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Abstract

This paper considers infinite-horizon stochastic games with hidden states
and hidden actions. The state changes over time, players observe only a
noisy public signal about the state each period, and actions are private infor-
mation. In this model, uncertainty about the monitoring structure does not
disappear. We show how to construct an approximately efficient equilibrium
in a repeated Cournot game. Then we extend it to a general case and obtain
the folk theorem using ex-post equilibria under a mild condition.
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1 Introduction

The theory of repeated games provides a framework to study the role of long-term
relationships in facilitating cooperation. Past work has shown that reciprocation
can lead to more cooperative equilibrium outcomes even if thengasrfect pub-

lic monitoring so that each period, players observe only a noisy public signal
about the actions played (Abreu, Pearce, and Stacchetti (1990) and Fudenberg,
Levine, and Maskin (1994, hereafter FLM)). This work has covered a range of
applications, from oligopoly pricing (e.g. Green and Porter (1984) and Athey and
Bagwell (2001)), repeated partnerships (Radner, Myerson, and Maskin (1986)),
and relational contracts (Levin (2003)). A common assumption in the literature is
that players know the monitoring structure, i.e., they know the distribution of pub-
lic signals as a function of the actions played. Fudenberg and Yamamoto (2010)
relax this assumption and consider players who initially do not know the monitor-
ing structure. However, in their model, the true monitoring structure is fixed over
time, and thus players can learn it from observed signals in the long run. In par-
ticular, their analysis relies on the fact that patient players care only about payoffs
in a distant future in which uncertainty about the monitoring structure vanishes.

Assuming (asymptotically) perfect knowledge of the monitoring structure is
restrictive. To address this concern, this paper considers a model in which uncer-
tainty about the monitoring structure never disappears. Specifically, we consider
a model withunknown, perpetually changing monitoring structuirethis model,
players may obtain some information about the current monitoring structure from
the signal todayafter they choose actions. But then in the next period, the mon-
itoring structure will stochastically change, so players will continue to face new
uncertainty.

Changing monitoring structures naturally arise when the underlying economic
conditions change over time. One example is a repeated Cournot model with hid-
den correlated demand shocks. Suppose that the state of the ecanavch
influences the distribution of the market price today, is hidden information and
positively correlated over time. As in Green and Porter (1984), the realized price
is regarded as a noisy public signal about the current actions (quantities), because
higher quantities induce low prices more likely. In this model, the signal (price)
distributions are different for different periods, since the stais not i.i.d.. Also



the true signal distribution is unknown each period, as the statenot observ-

able. Hence the monitoring structure is unknown and changing. Another example
is a repeated principal-agent problem. If the agent’s productivity is unobserv-

able, and is changing due to experience, then the true distribution of the output
is unknown and changing. This paper shows that long-run relationships facilitate
cooperation even in such situations. In particular, we show that the folk theorem
obtains using public-strategy equilibria.

Formally, we consider a new class of stochastic games in which a hidden,
changing state influences the monitoring structure (the signal distribution) in the
current stage game. Actions can influence the state transition. Each player’s stage-
game payoff depends on her own action and the public signal, so the payoff does
not contain more information than the signal. In this setup, the hidden state in-
directly influences the stage-game payoffs through the distribution of the public
signal. For example, in a repeated oligopoly, firms have higher expected payoffs
at a state in which high prices are more likely. So uncertainty about the probability
of high prices leads to uncertainty about the expected payoffs of the stage game.

Since we assume that actions are private information, even if players have
an initial common prior about the state, their posterior beliefs can potentially di-
verge in later periods. For example, if a player chooses a mixed action, the re-
alized action is her private information, and she updates her posterior given this
information. Similarly, if a player deviates from an equilibrium strategy, she will
update her posterior given her deviation, while the opponents will update without
knowing it. A common technique in the literature is to allow cheap-talk communi-
cations to resolve conflicting information (e.g., Kandori and Matsushima (1998)),
but it does not seem to easily apply to our setup.

Diverging posterior beliefs can cause a miscoordination problem. Suppose

1Kandori and Matsushima (1998) consider repeated games with private monitoring and com-
munication, in which there is no payoff-relevant state and each player reports private signals about
the opponents’ actions. They focus on “public equilibria” in which the play depends only on public
reports. Then a player’s continuation payoff is a function of the past public reports, which allows
them to use recursive tools to characterize the equilibrium payoff set. In contrast, in this paper,
each player has a private beliefi; about the payoff-relevant state, and this private belief directly
influences her continuation payoffs. That is, the continuation payoff depends on the true belief
U and is not a function of public histories.drher, Takahashi, and Vieille (2015) argue that the
equilibrium analysis becomes significantly harder in such a case. They show that it is still possible
to provide truthful incentives if some assumptions are satisfied (e.g., independent private values);
but unfortunately, these assumptions do not hold in our setup.
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that there are two players who want to reward each other (i.e., they each want to
give high payoffs to the other). If they have the same beliabout the state, this

can be done by playing a welfare-maximizing strategy profile,s8%y). Note

that this profile depends on the beljef because the stage-game payoffs depend
on the hidden state. On the other hand, when players have different beliefs and
these beliefs are private information, it is less clear what they should do. Indeed,
if each player simply chooses the welfare-maximizing strategy corresponding to
her own belief, the resulting strategy profile may not maximize the welfare due
to miscoordination. A similar problem arises when we consider a player who
wants to punish the opponent. If the opponent’s belief is private information, it is
unclear how to punish the opponent, as the effective punishment depends on the
opponent’s belief in general.

To overcome this problem, this paper introduces the idea of “pseudo-ergodic
strategies.” In general, given a strategy profile in the infinite-horizon game, dif-
ferent initial priors induce different payoff streams, which result in different av-
erage payoffs. Pseudo-ergodic strategies are a special class of strategy profiles
in which all initial priors yield approximately the same average payoffs. Such a
property may sound demanding, but it turns out that in our setting, for an arbitrar-
ily fixed belief f1, the corresponding welfare-maximizing strategy prodf(fi)
is a pseudo-ergodic strategy which approximates the welfare-maximizing payoff
regardless of the true beligf. A rough idea is that when players play this strat-
egy profiles®([1), the resulting payoff stream in the infinite-horizon game has a
flavor of ergodicity in the sense that the initial belief does not influence the con-
tinuation payoff after a long time. This indeed implies that the strategy profile
sff([1) yields almost the same payoff for all initial beliefs, as patient players care
only about payoffs in a distant future. See Section 4.1 for more details.

So if players want to reward each other, they may ignore their private beliefs
and simply play the above profiéé®(f1). Thatis, they may form a “dummy public
belief” i and play the corresponding strategy. This approximates the efficient
payoff regardless of their initial private beliefs. Similarly, if a player plays the
minimax strategy for some dummy beligf it approximates the minimax payoff
regardless of the true beligf. In this way, players can reward or punish their
opponent without fine-tuning the strategy depending on their private beliefs.

The next question is whether we can actually construct an equilibrium by as-



sembling these pseudo-ergodic strategies: We need to find an effective punish-
ment mechanism when players have diverging beliefs about the true monitoring
structure. To solve this problem, we consider a punishment mechanism in which
a deviation today will lower continuation payoffs regardless of the current hidden
statew. Under this mechanisnex-post incentive compatibilitg satisfied in that

any deviation today is prevented regardless of the current hiddencstdtence

this mechanism works even if there is uncertainty about the atate

Of course, ex-post incentive compatibility is more demanding than Bayesian
incentive compatibility, and in general, the set of ex-post equilibrium payoffs is
smaller than the set of sequential equilibrium payoffs. However, in our envi-
ronment, it is possible for ex-post equilibria to approximate the Pareto-efficient
frontier. Indeed, our main result is the folk theorem: We show that any feasible
and individually rational payoff can be approximated by a public ex-post equilib-
rium, if players are patient and @ross-state individual full rankndcross-state
pairwise full rankhold. The cross-state full-rank condition is an extension of in-
dividual full rank and pairwise full rank of FLM, and requires that a public signal
can statistically distinguish the current state and the chosen action profile.

Fudenberg and Yamamoto (2010) also consider ex-post equilibria when play-
ers face uncertainty about the monitoring structure. However, there are important
differences between their work and this paper. As noted, in Fudenberg and Ya-
mamoto (2010), players can learn the true monitoring structure in the long run.
Then players’ incentive problems can be decomposed state by state; this is be-
cause it is possible to influence players’ incentives in some atatghout affect-
ing incentives in other states, by changing players’ continuation play in a distant
future in which players have learned the true stateThis property helps to pro-
vide ex-post incentives.

On the other hand, in our model, the state today is never revealed to players,
and thus the above idea does not apply. Accordingly, incentive problems for differ-
ent states are entangled in a non-trivial way, and providing ex-post incentive com-
patibility becomes quite delicate. In particular, the “state-specific punishment”
of Fudenberg and Yamamoto (2010) do not work effectively in our environment.

2Their analysis is more complicated than the discussion here, because ex-post incentives must
be providedeach period They develop a useful recursive method and show that it is indeed
possible to provide such incentives.



More detailed discussions will be given in Section 3.7.

The contributions of this paper are two-fold. First, we provide a general idea
on how to construct an equilibrium in a new environment, at least for high discount
factorsd. In particular, we illustrate how dynamic incentives can be effectively
and simply provided via public pseudo-ergodic strategies.

Second, we show that ex-post equilibrium can approximate efficient outcomes,
even if the state changes over time so that state learning is impossible. As will be
explained in the next subsection, “utility transfer across players” of FLM cannot
provide appropriate incentives in our environment, and we construct a new pun-
ishment mechanism which works out even when there is a hidden changing state.

1.1 Overview of the Argument

To understand the critical steps in our proof, it is useful to review the ideas of
FLM, who prove the folk theorem for repeated games with public monitoring.
Their main finding is that when players are patient, any Walh the interior of

the feasible and individually rational payoff set (see Figure Eei§generating
That is, each payof¥ in the ballW is achievable by (some action profile today
and) continuation payoffs in the bW itself. As shown by Abreu, Pearce, and
Stacchetti (1990), such a balN is attained by public equilibria, and hence the
folk theorem indeed follows.

How do they prove that the balV is self-generating? As a first step, they
show that each payof#f on the boundary of the balW can be achieved using
continuation payoffsv on atranslate of the tangent lineFor example, take the
target payofiv as in Figure 1. (As we will soon see, this is the most difficult case
in our proof.) FLM show that this payoff is achievable by the action profis
which yields the payofK in the figure, and by some continuation payoffs on the
horizontal lineL. Here, the continuation payoffs take different values for differ-
ent signals, so that player 1's deviation today is deterred. Also, since player 2's
continuation payoff is constant on the linend the action profileX achieves the
best payoffX for player 2, she has no incentive to deviate either. So appropriate
incentives are indeed provided by the continuation payoffs on thé linithout
loss of generality, we can assume that the variation in continuation payoffs (the
distance betweew andw” in the figure) is of orde©(1 — J); such continuation



payoffs can indeed deter player 1's deviation today, because her gain by deviating
is of orderO(1— d). Also, the lengttD in the figure, which measures the distance
from the payoffv to the lineL, is of orderO(1— &). This is so because must

be exactly achieved as the weighted average of today’s pXyafid the expected
continuation payoff on the link, where the weight on today’s payoff is-19.

Player 2's payoff

V
~ ———_ \ Player 1's payoff

Figure 1: Continuation payoffs, w, andw” are on the lind..

Then as a second step, FLM show that if continuation payeffsove only
on the lineL (and if the variation is of orde®(1— d)), they stay in the interior
of the ballW. The proof idea is illustrated in the left panel of Figure 2; as one
can see, the distance to the boundary of theWat of orderO( /1 — &), which
is much larger than the variation in the continuation payeaifand thusv never
goes to the outside of the ball. This result implies that the continuation payoffs
constructed in the first step are in the Bl so any boundary point of the ball
W is achievable by continuation payoffsWi. They also show that the same result
holds even ifv is an interior point oWV, so in sum, any payo# in the ballW is
achievable by continuation payoffs\ii itself. Hence/ is indeed self-generating.

To summarize, the key technique of FLM is to decompose the target payoff
v into two parts: The one-shot action profdé and the continuation payoffs on
the lineL (which are always in the baW). Our proof extends this technique to
the case in which the monitoring structure is unknown and changing. Since there
is a hidden changing state in our model, new complications arise, and we need to
modify the proof accordingly. Specifically, we make the following changes:

e We replace the action profig& above with gpseudo-ergodic block strategy
which approximates the payoff regardless of players’ private beliefs.

9



¢ We allow the continuation payoffs to movertically, so they araoton the
line L. (But they are still in the baNV, so the ball is self-generating. See
Figure 2.)

In what follows, we will explain why we need such changes, and how they work.

To begin with, note that the definition of the feasible payoff set in our envi-
ronment is different from the one in the standard repeated game; since the stage
game payoffs are influenced by a hidden, changing stateey are not “feasible
payoffs” in the infinite-horizon game. Instead, given the initial pyioabout the
state and the discount factdt we define the feasible payoff sét'(J) as the
set of all possible payoff vectors in the infinite-horizon game.\l/étdenote the
limit of the feasible payoff set a8 — 1; intuitively, this is the feasible payoff set
when players are patient. In the special case in which the state is observable and
follows a Markov process, this limit feasible payoff 88t does not depend on
the initial prior i, because the state eventually converges to the stationary distri-
bution regardless of the initial state. Our Proposition 2 shows that under a mild
condition, the same result holds even for our general model in which the state is
unobservable and influenced by actions. So we denote this limit feasible payoff
set byV, as in Figure 1.

Since the feasible payoff set is quite different from the stage-game payoffs,
each extreme point of the feasible payoff Betnay not be attained by any one-
shot action profile in our model. For example, in order to decompose the payoff
v in Figure 1, FLM use the action profie, which yields the best payoX for
player 2 within the feasible payoff set. In our model, such an action profile may
not exist, as the payof is a payoff in the infinite-horizon game, rather than a

FLM This paper

Figure 2: Vertical move ofv must be less thaD = O(1— ). This is more
restrictive than the bound on the horizontal move, which is of o@ley'1 — d).
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stage-game payoff. To fix this problem, we regard the infinite horizon as a series
of blocks and treat each block as a “big” stage game. The point is that when
the block is sufficiently long, each extreme payoff of the feasible payoi gst
approximated by the average payoff in the block (i.e., the payoff in the “big” stage
game). That is, the difference between the stage-game payoffs and the feasible
payoff set disappears, if we regard a long block as a big stage game.

In particular, we use a pseudo-ergodic strategy in each block, so that players’
private beliefs about the state have almost no impact on the block payoff. For
example, instead of the action profdé in FLM, we use a pseudo-ergodic block
strategy whose block payoff approximates the payoffegardless of players’
beliefs To see how to find such a pseudo-ergodic strategy, pick a dummy felief
arbitrarily, and les* be the block strategy which would maximize player 2’s block
payoff if players’ initial common prior wagi. In general, this strategy® needs
not maximize player 2's payoff when the true belietliffers from fi. However,
our Proposition 3 shows thatatpproximateghe best payofX regardless of the
true beliefu. Thiss® is the pseudo-ergodic strategy we dse.

This explains why we need the change stated in the first bullet point: By re-
placing one-shot action profiles in FLM with pseudo-ergodic block strategies, we
can approximate each extreme point of the feasible payoff set, regardless of play-
ers’ beliefs. However, this is not the only change we must make: As noted in the
second bullet point, we consider continuation payoffs which are not on a translate
of the tangent line. We make this change because we need to construct a public
equilibrium in the presence of the hidden changing state, which requires continu-
ation payoffs to satisfy a more demanding condition than in the standard repeated
game. Moving continuation payoffs only on a translate of the tangent line is too
restrictive to satisfy this new condition.

To be more specific, take an arbitrary ball in the feasible payoff sev.

Our goal is to show that this balW is achieved by public equilibria. For this,
it is sufficient to show that the balVv is self-generating; but the definition of
self-generation here is slightly different from the one in FLM, due to the hidden

3The idea of the block itself is not new: Dutta (1995) uses the same technique in stochastic
games with observable states. The novelty here is to use a pseudo-ergodic strategy, which allows
players to approximate a desired payoff even though their block strategy cannot depend on the
hidden state. In Dutta (1995), the state is observable, and thus players can use different block
strategies for different initial states.

11



changing state. To illustrate the difference, take the paya# in Figure 1. For
the ballW to be self-generating in our sense, we need to find continuation payoffs
win the ballwW such that regardless of players’ beligfs(i) the payoffvis exactly
achieved as the sum of the block payoff by the pseudo-ergodic strsitégshich
approximates the payoX) and the continuation payoif, and (ii) any deviation
from the strategys® during the block is not profitable. This condition is more
demanding than that in FLM, because the choicevohust be independent of
players’ initial beliefu, that is, our continuation payoffs must work for all beliefs
u. Note in particular that the condition (i) above requiggsto be an ex-post
equilibrium, in that playings® is optimal for each player even if the initial state
w is revealed. To satisfy this condition, we consider continuation payoffs which
move vertically, as in the right panel of Figure 2. Allowing vertical move is useful
for two reasons:

(a) The block strategy® approximates the payofX, but does not exactly
achieve it. In particular, different initial beliefs yield (slightly) different
block payoffs to player 2. This payoff difference must be offset by contin-
uation payoffs, as we want the same payatib be achieved for all beliefs.
So player 2’s continuation payoff cannot be constant, andwhusist move
vertically.

(b) When player 2’s belief differs from the dummy beljefthe block strategy
s* does not maximize her block payoff, so she can earn a positive profit by
deviating froms*. We need to punish such a deviation via a variation in
continuation payoffs. That is, we need to burn player 2's continuation value
(relative to the lind.) after some signal3.

These issues (a) and (b) could be easily handled if we could choose continua-
tion payoffs in an arbitrarily way, but unfortunately, there is a constraint; we must
choose the continuation payoffs from the Bl (Otherwise, the baW is not

4But this condition is weaker than “perfect” public ex-post equilibria of Fudenberg and Ya-
mamoto (2010), which requires thiateach period t the continuation strategy is a Nash equilib-
rium even if the statev! in that period is revealed. See Section 3.7 for more detailed discussions.

5The problem (b) here is relevant only when the tangent at the paina coordinate vector.
Indeed, when we considenwhose tangent is not a coordinate vector (this is the case of “regular
directions” in FLM), we can incentivize both players by moving continuation payoffs on a translate
of the tangent line. See Section 3.5 for more details.
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self-generating.) This in particular implies that the vertical move of the continua-
tion payoffs cannot be greater than the lengtm Figure 2. It turns out that this
constraint is quite restrictive, and makes our problem substantially different from
the one in FLM, in the following sense. Recall that FLM consider the horizontal
move only, in which case the distance to the boundary of thevida#l of order
O(+/1— ). This constraint is “loose” in that continuation payoffs are always in
the ballW as long as the variation is of ord&(1— d). In contrast, the bounD

on the vertical move is of ordé(1— d). Hence the continuation payoff may go

to the outside of the ball, even if the variation toward the vertical direction is of
orderO(1-9).

So in sum, we need to solve the above problems (a) and (b), subject to the
constraint that the vertical move is sufficiently “small.” Note that this constraint is
deeply related to the inefficiency result of Radner, Myerson, and Maskin (1986),
who show that the use of huge value burning causes huge inefficiency. In order to
construct an approximately efficient equilibrium, we must avoid such inefficiency,
so we need to minimize the amount of value burning.

It is relatively easy to show that small value burning is indeed enough to solve
the problem (a). Since the block strategfyyields almost the same block payoff
for all beliefsu, only a small perturbation of the continuation payoffs is enough
to offset this payoff difference.

The problem (b) is more delicate. Since the block stragggpproximates
the best payofiX for player 2, herex-anteexpected gain by deviating frost
is small; that is, deviating frors* cannot improve the block payoff by much, if
we evaluate payoffs by taking expectations over the future states and the future
histories. However, this property needs not imply that small value burning is
enough to solve the problem (b). To see why, suppose that we are now in period
t > 1 of the block and the history within the block so farhs™. If we want
to deter player 2’s deviation in the current pertodia small value burning, we
have to show that her gain by such a deviation is se@iditional on the current
history H~. Obviously, this condition needs not be satisfied even if the ex-ante
gain (which takes the expectation ovér?l) is small.

So in order to solve the problem (b) with small value burning, we need to care-
fully evaluate player 2’s gain when she deviates in later periods of the block. To
do so, it is useful to examine how her posterior belief about the state evolves over

13



time. Since the state is changing, the belief evolution in our model is complex,
and keeping track of it over a long block is computationally demanding. Nonethe-
less, we find that under a mild condition, thelief convergence theoremolds, so
that the impact of the current belief on the posterior in a distant future is almost
negligible. In other words, after a long history, all initial beligfsnduce almost
the same posterior.

An important consequence of the belief convergence theorem is that even if
the true beliefu is quite different from the dummy beligf in period one, after
a long time, they induce asymptotically the same posteriptsand jit. (See
Figure 3.) This result is useful to obtain an effective bound on player 2's gain
by deviating in a later periotl of the block: Recall that the block strategy
maximizes player 2's payoff given the dummy initial beligf So after every
historyht—1, deviating fromsX in the continuation game is not profitable if player
2’s true posteriop! equals the dummy posterigit. Of course, these posteriors
ut andfit need not be equal, if the initial beligf differs from the dummy belief
[1; but as noted above, the belief convergence theorem ensures that the posteriors
ut and it are asymptoticallythe same for large, even if the initial beliefu is
quite different fromfi. Hence, player 2's gain by deviating in a later periad
small, and converges to zero amcreases. This property (in particular the fact
that the gain converges to zero) is useful to find an effective bound on the amount
of value burning which deters player 2’s deviatioralihperiodsof the block. See
Section 3.6 for more details.

1.2 Literature Review

The framework of stochastic games was proposed by Shapley (1953). Dutta
(1995) proved the folk theorem for the case of observable actions, and Fuden-
berg and Yamamoto (2011b) andkher, Sugaya, Takahashi, and Vieille (2011)
extend it to games with public monitoring. All these papers assume that the state
of the world is publicly observable at the beginning of each period. Yamamoto
(2016) considers hidden states, but assumes that actions are observable. Accord-
ingly, the belief is always common across players, and the model reduces to the
stochastic game in which players’ belief is a common state variable. In this paper,
players’ beliefs are private information and there is no common state variable.

14
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Figure 3: Belief evolution when there are only two states. The whole belief space
is [0,1]. Each thick line is the set of all possible posteriors given the past history.

It shrinks over time, so eventually all initial priors induce the same posterior.

Athey and Bagwell (2008), Escobar and Toikka (2013), ariuinidr, Taka-
hashi, and Vieille (2015) consider repeated Bayesian games in which the state
changes as time goes and players have private information about the state each
period. They assume hat the state of the world is a collection of players’ private
information, so if players report their information truthfully, the state is perfectly
revealed before they choose actin#n contrast, in this paper, the state is not
perfectly revealed.

Wiseman (2005), Fudenberg and Yamamoto (2010), Fudenberg and Yamamoto
(2011a), and Wiseman (2012) study repeated games with unknown states. They
assume that the state does not change over time, so that players can (almost) per-
fectly learn the true state by aggregating all the past public signals. In our model,
the state changes as time goes and players never learn it perfectly.

Ex-post equilibria have been recently used in various dynamic models, such
as Hirner and Lovo (2009), Fudenberg and Yamamoto (2010), Fudenberg and
Yamamoto (2011a), éfner, Lovo, and Tomala (2011), and Yamamoto (2014).
They consider the case in which the state is fixed at the beginning. Again this
paper differs from their work, because we consider changing states.

6Sections 4 and 5 of &fner, Takahashi, and Vieille (2015) consider equilibria in which some
players do not reveal information, but their analysis relies on the independent private value as-
sumption.

"There are many papers that discuss ex-post equilibria in undiscounted repeated games; see
Koren (1992) and Shalev (1994), for example.
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2 Setup

2.1 Stochastic Games with Hidden States

Let| = {1,---,N} be the set of players. At the beginning of the game, Nature
chooses the state of the word! from a finite setQ. The state may change as
time passes, and the state in petiedl,2, - - - is denoted byw' € Q. The statev'

is not observable to players, so they have an initial common prierAQ about

w?.

In each period, players move simultaneously, with playiet | choosing an
actiong from a finite setA;. Let A= XA be the set of action profiles =
(a)iel- Actions are not observable, and instead players observe a public gignal
from a finite setY. Then players go to the next peribd- 1, with a new (hidden)
statew'*!. The distribution ofy and w!™! depends on the current stat® and
the current action profila € A; let ®(y, é|a) denote the probability that players
observe a signal and the next state becomekt! = @, givenw! = w anda. In
this setup, a public signglcan be informative about the current staiend the
next state. This is so because the distributionyainay depend o, andy may
be correlated witli. Let 75°(y|a) denote the marginal probability gf

Playeri’s payoff in periodt is a function of her current actiom and the cur-
rent public signaly, and is denoted byi(a;,y). Her expected stage-game pay-
off conditional on the current state and the current action profieeis g*(a) =
Syey & (Yla)ui(a,y). Here the hidden state influences a player’s expected pay-
off through the distribution of. Letg®(a) = (g(a))ici be the vector of expected
payoffs. Letq, = max, a |20 (a)|, and letg = Y. ;. Also let7r be the minimum
of n®(y, &|a) over all(w, @,a,y) such thatt®(y, @|a) > 0.

Our formulation encompasses the following examples:

e Stochastic games with observable statestY = Q x Q x Ya, and suppose
that m®(y, @|a) = 0 fory = (y1,¥2,ya) such thaty; # w orys # &. That s,
the first component of the signgkeveals the current state, and the second
component reveals the next state. The third component is a noisy signal
about actions. Since the signal in the previous period perfectly reveals the
current state, players know the stae beforethey choose an action pro-
file a'. Also, the stage-game payaff(a;,y) directly depends on the current

16



state through the first componentof the signal. This is exactly the stan-
dard stochastic games studied in the literature.

e Delayed observatiarietY = Q x Ya, and assume tha’(y|a) = 1 for each
y = (Ya,Ya) such thatyo # w. That is, the first component of the current
signal reveals the current state. The second component is a noisy signal
about actions. This is the case in which players observe the current state
after they choose their actions.

In the infinite-horizon stochastic game, players have a common discount factor
0 € (0,1). Let(w',a’,y") be the state, the action profile, and the public signal
in period 7. Playeri’s history up to period > 1 is ht = (af,y")}_,. Let H}
denote the set of at', and IetHio = {0}. A public history up to period > 1
is denoted byh = (y")!_,. LetH! denote the set of alt!, let H? = {0}, and
let H = Ui oH! be the set of all public histories. A strategy for playes a
mappings : U oH! — AA;. LetS be the set of all strategies for playieand let
S= Xi¢1§. For each strategy, IetS!hg be the continuation strategy induced by
5 after historyh!.

A strategys is publicif it depends only on public information, i.es,(hf) =
s (ht) for t, ht, andht such thaty® = ¥ for all T. A strategy profiles is public if
s is public for alli. For each public strategy, let s|it be the continuation strat-
egy induced bys after public historyh'. Similarly, s|ix denotes the continuation
strategy profile after public histoly.

Let vi“(é,s) denote player's average payoff in the stochastic game when the
initial prior is u, the discount factor i®, and players play the strategy profde
Let v¥(3,5) = (V(38,9))icl be the payoff vector achieved by the strategy profile
s, givenu andd. We writev®(5,s) andv®(3,s) instead of'(3,s) andv# (9, s),
when the initial prioru puts probability one on the staée As Yamamoto (2016)
shows, for each initial priop, discount facto, and public strategg_;, player
i's best replys exists. A strategy profils is a Nash equilibriumfor an initial
prior u if vi“(é,s) > vi“(é,é,&i) for alli ands’. Also, a strategy profile is aex-
post equilibriumif it is a Nash equilibrium for allu. As Sekiguchi (1997) shows,
under the full support assumption (which will be stated in the next subsection), the
difference between Nash and sequential equilibria is not essential. Indeed, given
an initial prior u, if a payoffv is achieved by some ex-post equilibritgrthere is
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a sequential equilibriuraWhich achieves the same paywoff
In what follows, we assume that the functiarhas a full support:

Definition 1. Thefull support assumptioholds if 1*(y, ®|a) > 0 for all w, &, a,
andy.

The full support assumption requires that regardless of the currentstatd
the current action profil@, any signaly can be observed and any stabecan
realize tomorrow. Under this assumption, any public histdrgan happen with
positive probability. Also, since any state can happen with positive probability, in
any period > 1, a player’s posterior belief about the state is always interior, i.e.,
she assigns at least probabilityon any statew.

The full support assumption is imposed only for the sake of exposition. In
Appendix D, we show that our result remains valid even if the full support as-
sumption is replaced with a weaker condition. In particular, we show that the folk
theorem holds in the examples presented above.

2.2 Belief Convergence Theorem

As noted in the introduction, since actions are private information, players’ be-
liefs can possibly diverge in our model. In this subsection, we prese tutetinef
convergence theoremvhich shows that the current belief has only a negligible
impact on the posterior belief after a sufficiently long histhty This result im-
plies that if players play pure strategies and do not deviate, their private beliefs
will eventually merge.

Formally, given a pure public strategy a public strategy_j, and an initial
prior u, let i (ht|u, s) € AQ denote player's belief about the state'*! in period
t+ 1 after the public historyt'. That is,u;(ht|u, s) is the posterior belief when no
one deviates from the strategy profileThis belief is well-defined under the full
support assumption, because all public histories can appear with positive prob-
ability on the path. The following is the belief convergence theorem; the proof
relies on weak ergodicity of inhomogeneous Markov matrices, see Appendix B.

Proposition 1. Suppose that the full support assumption holds, an@ let1 —
& € (0,1). Then for each i, pure public strategy public strategy s;, t > 0, h,
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U, andfi, we have
(W ,9) — (|, 9)| < B.

To interpret this result, pick a strategy profias stated, and pick an arbitrary
public historyh. In general, given this history, different initial priorsy and i
induce different posterior beliefg; (ht|u,s) and;(ht|f1,s). However, the above
proposition ensures that these two posterior beliefs get closemaseases, at
a rate at least geometric with paramefer So the impact of playeir's current
belief on her posterior belief in a distant future is almost negligible, as shown
in Figure 3 in Section 1.1. This ensures that even if the opponents do not know
playeri’s current belief, after a long time, they will eventually obtain very precise
information about players posterior belief.

The result above relies on the assumption that playéiooses a pure strat-
egy s and does not deviate. Indeedsifis a mixed strategy, playeis belief in
periodt crucially depends on her private information about what actions are ac-
tually chosen, and hence the opponents cannot obtain precise information about
her posterior belief. Similarly, if playeardeviates to other strategy # 5. then
her posterior belief ig;(ht|u,§,s i), which can be quite different from the op-
ponents’ expectatiop;(ht|u,s). In other words, playercan always possess new
private information about the true state by deviating from a prescribed strategy

The belief convergence theorem does not ensure that two posterior beliefs in-
duced by different public histort andht will merge. That is, different public
histories may yield quite different beliefs even after a long time. In this sense, the
belief evolution is path-dependent, and state learning never ends.

3 Example: Stochastic Cournot Competition

To illustrate the key ideas of the paper, in this section, we consider a Cournot
example and show how to construct an approximately efficient equilibrium.

3.1 Model

There are two firms, and each fifpproduces produdt We consider differentiated
products, but these products are quite similar; so the prices of the two products
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are highly correlate. (For example, think about the price of coffee beans from
Brazil and the one from Kenya.) In each period, each fichooses quantity;.
There are three possible valuesagf H = 20 (high),M = 10 (middle), orL =0
(low).

There is a persistent demand shock and an i.i.d. demand shock. The persistent
demand shock is represented by a hidden staterhich follows a Markov pro-
cess. Specifically, the state is either a boao= wg) or a slump { = ws), and
after each period, the state stays at the current state with probalfitAGtions
(quantities) do not influence the state evolution. ket (0,1) be the probability
of wg in period one.

Due to the i.i.d. demand shock, the market price is stochastically distributed,
conditional on the current economic conditionand the quantitya = (az,ap).

Lety; € {0,10,20,30,40,50} denote the price of productand lety = (y1,Y2).
For each statev and each quantitg, let i¥’(-|a) denote the distribution of the
price vectory overY = {0,10, 20,30,40,50}°. We assume that botn andy, are
publicly observable. The precise specificatiormiwill be given in Appendix A,
and here we list only the key propertiesmaf:

e 711Y(yla) > O for eachw, a, andy, so the full support assumption holds.

e The distributions{(75°(y|a))yey } (wa) are linearly independent. This im-
plies that the firms can statistically distinguigh, a) throughy.

e The expected pricE[y|w,a] = ey 7§°(y|@)y; conditional on the state =
wg is as in the left table below: For each cell, the first component represents
the expectation of1, and the second is @b. Similarly, the expected price
conditional on the state = ws is as in the right table.

L M H L M H

L | 42,42 41,40| 23, 22 L | 36,36| 35,34| 17, 16
M | 40,41 23, 23| 16, 15 M| 34,35 17,17 10,9
H | 22,23]| 15,16| 13,13 H|16,17| 9,10 | 7,7

8Even when the firms produce homogeneous products, as in Green and Porter (1984), our folk
theorem (Proposition 6) applies so that we can construct an approximately efficient equilibrium.
However, the equilibrium strategy becomes a bit more complicated in that case. The reason is that
when the products are homogeneous, symmetric action profiles never have pairwise full rank, and
thus we need to perturb the optimal policy for the signal to be informative about the identity of the
deviator. See pages 1020-1021 of FLM for more details.
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Since the two firms produce similar products, the expected prices are (almost)
determined by the total producti@a + a,. For example, the three action profiles
(H,L), (M,M), and(L,H) induce the same production level + a, = 20, and
hence result in similar expected prices, 22 or 23, at the good staighe left
table). Also, as one can see from the right table, when the state changes to the bad
statews, the expected price drops by 6, compared to the case with the good state
WG.

For simplicity, we assume that the marginal cost of productio@ is O for
each firm. Hence firnis actual profit isa;y;, and its expected payoff given and
ais g -Elyi|w,al. We normalize the payoff (subtract 200 and then divide by 10)
and denote it by(a). That s, letg” = w. These payoffg”(a) are
summarized as follows; the left table describes the payoffs for the goodstate
and the right table describes the ones for the bad siite

L M H L M H
L | —20,-20| —20, 20| —20, 24 L | -20,-20| —20,14 | —-20, 12
M| 20,-20 3,3 —4,10 M| 14,-20 | -3,-3 | —-10,-2
H| 24,-20 | 10,-4 6,6 H| 12,-20 | -2,-10| —6,—-6

As one can segH,H) is a Nash equilibrium of the stage game, regardless
of w. Also, “Always (H,H)” is a sequential equilibrium in the infinite-horizon
game regardless of the initial prigr, since the state transition does not depend on
actions. The payoff of this equilibrium i(6,6) + 3 (—6,—6) = (0,0) in the limit
asd — 1, because the time average of the hidden slme%% in the long run.

In this game, the “efficient” action profile (i.e., the action profile which max-
imizes the total profit of the firms) igH,H) at the stateus, but is(M, M) at the
statews. So in order to maximize the total profit, the firms should produce less
than the Nash equilibrium quantity when they are pessimistic about the current

state of the economy. The next subsection studies this issue in more details.

3.2 Feasible Payoff Set and Optimal Policies

Given the initial prioru and the discount factad, different strategy profiles
yield different payoffs in the infinite-horizon game. The set of all such payoff
vectors is the feasible payoff set in our environment. That is, the feasible payoff
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set given the initial priou and the discount factay is defined as
VH(d) = co{v¥(9,s)|se S}.

The welfare-maximizing point in this set!(d) can be computed by dynamic
programming. To see this, note that the welfare-maximizing point must be achiev-
able by a pure strategy, as mixed strategies can achieve only a convex combination
of pure-strategy payoffs. When the firms use a pure strategy profile and do not de-
viate, they do not have private information, so the posterior belief is common
after each period. Thus the maximal welfare must be achieved by a pure Marko-
vian strategy profile in which the posterior beljgf is a common state variable.
This implies that the maximal welfare must solve the following Bellman equation:
Let f(u) be the maximal welfare given the initial pripr; and letfi(y|u, a) be the
posterior belief in period two given that the initial priorfisand the outcome in
period one iga,y). Then the functiorf must solve

acA

f(u) =max|(1-0)(g;(a)+d)(a +5§YT¢‘ (yla) f (Ei(ylu, a))] (1)

Intuitively, (1) asserts that the maximal welfafgu) is the sum of today’s profit

g5 (@) + g5 (a) and the expectation of the future profit§i(y|u,a)). The current
action should maximize this sum, and hence we take the maximum with respect
toa.
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Figure 4: Value Functions for High Figure 5: Optimal Policy
x-axis: beliefu. y-axis: payoffs. x-axis: beliefu. y-axis: actions.
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For each discount factay € (0,1), we can derive an approximate solution
to (1) by value function iteration with a discretized belief space. Figure 4 illus-
trates how the value functioh changes when the firms become more patient; it
describes the value functions fér= 0.95, 6 = 0.99, andd = 0.999. As one can
see, the value function becomes almost flat as the discount factor approaches one,
that is, the firms’ initial prior has almost no impact on the efficient payoff. For
0 close to one, the value function (the maximal welfatg)) approximates @0
regardless of the initial prigu.

The optimal policy ford = 0.95 is described in Figure 5, where 1 in the vertical
axis means.= (M, M), and 0 meana = (H,H). It shows that the optimal policy
is a simple cut-off strategy, which choog#4, M) when the current beligf is less
than3, and(H,H) otherwise® In what follows, lets®™(5, 1) denote the optimal
policy givend and . That is,s2(8, ) is the strategy for the infinite-horizon
game which achieves the efficient payoff within the feasible payoff set, given the
discount factord and the initial prioru. Without loss of generality, we assume
that the optimal policg® (5, i) is a pure public strategy profile.

Using a similar technique, we can compute other extreme points of the feasible
payoff setvVH(d). For example, the highest payoff for firm 1 within the feasible
payoff set can be computed by solving

acA

f(u)= maXI(l 5)d; (a +62r¢‘ (yla) f(Ei(ylu, a))]

Again, we can derive an approximate solution using value function iteration. It
turns out that whe# is close to one, the value function is almost flat and approx-
imates 1& regardless of the initial priqu. The optimal policy is again a cut-off
strategy; it choosegM, L) whenu < %, and(H,L) whenpu > % regardless of
5. Lets!(8, u) denote the optimal policy gived andu. That is,s'(d, u) is the
strategy for the infinite-horizon game which maximizes firm 1's payoff. Similarly,
let (&, 1) denote the strategy which maximizes firm 2’s payoff.

To summarize, whem is close to one, the initial prior does not influence
the maximal welfare or the highest payoff for each firm. More generally, our

9Note that this optimal policy is identical with the myopic policy, which maximizes the stage-
game payoff each period. This follows from the fact that in this example, the distribution of the
belief tomorrow does not depend on the current action prafiées explained in Appendix A. Our
equilibrium construction does not rely on this property, and is valid in more general environments.
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Proposition 2 shows that the feasible payoff set does not depend on the initial
prior u, in the limit asd goes to one. LeV denote this limit feasible payoff
set, and leV* be the set of all payoffs i which Pareto-dominates the trivial
equilibrium payoff,(0,0). Figure 6 describes (a subset of) the limit feasible payoff
set. Here the profit maximizing point {§.35,0.35), because the value function

f approximates @0 asd goes to one. Also the down-right corner(8.2, —20)
because the value functidnapproximates 18, and the optimal policg!(d, i)
asks firm 2 to playL forever, which yields—20 each period. Figure 6 is only a
subset ol/, because we have not computed other extreme points &igure 7
describes (a subset of) the feasible and individually rational payd¥f'séh what
follows, we will construct an equilibrium which approximates the efficient payoff
vector(0.35,0.35).

( 207 18.2)
0.357 O.35>

0-357 0-35
\\( )

(18.2,—20)

Figure 6: Subset of ,
Figure 7: Subset of *

3.3 Pseudo-Ergodic Strategies

As explained, when the firms have a common bgliethe efficient payoff vector
(0.35,0.35) is (approximately) achieved if the firms coordinate and play the opti-
mal policy s*™(&, u). However, in our model, the firms may not have a common
belief, which causes a possible miscoordination problem in the following sense:
Suppose that each firiis current belief igy; wherepu; # uo, and that these beliefs
are private information. If each firm chooses the optimal policy corresponding to
its own belief, then the resulting profileS™ (5, u1), (3, 12)) is quite different
from the optimal policy.
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To avoid this miscoordination problem, in our equilibrium, the firms play
“pseudo-ergodic strategies” which do not depend on the private beliefs. For ex-
ample, if the firms want to cooperate and approxin{@ta5s, 0.35) from now on,
they form a “dummy public beliefi = % and play the corresponding optimal
policy $°™(5,3). By the definition, this strategs®™(6,3) is not optimal unless
the firms’ current beliefs arg; = up = % However, as Proposition 3 shows, it is
approximately optimal for all initial priorgt, that is, it approximates the efficient
payoff (0.35,0.35) regardless of the true belief. So if the firms want to cooperate,
they may ignore their private beliefs and simply pJ(5, 1), the optimal policy
for the dummy public beliefi = 3.

Proposition 3 also shows that the same result holds for other optimal policies.
For example, the optimal policst(5, %), which achieves the best payoff for firm
1 given the dummy beligl = % approximates the down-right corn@8.2, —20)
of the feasible payoff set regardless of the initial pgiorSo the firms may play it
if they want to reward firm 1 (by giving 18) while punishing firm 2 (by giving
—20). Similarly, the optimal policg?(8, %) for the dummy belie% approximates
(—20,18.2) regardless of the initial priou. This strategy can be used when the
firms want to reward firm 2 while punishing firm 1.

Also, any constant action profile is a pseudo-ergodic strategy in that it achieves
approximately the same payoff regardless of the initial belief. For example, if the
firms always play(H,H), the payoff(0,0) is achieved in the limit a® — 1,
regardless of the initial belief. As will be explained, the firms use this “Always
(H,H)” when they want to punish each other.

3.4 Random Blocks and Self-Generation

Now we construct an equilibrium approximating the efficient payof85,0.35),
by assembling the pseudo-ergodic strategies in the previous subsection. In what
follows, we assume that public randomizatigrwhich follows the uniform dis-
tribution on[0, 1], is available at the end of each period.

As in Yamamoto (2016), we regard the infinite horizon as a sequeneaof
dom blocksthe length of which is determined by public randomization. Specifi-
cally, at the end of each periadthe firms check the public randomizatidn If
Z > pfor some fixed numbep € [0, 1], then the current random block terminates
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and the new block begins from the next pertod1. If Z < p, then the current
block does not terminate and the next petiedl is included in the current block.
So the probability that the current block terminates is A each period, and the
length of the block is geometrically distributed. We tgkelose to one, so the
expected length of the block is long.

Due to the random termination probability-Ip, each random block is payoff-
equivalent to the infinite-horizon game with the discount fagidr Indeed, given
the initial prior u and the strategy profilg the unnormalized expected payoff in
the first block isy >, (pd)t*E[g® (a')|u, 5], wherept~1 is the probability of the
t-th period of the block being actually played. This payoff can be rewritten as
v“l(_pgés)’ which equals the unnormalized payoff for the infinite-horizon game with
the discount factopd.

In each random block, the firms choose one of the four pseudo-ergodic strate-
gies: $*M(pd, 1), s'(pd, 3), (pd, 3), or “Always (H,H).” On the equilibrium
path, the firms do not change the strategy in the middle of the block. That is, once
a strategy is selected, they play it until the block ends. (Of course, they can deviate
whenever they want.) Since the firms play pseudo-ergodic strategies, their block
payoffs are not affected by their beliefs by much. For example, if the firms choose
SEff(pcS,%) during the block, the block payoff approximates the efficient payoff
(0,35,0.35) regardless of their beliefs. Here the firms use the optimal policy for
the discount factopd (rather thand), because the “effective discount factor” for
each random block ipd, as explained above.

Figure 8: Block Strategies
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Take a balW in the interior of the feasible and individually rational payoff
setV*. For the sake of exposition, we assume tais in the interior of the
rectangl€]0,0.35] x [0,0.35], as in Figure 8. Our goal is to show that this Bl
is attainable by public equilibria, when the firms are patient. Thanks to the self-
generation theorem (Proposition B1 in Appendix B), it is sufficient to show that
the ballW is self-generating. That is, for each target payafi the ballw, there
is a block strategg and a continuation payoff functiom: H — W such that

1-9

Vi = 1_—p5Vi°)(IO5,S) +t;(1— p)p S Ewi(h)|w,S (2)

for all w andi, and

1-0 V9(pd,§,s i)+ i(l— p)ptOEW(N)|w. 8,54 (3)
t=

ViZl—pcS'

for all w, i, ands.

(2) is the promise-keeping condition, which implies that regardless of the ini-
tial statew, the target payof¥ is exactly achieved as the sum of the block payoff
by the strategy and the continuation payoif chosen from the ballv. Indeed,
the first term in the right-hand side is the block payoff$and the second term
is the expected continuation payoff. More precisé"laiég—gv) in the first term is
the unnormalized payoff during the block, and we multiply & because we con-
sider the average payoff with the discount fadiof1— p)p'—? in the second term
denotes the probability of the current block terminating after petriagdw; (ht)
is the continuation payoff in that case.

(3) is the incentive compatibility condition, which ensures that any deviation
from the block strategg is not profitable, regardless of the initial stabe This
ensures that the block strategys an ex-post equilibrium in the random block,
that is,sis a Nash equilibrium even if the initial stadeis revealed.

To show that the balV is indeed self-generating, for each target payeafiw,
we need to find a block strategyand a continuation payoff functiow which
satisfy (2) and (3). We choose the strategys in Figure 8; here the balV is
divided into four parts, depending on the corresponding block stragedyor
example, if the target payoffis in the top-right part, we lex= ff.

What remains is to show that for eack W, there are continuation payoffs
which indeed satisfy (2) and (3). We will work on this in the next two subsections.
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3.5 Regular Directions

Choosev as in Figure 9. That is, letbe a boundary point of the bal¥ with the
unit normalA = (%, \%). Then take the block strategyas in Figure 8; since
v is in the top-right part, we les = T, whose block payoff approximates the
efficient payoff(0.35,0.35) regardless of the initial priog. In what follows, we
will explain that there is a continuation payoff functiarsatisfying (2) and (3).

» V% (pod, )

Figure 9: Choice oWw*

Figure 10: Zoomed Picture

As a first step, we construet which satisfies the promise-keeping condition
(2) for statews. Suppose that the functiamis constant, i.ew(ht) = w* for all h,
, : _ 1-p)d -5
wherew* € RN is a constant. Then singg® ,(1— p)p' 15! = % =1-1=%

the promise-keeping condition (2) for stabg is rewritten as

1-9 1-90
Choose the constant® so that the above equality holds, that is, let

W =v— ﬁ(v‘”@(p&s) —V).
Intuitively, w* is chosen so that the target payefs exactly achieved as the sum
of the block payoffi©(pd,s’) and of the continuation payofi*. (See Figure 9.)
Pick p close to one, and then choo3delose to one. The%\% is close to zero,
and thusw* is in the interior of the baWV, as in Figure 9.
By the definition, this constant functiow(h') = w* satisfies the promise-

keeping condition (2) for the good states. However, it does not satisfy the
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promise-keeping condition (2) for the bad state (This is precisely the problem

(a) discussed in Section 1.1; we need to achieve the same paggtirdless of the
initial statew.) Also, it does not satisfy the incentive compatibility condition (3).
So we need to modify the constant function in such a way that these constraints
are satisfied.

To satisfy the promise-keeping condition (2) for the bad stagewe only
need to perturb the continuation payoff a bit. To see why, recall that the block
strategys® approximates the payoff.35,0.35) regardless of the initial state.

This implies that the initial state influences the terff{pd, s) in the right-hand

side of (2) only by a small amount. To offset this payoff difference, we only need
a small perturbation of the continuation payoff. For more details, see Lemma B16
in Appendix B.

To satisfy the incentive compatibility condition (3), we borrow the idea of
“utility transfer across players” of FLM. Roughly, if the public histdryduring
the current block indicates firm 1's deviation, then we change the continuation
payoff fromw* to w(ht) in Figure 10. By doing so, we punish firm 1 by reducing
the continuation payoff (relative w*), while we reward firm 2 by increasing the
continuation payoff. Likewise, if the public histoh} indicates firm 2’s deviation,
we USGN(F]t) in the figure as the continuation payoff. This punishment mechanism
does not involve value burning, that is, regardless of the realizatidn, dhe
continuation payoff is always on the liniein Figure 10, so the sum of the firms’
profits is constant. This property ensures that we can avoid inefficiency, even
though punishment occurs on the equilibrium path due to imperfect monitoring of
actions.

In the rest of this subsection, we formally show that the idea of utility transfers
indeed works in our environment. Since this is an analogue of FLM, readers who
are not interested in details may skip this part and go to Section 3.6.

To satisfy (3), we consider the function: H — W with the form

w(ht) = w* + Z(h) (5)

for eacht andht. That is, we add a perturbation tedrto the constant payoff/*;
the superscript on the perturbation termrepresents the time at which the block
terminates.

For eactt, we will choose the perturbation terfhcarefully so that any devia-
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tion in periodt is not profitable regardless of the past histbfry' and the current
statew!. Specifically, note that (h') can be written ag' (h*=1,y), wherey is the
public signal in period. Then givert andh!~1, we choosdZ (ht~1,y))yey such
that
- - 0 if & =s(h*1)
5(1— sz (h1ty) =

(6)
for all w, i, andg;, and

ALy +4(0" Ly =0 (7)

for all y. The first condition (6) ensures that any one-shot deviation in peériod
after the public historyl—1 is not profitable, regardless of the current stateTo

see this, suppose that we are now in petiofithe block and that the past public
history ish*~1. If firm i deviates in the current peridgit influences the distribu-
tion of the public signay today, and hence the expected value of the perturbation
termz}(ht—l,y). The left-hand side of (6) measures how much this influences firm
I's stochastic-game payoff, evaluated at petioithe term 1— p is the probability
that the block terminates right after the current petidd which case the contin-
uation payoff is indeed* + 2. (6) asserts that this effectfc;})—%g, which is large
enough to deter firmis one-shot deviation in peridd Indeed, any deviation can-
not increase the block payoff by more th%_ﬁ%g, so the gain by such a deviation

is less than the loss.

The second condition (7) asserts that the modified continuation pagiwff =
w* +Z(h') is on the dotted lin& in Figure 10, which is a translate of the tangent
line. We can show that the above system of equations (6) and (7) indeed has
a solutionZ. Also, (7) ensures that the resulting continuation paywiffs') =
w* + Z(ht) are in the balw. (The proof is very similar to that of FLM, and hence
omitted.)

We have explained that the above perturbation tBramsures ex-post incen-
tive compatibility in period. That is, any deviation in periadis not profitable,
even if the statew! is revealed. Since we choose sugtlor eacht, ex-post in-
centive compatibility is satisfied each period, and thus the incentive compatibility
condition (3) indeed holds. (Here, we can ignore the possibility that a deviation
in periodt influences the perturbation terznfor f # t. This is becaus# satisfies
(6) so that its expected value is zero as long as ffidmes not deviate in peridd)
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3.6 Coordinate Directions and Value Burning

In the previous subsection, we have explained that whisrchosen as in Figure
9, we can find continuation payoffg satisfying (2) and (3). A similar argument
shows that the same result holds for almost all payeffsthe ballW. The only
exceptions are the case in whielis a boundary point dV whose unit normal is
a coordinate vecto) = (1,0) or A = (0,1). In this subsection, we will explain
how to findw for such a case.

Since the game is symmetric, without loss of generality, we focus on the case
in which the unit normal is\ = (0,1). That is, we choose as in Figure 1 in
Section 1.1. Choose the block stratexps in Figure 8, i.e., let= s%. This block
strategy approximatgs-20,18.2) regardless of the initial prigu.

As in the previous subsection, take the constant continuation payhff =
w* so that the promise-keeping condition (2) holds for the good stateThis
constant function does not satisfy the promise-keeping condition (2)far the
incentive compatibility condition (3), so we need to modify it. As explained in the
previous subsection, the promise-keeping condition (2iiocan be satisfied by
perturbing the continuation payoff a bit.

How about the incentive compatibility condition (3)? In the previous subsec-
tion, we have shown that it can be satisfied by moving continuation payoffs on the
line L in Figure 10, which is a translate of the tangent line. Unfortunately, this
idea does not extend here: When firm 2’s beliefiis % the block strategyg?
does not maximize firm 2’s block payoff, and thus firm 2 can improve its block
payoff by deviating froms?. For (3) to hold, we need to deter such a deviation
via a variation in continuation payoffs, so the continuation payofiust move
vertically. This means that cannot be on the link in Figure 1. Note that this is
precisely the problem (b) discussed in Section 1.1.

In what follows, we show that we can indeed deter firm 2’s deviation via ver-
tical move of the continuation payofis, while keepingw in the ballw. (We
focus only on firm 2’s problem, because firm 1's incentive condition can be eas-
ily satisfied using the horizontal move.) Formally, we show that there is firm 2’s
continuation payoffwv, which satisfies the incentive compatibility condition (3)
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and

1-9)p,

‘Wz(ht> _V\é’ < m

(8)
for allt andht, wherel = vg’G(pé,sV) —V». Intuitively, (8) ensures that the vertical
move of the continuation payoff, which is measuredsy(h') —wj|, is small and
less than a half of the length in Figure 2. Indeed, thg-intercept of the lind
in Figure 2 isw3, so we havéd = vo —Wj; = (i:ggpl. As shown in Lemma B8 in
Appendix B, (8) ensures that the vertical movenat small enoughwv never goes
to the outside of the balv.

The proof consists of two steps. In the first step, we show that firm 2’s gain
G! by deviating in period of the block is small for each, and that even the
infinite sumof the gains,3;> ; G', is small. Note that for this to be the case, we
need to show that the gail@ for later periodd converge to zero dsincreases;
indeed, ifG! is small but constant (e.gG! = G? = --- = &), the sum becomes
infinitely large. In the second step, we construct continuation payo$isch that
the incentive condition (3) holds. The size of the vertical move of this continuation
payoff w is proportional to the sum of the gains;>, G'; this is so because we
need to deter firm 2's deviation adl periods in the block. From the first step, we
know that the sum of the gains is small, and thus the vertical moweismall.
Hence thiswv indeed satisfies the desired inequality (8).

To begin, we define firm 2’s gai®' when it deviates in periotiof the block.
Consider a random block with firm 2’s initial beligf. Suppose that we are now
in periodt of the block, and the public history within the blockh&™. Sup-
pose that firm 2 has not deviated within the block so far, so its posterior belief
is pp(ht=1|u,s%). If firm 2 deviates in the continuation game, it can improve the
block payoff by

G (1, ) = masutelM 4 (p5, -1, 55) — vl 1K) (3, o)
Here the first term of the right-hand side is the payoff in the continuation game
when firm 2 deviates, while the second term is the one when firm 2 does not
deviate. Note that we take the maximum oversgallso we allow firm 2 to deviate
not only in period, but in later periods; s&' should be interpreted as the gain by
firm 2 when “firm 2 follows the strategs® until periodt — 1, but then deviates in
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periodt and then choose a best reply after that.” As one can see from the formula

above, the initial beliefs influences the gaiG'(u,h"~1) through the posterior

belief tp(ht=1|u,s?). When the initial belief iy = 3, we haveG'(u,h~1) =0,

because? is the optimal policy for this belief and firm 2 has no reason to deviate.
Let G = maxyc pq MaXy 1cpt-1 G, 1) denote the maximal possible gain

in the continuation game from periacbn, and let3 < 1 be as in Proposition 1.

We claim that for any sma#t > 0, if pandd are large enough (i.e., if the expected

block length is large and players are patient), we have

G < ptle (9)

for eacht. That is, the gairG! by deviating in period one is small, and the gain
G! by deviating in a later periotlis even smaller and converges to zero at a rate
at least geometric with paramet@r This inequality ensures that the sum of the
gains is small; indeed, summing both sides dyere obtainy;> ; G' = ﬁ Since
& can be arbitrarily small, the infinite sugf> ; G' is also small.

It is easy to see that (9) holds foe= 1. Indeed, since® approximates the best
payoff for firm 2 regardless of the initial beligf, the gain by deviating frons?
in period one must be small. The proof for- 1 is more involved, but the idea
is roughly as follows. The initial beligfi influences the gai'(u,h"~1) through
the posterior beliefix(ht—|u, s%), but the belief convergence theorem implies that
this posterior does not depend on the initial belief by much, after a long history.
Thus all initial beliefs induce the same gain asymptotically, that is, for any initial
beliefsu andfi, the difference in gaingG!(u, ht=1) — G!(f1,ht=1)|, converges to
zero ag — «. Then, pluggingG!(fi,ht~1) = 0 for fi = 1, we can conclude that
the gainG!(u,h'~1) converges to zero ds— oo, for all initial beliefs 4. We can
also show that the rate of convergence is at least geometric, see Lemma B9 in
Appendix B for the formal proof.

Now we proceed to the second step of the proof; we construct continuation
payoffsw which deters firm 2’s deviation frorsf so that the incentive condition
(3) holds. In what follows, we focus on firm 2's incentive only, so we omit the
subscript 2 to simplify the notation. Consider firm 2’s continuation continuation
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payoffw with the following form:

w(h) = w* +2'(hh),
w(h?) = w* + ZH(h) + 2 (h?),
w(h®) = w* + ZH(hY) + 2(h?) + 2(hd),

and so on. In words, if the random block ends in period one, firm 2’s continuation
payoff from the next block is the constant tewnplus a perturbation tert (ht),
which will be defined later. If the block ends in period two, we have an additional
perturbation termz?(h?). In this way, we have more perturbation terms when the
block terminates in a later period. For eachve will carefully choose so that
a particular form of deviations is not profitable. Specifically, we chabseich
that “follow s until periodt — 1 ends, then deviate in periadand then play a
best reply after that” is not profitable regardless of the initial staltelf we can
find suchZ for eacht, deviating to any block strategy # % IS not profitable
regardless of the initial state, and thus (3) holds.

In order to find sucl?, note that? (h') can be written ag' (ht—1,y), wherey is
the signal in period. Then for each andh!~, we choose the perturbation terms
(Z2(h*~1,y))yey such that

o st+lfiq R | 1., ) 0 if @y = sp(h 1)
;05 p(1 p)y; % (ylai, s_i(h )2 (h 1) _{ 180 otherwise
(10)

for eachw anday. To interpret this condition, suppose that we are now in period
t of the block, and that the past public historyhis®. Suppose that no one has
deviated frong® so far. If firm 2 deviates in the current perigdt influences the
public signaly in periodt and hence the expected valueziht—1,y). The left-
hand side of (10) measures the expected discounted value of this change, evaluated
at periodt; here the terrrpf(l— p) is the probability that the block terminates at
the end of period+t, and we take the expectation with respect to the termination
datet +f. (10) asserts that this effect is large enough that “fol8wntil period

t — 1 ends, then deviate in periadand then play a best reply thereafter” is not
profitable regardless of the initial staig. Indeed, the gain by such a deviation is
at most£=5%G' (u,h~1), which is less than the logs-5%G'.
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What remains is to show that the above perturbation is small enough that (8)
holds. Note thay , 6f+1pf(1— p) = (ijg?. Plugging this into (10) and dividing
both sides bﬁ:—g?, we get

if ap = sp(ht=1)
otherwise )

}Yrewy\a,si(ht))zt(h”,y):{ P
yE

- (1-p)d

Thus there is som€ > 0 such thatZ(ht)| < (lljlf)écGt for eacht andht. That

is, the perturbation terrd is proportional toG'. Hence

1-90
24D+ 2 (0%)] + - < i-p)5

CG',

whereG* = 372, G' is the sum of the gains. This shows that the maximal size of
the perturbation is proportional to the su@i of the gains. As explained, when

p andd are large enough, the suBt can be arbitrarily small, and in particular
CG" < 5. This implies (8), as desired.

3.7 Comments and Remarks
3.7.1 State-Specific Punishment vs Uniform Punishment

Our promise-keeping condition (2) requires that the same payb# achieved
regardless of the hidden staig using the same continuation payoff functian
Accordingly, in our equilibrium, after every block, each player's payoff in the
continuation payoff is independent of the hidden statd& his in particular implies

that our punishment mechanismmist state-specific, in the following sense: Pick

an equilibrium strategy profile, and suppose that after some histotya player’s
payoff in the continuation payoff is low conditional on some stateThen in this
continuation game, her payoff must be the same (low) value even if the state were
@' # w'. So after this history''—2, she is punished not only at a particular state
«', but at all states uniformly.

In contrast, Fudenberg and Yamamoto (2010) consider ex-post equilibria with
state-specific punishments. Specifically, they take a\t¥afrom the extended
spaceRI2*N (rather thanRN), and choose the target payafi= (V) (i,0) @nd
the continuation payoftv = (W) o, from this ball. In this framework, both
v andw can directly depend on the stai@ so in their equilibrium, a player’s
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payoff depends ow after every history. In particular, sineeis chosen from the
extended spac@?/*N | it is possible to lower playéis continuation payoftv® at
statew, while not affecting her payoﬁ/i‘:’ at other state® # w. In this sense, their
punishment is state-specific. Fudenberg and Yamamoto (2010) show that such
state-specific punishments are indeed useful to provide ex-post incentives: They
show that ex-post incentives can be provided by moving continuation payoffs only
on a translate on the tangent hyperplane in the extended §3¢&', so value
burning does not occur in their equilibriutf.

What will happen if we consider equilibria with state-specific punishments in
our environment? To answer this question, take aWdlom the extended space
RI?*N 35 in Fudenberg and Yamamoto (2010). The self-generation theorem still
holds, that is, this ballV is supported by public equilibria if for each paygi W,
there is a block strategyand a continuation payo# : H — W such that

W 1-9 ad t

W= f P09+ 5 (1P SEM ey

for all w andi, and

Ve > 1-9

{ & . - _ t—1 st Wttt = )
_me”(pé,s,sﬂHt;(l pp S EMS T (W)|w,§,s.],  (12)

forall w, i, ands’. The difference from (2) and (3) is that batlandw directly de-

pend on the state, which allows us to use state-specific punishments. However,

it turns out that when the state changes over time, the self-generation conditions
(11) and (12) are intractable, which makes it difficult to characterize the equilib-
rium payoff set.

10To see how the things works, suppose that there are two player2) and two state§Q| =
2), so that the extended spac&i€!*N = R*. Take the unit baW = {v € R*||v| < 1}. Then take
the payoffv = (1,0,0,0) so that its unit normal is a coordinate vector. This payofields the
highest payoff to player 1 within the balf (hence she is rewarded) at statg but not at statev,.
So her continuation payovf/‘l"2 at statew, can be both higher and lower than the payofnd in
this sense the choice of the continuation payoff is flexible. Indeed, if we move continuation payoffs
w on a translate of the tangent hyperplane in the extended &fapéayer 1's continuation payoff
w‘fl at stateay must be constant, but her continuation paymﬁ at statew, can take arbitrary
values. This helps to provide ex-post incentives at gtatdn contrast, in our setup, if we take the
payoffv as in in Figure 1 in Section 1.1, it achieves the best payoff for player 2 within th&\ball
atall states simultaneously. Accordingly, if we move continuation paywfts the lineL in the
figure, player 2's continuation payoff must be constant at all states.
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To illustrate this issue, note first that in the standard repeated game (in which
there is no hidden stat®), adding a constant to continuation payoffs does not
change players’ incentives. Formally, suppose that an action poofdenforce-
ableby some continuation payoff functiom: Y — RV, in that no one has a prof-
itable deviation froma. Then the profilen is still enforceable even if we add a
constant € RN to the continuation payoff, i.eq is enforceable by the continua-
tion payoffw such thatn(y) = w(y) + c for all y. This property is used to derive
various useful results in the literature, such as the linear programming characteri-
zation of Fudenberg and Levine (1994).

A similar property still holds in the setup of Fudenberg and Yamamoto (2010).
That is, adding a constant to continuation payoffs does not change ex-post incen-
tives, even if there is a hidddixedstatew, and even if we consider the extended
spaceRI?*N  Suppose thatr is ex-post enforceabley some continuation pay-
off w: Y — R2*N 'in that no one has a profitable deviation framgiven any
statew. Then the profilea is still ex-post enforceable even if we consider a
modified continuation payofi Such thaty) = w(y) + ¢, wherec € RI?*N is a
constant. (The constant terrcan specify different valueg® for different states
w, as it is chosen from the extended space.) Using this property, Fudenberg and
Yamamoto (2010) show that the linear programming technique of Fudenberg and
Levine (1994) remains valid even in their setup.

In contrast, in our model, adding a constant to continuation payoiésin-
fluence ex-post incentives. Indeed, when the state changes as time goes, the state
today can be possibly different from the state tomorrow, and thus the continuation
payoff w® for statew appears not only in the incentive condition (12) oy but
also in the ones for other statés+ w. In other words, the incentive conditions
(12) for (w,i) and(@,i) areentanglecthrough the ternw®. This implies that if
we add a constant to the continuation paygff for statecw, it influences player
i's incentives atll statesin a complicated way. Due to this problem, Lemma 3 of
Fudenberg and Yamamoto (2010) (the linear programming characterization) does
not extend, and accordingly it is not clear how to compute the limit equilibrium
payoff set in our model.

To avoid this problem, we focus on the payoff sp&% and consider equilib-
ria in which the resulting payoffs are perfectly correlated across states. When we
work on this spac®N, adding a constant to continuation payoffs does not change
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ex-post incentives! which allows us to borrow useful repeated-game techniques.
Of course, focusing on the spaB®' limits flexibility of the way we provide in-
tertemporal incentives. In particular, we need to use value burning in order to
provide ex-post incentives, as explained in Section 3.6. However, we find that this
value burning does not cause significant inefficiency, and thus we can approximate
efficient outcomes without using state-specific punishments.

3.7.2 Perfect Ex-Post IC vs Periodic Ex-Post IC

Our incentive compatibility condition (3) requires thebe a Nash equilibrium

in the block even if the initial state is revealed, that is, ex-post incentive com-
patibility must hold in period one. However, it needs not imply ex-post incentive
compatibility in any later period > 1 of the block. Indeed, even if (3) holds,
there may be a public histoty ! such that the continuation strategy;-1 is

not a Nash equilibrium (i.e., deviating frosf);—1 is profitable) if the states in
periodt is revealed. Accordingly, in our equilibrium, ex-post incentive compat-
ibility holds only periodically; it holds only at the initial period of each block.
This is weaker than “perfect ex-post incentive compatibility” of Fudenberg and
Yamamoto (2010), which requires ex-post incentive compatibility each period.

More formally, our condition (3) is equivalent to requiring that in each period
t of the block, the continuation strategy1 is a best reply for playei if her
posteriory! is chosen from the sety; (h=|u,s)|vu}, which is represented by
the thick line in Figure 3 in Section 1.1. In any peribd- 1 of the block, this
thick line is a strict subset of the whole belief space, and hence ex-post incentive
compatibility does not hold in these periods.

Why should we be interested in the condition (3), rather than perfect ex-post
incentive compatibility? There are two reasons. First, while our condition (3) is
weaker than perfect ex-post incentive compatibility, it is not “too weak,” and it still
has a nice robustness property. Specifically, (3) ensures that as long as a player has
not deviated during the current block, her best reply is not influenced by the belief
ul at the beginning of the block, and hence not influenced by what happened
before the current block begins. In turns out that this property is sufficient for our

This is formally stated as follows. Suppose that a payoff vectoiRN is enforced by some

public strategy profiles and some continuation payoff in the sense of Definition B1. Then

¥ = v+ ccan be enforced by = w+ (i: E? ¢, wherec € RN is a constant.
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purpose, in that we can construct a public equilibrium using a recursive method.
See Proposition B1 in Appendix B.

Second, since our condition is weaker than perfect ex-post incentive compat-
ibility, it can be satisfied with a smaller variation in continuation payoffs. This
is crucial when we show that the vertical move of the continuation payoffs
Section 3.6 is small. Indeed, if we require perfect ex-post incentive compatibility
rather than (3), the vertical move wfmust be larger, and may go to the outside
of the ballw.1? In this sense, our condition is not “too strong.”

4 Pseudo-Ergodic Strategies

4.1 Feasible Payoff Set and Pseudo-Ergodic Strategies

Now we consider the general model. As in the Cournot examplé&/Héd) =
co{VH(9,s)|se S} be the set of feasible payoffs when the initial priopisind the
discount factor i.

Let A be the set of all directions € RN with |A| = 1. For each direction,
we define the “score” as

max A V.
veVH(9)

A standard argument shows that this maximization problem indeed has a solution.
Intuitively, the score characterizes the extreme point of the feasible payoff set
VH(d) toward the directiorh. For example, in a two-player game, the score for

A = (1,0) equals the best possible payoff for player 1 within the feasible payoff

set, and the score far= (\/ié, %) corresponds to the welfare-maximizing point.

2The perturbation terrd defined in (10) ensures our incentive compatibility condition (3), but
it does not satisfy perfect ex-post incentive compatibility. This is so because theStamhe
maximal gain by deviating frors? conditional on that player 2’s belief is chosen from the thick
line in Figure 3. Of course, if we replace the te@hin (10) with

t ut ot
G = max (srzneag;v (PS,SElhi-1,52) —V (p5a52|h11))7

then the resulting perturbation tenehsures ex-post incentive compatibility in perto®ut this
gainG! needs not converge to zero even if we take «, s its infinite sunb 4 Gt is infinitely

large. This implies that the vertical move of the continuation payoff is quite large and does not
satisfy (8). So the continuation payaifgoes to the outside of the ball.
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As explained in Section 3.2, each extreme point of the feasible payoff set is
achievable by a pure public strategy profile, and thus the score can be computed
using dynamic programming. Fi& andA, and letf(u) be the score when the
initial prior is y. Then this score functioh must solve

acA

f(u) = maX[(l 5)A-g"(a)+d Zn’? (vla) f (R (y|u, a))]

This Bellman equation is exactly the same as that for the perfect-monitoring case
studied by Yamamoto (2016), and hence his invariance result remains true:

Proposition 2. Suppose that the full support assumption holds. Then for each
£ >0, there isd € (0,1) such that for any, & € (8,1), u, and i,

max A-v— max A-V| <E€.
veVH(9) VeVH (D)

This proposition asserts that whéms sufficiently large, the scores ma(s) A
v are similar across all priorg. This implies that the feasible payoff s&t§(d)
are similar across all initial priorg, whend is close to one.

As Yamamoto (2016) shows, the score max ) A - v has a limit a®d — 1,
so letvH be the set of all payoff vectokssuch that -v < lims_.; maX,cyus) A -V
for all A. From Proposition 2, this s&t* is independent oft, so we denote it by
V. Intuitively, this seV is the “limit feasible payoff set” in that the feasible payoff
setVH(9) approximate¥ regardless oft whenJd is close to one.

The next proposition shows that there is a “pseudo-ergodic” strategy which
achieves (approximately) the same payoff regardless of the initial prior. As ex-
plained in the Cournot example, such a strategy profile plays a crucial role in our
equilibrium construction; it ensures that players can approximate an extreme point
of the feasible payoff set even if they do not know the opponents’ private beliefs.

Proposition 3. Suppose that the full support assumption holds. Then for each
£ >0, there isd € (0,1) such that for each\, for eachd € (8, 1), for eachy, for
eachjl, for each pure public strategy profild & argmaxcsA -v/:‘(5,s), for each

t >0, and for each h

max A-v—A V(3 || < e.
veVH(9d)
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To interpret this proposition, pick a directidnand a “dummy belief’li arbi-
trarily. Consider the optimal policg” for this dummy beliefii. Then the propo-
sition shows that this strategy profs& approximates the score regardless of the
initial prior u (soitis a pseudo-ergodic strategy). The proposition also shows that
any continuation strategy profiﬁ’m has a similar property, that is, it approxi-
mates the score regardless of the initial pyior

To illustrate the intuition behind the above proposition, consider the Cournot
example in Section 3, and the welfare-maximizing stras8fjo, %) for the dummy
belief fi = 3. The above proposition asserts that this strategy approximates the
efficient payoff(0.35,0.35) even if the true belief it # % This result can be ex-
plained as follows. PicKR sufficiently large, and then talk&close to one. Since
patient players do not care about payoffs in the firgteriods, the average payoff
in the overall game is approximated by the expected continuation payoff after pe-
riod T. So it suffices to explain that this expected continuation payoff after period
T approximateg0.35,0.35).

Suppose that the initial prior ig # % and that players have playedff(, %)
for the firstT periods. Leth” be the realized history, and lgt' t1 be the pos-
terior belief after this historn™ given the initial beliefu. Also, letfi"+1 be the
“dummy posterior belief” induced by the same histéfy but given the dummy
initial belief i = 1. Since the optimal policy is Markov, the continuation strategy
after this historyh" is (5, fiT+1), that is, the continuation strategy maximizes
the social welfare if the posterior beligf +1 matches the dummy posterigf 1.

Of course, these posterigus t1 andi" 1 are not exactly the same in general, but

the belief convergence theorem ensures that they are approximately the same. So
the continuation strategs?™ (o, fi" *1) approximates the maximal social welfare
under the true posterige’ 1, i.e., it approximate0.35,0.35). Since the same
result holds given any histoty', the expected continuation payoff after peribd
approximate$0.35,0.35), as desired.

Remark 1. As discussed in Yamamoto (2016)in Proposition 2 can be replaced
with O(1— ). Using this result, we can show thatn Proposition 3 can be also
replaced withO(1— &). See the proof of the proposition for more details.
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4.2 Minimax Payoffs and Pseudo-Ergodic Strategies

Given the initial prioru and the discount factad, playeri’s minimax payoffis
defined to be
vH(8) = inf maxvF(s) (13)
s jePUPsES
whereSO_‘iJb is the set of all public strategies . In the Cournot example, the
minimax strategy is “AlwaysH,H)” for all u andd.

A couple of remarks are in order. First, we assume that the opponents use a
public strategys_; to punish player, and this is a loss of generality. The general
minimax payoff, which allows the opponents to take private strategies, can be
possibly lower than our minimax value above. However, we need this restriction
because we focus on public-strategy equilibria in this paper. Note that focusing on
public strategies is still more general than Escobar and Toikka (2013) @amFl
Takahashi, and Vieille (2015), who assume that the opponents play a constant pure
actiona_j over time.

Second, the opponents’ strategy is not necessarily Markovian. Since we
assume that actions are not observable, the opponents cannot observeé'player
deviation and hence cannot know her belief. Accordingly, plagebelief can-
not be used as a common state variable, and a minimax strategy needs not be
Markovian here.

Third, we take the infimum ovex_; instead of the minimum, so the solution to
the above minimax problem may not exist. On the other hand, pigysest reply
exists for any givers_j, so we take the maximum overe S. This difference
essentially comes from the fact that playd&nows her own posterior belief after
every history, while the opponents do not.

When actions are observable, Yamamoto (2016) shows that the minimax pay-
off is invariant to the initial prior in the limit a® — 1. The following proposi-
tion extends this result to the imperfect-monitoring case. Our proof technique is
quite different from that of Yamamoto (2016), because minimax strategies are not
Markovian in our setup. The proof will be given in Appendix B.

Proposition 4. Suppose that the full support assumption holds. Then for each
g > 0, there isé € (0,1) such thatv!'(8) — v (8)| < € for each i,5 € (8,1), U,
and fi.
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In general, a minimax strategy for playedepends on the initial priog.
However, the next proposition shows that there is a strategy which minimaxes
playeri regardless of the initial priog. This ensures that even if the opponents
do not know player’s private beliefu, they can punish playerby playing such
a strategy. The proof is more complicated than that of Proposition 3, because
minimax strategies are not Markov. See Appendix B for the formal proof.

Proposition 5. Suppose that the full support assumption holds. Then for each
0, there isd € (0,1) such that for any i, for ang € (8, 1), and for anyji, there is a
public strategy gi such that for each pure strateggf & argmacs v{](é,é,s[_‘i),
v(8,5w) —vf'(8)| < & (14)
and
maxt' (8.5, ) —vf'(8.5w) < £ (15)
for eachp, t > 0, and H.

The above proposition states only “there is a public straté':gy but in the
proof, we explain how to find sucsf_‘i. There are two cases to be considered.
First, if the minimax problem (13) has a solution, ther‘s[_étbe a minimax strat-
egy given a dummy beligfi. The first inequality (14) asserts that this strategy
s# approximates the minimax payo_ff‘(é) regardless of the true beligf. The
second inequality (15) ensures that playgmgain by deviating from this profile
§# is almost negligible regardless of the true beliefThe proposition also shows
that any continuation strate@f/\ht of this profile satisfies the same properties.

Second, if the minimax problem (13) does not have a solution, then the min-
imax strategy does not exist. So instead, wes@e;tbe a strategy which approx-
imates the minimax payoff given the beligf It turns out that the same result
holds even in this case, as long as we carefully choose the strﬁiﬁpg&ee the
proof of the proposition for how to chooséi.

As in Yamamoto (2016), we can show that given any initial prior, the minimax
payoff has a limit a® — 1. Letv!' denote this limit, that isy' = lims_, V¥ (5).
Proposition 4 ensures that the limit minimax payg#fdoes not depend om, so
we denote it by;. LetV* denote the set of feasible payo¥fs V such thav; > v,
for eachi. That is,V* is the set of feasible payoffs which Pareto-dominate the
minimax payoff.
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5 The Folk Theorem

In this section, we show that the folk theorem holds under a mild condition. In ex-
post equilibria, a player’s deviation must be punished appropriately regardless of
the current hidden state; this requires that actions and states should be statistically
distinguished through a public signal. Specifically, we will assgmss-state in-
dividual full-rankandcross-state pairwise full-ran&onditions, which strengthen
individual full-rank and pairwise full-rank conditions of FLM and Fudenberg and
Yamamoto (2010).

For eachi and each mixed action profike, let IM;(a) be a matrix with rows
(&, a-;) = (8 (a, a—i))yey for all w anda;. In words, the matrixXli(a) is a
collection of the marginal distributions of the public sigyahduced by player
i's unilateral deviation fronor for all possible states. For each(i, j) with i # j
and for eactu, letMjj(a) be a matrix constructed by stacking the two matrices
Mi(a) andlj(a). That is,Mjj(a) is the collection of the marginal distributions
of y induced by a unilateral deviation byr j.

Definition 2. An action profilea hascross-state individual full rank for if the
matrix Mj(a) has rank equal t¢Q| x |A;|. An action profilea hascross-state
individual full rankif it has cross-state individual full rank for all

Cross-state individual full rank requires that the hidden stasgad playel’s
actiong; can be statistically distinguished by a public signallhis condition is
stronger than individual full rank of FLM and Fudenberg and Yamamoto (2010),
since we require the hidden stateto be statistically distinguished.

Definition 3. An action profilea hascross-state pairwise full rank fdi, j) if the
matrix Mj; (ar) has rank equal tQ| x (|Ai| 4+ |Aj| —1). An action profilea has
cross-state pairwise full ranK it has cross-state pairwise full rank for all pairs
(i,]) withi # j.

Cross-state pairwise full rank says that if someone unilaterally deviates from
a, then her identity (as well as the hidden statecan be revealed by a public
signaly. Again, this condition is stronger than pairwise full rank of FLM and
Fudenberg and Yamamoto (2010).

We impose the following assumptions. They are generically satisfied if there
are many signals so tht| > |Q| x (|A| +|Aj| — 1) for all i and]j,
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Condition IFR. Every pure action profile has cross-state individual full rank.

Condition PFR. For each(i, j) with i # j, there is an action profile that has
cross-state pairwise full rank fdr, j ).

Now we are ready to present the folk theorem. The proof extends the idea
presented in Section 3 to the general case, and can be found in Appendix B.

Definition 4. A subseW of RN is smoothif it is closed and convex; it has a non-
empty interior; and there is a unique unit normal for each point on the boundary
of W.

Proposition 6. Suppose that the full support assumption, (IFR), and (PFR) are
satisfied. Suppose also that public randomization is available. Then, for any
smooth subset W of the interior of Mhere isd € (0,1) such that for anyd €

(3, 1), the set W is stochastically ex-post self-generating. Hence for eadlVy
there is a public ex-post equilibrium which yields the payoff v regardless of the
initial state w.

This proposition assumes public randomization, but it is dispensable. When
public randomization is not available, we cannot use random blocks, so instead,
we regard the infinite horizon as a seriesTeperiod blocks. WherT is large
enough, we can show that there id gperiod strategy which approximates an
extreme point of the feasible payoff set regardless of the belief. Likewise, there is
aT-period strategy which minimaxes the opponent regardless of the belief. Then
the rest of the proof is similar to the one with public randomization. See Appendix
C for more details.

Also, the full support assumption is stronger than necessary. In Appendix D,
we show that the folk theorem remains valid even if the full support assumption
is replaced with a weaker condition. In particular, our result encompasses the folk
theorem for the standard stochastic game provided by Fudenberg and Yamamoto
(2011b) and Wrner, Sugaya, Takahashi, and Vieille (2011).
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Appendix A: Cournot Example

Here we provide a precise description of the distribution of the psicegys, y2)
in the Cournot example studied in Example 3.

Given a statev and an action profil@, the price distribution is given by the
following compound probability distribution. Specifically, the price vegtdol-
lows the distributiorFl(- |w,a) with probabilitys—lo, the distributior(-|w, a) with
probability 2 =5 and the distributiong(-|w, a) with probability % So we have
P(yla) = 50F1(y|oo a) + Fz(-|w, a)+ %Fg(-|oo, a) for eachw, a, andy.

We choose the dlstrlbutioﬁl as the uniform distribution over the sét=
{0,10,---,50}2, regardless ot anda. Since there are 36 possible signals, this
implies that each signal realizes with probability at legsts= = 135, and thus
the full support assumption holds in this example.

The distribution~ depends on the action profiggbut not on the hidden state
w, and the possible realizations are opkz (0,0), y = (0,50), y = (50,0), ory =
(50,50). The following table shows how the distributiéh changes for different
a

L M H
3 3 32 7 10 o 21 7 22
L (0 387 38 3_8) (38’3870’ 38) (38’ 38’07 38)
7 10 21 29 21 10
M (3_ 0, ) 387 3_8) (38’0 0, 38) (38’ 38’07 38)
7 22 9 21 A 10 7 37
H (3_ 0, » 38 3_8) (38707 38’38) <3870 0, 38)

For each cell, the first number is the probabilityyof (0,0), the second is the
(50,0), and the last is of =
example, when the current actiorais- (L, L), the distributior yieldsy =
with probability £ 33 andy =

one ofy =

(07 50), the third is Ofy =

(50,50) with probability 23

(50,50). For
(0,0)

The distribution; depends both on the action profl@nd the hidden state.
For each(w, a), it chooses some particular signafwhich depends o anda)
with probability one. The following table describes the possible signal realization
for eachw anda:

L M H L M H
L | (40,40) | (50,40) | (30,10) L | (30,30) | (40,30) | (20,0)
M | (40,50) | (30,30) | (20,10 M | (30,40) | (20,20) | (10,0)
H | (10,30) | (10,20) | (20,20) H | (0,20) | (0,10) | (10,10)
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As usual, the left table is for the good stabg and the right table is for the bad
statews. For example, whefw,a) = (wg,LL), the signaly = (40,40) is chosen
with probability one. Note that when the price distributiorHs for each action
profile a, the expected price for the good statg is greater than that for the bad
statews by 10. This in turn implies that when the price distributionrig the
expected price for the good statg is greater than that for the bad state by 6,
which is consistent withig, described in Section 3.

The above signal structure satisfies the full support assumption, and simple
algebra shows that the expected price is indeed consistent with the tables given in
Section 3. In what follows, we will explain that the distributiof{$g”(y|a) )yey }(w,a)
are linearly independent so that all the three properties given in the bullet points
in Section 3 are actually satisfied.

Take a real numbe(w, a) for each(w,a) so that

c(w,a)7%’(yla) =0 (16)
(w,a)eQxA
for eachy. It is sufficient to show that(w,a) = 0 for all (w,a). Note thaty =
(0,40) can realize only when the distributidh is used, sat?((0,40)|a) = w355
for each(w,a). Plugging this into (16) foy = (0,40), we have

c(w,a) =0. (17)
(w,a)eQxA

Now considery = (40,40). This signal realizes with probabilitydsy,+ 2 =
138 for (w,a) = (ws, HH) and with probability g+ for all other(w, a). Plugging

this into (16) fory = (40,40), we have
1081 H)+ L > c(w,a) =0.

—C(Qb, H )
1800 1800(w,a)¢(w(;,HH)

Since (17) implieS (4 a)# (s, HH) (@, @) = —C(w6, HH),

1081

1
Taocc(we, HH) — 7e5-c(ws, HH) =0.

1800

This implies thatc(ws,HH) = 0. A similar argument shows thafw,a) = 0
except(ws,HH), (ws, MM), (ws, MM), and(wg,LL). So we will focus on these
four cases below.
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Considery = (0,50). This signal realizes with probabilitygss+ = for (ws, HH),
and Withﬁ) for the other three cases. So the argument similar to the one above
shows thatc(ws,HH) = 0. Similarly, considery = (30,30). This signal real-
izes with probabilityzgs,+ 2 = 955 for (w,a) = (ws,MM) and with probability
a3 for (ws,MM) and(wg, LL). (Now we do not need to considéms, HH), as
c(ws,HH) = 0.) Hence we have(ws, MM) = 0. Then (17) reduces to

c(ws,MM) + c(wg, LL) = 0.

Obviously, the only way to satisfy this equation and (16) is tocses, MM) =
c(wg, LL) = 0. Hence the signal distributions are indeed linearly independent.

Appendix B: Proofs

B.1 Proof of Proposition 1

We use the following lemma, which is Corollary 2 of Theorem 4.9 of Seneta
(1981). It shows weak ergodicity of inhomogeneous Markov matrices:

Lemma B1. Consider a stochastic proce$a'};> ; such that for eacht 2, given
w1, the random variablev' € Q follows a Markov chain with the matrix Mvith

rows (mf(w!|w' 1)) teq for eachw! 1. Let u'(u) denote the induced probabil-

ity distribution of w! whenw? follows a distributionu € AQ, that is, ut(u) =
uM?2...Mt. Suppose that the matricé#1'};> , are “uniformly Markov” in the
sense that there is a constgBitc (0,1) such thatmax min 1 m(w'|w—1) >

1— B foreacht. Then weak ergodicity obtains at a rate which is at least geometric
with parameteiB. That is,|u'(u) — pt(f1)| < Bt~ for each t,u, and .

The rest of the proof is similar to that of Lemma 3 of Connault (2015). Rick
ands_; as stated. Pick an arbitrary public histbfy= (y*,--- y). Let(a?,---  at)
be the sequence of (possibly mixed) action profiles induced by the strategy profile
s, conditional on the public history.

For eachf < t, let P w'ti|af,af,--- at,yf,--- y!) denote the probability
of &f? given that the state in periddis o, players play the action sequence
(af,--- a') and observe the signal sequeiige- - - ,y). Let Praf,af, .-+ atyf,--- ) =
(P e, al - at YY) g, that is, Ptal,af, - at - ) is
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the conditional distribution oéo™"X. Then construct a matrix™*! by stacking
these distributions over adlf. Intuitively, this matrixM+1 maps a conditional
distribution of the stateo® in periodf given the action sequen¢ef, --.,a') and
the signal sequeno(@/f, ---,y") to a conditional distribution of the statef*1 in
the next period. Hence we hayg(ht|u,s) = f(u)M?---M™1, wheref(u) de-
notes the conditional distribution of the staté given the initial distributionu,
the action sequender?,-- -, a'), and the signal sequen¢g, --- ,yb).
Under the full support assumption, for edctit, of, andw*?!, we have

Priot™ ol af, - at,yf, - yh)
B Priw™L v, yaf,af - at)
= S g Pr(wf“,yf,--' ,yt|a)f, at,... .ab)
B nwf<yf, wf+1|af) Pl’(yf+1,~- ,yt|wf+17af+1,”_ ,at)
S e OF, 0 a) PriyE ol ot )
TTPr(yf“, . ,yt|wf+1,af+1, . ’at>
T S uftleo Priyttl, ...yttt at+l ... at)’

Here, wherf =t, we let Pfyftt ... et ot ... at)=1.

£ £ Pryttl ... t"+17 f+1,,,,7 t .
Let vi+1(witl) = zwfﬂre(fPr(y”{-?),yt|o§:+1,af+?,-~)-,at)' It is easy to check that

vitlis a probability distribution ovef. Also the above inequality implies that
for eachw! and w2,

Pr(“)erllwf? af7 e 7at7yf7 T 7yt) 2 ﬁvf+1(wf+l)‘

Now for eachf <t, let @'*! € argmaxz1 v (with). Thenvii(@itl) >

ﬁ, and thus letting + 8 = % we have

Pr(é)f+1|wf,af,--~ ,at,f,-~- Y)=>1-B

for eachwf. Note that this inequality holds for ea¢h and thus the matrices

{Mf}i% are uniformly Markov. Then it follows from Lemma B1 that

[k (h |, 8) — (W2, 9)] = [ £ (R)MZ - MU — £ ()M - M| < B!

for eachu andfi. Since the parameter4f3 = |—g| does not depend on the choice
of t or ht, we obtain the result.
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B.2 Proof of Proposition 3

In Section 4.1, we have explained that Proposition 3 can be proved using the belief
convergence theorem. In what follows, we will provide an alternative proof. This
proof is (indirect but) simpler than the one which uses the belief convergence
theorem. Also, it gives a better bound on the rate of convergence; specifically,
it allows us to show that in Proposition 3 can be replaced wi(1— d). (To
obtain such a result, simply replacén the proof below withO(1— d).)

The proof idea is as follows. Consider the case in which there are only two
statesw, andwy, and letu denote the probability on the stadg. Pick A so that
Ai =1 andAj =0 for all j #1i, and pickd close to one. From Proposition 2, we
know that the score is almost constant acrosg alor simplicity, we assume that
the score is actually constant over gllas described by the flat line in Figure 11.
Let v* denote this constant score. L&t be the optimal policy for the dummy
belief fi = 3. Then we have

- N 1 . 1 .
that is, the score for the initial prige = % is equal to the average of the payoff

when the profiles is played given the initial statey and the payoff when the
profile sis played given the initial state,.

Scorev* : -

0.5 1
Figure 11: Payoff by the Strategy Profge

Now, assume by contradiction the#t does not approximate the score for some
belief u; in particular, assume tha{f"z(é,sﬂ) < V* so that the payoff given the
initial state (belief)ay is lower than the score. Then from (18), we must have
vi‘*’l(é,sf‘) > v, that is, the strategg” must yield a payoff higher than the score
for the initial statew;. (See also Figure 11; the dashed line represents the payoff
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by playings” for each beliefu.) However this is a contradiction, because any
strategy profile cannot yield a payoff higher than the score. Hence we must have
v2(5,67) = v*. Similarly we havev’(5,s") = v*, and so the profils” yields

the score regardless of the initial pripr as desired.

The formal proof consists of three steps. In the first step, we show that the
idea above remains valid as long as the dummy belief not too close to the
boundary of the belief space. That is, we show that for any interior Qehetfich
assigns at least probabilifyon each statev, the corresponding optimal polic¥
approximates the score regardless of the true bglief

In the second step, we show that the same result holds for all dummy beliefs
[t. The proof relies on the full support assumption. Then in the third step, we
show that the same result holds for any continuation strateg¥.of

B.2.1 Step 1: Optimal Policy for Interior Beliefs

Pick £ > 0 arbitrarily. Proposition 2 ensures that ther&is (0,1) such that for
anyA, & € (8,1), i, andfi,

max A-V— max A -V <ﬁ£—(1_ﬂ.

: é (19)
VeVH(5) VeVA(5) o

Take suchd, and then pickk andd € (8,1) arbitrarily. As shown by Yamamoto
(2016), givenA and 9, the score m%vﬁ(é)/\ -V is convex with respect to the
initial prior {1 and hence maximized when the priprassigns probability one to
some statev. Let w denote such a state.

For eachjl, let s be the optimal policy, that isf achieves the score toward
the directionA given the initial priorfi. Pick {1 such thati(é) > T for each,
that is, pick an interior beliefi which assigns at lea%t on each state. We show
that the optimal policys” approximates the score regardless of the true bglief

From (19), we have
(1-9)mg

5 :

max A-v—A -vﬂ(é,sﬁ)' < TiE —
veV@(9)

SinceA -VA(3,) = T a0 lI(@)A -VP(3,s), we obtain
(1-9)mg

< TiE —
o

z fi(é) ( max A-v—A -v@(é,s‘j))
(=)

veV ()
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Using Maxeyw(s) A -V > MaX,cyags) A -V > A -v2(3,54), we obtain

(1-9)mg
5

~

fi(@)

max A-v—A -va’(é,sﬂ)‘ < TE —
veV @(9d)

for eachd@. Dividing both sides byi (&) and usingﬁ% <1, we have

max A-v—A -v‘:’(é,sﬂ)‘ g 112000
veV@(d) 0

for eachd.

Now, pick an arbitraryu. Multiplying both sides of the above inequality by
p (@) and summing over atb,

(1-9)g
5

max A-v—A ~v“(6,s‘~‘)’ <E€—

20
veV@(9d) (20)

Since Mayeyw(s)A -V > MaXeyu(s A V> A -VH (3, ),

(1-8)9

max A-v—A-vH(3,s%) 5

VEVH(3)

< E—

This shows that if we choose the dummy befiefis above, then the strateg/
approximates the score regardless of the true bglief

B.2.2 Step 2: Optimal Policy for General Beliefs

Now consider an arbitrary beligf € AQ, and consider the corresponding optimal
policy s#. Pick an arbitrary true beligi. Then

MO = (-80S () 48 5 R ()2 (5,5
=

wherep(y) is the posterior belief given that the initial beliefiisand players play
§#(h%) and observe in period one. Since the optimal polisf is Markov, the
continuation strategy profik-lf']y is the optimal policys” for some belieffl, and

the full support assumption ensures that this belié$ an interior belief so that
[1(&) > T for eachd. Then from the result in the previous step, the second term
in the right-hand side must approximate the score. Specifically, from (20),

max A-v— z(n#(y|s‘7(h0)))\ V(3 )| < e (1-9)3

VeV ®(5) = 0
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Hence

Av—A-VH(, | <(1-6 Av—A-gH(sH(n°
ver\T/]g()t(S) Y V(’ >_< )VGr\r/]g()é) Y J (S( ))‘
+90 max)\ V—X(T¢l (yIs* (h%)A -vHO) (5, 1]
veV (o

<0E<E.

So the strategg” approximates the score regardless of the true bglief

B.2.3 Step 3: Continuation Strategies

Now consider the continuation strateg¥;x of the optimal policy. Since is
Markov, the continuation strategaﬁ‘\ht is the optimal policys” for some belief
1. Then the result in the previous step ensures that this continuation sts&tﬁagy
approximates the score regardless of the true bgliefs desired.

B.3 Proof of Proposition 4

Fix 0. For a given strategg_; and a prioru, let vi“ (s_j) denote playei’'s best

possible payoff; that is, let (s_i) = maxes V' (3,5,5.i). This payoff function

Vv (s_i) is convex with respect tg, because!' (5,s,s) is linear with respect to
U, andvi“(s_i) is the upper envelop of the linear functiovf%(é,si,s_i) for all 5.

Lemma B2. For each s, vi“(s,i) is convex with respect tp.

Let A be the set of beliefgt such thatu(w) > 71 for all w. Intuitively, A is
the set of beliefs which are not too close to the boundary of the belief gpgce
Under the full support assumption, play&rposterior belief must be in the st
after any history.

Pick an arbitrary belieft, and suppose that there is a minimax strateby
for this belief, that isy!' (8) = maxses V' (s,5";). Take any public historip' and
the corresponding continuation stratesjﬁ(\ht induced by this minimax strategy.
Sinces i Is a minimax strategy, the continuation strateﬁy(ht must give a lower
payoff to playeri than other strategies j, at least for some playeis belief [i.
Specmcally, we claim that for any strategy;, there must be some beligfe A
such thaw (s, i) < v (si).
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To see that this result indeed holds, suppose not, so that theresisch that
viﬂ (s‘ii ) > viﬂ (sj) forall i € A. Intuitively, this strategy._; gives a lower payoff
to playeri thans‘ii|ht, regardless of playeis belief fi € A. This means thaﬂ;‘ii
is not a minimax strategy; we can can lower playermpayoff by replacing the
continuation strategg’ | with s_j. This is a contradiction, and thus the result
follows.

In general, a minimax strategg’ii may not exist, since we take the infimum
with respect te_j in the definition of the minimax payoff. In such a case, we let
s‘_‘i be a strategy which approximates the minimax payoff. The following lemma
ensures that the above result holds if we choose this stra‘ﬁegwefully.

Lemma B3. For eachy, there is a public strateg)/} such that
V() —vf'(s)| <1-0. (21)

and such that for any ¥ 1, for any H, and for any public strategy_s, there is
[i € A satisfying

v (& ) <V (s.)+1-0. (22)

Note that we consider the case in whighs close to one, so X o is small.
The first condition (21) ensures th&ﬁi approximates the minimax payoff. The
second condition (22) asserts that there is no strasegwhich yields a lower
payoff to playerii thans";|; for all beliefsfi € A.

Proof. Fix p, and takes”; such that (21) holds. This", may not satisfy the
second condition (22) in the lemma. We will modiat’j'(i so that (22) holds.
Suppose that the second condition (22) is not satisfietd#$ot, i.e., suppose
that there if! ands_; such that
V(s ) =V (s) +1- . (23)
for all fi € A. Fix suchh!, and letS j(h') be the set of all strategiess; which
satisfy (23) for alli € A. Chooses'; € S_j(h?) so that
U U
inf v (s.) -V (s <1-06
LI (s-i) =V (s4)
wherepV = (ﬁ,--- ,ﬁ).
Now, consider the following strategy/,; which is a modification o§" :
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e Follows";, unless the history reachi
e If his reached, they plag’ ; (instead ofsf_’i |p1) in the rest of the game.

That is, we replace the continuation strategy after the higtbryith s* i

We claim that this modified strategﬂfsatisfies (22) foh!, while it still sat-
isfies (21). We first show that (22) holds fiot. Sinces”, |;1 = s*;, it is sufficient
to show that for ang_;, there isii € A such that

Vs ) <vi(s)+1-6. (24)

Consider the case in which; € S_j(ht). Then by the definition o§';, (24) is
satisfied forfi = uY. Consider the case in which; ¢ S j(h!). Then by the
definition of S_j(ht), there isfi € A such that (s |,1) < Vi (s_i) +1— 8. (24)
holds for suchil, becauss’; € S_j(h!) so thatvi’] (st < vi’] (i lh)-

To see that the modified strateg‘j/i Satisfies (21), recall that ; satisfies (23)
for all i € A. That is,s*; yields a lower payoff to playeirthansﬂi |1, as long as
the current belief is in the sé&t This implies that if the opponents plaﬁ'zi nstead
of s‘_‘i, playeri’s continuation payoff is lowered once the histdryrealizes; and
this is true regardless of playés posterior belief in period two. Since the full
support assumption ensures that the probability'dé positive, we have

Va, ) > v (@,8)

for any [1 anda;, Wherevi[‘(a,-,s_i) represents playafs payoff when the initial
prior is [1, the opponents plag_;, and playei chooses; in period one and then
plays a best reply after that. This implies that

v (&) = maxv (a,8)) < maxvf' (&,5")) = V' (s)
AEA e

for all 1. Then it is obvious that the modified stratev{:ﬂ/I Satisfies (21), as the
original strategys” ; satisfies it.

We can modify the continuation strategy; |;; for each one-period histonfyiL
in the same way, so that (22) holds for all one-period histdrtedhen induction;
we apply a similar argument to each histbAto obtain a strategy which satisfies
(22) for allh9, hl, andh?, and so on. This proves the lemma. Q.E.D.
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Pick 1 andh', and consider the corresponding strate@yht. Then the payoff
vF (¢ ]1) is convex with respect to the initial beli¢f. For eachu, t > 0, and
h' € H, let

vi(s ) = prggévi“(s‘jht).

That is,vi(s;]1) is the highest payoff attained by the convex functdis [).
Note that different(u, ht) induce different convex curvez{‘(s‘iﬁht), and hence
different highest payoffs; (s‘ii Int). Take the supremum of these highest payoffs,
and choosép ™, h*) to approximate the supremum, that is,

sup supvi (") — vi(s )| <1- 8. (25)
peAQheH
We callv; (s‘_‘? |h+) themaximal valugbecause it approximates spp. g SUfhen Vi (si1h),
which is greater than any payoffs attained by any convex curves.

Sincevi’j(s‘_’? |h+) is convey, it is maximized whefa is an extreme point; i.e., it
is maximized when the initial prior puts probability one on some statéet w
denote this state, that (s i) > V(s |n) for all .

In the rest of the proof, we will show that for arjy, h'), the corresponding
convex curve/f‘ (s;|t) is almost constant, and approximates the maximal score
for all beliefs 1. That is, if the opponents play the minimax strateﬂy, after
every histonyh!, playeri’s continuation payoff is approximately equal to the max-
imal score regardless of her posterior belief This implies that the minimax
payoff given a common prigu approximates the maximal score regardlesg of
and hence the result follows.

Our proof consists of three steps. In the first step, we provide a sufficient con-
dition for the convex curv«a'f‘(s‘_‘i |nt) to be almost flat. Specifically, we show that
given the opponents’ strategﬁii |nt, if the corresponding convex curvé (s.‘_’i Int)
approximates the maximal score for some interior bgliethen the curve is al-
most flat and the payoﬂf:‘(sﬂi |nt) approximates the maximal score for all beliefs
1. The proof technique is very similar to the one used in Yamamoto (2016).

In the second step, we show that there is smé') such that the correspond-
ing convex curveyi[‘(s‘_‘i |rt) is almost flat and approximates the maximal score for
all initial beliefs 1. The proof uses the sufficient condition derived in the first step.

In the third step, we show that the same result holds fafialh'), that is, for
any (u,ht), the corresponding convex curv,ﬁzg(s‘_‘i |nt) approximates the maximal
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score for all initial beliefgi. By letting fi = p andh! = hO, this implies that player
i's minimax payoff approximates the maximal value regardless of the initial prior;
hence the minimax payoff is insensitive to the initial prior.

B.3.1 Step 1: Almost Flat Convex Curve

The following lemma gives a sufficient condition for a convex curve to be almost
flat. The proof is very similar to Lemma C8 of Yamamoto (2016) and hence
omitted.

Lemma B4. Pick anyy, i, and H, and letQ* be the support ofi. Let p=
Mingeq- (@), which measures the distance frgimto the boundary ofAQ*.
Then for eachi € AQ*,
(L) + (1 8) (i)

p

wi(s )+ (1= 8) =i (& )| <

This lemma ensures that if the convex cuvf/‘eés‘ii |nt) approximates the max-
imal value forsomeinterior belieffi € A, then the curve is almost flat and approx-
imates the maximal value fall beliefsi. To see this, pick some interior belief
fi € A, and suppose that

(s Ine) + (1= 8) — v (i [w)| < £

whereg is a positive number close to zero. That is, assume that the q’ﬂ@dg Iht)
approximates the maximal scdries‘ii |n+) for somefi. Then sincegl € A, we have
p > T, and thus the above lemma implies that

Vi( )+ (1—8) v ()| <

'olm
.:|IIM

for all 1 € AQ. So the payoﬁ/iﬁ’(s‘fi |nt) indeed approximates the maximal value
for all beliefsfi.

In the above argument, it is important thiat A. That is, 1 should not be too
close to the boundary of the belief space. This ensures that the parame&r
leastTt, so that% is small.
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B.3.2 Step 2: Some Convex Curve Approximates the Maximal Value

The following lemma shows that there(ig, h') such that the corresponding con-
vex curvev!' (s i) is almost flat and approximates the maximal value uniformly
in I € AQ. The lemma shows that su¢p, ht) can be found by lettingt = u*

andh' = (h*,y) for somey. LetC = anand letC = n2

Lemma B5. For each y andi,

W )+ (1-8) V(S e y)| < L5001 B)C

To prove this lemma, it is sufficient to find an interior belje A such that
the payoffvf‘(sﬁn(h*,y)) approximates the maximal value. Indeed, if there is such
an interior belieffi, then Lemma B4 ensures that the convex cw\‘{/(es‘_‘, |(hey) 1S
almost flat and approximates the maximal value fogiall

To find such an interior beliefi, suppose that the current statewsand it
is common knowledge. Suppose also that the opponentssﬁiay from now
on, and player takes a best reply. By the definition dﬁ|h* and w, playeri’s
payoff approximates the maximal value. Now, suppose that no one deviates today
and the signay is observed. Letting be playeii’s posterior belief in period two,
her continuation payoff from period two is denoted\lgys‘i?|(h*7y)). We can show
that this continuation payoff approximates the maximal value; the proof technique
is very similar to the ones presented in Section 5.2.2 in Yamamoto (2016). So this
belief [i satisfies the desired property, and hence we obtain the lemma.

Proof. Pick an arbitraryy. Suppose that the initial state as and that the oppo-
nents playsﬁ ln+. Suppose that playérchooses a pure best reply stratefjyLet
a* = (s°(h0),s" |- (h°,)) denote the action profile in period one, andjl¢§) be
playeri’s posterior in period two given that players obseyne period one. Then

V(s h) = (1 8)g®(a +6;r¢y|a WO | e )-

Sinceg®(a*) <

g
\_/i(SIiHh) (1-0)9 +5Z(T¢Jy|a |“~ s“’h*,y)
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From (25), we have
WO (v 5) < W ) + (1) (26)
for eachy” Plugging this into the above inequality,
w(s ) <(1—8)g+ P (yia VY ()
+8(1- m(yia®) {(Hi )+ (1-8) }
Since (26) holds and§’(Y|a*) > T,

W( ) < (1= )9+ () + 8 (1= T {w( In) + (1 8) } .

Subtracting1— 670V (s, |n+) — 6TH(1— 8) + 8Tt f‘(y)(s‘fT](h*7y))frombothsides,
ST{w () + (1 - 8) () }
< (1-8)@-w(||n)) +5(1-3).

Since the left-hand side is non-negative, taking the absolute value of both sides
and dividing both sides b9,

1-8)[g-v( ) 1-o
— 4+ —.
omt T

() + (1= 8) ~ ()| <

Sincevi (" |n-) > —,

(1-96)2g 1- 5
+ —
o7l T

W) + (1= 8) ~ ()| <

This inequality ensures that the convex curve inducedﬁﬁy(h*,y) approxi-
mates the maximal value at the beljefy) € A. Hence Lemma B4 implies that
this convex curve is almost flat and approximates the maximal value regardless of
the belief; in particular it shows that the desired inequality holds, becatsad
p in the statement of Lemma B4 satisly = Q andp > T1. Q.E.D.

B.3.3 Step 3: All Convex Curves Approximate the Maximal Value

In the previous step, we have seen that there is the opponents’ smﬁm,gyuch
that the corresponding convex cumés” i) is almost flat and approximates the
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maximal value uniformly iniit € AQ. The next lemma shows that the same is
true for all strategies”, |ix. That is, we show that for anjy, ht), the correspond-
ing convex CUl’VG/iIJ(SIii|ht) is almost flat and approximates the maximal value
uniformly in i € AQ. LetC' = € and€’ = &1,

Lemma B6. For eachy, fi,t > 0, and H,

WS )+ (1-8) V(& )| < 1500+ (- 8)¢

To see the proof idea, pick sonfg,h'). Lemma B3 implies that the strat-
egy s‘_‘ﬁ(h*7y) must give a lower payoff to playerthan Slii‘ht, at least for some
[l € A. That is, there must be some belieE A such that player's payoff against
sﬂ?|(h*7y) is lower than her payoff agains‘ﬁi |nt. Lemma B5 ensures that this for-
mer payoff approximates the maximal value; hence the latter payoff does so too,
that is, playeii’s payoff againss‘f;\(h*’y) approximates the m~aximal score given
the belieffi. Then Lemma B4 ensures that the convex cuf¥a" |i) approxi-
mates the maximal value for all beligis

Proof. Pick u, t, ht, andy arbitrarily. From Lemma B3, there & < A such that
V(e y)) < V(&) + 1.
sincev (¢ |1t) < Vi(s;|n) + (1— &), this implies that
v (i) — (1= 8) <V (i) <u(in) +(1-9).

Then we obtain

() + (1= 8) v ()

< W) + (1= 8) = (| y)) + (1)

1-90

< Tc:+(1—5)<c5+ 1)

where the second inequality follows from Lemma B5. This implies that pléser
best possible payoﬁf‘ (s.|rt) given the initial priori and the opponents’ strategy
. |i approximates the maximal valu—ye(s‘_‘ﬂh*). Then sincel € A, Lemma B4
leads to the desired result. Q.E.D.
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Letting u = ft andh = hO, the above lemma implies that

WS ) +(1-8) ()| < 1500+ -5

This, together with (21), implies that regardless of the initial pripthe minimax
payoff \_/i“(é) approximates the maximal valtm(s‘fnh*). Hence the minimax
payoffs are insensitive to the initial prior, as desired.

B.4 Proof of Proposition 5

Let "', be as in the proof of Proposition 4 for eagh Also, letA, vi(s |n),
v (s_i|yt), C', andC' as in the proof of Proposition 4.

Pick an arbitrary dummy belleﬁl Consider the correspondlnﬂ and let
g“ be a pure-strategy best reply&‘é given the beliefi. By the definition, this
strategy profiles” approximates the minimax payoff if the true belieequalsfi.

In what follows, we show that this profi# satisfies the desired inequalities (14)
and (15).

Note first that from Lemma B6¢’ (s‘:‘i |nt) approximates the maximal value for
eachy, t, andh'. This proves (15), because the minimax pa@‘f(é) approxi-
mates the maximal value regardless of the initial pripas shown in the proof of
Proposition 4.

To prove (14), we use the following lemma.

Lemma B7. Pick 1 and ¢ as stated above. Pick apy, t > 0, and H, and letQ*
be the support ofi. Let p= mingcq- (&), which measures the distance from
u to the boundary ofAQ*. Then for eachisc argmaxcs v/'(6,5,s" i) and
[ e AQ*,
\v. (1) + (1= 8) — v (1)
5 :

wi(s ) + (21— 8) —vF(8,5, )

To interpret this lemma, suppose that a stratgya best reply t(s‘zi |nt given
someinterior beliefu € A, and its payoff approximates the maximal value. Then
the lemma ensures that the payoff by this stratgggpproximates the maximal
value forall beliefs[i.
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Proof. The proof is very similar to that of Lemma C8 of Yamamoto (2016). Re-

placevi(s.), {1, ands”, in Yamamoto (2016) withyi(s". |ir), i, S |r¢, respec-

tively. Then we can prove the lemma just as Yamamoto (2016) derives (20).
Q.E.D.

Now we show that (14) holds for anty with t > 1. Pick suchh', and let
u = pi(ht|fi,ht). Under the full support assumption, the posterior belief
ui (hY| 1, s“) puts at least probabllltyon each state, and hen@é =Q andp > Tt.
Also, Lemma B6 ensures thf' (F | ) )(s".|t) approximates the maximal value,
that is,

o

() + (1-0) R | < 200 (1 5)¢

Plugging this ang > TTinto the inequality in the above lemma, we obtain
1-9 ~

Z(=—=Cc'+@1-95)]).

(FFera-oc)

for all i € AQ. This implies that (14) holds for this!, as the minimax payoff
approximates the maximal score for gll

Also, we can show that (14) holds fof. The proof is very similar to Step 2
in the proof of Proposition 3, and hence omitted.

() + (1= 8) ~vf'(3,w)| <

B.5 Proof of Proposition 6

We begin with providing the self-generation theorem, which shows that &ball
is supported by public ex-post equilibria if it is self-generating. The proof is very
similar to Abreu, Pearce, and Stacchetti (1990) and hence omitted.

Definition B1. A pair (s,v) of a public strategy profile and a payoff vector is
stochastically ex-post enforceable with respectdop) if there is a functiorw :

H — RN such that (2) holds for albb andi, and such that (3) holds for ab, i,
ands.

Definition B2. A subsetW of RN is stochastically ex-post self-generating with
respect ta d, p) if for eachv € W, there is a public strategy profigandw : H —

W such tha{s,v) is stochastically ex-post enforceable with respe¢dt@) using

W.
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Proposition B1. Assume that public randomization is available, andfixf W is
bounded and stochastically ex-post self-generating with resp¢ét frj for some
p, then for each payoff vectoravW, there is a public ex-post equilibrium which
yields the payoff v regardless of the initial stabe

Pick an arbitrary smooth subsat of the interior ofV*. Thanks to the propo-
sition above, to prove the folk theorem, it is sufficient to show that thi$\&et
stochastically ex-post self-generating for patient players.

Pick an arbitrary point € W, and some positive numbegs> 0 andK > 0.
For each directio € RN with |A| = 1, define the seG,, 5 as in Figure 12.
Formally, let

Guas={VERYA -v>A T+ (1-9), [v—V] < (1-d)K}.

As A changes, the s, ) s changes and orbits the powmtAlso, asd increases,
the sefG, s shrinks and approaches the pomtndeed, by the definition, the set
Gy 5 isinthe(1— &)K-neighborhood of.

1-0K~" [[(1-8e W

Figure 13:.G,, s CW

Figure 12: SeG, ) 5

As illustrated in Figure 13, for each payefE W, there is at least one direction
A such that the séb, , 5 is included inW. So if the payofivis enforceable using
continuation payoffs in this s&,, s, itis enforceable using continuation payoffs
in the seW.

Generalizing this idea, Fudenberg and Yamamoto (2011b) showttifatm
decomposabilitys sufficient for a seWV to be self-generating with patient play-
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ers? It turns out that the same result holds in our setup; the following is the
definition of uniform decomposability in our model. Here we WIg) ¢ k 5 in-
stead ofG, s, in order to emphasize that the €@tlepends on the parameters
andK.

Definition B3. A subsetV of RN is uniformly ex-post decomposable with respect
to pif there aree > 0,K > 0, andd € (0,1) such that for alv e W, & € (5,1),
andA, there is a public strategy profigeandw: H — G, ¢ 5 such that(s,v) is
stochastically ex-post enforceable with respedidta) usingw.

In words, uniform decomposability requires that each payaffW can be
achievable using continuation payoffs in the &g} . k 5, regardless of the direc-
tion A. The next lemma shows that uniform decomposability is indeed sufficient
for the setW to be self-generating for patient players. The proof is similar to
Fudenberg and Yamamoto (2011b), and hence omitted.

Lemma B8. Suppose that a smooth and bounded subset \RNaE uniformly
ex-post decomposable with respect to p. Then the?eeiséo, 1) such that for any
payoff vector v W and for anyd € (J,1), there is a public ex-post equilibrium
which yields the payoff v for any initial state.

In what follows, we show that the s@! is uniformly ex-post decomposable.
That is, we show that each payefE W is enforceable using continuation payoffs
in the setGy ) ¢ k 5, regardless oh.

Throughout the proof, we use the following terminologies. A direcfiois
regular if it has at least two non-zero components, andosrdinateif it has
exactly one non-zero component. In other worklgs a coordinate direction if
|Ai| = 1 for somei (because it automatically implieg = O for all j # ).

For each strategy profikand directiom, let

U(3,5,A) = maxA -v°(3,s) — minA -v®(3,s),
we weQ

which measures how much the initial state can influence the welfare Aevel
v¥(9,s) toward the directiord . Proposition 3 ensures thatd;s,A) can be arbi-
trarily small whensis the optimal policy for some dummy beligf Similarly, for

13This is a counterpart to the “local decomposability lemma” of FLM for infinitely repeated
games. For more discussions, see Fudenberg and Yamamoto (2011b).
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eachd ands, let
¥i(3,5) = maxv®(3,s) — minv®(3,s),
weQ we
which measures how much the initial state can influence plieg/eayoff by the
strategy profiles. Note thatvi(d,s) = Vi(d,s,A) for the coordinate direction
with A;j = 1.

B.5.1 Step 1: Bound on Deviation Payoffs

In Section 3.6, we have claimed that the g@lrby deviating from the prescribed
strategys’ in periodt decreases with respectttpat a geometric rate. Here we
formally prove this result in the general model.

Consider the infinite-horizon game with the initial priprand the discount
factord. Pick a public strategy profilg wheres is a pure strategy. Suppose that
we are currently in periot] and that the past public historylis 1. Suppose that
no one has deviated frosiso far. If playeri deviates in the continuation game,
her gain is

Gl(8. .50 = maxyf' (3,8 5 iy 0) I8,y 0)

as in Section 3.6.

The following lemma shows that for a class of strategy profilebe gainG!
above decreases with respect tat a rate at least geometric with the parameter
B. This implies that the sum of the gains,

G/ (3,s) = ung'zvg()ht max _Gi(3,p,sh™ b,
is finite.
Lemma B9. Suppose that the full support assumption holds. Then for éach
M, i, t>1 public history 1, public strategy s;, and pure public strategy
s € argmaxcg V' (0,5,5.1),
Gl(&,u,s,h™1) < p H -
(Gst Y < P max (manf (6.8, 1) -V (Gl ).
wheref is chosen as in Proposition 1. This result implies that

1
G (s < ——— o) o _ .
(8.9 < gy sup_ max (gng( §sSil) — V(5,8 1>)

65



To interpret the above lemma, k&be the optimal policy which achieves player
i's best payoff for some dummy beligf, just as in Section 3.6. Proposition 3 en-
sures that this strategy(and its continuation strategglyt) is a pseudo-ergodic
strategy which approximates playés best payoff regardless of the true belief.
Thatis, for any smal¢ > 0, whend is large enough, we have mgpg vf’(é, §,s.ilnt)—
vf’(5,5|ht) < Tie uniformly int, ht, andfi. Substituting this to the inequalities in
the above lemma, we obtain (9) for edgland hencé&s’ < ﬁ The same result
holds whens is a minimax strategy for some dummy beljgf because Propo-
sition 5 ensures that given any smalt> 0, when? is large enough, we have
maXg cs v{](6,§4,&i]ht) —vf’(6,3|ht) < 7te uniformly int, h', and 1. This result
is useful when we consider the problem associated with the “negative coordinate
direction.”

In what follows, we will prove the above lemma. We first provide a prelim-
inary result. Pick the opponents’ strategy;. Suppose that playeis current
belief isu, but she is asked to play a strategyvhich is a best reply te_; given
a dummy belieft # 4. Assume that this dummy belief is an interior belief so that
[i(w) > Ttfor all w. Since this strategy is not necessarily a best reply given the
true beliefu, playeri can possibly increase her payoff by deviating franthis
gain is represented by

maxv!' (6,5,s.i) —V(3,9).

§es
The following lemma provides a bound on this gain. When the true bglief
approachegt, the gain converges to zero at least linearlypin- fi|.

Lemma B10. For eachd, for eachy, for eachfi with i(w) > T for all w, for
each public strategy_s, and for each pure strategy € argmaxcs v{"(é,é ,S—i),
we have

Hos & n \u— | i s & fi
maxvi (0,5,sj) —Vvi (9,s) < max | maxv; (0,§,s-i) —V. (0 .
maf (8,55 /(8.9 < EEL max (manf'(6.5.5.1) - /(8.9

To illustrate the proof idea, consider the case in which there are only two
states,wn andwy. Then each belief: is represented by a single number; fet
denote the probability on the staig. Pick the opponents’ strategy; arbitrarily.
We know from Lemma B2 that play€s best payoff maxcs vi“(é, §,s_i) against

this strategys_j is convex with respect to the beligf, as in Figure 14. Pick an
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arbitrary dummy beliefi as stated in the lemma, and fbe a best reply tg_;

given this dummy beliefi. The dashed line in the figure shows playsipayoff
vi“(é,s) achieved by this strategy for each true beliefi. This dashed line must
intersect with the curve at = [i becauses is a best reply t@_; given the initial

prior u = 1. Also this dashed line must be below the curve, because for each
current beliefu, the curve gives the highest payoff for playemainsts_j. Taken
together, the dashed line must be tangential to the curme=afi as in the figure.

Graph of maxv(3,§,s i)

------------

" ~~__ | Deviation Gain

-~
'S
B: ~~

Graph ofv(3,5) '
: =D

0 p u 1
Figure 14: Bound on the Gain

Now, pick a true beliefu arbitrarily; without loss of generality, we assume
p > fi. Given this true beliefs, the gain by deviating frons; is represented by
the distance between the curve and the dashed lines the figure shows, since
the curve is convex, this distance is less than the leB@h(Here, XY represents
the distance between the two poidtsandY.) Note that this lengtfBC is equal
to ‘{—:gﬁ because that the two triangl@8C andADE in the figure are similar
with the ratio of corresponding sid#s:—g. Hence the gain by deviating frogis
at most

The proof for the state spa€gis as follows:
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Proof. Fix i andd. For eachs_j, Ietv (s_i) be as in the proof of Proposition 4,
that is,v' (s_i) = maxcs V/'(5,5,5-i). As Lemma B2 shows/'(s_) is convex
with respect tqu.

Take u, fi, s_j, § as stated in the lemma. [i = [i, the result obviously
holds. So assume that= fi, and then pick a boundary poipt of AQ such that
U =Ku +(1—k)p for somek € (0,1].

As in the proof of Proposition 4, Ie#‘(s_i) denote the best payoff for player
i when the initial prior isy and the opponents plas.i. That is, Ietvi“(s_i) =
maxscs V' (6,5,5.i). Then we have

V(s —VH(8,5) <kVH (s.) + (1— k)W (s_) —/(3,5)

=kt (s1i) + (1~ KOV (s-1) — kvt (8,9) — (1— KW' (3.9)
Here the inequality follows from the fact thq‘l’ ) is convex with respect to
U, and the second equality from the fact tlvﬁ(é,s is I|ne§1r with respect to

U. Sinces is a best reply t&_; given the beliefii, we havevi“ (s-j) = vi“(5,s).
Plugging this into the above inequality, we have

V(s)— (3,9 <k (vi“*(s_i) —vi“*(a,s)> < k max ( V(ss) —vF(a,s)) .

penQ

Sinceu = ku*+ (1—K)fd, K = Hﬁ‘;’:ﬂ'. Now, we know thaiu* — 1| > T,
becauseu* is a boundary point whilgi(w) > T for all w by the assumption.
Hence, we have < “’;ﬁ“‘ Plugging this into the previous inequality, we obtain

the result. Q.E.D.
Now we prove Lemma B9. Fdr= 1, it is obvious that
1

G, u,5, M0 < (5 V(3.9 ).
I( 7”757 )—I—Tuegé(rsneas' ( S S—) I( 7)

Fort > 2, by replacingy, fi, sin Lemma B10 withu(h*=Y|u,s), u(ht=Y|f,s),
ands|:—1, we obtain

p(h=u,s) —u(h1p,s
Gi(6. .5 ) < TS ZHE BN max (maf (8.8,5- )~ (8,550

Here the full support assumption ensures thdt 1|1, s) is indeed an interior be-
lief which puts at leasion each state. Proposition 1 ensures thiat(ht=1|u, s) —
p(ht=2|f1,s)| < B'~1, so we obtain the desired inequality.
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B.5.2 Step 2: Strategies with Cross-State Full-Rank Conditions

Let S"FR be the set of all public strategy profilsssuch that the induced action
profile s(ht) has cross-state pairwise full rank for each histofnand such that
[{a|a =s(ht) 3t3nt}| < |A|. The second constraint requires teaannot induce
more thanA| different actions.

Also, for eachy > 0, letSFR(n) be the set of all public strategy profilssuch
that given any history', any action profile within they-neighborhood of(ht)
has cross-state individual full rank; i.e., for amywhich does not have cross-state
pairwise full rank, we havés(h') — a| > n.

As in FLM, under (PFR), the set of action profilaswhich have cross-state
pairwise full rank is open and dense in the set of all action profiles, that is, any ac-
tion profile can be approximated by an action prafileshich has cross-state pair-
wise full rank. This in turn implies that any pure public strateggan be approxi-
mated by some strategy S"™R. Note that the constraitfa|a = s(ht) 3t3ht}| <
Al is indeed satisfied by letting{h') = s(hf) whenevess*(h') = s*(hf). Similarly,
any (possibly mixed) strategy can be approximated by some strategy in the set
SFR(n) for sufficiently smalln.

Recall that our assumptions, (PFR) and (IFR), are weaker than requiring all
mixed action profiles to have cross-state pairwise full-rank condition. Accord-
ingly, the optimal policys (which achieves the score for some directionmay
involve some action profile which does not satisfy the full-rank condition. How-
ever, the above discussion suggests that we can “perturb” this optimal policy a bit
so that the resulting strategy still approximates the score and satisfies the full-rank
condition. Similarly, a minimax strategy profile can be perturbed so that the re-
sulting strategy satisfies the cross-state individual full-rank condition. Formally,
we obtain the following lemma.

Lemma B11. Suppose that the full support assumption holds, and that (IFR) and
(PFR) hold. Then for any smooth subset W of the interior ‘gftkiere isn > 0
such that for any C> 0, there ares > 0, p< (0,1), andd < (0,1) such that for
eachd € (9, 1), the following properties hold:

(i) For every regular directiont, there is a strategy profiles SSTRNSFR(n)
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such that for eacla,

A v (pd,s) > mevxx\ -V+CV(pd,s,A) + €.
ve

(i) For each i, there is a pure public strategy profile s such that for each
Vi?(p3,s) > maxvi +Ci(pd,s) +CG (pd,) + ¢

and
G/(pd,s) < €.

(iii) Foreachi, there is a public strategy profilessSFR(n) such that sis a pure
strategy and such that for each,

vi°(pd,s) < minvi —CVi(pd,s) —CG(pd,s) —

and
G/ (pd,s) < €.

Clause (i) asserts that for each regular direcfigrihere is a pseudo-ergodic
strategys which approximates the score regardless of the statend satisfies
appropriate full-rank conditions. To see this,3&tbe the optimal policy for some
dummy belieffi. We know that this strategyf! is a pseudo-ergodic strategy which
approximates the score regardless of the stateis implies that the strategyf
satisfies the inequality in clause (i), becadse®(pd,s*) > max,w A - v for each
wandvipd,s*,A) ~ 0. However, some action profiles used by the stragégyay
not satisfy full-rank conditions, so we may hase¢ S"FRnSFR(n). Clause (i)
ensures that in such a case, we can perturb this strategy that the resulting
strategys still satisfies the inequality argle S"FRNSFR(n).

Clause (ii) considers the case with the coordinate directianth A; = 1. The
strategy profilesin the clause (ii) is simply the optimal policy for some dummy
belief u. (We do not need to perturb it.) This strategyndeed satisfies the in-
equalities in clause (ii), because Proposition 3 and Lemma B9 ensurg(thats)
andG;(pd,s) approximate zero. Note also that SFR(n), becausesis a pure
strategy profile and (IFR) holds.

Clause (iii) implies that there is a strategy profile which approximately mini-
maxes player regardless of the state. To see this, let? be the minimax strat-
egy profile given some dummy belifif This strategys” satisfies the inequalities
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in clause (iii); indeed, Proposition 5 and Lemma B9 ensure ¥f{gid;s) and
Gi(pd,s) approximate zero, and thef(pd,s) < minyew Vi for eachw How-
ever, the minimax strategs” may use actions which do not satisfy cross-state
individual full rank, so we may have¢ SFR(n). Clause (iii) ensures that in such
a case, we can perturb this strateffyso that the resulting strategystill satisfies
the inequalities and € SFR(n).

In what follows, we prove the above lemma. The proof is more involved than
that in FLM, since a perturbation of an action in some petiatfluences both
the stage-game payoff in periddand the continuation payoff from peridd- 1
on through the distribution ofw!*,y*). Readers who are less interested in such
technical issues may want to skip it and go to Step 3.

We begin with presenting some preliminary lemmas; roughly, they show that
the scores and the minimax payoffs can be approximated by perturbed strategies
which satisfy appropriate full-rank conditions.

The first lemma shows that whenis not too large, for every directioh, the
score can be approximated by a strategyS"TRNSFR(n).

Lemma B12. Suppose that the full support assumption, (IFR), and (PFR) hold.
Then there ig] > 0 such that for any > 0andn € (0,77), there isd € (0,1) such
that for anyA andd € (8,1), there is s FRNSFR(n) such that for eactu,

A-vH(d,8)— max A-v|<e.
VeVH(3)
Proof. Taken > 0 so that any (possibly mixed) action profidlewhich isf-close
to some pure action profile has cross-state individual full rank. The existence of
suchn is guaranteed, since (IFR) implies that any action profile which approxi-
mates some pure action profile has cross-state individual full rank.

As shown in FLM, under (PFR), the set of action profiles which have cross-
state pairwise full rank is open and dense in the set of all action profiles. Hence
we can approximate the score using strategies in th85Btin particular, Propo-
sition 3 ensures that for ary> 0 andn € (0,17), there isd € (0, 1) such that for
each) andd € (8,1), there iss e FRsuch that

A-vH(d,8)— max A-v|<e
VEVH(3)
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for eachu and such that for each histohy, the action profiles(h') is n-close to
some pure action profile. By the definitionmf this strategy profilsis in the set
SFR(n), and hence the result follows. Q.E.D.

The next three lemmas are about the minimax payoffs by perturbed strategies.
For eachn > 0, letSFR(n) be the set of all public strategiss; such that for each
pure public strategg and historyh!, any action profile within thg-neighborhood
of s(h') has cross-state individual full rank. Then let
vVi(o,n)= inf max(3,s).
W@ =_ ot maxt(s.s)
In Words,\_/i“(é, n) is the minimax payoff when the opponents’ play is restricted
to SFR(n). If SFR(n) is empty, then lev!'(5,n) = . The following lemmas
show that Propositions 4 and 5 remain valid even when we consider the restricted
strategy spac8FR(n). Note also that the convergence rate is uniform in

Lemma B13. Suppose that the full support ?ssumption holds. Then for each
g > 0, there isd € (0,1) such thatv¥'(5,n) — v (8,n)| < & for any é € (5,1),
u, i1, andn > 0with SFR(n) £ 0.

Proof. The proof of Proposition 4 is valid without any change even when we
consider the restricted strategy sp&fé?(n). In particular, the bounds in the
lemmas in the proof do not depend gnHence the result follows. Q.E.D.

Lemma B14. Suppose that the full support assumption holds. Then for each
£ > 0, there isd € (0,1) such that for eactd € (5,1), for eachji, and for each

n > 0 with 877(n) # 0, there is gi € SFR(n) such that for each pure strategy

§ c argmaxcg v'(5,5,9")),

V(8 S —v(8,n)| <& (27)
and
m%w#<5,§,£i|ht>—vf‘(es,s%t)<e (28)
S¢E
for eachy, t, and A1,
Proof. The proof of Proposition 5 is valid without any change. Q.E.D.
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As in FLM, under (IFR), the set of actiorts_j such that(a;,a_;) has cross-
state individual full rank for ally is open and dense in the set of all mixed ac-
tions. Hence, for a fixed discount fact®ythe minimax payoff with the restricted
strategy spac&"R(n) approximates the minimax payo#f' (5) asn — 0. The
following lemma strengthens this result; it shows that the limit minimax payoff
vi(n) =Ilim 54\_/{‘(5, n ) with the restricted strategy space approximates the limit
minimax payoff ag) — 0. (The existence of Iimlyf(é, n) can be proved as in
Yamamoto (2016). Lemma B13 ensures that this limit is independeunt) of

Lemma B15. Suppose that the full support assumption and (IFR) hold. Then for
anye > 0, there isn > 0 such thatyv,(n) —vi| < € foranyn € (0,77) and .

Proof. By the definition,vi(n) is non-increasing im and at least,. Hence, it is
sufficient to show that there g such that for anyg > 0, there is > 0 such that
\vi(n) — V| < &. In other words, it is sufficient to show that there aree > 0,
n > 0andd € (0,1) such that for any € (3,1), |v'(8,n) —v'(d)| < €.

Pick u ande > 0 arbitrarily. LetC’ andC’ be as in the proof of Proposition 4.
Then pickn > 0 sufficiently small so that/2|A_i|(Q+ C/%né/) <£.

Pick an arbitraryd € (0,1), and choose'; as in Lemma B3. Then take a
perturbed strategs®; € STR(n) such that after every histoty, the actiors®; (ht)
is 2n-close tos‘ii(ht). Such a strategy”; indeed exists becausgis sufficiently
small. Then for each lets' ; be the strategy such that only the actions up to period
t are perturbed; i.es ;(h') = s*,(hl) for eachf <t —1 ands ;(h’) = &, (hf) for
eachi >t. Lets?, = &".. For each, lets be a best reply t&' ; given the initial
prior . Also lets” be a best reply te”; givenu. Then we have

v(8,n) =¥ (3)] < |W'(3,8”) =} (9)]
< |VH(8,87) = {W(8,8”) — (1-0)}|
< |V(8,8°) —v'(8,8")| + (1 8)

S V(5.6) V(8.4 121 5).
<3 ME.S) (e Y] +21-9)

Here, the first inequality follows frond'(8,s°) > v¥(8,n) > v/'(8). The second
inequality follows from Lemma B3, which ensurpg'(8) — v (6, < 1 4.
The last inequality follows from the fact that for a fixédvi“ (8,5 converges to
vH(8,5”) ast — o due to discounting.
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To complete the proof, it is sufficient to show that

o1(1-90)¢
3

for eacht. Indeed, if so, then plugging (29) to the previous inequality,

Vi (8,8) —v'(8,s 71| < (29)

V(3. m) — v <<iétll o) 2@—5y:§+a1—®.

Since this inequality holds for eveky by taking sufficiently larged, we obtain
the desired inequaliti' (3,n) — v (9)| < «.

So what remains is to prove (29). Note tiat and st_jl differ only in the
action in periodt, which influences the stage-game payoff in pericahd the
continuation payoff from perioti+ 1 through the distribution ofy*, w!*1). Ac-
cordingly, given playei’s strategyd, if we change the opponents’ strategy from
s ;to s‘_*il, it changes players payoff by

vH(6,9) -V (5,4,
< Y PrhYps) > ¢ i(h Y [ai] — s (h Y a ]|
ht-1cHt-1 a_ A

1-8)8 (mapg®(e) - ming(@

X
+5t ( max th+1(5 St‘ ht— 1yt)) mln Viwt+1(5,st‘(ht17y‘l)>>

wittlyt w 15
/ ~/
<znja|{(1-0)59+81-0) (5 + 2 )]
O+O)

<(1- )20/ (g+

Here the first inequality follows because of the reasoning we argﬁgdndst_‘il
differ only in the action in period, which influences the stage-game payoff in
periodt and the continuation payoff from peridd- 1 through the distribution of
(', 1), The first term in the curly bracket captures how much the stage-game

payoff in periodt can change, and the second term captures how much the con-

tinuation payoff from period+ 1 can change. (Givefy', w'*1), the continuation
payoff from periodt + 1 is vi‘*)t+1(5,st|(ht717yt)).) To obtain the second inequality,
we use the fact that the distance betwdeyih'—!) ands 51 (hi~1) is at most 2
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so thatls ;(h1)[a_i] — 51 (ht=1)[ai]| < 2n for eacha ;. We also use Lemmas
B6 and B7 to show that the difference between the maximuvﬁ’té%(é, ¢|n) and
the minimum is at mos} (%C’ +(1- 5)6’). Indeed, Lemma B6 implies that

W )+ (1-8) W9 5 g | < 704 (- 5)C

becauses |y = /| andd |y is a best reply ta& | given i (ht|u,s). Then
Lemma B7 and the fact that(ht|u,s') puts at least probabilityt on each state
ensure that

w1

W) + (1= 8) = v (8,8 )

1/1-6 "
< (—Zc . /
_7_T< 5 C+(1 5)0)

for all w1, as desired.
Plugging 27|A_i|(T+ C/%C/) < £ into the above result, we have

-1
VH(8,8) —vH(a,,s5h)] < %. (30)
A similar argument shows that
-1
V(G4 (s, < 1208 @)

3

Now we are ready to verify (29). Suppose thfitd,s') > v/'(5,971). Then
we must have!' (5,5 > (5,971 >V (68,4,471), and thus (30) implies (29).
Similarly, whenv!' (8,¢) < vH(8,571), we haver (8,971 > v'(5,8) >V (5,971, ¢ )
so that (31) implies (29). Q.E.D.

Now we prove Lemma B11. Tak# as stated. Takg > 0 as in Lemma B12.
From Lemma B15, there ig € (0,77) such that migew Vi > v;(n) for all i. Pick
suchn, and pickC > 0 arbitrarily. Then from Lemmas B9 and B14, there are
€ >0 andp; € (0,1) such that for eaclp € (p1,1) andi, there iss_j € SFR(n)
and a pure public strategy such that for each,

minvi > vi°(p,s) +Cl(p,s) +CG/(p,s) + ¢
and

Gi(ps) <&
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This s satisfies the condition stated in clause (iii) e 1.
Pick € > 0 andp; as stated above. Sineecan be arbitrarily small, without
loss of generality, we assume

maxA - v—maxA - v
veV vew

> (5C+3)¢ (32)

forall A.
From Proposition 6 of Yamamoto (2016), therepjsc (p1,1) such that

maxA -v— max A -v

<E& (33)
veV veVve(p)

for all A, p € (p2,1), andw. Also, it follows from Lemma B12 that there is
p3 € (P2,1) such that for eacid andp € (ps,1), there is a pure public strategy
profiles € SSFRNSFR(n) such that for each,

‘)\ V¥(p,s)— max A-v|<e. (34)

VeV©(p)

Take a regular directioh andp € (ps, 1) arbitrarily. Takes € STRNSFR(n)
as above. From (33) and (34), we have

V(p,s,A) =maxA -v¥(p,s) — minA -v¥(p,s) < 4¢. (35)
weQ weQ
Then for eachw,

A-Vv®(p,s)> max A-v—¢
VeV ®(p)

> maxA -v—2¢
veV
>maxA -v+ (5C+1)e
veWw
> maxA -v+CV(p,s,A) + €.
vew
Here, the first inequality follows from (34), the second from (33), the third from
(32), and the last from (35). So the strategy prdiiatisfies the condition stated
in clause (i) ford = 1.

From Lemma B9, we know that there jig € (ps,1) such that for eaclp €
(ps,1) andi, there is a pure public strategy profdsuch that (34) holds for atb
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and for the positive coordinate directiarwith A; = 1, and such thas;(p,s) < .
This s satisfies the condition stated in clause (ii) &+ 1. Indeed, for each,

v@(p.s)> max vi—¢
(p;S) SR Vi

> maxv; — 26
veV

> maxv;+ (5C+1)e
veW

> maxv; +Cvi(p,s) +CG'(p,s) + €
vew

Here, the first inequality follows from (34), the second from (33), the third from
(32), and the last from (33) ar@(p,s) < &.

So far we have shown that the result holds wipen (ps,1) andd = 1. By
continuity, the same result holds eveiis slightly less than one. This completes
the proof.

B.5.3 Step 3: Enforceability for Regular Directions

Recall that our goal is to show uniform enforceabilityWf that is, we want to
show that each payoff vectorc W is enforceable using continuation payoffs in
the setG,, ¢ k 5, regardless of the parameter (directian)The following lemma
shows thav € W is indeed enforceable for any regular directhonThis result is

a generalization of the one presented in Section 3.5.

Lemma B16. For eachn > 0, there is C> 0 such that for each regular direction
A, for each pe (0,1) and for each s S"'RNSFR(n), there is K> 0 such that
for eachd € (0,1) and for each \e V, there is w such that

(i) (s,v) is stochastically ex-post enforceable with respeditmp) by w,

(i) Foralltand ht,

t 1_5 . w A~
A-wh) <A-v i-p)5 wmelg/\ v¥(pd,s) — A -v—CV(pd,s,A) |,

-5
(iii) [v—w(h')| < 755K forallt and H.
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To interpret this lemma, pick a regular directidarand pickp andd close to
one. For the sake of the exposition, \ebe a boundary point aiV with the unit
normalA (see Figure 15). Chooseas in Lemma B11(i) so that it approximates
the score regardless of the state The above lemma asserts that this gajr)
is enforceable using continuation payoffs in the shaded area in Figure 15, where
I* =mingeq A -v¥(pd,s) — A -v—CV(pd,s,A). Note that this length* is approx-
imately equal to the lengthin the figure, becaussapproximates the same payoff
regardless ofv so thatv{pd,s,A) ~ 0.

Now, choosee > 0 as in Lemma B11, and Iét= 55 andK = %. Then
the shaded area in the figure is included in theGgf ; ¢ 5. Indeed, we have
E< 55 < (1_'*p)5 from Lemma B11(j), and we havé > ﬁ sinced is close
to one. So the above lemma ensures tlsat) is enforceable using continuation
payoffs in the se6G, ) z ¢ 5

Figure 15: Continuation Payoffs for Regular Directibn

In Section 3.5, we have shown that the promise-keeping condition (2) for the
good statews and the incentive compatibility condition (3) can be satisfied by
moving continuation payoffs on the linein Figure 10, which is a translate of the
tangent line. Also, we have briefly explained that the promise-keeping condition
(2) for the bad stateus can be satisfied by perturbing continuation payoffs a bit.
Due to this perturbation, the resulting continuation payoffs are not on the line
L, and this is the reason why we have a weak inequality rather than an equality
in clause (ii) of the lemma above. The te@i(pd,s,A) in clause (ii) measures
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the size of this perturbation: To satisfy the promise-keeping condition (2) for the
bad statews, we need to offset the difference in the block payoff§(pd,s)
andv®s(pd,s) at different states. Since this difference (toward the directipn
isV(pd,s,A), the size of the perturbation is bounded ®y(pd,s,A) for some
constanC > 0. In the proof, we formally explain how to find such a perturbation.

Proof. Fix s, A, p, 9, andv as stated. Picko* such thatw* € argmax,q A -
v¥(pd,s).

Consider a constant continuation payafSuch that the target payoffis ex-
actly achieved as the sum of the block payoff and the continuation payoff given
the initial state isv*. That is, taken such thatw(h') = w* for all t andht, where
w* solves

v:%vﬁf‘(pa,sn(l—%)wh (36)
Note that the specification of* here is exactly the same as that in Section 3.5.
As in Section 3.5, this constant function satisfies the promise-keeping condition
(2) for w*, but not for other statem # w*. Also, it does not satisfy the incentive
compatibility condition (3). In what follows, we will modify this constant function
w to satisfy these requirements.

Specifically, we consider the continuation payoff such that
w(ht) =w* +Z(ht) + Z(h!) + 2(h!)

for eacht andht™1. Here we add three perturbation terrds;t, 7, andZ to the
constant continuation payoff*. As in Section 3.5, we will choose the teanso
that any deviation in periotlis deterred and the incentive compatibility condition
(3) holds. Also, we will choose the ternas andZ so that the promise-keeping
condition (2) holds for altv. Note thatZ” andZ depend only on the public signal
in period one.

We begin with explaining how to choose the terfnaridZ Recall that the con-
stant continuation payoffi(h') = w* does not satisfy the promise-keeping condi-
tion (2) for w # w*, because different initial statesyield different block payoffs
v¥(pd,s). Note in particular that the welfare levil v¥(pd, s) of the block pay-
off (with respect to the direction) depends on the initial state. We will first
choose the termin order to offset this difference in the welfare level. That is, we
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will chooseZ'so that if the continuation payoff i8 = w* + 2, then the payoff (the

sum of the block payoff and the continuation payoff) is on the lihen Figure

15 regardless of the initial state. Of course, this needs not imply the promise-

keeping condition (2), since different initial states may yield different payoffs on

the lineL*. We will choose the termih order to offset this payoff difference.
Formally, we choose in the following way. Pick an arbitrary playef € |

such that\- # 0, and letz> Y — RN be such that

< 6t t-11— T[w j* j* ho Ai*’\'*
tZ p (1 p); (Ylai,s-i+(h%)) Ai<2+ (y)

1-90

=1 ps (/\ Ve (p5,s)—x\-v“’(p6,s)> (37)

for all w anda;+, and

z(y)=0 (38)

for all i #i* andy. From (38), the perturbationififluences the payoff of player
i* only. Hence its impact on the welfare levelis 2(y) = Ai<2+(y). (37) ensures
that the expected value of this impact indeed offsets the differefided,s) —

A -v®(pd,s) in the welfare level. Note that the terpi%(1— p) on the left-hand
side is the probability that the random block ends after peri@hd we take the
expectation with respect to the random termination petiodihe termﬁ on
the right-hand side is the coefficient on the block payoff.

Note that the above perturbatiaées not influence players’ incentives at all.
Indeed, (38) implies that does not influence the incentive of playet i*, and
(37) ensures that the expected valugotides not depend on the action of player
i

To see the existence of sugh, hote that (37) is equivalent to

3 s ()2 (9) = i P AERRS
for all w anda;<. So it is sufficient to show that this system of equations has a
solutionZ-. Sinces € STR(n), the action profiles(h®) in period one has cross-
state individual full rank for player®. This ensures that the coefficient matrix
for the above system has full row rank, and hence it has a solution. Also, since

80



the absolute value of the right-hand side is at _7);)7)(2“}_?’?), without loss of

generality, we can assume that ther€is 0 such that

(1—90)Cv(pd,s,A)

2 39
20 < s (39)
for all 4, p, A, andy. Multiplying both sides byA;-|, we have
A2y < —=2_Co(ps.s 1) (40)
~(1-p)d -

for all 4, p, A, andy. Note that givem > 0, the constan€ > 0 can be chosen
independently of the choice ef

The perturbation terra dbove ensures that the same welfare level is achieved
for all initial states, but the actual payoff may still depend on the initial state. Let
ki’ denote this payoff for playdrgiven the initial stateo. That is, letk® be the
sum of the block payoff and the continuation payoff when the continuation payoff
function isw=w*"+ 2

k= %Vf*’(pé,8> +t25‘ P H1-p) (Wf +y; n‘”(v\S(h(’))Z*(y)) . (41)

By the definition ofw* andZ we havek®”" = v, that is, the payofk®" given the
initial statew* exactly achieves the target payeff Also, by the definition of,"
we haveA -k® = A -k®" for all w, so the payoff vectok® is on the lineL* in
Figure 15 for any state.

Choosez™ Y — RN such that

°° Stot-1(1— “(yla,s. | hOV)7: (V) = k@™ _ k@ 42
t; P ( p)y; (vlai,s-i(h")Z(y) = k* —K (42)

for eachw, i, andg;, and
A-Zy)=0 (43)

for eachy. (42) ensures that the expected discounted valueaffséts the dif-
ference betweek® andk®’, and that the terra does not influence each player’s
incentive. That is, if the continuation payoffus= w* + Z+ 2, the payoffv is ex-
actly achieved regardless of the initial stat€so the promise-keeping condition
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(2) holds for allw). (43) implies that the term(§) moves the continuation payoff
w(ht) only toward directions orthogonal t. The existence of suchfollows
from the fact thatk -k = A -k®" for all w and that the action profile_j(h°) in
period one has cross-state pairwise full rank. The proof is very similar to that of
Lemmas 5.3 and 5.4 of FLM and hence omitted.
Since (42) is equivalent to
3 s (0020 = s

without loss of generality, we can assume that for a givethere isK > 0 such
that

(K —K?),

N 1-pd - W0 L@
2= 7= s Ak — K

for eachd, p, andy. Here the boun& can be arbitrarily large wheh approaches
a coordinate direction; see FLM for details. Note that

oo

=1 p5’v°J (pd,s) — v‘”(pé,s)‘

+5 opt(1-p)
t;

Z m (yts(h%))z- (y*) — Z 1 (ys(h%)) 2 (y*)
eY yteY
- 5<’v“’ pd,s) — v‘*’(pé,s)’+ )
1-6 g
Sl—p5<q+MM>

for eachw andi, where the first inequality uses (37) and (38). Plugging this into
the previous inequality, we have

1)1 < sk (a4 7 ) (44)

A V¥ (pd,s) — A -v®(pd,s)
Aj

<

(1-p)d
So far, we have explained that the promise-keeping condition (2) can be sat-
isfied for all states by choosing the perturbatiaramdZ appropriately. Next, we
will show that the incentive compatibility condition (3) can be satisfied by choos-
ing the perturbatior? appropriately. This extends the analysis in Section 3.5 to
the general setup.
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Pickt > 1 andht~! arbitrarily. Lets| (-1 4, denote the strategy for the con-
tinuation game aften—*, which chooses actios in periodt and then follows the
prescribed strategy. That is,s|(ht_1,a{.)(ﬁo) =g ands|(ht_17a‘.)(ﬁf) = 52 (R0
for eachf > 1 andhl. Let (Z(ht~1,y))yey be such that

5(1-p) }Ynw(yla,&i(ht‘l))i(ht‘l,y)
ye

1-90
“1-p5 (Viw(p575|ht*1) _Viw(pévs|(ht*1,ai)vs—i|ht*1)> (45)

for all w, i, anda;, and such that

A-Z(hLy)=0 (46)

for all y. (45) implies that player is indifferent over all actionsy in periodt,
regardless of the current hidden stafe Indeed, if playei deviates tag; today,

it changes the block payoff fronﬁ*’t(pé,s| 1) to vi‘”t(pé,s |(ht-1,)» S—ilpt-1), but
(45) guarantees that this change is offset by the expected valiie @®fote also
thatZ does not influence playéis incentive in earlier periods < t, since (45)
implies that the expected value Bfis zero as long as playedoes not deviate in
periodt.) (46) ensures that thi# moves the continuation payoff only toward
directions orthogonal td, as in Section 3.5. The existence of sutlollows
from the fact that the action profike ;(h'~1) in periodt has cross-state pairwise
full rank. Also, since (45) is equivalent to

;W<y|a,s_i<ht>>z€“<h‘,y>
ye

1-9
=5 ps) M (POS) (PSSl s-ilh)).
without loss of generality, we can assume that for a fixethere isK’ > 0 such
that

1-0 ~
’Zt<ht)| < (1_ pé)(l— p>5K/mei(a| ‘via)<p6vs|ht*1) _\/i(o(p57$‘(ht*1.,ai)7&i’htfl)

for allt, ht, §, andp. Here we can chood€ uniformly int andh', sinces ¢ S’FR
induce at mosfA| different actions. Since’(pd, sjy-1) —V{°(P3, S [(t-1,4),S-i[r-1) <
0, we have

1-9

2001 < T paya—p

5 K'g. (47)
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Now we verify that the constructed satisfies the clauses (i) through (iii) in
Lemma B16. By the definition off, ex-post incentive compatibility is satisfied
each period. Also, by the definition afahdZ the payoffv is exactly achieved
regardless of the initial state. Hence clause (i) follows.

To prove clause (i), we arrange (36) and obtain

1-90 "
V\ﬁ‘:v—m(v‘” (pd,s) — V). (48)

Then we have

A-w(h) =AW+ A-Z(h) +A-Z(hY) + A - 2(ht)
1-9 . R
<AV——0 (A —A-v—CvV .
<A-v = p)a()\ V@ (pd,s) — A -v—CVi(pd,s,A))
Here the inequality comes from (40), (43), (46), and (48). This proves clause (ii).
To prove clause (iii), note that from (48),

1-9 . . N
wi(h') = vi — ——= ("' (p3,s) —vi) + 2 (h") + Z (') + 2z (h")
(1-p)d
for all i. This implies that
1-90 N A
v—w(h)| < =<V (p3,8) = V| + |2 (h')| + [Z(h")| + |2(h").
(1-p)o
Sincev eV, we havev® (pd,s) —v| < g. This, together with (39), (44), and (47),
implies that

(1-p)d 1-pd |Ais |Ais |
By the definition,v(pd,s,A) < 0. Hence, by lettingk > g{1+ ﬁ—lp +K(1+
1) + 7} we have clause (iii). Q.E.D.

B.5.4 Step 4: Enforceability for Positive Coordinate Direction

In this step, we consider enforceability for the positive coordinate direction (i.e.,
A with Aj = 1). The analysis here is an extension of that in Section 3.6.

Lemma B17. Assume (IFR), and fix i. Then there is<Q0 such that ps (p,1),
there is K> 0 such that for each pure public strategy profile s, for eaehw, and
for eachd, there is w such that
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(i) (s,v) is stochastically ex-post enforceable with respecidop) by w,

(i) Foralltand h',

1-9 : - X
Wi(ht> SVi— (1_ p)5 (Crpelgvl(l)(p5vs) —Vi —CVi(p5,S) _CGi (p5,8)) )

(i) Foralltand ht,

(1-p)d

Let A be such thad; = 1. For the same of exposition, choosas in Figure
16, that is, letv be a boundary point oV whose unit normal is\. Chooses
as in Lemma B11(ii), so that it approximates the score regardless of the initial
state. The above lemma asserts that (Ris) is enforceable using continuation
payoffs in the shaded area in the figure 16, wHére ming,cqVv®(pd,s) — v —
CVi(pd,s) —CG'(pd,s) andK* = K+CG"(pd,s). Note that this length* is
approximately equal to the lengthn the figure, because by the definition Hf
bothvi(pd,s) andG;’(pd,s) are approximately zero.

Chooset > 0 as in Lemma B11, and lgi be given. Let§ = £~ andK =

1-p
2KICe)  Then the shaded area in the figure is included in thé&Ssgt: ¢ 5, be-

1-p
~ € | * > 2(K+Ce¢) K* :
Causes < =55 < [I—p) andK > =p)5 > (p)3 for high . So the above

lemma ensures thgs,v) is enforceable using continuation payoffs in the set

lv—w(h)| < (K+CG'(pd,9)).

Gv7/\ EK,5"

) *//
(Pp)é-'f/

7

///Z\,;v/(/ﬁ()”// e

;%

Figure 16: Continuation Payoffs far with Aj =1
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Compared to Lemma B16, we have the new t&€®@j (pd,s) in the inequali-
ties in (ii) and (iii). We need this term because we need to take care of player
incentive compatibility: As explained in Section 3.6, playkas a profitable devi-
ation unless her initial belief matches the dummy beliefn order to deter such
deviations, we need to move the continuation payuwffgertically. CG'(pd,s)
measures the size of this vertical move.

Proof. Fixi,s, p, 8, andv as stated. Pick* such thatv* € argmax,cq V*°(pJ, s).
Then pick the constant continuation functieth) = w* as in the proof of Lemma
B16. This constant continuation payoff does not satisfy the promise-keeping con-
dition (2) for w # w* or the incentive compatibility condition (3). In what follows,
we will modify thisw to satisfy these requirements.

Specifically, for each # i, we let

w;(h') = wj +7(h") +2j(h") + 2 (hh),

as in the proof of Lemma B16. That is, we add three perturbation tezl‘jr,nfs,,,
andZj, to the constant value;. On the other hand, for playerwe let

t
wi(h') =w + 3 A(h) +2(h) +2 ().
f=1
Now the termz| is replaced with the surgt_, Z of the perturbation terms, as in
Section 3.6.

We first show that the promise-keeping condition (2) can be satisfied by choos-
ing ZandZappropriately. This part is almost identical with the one in the proof of
Lemma B16. We begin witk. "Leti* =i, and letZbe as in the proof of Lemma
B16. That is, choose:Y — RN such that

© . 1-08 [ .
2,307 5 e s ()8 = s (V" (p8.9) —VE(p3,5))

for all w andg;, and
2i(y)=0

for all j #1 andy. As in the proof of Lemma B16, thigsénsures that the same
welfare level is achieved regardless of the initial stateRecall that thisz does
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not influence players’ incentives, and that ther€ is 0 such that

1-6
(1-p)o

CUi(pd,s) (49)

forall 9, p, A, andy.
Similarly, we choose as in the proof of Lemma B16. Thatis, ety — RN
be such that

1-90

3,30 3 e s i (9)70) = T (V" (p3,5)—V(p3,9))

for eachw, j # i, andaj, and
4(y)=0

for eachy. This Z ensures that the payoifis exactly achieved as the sum of
the block payoff and the continuation payoff, regardless of the initial state
Hence the promise-keeping condition (2) holds forallNote that thiz'does not
influence players’ incentives, and that ther&is- 0 such that

1-9 g

20l< 5o (50)

for all , p, andy, as in the proof of Lemma B16.

Next, we show that the incentive compatibility condition (3) can be satisfied
by choosing? appropriately. We begin with considering the incentive problem of
playerj #i. Pickt > 1 andht—? arbitrarily, and les; |(ht—l7aj) be as in the proof of
Lemma B16. Then we choogg (h'~1,y))yey such that

5(1—p) ¥ m®(ylay,s_j("1)Z (L)
ye
1-95

— —1_ p5 (Vj})(péashqtfl) _V?)(pé,S] |(htfl7aj)7s_j |ht7]_)>

for all w anda;. Thisz‘j ensures that playgr+ i is indifferent over all actions in
periodt, regardless of the current hidden state As in the proof of Lemma B16,
we can show that there ' > 0 such that

1-9

A< T peit—p

)5WG (51)
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for all t, ht, 5, andp. Here we can choos€’ uniformly int andht, sincesis a
pure strategy profile and hence induces at nstlifferent action profiles.

Now we consider the incentive problem of player This part extends the
analysis in Section 3.6 to the general setup. Piekl andht—?1 arbitrarily. Then
we choosdZ (ht~1)y))yey such that

3 S L) 3 Ayl s (0 )A)
t=1 ye

0 if & =s(ht™)

1-96 .
_—6 Sup G}(p57u7sa htil) if a S(ht_l)
1-pPO cng(sht-1)

(52)

for all w anda;. Here,Q(s, h'~1) is the set of initial state& such that the public
history ht realizes with positive probability given the strategy profile(Under
the full support assumptio(s,h') = Q.) As discussed in Section 3.6, thds
ensures that “plag until periodt — 1, then deviates in periag and then play a
best reply thereafter” is not profitable for playeegardless of the initial beligi.
Indeed, (52) implies that such a deviation decreases her payoff by at least

170  sup  Gi(ps,pshiY,

1-pd peAQ(sht-1)
which exceeds the gai@}(pd, i, s, ht—1). (Here we say “at least” because this is
the effect ofZ only. If playeri chooses an action different from the one induced
by sin periodf >t + 1, it changes the expected valuezf)and decreases the total
payoff further.) The existence of suehis guaranteed sincgh'~1) has cross-
state individual full rank for player. Without loss of generality, we can assume
that there i€’ > 0 such that

120 sup  GH(pd,u,sht 1 (53)

Z(htLy)| <
(1-P)0  Lenqsh

forallt, =1, y, 8, andp. Again, we can choos® uniformly int andh'~1, since

sis a pure strategy profile and hence induces at i#ggtifferent action profiles.
This Z ensures that the incentive compatibility (3) holds for all players. Also

by the definition ofzandZ the promise-keeping condition (2) is satisfied. Hence

clause (i) holds.
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To prove clause (ii), use (48) so that

1-6 osog
R 27O . f\ s nly 5kl

wi(h') =V, = p)a(Vf)(P&S) V|)+glzt(h)+2|(h )+2z(h7).

Using (49), (53), and;(h') = 0,
t 1_ 5 R~k A
wi(h') <vi— (V’(pd,s) —Vvi —C'G{ (pd,s) — Ci(pd,s)) -
(1-p)o

So by settindC = max{C,C'}, clause (ii) follows. Also clause (iii) follows just as
in the proof of Lemma B16. Q.E.D.

B.5.5 Step 5: Enforceability for Negative Coordinate Direction

Note that the lemma in the previous step considers only pure strategy profiles
s. This is enough for the positive coordinate direction, since the score toward
this direction is achieved by a pure strategy profile, and (IFR) guarantees that
any pure action profile has cross-state individual full rank. On the other hand,
when we consider the negative coordinate direcflowith A = —1, we need

to consider mixed strategies, as minimaxing playeray require mixture by the

opponents. Since mixed actions may not have cross-state individual full rank even
under (IFR), the statement of the following lemma, which concerns enforceability
for the negative coordinate direction, is a bit more complicated than Lemma B17.

Lemma B18. Fix i. For eachn > 0, there is C> 0 such that for each g (0,1),
for each public strategy profiles SFR(n) such that sis a pure strategy, there is
K > 0 such that for each ¥ V, for eachd, there is w such that

() (s,v) is stochastically ex-post enforceable with respeditmp) by w,

(i) Foralltand ht,

(1-p)o

() 2Vt (2 = (- e (p3.9)+ (P, 9)+ O (pS.5) )
(iii)y Forallt and ht,

1-5
(1-p)d

v—w(h)| <

(K+CG(pd,9)).

89



The interpretation of the above lemma is very similar to the one for the pre-
vious lemma. Chooseas in Figure 17. That is, letbe a boundary point oV
whose unit normal is the negative coordinate direcfiowith Aj = —1. Choose
s as in Lemma B11(iii), so playaris minimaxed regardless of the initial state.
The above lemma asserts that tf8s/) is enforceable using continuation payoffs
in the shaded area in Figure 17, whéfe= vi — max,ycq Vi’ (pd,s) +CVi(pd,s) +
CG'(pd,s) andK* =K +CG'(pd,s).

Figure 17: Continuation Payoffs far with Aj = —1

The proof of the above lemma is very similar to that of Lemma B17, and hence
omitted. In order to find bound€ andC which work uniformly int andht, we
use the fact that € STR(n) for somen > 0.

B.5.6 Step 6: Uniform Enforceability
Now we are ready to show thdt is uniformly ex-post decomposable.

Lemma B19. For any smooth subset W of the interior of \there is pc (0,1)
such that W is uniformly ex-post decomposable with respect to p.

Proof. PickW as stated. Pick as stated in Lemma B11, and then plek- 0 as

in Lemmas B16 through B18. F& p € (0,1), andd € (0,1) as stated in Lemma
B11. (Here represents in Lemma B11.) Applying Lemmas B16 through B18
to the strategy profiles specified in Lemma B11, it follows that for eacthere

is K, > 0 such that for each € (5,1) andv € W, there is a strategy profig , 5
and a functiorw, ) s such that

(i) (sya.5,V) is enforced byw, 5 for (9, p),
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(i) 2wy s(ht) <A-v— g;g;g for eacht andht, and

(i) [v—w,y s()| < %K,\ for eacht andht.

Sete = ﬁ and for eachh, letK; = ; lf?o 5 Then it follows from (ii) and
(i) that W\,,,\_/(;(ht) € Gy 26,5 forallt andht. The rest of the proof is similar to

that of Fudenberg and Yamamoto (2011b). Q.E.D.

Appendix C: Dispensability of Public Randomization

In this appendix, we show that the folk theorem remains valid even without public
randomization. Since public randomization is not available, we cannot use ran-
dom blocks anymore. Instead, here we consider equilibria in which the infinite
horizon is divided into a series df-period blocks. The following lemma shows
that each extreme point of the limit feasible payoff\éatan be approximated by

the average payoff in thE-period block, whe is sufficiently large. Let/i“ (T,s)
denote player’s average payoff in th&-period game with the initial priou and

the strategy profils, that is, letv"'(T,s) = 2 57 E[g* (a")|p,S. (No discount-

ing here.) LeVH(T) denote the feasible payoff set in theperiod game with the
initial prior u, that is,VH(T) = co{vH(T,s)|s€ S}.

Proposition C1. Suppose that the full support assumption holds. Then there is
K > 0 such that for any Ty, andA,

max A -v—maxA -V| <
veVH(T) vev

—| X

This proposition implies that the feasible payoff ¥ét(T) for the T-period
game converges td asT goes to infinity. Hence any extreme point \6fis
approximated by & -period game payoff with an appropriate strategy profile.

Proof. As shown in Yamamoto (2016%, in Proposition 2 can be replaced with
(1—9)K for someK > 0, that is, there i& > 0 such that for each, u, andd,

max A-v— max A-V| < (1-9)K. (54)
veVH(9) VeVH(5)
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So the difference in the scores induced by different initial priors is of orded 1
Pick suchk.

Fix A. Lets(d, 1) be a pure-strategy profile which achieves the score toward
A given the initial priorp and the discount factay¥. Then for eacls,

AVH(8,5(8, 1)) > A -VH(3,9).

Since the right-hand side is decomposed into the payoffs in thd fpstiods and
the continuation payoff from period + 1 on,

A-VH(8,8(8, 1)) =(1-9) 25”'5[)\ TCOITE

t=
+8TE[A WM

T+1

(8,8(8, 1" )|,

for eachs. Using (54), we have

A-VH(8,8(8, 1)) =(1-9) il(StlE[)\ -g¥(@)|u. 9

t=
+0T{A-vH(8,8(8, 1)) — (1- O)K}

for eachs. Subtractingd™ {A - v#(5,s(5,u)) — (1— 6)K} from both sides and

dividing them by 1- o7,

o

T}
1- 6T6

t—1 <A -WH
1 5T Za E[A-g% @)1, 9 <A -VH(5,8(8, 1)) +

Since this inequality holds for ad| taking the maximum of the left-hand side with

respect tc,

1-9
m%xl_ E ' “E[A- g¢ (@)|u,g <A-v (6,5(5,u))+1_5T5 K.

Takingd — 1, we obtain
K
max A-v<maxA - -v+ —. (55)
VEVH(T) veVv T

On the other hand, we know that

)
A -VH(8,5(8, 1)) =(1- 5) Zét—lE[A g (@) |p,8(8, )]
t=

+3TE - (s(8, 1T, S(8, )],
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From (54),

)
A -VH(8,8(8,u)) <(1-3) ;at—lE[A g% (@)|u,8(3, )]

t=
+3T{A-VH(8,5(0,1)) +(1—O)K}.

Subtractingd" {A -v#(8,s(8, 1)) + (1— 6)K} from both sides and dividing them
by1-4T,
1-9

1-6 ¢ t—1 Wt /At U Tk
1t 3,0 HEN 6 @) (6. )] 2 A3 5(8.) - 50K

Sinces(d, i) is not necessarily the maximizer of the left-hand side,

— 0 t—1 t 1-9 T
> . U
max— E SUIEA g (a)|u, g > A -vH(58,S(8, 1)) — T sT0K

Takingd — 1, we obtain

max A-v> maX/\-V—E. (56)
VEVH(T) veVv T

Combining (55) and (56),

K K
maxA -v——=< max A-v<maxA -v+ —.
veV T = vevi(T) veV T

Hence the result follows. Q.E.D.

The next proposition extends Proposition 3 and shows that irT tperiod
block, the optimal policy for some dummy beligf can approximate the score
regardless of the true beligf.

Proposition C2. Suppose that the full support assumption holds. Then there is
K > 0 such that for each\, for each T, for eachu, for eachji, for each pure
public strategy profile % € argmaxcsA - v# (T,s), for each te {0,---, T — 1},

and for each h

K
max A-v—A- V(T -t -
VEVH(T 1) T )| < T-
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Proof. Like Proposition 3, the proof consists of three steps. In the first step, we
show the inequality fot = 0 and i such thatii(w) > T for all w. In the second
step, we show that the result holds for an arbitrary bgliefn the third step, we
show that the result holds for ahy> 1.

Proposition C1 ensures that theréis> 0 such that for anyf, u, andA,

max A-v—maxA -V| < M
VEVH(T) vev T
Choose suck > 0.

Pick A arbitrarily, and for eaclu and T, let s#(T) be the optimal policy for
the T-period game with the initial priop. Pick {1 such thatii(w) > 7 for all w.
Then, we can show that
K-g

< —. (57)

max max A-v—A-vi(T, &) T

fleAQveVvA(T)

for eachu andT. The proof is very similar to the derivation of (20) in Step 1
in the proof of Proposition 3; we only need to replate— %, V¥(9), and
vH(d,s) in the proof of Proposition 3 Witm, V&(T), andv¥(T,s), respec-
tively. So the first step is done. Similarly, the third step is exactly the same as that
of Proposition 3.

The second step is also very similar to that of Proposition 3. Foiiany

max A-v—A -v“(T,s[‘)‘
veVH(T)

= ’)\ V(T M) —A -v“(T,s[‘)’

1 - T-1 K—-g
Il P O — A .gH N+ —=. =2
< 2] g ) -2 g0+ 2
<1 +@_E
_Tg T T

Here the first inequality follows from (57), which ensures that the difference in
the continuation payoffs from period two is at m&j% Q.E.D.

Define playeti’s minimax payoff in theT -period game as

VH(T) = min maxv/(T,s).

s €S seS
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The following proposition shows that this minimax payoff for thgperiod game
approximates the limit minimax payoff for the infinite-horizon game &g goes
to infinity.

Proposition C3. Suppose that the full support assumption holds. Then there is
K > 0 such thafv/(T) —v;| < & for each i, T, andu.

Proof. For eachu and?, chooses‘s_’i“ as in the proof of Proposition 4. (Here we
write s”H instead o0&, to emphasize the dependenceX)iNote that this strategy
sf’i“ approximates the minimax payoff for the initial pripr and the discount
factord. Then as shown in the proof of Proposition 4, ther is 0 such that

v'(8) - gnng!‘(&s,s‘i’ﬁho <(1-K)5
for eachi, &, U, i, fi, t, andht. Choose sucK.
Pick someu. By the definition ofK, we have
v(8) > max (8,5,8°H) — (1- O)K.
SES
Hence for eacls;,
v(8) >v(3,5,87H) — (1- )R
T
>(1-5) Z6“E[gi°f<at>|u,s,s5’i“]
t=
+38T{v'(8) — (1-8)K} — (1-J)K.

Here the second inequality follows from the definitiorkgfwhich ensures that the
continuation payoff from period +1 on is at least"' (5) — (1— §)K. Subtracting
ST{W(8) — (1- 8)K} — (1 6)K from both sides and dividing them by-15T,
we have

1-9 s
t—1 WH T
1 5T§6 EgI uss_,]__(5)+1 5T(6 K+K).

Since this inequality holds for a#f, taking the maximum of the left-hand side
over alls,

1-9 t—1 t o,u H 1-9 T
| < d -
Sy Z‘S Elo (@) Iu.8, 7] <V(8) + 57 (3

o]

+K).
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Slnces “ does not necessarily minimize the left-hand side,

1-90

5T (6TK +K).

1-90 t—1 o
E <
srzls?ubrsne%)( —or 25 o ( JIH s <47 (0)+

Takingd — 1, we obtain

2K
v(T) <vit
Now, pick u andd, and pick a public strategy ; which differs froms “ only
in the play in the firsT periods; i.e., choose ; such thas_j|,;r = §i||hT for each
hT. (The play in the firsT periods can be arbitrarily chosen.) Then,

vH(8) <maxvt'(3,9)
SES

gm«'ﬂX[(l— 5) TZcS“lE[gf*’t(a‘)lu,S] +8"{\'(8)+ (L-O)K}|.
S€S &
Here the first inequality follows from the fact that; is not necessarily the min-
imax strategy, and the second follows from the definitiorKofwhich ensures
that the continuation payoff from peridi+ 1 on is at mos# (8) + (1— &)K
SubtractingET{\_/i”(c‘S) + (1— 6)K} from both sides and dividing them by-157,

1-0 1
t—1 > vH(5) — e
mseasx § o0 E| gI a)|u,s > v'(d) 1_5T6 K

Since this inequality holds for all public strategees,

-0 t—1 M — T
>\ — .
irQQUbgne%xl 5T 2\5 Elo” @)l 2 1(9) 1—or0 K

Takingd — 1, we obtain

vi— = <W(T) v+
So by settindk = 2K, we obtain the result. Q.E.D.
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The next proposition is a counterpart to Proposition 5. It shows that in the
T-period block, the minimax strategy for some dummy beliefan approximate
the minimax payoff regardless of the true belief

Proposition C4. Suppose that the full support assumption holds. Then there is
K > 0 such that for any i, for any T, and for ar]y there is a public strategy $
such that for each pure strategysargmaxcs Vi H(T,8, s“ ),

V(T 9) —v'(T)| <

—||X

and
u K
maxv!' (T —t,§,s.i|n) — V(T —t,9) < =——
5€S T—

for eachy, t € {0,--- , T — 1}, and H.

Proof. Chooses “ andK as in the proof of Proposition C3 Pigi, T, t €
{0,---, T —1}, andht arbitrarily. Then by the definition df, we have

V(8)+(1-8)K > rsneaaxvi“’(&s,Sf’i“!ht)

|
for eachw. Then for eaclw ands;, we have

V(8) 4+ (1- 8)K >v°(8,5,5% )
T-t P
>(1-8) y & *Elg¥ (@)|w.5, '} |n]
t=1

+8T YW (8) — (1-8)K]}.

Here the second inequality follows from the definitionkafwhich ensures that
the continuation payoff from perio@ —t + 1 on is at mosw;(6) — (1— §)K
Subtractingd” ~'v!'(8) + (1— &)K from both sides and dividing them by-15",
we obtain

1-o5 Tt g 1-96
v (o) _1 5”25‘ E[g¥(a sts ht] — 5Tt(5T 'K+K).

Since this inequality holds for eaeh, s,t € {0,---, T — 1}, andh',

8" 1E[g (a) |, 5,87 ]
V(3) >  max 1 5T tz | |
te{0,-- T 1} 1- 5

WeQ 19Tt
SES

(K+1)
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Sinces* is not necessarily the minimizer of the right-hand side,

s Tt .
1-o S & Eg? (@) |w,s.silk]
t=1

1— 5T—t

vH(8) > min  max =
S—iGS_itG{O,t-" ,T[—l} 1—-90 (K N 1)
e 1-57-
S€S

Takingd — 1, we obtain
. K+1

V. > min max V(T —t.5.8 i) — ——|.

-1 = s_i€S.ite{0, -, T-1} ( : ( il I|ht) T —t)

hteHt

weQ

s€S

Let s j be a solution to the problem on the right-hand side of the above in-

equality. Then
K+1
Vi + Bros maxv®(T —t,s,5_i|n ).
—t s€S

for eachw, t € {0, --, T — 1}, andh'. Since maxcs vi“(T —1,5,Si|nt) IS convex
with respect tqu, it is maximized by some extreme belief. This and the fact that

the above inequality holds for ab imply that
K+1
Vit o> masxvi“(T —t,5,5ilr) > v (T ).
_ S

for eachy, t € {0,---, T — 1}, andht, where the second inequality follows from
the fact thats_j|it is not the minimax strategy for th@ —t)-period game with
the initial prior u.

Proposition C3 ensures that therekissuch thatvH (T) —v| < %’ for eachT
andu. Choose sucK'’. Then from the above inequality, we have

K+K +1
\_/IH<T —t)+? > TSnGaSXVIH(T—t,S,S,Jht) 2\_/IH<T —t)

for eachy, t € {0,---,T — 1}, andh!. Note thatk andK’ do not depend off .
The rest of the proof is exactly the same as the proof of Proposition .E.D.

Using the above results, we can prove the folk theorem uBipgriod block
strategies. The following is the self-generation theorenTf@eriod block strate-

gies:
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Definition C1. A pair (s,v) of a public strategy profile and a payoff vectoeis
post enforceable with respect (6, T) if there is a functionw: HT — RN such
that

vi=(1-9) iftlE[gi“’t(at)lw, s+ Ewi(h")|w,s]

t=

for all w andi, and
T t
Vi > (1-9) Zat-lE[giw (a)|w,§,s.i]+ 0 Ewi(h")|w,§,s_i]
t=

for all w, i, ands.

Definition C2. A subsetW of RV*I9l js ex-post self-generating with respect to
(6, T) if for eachv € W, there is a public strategy profileandw : H — W such
that(s,v) is ex-post enforceable with respect(t® T) usingw.

Proposition C5. Fix . If W is bounded and ex-post self-generating with respect
to (6,T) for some T, then for each payoff vectoe W, there is a public ex-post
equilibrium which yields the payoff v regardless of the initial state

So to prove the folk theorem, it is sufficient to show that any smooth subset of
the interior ofV* is ex-post self-generating. The rest of the proof is quite similar
to that of Proposition 6 and hence omitted.

Appendix D: Relaxing the Full Support Assumption

In this appendix, we will show that the full support assumption is stronger than
necessary for the folk theorem. More precisely, we will show that the folk the-
orem obtains as long as uniform and robust connectedness, the common support
condition, and the relative interior condition hold.

D.1 Uniform Connectedness and Feasible Payoff Set

Yamamoto (2016) introduces the ideauwsfiform connectedneswhich is a nat-
ural extension of the communicating state assumption for stochastic games with
observable states (Dutta (1995)). Uniform connectedness is about a condition on
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how thesupportof the belief evolves over time, and requires that players can
jointly drive the support from any s€@* C Q to any other sef)* C O (except

the case in which the s€* is “transient” in the sense that the probability of the
support being* is negligible in a distant future.) Yamamoto (2016) shows that
if the game is uniformly connected, then the feasible payoff set is invariant to the
initial prior in the limit asd — 1.

To give the formal definition of uniform connectedness, the following nota-
tion is useful. When the initial prion and a pure action sequen@e, --- ,a' ) are
given, the posterior beligi™ X in periodT + 1 can be regarded as a random vari-
able, becausg’ ™! is determined by a realized signal sequefyée - - ,y" ) which
is randomly drawn givep and(al,--- ,a'). (Hereu'+! is common for all play-
ers, because they play pure actions each period.) l(gt'Pt = [i|u,al,---,a")
denote the probability that this posterior belief in period 1 is [1. Likewise, let
Pr(u"™*+1 = [i|u,s) denote the probability that the posterior belief in perffog 1
is [1 given that the initial prior i1 and players play a pure strategy proSlentil
periodT.

Definition D1. A non-empty subse®* C Q is globally accessiblé there ismT* >
0 such that for any initial priog, there is a natural numbar < 419/, an action
sequencgal,---,a"), and a beliefi whose support is included @* such that

Pr(NT+1 = i:l“'lvalv'” 7aT) > .

In words, global accessibility o2* requires that given any initial priou,
players can move the support of the posterior belig@toor its subset with pos-
itive probability, and this probability is bounded away from zero uniformlyin
As explained in Yamamoto (2016), restricting attentioff ta 4/l is without loss
of generality.

Definition D2. A subsetQ* C Q is uniformly transientf it is not globally acces-
sible and for any pure strategy profgend for anyu whose support i€*, there

is a natural numbef < 212 and a beliefii whose support is globally accessible
such that Piu™+1 = fiju,s) > 0.

In words, uniform transience @@* implies that if the support of the current
belief is Q*, then regardless of future actions, the support of the posterior belief
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cannot stay there forever and must reach some globally accessible set with positive
probability at some point. As discussed in Yamamoto (2016), uniformly transient
sets are “not essential” in the sense that the probability of the support being in a
uniformly transient set is almost negligible in a distant future.

Our assumption, uniform connectedness, requires that each Sitiseeither
globally accessible or uniformly transient.

Definition D3. A stochastic game isniformly connectedf each subsef* is
globally accessible or uniformly transient.

Uniform connectedness is weaker than the full support assumption, and is
satisfied in a wide range of economic examples, including the ones discussed in
Section 2.1.

Our Proposition 2 is valid even if the full support assumption is replaced
with uniform connectedness; see Yamamoto (2016). Likewise, we can show that
Proposition 3 is valid without the full support assumption, as stated below. The
only difference from Proposition 3 is that the dummy befiefust be an interior
belief here. The proof is very similar to Step 1 in the proof of Proposition 3 and
hence omitted.

Proposition D1. Suppose that the game is uniformly connected. Then for each
£ > 0, there isé € (0,1) such that for eachA, for eachd € (5,1), for eachji

with fi(w) € [71,1— T for all w, for each pure public strategy profild svith

A VA (8,9") = max,cyis A -V, for each t> 0, for each f, and for eachy ¢
AQ(fi,s,ht)

max A-v—A-v¥(3, )| <e
veVH(9d)

whereQ(f1,s,h') is the set of states which can happen with positive probability in
period t+ 1 given the initial prior i, the strategy profile s, and the history h

D.2 Robust Connectedness and Minimax Payoffs

Proposition 4 shows that the limit minimax payoff is invariant to the initial prior,
under the full support assumption. Here we show that the full support assumption
can be replaced with a set of weaker conditions, called robust connectedness, the
common support condition, and the relative interior condition.

We begin with presenting the common support condition.
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Definition D4. Thecommon support conditidmolds if for eachw, @, a, &, andy
such thatr®(y, &|a) > 0 andrg’(y|8) > 0, we havert®(y, &|a) > 0.

In words, the common support condition requires that if the siatan hap-
pen tomorrow with positive probability given the current statethe current ac-
tion profile a, and the current signal, then the same is true for any different
action profilea’which induce the signat with positive probability. An important
consequence of this condition is that the support of each player’s posterior belief
does not depend on the past actions; that is, once the initial préord the sig-
nal sequencéy’,--- ,y*) are given, the support of each playsrposterior belief
uit“ in periodt + 1 is uniquely determined (although the belief itself may depend
on the past actions). Accordingly, as long as players have the same initial prior
U, the support of the posterior belief is common across all players and is com-
mon knowledge. For each andh', let Q(u,h') C Q denote this support. (Let
Q(u,h%) = suppu. Also letQ(u,h') = 0 if h never happens given the initial prior
u for any strategy profils.)

Next, we present the relative interior condition:

Definition D5. Therelative interior conditiorholds if for eachw, @, @, a, andy
such thatt®(y, @|a) > 0 and7ri®(y|a) > 0, we haven®(y, &|a) > 0.

In words, the relative interior condition requires that (conditional on the cur-
rent action profilea and the current signg), different stateso andé induce the
same set of the next statés When this condition is satisfied, each playsipos-
terior belief in period > 2 is always in the relative interior. To be precise, take a
pure public strategg, a public strategg i, and an initial priou arbitrarily. Take
an arbitrary historynt which can happen with positive probability givenands,
and lety; (ht|u,s) € AQ be playeri’s posterior belief afteht. Then the relative
interior condition ensures thak (h'|u,s)[w] > Tt or wi(ht|u,s)[w] = 0 for all w;
that is, the beliefsi(h'|u, s) is in the relative interior of the setQ(u, h').

Lastly, we present the robust connectedness assumption, which is introduced
by Yamamoto (2016). Roughly speaking, it requires that the opponents can drive
the support of players belief from any set to any other set. The definition here is
a bit different from the one in Yamamoto (2016), because we assume that actions
are not observable. We first define robust accessibility and transience.
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Definition D6. A non-empty subse®* C Q is robustly accessible despite player i
if there isrt* > 0 such that for any initial priog, for any pure strategy, there is a
natural numbeT < 4/?l and a public historyg" such that Rth" |y, s, at., - aT) >
m andQ(u,hT) = Q*, where(a?,,---,aT,) is the action sequence which mixes
all actions equally each period.

Robust accessibility d2* ensures that given any initial pripr, the opponents
can move the support to the 9Bt regardless of players play, by mixing all
actions equally each period. When actions are observable (i.e., when the public
signaly reveals the action profile today), the above definition reduces to that of
Yamamoto (2016).

Definition D7. A subsetQ* C Q is transient given player if it is not robustly
accessible and therens > 0 such that for anyt whose supporti®*, and for any
public strategys_j € S*;, there is a natural numbér < 49l and a beliefi whose
support is robustly accessible such tha([uiffrJrl = [y, al,-- al s ) > ",
Where(ail,-~- ,aiT) is the action sequence which mixes all actions equally each
period.

Transience of2* requires that if the current support@', playeri can force
the support to move to a different set at some point, regardless of the opponents’
play.

Now we are ready to state the definition of robust connectedness.

Definition D8. The game igobustly connectedf for eachi, each non-empty
subsetQ* C Q is either robustly accessible despite playear transient given
playeri.

The following proposition extends Proposition 4 and shows that when the
above conditions are satisfied afdds sufficiently large, the minimax payoffs
are similar across all priogg. The proof is given in at the end of this appendix.

Proposition D2. Suppose that the common support condition and the relative
interior condition hold. Suppose also that the game is robustly connected. Then
for eache > 0, there isd € (0,1) such thatjvH(d) —\_/iﬁ'(é)\ < g foreachi,d e

(6,1), u, andfi.
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The next proposition extends Proposition 5 and shows that the minimax strat-
egy profiles” for some dummy beliefi approximates the minimax payoff regard-
less of the true beligfi. The difference from Proposition 5 is that now the dummy
belief i must be an interior belief. The proof is very similar to that of Proposition
5 and hence omitted.

Proposition D3. Suppose that the common support condition and the relative
interior condition hold. Suppose also that the game is robustly connected. Then
for eache > 0, there isd € (0,1) such that for any i, for any € (5,1), and for
any {1 with fi(w) € [11,1— T for all w, there is a public strateg}/}, such that for

each player i's pure strateg;f’% argmaxcs vi[‘(c‘i,é,s[_‘i),

V(8,5 w) — v (8)] <&
and

max (5,5, |n) —vf'(8, S |w) < £
§€S

for eacht> 0, h', andu € AQ(fi,ht).

D.3 Belief Convergence Theorem

In the last subsection, we have seen that the relative interior condition is useful
to derive invariance of the limit minimax payoffs. As we show in the following
proposition, it is also useful to obtain the belief convergence theorem.

Proposition D4. Suppose that the relative interior condition holds, and@et
1- %‘ € (0,1). Then for each i, pure public strategy public strategy s;, U, [,
t >0, and K such thatPr(h'|u,s) > 0 andPr(h'|1,s) > 0,

(b, 9) — pa(H 2, 9)| < B

Once we obtain the belief convergence theorem, it is easy to extend Lemma
B9. The proof is omitted because it is almost identical with that of Lemma B9.

Lemma D1. Suppose that the relative interior condition holds. Then for each
o, for eachy, for eachfi, for each t> 1, for each public history tv* such that
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Pr(ht=1|u,s) > 0 andPr(ht~1|fi,s) > 0O, for each public strategy s, and for each
pure public strategy;s= arg maxcs vi“(é,é.,s_i), we have

t—1 A A
G'I:<67 l'l?Sa ht_l) S B? ﬂGArg(aﬂxl']t_l) (rgneasxvi“(avgus—”ht_l) _Vi“(57s|ht_l)) ’

and hence

1 N N
G'(d,8) < ——— (5.8 s i) = V(D )
(6.9 < g sup, max, (maef (8,85l -G

Here, we letmaxcx f(X) = —oo if X is an empty set.

D.4 Folk Theorem

So far, we have seen that Propositions 2, 3, 4, and 5, and Lemma B9 are valid
even if the full support assumption does not hold. Accordingly, the following
folk theorem holds. The proof is very similar to that of Proposition 6 and hence
omitted. (We can show that Lemma B11, which is used in the proof of Proposition
6, remains valid even if the full support support assumption is not satisfied. The
proof idea is similar to Proposition D2 and hence omitted.)

Proposition D5. Suppose that the common support condition, the relative inte-
rior condition, uniform and robust connectedness, (IFR), and (PFR) are satisfied.
Suppose also that public randomization is available. Then, for any smooth subset
W of the interior of V/, there isd € (0, 1) such that for anyd € (8,1), the set W

is stochastically ex-post self-generating. Hence for eachW¥, there is a public
ex-post equilibrium which yields the payoff v regardless of the initial state

The assumptions made in the above folk theorem (uniform and robust con-
nectedness, the common support condition, and the relative interior condition) are
satisfied in various economic examples. The following lemma shows that if the
state is observable (i.eY,= Q x Q x Y*) and the state evolution is irreducible
in the sense of Fudenberg and Yamamoto (2011b), then these assumptions are
satisfied.

Lemma D2. Suppose that the state is observable and the state evolution is irre-
ducible. Then uniform and robust connectedness, the common support condition,
and the relative interior condition hold.

105



Proof. Since the state is observable, given a signalperiod one, the stai® in

period two is common knowledge across players. This implies that clause (ii) in

the definition of robust connectedness, as well as the common support condition,

and the relative interior condition. Also, since the state evolution is irreducible, it

is each to check that clause (i) in the definition of robust connectedness is satisfied.
Q.E.D.

The next lemma shows that if the state is observable with delay Yi.e.,
Q x Y*) and the state evolution has a full support in the senseitfgt d|a) > 0
for all w, &, a, andy such thatt’(y|a) > 0, then the assumptions are satisfied.

Lemma D3. Suppose that the state is observable with delay and the state evolu-
tion has a full support. Then robust connectedness, the common support condition,
and the relative interior condition hold.

D.5 Ex-Post Equilibria to Sequential Equilibria

When the full support assumption does not hold, some deviations can be observ-
able, and accordingly there can be a Nash equilibrium payoff which is not achiev-
able by any sequential equilibria. Here, we show that the sequential-equilibrium
folk theorem holds when some additional assumptions are satisfied.

For each(i, j) with i # j and for eacha, let ﬁij (a) be a matrix with rows
% (a,a,a_jj) for all w € Q, & € Aj, andaj € Aj. In words, the matrixTi(a)
is a collection of the marginal distributions of the public signaiduced by joint
deviations by playersand|.

Definition D9. An action profilea hasstrong full rank for (i, j) if the matrix
Mi; (a) has rank equal t| x |Ai| x |Aj|. An action profilea hasstrong full rank
if it has strong full rank for alli, j) with i # .

Strong full rank requires that any joint deviation by playeend j must be
distinguished by a public signgl Very roughly, this condition is used to ensure
that a modification of playej’s actions at off-path histories does not influence
playeri’s incentive. We have the following sequential-equilibrium folk theorem.
The proof can be found at the end of this appendix.
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Proposition D6. Suppose that the common support condition, the relative interior
condition, and uniform and robust connectedness are satisfied. Suppose also that
public randomization is available, and each pure action profile has strong full
rank. Then, for any interior point v of ¥/ there isd € (0,1) such that for any

initial prior p andd € (8,1), there is a sequential equilibrium which yields the
payoff of v.

Unfortunately, strong full rank is demanding, and it rules out many potential
applications. For example, suppose that a two-player games in which the action
setisA; = {C,D} for eachi. Suppose that the game is symmetric so that the signal
distribution induced by the profileC, D) is the same as that by the profile,C).

Then the pure action profiléC,C) cannot have strong full rank, and hence the
assumption in Proposition D6 does not hold. (On the other hand, (PFR) can be
satisfied in this symmetric game, as a mixed action profilmay have pairwise

full rank.)

The next proposition shows that the sequential-equilibrium folk theorem is
still valid when players can communicate. Suppose that at the end of each period
t, each player can send a public messagee M;. Assume thaM; = A;; that, af-
ter each period, each playieran reveal her own action. Since the communication
considered here is a cheap talk, each player may misreport to increase her con-
tinuation payoff; however, as the following proposition shows, we can construct a
sequential equilibrium in which everyone reports her information truthfully after
every history.

Proposition D7. Suppose that the common support condition, the relative inte-
rior condition, uniform and robust connectedness, (IFR), and (PFR) are satisfied.
Suppose also that public randomization is available and that players can commu-
nicate each period. Then, for any interior point v of there isé € (0,1) such

that for any initial prior 4 and é € (8,1), there is a sequential equilibrium with

the payoff of v in which everyone reports truthfully after every history.

D.6 Proof of Proposition D2

Fix 8. LetvH(s_i) be as in the proof of Proposition 4. Latu,ht) be the set of
all beliefsji such thaffi(w) > 7 for eachw € Q(u, ht) andfi(w) = 0 for othercw.
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Intuitively, any beliefuinA(u, ht) is in the relative interior of the sekQ(u, ht),

and is not too close to the boundary. Under the common support condition and
the relative interior condition, given the initial prigr and the public history',
playeri's posterior belief must be in the s&tu, h') regardless of her past private
actions.

Assume for now that there is a public strateﬂywhich exactly achieves the
minimax payoff foru. Then after every historyt, the continuation strategsﬂi |t
should punish player sufficiently harshly compared to any other strategy,
more precisely, for each j, there must be some beligf € A(u,ht) such that
V(e i) < v (s_;). Indeed, if not and there . such that” (s |r1) > v/(s_)
for all fi € A(u,h"), then the strategg;t’i is not the minimax strategy because the
opponents can lower playgs payoff by replacing the continuation strat@&”ht
with s_j.

The following lemma shows that the same result holds even if there is no
strategy which exactly achieves the minimax payoff. The proof is very similar to
Lemma B3 and hence omitted.

Lemma D4. For eachy, there is a public strateg)/_‘g, such that
IV (8) - v ()] <1-3. (58)

and such that for any ¥ 1, for any H, and for any public strategy_s, there is
fi € A(u,ht) satisfying

() < V(s +1-6. (59)

For eachu, chooses‘ii as in the above lemma. Pigkandht, and consider the
corresponding strategg’ii lnt. Then the payoff/i[’ (s!|1t) is convex with respect to
the initial belieffi. In what follows, when we say theonvex curve R/(s‘i]ht) or
theconvex curvénduced bys" |1, it refers to the convex functiovf‘ (s"|it) whose
domain is restricted tfi € AQ(u,ht). So whenQ(u,ht) = Q, the convex curve
represents playeis payoffviﬁ'(s‘_’|ht) for each initial beliefii € AQ. On the other
hand, wherQ(u, h') = {w}, the convex curve is simply a scakdf (s |).

For eachu,t > 0, andh' € H!, let

Vi) = max  w(sd|w).

peAQ(u,ht)
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That is,vi(s"|1) is the highest payoff attained by the convex functidiis |).
Note that different(u, ht) induce different strategies';|;¢, and hence different
convex curves, and hence different highest paywﬂéii |nt). Take the supremum
of these highest payoffs, and chodgg, h*) to approximate the supremum, that
IS,

sup supy (s |n) — (s} )| <1-8. (60)
HeAQheH
We callv (s‘j |h+) themaximal valugbecause it approximates $pp. g SUfhen Vi (s"in),
which is greater than any payoffs attained by any convex curves.

Sincevi“(s‘_‘ﬁh*) is convey, it is maximized whep is an extreme point; i.e.,
it is maximized when the initial prior puts probability one on some state
Q(u*,h*). Let w denote this state.

The rest of the proof consists of three steps. In the first step, we show that there
is a beliefu™ such that the minimax payoff for the initial pripr** approximates
the maximal value. The proof is very similar to Steps 1 through 3 of the proof of
Proposition 4.

In the second step, we show that for gy h') such thaQ(u, ht) is robustly
accessible, the corresponding convex cu:i’;‘/es‘jht) is almost flat and approxi-
mates the maximal value. The result in the first step plays an important role here.

Then in the third step, we show that for afyy, h') such thaQ(u, ht) is tran-
sient, the corresponding convex cum(fé(s‘_‘|ht) is almost flat and approximates
the maximal value. This and the result in the second step ensure that all the convex
curves are almost flat and approximate the maximal value, which implies that all
the minimax payoffs approximate the maximal value.

D.6.1 Step 1: Minimax Payoff for pi**

The following lemma extends Lemma B5 to the case in which the full support
assumption does not hold; it shows that there is the opponents’ sts#_l;@g)such

that the corresponding convex cunxfé(s‘ji |rt) is almost flat and approximates the
maximal value uniformly ini € AQ(u,ht). The lemma also shows that such a
strategy can be obtained by lettipg= u* andht = (h*,y) for somey. LetC = %

and letC = % Lets" be player’s best reply when the initial state és and the

opponents plagz‘_‘nh*.
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Lemma D5. Pick y such thati®(y|s* (h°),s". (h*)) > 0. Then for anyii € AQ(u*, (h*,y)),

W )+ (1) V(S )| < T5oCH(1-8)C

To prove this lemma, it is sufficient to find a relative interior befief AQ(u*, (h*,y))
such that the payoff/i’](s‘j\(h*7y)) approximates the maximal value; indeed, if
there is such a relative interior belief, then Lemma B4 ensures that the convex
curve vf‘(sﬂ?\(h*7y)) is almost flat and approximates the maximal value for all
fi e AQ(u*, (h,y)).

To find such a relative interior beligf, suppose that the current statedsand
that the opponents plag’iﬂh* from now on. Suppose that playetakes the best
reply strategys’. By the definition, player's payoff achieves the maximal value.
Now, suppose that no one deviates today and the sigisabbserved. Lettingi
be player’s posterlor belief in period two, her continuation payoff from period
two is denoted bw, (s“ |(h+y))- Then we can show that this continuation payoff
approximates the maximal value; as in the proof of Lemma B4. Also, under the
common support condition and the relative interior condition, the support of the
posterior belief today is solely determined by the public signalthe last period;
hence we hav®(w,y) = Q(u*, (h*,y)), and the belieft is indeed in the relative
interior of AQ(u*, (h*,y)). (Indeed, we can show thate A(u*, (h*,y)).) Hence
this belief[1 satisfies all the desired conditions. The formal proof of the lemma is
omitted, as it is very similar to that of Lemma B5.

The above lemma shows that the convex curve inducd‘gh%*7y) is almost
flat and approximates the maximal value. The next lemma extends this result; it
shows that for anyu, h') such thatQ(u,h') = Q(u*, (h*,y)), the corresponding
convex curve is almost flat and approximates the maximal value. The proof is
very similar to Lemma B6 and hence omitted. C&t= % andC’ = C?;l

Lemma D6. Pick y such thati@(y|s"(h%), s (h*)) > 0, and then pickp, ht) such
thatQ(u,ht) = Q(u*, (h*,y)). Then for eachJ € AQ(u,hY),

—_ o7
5T
Picky as in the lemma, and pick an arbitrary belief* € AQ(u*, (h*,y)).
Letting 4 = it = u** andh' = h%, the lemma ensures that the minimax payoff

C'+(1-9)C.

vi(i ) + (1—8) v ()| <
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given the initial prioru™* approximates the maximal value. That is,

T

or

(e I+ (1-8) v ()| < T ra-0)E. (6D)

D.6.2 Step 2: Convex Curves whe®(u,h') is Robustly Accessible

Choosert* > 0 so that the condition stated in the definition of robust accessibility
and transience is satisfied.

Pick a pair(u, ht) such that the se®(u, h') is robustly accessible. Intuitively,
if the initial prior is u and the past public history I#, playeri’s posterior belief
must be in the sehQ(u, h') regardless of her private history. In particular, under
the common support condition and the relative interior condition, her posterior
belief must be a relative interior belief so that it must be in the\¢gt ht).

Suppose that the initial prior |g** and that the opponents play the following

strategys”; (i, ht):

¢ Randomize all actions equally likely until playés posterior belief reaches
the setA(u, h).

e Once it happens, then pI&sﬁZi |t in the rest of the game.

Intuitively, §_j(u, h') asks the opponents to randomize all actions equally and wait
until playeri’s posterior belief reaches the 2y, ht); and once it happens, they
switch the play t(B'lii|ht in the rest of the game. This strategy is well-defined,
because the common support condition ensures that the support of ifday@s-
terior belief is common knowledge after every public history, and the relative in-
terior condition ensures that her posterior belief is always a relative interior belief.
Suppose that playértakes a best reply. Sin€@(u, h') is robustly accessible
and the relative interior condition holds, the switcrs‘ﬁ(p|ht must happen in finite
time with probability one. Hence fad close to one, players expected payoff
is approximated by the expected continuation payoff after the switch. Since the
belief at the time of the switch is in the s&tu, ht), this continuation payoff is at
most

Ki(u,ht) = A1),
|(Il» ) []ET(%),%)VI ( 7||ht)
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So playeii’s payoff against the above strategy (1, ht) is approximately at most
Ki(u,h'). Formally, we have the following lemma. The proof is very similar to
that of Yamamoto (2016) and hence omitted.

Lemma D7. For each(p, ht) such thatQ(u, h') is robustly accessible,

o]
v (8 (,hh)) < Ki(, b +%-

For now, ignore the terrﬁi because it is approximately zero when
d is close to one. Then the above lemma ensures that the pigyipffh') is
at leastv!” (5_;(u,h")), which must be at least the minimax payeff ()
due to the fact thas (u,ht) is not necessarily the minimax strategy. On the
other hand, the payof;(u,ht) cannot exceed the maximal value. Hence the
payoffK;(u,h') is between the minimax payoff’ ) and the maximal value.
Now, from Step 1, we know that these two bounds are close each other; hence the
payoff Ki(u,h') = maﬁjeA(uyht)viﬁ(s‘_‘i |nt) approximates the maximal value. That
is, the convex curve!' (s |ix) approximates the maximal value for some belief
ft € A(u,ht). Then Lemma B4 ensures that the convex curve is almost flat over
the spacégi € AQ(u.ht) and that the payof:ii’](s‘fi |nt) approximates the maximal
value for all beliefsfi € AQ(u.h'). Formally, we obtain the following lemma.
LetC” = € and¢” = €22,

Lemma D8. For each (u,h') such thatQ(u,ht) is robustly accessible and for
eachfi € AQ(u,ht),

(1-6%"2g 1-47

W& )+ (1= 8) v ()| < =+ ==C"+ (1-5)C".

Proof. From (58), we know that

Kk

W) - (1-8) < W& (u ).

Combining it with Lemma D7, we have

_ sqlQl
)~ (- 8) <Kty + T2 )%
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Using (61), we obtain

(1-3*")2g 1-4"
T o

This andK; (u, ht) < Wi (s" | ) + (1— &) imply that

wi(s ) — C'—(1-8)C <Ki(u,h).

1-5‘““‘)2@+ 1-o7
T o7
So the valueK;(u,h') is close to the maximal value, that is, the convex curve
viﬂ (s,|rt) approximates the maximal value for some relative interior belief
A(u,hY). Then Lemma B4 ensures the result. Q.E.D.

W& )+ (1 8) — Ki(u,h)| < | C'+(1-8)(E +1)

D.6.3 Step 3: Convex Curves whe®(u,h') is Transient

Pick a pair(u,h') such thaQ(u, h') is transient. Suppose that the initial prior is
fi € AQ(u,ht) and that the opponents pla’§‘1i|ht. Suppose that playemplays the
following strategys’

¢ Randomize all actions equally likely until the support of playgposterior
belief reaches a globally accessible set.

e Once it happens, then play a best reply in the rest of the game.

That is, player switches her play to a best reply once the support of her belief
reaches a globally accessible set.

Since the game is robustly connected, the switch must happen in finite time
with probability one. Hence fod close to one, playars expected payoff is ap-
proximated by the expected continuation payoff after the switch. By the definition,
the opponents’ strategy at the time of the switc!sﬂiﬁﬁ for some([, Fl) such that
Q(f, ﬁ) is robustly accessible; then from Lemma D8, playgcontinuation pay-
off after the switch approximates the maximal value, which in turn implies that her
overall payoff approximates the maximal value. Formally, we have the following
lemma. The proof is very similar to that of Yamamoto (2016) and hence omitted.

Lemma D9. For each(u,h') such thatQ(u,ht) is transient and for eaclii €

AQ(p,hY),

1-5‘”‘")4@+ 1-o7
T o

V(s )+ (1—8) — Vv (8,5, |n)| < ( c’+(1-8)¢".
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Note that the strategg s not a best reply given the beli¢f ¢ AQ(u,h")
and the opponents’ strateg’y’i lnt. When playei chooses a best reply, her payoff
(weakly) increases and hence becomes closer to the maximal value. Hence we
have

1-6%Nag 1-o7
( ) 9,

wi(H ) + (21— 8) — v () — =

C’+(1-9)C".

<

for each(u,h') such thaQ(u, ht) is transient and for eachh € AQ(u, ht). This
result and the result in the previous step show that all the convex ouﬁ'(/zi—:g\ht)

are almost flat and approximate the maximal value, and hence all the minimax
payoffs approximate the maximal value.

D.7 Proof of Proposition D6

In the proof of Lemma B17, the functio:‘jl+1 is chosen in such a way that playjer

is indifferent over all actions in periadt- 1 regardless of the current hidden state
w, given that the opponents play the prescribed acgigith'). With strong full
rank, we can modify thiz‘jJrl so that the following condition holds:

5(1-p) y n(ylai,ay,s-ij(h))Z ™ (hy)
ye
1-90
= 15 (1 (P3S) ~ V(P88 2 Silrta - 1)

for all w, &, anda;. With this modification, playej is now indifferent over all
actions in period + 1 regardless of the current hidden staigeven if player
deviates from the prescribed actigpht).

Pick an arbitrary target payoiffrom an interior point o¥*, Then from Propo-
sition 6, for sufficiently larged, there is a public ex-post equilibriusawhich
achievess regardless of the initial prior. Pick an arbitrary initial pripr In what
follows, we will modify this strategy and construct a sequential equilibrium for
this initial prior u.

With an abuse of notation, I&t' denote the set of all playés private histo-
ries with lengttt which can be reached givgnand somes & S. LetH! = Up> oH!.

In general,H! may not coincide with(Aj x Y x [0,1])!, since some sequence
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(af,y",z")}_, may not be reachable given the initial pripr But these are re-
dundant histories which should not show up in the game tree, so without loss of
generality, we ignore these histories.

Recall that our public ex-post has the random block structure. For each
€ > 0, consider a perturbed strategy profifesuch that in each periog each
playeri uses the original equilibrium strategyh'~!) with probability 1— eNT?
and mixes all actions equally Ilkely Wlth the remaining probability. So each action
is chosen with at least probablllé(— in periodt. Intuitively, here we choose the
perturbation probability in such a way that the probability that someone makes a
single “mistake” in the current period is significantly smaller than the probability
that all the opponents make mistakes in all the past petfodisis in turn implies
that the probability that someone makes a single “mistake” during the current
random block is significantly smaller than the probability that all the opponents
make mistakes in all periods before the current block.

For each playei's historyh!, the perturbed strategy profié& uniquely deter-
mines her belieff(h}) about the current stat@'*! and the opponents’ history
ht .. Letgi(ht) be the limit of ¢ (ht) ase — O.

Givens, let H! be the set of all histories = (a7,y",z")!_, that can happen
when no one deviates frosxduring the current random block (but we allow any
deviations in previous blocks). In other words,¢ H~it if it happens only when
there have been deviations during the current random block. Then the belief sys-
tem { satisfies the following properties:

e Foreachh ¢ Hf, the corresponding beligf(ht) assigns probability one on
the event that nobody has deviated frenturing the current random block.

e For each ¢ H, the corresponding beligf(h!) assigns probability one on
the event that someone has deviated feafuring the current random block.

As one can see from the proof of Lemma B19, each random block is associated
with some target payoff, which in turn determines the corresponding direttion
For each public historyit, let A (ht) denote the direction for the current random
block.

1470 see this, suppose that we are in petiadw. The probability that all players exceéphake
t—-1 —
mistakes in all periods in the pastag\‘ DIEINTY — N -1 which is significantly smaller than
the probability that someone makes a mistake in the current per”i'&%l,
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Now, we modify the strategy profileand construct a new strategy profife
and a belief systerd* inductively. In each stefy we specify actions*(h}‘l) in
periodt and beIiest*(h}‘l) at the beginning of the next period.

e Step 1: We do not modify the play in period one, andsi¢h?) = s(h?), and
let Z* (h') = ¢ (ht) for eachht,

e Stept: Note that the actions up to peridd- 1 are already given, and the
beliefs Zi*(h}‘l) at the beginning of periotiare also given for eachi—1.
Now we choose the actiorss(hi 1) in periodt as follows:

— If A(hi~1) is regular, then legf (1) = s (hi™1).

— If A(hi~1) is a coordinate direction witfj| = 1 for somej # i, then
lets'(h™) =s(hi™).

— If A(hi~1) is a coordinate direction withi| = 1 andhi~* € H'™2, then
lets' (b~ =s(hi™).

— If A(ht~1) is a coordinate direction witf;| = 1 andhi % ¢ H'2, then
letsf (hi~1) = §(h?) for some pure strategy & argmax!' (6,5, i -1)
wherep; = marg, o ¢ (h™1).

Then we choose the beliefs (hf) at the beginning of periotl+ 1 as fol-
lows: Lets*! be the strategy profile for theperiod game we have defined
so far, and les*'¢ be the perturbation of this profi! where the pertur-
bation probability is chosen as above. Then for each histowith length

t, let ¢ (ht) be the posterior belief induced by the perturbed straged§,
and then leg;* (hf) = lim¢_o ¢ (ht).

Note that{;*(h) can be different from the original beli€f(h{) only if A (h{~1) is
a coordinate direction witph| = 1 andhf~* ¢ H! .

We claim that the paifs®,{*) constitutes a sequential equilibrium for the
initial prior p. Since{* is consistent withs*, it is sufficient to show thas* is
sequentially rational.

Note first thats" differs from the original equilibriuns only for the actions
s' (1) after historiesi ~* ¢ H!~1. This implies that, regardless of the past his-
tory, once the current block terminates and players go to the next block, the contin-
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uation strategy induced Isy and the one bgyield the same outcome distribution
and thus the same continuation payoffs.

Now we check player’s incentive. Suppose that the directidrrorresponding
to the current block is regular. By the construction, the strategy prefigads
induce the same actions during the current block. Then from the proof of Lemma
B16, playeri is indifferent over all actions regardless of the hidden sdatafter
every public history within the block. (Here, the continuation payefh') is
indeed achieved, as ands yield the same continuation payoff from the next
block.) So player’s play in this block is sequentially rational.

Suppose next that corresponding to the current block is a coordinate direc-
tion with |Aj| = 1 for somej #i. In this case, playey’s play induced bys* can be
different from that ofs. However, as explained at the beginning of this proof, the
continuation payoffsy; are chosen in such a way that after every public history
within the block, playei is indifferent over all actions regardless of the hidden
statew and regardless of playgis action in the current period. Hence, again,
playeri’s play in this block is sequentially rational.

Finally, suppose that corresponding to the current block is a coordinate di-
rection with |Aj| = 1. By the construction, the strategy; ands_; induce the
same actions during the current block, so plajgemcentive problem is exactly
the same as the one in Lemmas B17 and B18. Suppose that pégyast history
ishi~ € H!'™L. In this case, the corresponding belgihi 1) assigns probability
one on the event that no one has deviated during the current block game. Then
playeri’s incentive problem is exactly the same as the one studied in the proofs
of Lemma Lemmas B17 and B18, and hence playerwilling to continue to
plays’ (h'~1) = (ht~1) today, regardless of her belief at the beginning of the cur-
rent block game. Now suppose théit* ¢ H' ™. Sinces i|-1 = S*|;t-1, by the
construction, choosing (h 1) is optimal.

D.8 Proof of Proposition D7

The proof is the same as that of Proposition D6, except the modification of the
paymentztj“. In the proof of Proposition D62tj+1 is modified in such a way
that playerj is indifferent over all actions in periodh- 1 regardless of playeis
current action, and this modification relies on the fact that each pure action profile
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has strong full rank. Here we show that a similar modification is possible without
strong full rank, as long as players can communicate.

Suppose that for each+ i, the paymenlztj+1 depends on the public signals
ht+1 = (y1, ... ,y**1) and on playei’s messagen € A in periodt + 1. We con-
siderz‘jJrl which satisfies the following condition:

6(1-p) 5 m(ylaiaj,sij(h)Z ™ (hy,m = a)
ye
1-5

= —1_ p5 <v§0(p573|ht) _V?(p57s"|(ht,a4)’sj|(ht7aj)7s—ij ’ht)>

for all w, &, andaj, This system of equations indeed has a solution, since each
pure action profile has cross-state individual full rank. Note that strong full rank
is not needed here, simz'jé*1 now depends om.

Intuitively, the above condition says that playes indifferent over all actions
in periodt + 1 regardless of the current hidden stateand of playei’s current
action, as long as playereports her action truthfully. And playemdeed reports
her action truthfully after every history, since her report does not influence her
own payoff. Hence playey # i is indifferent over all actions after every history,
even if we modify player’s action at off-path histories.
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