Utility: the only behavior that can be represented by both
models is one of a degenerate Random Utility model – i.e., with only one utility pos-
sible – in which the agent exhibits stochastic behavior only when she is indifferent.
Another immediate implication is that observing a violation of Regularity – an eas-
ily testable condition – implies that the agents’ behavior cannot be represented by
Random Utility, while it may be represented by Cautious Expected Utility.

Random Expected Utility. Gul and Pesendorfer (2006) axiomatizes the Random
Expected Utility model, a version of Random Utility where all the utility functions
involved are of the Expected Utility type. One of the conditions that characterize
this model is Linearity:

Axiom 6 (Linearity). For each A ∈ A, p ∈ A, q ∈ ∆, and λ ∈ (0, 1),

ρ(A)(p) = ρ(λA+ (1− λ)q)(λp+ (1− λ)q).

We now show that if ρ is a Cautious Stochastic Choice model that in addition
satisfies Regularity and Linearity, then ρ is a degenerate Random Expected Utility
model, i.e., again a model with only one utility. Formally:

Proposition 6. Suppose that ρ is a stochastic choice function that admits a Cau-
tious Stochastic Choice representation W and, in addition, satisfies Regularity and
Linearity. Then there exists a continuous function u : [w, b] → R such that, for any
choice problem A,

suppρ(A) ⊆ {p ∈ A : Ep(u) ≥ Eq(u) ∀ q ∈ A}.

Deliberate Randomization. A small existing literature has suggested models of
stochastic choice as deliberate randomization. As we have discussed, our model ex-
tends the intuition of Machina (1985) (see also Marley, 1997 and Swait and Marley,
2013) in a fully axiomatic setup.21 Dwenger et al. (2016) propose a model in which
agents choose to randomize following a desire to minimize regret. Their key as-
sumption is that the regret after making the wrong choice is smaller if the choice is
stochastic rather than deterministic.

Fudenberg et al. (2015) provide conditions under which stochastic choice corre-
sponds to the maximization of Expected Utility and a perturbation function that

21Machina (1985) suggests the following condition: if A,A′ ∈ A are such that co(A) ⊂ co(A′) and
ρ(A′) ∈ co(A), then ρ(A′) = ρ(A). (This condition is related to Sen’s α axiom.) While naturally
related to our Rational Mixing axiom, this condition is not sufficient to characterize our model.
(Unless preferences are strictly convex, it is also not necessary, because of indifferences: for example,
A and A′ may differ only for the inclusion of some strictly dominated option that is never chosen in
either case, but the stochastic choice may not coincide as indifference may be resolved differently.)
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depends only on the choice probabilities. Formally, they axiomatize a stochastic
choice function ρ such that, for each choice problem A,

ρ(A) = arg max
p∈∆(A)

∑
x∈A

[p(x)u(x)− c(p(x))], (2)

where ∆(A) is the set of probability measures on A, u is a von Neumann-Morgenstern
utility function and c : [0, 1]→ R∪{∞} is strictly convex and C1 in (0, 1). They call
this representation Weak Additive Perturbed Utility (Weak APU) representation.22

Because of the strictly convex perturbation function c, this functional form gives
the agent an intrinsic incentive to randomize. However, there are two important
differences with our model.

A first difference is that we study a domain of menus of lotteries while Fudenberg
et al. (2015) study menus of final outcomes. This is not a mere technical difference,
as our goal is to study, in the spirit of Machina (1985), the link of stochastic choice
with non-Expected Utility behavior – and preferences over lotteries must necessarily
be present for a comparison to be possible.

A second, crucial difference between the models is that even though the model
in Fudenberg et al. (2015) rewards probabilistic choices and this sometimes gives the
individual an incentive to randomize, their model does satisfy Regularity (Fudenberg
et al., 2015, p. 2386). This is a crucial conceptual difference, as it implies that their
model does not include one of the main driving forces of ours, as we discussed above.
It also implies that the formal relation between their models and ours is the same as
with Random Utility: the only behavior compatible with both is one of an agent that
exhibits stochastic choice only when indifferent.23

The results above are summarized in Figure 1.

Other Related Literature. This paper is related to various strands besides stochas-
tic choice. First, our work is also related to the literature on non-Expected Utility,
since a desire to randomize would emerge only as long as the underlying preferences
over lotteries are, at least on some region, strictly convex in the probabilities, in
violation of Expected Utility. This cannot be the case, for example, in the Rank
Dependent Expected Utility model of Quiggin (1982) if distortions are pessimistic: in
this case subjects are averse to mixing. (The converse would hold if they were opti-
mistic, or in some areas when distortions are inverted S-shaped.) No such preference
would emerge also in the case of the Disappointment Aversion model of Gul (1991),
as well as in any other member of the Betweenness class, which implies indifference to

22The paper also characterizes the case in which the function c satisfy the additional requirement
that limq→0 c

′(q) = −∞, which they call an Additive Perturbed Utility representation.
23An alternative way to apply their paper to the case of lotteries is, instead of using their repre-

sentation theorem directly, to use their functional form,
∑

[p(x)u(x)− c(p(x))], as a representation
for the preferences in our Theorem 1. This would lead to a model that is a hybrid of the two
formulations.
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Figure 1: Relation with the Models in the Literature

randomization. The class of convex preferences over lotteries was studied in Cerreia-
Vioglio (2009). Our Cautious Stochastic Choice model includes as a representation of
the underlying preferences a special case of the Cautious Expected Utility model of
Cerreia-Vioglio et al. (2015a). As previously mentioned, our analysis here differs as
we cannot observe the preferences, and thus impose a postulate reminiscent of NCI
but only for the extreme case in which the stochastic choice function is degenerate.

Stoye (2015) studies choice environments in which agents can randomize at will
(thus restricting observability to convex sets). Considering as a primitive the choice
correspondence of the agent in an Anscombe-Aumann setup,24 he characterizes var-
ious models of choice under uncertainty that include a desire to randomize. Unlike
Stoye, we take as a primitive the agent’s stochastic choice function, instead of the
choice correspondence; this not only suggests different interpretations, but also en-
tails substantial technical differences. In addition, we study a setup with risk, and
not uncertainty, and characterize the most general model of deliberate randomization
given a complete preference relation over monetary lotteries.

As we have mentioned, our most general representation theorem (Theorem 1) is
related to the literature on revealed preferences on finite datasets. By randomizing

24The paper considers also a setup with pure risk, but in that case the analysis is mostly focused
on characterizing the case of Expected Utility, where there is no desire to randomize.

19



over a set of alternatives, the agent can obtain any point of its convex hull. It is as if we
could only see individuals’ choices from convex sets, restricting our ability to observe
the entire preferences. Our problem is then related to the issue of eliciting preferences
with limited datasets, originated by Afriat (1967), and for our first theorem we employ
techniques from this literature. Our results are particularly related to Chambers and
Echenique (2016) and Nishimura et al. (2015).
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Appendix A: Preliminary Results

In this section we present a result that extends the analysis of Cerreia-Vioglio et al.
(2015a) which will be instrumental to prove the results in this paper. For that, as we
did in the main text, let [w, b] be a closed interval in R and let ∆ be the space of Borel
probability measures on [w, b] endowed with the topology of weak convergence. Our
primitive will be a binary relation % on ∆. We will impose the following postulates
on %:

Axiom 7 (Weak Order). The relation % is complete and transitive.

Axiom 8 (Continuity). For each q ∈ ∆, the sets {p ∈ ∆ : p % q} and {p ∈ ∆ : q % p}
are closed.

Axiom 9 (Monotonicity). For each x, y ∈ [w, b] and λ ∈ (0, 1],

x > y ⇒ λδx + (1− λ)δw � λδy + (1− λ)δw.

Axiom 10 (Negative Certainty Independence). For each p, q ∈ ∆, x ∈ [w, b] and
λ ∈ [0, 1],

p % δx ⇒ λp+ (1− λ)q % λδx + (1− λ)q.

Axiom 11 (Risk Aversion). For each p, q ∈ ∆, if q is a mean preserving spread of
p, then p % q.

We can now state the following theorem.

Theorem 3. Let % be a binary relation on ∆. The following statements are equiva-
lent:

(i) The relation % satisfies Weak Order, Continuity, Monotonicity, Negative Cer-
tainty Independence, and Risk Aversion.

(ii) There exists a compact set W ⊆C([w, b]) such that every function v ∈ W is
strictly increasing and concave and, for every p, q ∈ ∆,

p % q ⇐⇒ min
v∈W

v−1(Ep(v)) ≥ min
v∈W

v−1(Eq(v)).

Let U be the set of strictly increasing and continuous functions from [w, b] into R.
Define Unor by Unor = {v ∈ U : v(w) = 0 and v(b) = 1}. We first prove two auxiliary
results (Lemma 1 and Theorem 4 below).

Lemma 1. Let W be a subset of Unor. The following statements are equivalent:

(i) W is compact with respect to the topology of sequential pointwise convergence;
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(ii) W is norm compact.

Proof. It is trivial that (ii) implies (i). For the other direction, consider (vn) ∈ W∞.
Observe that, by construction, (vn) is uniformly bounded. By assumption, there exists
a subsequence (vnk

) of (vn) and v ∈ W such that vnk
(x) → v (x) for all x ∈ [w, b].

By (Aliprantis and Burkinshaw, 1998, p. 79) and since v is a continuous function
and each vnk

is increasing, it follows that this convergence is uniform, proving the
statement. �

Theorem 4. Let V : ∆→ R and W ⊆ Unor be such that

V (p) = inf
v∈W

v−1 (Ep(v)) ∀p ∈ ∆.

If each element of W is concave, V is continuous, and such that for each x, y ∈ [w, b]
and for each λ ∈ (0, 1]

x > y =⇒ V (λδx + (1− λ) δw) > V (λδy + (1− λ) δw) (3)

then W is relatively compact with respect to the topology of sequential pointwise con-
vergence restricted to Unor.

Proof. Let us first show that, for each ε > 0, there exists δ > 0 such that, for each
v ∈ W ,

v (w + δ) < ε. (4)

By contradiction, assume that there exists ε̄ > 0 such that for each δ > 0 there exists
vδ ∈ W such that vδ (w + δ) ≥ ε̄. In particular, for each k ∈ N such that 1

k
< b − w

there exists vk ∈ W such that vk
(
w + 1

k

)
≥ ε̄. Define λk ∈ [0, 1] for each k > 1

b−w to
be such that

λkvk (b) + (1− λk) vk (w) = λk = vk

(
w +

1

k

)
≥ ε̄ > 0. (5)

Define pk = λkδb + (1− λk) δw for all k > 1
b−w . Without loss of generality, we can

assume that λk → λ. Notice that λ ≥ ε̄. Define p = λδb + (1− λ) δw. It is immediate
to see that pk → p. By (5) and by definition of V , it follows that

w ≤ V (pk) ≤ v−1
k (Epk(vk)) = w +

1

k
∀k > 1

b− w
.

Since V is continuous and by passing to the limit, we have that

V (λδb + (1− λ) δw) = V (p) = w = V (λδw + (1− λ) δw) ,

a contradiction with V satisfying (3). Now, consider (vn) ∈ W∞. Observe that, by
construction, (vn) is uniformly bounded. By (Rockafellar, 1970, Theorem 10.9), there
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exists a subsequence (vnk
) of (vn) and v ∈ R(w,b) such that vnk

(x) → v (x) for all
x ∈ (w, b). Since vnk

([w, b]) = [0, 1] for all k ∈ N, v takes values in [0, 1]. Define
v̄ : [w, b]→ [0, 1] by

v̄ (w) = 0, v̄ (b) = 1, and v̄ (x) = v (x) ∀x ∈ (w, b) .

Since vnk
∈ W ⊆ Unor for every k ∈ N, we have that vnk

(x)→ v̄ (x) for all x ∈ [w, b].
It is immediate to see that v̄ is increasing and concave. We are left to show that v̄ ∈
Unor, that is, v̄ is continuous and strictly increasing. By (Rockafellar, 1970, Theorem
10.1) and since v̄ is finite and concave, we have that v̄ is continuous at each point of
(w, b). We are left to check continuity at the extrema. Since v̄ is increasing, concave,
and such that v̄ (w) = 0 = v̄ (b) − 1, we have that v̄ (x) ≥ x−w

b−w for all x ∈ [w, b].

It follows that 1 ≥ lim supx→b− v̄ (x) ≥ lim infx→b− v̄ (x) ≥ limx→b−
x−w
b−w = 1, proving

continuity at b. We next show that v̄ is continuous at w. By (4), for each ε > 0 we
have that there exists δ > 0 such vnk

(w + δ) < ε
2

for all k ∈ N. Since v̄ (w) = 0, v̄ is
increasing, and the pointwise limit of (vnk

), we have that for each x ∈ [w,w + δ)

|v̄ (x)− v̄ (0)| = |v̄ (x)| ≤ v̄ (x) ≤ v̄ (w + δ)

= lim
k
vnk

(w + δ) ≤ ε

2
< ε,

proving continuity at w. We are left to show that v̄ is strictly increasing. We argue
by contradiction. Assume that v̄ is not strictly increasing. Since v̄ is increasing,
continuous, concave, and such that v̄ (w) = 0 = v̄ (b)− 1, there exists x ∈ (w, b) such
that v̄ (x) = 1. Define (λk) ∈ [0, 1)∞ to be such that λkvnk

(b) + (1− λnk
) vnk

(w) =
λk = vnk

(x). Since v̄ is the pointwise limit of (vnk
), it follows that λk → 1. Define

pk = λkδb + (1− λk) δw for all k ∈ N. It is immediate to see that pk → δb. Thus, we
also have that

V (pk) ≤ v−1
nk

(Epk(vnk
)) ≤ x.

Since V is continuous and by passing to the limit, we have that x < b = V (δb) ≤ x,
a contradiction. �

Proof of Theorem 3 (i) implies (ii). By (Cerreia-Vioglio et al., 2015a, Theorem 2)
and since Monotonicity implies Weak Monotonicity, there exists W ⊆ Unor such that
the function V : ∆→ R, defined by

V (p) = inf
v∈W

v−1 (Ep(v)) ∀p ∈ ∆, (6)

is a continuous utility function for %. By (Cerreia-Vioglio et al., 2015a, Theorem
3), each v ∈ W is concave and W can be chosen to be closed under the topology
of sequential pointwise convergence restricted to Unor (it is enough to consider the
convex set Wmax− nor in (Cerreia-Vioglio et al., 2015a, Proposition 4 and p. 720)).
Since % satisfies Monotonicity, V is such that for each x, y ∈ [w, b] and for each
λ ∈ (0, 1]

x > y ⇒ V (λδx + (1− λ) δw) > V (λδy + (1− λ) δw) .
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By Theorem 4, it follows that W is in fact compact under the topology of sequential
pointwise convergence restricted to Unor. By Lemma 1, this implies that W is also
compact with respect to the topology induced by the supnorm. We can conclude that
the inf in (6) is attained and so the statement follows.

(ii) implies (i). Consider V : ∆→ R defined by

V (p) = min
v∈W

v−1 (Ep(v)) ∀p ∈ ∆.

By hypothesis, V is well defined and it represents%. SinceW is compact, we have that
V is continuous. By (Cerreia-Vioglio et al., 2015a, Theorems 1–3), % satisfies Weak
Order, Continuity, Negative Certainty Independence and Risk Aversion. Next, con-
sider p, q ∈ ∆ such that p �FSD q. Consider also v ∈ W such that V (p) = v−1 (Ep(v)).
Since v is strictly increasing, we have that V (p) = v−1 (Ep(v)) > v−1 (Eq(v)) ≥ V (q),
proving that % satisfies Strict First Order Stochastic Dominance and so, in particular,
Monotonicity. �

Appendix B: Additional Results

Continuous Deliberately Stochastic Choice Models

In this section we extend the results of Theorem 1 to the case in which the under-
lying preference relation admits a utility representation. For this we need a form of
continuity. To posit it, define the binary relation R on ∆ as

pRq iff ∃A ∈ A s.t. p = ρ(A) and q ∈ co(A).

Intuitively, pRq if it ever happens that p is chosen, either directly ({p} = suppρ(A))

or as the outcome of a randomization (p = ρ(A)), from a set A where q could have
also been chosen (q ∈ co(A)). Denote by tran(R) the transitive closure of R.

Axiom 12 (Continuity′). tran(R) is closed.

Proposition 7. If a stochastic choice function ρ satisfies Rational Hedging and
Continuity′, then it admits a Deliberate Stochastic Choice representation % that can
be represented by a continuous utility function.

Proof of Proposition 7. Suppose that ρ also satisfies Continuity′. Then tran(R)
is a continuous preorder. Also, by the same argument used in the proof of Theorem
1, Rational Mixing implies that tran(R) is an extension of the first order stochastic
dominance relation. Moreover, by Levin’s Theorem, there exists a continuous function
u : ∆→ R such that p tran(R) q implies u(p) ≥ u(q), with strict inequality whenever
it is not true that q tran(R) p. Now we can again procede as in the proof of Theorem
1, using the preference relation the function u induces, to conclude the proof. �
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Cautious Stochastic Choice and Betweenness

In this section we show that statements 1 and 2 in Proposition 5 are equivalent for
Cautious Stochastic Choice representations. Formally:

Proposition 8. Suppose that ρ is a stochastic choice function that admits a Cautious
Stochastic Choice representation W and define the function V : ∆→ R by

V (p) = min
v∈W

v−1(Ep(v)). (7)

The following statements are equivalent:

(i) For each A ∈ A,
suppρ(A) ⊆ arg max

p∈A
V (p);

(ii) The binary relation % represented by V satisfies Betweenness. That is, for every
p, q ∈ ∆ and λ ∈ (0, 1),

p % q =⇒ p % λp+ (1− λ)q % q.

Proof of Proposition 8. Before we begin we first need the following claim.

Claim 1. If V is defined as in (7) for some Cautious Stochastic Choice representation
W, then, for every pair of lotteries p and q in ∆, V (p) > V (q) implies that V (λp +
(1− λ)q) > V (q) for every λ ∈ (0, 1).

Proof of Claim. Pick lotteries p and q such that V (p) > V (q) and fix λ ∈ (0, 1).
Let v ∈ W be such that v−1(Eλp+(1−λ)q(v)) = V (λp + (1 − λ)q). Since V (p) >
V (q), we must have Ep(v) ≥ v(V (p)) > v(V (q)) and Eq(v) ≥ v(V (q)). But then
Eλp+(1−λ)q(v) = λEp(v)+(1−λ)Eq(v) > v(V (q)), which implies that V (λp+(1−λ)q) =
v−1(Eλp+(1−λ)q(v)) > v−1(v(V (q))) = V (q). ‖

Now, let us show first that (ii) implies (i). By contradiction, assume that there
exists A ∈ A such that supp ρ (A) 6⊆ argmaxp∈A V (p). Since ρ is a stochastic choice
function that admits a Cautious Stochastic Choice representation W , we have that

ρ(A) ∈ arg max
p∈co(A)

V (p)

Recall that ρ(A) =
∑n

i=1 λipi where n ∈ N, {pi}ni=1 = supp ρ (A) ⊆ A, {λi}ni=1 ⊆
(0, 1], and

∑n
i=1 λi = 1. Without loss of generality, assume that p1 % ... % pn.

Since supp ρ (A) 6⊆ argmaxp∈A V (p), we have that there exists n̄ ∈ {1, ..., n} such
that pi ∈ argmaxp∈A V (p) for all i ∈ {1, ..., n̄− 1} and pi 6∈ argmaxp∈A V (p) for all
i ∈ {n̄, ..., n}.25 We have two cases:

25If n̄ = 1, we set {1, ..., n̄− 1} = ∅.
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1. n̄ = 1. In this case, let p̂ ∈ ∆ be such that p̂ ∈ argmaxp∈A V (p). By construc-
tion, note that p̂ � pi for all i ∈ {1, ..., n}. Since % satisfies Betweenness, we
can conclude that

A 3 p̂ � p1 %
n∑
i=1

λipi,

a contradiction with
∑n

i=1 λipi ∈ argmaxp∈co(A) V (p).

2. n̄ > 1. It follows that n > 1. By construction, we have that p1 ∼ ... ∼ pn̄−1

as well as pn̄−1 � pn̄. In particular, we have that γ =
∑n

i=n̄ λi ∈ (0, 1). Define
µi = λi

1−γ for all i ∈ {1, ..., n̄− 1} and γi = λi
γ
∈ (0, 1) for all i ∈ {n̄, ..., n}. We

also have that
∑n̄−1

i=1 µi = 1 and
∑n

i=n̄ γi = 1. Since % satisfies Betweenness, we
can conclude that

p1 %
n̄−1∑
i=1

µipi % pn̄−1 and pn̄ %
n∑
i=n̄

γipi % pn.

This implies that p1 ∼
∑n̄−1

i=1 µipi ∼ pn̄−1 � pn̄ %
∑n

i=n̄ γipi. By Claim 1, we
have that

p1 ∼
n̄−1∑
i=1

µipi � (1− γ)
n̄−1∑
i=1

µipi + γ
n∑
i=n̄

γipi =
n∑
i=1

λipi,

proving that A 3 p1 �
∑n

i=1 λipi, a contradiction with

n∑
i=1

λipi ∈ arg max
p∈co(A)

V (p).

Points 1 and 2 prove the implication.

Now we show that (i) implies (ii). For that, let p � q. Define A = {p, q}. This
implies that supp ρ (A) = {p}. Since ρ is a stochastic choice function that admits a
Cautious Stochastic Choice representation, it follows that

p = ρ(A) ∈ arg max
p∈co(A)

V (p).

This implies that p % λp + (1− λ) q for all λ ∈ [0, 1]. Since p and q were arbitrarily
chosen, we thus have showed that for each λ ∈ (0, 1)

p � q =⇒ p % λp+ (1− λ) q. (8)

By the representation of %, it follows that (8) also holds when p % q. The represen-
tation of % also implies that it satisfies Convexity, that is, for each λ ∈ (0, 1)

p % q =⇒ λp+ (1− λ) q % q.

We conclude that % satisfies Betweenness. �
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Proposition 9. Let % be a binary relation that admits a Cautious Expected Utility
representation W which is compact and such that each element of W is concave. If
% satisfies Betweenness, then there exists a stochastic choice function ρ that satisfies
Regularity and admits a Cautious Stochastic Choice representation W.

Proof of Proposition 9. Define V : ∆→ R by

V (p) = min
v∈W

v−1 (Ep (v)) ∀p ∈ ∆.

Define also ρ to be such that ρ (A) (q) = 1

|argmaxp∈A V (p)| for all q ∈ argmaxp∈A V (p)

and for all A ∈ A. Since % satisfies Betweenness, we have that co (A) 3 ρ(A) % q for
all q ∈ co (A). In other words, we can conclude that

ρ(A) ∈ argmaxp∈co(A) V (p)

yielding that ρ admits a Cautious Stochastic Choice representation W . At the same
time, Regularity is satisfied by construction. �

To sum up, Regularity restricts % to be a preference that further satisfies Be-
tweenness, but, at the same time, the previous result shows that it is compatible with
any Betweenness preference.

Appendix C: Proof of the Results in the Text

Proof of Theorem 1. It is clear that if ρ admits a Deliberate Stochastic Choice
representation, then ρ satisfies Rational Mixing. Suppose, thus, that ρ satisfies Ra-
tional Mixing and define the binary relation R the same way it is defined in the main
text. Pick any pair of lotteries p and q such that p >FOSD q. This implies that
p >FOSD (αp + (1 − α)q) for every α ∈ [0, 1). Define A1 = {p, q} and A2 = {p}.
Notice that Rational Mixing implies that we must have ρ(A1) = p. Consequently,
we have pRq. Moreover, if we have k ∈ N and A1, ..., Ak such that ρ(A1) = q and
ρ(Ai) ∈ co(Ai−1) for i = 2, ..., k, Rational Mixing implies that p /∈ co(Ak). This shows
that we cannot have qtran(R)p. We conclude that tran(R) is an extension of the first
order stochastic dominance relation. Now pick any complete extension % of tran(R).
By what we have just seen, % is also an extension of the first order stochastic domi-
nance relation. Moreover, by definition, we have that ρ(A)Rq for every q ∈ co(A), for
every A ∈ A. Consequently, we have ρ(A) % q for every q ∈ co(A), for every A ∈ A.
This proves Theorem 1. �

Proof of Theorem 2. Suppose first that ρ satisfies all the axioms in the statement of
the theorem. By Theorem 1, ρ admits a Deliberate Stochastic Choice representation
%. We first need the following claim:
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Claim 1. For every p ∈ ∆ and x, y ∈ [w, b] with x > y, if {p} = suppρ({p, δx}), then
{p} = suppρ({p, δy}).

Proof of Claim. Since {p} = suppρ({p, δx}), we must have that p % λp + (1 − λ)δx
for every λ ∈ [0, 1]. Since % extends the first order stochastic dominance relation,
this implies that p � λp + (1 − λ)δy for every λ ∈ [0, 1). This now implies that
{p} = suppρ({p, δy}). ‖

Now, for every p ∈ ∆, define the set Dp by

Dp = {x ∈ [w, b] : {p} = suppρ({p, δx})}.

We note that Claim 1 implies that Dp is an interval, for every p ∈ ∆. That is, for
every p ∈ ∆, if x ∈ Dp, then [w, x] ⊆ Dp. Now define the function V : ∆→ [w, b] by
V (p) = supDp for every p ∈ ∆.26 Notice that, since ρ admits a Deliberate Stochastic
Choice representation, we must have V (δx) = x for every x ∈ [w, b]. We now need
the following claim:

Claim 2. For every choice problem A, V (ρ(A)) ≥ V (q) for every q ∈ co(A).

Proof of Claim. Fix a choice problem A and q ∈ co(A). Let p = ρ(A). If V (q) = w,
then there is nothing to prove, so suppose that V (q) > w and pick any x, y, z ∈
(w, V (q)) with x > y > z. By the definition of V and Claim 1, we have {q} =
suppρ({q, δx})}. By the Weak Stochastic Certainty Effect axiom, this implies that
{λp + (1− λ)q} = suppρ({λp + (1− λ)q, λp + (1− λ)δy}) for every λ ∈ [0, 1). Since
% is a Deliberate Stochastic Choice representation of ρ, this, in turn, implies that
p % λp + (1 − λ)q % λp + (1 − λ)δy � λp + (1 − λ)δz, for every λ ∈ [0, 1). This can
happen only if {p} = suppρ({p, δz}), which implies that V (p) ≥ z. Since x, y and z
were arbitrarily chosen, we conclude that V (p) ≥ V (q). ‖

We now need the following claims:

Claim 3. The function V is continuous.

Proof of Claim. Pick a convergent sequence (pm) ∈ ∆∞. Now pick any convergent
subsequence, V (pmk), of V (pm) and let xk = V (pmk), for every k, x = limV (pmk),
and p = lim pm. If x = w, then it is clear that V (p) ≥ x, so suppose that x > w.
Pick δ > 0 such that x− δ > w and fix ε ∈ (0, δ). For k large enough, we have that
xk > x−ε > w and, therefore, {pmk} = suppρ({pmk , δx−ε}). By the continuity axiom,
this implies that {p} = suppρ({p, δx−δ}), which implies that V (p) ≥ x − δ. Since δ
was arbitrarily chosen, we conclude that V (p) ≥ x. If x = b, then it is clear that
V (p) ≤ x, so suppose that x < b. Pick δ > 0 such that x+δ < b and fix ε ∈ (0, δ). For
k large enough, we have that xk < x+ε < b and, therefore, δx+ε ∈ suppρ({pmk , δx+ε}).

26We note that, since ρ admits a Deliberate Stochastic Choice representation, w ∈ Dp for every
p ∈ ∆, so that V is well-defined.
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By the continuity axiom, this implies that {δx+δ} = suppρ({p, δx+δ}), which implies
that V (p) ≤ x + δ. Since δ was arbitrarily chosen, we conclude that V (p) ≤ x.
This shows that V (p) = x = limV (pmk). We have just shown that every convergent
subsequence of (V (pm)) converges to V (p). Since (V (pm)) is bounded, this implies
that V (pm)→ V (p). ‖

Claim 4. For every p, q ∈ ∆ and x ∈ [w, b], if V (p) ≥ V (δx), then V (λp+(1−λ)q) ≥
V (λδx + (1− λ)q) for every λ ∈ [0, 1].

Proof of Claim. Fix p ∈ ∆ and x ∈ [w, b] with V (p) ≥ V (δx) = x. Fix λ ∈ (0, 1)
and q ∈ ∆. Suppose first that x = w. If V (λδx + (1 − λ)q) = w or p = δx, we
have nothing to prove, so suppose that V (λδx + (1 − λ)q) > w, p 6= δx and fix
z ∈ (w, V (λδx + (1− λ)q)). By the definition of V , we know that {λδx + (1− λ)q} =
suppρ({λδx+(1−λ)q, δy}) for any y ∈ (z, V (λδx+(1−λ)q)). By the Weak Stochastic
Certainty Effect axiom, this implies that {γ(λp+(1−λ)q)+(1−γ)(λδx+(1−λ)q)} =
suppρ({γ(λp + (1 − λ)q) + (1 − γ)(λδx + (1 − λ)q), γ(λp + (1 − λ)q) + (1 − γ)δz})}
for every γ ∈ [0, 1). Since ρ admits a Deliberate Stochastic Choice representation,
this can happen only if λp + (1 − λ)q � γ(λp + (1 − λ)q) + (1 − γ)(λδx + (1 −
λ)q) % γ(λp + (1 − λ)q) + (1 − γ)δz for every γ ∈ [0, 1).27 This now implies that
{λp+ (1−λ)q} = suppρ({λp+ (1−λ)q, δz}) and we learn that V (λp+ (1−λ)q) ≥ z.
Since z was arbitrarily chosen, we conclude that V (λp+(1−λ)q) ≥ V (λδx+(1−λ)q).
Now suppose that x > w and fix any y ∈ (w, x). By the definition of V , we know
that {p} = suppρ({p, δy′}) for any y′ ∈ (y, x). The Weak Stochastic Certainty Effect
axiom now implies that {λp+(1−λ)q} = suppρ({λp+(1−λ)q, λδy+(1−λ)q}), which
implies that λp+(1−λ)q % γ(λp+(1−λ)q)+(1−γ)(λδy+(1−λ)q) for every γ ∈ [0, 1].
If V (λδy + (1− λ)q) = w, then it is clear that V (λp+ (1− λ)q) ≥ V (λδy + (1− λ)q).
Otherwise, pick any z ∈ [w, V (λδy+(1−λ)q)). For any z′ ∈ (z, V (λδy+(1−λ)q)), we
have {λδy + (1− λ)q} = suppρ({λδy + (1− λ)q, δz′}). By Weak Stochastic Certainty
Effect, this implies that {γ(λp+(1−λ)q)+(1−γ)({λδy+(1−λ)q})} = suppρ({γ(λp+
(1−λ)q) + (1−γ)({λδy + (1−λ)q}), γ(λp+ (1−λ)q) + (1−γ)δẑ}) for every γ ∈ [0, 1]
and every ẑ ∈ (z, z′). But then we have

λp+ (1− λ)q % γ(λp+ (1− λ)q) + (1− γ)(λδy + (1− λ)q)

% γ(λp+ (1− λ)q) + (1− γ)δẑ

� γ(λp+ (1− λ)q) + (1− γ)δz,

for every γ ∈ [0, 1). This can happen only if {λp + (1 − λ)q} = suppρ({λp + (1 −
λ)q, δz}). Since z was arbitrarily chosen, we conclude that V (λp + (1 − λ)q) ≥
V (λδy + (1 − λ)q). Since y was arbitrarily chosen and V is continuous, this now
implies that V (λp+ (1− λ)q) ≥ V (λδx + (1− λ)q). ‖

Claim 5. The function V satisfies risk aversion, in the sense that if q is a mean
preserving spread of p, then V (p) ≥ V (q).

27Recall that we are assuming that x = w, for now.
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Proof of Claim. Suppose that q is a mean preserving spread of p. If V (q) = w, then
we have nothing to prove, so suppose that V (q) > w, and pick y ∈ (w, V (q)). By the
definition of V , we know that {q} = suppρ({q, δx}) for every x ∈ (y, V (q)). Now the
risk aversion axiom implies that {p} = suppρ({p, δy}) and, consequently, V (p) ≥ y.
Since y was arbitrarily chosen, we conclude that V (p) ≥ V (q). ‖

Claim 6. For every x, y ∈ [w, b], if x > y, then V (λδx+(1−λ)δw) > V (λδy+(1−λ)δw)
for every λ ∈ (0, 1].

Proof of Claim. Fix z ∈ (y, x). Let x̂ = V (λδx + (1 − λ)δw). If x̂ = b, then the
fact that ρ admits a Deliberate Stochastic Choice representation implies that {δx̂} =
suppρ({λδz+(1−λ)δw, δx̂}). Otherwise, δx̂+ε ∈ suppρ({λδx+(1−λ)δw, δx̂+ε}) for every
ε > 0 with x̂ + ε ≤ b, and the continuity axiom implies that {δx̂} = suppρ({λδz +
(1 − λ)δw, δx̂}). Now let ŷ = V (λδy + (1 − λ)δw). If ŷ = w, then the fact that ρ
admits a Deliberate Stochastic Choice representation implies that {λδz+(1−λ)δw} =
suppρ({λδz + (1 − λ)δw, δŷ}). Otherwise, {λδy + (1 − λ)δw} = suppρ({λδy + (1 −
λ)δw, δŷ−ε}) for every ε > 0 with ŷ − ε ≥ w, and the continuity axiom implies that
{λδz + (1 − λ)δw} = suppρ({λδz + (1 − λ)δw, δŷ}). Since {δx̂} = suppρ({λδz + (1 −
λ)δw, δx̂}), but {λδz + (1 − λ)δw} = suppρ({λδz + (1 − λ)δw, δŷ}), we conclude that
δx̂ % λδz + (1− λ)δw % δŷ and x̂ 6= ŷ. This can happen only if V (λδx + (1− λ)δw) =
x̂ > ŷ = V (λδy + (1− λ)δw). ‖

Now let %̂ be the relation induced by V . That is, let %̂ be defined by p%̂q if and

only if V (p) ≥ V (q). The claims above show that %̂ satisfies all the axioms in the
statement of Theorem 3. This implies that there exists a compact set W ⊆C([w, b])
such that every function v ∈ W is strictly increasing and concave and, for every
p, q ∈ ∆,

p%̂q ⇐⇒ min
v∈W

v−1(Ep(v)) ≥ min
v∈W

v−1(Eq(v)).

By Claim 2, this gives us the desired representation.
Conversely, suppose now that ρ can be represented by a compact set W ⊆

C([w, b]), as in the statement of the theorem. Define V : ∆→ R by

V (p) = min
v∈W

v−1(Ep(v)),

for every p ∈ ∆. We can easily check that V is continuous and satisfies risk aversion,
in the sense that if p and q in ∆ are such that q is a mean preserving spread of p,
then V (p) ≥ V (q). It is also easy to see that if p and q in ∆ are such that p strictly
first order stochasticaly dominates q, then V (p) > V (q). Finally, we can check that
if p ∈ ∆ and x ∈ [w, b] are such that V (p) ≥ (resp. >) x, then V (λp + (1 − λq)) ≥
(resp. >) V (λδx + (1 − λ)q) for every q ∈ ∆ and λ ∈ (0, 1]. Similarly, if x ≥ (resp.
>) V (p), then x ≥ (resp. >) V (λp+ (1− λ)δx) for all λ ∈ (0, 1].

The preorder % represented by V is a Deliberate Stochastic Choice representation
of ρ. By Theorem 1, we know that ρ satisfies Rational Mixing. Now suppose that
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p ∈ ∆ and x ∈ (w, b] are such that {p} = suppρ({p, δx}). Fix λ ∈ (0, 1], q ∈ ∆
and y ∈ [w, x). The fact that {p} = suppρ({p, δx}) implies that Ep(v) ≥ x for every
v ∈ W . Consequently, Eλp+(1−λ)q(v) > Eλδy+(1−λ)q(v) for every v ∈ W . In fact,
this implies that Eλp+(1−λ)q(v) > Eγ(λδy+(1−λ)q)+(1−γ)(λp+(1−λ)q)(v) for every γ ∈ (0, 1].
Since W is compact, this implies that V (λp + (1 − λ)q) > V (γ(λδy + (1 − λ)q) +
(1− γ)(λp+ (1− λ)q)) for every γ ∈ (0, 1]. This now implies that {λp+ (1− λ)q} =
suppρ({λp+ (1− λ)q, λδy + (1− λ)q}). We conclude that ρ satisfies Weak Stochastic
Certainty Effect.

Now consider two convergent sequences (pm) ∈ ∆∞ and (xm) ∈ [w, b]∞. Let
p = lim pm and x = limxm. Pick y ∈ [w, x) and let q ∈ ∆ be such that q strictly
first order stochasticaly dominates p. If {pm} = suppρ({pm, δx}) for every m, then
V (pm) ≥ x for every m. This imples that V (p) ≥ x > y. By the representation of V ,
this implies that, for every λ ∈ [0, 1), V (p) ≥ V (λp+ (1− λ)δx) > V (λp+ (1− λ)δy).
This can happen only if {p} = suppρ({p, δy}). Suppose now that δy ∈ suppρ({pm, δy}).
This implies that y ≥ V (pm) for every m. Since V is continuous, we learn that
x > y ≥ V (p). From the representation of ρ, we know that this can happen only
if {δx} = suppρ({p, δx}). Now suppose that {p} = suppρ({p, δxm}) for every m.
This implies that V (p) ≥ xm for every m. Since V agrees with strict first order
stochastic dominance, this implies that V (q) > V (p) ≥ x. But then we must have
{q} = suppρ({q, δx}). Finally, suppose that δxm ∈ suppρ({q, δxm}) for every m.
Again, this implies that xm ≥ V (q) for every m. Since V agrees with strict first
order stochastic dominance, we learn that x ≥ V (q) > V (p). This now gives us that
{δx} = suppρ({p, δx}). This shows that ρ satisfies the continuity axiom.

Finally, suppose that the lotteries p and q in ∆ are such that q is a mean preserving
spread of p and x ∈ (w, b] is such that {q} = suppρ({q, δx}). This implies that
V (q) ≥ x. Since V satisfies risk aversion, this implies that V (p) > y for every
y ∈ [w, x). Consequently, we have that V (p) = V (λp+ (1− λ)p) > V (λδy + (1− λ)p)
for every λ ∈ (0, 1] and y ∈ [w, x). This can happen only if {p} = suppρ({p, δy}) for
every y ∈ [w, x). This shows that ρ satisfies the risk aversion axiom. �

Proof of Proposition 1. In order to prove the proposition, we will show that for
every Cautious Stochastic Choice representation W of a stochastic choice function ρ
we have that, for every q ∈ ∆,

min
v∈W

v−1(Eq(v)) = sup{y ∈ [w, b] : {q} = suppρ({q, δy})}.

To see that, first notice that it is clear from the fact that W is a Cautious Stochastic
Choice representation of ρ that {q} = suppρ({q, δy}) for every y ∈ [w, b] such that

min
v∈W

v−1(Eq(v)) > y,

and that {δy} = suppρ({q, δy}) for every y ∈ [w, b] such that

min
v∈W

v−1(Eq(v)) < y.
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This can happen only if

min
v∈W

v−1(Eq(v)) = sup{y ∈ [w, b] : {q} = suppρ({q, δy})},

proving the statement. �

Proof of Proposition 2. By Proposition 1, any two Cautious Stochastic Choice
representations, W and W ′, of the same stochastic choice function ρ represent the
same binary relation % via the utility

V (p) = min
v∈W

v−1(Ep(v)) ∀p ∈ ∆. (9)

By the proof of Theorem 3, we also know that V in (9) is also represented by the
normalized, compact and convex set Wmax− nor. By Theorem 2 (and its proof) in
(Cerreia-Vioglio et al., 2015a) and since W is convex and compact, Wmax− nor ⊆
cl (co (W)) = cl (W) = W . By setting Ŵ = Wmax− nor we obtain the desired conclu-
sion.

�

Proof of Proposition 4. We say that a binary relation % has a point of strict
convexity if there exist p, q ∈ ∆ and λ ∈ (0, 1) such that

λp+ (1− λ)q � p, q.

Also, given a Cautious Stochastic Choice representation W of ρ, define % as the
preference induced by

V (p) = min
v∈W

v−1(Ep(v)).

Notice that % is continuous and satisfies strict first order stochastic dominance.
We start by proving the following claim.

Claim 1. ρ is a non-degenerate stochastic choice function if and only if % has a point
of strict convexity.

Proof of Claim. Suppose that ρ is a non-degenerate stochastic choice. Then, there
exist p, q ∈ ∆ and λ ∈ (0, 1) such that p, q ∈ suppρ({p, q}) and

λp+ (1− λ)δw, q ∈ suppρ({λp+ (1− λ)δw, q}),

and
p, λq + (1− λ)δw ∈ suppρ({p, λq + (1− λ)δw}).

Say without loss of generality that we have q % p. By the representation, this means
that there exists α ∈ (0, 1) such that α(λp + (1 − λ)δw) + (1 − α)q % q, hence
αp + (1 − α)q � p, q. Thus % has a point of strict convexity. Conversely, suppose
that there exist p, q ∈ ∆, λ ∈ (0, 1) such that λp + (1 − λ)q � p, q. Then, we must
have p, q ∈ suppρ({p, q}). Moreover, by continuity, there must exist a γ ∈ (0, 1) such
that λ(γδw + (1− γ)p) + (1−λ)q � p, q and λp+ (1−λ)(γδw + (1− γ)q � p, q. Thus,
ρ must be a non-degenerate stochastic choice function. ‖
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We now turn to prove the proposition. For part 1, suppose that ρ is a non-
degenerate stochastic choice function. Then, it follows that % must admit a point of
strict convexity, and thus must violate the independence axiom. This implies |W| > 1.
Moreover, there must exist p, q ∈ ∆, λ ∈ (0, 1) such that λq + (1 − λ)p � p, q. Say
without loss of generality that p % q. Take z ∈ [w, b] such that δz ∼ p % q. Notice
that by the model we must have λδz + (1− λ)p ∼ p. This means that we have δz % q
and λq+(1−λ)p � λδz+(1−λ)p. Take x, y ∈ [w, b] such that x > y > z but such that
both are close enough to z that we have δy � q and λq+(1−λ)p � λδx+(1−λ)p. Then,
notice that we must have {δy} = suppρ({δy, q}) by the representation. Moreover, we
must also have that {λδx + (1− λ)p} 6= suppρ({λq + (1− λ)p, λδx + (1− λ)p}). This
proves that ρ exhibits Certainty Bias.

Consider now part 2. Suppose that ρ exhibits Certainty Bias and |W| < ∞.
Then, there exist x, y ∈ [w, b] with x > y, A ∈ A, r ∈ ∆ and λ ∈ (0, 1) such that
{δy} = suppρ(A ∪ {δy}) and {λδx + (1− λ)r} 6= suppρ(λ(A ∪ {δx}+ (1− λ)r). Thus
δy % q for all q ∈ co(A ∪ {δy}) and there exists p ∈ co(A) and γ ∈ (0, 1] such
that γ(λp + (1 − λ)r) + (1 − γ)(λδx + (1 − λ)r) % λδx + (1 − λ)r. Since x > y,
we must then have δx � p, which means that % violates the independence axiom.
This implies |W| > 1. Since we know that % is convex, then either % satisfies the
Betweenness axiom, or it must admit a point of strict convexity. But Cerreia-Vioglio
et al. (2015b) shows that if a preference relation that satisfies Betweenness admits
a Cautious Expected Utility representation, then this representation must have an
infinite set of utilities. Since |W| <∞, then % must admit a point of strict convexity.
By the previous claim, ρ must be a non-degenerate stochastic choice function. �

Proof of Proposition 5. Suppose that ρ admits a Cautious Stochastic Choice
representation W and satisfies Regularity. Define V : ∆→ R as

V (p) = min
v∈W

v−1(Ep(v)).

Fix a choice problem A and pick a lottery q ∈ A such that

q /∈ arg max
p∈A

V (p).

Fix
p∗ ∈ arg max

p∈A
V (p).

Pick x ∈ [w, b] such that
V (p∗) > x > V (q).

By the representation of ρ, we have that suppρ({p∗, δx}) = {p∗} and suppρ({q, δx}) =
{δx}. By Regularity, this implies that {q, δx} ∩ suppρ(A ∪ {δx}) = ∅. But then, if
q ∈ suppρ(A), Regularity would be violated for some alternative p ∈ suppρ(A∪{δx}).
We conclude that q /∈ suppρ(A). This shows that statement 1 in the proposition is

33



true. Since Proposition 8 shows that both statements are in fact equivalent, this also
gives us statement 2. �

Proof of Proposition 6. Define V : ∆→ R by

V (p) = min
v∈W

v−1(Ep(v)),

for every p ∈ ∆. By Proposition 5, for every pair of lotteries p and q in ∆, if V (p) >
V (q), then {p} = suppρ({p, q}). Fix λ ∈ (0, 1) and r ∈ ∆. By Linearity, we must have
{λp+(1−λ)r} = suppρ({λp+(1−λ)r, λq+(1−λ)r}). By applying Proposition 5 again,
it follows that V (λp+(1−λ)r) ≥ V (λq+(1−λ)r). We can use a similar reasoning to
show that we must have V (p) ≥ V (q) whenever V (λp+ (1− λ)r) > V (λq+ (1− λ)r)
for some λ ∈ (0, 1) and r ∈ ∆. We can now use the fact that V is continuous and
agrees with strict first order stochastic dominance to show that the preference relation
represented by V satisfies the independence axiom. Since it is also continuous, it can
be represented, in the expected utility sense, by a continuous function u : [w, b]→ R.
By applying Proposition 5, we obtain the desired conclusion. �
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