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Abstract

This paper considers infinite-horizon stochastic games with hidden states

and hidden actions. The state changes over time, players observe only a

noisy public signal about the state each period, and actions are private infor-

mation. In this model, uncertainty about the monitoring structure does not

disappear. We show how to construct an approximately efficient equilibrium

in a repeated Cournot game. Then we extend it to a general case and obtain

the folk theorem using ex-post equilibria under a mild condition.
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1 Introduction

The theory of repeated games provides a framework to study the role of long-term

relationships in facilitating cooperation. Past work has shown that reciprocation

can lead to more cooperative equilibrium outcomes even if there isimperfect pub-

lic monitoring so that each period, players observe only a noisy public signal

about the actions played (Abreu, Pearce, and Stacchetti (1990) and Fudenberg,

Levine, and Maskin (1994, hereafter FLM)). This work has covered a range of

applications, from oligopoly pricing (e.g. Green and Porter (1984) and Athey and

Bagwell (2001)), repeated partnerships (Radner, Myerson, and Maskin (1986)),

and relational contracts (Levin (2003)). A common assumption in the literature is

that players know the monitoring structure, i.e., they know the distribution of pub-

lic signals as a function of the actions played. Fudenberg and Yamamoto (2010)

relax this assumption and consider players who initially do not know the monitor-

ing structure. However, in their model, the true monitoring structure is fixed over

time, and thus players can learn it from observed signals in the long run. In par-

ticular, their analysis relies on the fact that patient players care only about payoffs

in a distant future in which uncertainty about the monitoring structure vanishes.

Assuming (asymptotically) perfect knowledge of the monitoring structure is

restrictive. To address this concern, this paper considers a model in which uncer-

tainty about the monitoring structure never disappears. Specifically, we consider

a model withunknown, perpetually changing monitoring structure. In this model,

players may obtain some information about the current monitoring structure from

the signal today,after they choose actions. But then in the next period, the mon-

itoring structure will stochastically change, so players will continue to face new

uncertainty.

Changing monitoring structures naturally arise when the underlying economic

conditions change over time. One example is a repeated Cournot model with hid-

den correlated demand shocks. Suppose that the state of the economyω, which

influences the distribution of the market price today, is hidden information and

positively correlated over time. As in Green and Porter (1984), the realized price

is regarded as a noisy public signal about the current actions (quantities), because

higher quantities induce low prices more likely. In this model, the signal (price)

distributions are different for different periods, since the stateω is not i.i.d.. Also
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the true signal distribution is unknown each period, as the stateω is not observ-

able. Hence the monitoring structure is unknown and changing. Another example

is a repeated principal-agent problem. If the agent’s productivity is unobserv-

able, and is changing due to experience, then the true distribution of the output

is unknown and changing. This paper shows that long-run relationships facilitate

cooperation even in such situations. In particular, we show that the folk theorem

obtains using public-strategy equilibria.

Formally, we consider a new class of stochastic games in which a hidden,

changing state influences the monitoring structure (the signal distribution) in the

current stage game. Actions can influence the state transition. Each player’s stage-

game payoff depends on her own action and the public signal, so the payoff does

not contain more information than the signal. In this setup, the hidden state in-

directly influences the stage-game payoffs through the distribution of the public

signal. For example, in a repeated oligopoly, firms have higher expected payoffs

at a state in which high prices are more likely. So uncertainty about the probability

of high prices leads to uncertainty about the expected payoffs of the stage game.

Since we assume that actions are private information, even if players have

an initial common prior about the state, their posterior beliefs can potentially di-

verge in later periods. For example, if a player chooses a mixed action, the re-

alized action is her private information, and she updates her posterior given this

information. Similarly, if a player deviates from an equilibrium strategy, she will

update her posterior given her deviation, while the opponents will update without

knowing it. A common technique in the literature is to allow cheap-talk communi-

cations to resolve conflicting information (e.g., Kandori and Matsushima (1998)),

but it does not seem to easily apply to our setup.1

Diverging posterior beliefs can cause a miscoordination problem. Suppose

1Kandori and Matsushima (1998) consider repeated games with private monitoring and com-
munication, in which there is no payoff-relevant state and each player reports private signals about
the opponents’ actions. They focus on “public equilibria” in which the play depends only on public
reports. Then a player’s continuation payoff is a function of the past public reports, which allows
them to use recursive tools to characterize the equilibrium payoff set. In contrast, in this paper,
each playeri has a private beliefµi about the payoff-relevant state, and this private belief directly
influences her continuation payoffs. That is, the continuation payoff depends on the true belief
µi and is not a function of public histories. Hörner, Takahashi, and Vieille (2015) argue that the
equilibrium analysis becomes significantly harder in such a case. They show that it is still possible
to provide truthful incentives if some assumptions are satisfied (e.g., independent private values);
but unfortunately, these assumptions do not hold in our setup.
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that there are two players who want to reward each other (i.e., they each want to

give high payoffs to the other). If they have the same beliefµ about the state, this

can be done by playing a welfare-maximizing strategy profile, sayseff(µ). Note

that this profile depends on the beliefµ, because the stage-game payoffs depend

on the hidden stateω. On the other hand, when players have different beliefs and

these beliefs are private information, it is less clear what they should do. Indeed,

if each player simply chooses the welfare-maximizing strategy corresponding to

her own belief, the resulting strategy profile may not maximize the welfare due

to miscoordination. A similar problem arises when we consider a player who

wants to punish the opponent. If the opponent’s belief is private information, it is

unclear how to punish the opponent, as the effective punishment depends on the

opponent’s belief in general.

To overcome this problem, this paper introduces the idea of “pseudo-ergodic

strategies.” In general, given a strategy profile in the infinite-horizon game, dif-

ferent initial priors induce different payoff streams, which result in different av-

erage payoffs. Pseudo-ergodic strategies are a special class of strategy profiles

in which all initial priors yield approximately the same average payoffs. Such a

property may sound demanding, but it turns out that in our setting, for an arbitrar-

ily fixed belief µ̃, the corresponding welfare-maximizing strategy profileseff(µ̃)
is a pseudo-ergodic strategy which approximates the welfare-maximizing payoff

regardless of the true beliefµ. A rough idea is that when players play this strat-

egy profileseff(µ̃), the resulting payoff stream in the infinite-horizon game has a

flavor of ergodicity in the sense that the initial belief does not influence the con-

tinuation payoff after a long time. This indeed implies that the strategy profile

seff(µ̃) yields almost the same payoff for all initial beliefs, as patient players care

only about payoffs in a distant future. See Section 4.1 for more details.

So if players want to reward each other, they may ignore their private beliefs

and simply play the above profileseff(µ̃). That is, they may form a “dummy public

belief” µ̃ and play the corresponding strategy. This approximates the efficient

payoff regardless of their initial private beliefs. Similarly, if a player plays the

minimax strategy for some dummy beliefµ̃, it approximates the minimax payoff

regardless of the true beliefµ. In this way, players can reward or punish their

opponent without fine-tuning the strategy depending on their private beliefs.

The next question is whether we can actually construct an equilibrium by as-

6



sembling these pseudo-ergodic strategies: We need to find an effective punish-

ment mechanism when players have diverging beliefs about the true monitoring

structure. To solve this problem, we consider a punishment mechanism in which

a deviation today will lower continuation payoffs regardless of the current hidden

stateω. Under this mechanism,ex-post incentive compatibilityis satisfied in that

any deviation today is prevented regardless of the current hidden stateω; hence

this mechanism works even if there is uncertainty about the stateω.

Of course, ex-post incentive compatibility is more demanding than Bayesian

incentive compatibility, and in general, the set of ex-post equilibrium payoffs is

smaller than the set of sequential equilibrium payoffs. However, in our envi-

ronment, it is possible for ex-post equilibria to approximate the Pareto-efficient

frontier. Indeed, our main result is the folk theorem: We show that any feasible

and individually rational payoff can be approximated by a public ex-post equilib-

rium, if players are patient and ifcross-state individual full rankandcross-state

pairwise full rankhold. The cross-state full-rank condition is an extension of in-

dividual full rank and pairwise full rank of FLM, and requires that a public signal

can statistically distinguish the current state and the chosen action profile.

Fudenberg and Yamamoto (2010) also consider ex-post equilibria when play-

ers face uncertainty about the monitoring structure. However, there are important

differences between their work and this paper. As noted, in Fudenberg and Ya-

mamoto (2010), players can learn the true monitoring structure in the long run.

Then players’ incentive problems can be decomposed state by state; this is be-

cause it is possible to influence players’ incentives in some stateω without affect-

ing incentives in other states, by changing players’ continuation play in a distant

future in which players have learned the true stateω. This property helps to pro-

vide ex-post incentives.2

On the other hand, in our model, the state today is never revealed to players,

and thus the above idea does not apply. Accordingly, incentive problems for differ-

ent states are entangled in a non-trivial way, and providing ex-post incentive com-

patibility becomes quite delicate. In particular, the “state-specific punishment”

of Fudenberg and Yamamoto (2010) do not work effectively in our environment.

2Their analysis is more complicated than the discussion here, because ex-post incentives must
be providedeach period. They develop a useful recursive method and show that it is indeed
possible to provide such incentives.
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More detailed discussions will be given in Section 3.7.

The contributions of this paper are two-fold. First, we provide a general idea

on how to construct an equilibrium in a new environment, at least for high discount

factorsδ . In particular, we illustrate how dynamic incentives can be effectively

and simply provided via public pseudo-ergodic strategies.

Second, we show that ex-post equilibrium can approximate efficient outcomes,

even if the state changes over time so that state learning is impossible. As will be

explained in the next subsection, “utility transfer across players” of FLM cannot

provide appropriate incentives in our environment, and we construct a new pun-

ishment mechanism which works out even when there is a hidden changing state.

1.1 Overview of the Argument

To understand the critical steps in our proof, it is useful to review the ideas of

FLM, who prove the folk theorem for repeated games with public monitoring.

Their main finding is that when players are patient, any ballW in the interior of

the feasible and individually rational payoff set (see Figure 1) isself-generating.

That is, each payoffv in the ballW is achievable by (some action profile today

and) continuation payoffs in the ballW itself. As shown by Abreu, Pearce, and

Stacchetti (1990), such a ballW is attained by public equilibria, and hence the

folk theorem indeed follows.

How do they prove that the ballW is self-generating? As a first step, they

show that each payoffv on the boundary of the ballW can be achieved using

continuation payoffsw on a translate of the tangent line. For example, take the

target payoffv as in Figure 1. (As we will soon see, this is the most difficult case

in our proof.) FLM show that this payoffv is achievable by the action profileaX

which yields the payoffX in the figure, and by some continuation payoffs on the

horizontal lineL. Here, the continuation payoffs take different values for differ-

ent signals, so that player 1’s deviation today is deterred. Also, since player 2’s

continuation payoff is constant on the lineL and the action profileaX achieves the

best payoffX for player 2, she has no incentive to deviate either. So appropriate

incentives are indeed provided by the continuation payoffs on the lineL. Without

loss of generality, we can assume that the variation in continuation payoffs (the

distance betweenw andw′′ in the figure) is of orderO(1−δ ); such continuation
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payoffs can indeed deter player 1’s deviation today, because her gain by deviating

is of orderO(1−δ ). Also, the lengthD in the figure, which measures the distance

from the payoffv to the lineL, is of orderO(1− δ ). This is so becausev must

be exactly achieved as the weighted average of today’s payoffX and the expected

continuation payoff on the lineL, where the weight on today’s payoff is 1−δ .

X

v

W

w w′ w′′ L

V

D

Player 1’s payoff

Player 2’s payoff

Figure 1: Continuation payoffsw, w′, andw′′ are on the lineL.

Then as a second step, FLM show that if continuation payoffsw move only

on the lineL (and if the variation is of orderO(1− δ )), they stay in the interior

of the ballW. The proof idea is illustrated in the left panel of Figure 2; as one

can see, the distance to the boundary of the ballW is of orderO(
√

1−δ ), which

is much larger than the variation in the continuation payoffsw, and thusw never

goes to the outside of the ballW. This result implies that the continuation payoffs

constructed in the first step are in the ballW, so any boundary pointv of the ball

W is achievable by continuation payoffs inW. They also show that the same result

holds even ifv is an interior point ofW, so in sum, any payoffv in the ballW is

achievable by continuation payoffs inW itself. HenceW is indeed self-generating.

To summarize, the key technique of FLM is to decompose the target payoff

v into two parts: The one-shot action profileaX and the continuation payoffs on

the lineL (which are always in the ballW). Our proof extends this technique to

the case in which the monitoring structure is unknown and changing. Since there

is a hidden changing state in our model, new complications arise, and we need to

modify the proof accordingly. Specifically, we make the following changes:

• We replace the action profileaX above with apseudo-ergodic block strategy,

which approximates the payoffX regardless of players’ private beliefs.
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• We allow the continuation payoffs to movevertically, so they arenoton the

line L. (But they are still in the ballW, so the ball is self-generating. See

Figure 2.)

In what follows, we will explain why we need such changes, and how they work.

To begin with, note that the definition of the feasible payoff set in our envi-

ronment is different from the one in the standard repeated game; since the stage

game payoffs are influenced by a hidden, changing stateω, they are not “feasible

payoffs” in the infinite-horizon game. Instead, given the initial priorµ about the

state and the discount factorδ , we define the feasible payoff setVµ(δ ) as the

set of all possible payoff vectors in the infinite-horizon game. LetVµ denote the

limit of the feasible payoff set asδ → 1; intuitively, this is the feasible payoff set

when players are patient. In the special case in which the state is observable and

follows a Markov process, this limit feasible payoff setVµ does not depend on

the initial prior µ, because the state eventually converges to the stationary distri-

bution regardless of the initial state. Our Proposition 2 shows that under a mild

condition, the same result holds even for our general model in which the state is

unobservable and influenced by actions. So we denote this limit feasible payoff

set byV, as in Figure 1.

Since the feasible payoff set is quite different from the stage-game payoffs,

each extreme point of the feasible payoff setV may not be attained by any one-

shot action profile in our model. For example, in order to decompose the payoff

v in Figure 1, FLM use the action profileaX, which yields the best payoffX for

player 2 within the feasible payoff set. In our model, such an action profile may

not exist, as the payoffX is a payoff in the infinite-horizon game, rather than a

O(
√

1−δ )

w

v

L
W

w

v

L
W

D

FLM This paper

O(1−δ )

Figure 2: Vertical move ofw must be less thanD = O(1− δ ). This is more

restrictive than the bound on the horizontal move, which is of orderO(
√

1−δ ).
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stage-game payoff. To fix this problem, we regard the infinite horizon as a series

of blocks, and treat each block as a “big” stage game. The point is that when

the block is sufficiently long, each extreme payoff of the feasible payoff setV is

approximated by the average payoff in the block (i.e., the payoff in the “big” stage

game). That is, the difference between the stage-game payoffs and the feasible

payoff set disappears, if we regard a long block as a big stage game.

In particular, we use a pseudo-ergodic strategy in each block, so that players’

private beliefs about the state have almost no impact on the block payoff. For

example, instead of the action profileaX in FLM, we use a pseudo-ergodic block

strategy whose block payoff approximates the payoffX regardless of players’

beliefs. To see how to find such a pseudo-ergodic strategy, pick a dummy beliefµ̃
arbitrarily, and letsX be the block strategy which would maximize player 2’s block

payoff if players’ initial common prior was̃µ. In general, this strategysX needs

not maximize player 2’s payoff when the true beliefµ differs from µ̃. However,

our Proposition 3 shows that itapproximatesthe best payoffX regardless of the

true beliefµ. ThissX is the pseudo-ergodic strategy we use.3

This explains why we need the change stated in the first bullet point: By re-

placing one-shot action profiles in FLM with pseudo-ergodic block strategies, we

can approximate each extreme point of the feasible payoff set, regardless of play-

ers’ beliefs. However, this is not the only change we must make: As noted in the

second bullet point, we consider continuation payoffs which are not on a translate

of the tangent line. We make this change because we need to construct a public

equilibrium in the presence of the hidden changing state, which requires continu-

ation payoffs to satisfy a more demanding condition than in the standard repeated

game. Moving continuation payoffs only on a translate of the tangent line is too

restrictive to satisfy this new condition.

To be more specific, take an arbitrary ballW in the feasible payoff setV.

Our goal is to show that this ballW is achieved by public equilibria. For this,

it is sufficient to show that the ballW is self-generating; but the definition of

self-generation here is slightly different from the one in FLM, due to the hidden

3The idea of the block itself is not new: Dutta (1995) uses the same technique in stochastic
games with observable states. The novelty here is to use a pseudo-ergodic strategy, which allows
players to approximate a desired payoff even though their block strategy cannot depend on the
hidden state. In Dutta (1995), the state is observable, and thus players can use different block
strategies for different initial states.
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changing state. To illustrate the difference, take the payoffv as in Figure 1. For

the ballW to be self-generating in our sense, we need to find continuation payoffs

w in the ballW such that regardless of players’ beliefsµ, (i) the payoffv is exactly

achieved as the sum of the block payoff by the pseudo-ergodic strategysX (which

approximates the payoffX) and the continuation payoffw, and (ii) any deviation

from the strategysX during the block is not profitable. This condition is more

demanding than that in FLM, because the choice ofw must be independent of

players’ initial beliefµ, that is, our continuation payoffs must work for all beliefs

µ. Note in particular that the condition (ii) above requiressX to be an ex-post

equilibrium, in that playingsX is optimal for each player even if the initial state

ω is revealed.4 To satisfy this condition, we consider continuation payoffs which

move vertically, as in the right panel of Figure 2. Allowing vertical move is useful

for two reasons:

(a) The block strategysX approximates the payoffX, but does not exactly

achieve it. In particular, different initial beliefsµ yield (slightly) different

block payoffs to player 2. This payoff difference must be offset by contin-

uation payoffs, as we want the same payoffv to be achieved for all beliefs.

So player 2’s continuation payoff cannot be constant, and thusw must move

vertically.

(b) When player 2’s belief differs from the dummy beliefµ̃, the block strategy

sX does not maximize her block payoff, so she can earn a positive profit by

deviating fromsX. We need to punish such a deviation via a variation in

continuation payoffs. That is, we need to burn player 2’s continuation value

(relative to the lineL) after some signals.5

These issues (a) and (b) could be easily handled if we could choose continua-

tion payoffs in an arbitrarily way, but unfortunately, there is a constraint; we must

choose the continuation payoffs from the ballW. (Otherwise, the ballW is not

4But this condition is weaker than “perfect” public ex-post equilibria of Fudenberg and Ya-
mamoto (2010), which requires thatin each period t, the continuation strategy is a Nash equilib-
rium even if the stateω t in that period is revealed. See Section 3.7 for more detailed discussions.

5The problem (b) here is relevant only when the tangent at the pointv is a coordinate vector.
Indeed, when we considerv whose tangent is not a coordinate vector (this is the case of “regular
directions” in FLM), we can incentivize both players by moving continuation payoffs on a translate
of the tangent line. See Section 3.5 for more details.
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self-generating.) This in particular implies that the vertical move of the continua-

tion payoffs cannot be greater than the lengthD in Figure 2. It turns out that this

constraint is quite restrictive, and makes our problem substantially different from

the one in FLM, in the following sense. Recall that FLM consider the horizontal

move only, in which case the distance to the boundary of the ballW is of order

O(
√

1−δ ). This constraint is “loose” in that continuation payoffs are always in

the ballW as long as the variation is of orderO(1−δ ). In contrast, the boundD

on the vertical move is of orderO(1−δ ). Hence the continuation payoff may go

to the outside of the ball, even if the variation toward the vertical direction is of

orderO(1−δ ).
So in sum, we need to solve the above problems (a) and (b), subject to the

constraint that the vertical move is sufficiently “small.” Note that this constraint is

deeply related to the inefficiency result of Radner, Myerson, and Maskin (1986),

who show that the use of huge value burning causes huge inefficiency. In order to

construct an approximately efficient equilibrium, we must avoid such inefficiency,

so we need to minimize the amount of value burning.

It is relatively easy to show that small value burning is indeed enough to solve

the problem (a). Since the block strategysX yields almost the same block payoff

for all beliefsµ, only a small perturbation of the continuation payoffs is enough

to offset this payoff difference.

The problem (b) is more delicate. Since the block strategysX approximates

the best payoffX for player 2, herex-anteexpected gain by deviating fromsX

is small; that is, deviating fromsX cannot improve the block payoff by much, if

we evaluate payoffs by taking expectations over the future states and the future

histories. However, this property needs not imply that small value burning is

enough to solve the problem (b). To see why, suppose that we are now in period

t > 1 of the block and the history within the block so far isht−1. If we want

to deter player 2’s deviation in the current periodt via small value burning, we

have to show that her gain by such a deviation is smallconditional on the current

history ht−1. Obviously, this condition needs not be satisfied even if the ex-ante

gain (which takes the expectation overht−1) is small.

So in order to solve the problem (b) with small value burning, we need to care-

fully evaluate player 2’s gain when she deviates in later periods of the block. To

do so, it is useful to examine how her posterior belief about the state evolves over
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time. Since the state is changing, the belief evolution in our model is complex,

and keeping track of it over a long block is computationally demanding. Nonethe-

less, we find that under a mild condition, thebelief convergence theoremholds, so

that the impact of the current belief on the posterior in a distant future is almost

negligible. In other words, after a long history, all initial beliefsµ induce almost

the same posterior.

An important consequence of the belief convergence theorem is that even if

the true beliefµ is quite different from the dummy belief̃µ in period one, after

a long time, they induce asymptotically the same posteriors,µ t and µ̃ t . (See

Figure 3.) This result is useful to obtain an effective bound on player 2’s gain

by deviating in a later periodt of the block: Recall that the block strategysX

maximizes player 2’s payoff given the dummy initial beliefµ̃. So after every

historyht−1, deviating fromsX in the continuation game is not profitable if player

2’s true posteriorµ t equals the dummy posteriorµ̃ t . Of course, these posteriors

µ t andµ̃ t need not be equal, if the initial beliefµ differs from the dummy belief

µ̃; but as noted above, the belief convergence theorem ensures that the posteriors

µ t and µ̃ t areasymptoticallythe same for larget, even if the initial beliefµ is

quite different fromµ̃. Hence, player 2’s gain by deviating in a later periodt is

small, and converges to zero ast increases. This property (in particular the fact

that the gain converges to zero) is useful to find an effective bound on the amount

of value burning which deters player 2’s deviation inall periodsof the block. See

Section 3.6 for more details.

1.2 Literature Review

The framework of stochastic games was proposed by Shapley (1953). Dutta

(1995) proved the folk theorem for the case of observable actions, and Fuden-

berg and Yamamoto (2011b) and Hörner, Sugaya, Takahashi, and Vieille (2011)

extend it to games with public monitoring. All these papers assume that the state

of the world is publicly observable at the beginning of each period. Yamamoto

(2016) considers hidden states, but assumes that actions are observable. Accord-

ingly, the belief is always common across players, and the model reduces to the

stochastic game in which players’ belief is a common state variable. In this paper,

players’ beliefs are private information and there is no common state variable.
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Period 1
Observey1

Period 2

Period 3

Periodt

Observe(y1,y2)

Observe(y1, · · · ,yt−1)

0 1µ1 µ̃

µ t ≈ µ̃ t

Figure 3: Belief evolution when there are only two states. The whole belief space

is [0,1]. Each thick line is the set of all possible posteriors given the past history.

It shrinks over time, so eventually all initial priors induce the same posterior.

Athey and Bagwell (2008), Escobar and Toikka (2013), and Hörner, Taka-

hashi, and Vieille (2015) consider repeated Bayesian games in which the state

changes as time goes and players have private information about the state each

period. They assume hat the state of the world is a collection of players’ private

information, so if players report their information truthfully, the state is perfectly

revealed before they choose actions.6 In contrast, in this paper, the state is not

perfectly revealed.

Wiseman (2005), Fudenberg and Yamamoto (2010), Fudenberg and Yamamoto

(2011a), and Wiseman (2012) study repeated games with unknown states. They

assume that the state does not change over time, so that players can (almost) per-

fectly learn the true state by aggregating all the past public signals. In our model,

the state changes as time goes and players never learn it perfectly.

Ex-post equilibria have been recently used in various dynamic models, such

as Ḧorner and Lovo (2009), Fudenberg and Yamamoto (2010), Fudenberg and

Yamamoto (2011a), Ḧorner, Lovo, and Tomala (2011), and Yamamoto (2014).

They consider the case in which the state is fixed at the beginning. Again this

paper differs from their work, because we consider changing states.7

6Sections 4 and 5 of Ḧorner, Takahashi, and Vieille (2015) consider equilibria in which some
players do not reveal information, but their analysis relies on the independent private value as-
sumption.

7There are many papers that discuss ex-post equilibria in undiscounted repeated games; see
Koren (1992) and Shalev (1994), for example.
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2 Setup

2.1 Stochastic Games with Hidden States

Let I = {1, · · · ,N} be the set of players. At the beginning of the game, Nature

chooses the state of the worldω1 from a finite setΩ. The state may change as

time passes, and the state in periodt = 1,2, · · · is denoted byω t ∈ Ω. The stateω t

is not observable to players, so they have an initial common priorµ ∈△Ω about

ω1.

In each periodt, players move simultaneously, with playeri ∈ I choosing an

actionai from a finite setAi . Let A ≡ ×i∈I Ai be the set of action profilesa =
(ai)i∈I . Actions are not observable, and instead players observe a public signaly

from a finite setY. Then players go to the next periodt +1, with a new (hidden)

stateω t+1. The distribution ofy andω t+1 depends on the current stateω t and

the current action profilea∈ A; let πω(y, ω̃|a) denote the probability that players

observe a signaly and the next state becomesω t+1 = ω̃, givenω t = ω anda. In

this setup, a public signaly can be informative about the current stateω and the

next stateω̃. This is so because the distribution ofy may depend onω, andy may

be correlated with̃ω. Let πω
Y (y|a) denote the marginal probability ofy.

Playeri’s payoff in periodt is a function of her current actionai and the cur-

rent public signaly, and is denoted byui(ai ,y). Her expected stage-game pay-

off conditional on the current stateω and the current action profilea is gω
i (a) =

∑y∈Y πω
Y (y|a)ui(ai ,y). Here the hidden stateω influences a player’s expected pay-

off through the distribution ofy. Let gω(a) = (gω
i (a))i∈I be the vector of expected

payoffs. Letgi = maxω ,a |2gω
i (a)|, and letg= ∑i∈I gi . Also letπ be the minimum

of πω(y, ω̃|a) over all(ω , ω̃,a,y) such thatπω(y, ω̃|a) > 0.

Our formulation encompasses the following examples:

• Stochastic games with observable states. LetY = Ω×Ω×YA, and suppose

thatπω(y, ω̃ |a) = 0 for y = (y1,y2,yA) such thaty1 , ω or y2 , ω̃. That is,

the first component of the signaly reveals the current state, and the second

component reveals the next state. The third component is a noisy signal

about actions. Since the signal in the previous period perfectly reveals the

current state, players know the stateω t beforethey choose an action pro-

file at . Also, the stage-game payoffui(ai ,y) directly depends on the current
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state through the first componenty1 of the signal. This is exactly the stan-

dard stochastic games studied in the literature.

• Delayed observation. LetY = Ω×YA, and assume thatπω
Y (y|a) = 1 for each

y = (yΩ,yA) such thatyΩ , ω. That is, the first component of the current

signal reveals the current state. The second component is a noisy signal

about actions. This is the case in which players observe the current state

after they choose their actions.

In the infinite-horizon stochastic game, players have a common discount factor

δ ∈ (0,1). Let (ωτ ,aτ ,yτ) be the state, the action profile, and the public signal

in period τ. Player i’s history up to periodt ≥ 1 is ht
i = (aτ

i ,y
τ)t

τ=1. Let Ht
i

denote the set of allht , and letH0
i = { /0}. A public history up to periodt ≥ 1

is denoted byht = (yτ)t
τ=1. Let Ht denote the set of allht , let H0 = { /0}, and

let H =
∪∞

t=0Ht be the set of all public histories. A strategy for playeri is a

mappingsi :
∪∞

t=0Ht
i →△Ai . Let Si be the set of all strategies for playeri, and let

S= ×i∈ISi . For each strategysi , let si |ht
i

be the continuation strategy induced by

si after historyht
i .

A strategysi is public if it depends only on public information, i.e.,si(ht
i) =

si(h̃t
i) for t, ht

i , andh̃t
i such thatyτ = ỹτ for all τ. A strategy profiles is public if

si is public for all i. For each public strategysi , let si |ht be the continuation strat-

egy induced bysi after public historyht . Similarly, s|ht denotes the continuation

strategy profile after public historyht .

Let vµ
i (δ ,s) denote playeri’s average payoff in the stochastic game when the

initial prior is µ, the discount factor isδ , and players play the strategy profiles.

Let vµ(δ ,s) = (vµ
i (δ ,s))i∈I be the payoff vector achieved by the strategy profile

s, givenµ andδ . We writevω
i (δ ,s) andvω(δ ,s) instead ofvµ

i (δ ,s) andvµ(δ ,s),
when the initial priorµ puts probability one on the stateω . As Yamamoto (2016)

shows, for each initial priorµ, discount factorδ , and public strategys−i , player

i’s best replysi exists. A strategy profiles is a Nash equilibriumfor an initial

prior µ if vµ
i (δ ,s) ≥ vµ

i (δ , s̃i ,s−i) for all i ands̃i . Also, a strategy profile is anex-

post equilibriumif it is a Nash equilibrium for allµ. As Sekiguchi (1997) shows,

under the full support assumption (which will be stated in the next subsection), the

difference between Nash and sequential equilibria is not essential. Indeed, given

an initial priorµ, if a payoffv is achieved by some ex-post equilibriums, there is
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a sequential equilibrium ˜s which achieves the same payoffv.

In what follows, we assume that the functionπ has a full support:

Definition 1. Thefull support assumptionholds ifπω(y, ω̃|a) > 0 for all ω, ω̃ , a,

andy.

The full support assumption requires that regardless of the current stateω and

the current action profilea, any signaly can be observed and any stateω̃ can

realize tomorrow. Under this assumption, any public historyht can happen with

positive probability. Also, since any state can happen with positive probability, in

any periodt > 1, a player’s posterior belief about the state is always interior, i.e.,

she assigns at least probabilityπ on any stateω.

The full support assumption is imposed only for the sake of exposition. In

Appendix D, we show that our result remains valid even if the full support as-

sumption is replaced with a weaker condition. In particular, we show that the folk

theorem holds in the examples presented above.

2.2 Belief Convergence Theorem

As noted in the introduction, since actions are private information, players’ be-

liefs can possibly diverge in our model. In this subsection, we present thebelief

convergence theorem, which shows that the current belief has only a negligible

impact on the posterior belief after a sufficiently long historyht . This result im-

plies that if players play pure strategies and do not deviate, their private beliefs

will eventually merge.

Formally, given a pure public strategysi , a public strategys−i , and an initial

prior µ, let µi(ht |µ,s)∈△Ω denote playeri’s belief about the stateω t+1 in period

t +1 after the public historyht . That is,µi(ht |µ,s) is the posterior belief when no

one deviates from the strategy profiles. This belief is well-defined under the full

support assumption, because all public histories can appear with positive prob-

ability on the path. The following is the belief convergence theorem; the proof

relies on weak ergodicity of inhomogeneous Markov matrices, see Appendix B.

Proposition 1. Suppose that the full support assumption holds, and letβ = 1−
π
|Ω| ∈ (0,1). Then for each i, pure public strategy si , public strategy s−i , t ≥ 0, ht ,
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µ, andµ̃, we have ∣∣µi(ht |µ,s)−µi(ht |µ̃,s)
∣∣ ≤ β t .

To interpret this result, pick a strategy profilesas stated, and pick an arbitrary

public historyht . In general, given this historyht , different initial priorsµ andµ̃
induce different posterior beliefs,µi(ht |µ,s) andµi(ht |µ̃,s). However, the above

proposition ensures that these two posterior beliefs get closer ast increases, at

a rate at least geometric with parameterβ . So the impact of playeri’s current

belief on her posterior belief in a distant future is almost negligible, as shown

in Figure 3 in Section 1.1. This ensures that even if the opponents do not know

playeri’s current belief, after a long time, they will eventually obtain very precise

information about playeri’s posterior belief.

The result above relies on the assumption that playeri chooses a pure strat-

egysi and does not deviate. Indeed, ifsi is a mixed strategy, playeri’s belief in

periodt crucially depends on her private information about what actions are ac-

tually chosen, and hence the opponents cannot obtain precise information about

her posterior belief. Similarly, if playeri deviates to other strategy ˜si , si . then

her posterior belief isµi(ht |µ, s̃i ,s−i), which can be quite different from the op-

ponents’ expectationµi(ht |µ,s). In other words, playeri can always possess new

private information about the true state by deviating from a prescribed strategysi .

The belief convergence theorem does not ensure that two posterior beliefs in-

duced by different public historyht and h̃t will merge. That is, different public

histories may yield quite different beliefs even after a long time. In this sense, the

belief evolution is path-dependent, and state learning never ends.

3 Example: Stochastic Cournot Competition

To illustrate the key ideas of the paper, in this section, we consider a Cournot

example and show how to construct an approximately efficient equilibrium.

3.1 Model

There are two firms, and each firmi produces producti. We consider differentiated

products, but these products are quite similar; so the prices of the two products
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are highly correlated.8 (For example, think about the price of coffee beans from

Brazil and the one from Kenya.) In each period, each firmi chooses quantityai .

There are three possible values ofai : H = 20 (high),M = 10 (middle), orL = 0

(low).

There is a persistent demand shock and an i.i.d. demand shock. The persistent

demand shock is represented by a hidden stateω, which follows a Markov pro-

cess. Specifically, the state is either a boom (ω = ωG) or a slump (ω = ωB), and

after each period, the state stays at the current state with probability 0.8. Actions

(quantities) do not influence the state evolution. Letµ ∈ (0,1) be the probability

of ωG in period one.

Due to the i.i.d. demand shock, the market price is stochastically distributed,

conditional on the current economic conditionω and the quantitya = (a1,a2).
Let yi ∈ {0,10,20,30,40,50} denote the price of producti, and lety = (y1,y2).
For each stateω and each quantitya, let πω

Y (·|a) denote the distribution of the

price vectory overY = {0,10,20,30,40,50}2. We assume that bothy1 andy2 are

publicly observable. The precise specification ofπY will be given in Appendix A,

and here we list only the key properties ofπY:

• πω
Y (y|a) > 0 for eachω, a, andy, so the full support assumption holds.

• The distributions{(πω
Y (y|a))y∈Y}(ω ,a) are linearly independent. This im-

plies that the firms can statistically distinguish(ω,a) throughy.

• The expected priceE[yi |ω ,a] = ∑y∈Y πω
Y (y|a)yi conditional on the stateω =

ωG is as in the left table below: For each cell, the first component represents

the expectation ofy1, and the second is ofy2. Similarly, the expected price

conditional on the stateω = ωB is as in the right table.

L M H

L 42, 42 41, 40 23, 22

M 40, 41 23, 23 16, 15

H 22, 23 15, 16 13, 13

L M H

L 36, 36 35, 34 17, 16

M 34, 35 17, 17 10, 9

H 16, 17 9, 10 7, 7
8Even when the firms produce homogeneous products, as in Green and Porter (1984), our folk

theorem (Proposition 6) applies so that we can construct an approximately efficient equilibrium.
However, the equilibrium strategy becomes a bit more complicated in that case. The reason is that
when the products are homogeneous, symmetric action profiles never have pairwise full rank, and
thus we need to perturb the optimal policy for the signal to be informative about the identity of the
deviator. See pages 1020-1021 of FLM for more details.
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Since the two firms produce similar products, the expected prices are (almost)

determined by the total productiona1 +a2. For example, the three action profiles

(H,L), (M,M), and(L,H) induce the same production levela1 + a2 = 20, and

hence result in similar expected prices, 22 or 23, at the good stateωG (the left

table). Also, as one can see from the right table, when the state changes to the bad

stateωB, the expected price drops by 6, compared to the case with the good state

ωG.

For simplicity, we assume that the marginal cost of production isC = 0 for

each firm. Hence firmi’s actual profit isaiyi , and its expected payoff givenω and

a is ai ·E[yi |ω ,a]. We normalize the payoff (subtract 200 and then divide by 10)

and denote it bygω
i (a). That is, letgω

i = ai ·E[yi |ω ,a]−200
10 . These payoffsgω

i (a) are

summarized as follows; the left table describes the payoffs for the good stateωG,

and the right table describes the ones for the bad stateωB.

L M H

L −20,−20 −20, 20 −20, 24

M 20,−20 3, 3 −4, 10

H 24,−20 10,−4 6, 6

L M H

L −20,−20 −20, 14 −20, 12

M 14,−20 −3,−3 −10,−2

H 12,−20 −2,−10 −6,−6

As one can see,(H,H) is a Nash equilibrium of the stage game, regardless

of ω . Also, “Always (H,H)” is a sequential equilibrium in the infinite-horizon

game regardless of the initial priorµ, since the state transition does not depend on

actions. The payoff of this equilibrium is12(6,6)+ 1
2(−6,−6) = (0,0) in the limit

asδ → 1, because the time average of the hidden stateω is 1
2-1

2 in the long run.

In this game, the “efficient” action profile (i.e., the action profile which max-

imizes the total profit of the firms) is(H,H) at the stateωG, but is(M,M) at the

stateωB. So in order to maximize the total profit, the firms should produce less

than the Nash equilibrium quantity when they are pessimistic about the current

state of the economy. The next subsection studies this issue in more details.

3.2 Feasible Payoff Set and Optimal Policies

Given the initial priorµ and the discount factorδ , different strategy profiless

yield different payoffs in the infinite-horizon game. The set of all such payoff

vectors is the feasible payoff set in our environment. That is, the feasible payoff
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set given the initial priorµ and the discount factorδ is defined as

Vµ(δ ) = co{vω(δ ,s)|s∈ S}.

The welfare-maximizing point in this setVµ(δ ) can be computed by dynamic

programming. To see this, note that the welfare-maximizing point must be achiev-

able by a pure strategy, as mixed strategies can achieve only a convex combination

of pure-strategy payoffs. When the firms use a pure strategy profile and do not de-

viate, they do not have private information, so the posterior belief is common

after each period. Thus the maximal welfare must be achieved by a pure Marko-

vian strategy profile in which the posterior beliefµ t is a common state variable.

This implies that the maximal welfare must solve the following Bellman equation:

Let f (µ) be the maximal welfare given the initial priorµ, and letµ̃(y|µ,a) be the

posterior belief in period two given that the initial prior isµ and the outcome in

period one is(a,y). Then the functionf must solve

f (µ) = max
a∈A

[
(1−δ )(gµ

1 (a)+gµ
2 (a))+δ ∑

y∈Y
πµ

Y (y|a) f (µ̃(y|µ,a))

]
(1)

Intuitively, (1) asserts that the maximal welfaref (µ) is the sum of today’s profit

gµ
1 (a)+gµ

2 (a) and the expectation of the future profitsf (µ̃(y|µ,a)). The current

action should maximize this sum, and hence we take the maximum with respect

to a.
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Figure 4: Value Functions for Highδ
x-axis: beliefµ. y-axis: payoffs.
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Figure 5: Optimal Policy

x-axis: beliefµ. y-axis: actions.

22



For each discount factorδ ∈ (0,1), we can derive an approximate solution

to (1) by value function iteration with a discretized belief space. Figure 4 illus-

trates how the value functionf changes when the firms become more patient; it

describes the value functions forδ = 0.95,δ = 0.99, andδ = 0.999. As one can

see, the value function becomes almost flat as the discount factor approaches one,

that is, the firms’ initial prior has almost no impact on the efficient payoff. For

δ close to one, the value function (the maximal welfaref (µ)) approximates 0.70

regardless of the initial priorµ.

The optimal policy forδ = 0.95 is described in Figure 5, where 1 in the vertical

axis meansa = (M,M), and 0 meansa = (H,H). It shows that the optimal policy

is a simple cut-off strategy, which chooses(M,M) when the current beliefµ is less

than 1
2, and(H,H) otherwise.9 In what follows, letseff(δ ,µ) denote the optimal

policy givenδ and µ. That is,seff(δ ,µ) is the strategy for the infinite-horizon

game which achieves the efficient payoff within the feasible payoff set, given the

discount factorδ and the initial priorµ. Without loss of generality, we assume

that the optimal policyseff(δ ,µ) is a pure public strategy profile.

Using a similar technique, we can compute other extreme points of the feasible

payoff setVµ(δ ). For example, the highest payoff for firm 1 within the feasible

payoff set can be computed by solving

f̃ (µ) = max
a∈A

[
(1−δ )gµ

1 (a)+δ ∑
y∈Y

πµ
Y (y|a) f̃ (µ̃(y|µ,a))

]
.

Again, we can derive an approximate solution using value function iteration. It

turns out that whenδ is close to one, the value function is almost flat and approx-

imates 18.2 regardless of the initial priorµ. The optimal policy is again a cut-off

strategy; it chooses(M,L) when µ ≤ 1
3, and(H,L) when µ > 2

3, regardless of

δ . Let s1(δ ,µ) denote the optimal policy givenδ andµ. That is,s1(δ ,µ) is the

strategy for the infinite-horizon game which maximizes firm 1’s payoff. Similarly,

let s2(δ ,µ) denote the strategy which maximizes firm 2’s payoff.

To summarize, whenδ is close to one, the initial prior does not influence

the maximal welfare or the highest payoff for each firm. More generally, our
9Note that this optimal policy is identical with the myopic policy, which maximizes the stage-

game payoff each period. This follows from the fact that in this example, the distribution of the
belief tomorrow does not depend on the current action profilea, as explained in Appendix A. Our
equilibrium construction does not rely on this property, and is valid in more general environments.
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Proposition 2 shows that the feasible payoff set does not depend on the initial

prior µ, in the limit asδ goes to one. LetV denote this limit feasible payoff

set, and letV∗ be the set of all payoffs inV which Pareto-dominates the trivial

equilibrium payoff,(0,0). Figure 6 describes (a subset of) the limit feasible payoff

set. Here the profit maximizing point is(0.35,0.35), because the value function

f approximates 0.70 asδ goes to one. Also the down-right corner is(18.2,−20)
because the value functioñf approximates 18.2, and the optimal policys1(δ ,µ)
asks firm 2 to playL forever, which yields−20 each period. Figure 6 is only a

subset ofV, because we have not computed other extreme points ofV. Figure 7

describes (a subset of) the feasible and individually rational payoff setV∗. In what

follows, we will construct an equilibrium which approximates the efficient payoff

vector(0.35,0.35).

(0.35,0.35)

(−20,18.2)

(18.2,−20)

Figure 6: Subset ofV

(0.35,0.35)

Figure 7: Subset ofV∗

3.3 Pseudo-Ergodic Strategies

As explained, when the firms have a common beliefµ, the efficient payoff vector

(0.35,0.35) is (approximately) achieved if the firms coordinate and play the opti-

mal policyseff(δ ,µ). However, in our model, the firms may not have a common

belief, which causes a possible miscoordination problem in the following sense:

Suppose that each firmi’s current belief isµi whereµ1 , µ2, and that these beliefs

are private information. If each firm chooses the optimal policy corresponding to

its own belief, then the resulting profile(seff
1 (δ ,µ1),seff

2 (δ ,µ2)) is quite different

from the optimal policy.
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To avoid this miscoordination problem, in our equilibrium, the firms play

“pseudo-ergodic strategies” which do not depend on the private beliefs. For ex-

ample, if the firms want to cooperate and approximate(0.35,0.35) from now on,

they form a “dummy public belief”µ̃ = 1
2 and play the corresponding optimal

policy seff(δ , 1
2). By the definition, this strategyseff(δ , 1

2) is not optimal unless

the firms’ current beliefs areµ1 = µ2 = 1
2. However, as Proposition 3 shows, it is

approximately optimal for all initial priorsµ, that is, it approximates the efficient

payoff (0.35,0.35) regardless of the true belief. So if the firms want to cooperate,

they may ignore their private beliefs and simply playseff(δ , 1
2), the optimal policy

for the dummy public belief̃µ = 1
2.

Proposition 3 also shows that the same result holds for other optimal policies.

For example, the optimal policys1(δ , 1
2), which achieves the best payoff for firm

1 given the dummy belief̃µ = 1
2, approximates the down-right corner(18.2,−20)

of the feasible payoff set regardless of the initial priorµ. So the firms may play it

if they want to reward firm 1 (by giving 18.2) while punishing firm 2 (by giving

−20). Similarly, the optimal policys2(δ , 1
2) for the dummy belief12 approximates

(−20,18.2) regardless of the initial priorµ. This strategy can be used when the

firms want to reward firm 2 while punishing firm 1.

Also, any constant action profile is a pseudo-ergodic strategy in that it achieves

approximately the same payoff regardless of the initial belief. For example, if the

firms always play(H,H), the payoff(0,0) is achieved in the limit asδ → 1,

regardless of the initial belief. As will be explained, the firms use this “Always

(H,H)” when they want to punish each other.

3.4 Random Blocks and Self-Generation

Now we construct an equilibrium approximating the efficient payoff(0.35,0.35),
by assembling the pseudo-ergodic strategies in the previous subsection. In what

follows, we assume that public randomizationz, which follows the uniform dis-

tribution on[0,1], is available at the end of each period.

As in Yamamoto (2016), we regard the infinite horizon as a sequence ofran-

dom blocks, the length of which is determined by public randomization. Specifi-

cally, at the end of each periodt, the firms check the public randomizationzt . If

zt ≥ p for some fixed numberp∈ [0,1], then the current random block terminates
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and the new block begins from the next periodt + 1. If zt < p, then the current

block does not terminate and the next periodt +1 is included in the current block.

So the probability that the current block terminates is 1− p each period, and the

length of the block is geometrically distributed. We takep close to one, so the

expected length of the block is long.

Due to the random termination probability 1− p, each random block is payoff-

equivalent to the infinite-horizon game with the discount factorpδ . Indeed, given

the initial prior µ and the strategy profiles, the unnormalized expected payoff in

the first block is∑∞
t=1(pδ )t−1E[gωt

(at)|µ,s], wherept−1 is the probability of the

t-th period of the block being actually played. This payoff can be rewritten as
vµ (pδ ,s)

1−pδ , which equals the unnormalized payoff for the infinite-horizon game with

the discount factorpδ .

In each random block, the firms choose one of the four pseudo-ergodic strate-

gies: seff(pδ , 1
2), s1(pδ , 1

2), s2(pδ , 1
2), or “Always (H,H).” On the equilibrium

path, the firms do not change the strategy in the middle of the block. That is, once

a strategy is selected, they play it until the block ends. (Of course, they can deviate

whenever they want.) Since the firms play pseudo-ergodic strategies, their block

payoffs are not affected by their beliefs by much. For example, if the firms choose

seff(pδ , 1
2) during the block, the block payoff approximates the efficient payoff

(0,35,0.35) regardless of their beliefs. Here the firms use the optimal policy for

the discount factorpδ (rather thanδ ), because the “effective discount factor” for

each random block ispδ , as explained above.

(0.35,0.35)

seff
s2

s1HH
W

Figure 8: Block Strategies
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Take a ballW in the interior of the feasible and individually rational payoff

setV∗. For the sake of exposition, we assume thatW is in the interior of the

rectangle[0,0.35]× [0,0.35], as in Figure 8. Our goal is to show that this ballW

is attainable by public equilibria, when the firms are patient. Thanks to the self-

generation theorem (Proposition B1 in Appendix B), it is sufficient to show that

the ballW is self-generating. That is, for each target payoffv in the ballW, there

is a block strategys and a continuation payoff functionw : H →W such that

vi =
1−δ

1− pδ
vω

i (pδ ,s)+
∞

∑
t=1

(1− p)pt−1δ tE[wi(ht)|ω,s] (2)

for all ω andi, and

vi ≥
1−δ

1− pδ
vω

i (pδ , s̃i ,s−i)+
∞

∑
t=1

(1− p)pt−1δ tE[wi(ht)|ω, s̃i ,s−i ] (3)

for all ω, i, ands̃i .

(2) is the promise-keeping condition, which implies that regardless of the ini-

tial stateω, the target payoffv is exactly achieved as the sum of the block payoff

by the strategys and the continuation payoffw chosen from the ballW. Indeed,

the first term in the right-hand side is the block payoff bys, and the second term

is the expected continuation payoff. More precisely,vω
i (pδ ,sv)
1−pδ in the first term is

the unnormalized payoff during the block, and we multiply 1−δ because we con-

sider the average payoff with the discount factorδ . (1− p)pt−1 in the second term

denotes the probability of the current block terminating after periodt, andwi(ht)
is the continuation payoff in that case.

(3) is the incentive compatibility condition, which ensures that any deviation

from the block strategys is not profitable, regardless of the initial stateω. This

ensures that the block strategys is an ex-post equilibrium in the random block,

that is,s is a Nash equilibrium even if the initial stateω is revealed.

To show that the ballW is indeed self-generating, for each target payoffv∈W,

we need to find a block strategys and a continuation payoff functionw which

satisfy (2) and (3). We choose the strategys as in Figure 8; here the ballW is

divided into four parts, depending on the corresponding block strategys. For

example, if the target payoffv is in the top-right part, we lets= seff.

What remains is to show that for eachv∈W, there are continuation payoffsw

which indeed satisfy (2) and (3). We will work on this in the next two subsections.
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3.5 Regular Directions

Choosev as in Figure 9. That is, letv be a boundary point of the ballW with the

unit normalλ = ( 1√
2
, 1√

2
). Then take the block strategys as in Figure 8; since

v is in the top-right part, we lets = seff, whose block payoff approximates the

efficient payoff(0.35,0.35) regardless of the initial priorµ. In what follows, we

will explain that there is a continuation payoff functionw satisfying (2) and (3).

v

w∗

vωG(pδ ,sv)

W

Figure 9: Choice ofw∗

1−δ
(1−p)δ l

λ

w(ht)

w(h̃t)

v

vωG(pδ ,sv)
l

w∗

L

W

Figure 10: Zoomed Picture

As a first step, we constructw which satisfies the promise-keeping condition

(2) for stateωG. Suppose that the functionw is constant, i.e.,w(ht) = w∗ for all ht ,

wherew∗ ∈ RN is a constant. Then since∑∞
t=1(1− p)pt−1δ t = (1−p)δ

1−pδ = 1− 1−δ
1−pδ ,

the promise-keeping condition (2) for stateωG is rewritten as

v =
1−δ

1− pδ
vωG(pδ ,s)+

(
1− 1−δ

1− pδ

)
w∗. (4)

Choose the constantw∗ so that the above equality holds, that is, let

w∗ = v− 1−δ
(1− p)δ

(vωG(pδ ,s)−v).

Intuitively, w∗ is chosen so that the target payoffv is exactly achieved as the sum

of the block payoffvωG(pδ ,sv) and of the continuation payoffw∗. (See Figure 9.)

Pick p close to one, and then chooseδ close to one. Then1−δ
(1−p)δ is close to zero,

and thusw∗ is in the interior of the ballW, as in Figure 9.

By the definition, this constant functionw(ht) = w∗ satisfies the promise-

keeping condition (2) for the good stateωG. However, it does not satisfy the
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promise-keeping condition (2) for the bad stateωB. (This is precisely the problem

(a) discussed in Section 1.1; we need to achieve the same payoffv regardless of the

initial stateω .) Also, it does not satisfy the incentive compatibility condition (3).

So we need to modify the constant function in such a way that these constraints

are satisfied.

To satisfy the promise-keeping condition (2) for the bad stateωB, we only

need to perturb the continuation payoff a bit. To see why, recall that the block

strategyseff approximates the payoff(0.35,0.35) regardless of the initial stateω.

This implies that the initial state influences the termvω
i (pδ ,s) in the right-hand

side of (2) only by a small amount. To offset this payoff difference, we only need

a small perturbation of the continuation payoff. For more details, see Lemma B16

in Appendix B.

To satisfy the incentive compatibility condition (3), we borrow the idea of

“utility transfer across players” of FLM. Roughly, if the public historyht during

the current block indicates firm 1’s deviation, then we change the continuation

payoff fromw∗ to w(ht) in Figure 10. By doing so, we punish firm 1 by reducing

the continuation payoff (relative tow∗), while we reward firm 2 by increasing the

continuation payoff. Likewise, if the public historyh̃t indicates firm 2’s deviation,

we usew(h̃t) in the figure as the continuation payoff. This punishment mechanism

does not involve value burning, that is, regardless of the realization ofht , the

continuation payoff is always on the lineL in Figure 10, so the sum of the firms’

profits is constant. This property ensures that we can avoid inefficiency, even

though punishment occurs on the equilibrium path due to imperfect monitoring of

actions.

In the rest of this subsection, we formally show that the idea of utility transfers

indeed works in our environment. Since this is an analogue of FLM, readers who

are not interested in details may skip this part and go to Section 3.6.

To satisfy (3), we consider the functionw : H →W with the form

w(ht) = w∗ +zt(ht) (5)

for eacht andht . That is, we add a perturbation termzt to the constant payoffw∗;

the superscriptt on the perturbation termz represents the time at which the block

terminates.

For eacht, we will choose the perturbation termzt carefully so that any devia-
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tion in periodt is not profitable regardless of the past historyht−1 and the current

stateω t . Specifically, note thatzt(ht) can be written aszt(ht−1,y), wherey is the

public signal in periodt. Then givent andht−1, we choose(zt(ht−1,y))y∈Y such

that

δ (1− p) ∑
y∈Y

πω
Y (y|ai ,s−i(ht−1))zt

i(h
t−1,y) =

{
0 if ai = si(ht−1)
− 1−δ

1−pδ g otherwise
(6)

for all ω, i, andai , and

zt
1(h

t−1,y)+zt
2(h

t−1,y) = 0 (7)

for all y. The first condition (6) ensures that any one-shot deviation in periodt

after the public historyht−1 is not profitable, regardless of the current stateω t . To

see this, suppose that we are now in periodt of the block and that the past public

history isht−1. If firm i deviates in the current periodt, it influences the distribu-

tion of the public signaly today, and hence the expected value of the perturbation

termzt
i(h

t−1,y). The left-hand side of (6) measures how much this influences firm

i’s stochastic-game payoff, evaluated at periodt; the term 1− p is the probability

that the block terminates right after the current periodt, in which case the contin-

uation payoff is indeedw∗+zt . (6) asserts that this effect is1−δ
1−pδ g, which is large

enough to deter firmi’s one-shot deviation in periodt. Indeed, any deviation can-

not increase the block payoff by more than1−δ
1−pδ g, so the gain by such a deviation

is less than the loss.

The second condition (7) asserts that the modified continuation payoffw(ht) =
w∗ +zt(ht) is on the dotted lineL in Figure 10, which is a translate of the tangent

line. We can show that the above system of equations (6) and (7) indeed has

a solutionzt . Also, (7) ensures that the resulting continuation payoffsw(ht) =
w∗+zt(ht) are in the ballW. (The proof is very similar to that of FLM, and hence

omitted.)

We have explained that the above perturbation termzt ensures ex-post incen-

tive compatibility in periodt. That is, any deviation in periodt is not profitable,

even if the stateω t is revealed. Since we choose suchzt for eacht, ex-post in-

centive compatibility is satisfied each period, and thus the incentive compatibility

condition (3) indeed holds. (Here, we can ignore the possibility that a deviation

in periodt influences the perturbation termzt̃ for t̃ , t. This is becausezt̃ satisfies

(6) so that its expected value is zero as long as firmi does not deviate in period̃t.)
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3.6 Coordinate Directions and Value Burning

In the previous subsection, we have explained that whenv is chosen as in Figure

9, we can find continuation payoffsw satisfying (2) and (3). A similar argument

shows that the same result holds for almost all payoffsv in the ballW. The only

exceptions are the case in whichv is a boundary point ofW whose unit normal is

a coordinate vector,λ = (1,0) or λ = (0,1). In this subsection, we will explain

how to findw for such a case.

Since the game is symmetric, without loss of generality, we focus on the case

in which the unit normal isλ = (0,1). That is, we choosev as in Figure 1 in

Section 1.1. Choose the block strategys as in Figure 8, i.e., lets= s2. This block

strategy approximates(−20,18.2) regardless of the initial priorµ.

As in the previous subsection, take the constant continuation payoffw(ht) =
w∗ so that the promise-keeping condition (2) holds for the good stateωG. This

constant function does not satisfy the promise-keeping condition (2) forωB or the

incentive compatibility condition (3), so we need to modify it. As explained in the

previous subsection, the promise-keeping condition (2) forωB can be satisfied by

perturbing the continuation payoff a bit.

How about the incentive compatibility condition (3)? In the previous subsec-

tion, we have shown that it can be satisfied by moving continuation payoffs on the

line L in Figure 10, which is a translate of the tangent line. Unfortunately, this

idea does not extend here: When firm 2’s belief isµ , 1
2, the block strategys2

does not maximize firm 2’s block payoff, and thus firm 2 can improve its block

payoff by deviating froms2. For (3) to hold, we need to deter such a deviation

via a variation in continuation payoffs, so the continuation payoffw must move

vertically. This means thatw cannot be on the lineL in Figure 1. Note that this is

precisely the problem (b) discussed in Section 1.1.

In what follows, we show that we can indeed deter firm 2’s deviation via ver-

tical move of the continuation payoffsw, while keepingw in the ballW. (We

focus only on firm 2’s problem, because firm 1’s incentive condition can be eas-

ily satisfied using the horizontal move.) Formally, we show that there is firm 2’s

continuation payoffw2 which satisfies the incentive compatibility condition (3)
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and ∣∣w2(ht)−w∗
2

∣∣ ≤ (1−δ )p
2(1− pδ )

l (8)

for all t andht , wherel = vωG
2 (pδ ,sv)−v2. Intuitively, (8) ensures that the vertical

move of the continuation payoff, which is measured by|w2(ht)−w∗
2|, is small and

less than a half of the lengthD in Figure 2. Indeed, they-intercept of the lineL

in Figure 2 isw∗
2, so we haveD = v2−w∗

2 = (1−δ )p
1−pδ l . As shown in Lemma B8 in

Appendix B, (8) ensures that the vertical move ofw is small enoughw never goes

to the outside of the ballW.

The proof consists of two steps. In the first step, we show that firm 2’s gain

Gt by deviating in periodt of the block is small for eacht, and that even the

infinite sumof the gains,∑∞
t=1Gt , is small. Note that for this to be the case, we

need to show that the gainsGt for later periodst converge to zero ast increases;

indeed, ifGt is small but constant (e.g.,G1 = G2 = · · · = ε), the sum becomes

infinitely large. In the second step, we construct continuation payoffsw such that

the incentive condition (3) holds. The size of the vertical move of this continuation

payoff w is proportional to the sum of the gains,∑∞
t=1Gt ; this is so because we

need to deter firm 2’s deviation inall periods in the block. From the first step, we

know that the sum of the gains is small, and thus the vertical move ofw is small.

Hence thisw indeed satisfies the desired inequality (8).

To begin, we define firm 2’s gainGt when it deviates in periodt of the block.

Consider a random block with firm 2’s initial beliefµ. Suppose that we are now

in period t of the block, and the public history within the block isht−1. Sup-

pose that firm 2 has not deviated within the block so far, so its posterior belief

is µ2(ht−1|µ,s2). If firm 2 deviates in the continuation game, it can improve the

block payoff by

Gt(µ,ht−1) = max
s2∈S2

vµ2(ht−1|µ,s2)(pδ ,s2
1|ht−1,s2)−vµ2(ht−1|µ)(pδ ,s2|ht−1).

Here the first term of the right-hand side is the payoff in the continuation game

when firm 2 deviates, while the second term is the one when firm 2 does not

deviate. Note that we take the maximum over alls2, so we allow firm 2 to deviate

not only in periodt, but in later periods; soGt should be interpreted as the gain by

firm 2 when “firm 2 follows the strategys2 until periodt −1, but then deviates in
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periodt and then choose a best reply after that.” As one can see from the formula

above, the initial beliefµ influences the gainGt(µ,ht−1) through the posterior

belief µ2(ht−1|µ,s2). When the initial belief isµ = 1
2, we haveGt(µ,ht−1) = 0,

becauses2 is the optimal policy for this belief and firm 2 has no reason to deviate.

Let Gt = maxµ∈△Ω maxht−1∈Ht−1 Gt(µ,ht−1) denote the maximal possible gain

in the continuation game from periodt on, and letβ < 1 be as in Proposition 1.

We claim that for any smallε > 0, if p andδ are large enough (i.e., if the expected

block length is large and players are patient), we have

Gt < β t−1ε (9)

for eacht. That is, the gainG1 by deviating in period one is small, and the gain

Gt by deviating in a later periodt is even smaller and converges to zero at a rate

at least geometric with parameterβ . This inequality ensures that the sum of the

gains is small; indeed, summing both sides overt, we obtain∑∞
t=1Gt = ε

1−β . Since

ε can be arbitrarily small, the infinite sum∑∞
t=1Gt is also small.

It is easy to see that (9) holds fort = 1. Indeed, sinces2 approximates the best

payoff for firm 2 regardless of the initial beliefµ, the gain by deviating froms2

in period one must be small. The proof fort > 1 is more involved, but the idea

is roughly as follows. The initial beliefµ influences the gainGt(µ,ht−1) through

the posterior beliefµ2(ht−1|µ,s2), but the belief convergence theorem implies that

this posterior does not depend on the initial belief by much, after a long history.

Thus all initial beliefs induce the same gain asymptotically, that is, for any initial

beliefsµ andµ̃, the difference in gains,|Gt(µ,ht−1)−Gt(µ̃,ht−1)|, converges to

zero ast → ∞. Then, pluggingGt(µ̃,ht−1) = 0 for µ̃ = 1
2, we can conclude that

the gainGt(µ,ht−1) converges to zero ast → ∞, for all initial beliefsµ. We can

also show that the rate of convergence is at least geometric, see Lemma B9 in

Appendix B for the formal proof.

Now we proceed to the second step of the proof; we construct continuation

payoffsw which deters firm 2’s deviation froms2 so that the incentive condition

(3) holds. In what follows, we focus on firm 2’s incentive only, so we omit the

subscript 2 to simplify the notation. Consider firm 2’s continuation continuation
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payoffw with the following form:

w(h1) = w∗ +z1(h1),

w(h2) = w∗ +z1(h1)+z2(h2),

w(h3) = w∗ +z1(h1)+z2(h2)+z3(h3),

and so on. In words, if the random block ends in period one, firm 2’s continuation

payoff from the next block is the constant termw∗ plus a perturbation termz1(h1),
which will be defined later. If the block ends in period two, we have an additional

perturbation termz2(h2). In this way, we have more perturbation terms when the

block terminates in a later period. For eacht, we will carefully choosezt so that

a particular form of deviations is not profitable. Specifically, we choosezt such

that “follow s2 until periodt −1 ends, then deviate in periodt, and then play a

best reply after that” is not profitable regardless of the initial stateω1. If we can

find suchzt for eacht, deviating to any block strategys2 , s2
2 is not profitable

regardless of the initial state, and thus (3) holds.

In order to find suchzt , note thatzt(ht) can be written aszt(ht−1,y), wherey is

the signal in periodt. Then for eacht andht−1, we choose the perturbation terms

(zt(ht−1,y))y∈Y such that

∞

∑̃
t=0

δ t̃+1pt̃(1− p) ∑
y∈Y

πω
Y (y|ai ,s−i(ht−1))zt(ht−1,y) =

{
0 if a2 = s2(ht−1)
− 1−δ

1−pδ Gt otherwise

(10)

for eachω anda2. To interpret this condition, suppose that we are now in period

t of the block, and that the past public history isht−1. Suppose that no one has

deviated froms2 so far. If firm 2 deviates in the current periodt, it influences the

public signaly in periodt and hence the expected value ofzt(ht−1,y). The left-

hand side of (10) measures the expected discounted value of this change, evaluated

at periodt; here the termpt̃(1− p) is the probability that the block terminates at

the end of periodt + t̃, and we take the expectation with respect to the termination

datet + t̃. (10) asserts that this effect is large enough that “follows2 until period

t −1 ends, then deviate in periodt, and then play a best reply thereafter” is not

profitable regardless of the initial stateω1. Indeed, the gain by such a deviation is

at most 1−δ
1−pδ Gt(µ,ht−1), which is less than the loss1−δ

1−pδ Gt .

34



What remains is to show that the above perturbation is small enough that (8)

holds. Note that∑∞
t̃=0δ t̃+1pt̃(1− p) = (1−p)δ

1−pδ . Plugging this into (10) and dividing

both sides by(1−p)δ
1−pδ , we get

∑
y∈Y

πω
Y (y|ai ,s−i(ht))zt(ht−1,y) =

{
0 if a2 = s2(ht−1)
− 1−δ

(1−p)δ Gt otherwise
.

Thus there is someC > 0 such that|zt(ht)| ≤ 1−δ
(1−p)δ CGt for eacht andht . That

is, the perturbation termzt is proportional toGt . Hence

|z1(h1)|+ |z2(h2)|+ · · · ≤ 1−δ
(1− p)δ

CG∗,

whereG∗ = ∑∞
t=1Gt is the sum of the gains. This shows that the maximal size of

the perturbation is proportional to the sumG∗ of the gains. As explained, when

p andδ are large enough, the sumG∗ can be arbitrarily small, and in particular

CG∗ < l
2. This implies (8), as desired.

3.7 Comments and Remarks

3.7.1 State-Specific Punishment vs Uniform Punishment

Our promise-keeping condition (2) requires that the same payoffv be achieved

regardless of the hidden stateω , using the same continuation payoff functionw.

Accordingly, in our equilibrium, after every block, each player’s payoff in the

continuation payoff is independent of the hidden stateω . This in particular implies

that our punishment mechanism isnot state-specific, in the following sense: Pick

an equilibrium strategy profile, and suppose that after some historyht−1, a player’s

payoff in the continuation payoff is low conditional on some stateω t . Then in this

continuation game, her payoff must be the same (low) value even if the state were

ω̃ t , ω t . So after this historyht−1, she is punished not only at a particular state

ω t , but at all states uniformly.

In contrast, Fudenberg and Yamamoto (2010) consider ex-post equilibria with

state-specific punishments. Specifically, they take a ballW from the extended

spaceR|Ω|×N (rather thanRN), and choose the target payoffv = (vω
i )(i,ω) and

the continuation payoffw = (wω
i )(i,ω) from this ball. In this framework, both

v and w can directly depend on the stateω, so in their equilibrium, a player’s
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payoff depends onω after every history. In particular, sincew is chosen from the

extended spaceR|Ω|×N, it is possible to lower playeri’s continuation payoffwω
i at

stateω , while not affecting her payoffwω̃
i at other states̃ω ,ω. In this sense, their

punishment is state-specific. Fudenberg and Yamamoto (2010) show that such

state-specific punishments are indeed useful to provide ex-post incentives: They

show that ex-post incentives can be provided by moving continuation payoffs only

on a translate on the tangent hyperplane in the extended spaceR|Ω|×N, so value

burning does not occur in their equilibrium.10

What will happen if we consider equilibria with state-specific punishments in

our environment? To answer this question, take a ballW from the extended space

R|Ω|×N as in Fudenberg and Yamamoto (2010). The self-generation theorem still

holds, that is, this ballW is supported by public equilibria if for each payoffv∈W,

there is a block strategys and a continuation payoffw : H →W such that

vω
i =

1−δ
1− pδ

vω
i (pδ ,s)+

∞

∑
t=1

(1− p)pt−1δ tE[wωt+1

i (ht)|ω,s] (11)

for all ω andi, and

vω
i ≥ 1−δ

1− pδ
vω

i (pδ , s̃i ,s−i)+
∞

∑
t=1

(1− p)pt−1δ tE[wωt+1

i (ht)|ω , s̃i ,s−i ], (12)

for all ω , i, ands̃i . The difference from (2) and (3) is that bothv andw directly de-

pend on the stateω , which allows us to use state-specific punishments. However,

it turns out that when the state changes over time, the self-generation conditions

(11) and (12) are intractable, which makes it difficult to characterize the equilib-

rium payoff set.

10To see how the things works, suppose that there are two players (N = 2) and two states (|Ω|=
2), so that the extended space isR|Ω|×N = R4. Take the unit ballW = {v∈ R4||v| ≤ 1}. Then take
the payoffv = (1,0,0,0) so that its unit normal is a coordinate vector. This payoffv yields the
highest payoff to player 1 within the ballW (hence she is rewarded) at stateω1, but not at stateω2.
So her continuation payoffwω2

1 at stateω2 can be both higher and lower than the payoffv, and in
this sense the choice of the continuation payoff is flexible. Indeed, if we move continuation payoffs
w on a translate of the tangent hyperplane in the extended spaceR4, player 1’s continuation payoff
wω1

1 at stateω1 must be constant, but her continuation payoffwω2
1 at stateω2 can take arbitrary

values. This helps to provide ex-post incentives at stateω2. In contrast, in our setup, if we take the
payoff v as in in Figure 1 in Section 1.1, it achieves the best payoff for player 2 within the ballW
at all states simultaneously. Accordingly, if we move continuation payoffsw on the lineL in the
figure, player 2’s continuation payoff must be constant at all states.
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To illustrate this issue, note first that in the standard repeated game (in which

there is no hidden stateω), adding a constant to continuation payoffs does not

change players’ incentives. Formally, suppose that an action profileα is enforce-

ableby some continuation payoff functionw : Y → RN, in that no one has a prof-

itable deviation fromα. Then the profileα is still enforceable even if we add a

constantc∈ RN to the continuation payoff, i.e.,α is enforceable by the continua-

tion payoff w̃ such that ˜w(y) = w(y)+c for all y. This property is used to derive

various useful results in the literature, such as the linear programming characteri-

zation of Fudenberg and Levine (1994).

A similar property still holds in the setup of Fudenberg and Yamamoto (2010).

That is, adding a constant to continuation payoffs does not change ex-post incen-

tives, even if there is a hiddenfixedstateω, and even if we consider the extended

spaceR|Ω|×N. Suppose thatα is ex-post enforceableby some continuation pay-

off w : Y → R|Ω|×N, in that no one has a profitable deviation fromα given any

stateω. Then the profileα is still ex-post enforceable even if we consider a

modified continuation payoff ˜w such that ˜w(y) = w(y)+c, wherec∈ R|Ω|×N is a

constant. (The constant termc can specify different valuescω
i for different states

ω , as it is chosen from the extended space.) Using this property, Fudenberg and

Yamamoto (2010) show that the linear programming technique of Fudenberg and

Levine (1994) remains valid even in their setup.

In contrast, in our model, adding a constant to continuation payoffsdoesin-

fluence ex-post incentives. Indeed, when the state changes as time goes, the state

today can be possibly different from the state tomorrow, and thus the continuation

payoff wω
i for stateω appears not only in the incentive condition (12) forω, but

also in the ones for other statesω̃ , ω. In other words, the incentive conditions

(12) for (ω, i) and(ω̃, i) areentangledthrough the termwω
i . This implies that if

we add a constant to the continuation payoffwω
i for stateω , it influences player

i’s incentives atall statesin a complicated way. Due to this problem, Lemma 3 of

Fudenberg and Yamamoto (2010) (the linear programming characterization) does

not extend, and accordingly it is not clear how to compute the limit equilibrium

payoff set in our model.

To avoid this problem, we focus on the payoff spaceRN, and consider equilib-

ria in which the resulting payoffs are perfectly correlated across states. When we

work on this spaceRN, adding a constant to continuation payoffs does not change
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ex-post incentives,11 which allows us to borrow useful repeated-game techniques.

Of course, focusing on the spaceRN limits flexibility of the way we provide in-

tertemporal incentives. In particular, we need to use value burning in order to

provide ex-post incentives, as explained in Section 3.6. However, we find that this

value burning does not cause significant inefficiency, and thus we can approximate

efficient outcomes without using state-specific punishments.

3.7.2 Perfect Ex-Post IC vs Periodic Ex-Post IC

Our incentive compatibility condition (3) requires thats be a Nash equilibrium

in the block even if the initial stateω is revealed, that is, ex-post incentive com-

patibility must hold in period one. However, it needs not imply ex-post incentive

compatibility in any later periodt > 1 of the block. Indeed, even if (3) holds,

there may be a public historyht−1 such that the continuation strategys|ht−1 is

not a Nash equilibrium (i.e., deviating froms|ht−1 is profitable) if the stateω t in

periodt is revealed. Accordingly, in our equilibrium, ex-post incentive compat-

ibility holds only periodically; it holds only at the initial period of each block.

This is weaker than “perfect ex-post incentive compatibility” of Fudenberg and

Yamamoto (2010), which requires ex-post incentive compatibility each period.

More formally, our condition (3) is equivalent to requiring that in each period

t of the block, the continuation strategysi |ht−1 is a best reply for playeri if her

posteriorµ t
i is chosen from the set{µi(ht−1|µ,s)|∀µ}, which is represented by

the thick line in Figure 3 in Section 1.1. In any periodt > 1 of the block, this

thick line is a strict subset of the whole belief space, and hence ex-post incentive

compatibility does not hold in these periods.

Why should we be interested in the condition (3), rather than perfect ex-post

incentive compatibility? There are two reasons. First, while our condition (3) is

weaker than perfect ex-post incentive compatibility, it is not “too weak,” and it still

has a nice robustness property. Specifically, (3) ensures that as long as a player has

not deviated during the current block, her best reply is not influenced by the belief

µ1 at the beginning of the block, and hence not influenced by what happened

before the current block begins. In turns out that this property is sufficient for our

11This is formally stated as follows. Suppose that a payoff vectorv∈ RN is enforced by some
public strategy profiles and some continuation payoffw in the sense of Definition B1. Then
ṽ = v+c can be enforced by ˜w = w+ (1−p)δ

1−pδ c, wherec∈ RN is a constant.
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purpose, in that we can construct a public equilibrium using a recursive method.

See Proposition B1 in Appendix B.

Second, since our condition is weaker than perfect ex-post incentive compat-

ibility, it can be satisfied with a smaller variation in continuation payoffs. This

is crucial when we show that the vertical move of the continuation payoffsw in

Section 3.6 is small. Indeed, if we require perfect ex-post incentive compatibility

rather than (3), the vertical move ofw must be larger, andw may go to the outside

of the ballW.12 In this sense, our condition is not “too strong.”

4 Pseudo-Ergodic Strategies

4.1 Feasible Payoff Set and Pseudo-Ergodic Strategies

Now we consider the general model. As in the Cournot example, letVµ(δ ) =
co{vµ(δ ,s)|s∈ S} be the set of feasible payoffs when the initial prior isµ and the

discount factor isδ .

Let Λ be the set of all directionsλ ∈ RN with |λ | = 1. For each directionλ ,

we define the “score” as

max
v∈Vµ (δ )

λ ·v.

A standard argument shows that this maximization problem indeed has a solution.

Intuitively, the score characterizes the extreme point of the feasible payoff set

Vµ(δ ) toward the directionλ . For example, in a two-player game, the score for

λ = (1,0) equals the best possible payoff for player 1 within the feasible payoff

set, and the score forλ = ( 1√
2
, 1√

2
) corresponds to the welfare-maximizing point.

12The perturbation termzt defined in (10) ensures our incentive compatibility condition (3), but
it does not satisfy perfect ex-post incentive compatibility. This is so because the termGt is the
maximal gain by deviating froms2 conditional on that player 2’s belief is chosen from the thick
line in Figure 3. Of course, if we replace the termGt in (10) with

G̃t = max
µt∈△Ω

(
max
s2∈S2

vµt
(pδ ,s2

1|ht−1,s2)−vµt
(pδ ,s2|ht−1)

)
,

then the resulting perturbation term ˜zt ensures ex-post incentive compatibility in periodt. But this
gainG̃t needs not converge to zero even if we taket → ∞, so its infinite sum∑∞

t=1 G̃t is infinitely
large. This implies that the vertical move of the continuation payoff is quite large and does not
satisfy (8). So the continuation payoffw goes to the outside of the ballW.
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As explained in Section 3.2, each extreme point of the feasible payoff set is

achievable by a pure public strategy profile, and thus the score can be computed

using dynamic programming. Fixδ andλ , and let f (µ) be the score when the

initial prior is µ. Then this score functionf must solve

f (µ) = max
a∈A

[
(1−δ )λ ·gµ(a)+δ ∑

y∈Y
πµ

Y (y|a) f (µ̃(y|µ,a))

]
.

This Bellman equation is exactly the same as that for the perfect-monitoring case

studied by Yamamoto (2016), and hence his invariance result remains true:

Proposition 2. Suppose that the full support assumption holds. Then for each

ε > 0, there isδ ∈ (0,1) such that for anyλ , δ ∈ (δ ,1), µ, andµ̃,∣∣∣∣ max
v∈Vµ (δ )

λ ·v− max
ṽ∈V µ̃ (δ )

λ · ṽ
∣∣∣∣ < ε.

This proposition asserts that whenδ is sufficiently large, the scores maxv∈Vµ (δ ) λ ·
v are similar across all priorsµ. This implies that the feasible payoff setsVµ(δ )
are similar across all initial priorsµ, whenδ is close to one.

As Yamamoto (2016) shows, the score maxv∈Vµ (δ ) λ ·v has a limit asδ → 1,

so letVµ be the set of all payoff vectorsv such thatλ ·v≤ limδ→1maxv∈Vµ (δ ) λ ·v
for all λ . From Proposition 2, this setVµ is independent ofµ, so we denote it by

V. Intuitively, this setV is the “limit feasible payoff set” in that the feasible payoff

setVµ(δ ) approximatesV regardless ofµ whenδ is close to one.

The next proposition shows that there is a “pseudo-ergodic” strategy which

achieves (approximately) the same payoff regardless of the initial prior. As ex-

plained in the Cournot example, such a strategy profile plays a crucial role in our

equilibrium construction; it ensures that players can approximate an extreme point

of the feasible payoff set even if they do not know the opponents’ private beliefs.

Proposition 3. Suppose that the full support assumption holds. Then for each

ε > 0, there isδ ∈ (0,1) such that for eachλ , for eachδ ∈ (δ ,1), for eachµ, for

eachµ̃, for each pure public strategy profile sµ̃ ∈ argmaxs∈Sλ ·vµ̃(δ ,s), for each

t ≥ 0, and for each ht , ∣∣∣∣ max
v∈Vµ (δ )

λ ·v−λ ·vµ(δ ,sµ̃ |ht )
∣∣∣∣ < ε.
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To interpret this proposition, pick a directionλ and a “dummy belief”µ̃ arbi-

trarily. Consider the optimal policysµ̃ for this dummy beliefµ̃. Then the propo-

sition shows that this strategy profilesµ̃ approximates the score regardless of the

initial prior µ (so it is a pseudo-ergodic strategy). The proposition also shows that

any continuation strategy profilesµ̃ |ht has a similar property, that is, it approxi-

mates the score regardless of the initial priorµ.

To illustrate the intuition behind the above proposition, consider the Cournot

example in Section 3, and the welfare-maximizing strategyseff(δ , 1
2) for the dummy

belief µ̃ = 1
2. The above proposition asserts that this strategy approximates the

efficient payoff(0.35,0.35) even if the true belief isµ , 1
2. This result can be ex-

plained as follows. PickT sufficiently large, and then takeδ close to one. Since

patient players do not care about payoffs in the firstT periods, the average payoff

in the overall game is approximated by the expected continuation payoff after pe-

riod T. So it suffices to explain that this expected continuation payoff after period

T approximates(0.35,0.35).
Suppose that the initial prior isµ , 1

2, and that players have playedseff(δ , 1
2)

for the firstT periods. LethT be the realized history, and letµT+1 be the pos-

terior belief after this historyhT given the initial beliefµ. Also, let µ̃T+1 be the

“dummy posterior belief” induced by the same historyhT but given the dummy

initial belief µ̃ = 1
2. Since the optimal policy is Markov, the continuation strategy

after this historyhT is seff(δ , µ̃T+1), that is, the continuation strategy maximizes

the social welfare if the posterior beliefµT+1 matches the dummy posteriorµ̃T+1.

Of course, these posteriorsµT+1 andµ̃T+1 are not exactly the same in general, but

the belief convergence theorem ensures that they are approximately the same. So

the continuation strategyseff(δ , µ̃T+1) approximates the maximal social welfare

under the true posteriorµT+1, i.e., it approximates(0.35,0.35). Since the same

result holds given any historyhT , the expected continuation payoff after periodT

approximates(0.35,0.35), as desired.

Remark 1. As discussed in Yamamoto (2016),ε in Proposition 2 can be replaced

with O(1−δ ). Using this result, we can show thatε in Proposition 3 can be also

replaced withO(1−δ ). See the proof of the proposition for more details.
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4.2 Minimax Payoffs and Pseudo-Ergodic Strategies

Given the initial priorµ and the discount factorδ , player i’s minimax payoffis

defined to be

vµ
i (δ ) = inf

s−i∈Spub
−i

max
si∈Si

vµ
i (s) (13)

whereSpub
−i is the set of all public strategiess−i . In the Cournot example, the

minimax strategy is “Always(H,H)” for all µ andδ .

A couple of remarks are in order. First, we assume that the opponents use a

public strategys−i to punish playeri, and this is a loss of generality. The general

minimax payoff, which allows the opponents to take private strategies, can be

possibly lower than our minimax value above. However, we need this restriction

because we focus on public-strategy equilibria in this paper. Note that focusing on

public strategies is still more general than Escobar and Toikka (2013) and Hörner,

Takahashi, and Vieille (2015), who assume that the opponents play a constant pure

actiona−i over time.

Second, the opponents’ strategys−i is not necessarily Markovian. Since we

assume that actions are not observable, the opponents cannot observe playeri’s

deviation and hence cannot know her belief. Accordingly, playeri’s belief can-

not be used as a common state variable, and a minimax strategy needs not be

Markovian here.

Third, we take the infimum overs−i instead of the minimum, so the solution to

the above minimax problem may not exist. On the other hand, playeri’s best reply

exists for any givens−i , so we take the maximum oversi ∈ Si . This difference

essentially comes from the fact that playeri knows her own posterior belief after

every history, while the opponents do not.

When actions are observable, Yamamoto (2016) shows that the minimax pay-

off is invariant to the initial prior in the limit asδ → 1. The following proposi-

tion extends this result to the imperfect-monitoring case. Our proof technique is

quite different from that of Yamamoto (2016), because minimax strategies are not

Markovian in our setup. The proof will be given in Appendix B.

Proposition 4. Suppose that the full support assumption holds. Then for each

ε > 0, there isδ ∈ (0,1) such that|vµ
i (δ )−vµ̃

i (δ )| < ε for each i,δ ∈ (δ ,1), µ,

and µ̃.
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In general, a minimax strategy for playeri depends on the initial priorµ.

However, the next proposition shows that there is a strategy which minimaxes

player i regardless of the initial priorµ. This ensures that even if the opponents

do not know playeri’s private beliefµ, they can punish playeri by playing such

a strategy. The proof is more complicated than that of Proposition 3, because

minimax strategies are not Markov. See Appendix B for the formal proof.

Proposition 5. Suppose that the full support assumption holds. Then for eachε >

0, there isδ ∈ (0,1) such that for any i, for anyδ ∈ (δ ,1), and for anyµ̃, there is a

public strategy sµ̃−i such that for each pure strategy sµ̃
i ∈ argmax̃si∈Si v

µ̃
i (δ , s̃i ,s

µ̃
−i),∣∣∣vµ

i (δ ,sµ̃ |ht )−vµ
i (δ )

∣∣∣ < ε (14)

and

max
s̃i∈Si

vµ
i (δ , s̃i ,s

µ̃
−i |ht )−vµ

i (δ ,sµ̃ |ht ) < ε (15)

for eachµ, t ≥ 0, and ht .

The above proposition states only “there is a public strategysµ̃
−i ,” but in the

proof, we explain how to find suchsµ̃
−i . There are two cases to be considered.

First, if the minimax problem (13) has a solution, then letsµ̃
−i be a minimax strat-

egy given a dummy belief̃µ. The first inequality (14) asserts that this strategy

sµ̃ approximates the minimax payoffvµ
i (δ ) regardless of the true beliefµ. The

second inequality (15) ensures that playeri’s gain by deviating from this profile

sµ̃ is almost negligible regardless of the true beliefµ. The proposition also shows

that any continuation strategysµ̃ |ht of this profile satisfies the same properties.

Second, if the minimax problem (13) does not have a solution, then the min-

imax strategy does not exist. So instead, we letsµ̃
−i be a strategy which approx-

imates the minimax payoff given the beliefµ̃. It turns out that the same result

holds even in this case, as long as we carefully choose the strategysµ̃
−i . See the

proof of the proposition for how to choosesµ̃
−i .

As in Yamamoto (2016), we can show that given any initial prior, the minimax

payoff has a limit asδ → 1. Letvµ
i denote this limit, that is,vµ

i = limδ→1vµ
i (δ ).

Proposition 4 ensures that the limit minimax payoffvµ
i does not depend onµ, so

we denote it byvi . LetV∗ denote the set of feasible payoffsv∈V such thatvi ≥ vi

for eachi. That is,V∗ is the set of feasible payoffs which Pareto-dominate the

minimax payoff.
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5 The Folk Theorem

In this section, we show that the folk theorem holds under a mild condition. In ex-

post equilibria, a player’s deviation must be punished appropriately regardless of

the current hidden state; this requires that actions and states should be statistically

distinguished through a public signal. Specifically, we will assumecross-state in-

dividual full-rankandcross-state pairwise full-rankconditions, which strengthen

individual full-rank and pairwise full-rank conditions of FLM and Fudenberg and

Yamamoto (2010).

For eachi and each mixed action profileα, let Πi(α) be a matrix with rows

πω
Y (ai ,α−i) = (πω

Y (ai ,α−i))y∈Y for all ω andai . In words, the matrixΠi(α) is a

collection of the marginal distributions of the public signaly induced by player

i’s unilateral deviation fromα for all possible statesω . For each(i, j) with i , j

and for eachα, let Πi j (α) be a matrix constructed by stacking the two matrices

Πi(α) andΠ j(α). That is,Πi j (α) is the collection of the marginal distributions

of y induced by a unilateral deviation byi or j.

Definition 2. An action profileα hascross-state individual full rank for iif the

matrix Πi(α) has rank equal to|Ω| × |Ai |. An action profileα hascross-state

individual full rank if it has cross-state individual full rank for alli.

Cross-state individual full rank requires that the hidden stateω and playeri’s

actionai can be statistically distinguished by a public signaly. This condition is

stronger than individual full rank of FLM and Fudenberg and Yamamoto (2010),

since we require the hidden stateω to be statistically distinguished.

Definition 3. An action profileα hascross-state pairwise full rank for(i, j) if the

matrix Πi j (α) has rank equal to|Ω| × (|Ai |+ |A j | −1). An action profileα has

cross-state pairwise full rankif it has cross-state pairwise full rank for all pairs

(i, j) with i , j.

Cross-state pairwise full rank says that if someone unilaterally deviates from

α, then her identity (as well as the hidden stateω) can be revealed by a public

signaly. Again, this condition is stronger than pairwise full rank of FLM and

Fudenberg and Yamamoto (2010).

We impose the following assumptions. They are generically satisfied if there

are many signals so that|Y| ≥ |Ω|× (|Ai |+ |A j |−1) for all i and j,
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Condition IFR. Every pure action profile has cross-state individual full rank.

Condition PFR. For each(i, j) with i , j, there is an action profileα that has

cross-state pairwise full rank for(i, j).

Now we are ready to present the folk theorem. The proof extends the idea

presented in Section 3 to the general case, and can be found in Appendix B.

Definition 4. A subsetW of RN is smoothif it is closed and convex; it has a non-

empty interior; and there is a unique unit normal for each point on the boundary

of W.

Proposition 6. Suppose that the full support assumption, (IFR), and (PFR) are

satisfied. Suppose also that public randomization is available. Then, for any

smooth subset W of the interior of V∗, there isδ ∈ (0,1) such that for anyδ ∈
(δ ,1), the set W is stochastically ex-post self-generating. Hence for each v∈W,

there is a public ex-post equilibrium which yields the payoff v regardless of the

initial stateω.

This proposition assumes public randomization, but it is dispensable. When

public randomization is not available, we cannot use random blocks, so instead,

we regard the infinite horizon as a series ofT-period blocks. WhenT is large

enough, we can show that there is aT-period strategy which approximates an

extreme point of the feasible payoff set regardless of the belief. Likewise, there is

a T-period strategy which minimaxes the opponent regardless of the belief. Then

the rest of the proof is similar to the one with public randomization. See Appendix

C for more details.

Also, the full support assumption is stronger than necessary. In Appendix D,

we show that the folk theorem remains valid even if the full support assumption

is replaced with a weaker condition. In particular, our result encompasses the folk

theorem for the standard stochastic game provided by Fudenberg and Yamamoto

(2011b) and Ḧorner, Sugaya, Takahashi, and Vieille (2011).
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Appendix A: Cournot Example

Here we provide a precise description of the distribution of the pricesy = (y1,y2)
in the Cournot example studied in Example 3.

Given a stateω and an action profilea, the price distribution is given by the

following compound probability distribution. Specifically, the price vectory fol-

lows the distributionF1(·|ω,a) with probability 1
50, the distributionF2(·|ω ,a) with

probability 19
50, and the distributionF3(·|ω ,a) with probability 3

5. So we have

πω
Y (y|a) = 1

50F1(y|ω,a)+ 19
50F2(·|ω,a)+ 3

5F3(·|ω ,a) for eachω , a, andy.

We choose the distributionF1 as the uniform distribution over the setY =
{0,10, · · · ,50}2, regardless ofω anda. Since there are 36 possible signals, this

implies that each signal realizes with probability at least1
50 ·

1
36 = 1

1800, and thus

the full support assumption holds in this example.

The distributionF2 depends on the action profilea but not on the hidden state

ω , and the possible realizations are onlyy= (0,0), y= (0,50), y= (50,0), or y=
(50,50). The following table shows how the distributionF2 changes for different

a:

L M H

L (0, 3
38,

3
38,

32
38) ( 7

38,
10
38,0, 21

38) ( 7
38,

22
38,0, 9

38)
M ( 7

38,0, 10
38,

21
38) (29

38,0,0, 9
38) (21

38,
10
38,0, 7

38)
H ( 7

38,0, 22
38,

9
38) (21

38,0, 10
38,

7
38) (37

38,0,0, 1
38)

For each cell, the first number is the probability ofy = (0,0), the second is the

one ofy = (0,50), the third is ofy = (50,0), and the last is ofy = (50,50). For

example, when the current action isa= (L,L), the distributionF2 yieldsy= (0,0)
with probability 15

38, andy = (50,50) with probability 23
38.

The distributionF3 depends both on the action profilea and the hidden stateω.

For each(ω,a), it chooses some particular signaly (which depends onω anda)

with probability one. The following table describes the possible signal realization

for eachω anda:

L M H

L (40,40) (50,40) (30,10)
M (40,50) (30,30) (20,10)
H (10,30) (10,20) (20,20)

L M H

L (30,30) (40,30) (20,0)
M (30,40) (20,20) (10,0)
H (0,20) (0,10) (10,10)
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As usual, the left table is for the good stateωG and the right table is for the bad

stateωB. For example, when(ω,a) = (ωG,LL), the signaly = (40,40) is chosen

with probability one. Note that when the price distribution isF3, for each action

profile a, the expected price for the good stateωG is greater than that for the bad

stateωB by 10. This in turn implies that when the price distribution isπY, the

expected price for the good stateωG is greater than that for the bad stateωB by 6,

which is consistent withπY described in Section 3.

The above signal structure satisfies the full support assumption, and simple

algebra shows that the expected price is indeed consistent with the tables given in

Section 3. In what follows, we will explain that the distributions{(πω
Y (y|a))y∈Y}(ω,a)

are linearly independent so that all the three properties given in the bullet points

in Section 3 are actually satisfied.

Take a real numberc(ω,a) for each(ω ,a) so that

∑
(ω ,a)∈Ω×A

c(ω,a)πω
Y (y|a) = 0 (16)

for eachy. It is sufficient to show thatc(ω,a) = 0 for all (ω,a). Note thaty =
(0,40) can realize only when the distributionF1 is used, soπω

Y ((0,40)|a) = 1
1800

for each(ω ,a). Plugging this into (16) fory = (0,40), we have

∑
(ω,a)∈Ω×A

c(ω ,a) = 0. (17)

Now considery = (40,40). This signal realizes with probability1
1800+ 3

5 =
1081
1800 for (ω,a) = (ωG,HH) and with probability 1

1800 for all other(ω ,a). Plugging

this into (16) fory = (40,40), we have

1081
1800

c(ωG,HH)+
1

1800 ∑
(ω,a),(ωG,HH)

c(ω,a) = 0.

Since (17) implies∑(ω ,a),(ωG,HH) c(ω,a) = −c(ωG,HH),

1081
1800

c(ωG,HH)− 1
1800

c(ωG,HH) = 0.

This implies thatc(ωG,HH) = 0. A similar argument shows thatc(ω,a) = 0

except(ωB,HH), (ωG,MM), (ωB,MM), and(ωG,LL). So we will focus on these

four cases below.
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Considery=(0,50). This signal realizes with probability1
1800+

3
38 for (ωB,HH),

and with 1
1800 for the other three cases. So the argument similar to the one above

shows thatc(ωB,HH) = 0. Similarly, considery = (30,30). This signal real-

izes with probability 1
1800+ 3

5 = 1081
1800 for (ω ,a) = (ωG,MM) and with probability

1
1800 for (ωB,MM) and(ωG,LL). (Now we do not need to consider(ωB,HH), as

c(ωB,HH) = 0.) Hence we havec(ωG,MM) = 0. Then (17) reduces to

c(ωB,MM)+c(ωG,LL) = 0.

Obviously, the only way to satisfy this equation and (16) is to setc(ωB,MM) =
c(ωG,LL) = 0. Hence the signal distributions are indeed linearly independent.

Appendix B: Proofs

B.1 Proof of Proposition 1

We use the following lemma, which is Corollary 2 of Theorem 4.9 of Seneta

(1981). It shows weak ergodicity of inhomogeneous Markov matrices:

Lemma B1. Consider a stochastic process{ω t}∞
t=1 such that for each t≥ 2, given

ω t−1, the random variableω t ∈Ω follows a Markov chain with the matrix Mt with

rows (mt(ω t |ω t−1))ωt∈Ω for eachω t−1. Let µ t(µ) denote the induced probabil-

ity distribution ofω t whenω1 follows a distributionµ ∈ △Ω, that is, µ t(µ) =
µM2 · · ·Mt . Suppose that the matrices{Mt}∞

t=2 are “uniformly Markov” in the

sense that there is a constantβ ∈ (0,1) such thatmaxωt minωt−1 mt(ω t |ω t−1) ≥
1−β for each t. Then weak ergodicity obtains at a rate which is at least geometric

with parameterβ . That is,|µ t(µ)−µ t(µ̃)| ≤ β t−1 for each t,µ, andµ̃.

The rest of the proof is similar to that of Lemma 3 of Connault (2015). Picksi

ands−i as stated. Pick an arbitrary public historyht =(y1, · · · ,yt). Let(α1, · · · ,α t)
be the sequence of (possibly mixed) action profiles induced by the strategy profile

s, conditional on the public historyht .

For eacht̃ ≤ t, let Pr(ω t̃+1|ω t̃ ,α t̃ , · · · ,α t ,yt̃ , · · · ,yt) denote the probability

of ω̃ t̃+1 given that the state in period̃t is ω t̃ , players play the action sequence

(α t̃ , · · · ,α t) and observe the signal sequence(yt̃ , · · · ,yt). Let Pr(ω t̃ ,α t̃ , · · · ,α t ,yt̃ , · · · ,yt)=
(Pr(ω t̃+1|ω t̃ ,α t̃ , · · · ,α t ,yt̃ , · · · ,yt))ω t̃+1∈Ω, that is, Pr(ω t̃ ,α t̃ , · · · ,α t ,yt̃ , · · · ,yt) is
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the conditional distribution ofω t̃+1. Then construct a matrixMt̃+1 by stacking

these distributions over allω t̃ . Intuitively, this matrixMt̃+1 maps a conditional

distribution of the stateω t̃ in periodt̃ given the action sequence(α t̃ , · · · ,α t) and

the signal sequence(yt̃ , · · · ,yt) to a conditional distribution of the stateω t̃+1 in

the next period. Hence we haveµi(ht |µ,s) = f (µ)M2 · · ·Mt+1, where f (µ) de-

notes the conditional distribution of the stateω1 given the initial distributionµ,

the action sequence(α1, · · · ,α t), and the signal sequence(y1, · · · ,yt).
Under the full support assumption, for eacht̃ ≤ t, ω t̃ , andω t̃+1, we have

Pr(ω t̃+1|ω t̃ ,α t̃ , · · · ,α t ,yt̃ , · · · ,yt)

=
Pr(ω t̃+1,yt̃ , · · · ,yt |ω t̃ ,α t̃ , · · · ,α t)

∑ω t̃+1∈Ω Pr(ω t̃+1,yt̃ , · · · ,yt |ω t̃ ,α t̃ , · · · ,α t)

=
πω t̃

(yt̃ ,ω t̃+1|α t̃)Pr(yt̃+1, · · · ,yt |ω t̃+1,α t̃+1, · · · ,α t)

∑ω t̃+1∈Ω πω t̃ (yt̃ ,ω t̃+1|α t̃)Pr(yt̃+1, · · · ,yt |ω t̃+1,α t̃+1, · · · ,α t)

≥ π Pr(yt̃+1, · · · ,yt |ω t̃+1,α t̃+1, · · · ,α t)
∑ω t̃+1∈Ω Pr(yt̃+1, · · · ,yt |ω t̃+1,α t̃+1, · · · ,α t)

.

Here, wheñt = t, we let Pr(yt̃+1, · · · ,yt |ω t̃+1,α t̃+1, · · · ,α t) = 1.

Let ν t̃+1(ω t̃+1) = Pr(yt̃+1,··· ,yt |ω t̃+1,α t̃+1,··· ,αt)
∑ω t̃+1∈Ω Pr(yt̃+1,··· ,yt |ω t̃+1,α t̃+1,··· ,αt) . It is easy to check that

ν t̃+1 is a probability distribution overΩ. Also the above inequality implies that

for eachω t̃ andω t̃+1,

Pr(ω t̃+1|ω t̃ ,α t̃ , · · · ,α t ,yt̃ , · · · ,yt) ≥ πν t̃+1(ω t̃+1).

Now for eacht̃ ≤ t, let ω̂ t+1 ∈ argmaxω t̃+1 ν t̃+1(ω t̃+1). Thenν t̃+1(ω̂ t+1) ≥
1
|Ω| , and thus letting 1−β = π

|Ω| , we have

Pr(ω̂ t̃+1|ω t̃ ,α t̃ , · · · ,α t ,yt̃ , · · · ,yt) ≥ 1−β

for eachω t̃ . Note that this inequality holds for eacht̃, and thus the matrices

{Mt̃}t+1
t̃=2 are uniformly Markov. Then it follows from Lemma B1 that

|µi(ht |µ,s)−µi(ht |µ̃,s)| = | f (µ)M2 · · ·Mt+1− f (µ̃)M2 · · ·Mt+1| ≤ β t

for eachµ andµ̃. Since the parameter 1−β = π
|Ω| does not depend on the choice

of t or ht , we obtain the result.
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B.2 Proof of Proposition 3

In Section 4.1, we have explained that Proposition 3 can be proved using the belief

convergence theorem. In what follows, we will provide an alternative proof. This

proof is (indirect but) simpler than the one which uses the belief convergence

theorem. Also, it gives a better bound on the rate of convergence; specifically,

it allows us to show thatε in Proposition 3 can be replaced withO(1− δ ). (To

obtain such a result, simply replaceε in the proof below withO(1−δ ).)
The proof idea is as follows. Consider the case in which there are only two

statesω1 andω2, and letµ denote the probability on the stateω1. Pick λ so that

λi = 1 andλ j = 0 for all j , i, and pickδ close to one. From Proposition 2, we

know that the score is almost constant across allµ; for simplicity, we assume that

the score is actually constant over allµ, as described by the flat line in Figure 11.

Let v∗ denote this constant score. Letsµ̃ be the optimal policy for the dummy

belief µ̃ = 1
2. Then we have

v∗ = vµ̃
i (δ ,sµ̃) =

1
2

vω1
i (δ ,sµ̃)+

1
2

vω2
i (δ ,sµ̃), (18)

that is, the score for the initial prior̃µ = 1
2 is equal to the average of the payoff

when the profiles is played given the initial stateω1 and the payoff when the

profiles is played given the initial stateω2.

Scorev∗

0.5 1 µ

Figure 11: Payoff by the Strategy Profiles

Now, assume by contradiction thatsµ̃ does not approximate the score for some

belief µ; in particular, assume thatvω2
i (δ ,sµ̃) < v∗ so that the payoff given the

initial state (belief)ω2 is lower than the score. Then from (18), we must have

vω1
i (δ ,sµ̃) > v∗, that is, the strategysµ̃ must yield a payoff higher than the score

for the initial stateω1. (See also Figure 11; the dashed line represents the payoff
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by playingsµ̃ for each beliefµ.) However this is a contradiction, because any

strategy profile cannot yield a payoff higher than the score. Hence we must have

vω2
i (δ ,sµ̃) = v∗. Similarly we havevω1

i (δ ,sµ̃) = v∗, and so the profilesµ̃ yields

the score regardless of the initial priorµ, as desired.

The formal proof consists of three steps. In the first step, we show that the

idea above remains valid as long as the dummy beliefµ̃ is not too close to the

boundary of the belief space. That is, we show that for any interior beliefµ̃ which

assigns at least probabilityπ on each stateω, the corresponding optimal policysµ̃

approximates the score regardless of the true beliefµ.

In the second step, we show that the same result holds for all dummy beliefs

µ̃. The proof relies on the full support assumption. Then in the third step, we

show that the same result holds for any continuation strategy ofsµ̃ .

B.2.1 Step 1: Optimal Policy for Interior Beliefs

Pick ε > 0 arbitrarily. Proposition 2 ensures that there isδ ∈ (0,1) such that for

anyλ , δ ∈ (δ ,1), µ̃, andµ̂,∣∣∣∣∣ max
ṽ∈V µ̃ (δ )

λ · ṽ− max
v̂∈V µ̂ (δ )

λ · v̂

∣∣∣∣∣ < πε − (1−δ )πg
δ

. (19)

Take suchδ , and then pickλ andδ ∈ (δ ,1) arbitrarily. As shown by Yamamoto

(2016), givenλ andδ , the score max̃v∈V µ̃ (δ ) λ · ṽ is convex with respect to the

initial prior µ̃ and hence maximized when the priorµ̃ assigns probability one to

some stateω . Let ω denote such a state.

For eachµ̃, let sµ̃ be the optimal policy, that is,sµ̃ achieves the score toward

the directionλ given the initial priorµ̃. Pick µ̃ such thatµ̃(ω̃) ≥ π for eachω̃,

that is, pick an interior belief̃µ which assigns at leastπ on each state. We show

that the optimal policysµ̃ approximates the score regardless of the true beliefµ.

From (19), we have∣∣∣∣ max
v∈Vω (δ )

λ ·v−λ ·vµ̃(δ ,sµ̃)
∣∣∣∣ < πε − (1−δ )πg

δ
.

Sinceλ ·vµ̃(δ ,sµ̃) = ∑ω̃∈Ω µ̃(ω̃)λ ·vω̃(δ ,s), we obtain∣∣∣∣∣ ∑
ω̃∈Ω

µ̃(ω̃)
(

max
v∈Vω (δ )

λ ·v−λ ·vω̃(δ ,sµ̃)
)∣∣∣∣∣ < πε − (1−δ )πg

δ
.
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Using maxv∈Vω (δ ) λ ·v≥ maxv∈Vω̃ (δ ) λ ·v≥ λ ·vω̃(δ ,sµ̃), we obtain

µ̃(ω̃)
∣∣∣∣ max
v∈Vω (δ )

λ ·v−λ ·vω̃(δ ,sµ̃)
∣∣∣∣ < πε − (1−δ )πg

δ

for eachω̃ . Dividing both sides bỹµ(ω̃) and using π
µ̃(ω̃) ≤ 1, we have∣∣∣∣ max

v∈Vω (δ )
λ ·v−λ ·vω̃(δ ,sµ̃)

∣∣∣∣ < ε − (1−δ )g
δ

for eachω̃ .

Now, pick an arbitraryµ. Multiplying both sides of the above inequality by

µ(ω̃) and summing over all̃ω,∣∣∣∣ max
v∈Vω (δ )

λ ·v−λ ·vµ(δ ,sµ̃)
∣∣∣∣ < ε − (1−δ )g

δ
. (20)

Since maxv∈Vω (δ ) λ ·v≥ maxv∈Vµ (δ ) λ ·v≥ λ ·vµ(δ ,sµ̃),∣∣∣∣ max
v∈Vµ (δ )

λ ·v−λ ·vµ(δ ,sµ̃)
∣∣∣∣ < ε − (1−δ )g

δ
.

This shows that if we choose the dummy beliefµ̃ as above, then the strategysµ̃

approximates the score regardless of the true beliefµ.

B.2.2 Step 2: Optimal Policy for General Beliefs

Now consider an arbitrary beliefµ̃ ∈△Ω, and consider the corresponding optimal

policy sµ̃ . Pick an arbitrary true beliefµ. Then

λ ·vµ(δ ,sµ̃) = (1−δ )λ ·gµ(sµ̃(h0))+δ ∑
y∈Y

πµ
Y (y|sµ̃(h0))λ ·vµ(y)(δ ,sµ̃ |y)

whereµ(y) is the posterior belief given that the initial belief isµ and players play

sµ̃(h0) and observey in period one. Since the optimal policysµ̃ is Markov, the

continuation strategy profilesµ̃ |y is the optimal policysµ̂ for some beliefµ̂, and

the full support assumption ensures that this beliefµ̂ is an interior belief so that

µ̂(ω̃) ≥ π for eachω̃. Then from the result in the previous step, the second term

in the right-hand side must approximate the score. Specifically, from (20),∣∣∣∣∣ max
v∈Vω (δ )

λ ·v− ∑
y∈Y

πµ
Y (y|sµ̃(h0))λ ·vµ(y)(δ ,sµ̃ |y)

∣∣∣∣∣ < ε − (1−δ )g
δ

.
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Hence∣∣∣∣ max
v∈Vω (δ )

λ ·v−λ ·vµ(δ ,sµ̃)
∣∣∣∣ ≤(1−δ )

∣∣∣∣ max
v∈Vω (δ )

λ ·v−λ ·gµ(sµ̃(h0))
∣∣∣∣

+δ

∣∣∣∣∣ max
v∈Vω (δ )

λ ·v− ∑
y∈Y

πµ
Y (y|sµ̃(h0))λ ·vµ(y)(δ ,sµ̃ |y)

∣∣∣∣∣
<δε < ε .

So the strategysµ̃ approximates the score regardless of the true beliefµ.

B.2.3 Step 3: Continuation Strategies

Now consider the continuation strategysµ̃ |ht of the optimal policy. Sincesµ̃ is

Markov, the continuation strategysµ̃ |ht is the optimal policysµ̂ for some belief

µ̂. Then the result in the previous step ensures that this continuation strategysµ̃ |ht

approximates the score regardless of the true beliefµ, as desired.

B.3 Proof of Proposition 4

Fix δ . For a given strategys−i and a priorµ, let vµ
i (s−i) denote playeri’s best

possible payoff; that is, letvµ
i (s−i) = maxsi∈Si v

µ
i (δ ,si ,s−i). This payoff function

vµ
i (s−i) is convex with respect toµ, becausevµ

i (δ ,si ,s−i) is linear with respect to

µ, andvµ
i (s−i) is the upper envelop of the linear functionsvµ

i (δ ,si ,s−i) for all si .

Lemma B2. For each s−i , vµ
i (s−i) is convex with respect toµ.

Let ∆ be the set of beliefsµ such thatµ(ω) ≥ π for all ω. Intuitively, ∆ is

the set of beliefs which are not too close to the boundary of the belief space△Ω.

Under the full support assumption, playeri’s posterior belief must be in the set∆
after any history.

Pick an arbitrary beliefµ, and suppose that there is a minimax strategysµ
−i

for this belief, that is,vµ
i (δ ) = maxsi∈Si v

µ
i (si ,s

µ
−i). Take any public historyht and

the corresponding continuation strategysµ
−i |ht induced by this minimax strategy.

Sincesµ
−i is a minimax strategy, the continuation strategysµ

−i |ht must give a lower

payoff to playeri than other strategiess−i , at least for some playeri’s belief µ̃.

Specifically, we claim that for any strategys−i , there must be some beliefµ̃ ∈ ∆
such thatvµ̃

i (sµ
−i |ht ) ≤ vµ̃

i (s−i).
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To see that this result indeed holds, suppose not, so that there iss−i such that

vµ̃
i (sµ

−i |ht ) > vµ̃
i (s−i) for all µ̃ ∈∆. Intuitively, this strategys−i gives a lower payoff

to playeri thansµ
−i |ht , regardless of playeri’s belief µ̃ ∈ ∆. This means thatsµ

−i

is not a minimax strategy; we can can lower playeri’s payoff by replacing the

continuation strategysµ
−i |ht with s−i . This is a contradiction, and thus the result

follows.

In general, a minimax strategysµ
−i may not exist, since we take the infimum

with respect tos−i in the definition of the minimax payoff. In such a case, we let

sµ
−i be a strategy which approximates the minimax payoff. The following lemma

ensures that the above result holds if we choose this strategysµ
−i carefully.

Lemma B3. For eachµ, there is a public strategy sµ
−i such that∣∣vµ

i (δ )−vµ
i (sµ

−i)
∣∣ < 1−δ . (21)

and such that for any t≥ 1, for any ht , and for any public strategy s−i , there is

µ̃ ∈ ∆ satisfying

vµ̃
i (sµ

−i |ht ) < vµ̃
i (s−i)+1−δ . (22)

Note that we consider the case in whichδ is close to one, so 1− δ is small.

The first condition (21) ensures thatsµ
−i approximates the minimax payoff. The

second condition (22) asserts that there is no strategys−i which yields a lower

payoff to playeri thansµ
−i |ht for all beliefsµ̃ ∈ ∆.

Proof. Fix µ, and takesµ
−i such that (21) holds. Thissµ

−i may not satisfy the

second condition (22) in the lemma. We will modifysµ
−i so that (22) holds.

Suppose that the second condition (22) is not satisfied fort = 1, i.e., suppose

that there ish1 ands−i such that

vµ̃
i (sµ

−i |h1) ≥ vµ̃
i (s−i)+1−δ . (23)

for all µ̃ ∈ ∆. Fix suchh1, and letS−i(h1) be the set of all strategiess−i which

satisfy (23) for allµ̃ ∈ ∆. Chooses∗−i ∈ S−i(h1) so that∣∣∣∣ inf
s−i∈S−i(h1)

vµU

i (s−i)−vµU

i (s∗−i)
∣∣∣∣ < 1−δ

whereµU = ( 1
|Ω| , · · · ,

1
|Ω|).

Now, consider the following strategy ˜sµ
−i , which is a modification ofsµ

−i :
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• Follow sµ
−i , unless the history reachesh1

• If h1 is reached, they plays∗−i (instead ofsµ
−i |h1) in the rest of the game.

That is, we replace the continuation strategy after the historyh1 with s∗−i .

We claim that this modified strategy ˜sµ
−i satisfies (22) forh1, while it still sat-

isfies (21). We first show that (22) holds forh1. Since ˜sµ
−i |h1 = s∗−i , it is sufficient

to show that for anys−i , there isµ̃ ∈ ∆ such that

vµ̃
i (s∗−i) < vµ̃

i (s−i)+1−δ . (24)

Consider the case in whichs−i ∈ S−i(h1). Then by the definition ofs∗−i , (24) is

satisfied forµ̃ = µU . Consider the case in whichs−i < S−i(h1). Then by the

definition ofS−i(h1), there isµ̃ ∈ ∆ such thatvµ̃
i (sµ

−i |h1) < vµ̃
i (s−i)+1− δ . (24)

holds for suchµ̃, becauses∗−i ∈ S−i(h1) so thatvµ̃
i (s∗−i) < vµ̃

i (sµ
−i |h1).

To see that the modified strategy ˜sµ
−i satisfies (21), recall thats∗−i satisfies (23)

for all µ̃ ∈ ∆. That is,s∗−i yields a lower payoff to playeri thansµ
−i |h1, as long as

the current belief is in the set∆. This implies that if the opponents play ˜sµ
−i instead

of sµ
−i , playeri’s continuation payoff is lowered once the historyh1 realizes; and

this is true regardless of playeri’s posterior belief in period two. Since the full

support assumption ensures that the probability ofh1 is positive, we have

vµ̃
i (ai ,s

µ
−i) > vµ̃

i (ai , s̃
µ
−i)

for any µ̃ andai , wherevµ̃
i (ai ,s−i) represents playeri’s payoff when the initial

prior is µ̃, the opponents plays−i , and playeri choosesai in period one and then

plays a best reply after that. This implies that

vµ̃
i (s̃µ

−i) = max
ai∈Ai

vµ̃
i (ai , s̃

µ
−i) ≤ max

ãi∈Ai

vµ̃
i (ãi ,s

µ
−i) = vµ̃

i (sµ
−i)

for all µ̃. Then it is obvious that the modified strategy ˜sµ
−i satisfies (21), as the

original strategysµ
−i satisfies it.

We can modify the continuation strategys−i |h̃1 for each one-period historỹh1

in the same way, so that (22) holds for all one-period historiesh1. Then induction;

we apply a similar argument to each historyh2 to obtain a strategy which satisfies

(22) for allh0, h1, andh2, and so on. This proves the lemma. Q.E.D.
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Pick µ andht , and consider the corresponding strategysµ
−i |ht . Then the payoff

vµ̃
i (sµ

−|ht ) is convex with respect to the initial belief̃µ. For eachµ, t ≥ 0, and

ht ∈ Ht , let

vi(s
µ
−i |ht ) = max

µ̃∈△Ω
vµ̃

i (sµ
−|ht ).

That is,vi(s
µ
−i |h) is the highest payoff attained by the convex functionvµ̃

i (sµ
−i |ht ).

Note that different(µ,ht) induce different convex curvesvµ̃
i (sµ

−i |ht ), and hence

different highest payoffsvi(s
µ
−i |ht ). Take the supremum of these highest payoffs,

and choose(µ∗,h∗) to approximate the supremum, that is,∣∣∣∣∣ sup
µ∈△Ω

sup
h∈H

vi(s
µ
−i |h)−vi(s

µ∗

−i |h∗)

∣∣∣∣∣ < 1−δ . (25)

We callvi(s
µ∗

−i |h∗) themaximal value, because it approximates supµ∈△Ω suph∈H vi(s
µ
−i |h),

which is greater than any payoffs attained by any convex curves.

Sincevµ̃
i (sµ∗

−i |h∗) is convex, it is maximized wheñµ is an extreme point; i.e., it

is maximized when the initial prior puts probability one on some stateω . Let ω
denote this state, that is,vω

i (sµ∗

−i |h∗) ≥ vµ̃
i (sµ∗

−i |h∗) for all µ̃.

In the rest of the proof, we will show that for any(µ,ht), the corresponding

convex curvevµ̂
i (sµ

−i |ht ) is almost constant, and approximates the maximal score

for all beliefs µ̂. That is, if the opponents play the minimax strategysµ
−i , after

every historyht , playeri’s continuation payoff is approximately equal to the max-

imal score regardless of her posterior beliefµ̂. This implies that the minimax

payoff given a common priorµ approximates the maximal score regardless ofµ,

and hence the result follows.

Our proof consists of three steps. In the first step, we provide a sufficient con-

dition for the convex curvevµ̂
i (sµ

−i |ht ) to be almost flat. Specifically, we show that

given the opponents’ strategysµ
−i |ht , if the corresponding convex curvevµ̃

i (sµ
−i |ht )

approximates the maximal score for some interior beliefµ̃, then the curve is al-

most flat and the payoffvµ̂
i (sµ

−i |ht ) approximates the maximal score for all beliefs

µ̂. The proof technique is very similar to the one used in Yamamoto (2016).

In the second step, we show that there is some(µ,ht) such that the correspond-

ing convex curvevµ̃
i (sµ

−i |ht ) is almost flat and approximates the maximal score for

all initial beliefsµ̃. The proof uses the sufficient condition derived in the first step.

In the third step, we show that the same result holds for all(µ,ht), that is, for

any(µ,ht), the corresponding convex curvevµ̃
i (sµ

−i |ht ) approximates the maximal
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score for all initial beliefs̃µ. By letting µ̃ = µ andht = h0, this implies that player

i’s minimax payoff approximates the maximal value regardless of the initial prior;

hence the minimax payoff is insensitive to the initial prior.

B.3.1 Step 1: Almost Flat Convex Curve

The following lemma gives a sufficient condition for a convex curve to be almost

flat. The proof is very similar to Lemma C8 of Yamamoto (2016) and hence

omitted.

Lemma B4. Pick anyµ, µ̃, and ht , and letΩ∗ be the support of̃µ. Let p=
minω̃∈Ω∗ µ̃(ω̃), which measures the distance from̃µ to the boundary of△Ω∗.

Then for eacĥµ ∈△Ω∗,

∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̂
i (sµ

−i |ht )
∣∣∣ ≤

∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̃
i (sµ

−i |ht )
∣∣∣

p
.

This lemma ensures that if the convex curvevµ̃
i (sµ

−i |ht ) approximates the max-

imal value forsomeinterior beliefµ̃ ∈ ∆, then the curve is almost flat and approx-

imates the maximal value forall beliefsµ̃. To see this, pick some interior belief

µ̃ ∈ ∆, and suppose that∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̃
i (sµ

−i |ht )
∣∣∣ < ε

whereε is a positive number close to zero. That is, assume that the curvevµ̃
i (sµ

−i |ht )
approximates the maximal scorevi(s

µ∗

−i |h∗) for someµ̂. Then sincẽµ ∈∆, we have

p≥ π, and thus the above lemma implies that∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̂
i (sµ

−i |ht )
∣∣∣ ≤ ε

p
≤ ε

π

for all µ̂ ∈△Ω. So the payoffvµ̂
i (sµ

−i |ht ) indeed approximates the maximal value

for all beliefsµ̂.

In the above argument, it is important thatµ̃ ∈ ∆. That is,µ̃ should not be too

close to the boundary of the belief space. This ensures that the parameterp is at

leastπ, so thatεp is small.
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B.3.2 Step 2: Some Convex Curve Approximates the Maximal Value

The following lemma shows that there is(µ,ht) such that the corresponding con-

vex curvevµ̃
i (sµ

−i |ht ) is almost flat and approximates the maximal value uniformly

in µ̃ ∈ △Ω. The lemma shows that such(µ,ht) can be found by lettingµ = µ∗

andht = (h∗,y) for somey. LetC = 2g
π2 and letC̃ = 1

π2 .

Lemma B5. For each y andµ̃,∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̃
i (sµ∗

−i |(h∗,y))
∣∣∣ ≤ 1−δ

δ
C+(1−δ )C̃.

To prove this lemma, it is sufficient to find an interior beliefµ̃ ∈ ∆ such that

the payoffvµ̃
i (sµ∗

−i |(h∗,y)) approximates the maximal value. Indeed, if there is such

an interior beliefµ̃, then Lemma B4 ensures that the convex curvevµ̃
i (sµ∗

−i |(h∗,y) is

almost flat and approximates the maximal value for allµ̃.

To find such an interior belief̃µ, suppose that the current state isω and it

is common knowledge. Suppose also that the opponents playsµ∗

−i |h∗ from now

on, and playeri takes a best reply. By the definition ofsµ∗

−i |h∗ andω , player i’s

payoff approximates the maximal value. Now, suppose that no one deviates today

and the signaly is observed. Letting̃µ be playeri’s posterior belief in period two,

her continuation payoff from period two is denoted byvµ̃
i (sµ∗

−i |(h∗,y)). We can show

that this continuation payoff approximates the maximal value; the proof technique

is very similar to the ones presented in Section 5.2.2 in Yamamoto (2016). So this

belief µ̃ satisfies the desired property, and hence we obtain the lemma.

Proof. Pick an arbitraryy. Suppose that the initial state isω and that the oppo-

nents playsµ∗

−i |h∗. Suppose that playeri chooses a pure best reply strategys∗i . Let

α∗ = (s∗i (h
0
i ),s

µ∗

−i |h∗(h0
−i)) denote the action profile in period one, and letµ̃(ỹ) be

playeri’s posterior in period two given that players observe ˜y in period one. Then

vi(s
µ∗

−i |h∗) = (1−δ )gω
i (α∗)+δ ∑̃

y∈Y
πω

Y (ỹ|α∗)vµ̃(ỹ)
i (sµ∗

−i |(h∗,ỹ)).

Sincegω
i (α∗) ≤ g,

vi(s
µ∗

−i |h∗) ≤ (1−δ )g+δ ∑̃
y∈Y

πω
Y (ỹ|α∗)vµ̃(ỹ)

i (sµ∗

−i |(h∗,ỹ)).
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From (25), we have

vµ̃(ỹ)
i (sµ∗

−i |(h∗,ỹ)) ≤ vi(s
µ∗

−i |h∗)+(1−δ ) (26)

for each ˜y. Plugging this into the above inequality,

vi(s
µ∗

−i |h∗) ≤(1−δ )g+δπω
Y (y|α∗)vµ̃(y)

i (sµ∗

−i |(h∗,y))

+δ (1−πω
Y (y|α∗))

{
vi(s

µ∗

−i |h∗)+(1−δ )
}

.

Since (26) holds andπω
Y (ỹ|α∗) ≥ π,

vi(s
µ∗

−i |h∗) ≤ (1−δ )g+δπvµ̃(y)
i (sµ∗

−i |(h∗,y))+δ (1−π)
{

vi(s
µ∗

−i |h∗)+(1−δ )
}

.

Subtracting(1−δπ)vi(s
µ∗

−i |h∗)−δπ(1−δ )+δπvµ̃(y)
i (sµ∗

−i |(h∗,y)) from both sides,

δπ
{

vi(s
µ∗

−i |h∗)+(1−δ )−vµ̃(y)
i (sµ∗

−i |(h∗,y))
}

≤ (1−δ )(g−vi(s
µ∗

−i |h∗))+δ (1−δ ).

Since the left-hand side is non-negative, taking the absolute value of both sides

and dividing both sides byδπ,∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̃(y)
i (sµ∗

−i |(h∗,y))
∣∣∣ ≤ (1−δ )|g−vi(s

µ∗

−i |h∗)|
δπ

+
1−δ

π
.

Sincevi(s
µ∗

−i |h∗) ≥−g,∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̃(y)
i (sµ∗

−i |(h∗,y))
∣∣∣ ≤ (1−δ )2g

δπ
+

1−δ
π

.

This inequality ensures that the convex curve induced bysµ∗

−i |(h∗,y) approxi-

mates the maximal value at the beliefµ̃(y) ∈ ∆. Hence Lemma B4 implies that

this convex curve is almost flat and approximates the maximal value regardless of

the belief; in particular it shows that the desired inequality holds, becauseΩ∗ and

p in the statement of Lemma B4 satisfyΩ∗ = Ω andp≥ π. Q.E.D.

B.3.3 Step 3: All Convex Curves Approximate the Maximal Value

In the previous step, we have seen that there is the opponents’ strategysµ
−i |ht such

that the corresponding convex curvevµ̃
i (sµ

−i |ht ) is almost flat and approximates the
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maximal value uniformly inµ̃ ∈ △Ω. The next lemma shows that the same is

true for all strategiessµ
−i |ht . That is, we show that for any(µ,ht), the correspond-

ing convex curvevµ̃
i (sµ

−i |ht ) is almost flat and approximates the maximal value

uniformly in µ̃ ∈△Ω. LetC′ = C
π andC̃′ = C̃+1

π .

Lemma B6. For eachµ, µ̃, t ≥ 0, and ht ,∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̃
i (sµ

−i |ht )
∣∣∣ ≤ 1−δ

δ
C′ +(1−δ )C̃′

To see the proof idea, pick some(µ,ht). Lemma B3 implies that the strat-

egy sµ∗

−i |(h∗,y) must give a lower payoff to playeri thansµ
−i |ht , at least for some

µ̃ ∈ ∆. That is, there must be some beliefµ̃ ∈ ∆ such that playeri’s payoff against

sµ∗

−i |(h∗,y) is lower than her payoff againstsµ
−i |ht . Lemma B5 ensures that this for-

mer payoff approximates the maximal value; hence the latter payoff does so too,

that is, playeri’s payoff againstsµ∗

−i |(h∗,y) approximates the maximal score given

the beliefµ̃. Then Lemma B4 ensures that the convex curvevµ̃
i (sµ

−i |ht ) approxi-

mates the maximal value for all beliefsµ̃.

Proof. Pick µ, t, ht , andy arbitrarily. From Lemma B3, there is̃µ ∈ ∆ such that

vµ̃
i (sµ∗

−i |(h∗,y)) < vµ̃
i (sµ

−i |ht )+1−δ .

Sincevµ̃
i (sµ

−i |ht ) < vi(s
µ∗

−i |h∗)+(1−δ ), this implies that

vµ̂
i (sµ∗

−i |(h∗,y))− (1−δ ) < vµ̃
i (sµ

−i |ht ) < vi(s
µ∗

−i |h∗)+(1−δ ).

Then we obtain∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̃
i (sµ

−i |ht )
∣∣∣

≤
∣∣∣vi(s

µ∗

−i |h∗)+(1−δ )−vµ̃
i (sµ∗

−i |(h∗,y))+(1−δ )
∣∣∣

≤ 1−δ
δ

C+(1−δ )(C̃+1)

where the second inequality follows from Lemma B5. This implies that playeri’s

best possible payoffvµ̃
i (sµ

−i |ht ) given the initial priorµ̃ and the opponents’ strategy

sµ
−i |ht approximates the maximal valuevi(s

µ∗

−i |h∗). Then sinceµ̃ ∈ ∆, Lemma B4

leads to the desired result. Q.E.D.
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Letting µ = µ̃ andh = h0, the above lemma implies that∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ
i (sµ

−i)
∣∣∣ ≤ 1−δ

δ
C′ +(1−δ )C̃′.

This, together with (21), implies that regardless of the initial priorµ, the minimax

payoff vµ
i (δ ) approximates the maximal valuevi(s

µ∗

−i |h∗). Hence the minimax

payoffs are insensitive to the initial prior, as desired.

B.4 Proof of Proposition 5

Let sµ
−i be as in the proof of Proposition 4 for eachµ. Also, let ∆, vi(s

µ
−i |ht ),

vµ
i (s−i |ht ), C′, andC̃′ as in the proof of Proposition 4.

Pick an arbitrary dummy belief̃µ. Consider the correspondingsµ̃
−i , and let

sµ̃
i be a pure-strategy best reply tosµ̃

−i given the beliefµ̃. By the definition, this

strategy profilesµ̃ approximates the minimax payoff if the true beliefµ equalsµ̃.

In what follows, we show that this profilesµ̃ satisfies the desired inequalities (14)

and (15).

Note first that from Lemma B6,vµ
i (sµ̃

−i |ht ) approximates the maximal value for

eachµ, t, andht . This proves (15), because the minimax payoffvµ
i (δ ) approxi-

mates the maximal value regardless of the initial priorµ, as shown in the proof of

Proposition 4.

To prove (14), we use the following lemma.

Lemma B7. Pick µ̃ and s̃µ as stated above. Pick anyµ, t ≥ 0, and ht , and letΩ∗

be the support ofµ. Let p= minω̃∈Ω∗ µ(ω̃), which measures the distance from

µ to the boundary of△Ω∗. Then for each si ∈ argmax̃si∈Si v
µ
i (δ , s̃i ,s

µ̃
−i |ht ) and

µ̂ ∈△Ω∗,

∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̂
i (δ ,si ,s

µ̃
−i |ht )

∣∣∣ ≤
∣∣∣vi(s

µ∗

−i |h∗)+(1−δ )−vµ
i (sµ̃

−i |ht )
∣∣∣

p
.

To interpret this lemma, suppose that a strategysi is a best reply tosµ̃
−i |ht given

someinterior beliefµ ∈ ∆, and its payoff approximates the maximal value. Then

the lemma ensures that the payoff by this strategysi approximates the maximal

value forall beliefsµ̂.
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Proof. The proof is very similar to that of Lemma C8 of Yamamoto (2016). Re-

placevi(s
µ∗

−i ), µ̃, andsµ
−i in Yamamoto (2016) withvi(s

µ∗

−i |h∗), µ, sµ̃
−i |ht , respec-

tively. Then we can prove the lemma just as Yamamoto (2016) derives (20).

Q.E.D.

Now we show that (14) holds for anyht with t ≥ 1. Pick suchht , and let

µ = µi(ht |µ̃,ht). Under the full support assumption, the posterior beliefµ =
µi(ht |µ̃,sµ̃) puts at least probabilityπ on each state, and henceΩ∗ = Ω andp≥ π.

Also, Lemma B6 ensures thatvµi(ht |µ̃,sµ̃ )
i (sµ̃

−i |ht ) approximates the maximal value,

that is, ∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµi(ht |µ̃,sµ̃ )
i (sµ̃

−i |ht )
∣∣∣ ≤ 1−δ

δ
C′ +(1−δ )C̃′.

Plugging this andp≥ π into the inequality in the above lemma, we obtain∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̂
i (δ ,sµ̃ |ht )

∣∣∣ ≤ 1
π

(
1−δ

δ
C′ +(1−δ )C̃′

)
.

for all µ̂ ∈ △Ω. This implies that (14) holds for thisht , as the minimax payoff

approximates the maximal score for allµ.

Also, we can show that (14) holds forh0. The proof is very similar to Step 2

in the proof of Proposition 3, and hence omitted.

B.5 Proof of Proposition 6

We begin with providing the self-generation theorem, which shows that a ballW

is supported by public ex-post equilibria if it is self-generating. The proof is very

similar to Abreu, Pearce, and Stacchetti (1990) and hence omitted.

Definition B1. A pair (s,v) of a public strategy profile and a payoff vector is

stochastically ex-post enforceable with respect to(δ , p) if there is a functionw :

H → RN such that (2) holds for allω and i, and such that (3) holds for allω , i,

ands̃i .

Definition B2. A subsetW of RN is stochastically ex-post self-generating with

respect to(δ , p) if for eachv∈W, there is a public strategy profilesandw : H →
W such that(s,v) is stochastically ex-post enforceable with respect to(δ , p) using

w.
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Proposition B1. Assume that public randomization is available, and fixδ . If W is

bounded and stochastically ex-post self-generating with respect to(δ , p) for some

p, then for each payoff vector v∈W, there is a public ex-post equilibrium which

yields the payoff v regardless of the initial stateω.

Pick an arbitrary smooth subsetW of the interior ofV∗. Thanks to the propo-

sition above, to prove the folk theorem, it is sufficient to show that this setW is

stochastically ex-post self-generating for patient players.

Pick an arbitrary pointv ∈ W, and some positive numbersε > 0 andK > 0.

For each directionλ ∈ RN with |λ | = 1, define the setGv,λ ,δ as in Figure 12.

Formally, let

Gv,λ ,δ = {ṽ∈ RN|λ ·v≥ λ · ṽ+(1−δ ), |v− ṽ| < (1−δ )K}.

As λ changes, the setGv,λ ,δ changes and orbits the pointv. Also, asδ increases,

the setGv,λ ,δ shrinks and approaches the pointv. Indeed, by the definition, the set

Gv,λ ,δ is in the(1−δ )K-neighborhood ofv.

(1−δ )ε

λ

v

(1−δ )KG

Figure 12: SetGv,λ ,δ

λ

(1−δ )ε(1−δ )K

v

W

G

Figure 13:Gv,λ ,δ ⊆W

As illustrated in Figure 13, for each payoffv∈W, there is at least one direction

λ such that the setGv,λ ,δ is included inW. So if the payoffv is enforceable using

continuation payoffs in this setGv,λ ,δ , it is enforceable using continuation payoffs

in the setW.

Generalizing this idea, Fudenberg and Yamamoto (2011b) show thatuniform

decomposabilityis sufficient for a setW to be self-generating with patient play-
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ers.13 It turns out that the same result holds in our setup; the following is the

definition of uniform decomposability in our model. Here we writeGv,λ ,ε,K,δ in-

stead ofGv,λ ,δ , in order to emphasize that the setG depends on the parametersε
andK.

Definition B3. A subsetW of RN is uniformly ex-post decomposable with respect

to p if there areε > 0, K > 0, andδ ∈ (0,1) such that for allv∈W, δ ∈ (δ ,1),
andλ , there is a public strategy profiles andw : H → Gv,λ ,ε,K,δ such that(s,v) is

stochastically ex-post enforceable with respect to(δ , p) usingw.

In words, uniform decomposability requires that each payoffv ∈ W can be

achievable using continuation payoffs in the setGv,λ ,ε,K,δ , regardless of the direc-

tion λ . The next lemma shows that uniform decomposability is indeed sufficient

for the setW to be self-generating for patient players. The proof is similar to

Fudenberg and Yamamoto (2011b), and hence omitted.

Lemma B8. Suppose that a smooth and bounded subset W ofRN is uniformly

ex-post decomposable with respect to p. Then there isδ ∈ (0,1) such that for any

payoff vector v∈W and for anyδ ∈ (δ ,1), there is a public ex-post equilibrium

which yields the payoff v for any initial stateω.

In what follows, we show that the setW is uniformly ex-post decomposable.

That is, we show that each payoffv∈W is enforceable using continuation payoffs

in the setGv,λ ,ε,K,δ , regardless ofλ .

Throughout the proof, we use the following terminologies. A directionλ is

regular if it has at least two non-zero components, and iscoordinateif it has

exactly one non-zero component. In other words,λ is a coordinate direction if

|λi | = 1 for somei (because it automatically impliesλ j = 0 for all j , i).

For each strategy profilesand directionλ , let

v̂(δ ,s,λ ) = max
ω∈Ω

λ ·vω(δ ,s)−min
ω̃∈Ω

λ ·vω̃(δ ,s),

which measures how much the initial state can influence the welfare levelλ ·
vω(δ ,s) toward the directionλ . Proposition 3 ensures that ˆv(δ ,s,λ ) can be arbi-

trarily small whens is the optimal policy for some dummy beliefµ̃. Similarly, for
13This is a counterpart to the “local decomposability lemma” of FLM for infinitely repeated

games. For more discussions, see Fudenberg and Yamamoto (2011b).
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eachδ ands, let

v̂i(δ ,s) = max
ω∈Ω

vω
i (δ ,s)−min

ω̃∈Ω
vω̃

i (δ ,s),

which measures how much the initial state can influence playeri’s payoff by the

strategy profiles. Note that ˆvi(δ ,s) = v̂i(δ ,s,λ ) for the coordinate directionλ
with λi = 1.

B.5.1 Step 1: Bound on Deviation Payoffs

In Section 3.6, we have claimed that the gainGt by deviating from the prescribed

strategysv in periodt decreases with respect tot, at a geometric rate. Here we

formally prove this result in the general model.

Consider the infinite-horizon game with the initial priorµ and the discount

factorδ . Pick a public strategy profiles, wheresi is a pure strategy. Suppose that

we are currently in periodt, and that the past public history isht−1. Suppose that

no one has deviated froms so far. If playeri deviates in the continuation game,

her gain is

Gt
i(δ ,µ,s,ht−1) = max

s̃i∈Si

vµi(ht−1|µ,s)
i (δ , s̃i ,s−i |ht−1)−vµi(ht−1|µ,s)

i (δ ,s|ht−1),

as in Section 3.6.

The following lemma shows that for a class of strategy profiless, the gainGt
i

above decreases with respect tot, at a rate at least geometric with the parameter

β . This implies that the sum of the gains,

G∗
i (δ ,s) =

∞

∑
t=1

max
µ∈△Ω

max
ht−1∈Ht−1

Gt
i(δ ,µ,s,ht−1),

is finite.

Lemma B9. Suppose that the full support assumption holds. Then for eachδ ,

µ, µ̃, t ≥ 1, public history ht−1, public strategy s−i , and pure public strategy

si ∈ argmax̃si∈Si v
µ̃
i (δ , s̃i ,s−i),

Gt
i(δ ,µ,s,ht−1) ≤ β t−1

π
max

µ̂∈△Ω

(
max
s̃i∈Si

vµ̂
i (δ , s̃i ,s−i |ht−1)−vµ̂

i (δ ,s|ht−1)
)

.

whereβ is chosen as in Proposition 1. This result implies that

G∗
i (δ ,s) ≤ 1

(1−β )π
sup

ht−1∈H
max

µ̂∈△Ω

(
max
s̃i∈Si

vµ̂
i (δ , s̃i ,s−i |ht−1)−vµ̂

i (δ ,s|ht−1)
)

.
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To interpret the above lemma, letsbe the optimal policy which achieves player

i’s best payoff for some dummy beliefµ̃, just as in Section 3.6. Proposition 3 en-

sures that this strategys (and its continuation strategys|ht ) is a pseudo-ergodic

strategy which approximates playeri’s best payoff regardless of the true belief.

That is, for any smallε > 0, whenδ is large enough, we have maxs̃i∈Si v
µ̂
i (δ , s̃i ,s−i |ht )−

vµ̂
i (δ ,s|ht ) < πε uniformly in t, ht , andµ̂. Substituting this to the inequalities in

the above lemma, we obtain (9) for eacht, and henceG∗
i ≤ ε

1−β . The same result

holds whens is a minimax strategy for some dummy beliefµ̃, because Propo-

sition 5 ensures that given any smallε > 0, whenδ is large enough, we have

maxs̃i∈Si v
µ̂
i (δ , s̃i ,s−i |ht )− vµ̂

i (δ ,s|ht ) < πε uniformly in t, ht , andµ̂. This result

is useful when we consider the problem associated with the “negative coordinate

direction.”

In what follows, we will prove the above lemma. We first provide a prelim-

inary result. Pick the opponents’ strategys−i . Suppose that playeri’s current

belief isµ, but she is asked to play a strategysi which is a best reply tos−i given

a dummy beliefµ̃ , µ. Assume that this dummy belief is an interior belief so that

µ̃(ω) ≥ π for all ω. Since this strategysi is not necessarily a best reply given the

true beliefµ, playeri can possibly increase her payoff by deviating fromsi ; this

gain is represented by

max
s̃i∈Si

vµ
i (δ , s̃i ,s−i)−vµ

i (δ ,s).

The following lemma provides a bound on this gain. When the true beliefµ
approaches̃µ, the gain converges to zero at least linearly in|µ − µ̃|.

Lemma B10. For eachδ , for eachµ, for eachµ̃ with µ̃(ω) ≥ π for all ω, for

each public strategy s−i , and for each pure strategy si ∈ argmax̃si∈Si v
µ̃
i (δ , s̃i ,s−i),

we have

max
s̃i∈Si

vµ
i (δ , s̃i ,s−i)−vµ

i (δ ,s) ≤ |µ − µ̃|
π

max
µ̂∈△Ω

(
max
s̃i∈Si

vµ̂
i (δ , s̃i ,s−i)−vµ̂

i (δ ,s)
)

.

To illustrate the proof idea, consider the case in which there are only two

states,ω1 andω2. Then each beliefµ is represented by a single number; letµ
denote the probability on the stateω1. Pick the opponents’ strategys−i arbitrarily.

We know from Lemma B2 that playeri’s best payoff max̃si∈Si v
µ
i (δ , s̃i ,s−i) against

this strategys−i is convex with respect to the beliefµ, as in Figure 14. Pick an
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arbitrary dummy belief̃µ as stated in the lemma, and letsi be a best reply tos−i

given this dummy belief̃µ. The dashed line in the figure shows playeri’s payoff

vµ
i (δ ,s) achieved by this strategysi for each true beliefµ. This dashed line must

intersect with the curve atµ = µ̃ becausesi is a best reply tos−i given the initial

prior µ = µ̃. Also this dashed line must be below the curve, because for each

current beliefµ, the curve gives the highest payoff for playeri againsts−i . Taken

together, the dashed line must be tangential to the curve atµ = µ̃ as in the figure.

10

Graph of max̃si v
µ
i (δ , s̃i ,s−i)

Graph ofvµ
i (δ ,s)

µ̃ µ

A

B

C

D

E

Deviation Gain

Figure 14: Bound on the Gain

Now, pick a true beliefµ arbitrarily; without loss of generality, we assume

µ > µ̃. Given this true beliefµ, the gain by deviating fromsi is represented by

the distance between the curve and the dashed line atµ. As the figure shows, since

the curve is convex, this distance is less than the lengthBC. (Here,XY represents

the distance between the two pointsX andY.) Note that this lengthBC is equal

to µ−µ̃
1−µ̃ DE, because that the two trianglesABCandADE in the figure are similar

with the ratio of corresponding sidesµ−µ̃
1−µ̃ . Hence the gain by deviating fromsi is

at most
µ − µ̃
1− µ̃

DE.

This immediately implies the lemma, because 1− µ̃ ≥ π and

DE ≤ max
µ̂∈△Ω

(
max
s̃i∈Si

vµ̂
i (δ , s̃i ,s−i)−vµ̂

i (δ ,s)
)

.

The proof for the state spaceΩ is as follows:
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Proof. Fix i andδ . For eachs−i , let vµ
i (s−i) be as in the proof of Proposition 4,

that is,vµ
i (s−i) = maxsi∈Si v

µ
i (δ ,si ,s−i). As Lemma B2 shows,vµ

i (s−i) is convex

with respect toµ.

Take µ, µ̃, s−i , si as stated in the lemma. Ifµ = µ̃, the result obviously

holds. So assume thatµ = µ̃, and then pick a boundary pointµ∗ of △Ω such that

µ = κµ∗ +(1−κ)µ̃ for someκ ∈ (0,1].
As in the proof of Proposition 4, letvµ

i (s−i) denote the best payoff for player

i when the initial prior isµ and the opponents plays−i . That is, letvµ
i (s−i) =

maxs̃i∈Si v
µ
i (δ , s̃i ,s−i). Then we have

vµ
i (s−i)−vµ

i (δ ,s) ≤κvµ∗

i (s−i)+(1−κ)vµ̃
i (s−i)−vµ

i (δ ,s)

=κvµ∗

i (s−i)+(1−κ)vµ̃
i (s−i)−κvµ∗

i (δ ,s)− (1−κ)vµ̃
i (δ ,s)

Here the inequality follows from the fact thatvµ
i (s−i) is convex with respect to

µ, and the second equality from the fact thatvµ
i (δ ,s) is linear with respect to

µ. Sincesi is a best reply tos−i given the beliefµ̃, we havevµ̃
i (s−i) = vµ̃

i (δ ,s).
Plugging this into the above inequality, we have

vµ
i (s−i)−vµ

i (δ ,s) ≤ κ
(

vµ∗

i (s−i)−vµ∗

i (δ ,s)
)
≤ κ max

µ̂∈△Ω

(
vµ̂

i (s−i)−vµ̂
i (δ ,s)

)
.

Sinceµ = κµ∗ + (1− κ)µ̃, κ = |µ−µ̃|
|µ∗−µ̃| . Now, we know that|µ∗− µ̃| ≥ π,

becauseµ∗ is a boundary point whilẽµ(ω) ≥ π for all ω by the assumption.

Hence, we haveκ ≤ |µ−µ̃|
π . Plugging this into the previous inequality, we obtain

the result. Q.E.D.

Now we prove Lemma B9. Fort = 1, it is obvious that

G1
i (δ ,µ,s,h0) ≤ 1

π
max

µ̂∈△Ω

(
max
s̃i∈Si

vµ̂
i (δ , s̃i ,s−i)−vµ̂

i (δ ,s)
)

.

For t ≥ 2, by replacingµ, µ̃, s in Lemma B10 withµ(ht−1|µ,s), µ(ht−1|µ̃,s),
ands|ht−1, we obtain

Gt
i(δ ,µ,s,ht) ≤ |µ(ht−1|µ,s)−µ(ht−1|µ̃,s)|

π
max

µ̂∈△Ω

(
max
s̃i∈Si

vµ̂
i (δ , s̃i ,s−i |ht−1)−vµ̂

i (δ ,s|ht−1)
)

Here the full support assumption ensures thatµ(ht−1|µ̃,s) is indeed an interior be-

lief which puts at leastπ on each stateω. Proposition 1 ensures that|µ(ht−1|µ,s)−
µ(ht−1|µ̃,s)| ≤ β t−1, so we obtain the desired inequality.
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B.5.2 Step 2: Strategies with Cross-State Full-Rank Conditions

Let SPFR be the set of all public strategy profiless such that the induced action

profile s(ht) has cross-state pairwise full rank for each historyht and such that

|{α|α = s(ht) ∃t∃ht}| ≤ |A|. The second constraint requires thats cannot induce

more than|A| different actions.

Also, for eachη > 0, letSIFR(η) be the set of all public strategy profilesssuch

that given any historyht , any action profile within theη-neighborhood ofs(ht)
has cross-state individual full rank; i.e., for anyα which does not have cross-state

pairwise full rank, we have|s(ht)−α| ≥ η .

As in FLM, under (PFR), the set of action profilesα which have cross-state

pairwise full rank is open and dense in the set of all action profiles, that is, any ac-

tion profile can be approximated by an action profileα which has cross-state pair-

wise full rank. This in turn implies that any pure public strategys∗ can be approxi-

mated by some strategys∈SPFR. Note that the constraint|{α|α = s(ht) ∃t∃ht}|≤
|A| is indeed satisfied by lettings(ht) = s(h̃t̃) whenevers∗(ht) = s∗(h̃t̃). Similarly,

any (possibly mixed) strategy can be approximated by some strategy in the set

SIFR(η) for sufficiently smallη .

Recall that our assumptions, (PFR) and (IFR), are weaker than requiring all

mixed action profiles to have cross-state pairwise full-rank condition. Accord-

ingly, the optimal policys (which achieves the score for some directionλ ) may

involve some action profile which does not satisfy the full-rank condition. How-

ever, the above discussion suggests that we can “perturb” this optimal policy a bit

so that the resulting strategy still approximates the score and satisfies the full-rank

condition. Similarly, a minimax strategy profile can be perturbed so that the re-

sulting strategy satisfies the cross-state individual full-rank condition. Formally,

we obtain the following lemma.

Lemma B11. Suppose that the full support assumption holds, and that (IFR) and

(PFR) hold. Then for any smooth subset W of the interior of V∗, there isη > 0

such that for any C> 0, there areε > 0, p∈ (0,1), andδ ∈ (0,1) such that for

eachδ ∈ (δ ,1), the following properties hold:

(i) For every regular directionλ , there is a strategy profile s∈ SPFR∩SIFR(η)
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such that for eachω ,

λ ·vω(pδ ,s) > max
v∈W

λ ·v+Cv̂(pδ ,s,λ )+ ε.

(ii) For each i, there is a pure public strategy profile s such that for eachω,

vω
i (pδ ,s) > max

v∈W
vi +Cv̂i(pδ ,s)+CG∗

i (pδ ,s)+ ε

and

G∗
i (pδ ,s) < ε.

(iii) For each i, there is a public strategy profile s∈SIFR(η) such that si is a pure

strategy and such that for eachω,

vω
i (pδ ,s) < min

v∈W
vi −Cv̂i(pδ ,s)−CG∗

i (pδ ,s)− ε

and

G∗
i (pδ ,s) < ε.

Clause (i) asserts that for each regular directionλ , there is a pseudo-ergodic

strategys which approximates the score regardless of the stateω and satisfies

appropriate full-rank conditions. To see this, letsµ̃ be the optimal policy for some

dummy beliefµ̃. We know that this strategysµ̃ is a pseudo-ergodic strategy which

approximates the score regardless of the stateω; this implies that the strategysµ̃

satisfies the inequality in clause (i), becauseλ ·vω(pδ ,s∗) > maxv∈W λ ·v for each

ω andv̂(pδ ,s∗,λ )≈ 0. However, some action profiles used by the strategysµ̃ may

not satisfy full-rank conditions, so we may havesµ̃ < SPFR∩SIFR(η). Clause (i)

ensures that in such a case, we can perturb this strategysµ̃ so that the resulting

strategys still satisfies the inequality ands∈ SPFR∩SIFR(η).
Clause (ii) considers the case with the coordinate directionλ with λi = 1. The

strategy profiles in the clause (ii) is simply the optimal policy for some dummy

belief µ. (We do not need to perturb it.) This strategys indeed satisfies the in-

equalities in clause (ii), because Proposition 3 and Lemma B9 ensure that ˆvi(pδ ,s)
andG∗

i (pδ ,s) approximate zero. Note also thats∈ SIFR(η), becauses is a pure

strategy profile and (IFR) holds.

Clause (iii) implies that there is a strategy profile which approximately mini-

maxes playeri regardless of the stateω . To see this, letsµ̃ be the minimax strat-

egy profile given some dummy beliefµ̃. This strategysµ̃ satisfies the inequalities
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in clause (iii); indeed, Proposition 5 and Lemma B9 ensure that ˆvi(pδ ,s) and

G∗
i (pδ ,s) approximate zero, and thatvω

i (pδ ,sµ̃) < minv∈W vi for eachω How-

ever, the minimax strategysµ̃ may use actions which do not satisfy cross-state

individual full rank, so we may haves< SIFR(η). Clause (iii) ensures that in such

a case, we can perturb this strategysµ̃ so that the resulting strategys still satisfies

the inequalities ands∈ SIFR(η).
In what follows, we prove the above lemma. The proof is more involved than

that in FLM, since a perturbation of an action in some periodt influences both

the stage-game payoff in periodt and the continuation payoff from periodt + 1

on through the distribution of(ω t+1,yt). Readers who are less interested in such

technical issues may want to skip it and go to Step 3.

We begin with presenting some preliminary lemmas; roughly, they show that

the scores and the minimax payoffs can be approximated by perturbed strategies

which satisfy appropriate full-rank conditions.

The first lemma shows that whenη is not too large, for every directionλ , the

score can be approximated by a strategys∈ SPFR∩SIFR(η).

Lemma B12. Suppose that the full support assumption, (IFR), and (PFR) hold.

Then there isη > 0 such that for anyε > 0 andη ∈ (0,η), there isδ ∈ (0,1) such

that for anyλ andδ ∈ (δ ,1), there is s∈ SPFR∩SIFR(η) such that for eachµ,∣∣∣∣λ ·vµ(δ ,s)− max
v∈Vµ (δ )

λ ·v
∣∣∣∣ < ε.

Proof. Takeη > 0 so that any (possibly mixed) action profileα which isη-close

to some pure action profile has cross-state individual full rank. The existence of

suchη is guaranteed, since (IFR) implies that any action profile which approxi-

mates some pure action profile has cross-state individual full rank.

As shown in FLM, under (PFR), the set of action profiles which have cross-

state pairwise full rank is open and dense in the set of all action profiles. Hence

we can approximate the score using strategies in the setSPFR; in particular, Propo-

sition 3 ensures that for anyε > 0 andη ∈ (0,η), there isδ ∈ (0,1) such that for

eachλ andδ ∈ (δ ,1), there iss∈ SPFR such that∣∣∣∣λ ·vµ(δ ,s)− max
v∈Vµ (δ )

λ ·v
∣∣∣∣ < ε
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for eachµ and such that for each historyht , the action profiles(ht) is η-close to

some pure action profile. By the definition ofη , this strategy profiles is in the set

SIFR(η), and hence the result follows. Q.E.D.

The next three lemmas are about the minimax payoffs by perturbed strategies.

For eachη > 0, letSIFR
−i (η) be the set of all public strategiess−i such that for each

pure public strategysi and historyht , any action profile within theη-neighborhood

of s(ht) has cross-state individual full rank. Then let

vµ
i (δ ,η) = inf

s−i∈SIFR
−i (η)

max
si∈Si

vµ
i (δ ,s).

In words,vµ
i (δ ,η) is the minimax payoff when the opponents’ play is restricted

to SIFR
−i (η). If SIFR

−i (η) is empty, then letvµ
i (δ ,η) = ∞. The following lemmas

show that Propositions 4 and 5 remain valid even when we consider the restricted

strategy spaceSIFR
−i (η). Note also that the convergence rate is uniform inη .

Lemma B13. Suppose that the full support assumption holds. Then for each

ε > 0, there isδ ∈ (0,1) such that|vµ
i (δ ,η)− vµ̃

i (δ ,η)| < ε for anyδ ∈ (δ ,1),
µ, µ̃, andη > 0 with SIFR

−i (η) , /0.

Proof. The proof of Proposition 4 is valid without any change even when we

consider the restricted strategy spaceSIFR
−i (η). In particular, the bounds in the

lemmas in the proof do not depend onη . Hence the result follows. Q.E.D.

Lemma B14. Suppose that the full support assumption holds. Then for each

ε > 0, there isδ ∈ (0,1) such that for eachδ ∈ (δ ,1), for eachµ̃, and for each

η > 0 with SIFR
−i (η) , /0, there is sµ̃−i ∈ SIFR

−i (η) such that for each pure strategy

sµ̃
i ∈ argmax̃si∈Si v

µ̃
i (δ , s̃i ,s

µ̃
−i),∣∣∣vµ

i (δ ,sµ̃ |ht )−vµ
i (δ ,η)

∣∣∣ < ε (27)

and

max
s̃i∈Si

vµ
i (δ , s̃i ,s

µ̃
−i |ht )−vµ

i (δ ,sµ̃ |ht ) < ε (28)

for eachµ, t, and ht−1.

Proof. The proof of Proposition 5 is valid without any change. Q.E.D.

72



As in FLM, under (IFR), the set of actionsα−i such that(ai ,α−i) has cross-

state individual full rank for allai is open and dense in the set of all mixed ac-

tions. Hence, for a fixed discount factorδ , the minimax payoff with the restricted

strategy spaceSIFR
−i (η) approximates the minimax payoffvµ

i (δ ) asη → 0. The

following lemma strengthens this result; it shows that the limit minimax payoff

vi(η) = limδ→1vµ
i (δ ,η) with the restricted strategy space approximates the limit

minimax payoff asη → 0. (The existence of limδ→1vµ
i (δ ,η) can be proved as in

Yamamoto (2016). Lemma B13 ensures that this limit is independent ofµ.)

Lemma B15. Suppose that the full support assumption and (IFR) hold. Then for

anyε > 0, there isη > 0 such that|vi(η)−vi | < ε for anyη ∈ (0,η) andµ.

Proof. By the definition,vi(η) is non-increasing inη and at leastvi . Hence, it is

sufficient to show that there isµ such that for anyε > 0, there isη > 0 such that

|vi(η)− vi | < ε. In other words, it is sufficient to show that there areµ, ε > 0,

η > 0 andδ ∈ (0,1) such that for anyδ ∈ (δ ,1), |vµ
i (δ ,η)−vµ

i (δ )| < ε.

Pick µ andε > 0 arbitrarily. LetC′ andC̃′ be as in the proof of Proposition 4.

Then pickη > 0 sufficiently small so that 2η |A−i |(g+ C′+C̃′

π ) < ε
3.

Pick an arbitraryδ ∈ (0,1), and choosesµ
−i as in Lemma B3. Then take a

perturbed strategys∞
−i ∈ SIFR

−i (η) such that after every historyht , the actions∞
−i(h

t)
is 2η-close tosµ

−i(h
t). Such a strategys∞

−i indeed exists becauseη is sufficiently

small. Then for eacht, letst
−i be the strategy such that only the actions up to period

t are perturbed; i.e.,st
−i(h

t̃) = s∞
−i(h

t̃) for eacht̃ ≤ t −1 andst
−i(h

t̃) = sµ
−i(h

t̃) for

eacht̃ ≥ t. Let s0
−i = sµ

−i . For eacht, let st
i be a best reply tost

−i given the initial

prior µ. Also lets∞
i be a best reply tos∞

−i givenµ. Then we have∣∣vµ
i (δ ,η)−vµ

i (δ )
∣∣ ≤ ∣∣vµ

i (δ ,s∞)−vµ
i (δ )

∣∣
<

∣∣vµ
i (δ ,s∞)−

{
vµ

i (δ ,s0)− (1−δ )
}∣∣

≤
∣∣vµ

i (δ ,s∞)−vµ
i (δ ,s0)

∣∣+(1−δ )

≤
∞

∑
t=1

∣∣vµ
i (δ ,st)−vµ

i (δ ,st−1)
∣∣+2(1−δ ).

Here, the first inequality follows fromvµ
i (δ ,s∞) ≥ vµ

i (δ ,η) ≥ vµ
i (δ ). The second

inequality follows from Lemma B3, which ensures|vµ
i (δ )− vµ

i (δ ,s0)| < 1− δ .

The last inequality follows from the fact that for a fixedδ , vµ
i (δ ,st) converges to

vµ
i (δ ,s∞) ast → ∞ due to discounting.
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To complete the proof, it is sufficient to show that

∣∣vµ
i (δ ,st)−vµ

i (δ ,st−1)
∣∣ ≤ δ t−1(1−δ )ε

3
(29)

for eacht. Indeed, if so, then plugging (29) to the previous inequality,

∣∣vµ
i (δ ,η)−vµ

i (δ )
∣∣ <

∞

∑
t=1

δ t−1(1−δ )ε
3

+2(1−δ ) =
ε
3

+2(1−δ ).

Since this inequality holds for everyδ , by taking sufficiently largeδ , we obtain

the desired inequality|vµ
i (δ ,η)−vµ

i (δ )| < ε.

So what remains is to prove (29). Note thatst
−i andst−1

−i differ only in the

action in periodt, which influences the stage-game payoff in periodt and the

continuation payoff from periodt + 1 through the distribution of(yt ,ω t+1). Ac-

cordingly, given playeri’s strategyst
i , if we change the opponents’ strategy from

st
−i to st−1

−i , it changes playeri’s payoff by

vµ
i (δ ,st)−vµ

i (δ ,st
i ,s

t−1
−i )

≤ ∑
ht−1∈Ht−1

Pr(ht−1|µ̃,st) ∑
a−i∈A−i

∣∣st
−i(h

t−1)[a−i ]−st−1
−i (ht−1)[a−i ]

∣∣
×


(1−δ )δ t−1

(
max
ω,a

gω
i (a)−min

ω̃ ,ã
gω̃

i (ã)
)

+δ t
(

max
ωt+1,yt

vωt+1

i (δ ,st |(ht−1,yt))− min
˜ω t+1,ỹt

vω̃ t+1
i (δ ,st |(ht−1,ỹt))

)


≤2η |A−i |
{

(1−δ )δ t−1g+δ t(1−δ )
(

C′

δπ
+

C̃′

π

)}
≤(1−δ )2η |A−i |

(
g+

C′ +C̃′

π

)
.

Here the first inequality follows because of the reasoning we argued;st
−i andst−1

−i

differ only in the action in periodt, which influences the stage-game payoff in

periodt and the continuation payoff from periodt +1 through the distribution of

(yt ,ω t+1). The first term in the curly bracket captures how much the stage-game

payoff in periodt can change, and the second term captures how much the con-

tinuation payoff from periodt +1 can change. (Given(yt ,ω t+1), the continuation

payoff from periodt + 1 is vωt+1

i (δ ,st |(ht−1,yt)).) To obtain the second inequality,

we use the fact that the distance betweenst
−i(h

t−1) andst−1
−i (ht−1) is at most 2η
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so that|st
−i(h

t−1)[a−i ]−st−1
−i (ht−1)[a−i ]| ≤ 2η for eacha−i . We also use Lemmas

B6 and B7 to show that the difference between the maximum ofvωt+1

i (δ ,st |ht ) and

the minimum is at most1π

(
1−δ

δ C′ +(1−δ )C̃′
)

. Indeed, Lemma B6 implies that

∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµi(ht |µ,st)
i (δ ,st |ht )

∣∣∣ ≤ 1−δ
δ

C′ +(1−δ )C̃′

becausest
−i |ht = sµ

−i |ht andst
i |ht is a best reply tost

−i |ht given µi(ht |µ,st). Then

Lemma B7 and the fact thatµi(ht |µ,st) puts at least probabilityπ on each state

ensure that∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vωt+1

i (δ ,st |ht )
∣∣∣ ≤ 1

π

(
1−δ

δ
C′ +(1−δ )C̃′

)
for all ω t+1, as desired.

Plugging 2η |A−i |(g+ C′+C̃′

π ) < ε
3 into the above result, we have

∣∣vµ
i (δ ,st)−vµ

i (δ ,st
i ,s

t−1
−i )

∣∣ ≤ (1−δ )δ t−1ε
3

. (30)

A similar argument shows that∣∣vµ
i (δ ,st−1

i ,st
−i)−vµ

i (δ ,st−1)
∣∣ ≤ (1−δ )δ t−1ε

3
. (31)

Now we are ready to verify (29). Suppose thatvµ
i (δ ,st) ≥ vµ

i (δ ,st−1). Then

we must havevµ
i (δ ,st) ≥ vµ

i (δ ,st−1) ≥ vµ
i (δ ,st

i ,s
t−1
−i ), and thus (30) implies (29).

Similarly, whenvµ
i (δ ,st)< vµ

i (δ ,st−1), we havevµ
i (δ ,st−1)> vµ

i (δ ,st)≥ vµ
i (δ ,st−1

i ,st
−i)

so that (31) implies (29). Q.E.D.

Now we prove Lemma B11. TakeW as stated. Takeη > 0 as in Lemma B12.

From Lemma B15, there isη ∈ (0,η) such that minv∈W vi > vi(η) for all i. Pick

suchη , and pickC > 0 arbitrarily. Then from Lemmas B9 and B14, there are

ε > 0 andp1 ∈ (0,1) such that for eachp∈ (p1,1) and i, there iss−i ∈ SIFR
−i (η)

and a pure public strategysi such that for eachω ,

min
v∈W

vi > vω
i (p,s)+Cv̂i(p,s)+CG∗

i (p,s)+ ε

and

G∗
i (p,s) < ε.

75



This s satisfies the condition stated in clause (iii) forδ = 1.

Pick ε > 0 andp1 as stated above. Sinceε can be arbitrarily small, without

loss of generality, we assume∣∣∣∣max
v∈V

λ ·v−max
v∈W

λ ·v
∣∣∣∣ > (5C+3)ε (32)

for all λ .

From Proposition 6 of Yamamoto (2016), there isp2 ∈ (p1,1) such that∣∣∣∣max
v∈V

λ ·v− max
v∈Vω (p)

λ ·v
∣∣∣∣ < ε (33)

for all λ , p ∈ (p2,1), andω. Also, it follows from Lemma B12 that there is

p3 ∈ (p2,1) such that for eachλ and p ∈ (p3,1), there is a pure public strategy

profiles∈ SPFR∩SIFR(η) such that for eachω ,∣∣∣∣λ ·vω(p,s)− max
v∈Vω (p)

λ ·v
∣∣∣∣ < ε. (34)

Take a regular directionλ andp∈ (p3,1) arbitrarily. Takes∈ SPFR∩SIFR(η)
as above. From (33) and (34), we have

v̂(p,s,λ ) = max
ω∈Ω

λ ·vω(p,s)−min
ω∈Ω

λ ·vω(p,s) < 4ε. (35)

Then for eachω,

λ ·vω(p,s) > max
v∈Vω (p)

λ ·v− ε

> max
v∈V

λ ·v−2ε

> max
v∈W

λ ·v+(5C+1)ε

> max
v∈W

λ ·v+Cv̂(p,s,λ )+ ε.

Here, the first inequality follows from (34), the second from (33), the third from

(32), and the last from (35). So the strategy profiles satisfies the condition stated

in clause (i) forδ = 1.

From Lemma B9, we know that there isp4 ∈ (p3,1) such that for eachp ∈
(p4,1) andi, there is a pure public strategy profilessuch that (34) holds for allω
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and for the positive coordinate directionλ with λi = 1, and such thatG∗
i (p,s) < ε.

Thiss satisfies the condition stated in clause (ii) forδ = 1. Indeed, for eachω,

vω
i (p,s) > max

v∈Vω (p)
vi − ε

> max
v∈V

vi −2ε

> max
v∈W

vi +(5C+1)ε

> max
v∈W

vi +Cv̂i(p,s)+CG∗
i (p,s)+ ε

Here, the first inequality follows from (34), the second from (33), the third from

(32), and the last from (33) andG∗
i (p,s) < ε.

So far we have shown that the result holds whenp ∈ (p4,1) andδ = 1. By

continuity, the same result holds even ifδ is slightly less than one. This completes

the proof.

B.5.3 Step 3: Enforceability for Regular Directions

Recall that our goal is to show uniform enforceability ofW, that is, we want to

show that each payoff vectorv∈ W is enforceable using continuation payoffs in

the setGv,λ ,ε,K,δ , regardless of the parameter (direction)λ . The following lemma

shows thatv∈W is indeed enforceable for any regular directionλ . This result is

a generalization of the one presented in Section 3.5.

Lemma B16. For eachη > 0, there is C> 0 such that for each regular direction

λ , for each p∈ (0,1) and for each s∈ SPFR∩SIFR(η), there is K> 0 such that

for eachδ ∈ (0,1) and for each v∈V, there is w such that

(i) (s,v) is stochastically ex-post enforceable with respect to(δ , p) by w,

(ii) For all t and ht ,

λ ·w(ht) ≤ λ ·v− 1−δ
(1− p)δ

(
min
ω∈Ω

λ ·vω(pδ ,s)−λ ·v−Cv̂(pδ ,s,λ )
)

,

(iii) |v−w(ht)| < 1−δ
(1−p)δ K for all t and ht .
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To interpret this lemma, pick a regular directionλ and pickp andδ close to

one. For the sake of the exposition, letv be a boundary point ofW with the unit

normalλ (see Figure 15). Chooses as in Lemma B11(i) so that it approximates

the score regardless of the stateω. The above lemma asserts that this pair(s,v)
is enforceable using continuation payoffs in the shaded area in Figure 15, where

l∗ = minω∈Ω λ ·vω(pδ ,s)−λ ·v−Cv̂(pδ ,s,λ ). Note that this lengthl∗ is approx-

imately equal to the lengthl in the figure, becausesapproximates the same payoff

regardless ofω so that ˆv(pδ ,s,λ ) ≈ 0.

Now, chooseε > 0 as in Lemma B11, and let̃ε = ε
1−p andK̃ = 2K

1−p. Then

the shaded area in the figure is included in the setGv,λ ,ε̃,K̃,δ . Indeed, we have

ε̃ < ε
(1−p)δ < l∗

(1−p)δ from Lemma B11(i), and we havẽK > K
(1−p)δ sinceδ is close

to one. So the above lemma ensures that(s,v) is enforceable using continuation

payoffs in the setGv,λ ,ε̃,K̃,δ .

1−δ
(1−p)δ l∗

λ

w(ht)

w(h̃t)

W

v

vω(pδ ,s)
l

1−δ
(1−p)δ K

L∗

Figure 15: Continuation Payoffs for Regular Directionλ

In Section 3.5, we have shown that the promise-keeping condition (2) for the

good stateωG and the incentive compatibility condition (3) can be satisfied by

moving continuation payoffs on the lineL in Figure 10, which is a translate of the

tangent line. Also, we have briefly explained that the promise-keeping condition

(2) for the bad stateωB can be satisfied by perturbing continuation payoffs a bit.

Due to this perturbation, the resulting continuation payoffs are not on the line

L, and this is the reason why we have a weak inequality rather than an equality

in clause (ii) of the lemma above. The termCv̂(pδ ,s,λ ) in clause (ii) measures
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the size of this perturbation: To satisfy the promise-keeping condition (2) for the

bad stateωB, we need to offset the difference in the block payoffsvωG(pδ ,s)
andvωB(pδ ,s) at different states. Since this difference (toward the directionλ )

is v̂(pδ ,s,λ ), the size of the perturbation is bounded byCv̂(pδ ,s,λ ) for some

constantC > 0. In the proof, we formally explain how to find such a perturbation.

Proof. Fix s, λ , p, δ , andv as stated. Pickω∗ such thatω∗ ∈ argmaxω∈Ω λ ·
vω(pδ ,s).

Consider a constant continuation payoffw such that the target payoffv is ex-

actly achieved as the sum of the block payoff and the continuation payoff given

the initial state isω∗. That is, takew such thatw(ht) = w∗ for all t andht , where

w∗ solves

v =
1−δ

1− pδ
vω∗

(pδ ,s)+
(

1− 1−δ
1− pδ

)
w∗. (36)

Note that the specification ofw∗ here is exactly the same as that in Section 3.5.

As in Section 3.5, this constant function satisfies the promise-keeping condition

(2) for ω∗, but not for other statesω , ω∗. Also, it does not satisfy the incentive

compatibility condition (3). In what follows, we will modify this constant function

w to satisfy these requirements.

Specifically, we consider the continuation payoff such that

w(ht) = w∗ +zt(ht)+ z̃(h1)+ ẑ(h1)

for eacht andht+1. Here we add three perturbation terms,zt+1, z̃, andẑ, to the

constant continuation payoffw∗. As in Section 3.5, we will choose the termzt so

that any deviation in periodt is deterred and the incentive compatibility condition

(3) holds. Also, we will choose the terms ˜zt and ẑ so that the promise-keeping

condition (2) holds for allω. Note that ˜zt andẑ depend only on the public signal

in period one.

We begin with explaining how to choose the terms ˜zt andẑ. Recall that the con-

stant continuation payoffw(ht) = w∗ does not satisfy the promise-keeping condi-

tion (2) forω , ω∗, because different initial statesω yield different block payoffs

vω(pδ ,s). Note in particular that the welfare levelλ ·vω(pδ ,s) of the block pay-

off (with respect to the directionλ ) depends on the initial stateω. We will first

choose the term ˆz in order to offset this difference in the welfare level. That is, we
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will chooseẑ so that if the continuation payoff isw = w∗ + ẑ, then the payoff (the

sum of the block payoff and the continuation payoff) is on the lineL∗ in Figure

15 regardless of the initial stateω . Of course, this needs not imply the promise-

keeping condition (2), since different initial states may yield different payoffs on

the lineL∗. We will choose the term ˜z in order to offset this payoff difference.

Formally, we choose ˆz in the following way. Pick an arbitrary playeri∗ ∈ I

such thatλi∗ , 0, and let ˆz : Y → RN be such that

∞

∑
t=1

δ t pt−1(1− p) ∑
y∈Y

πω(y|ai∗,s−i∗(h0))λi∗ ẑi∗(y)

=
1−δ

1− pδ

(
λ ·vω∗

(pδ ,s)−λ ·vω(pδ ,s)
)

(37)

for all ω andai∗ , and

ẑi(y) = 0 (38)

for all i , i∗ andy. From (38), the perturbation ˆz influences the payoff of player

i∗ only. Hence its impact on the welfare level isλ · ẑ(y) = λi∗ ẑi∗(y). (37) ensures

that the expected value of this impact indeed offsets the differencevω∗
(pδ ,s)−

λ ·vω(pδ ,s) in the welfare level. Note that the termpt−1(1− p) on the left-hand

side is the probability that the random block ends after periodt, and we take the

expectation with respect to the random termination periodt. The term 1−δ
1−pδ on

the right-hand side is the coefficient on the block payoff.

Note that the above perturbation ˆzdoes not influence players’ incentives at all.

Indeed, (38) implies that ˆz does not influence the incentive of playeri , i∗, and

(37) ensures that the expected value of ˆzi∗ does not depend on the action of player

i∗.

To see the existence of such ˆzi∗, note that (37) is equivalent to

∑
y∈Y

πω(y|ai∗,s−i(h0))ẑi∗(y) =
1−δ

(1− p)δ
· λ ·vω∗

(pδ ,s)−λ ·vω(pδ ,s)
λi∗

for all ω andai∗. So it is sufficient to show that this system of equations has a

solution ẑi∗. Sinces∈ SIFR(η), the action profiles(h0) in period one has cross-

state individual full rank for playeri∗. This ensures that the coefficient matrix

for the above system has full row rank, and hence it has a solution. Also, since
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the absolute value of the right-hand side is at most(1−δ )v̂(pδ ,s,λ )
(1−p)δ |λi∗ |

, without loss of

generality, we can assume that there isC > 0 such that

|ẑ(y)| ≤ (1−δ )Cv̂(pδ ,s,λ )
(1− p)δ |λi∗ |

(39)

for all δ , p, λ , andy. Multiplying both sides by|λi∗ |, we have

|λ · ẑ(y)| ≤ 1−δ
(1− p)δ

Cv̂(pδ ,s,λ ) (40)

for all δ , p, λ , andy. Note that givenη > 0, the constantC > 0 can be chosen

independently of the choice ofs.

The perturbation term ˆz above ensures that the same welfare level is achieved

for all initial states, but the actual payoff may still depend on the initial state. Let

kω
i denote this payoff for playeri given the initial stateω . That is, letkω

i be the

sum of the block payoff and the continuation payoff when the continuation payoff

function isw = w∗ + ẑ:

kω
i =

1−δ
1− pδ

vω
i (pδ ,s)+

∞

∑
t=1

δ t pt−1(1− p)

(
w∗

i + ∑
y∈Y

πω(y|s(h0))ẑi∗(y)

)
. (41)

By the definition ofw∗ and ẑ, we havekω∗
= v, that is, the payoffkω∗

given the

initial stateω∗ exactly achieves the target payoffv. Also, by the definition of ˆz,

we haveλ · kω = λ · kω∗
for all ω , so the payoff vectorkω is on the lineL∗ in

Figure 15 for any stateω .

Choose ˜z : Y → RN such that

∞

∑
t=1

δ t pt−1(1− p) ∑
y∈Y

πω(y|ai ,s−i(h0))z̃i(y) = kω∗
i −kω

i (42)

for eachω , i, andai , and

λ · z̃(y) = 0 (43)

for eachy. (42) ensures that the expected discounted value of ˜z offsets the dif-

ference betweenkω
i andkω∗

i , and that the term ˜z does not influence each player’s

incentive. That is, if the continuation payoff isw = w∗ + z̃+ ẑ, the payoffv is ex-

actly achieved regardless of the initial stateω (so the promise-keeping condition
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(2) holds for allω). (43) implies that the term ˜z(y) moves the continuation payoff

w(ht) only toward directions orthogonal toλ . The existence of such ˜z follows

from the fact thatλ · kω = λ · kω∗
for all ω and that the action profiles−i(h0) in

period one has cross-state pairwise full rank. The proof is very similar to that of

Lemmas 5.3 and 5.4 of FLM and hence omitted.

Since (42) is equivalent to

∑
y∈Y

πω(y|ai ,s−i(h0))z̃i(y) =
1− pδ

(1− p)δ
(kω∗

i −kω
i ),

without loss of generality, we can assume that for a givenλ , there isK̃ > 0 such

that

|z̃(y)| ≤ 1− pδ
(1− p)δ

K̃ max
ω,i

|kω∗
i −kω

i |

for eachδ , p, andy. Here the bound̃K can be arbitrarily large whenλ approaches

a coordinate direction; see FLM for details. Note that∣∣∣kω∗
i −kω

i

∣∣∣
=

1−δ
1− pδ

∣∣∣vω∗
i (pδ ,s)−vω

i (pδ ,s)
∣∣∣

+
∞

∑
t=1

δ t pt−1(1− p)

∣∣∣∣∣ ∑
y1∈Y

πω∗
(y1|s(h0))ẑi∗(y1)− ∑

y1∈Y

πω(y1|s(h0))ẑi∗(y1)

∣∣∣∣∣
≤ 1−δ

1− pδ

(∣∣∣vω∗
i (pδ ,s)−vω

i (pδ ,s)
∣∣∣+ ∣∣∣∣∣λ ·vω∗

(pδ ,s)−λ ·vω(pδ ,s)
λi∗

∣∣∣∣∣
)

≤ 1−δ
1− pδ

(
g+

g
|λi∗ |

)
for eachω andi, where the first inequality uses (37) and (38). Plugging this into

the previous inequality, we have

|z̃(y)| < 1−δ
(1− p)δ

K̃

(
g+

g
|λi∗ |

)
. (44)

So far, we have explained that the promise-keeping condition (2) can be sat-

isfied for all states by choosing the perturbations ˆz andz̃ appropriately. Next, we

will show that the incentive compatibility condition (3) can be satisfied by choos-

ing the perturbationzt appropriately. This extends the analysis in Section 3.5 to

the general setup.
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Pick t ≥ 1 andht−1 arbitrarily. Letsi |(ht−1,ai) denote the strategy for the con-

tinuation game afterht−1, which chooses actionai in periodt and then follows the

prescribed strategys. That is,si |(ht−1,ai)(h̃
0) = ai andsi |(ht−1,ai)(h̃

t̃) = si |ht−1(h̃t̃)
for eacht̃ ≥ 1 andh̃t̃ . Let (zt(ht−1,y))y∈Y be such that

δ (1− p) ∑
y∈Y

πω(y|ai ,s−i(ht−1))zt
i(h

t−1,y)

=
1−δ

1− pδ

(
vω

i (pδ ,s|ht−1)−vω
i (pδ ,si |(ht−1,ai),s−i |ht−1)

)
(45)

for all ω, i, andai , and such that

λ ·zt(ht−1,y) = 0 (46)

for all y. (45) implies that playeri is indifferent over all actionsai in period t,

regardless of the current hidden stateω t . Indeed, if playeri deviates toai today,

it changes the block payoff fromvωt

i (pδ ,s|ht−1) to vωt

i (pδ ,si |(ht−1,ai),s−i |ht−1), but

(45) guarantees that this change is offset by the expected value ofzt
i . (Note also

that zt
i does not influence playeri’s incentive in earlier periods̃t < t, since (45)

implies that the expected value ofzt is zero as long as playeri does not deviate in

periodt.) (46) ensures that thiszt moves the continuation payoffw only toward

directions orthogonal toλ , as in Section 3.5. The existence of suchzt follows

from the fact that the action profiles−i(ht−1) in periodt has cross-state pairwise

full rank. Also, since (45) is equivalent to

∑
y∈Y

πω(y|ai ,s−i(ht))zt+1
i (ht ,y)

=
1−δ

δ (1− p)(1− pδ )
(
vω

i (pδ ,s|ht )−vω
i (pδ ,si |(ht ,ai),s−i |ht )

)
,

without loss of generality, we can assume that for a fixedλ , there isK̃′ > 0 such

that

|zt(ht)| < 1−δ
(1− pδ )(1− p)δ

K̃′ max
ω ,i,ht−1,ai

∣∣∣vω
i (pδ ,s|ht−1)−vω

i (pδ ,si |(ht−1,ai),s−i |ht−1)
∣∣∣

for all t, ht , δ , andp. Here we can choosẽK′ uniformly in t andht , sinces∈ SPFR

induce at most|A| different actions. Sincevω
i (pδ ,s|ht−1)−vω

i (pδ ,si |(ht−1,ai),s−i |ht−1)≤
g, we have

|zt(ht)| < 1−δ
(1− pδ )(1− p)δ

K̃′g. (47)
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Now we verify that the constructedw satisfies the clauses (i) through (iii) in

Lemma B16. By the definition ofzt , ex-post incentive compatibility is satisfied

each period. Also, by the definition of ˜z and ẑ, the payoffv is exactly achieved

regardless of the initial stateω. Hence clause (i) follows.

To prove clause (ii), we arrange (36) and obtain

w∗ = v− 1−δ
(1− p)δ

(vω∗
(pδ ,s)−v). (48)

Then we have

λ ·w(ht) = λ ·w∗ +λ ·zt(ht)+λ · z̃(h1)+λ · ẑ(h1)

≤ λ ·v− 1−δ
(1− p)δ

(λ ·vω∗
(pδ ,s)−λ ·v−Cv̂i(pδ ,s,λ )).

Here the inequality comes from (40), (43), (46), and (48). This proves clause (ii).

To prove clause (iii), note that from (48),

wi(ht) = vi −
1−δ

(1− p)δ
(vω∗

i (pδ ,s)−vi)+zt
i(h

t)+ z̃i(h1)+ ẑi(h1)

for all i. This implies that

|v−w(ht)| ≤ 1−δ
(1− p)δ

|vω∗
(pδ ,s)−v|+ |zt(ht)|+ |z̃(h1)|+ |ẑ(h1)|.

Sincev∈V, we have|vω∗
(pδ ,s)−v| ≤ g. This, together with (39), (44), and (47),

implies that

|v−w(ht)| ≤ 1−δ
(1− p)δ

{
g+

K̃′g
1− pδ

+ K̃

(
g+

g
|λi∗ |

)
+

Cv̂(pδ ,s,λ )
|λi∗ |

}
.

By the definition, ˆv(pδ ,s,λ ) ≤ g. Hence, by lettingK > g{1+ K̃′

1−p + K̃(1+
1

|λi∗ |
)+ C

|λi∗ |
}, we have clause (iii). Q.E.D.

B.5.4 Step 4: Enforceability for Positive Coordinate Direction

In this step, we consider enforceability for the positive coordinate direction (i.e.,

λ with λi = 1). The analysis here is an extension of that in Section 3.6.

Lemma B17. Assume (IFR), and fix i. Then there is C> 0 such that p∈ (p,1),
there is K> 0 such that for each pure public strategy profile s, for each v∈V, and

for eachδ , there is w such that
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(i) (s,v) is stochastically ex-post enforceable with respect to(δ , p) by w,

(ii) For all t and ht ,

wi(ht) ≤ vi −
1−δ

(1− p)δ

(
min
ω∈Ω

vω
i (pδ ,s)−vi −Cv̂i(pδ ,s)−CG∗

i (pδ ,s)
)

,

(iii) For all t and ht ,

|v−w(ht)| < 1−δ
(1− p)δ

(K +CG∗
i (pδ ,s)) .

Let λ be such thatλi = 1. For the same of exposition, choosev as in Figure

16, that is, letv be a boundary point ofW whose unit normal isλ . Chooses

as in Lemma B11(ii), so that it approximates the score regardless of the initial

state. The above lemma asserts that this(s,v) is enforceable using continuation

payoffs in the shaded area in the figure 16, wherel∗ = minω∈Ω vω
i (pδ ,s)− vi −

Cv̂i(pδ ,s)−CG∗
i (pδ ,s) and K∗ = K +CG∗

i (pδ ,s). Note that this lengthl∗ is

approximately equal to the lengthl in the figure, because by the definition ofs,

both v̂i(pδ ,s) andG∗
i (pδ ,s) are approximately zero.

Chooseε > 0 as in Lemma B11, and letp be given. Letε̃ = ε
1−p and K̃ =

2(K+Cε)
1−p . Then the shaded area in the figure is included in the setGv,λ ,ε̃,K̃,δ , be-

causeε̃ < ε
(1−p)δ < l∗

(1−p)δ andK̃ > 2(K+Cε)
(1−p)δ > K∗

(1−p)δ for high δ . So the above

lemma ensures that(s,v) is enforceable using continuation payoffs in the set

Gv,λ ,ε̃,K̃,δ .

v

λ
vω(pδ ,s)

W

l

1−δ
(1−p)δ l∗

w(ht) w(h̃t)

1−δ
(1−p)δ K∗

Figure 16: Continuation Payoffs forλ with λi = 1
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Compared to Lemma B16, we have the new termCG∗
i (pδ ,s) in the inequali-

ties in (ii) and (iii). We need this term because we need to take care of playeri’s

incentive compatibility: As explained in Section 3.6, playeri has a profitable devi-

ation unless her initial belief matches the dummy beliefµ̃. In order to deter such

deviations, we need to move the continuation payoffsw vertically. CG∗
i (pδ ,s)

measures the size of this vertical move.

Proof. Fix i, s, p, δ , andvas stated. Pickω∗ such thatω∗ ∈argmaxω∈Ω vω
i (pδ ,s).

Then pick the constant continuation functionw(ht) = w∗ as in the proof of Lemma

B16. This constant continuation payoff does not satisfy the promise-keeping con-

dition (2) forω ,ω∗ or the incentive compatibility condition (3). In what follows,

we will modify thisw to satisfy these requirements.

Specifically, for eachj , i, we let

w j(ht) = w∗
j +zt

j(h
t)+ z̃j(h1)+ ẑj(h1),

as in the proof of Lemma B16. That is, we add three perturbation terms,zt
j , z̃j ,

andẑj , to the constant valuew∗
j . On the other hand, for playeri, we let

wi(ht) = w∗
i +

t

∑̃
t=1

zt̃
i(h

t̃)+ z̃i(h1)+ ẑi(h1).

Now the termzt
j is replaced with the sum∑t

t̃=1zt̃
i of the perturbation terms, as in

Section 3.6.

We first show that the promise-keeping condition (2) can be satisfied by choos-

ing z̃andẑappropriately. This part is almost identical with the one in the proof of

Lemma B16. We begin with ˆz. Let i∗ = i, and letẑ be as in the proof of Lemma

B16. That is, choose ˆz : Y → RN such that

∞

∑
t=1

δ t pt−1(1− p) ∑
y∈Y

πω(y|ai ,s−i(h0))ẑi(y) =
1−δ

1− pδ

(
vω∗

i (pδ ,s)−vω
i (pδ ,s)

)
for all ω andai , and

ẑj(y) = 0

for all j , i andy. As in the proof of Lemma B16, this ˆz ensures that the same

welfare level is achieved regardless of the initial stateω. Recall that this ˆz does
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not influence players’ incentives, and that there isC̃ > 0 such that

|ẑ(y)| ≤ 1−δ
(1− p)δ

C̃v̂i(pδ ,s) (49)

for all δ , p, λ , andy.

Similarly, we choose ˜z as in the proof of Lemma B16. That is, let ˜z : Y → RN

be such that

∞

∑
t=1

δ t pt−1(1− p) ∑
y∈Y

πω(y|a j ,s− j(h0))z̃j(y) =
1−δ

1− pδ

(
vω∗

j (pδ ,s)−vω
j (pδ ,s)

)
for eachω , j , i, anda j , and

z̃i(y) = 0

for eachy. This z̃ ensures that the payoffv is exactly achieved as the sum of

the block payoff and the continuation payoff, regardless of the initial stateω.

Hence the promise-keeping condition (2) holds for allω . Note that this ˜zdoes not

influence players’ incentives, and that there isK̃ > 0 such that

|z̃1(y)| < 1−δ
(1− p)δ

K̃2g (50)

for all δ , p, andy, as in the proof of Lemma B16.

Next, we show that the incentive compatibility condition (3) can be satisfied

by choosingzt appropriately. We begin with considering the incentive problem of

player j , i. Pickt ≥ 1 andht−1 arbitrarily, and letsj |(ht−1,a j ) be as in the proof of

Lemma B16. Then we choose(zt
j(h

t−1,y))y∈Y such that

δ (1− p) ∑
y∈Y

πω(y|a j ,s− j(ht−1))zt
j(h

t−1,y)

=
1−δ

1− pδ

(
vω

j (pδ ,s|ht−1)−vω
j (pδ ,sj |(ht−1,a j ),s− j |ht−1)

)
for all ω anda j . Thiszt

j ensures that playerj , i is indifferent over all actions in

periodt, regardless of the current hidden stateω t . As in the proof of Lemma B16,

we can show that there is̃K′ > 0 such that

|zt
j(h

t)| < 1−δ
(1− pδ )(1− p)δ

K̃′g (51)
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for all t, ht , δ , andp. Here we can choosẽK′ uniformly in t andht , sinces is a

pure strategy profile and hence induces at most|A| different action profiles.

Now we consider the incentive problem of playeri. This part extends the

analysis in Section 3.6 to the general setup. Pickt ≥ 1 andht−1 arbitrarily. Then

we choose(zt
i(h

t−1,y))y∈Y such that

∞

∑̃
t=1

δ t̃ pt̃−1(1− p) ∑
y∈Y

πω
Y (y|ai ,s−i(ht−1))zt

i(h
t)

=


0 if ai = si(ht−1)

− 1−δ
1− pδ

sup
µ∈△Ω(s,ht−1)

Gt
i(pδ ,µ,s,ht−1) if ai , si(ht−1) (52)

for all ω andai . Here,Ω(s,ht−1) is the set of initial statesω such that the public

history ht realizes with positive probability given the strategy profiles. (Under

the full support assumption,Ω(s,ht) = Ω.) As discussed in Section 3.6, thiszt
i

ensures that “playsi until periodt −1, then deviates in periodt, and then play a

best reply thereafter” is not profitable for playeri regardless of the initial beliefµ.

Indeed, (52) implies that such a deviation decreases her payoff by at least

1−δ
1− pδ

sup
µ∈△Ω(s,ht−1)

Gt
i(pδ ,µ,s,ht−1),

which exceeds the gainGt
i(pδ ,µ,s,ht−1). (Here we say “at least” because this is

the effect ofzt
i only. If player i chooses an action different from the one induced

by s in periodt̃ ≥ t +1, it changes the expected value ofzt̃
i and decreases the total

payoff further.) The existence of suchzt
i is guaranteed sinces(ht−1) has cross-

state individual full rank for playeri. Without loss of generality, we can assume

that there isC̃′ > 0 such that

|zt
i(h

t−1,y)| < 1−δ
(1− p)δ

C̃′ sup
µ∈△Ω(s,ht−1)

Gt
i(pδ ,µ,s,ht−1) (53)

for all t, ht−1, y, δ , andp. Again, we can choosẽC′ uniformly in t andht−1, since

s is a pure strategy profile and hence induces at most|A| different action profiles.

This zt ensures that the incentive compatibility (3) holds for all players. Also

by the definition of ˜z andẑ, the promise-keeping condition (2) is satisfied. Hence

clause (i) holds.
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To prove clause (ii), use (48) so that

wi(ht) = vi −
1−δ

(1− p)δ
(vω

i (pδ ,s)−vi)+
t

∑̃
t=1

zt̃(ht̃)+ z̃i(h1)+ ẑi(h1).

Using (49), (53), and ˜zi(h1) = 0,

wi(ht) ≤ vi −
1−δ

(1− p)δ
(
vω

i (pδ ,s)−vi −C̃′G∗
i (pδ ,s)−C̃v̂i(pδ ,s)

)
.

So by settingC = max{C̃,C̃′}, clause (ii) follows. Also clause (iii) follows just as

in the proof of Lemma B16. Q.E.D.

B.5.5 Step 5: Enforceability for Negative Coordinate Direction

Note that the lemma in the previous step considers only pure strategy profiles

s. This is enough for the positive coordinate direction, since the score toward

this direction is achieved by a pure strategy profile, and (IFR) guarantees that

any pure action profile has cross-state individual full rank. On the other hand,

when we consider the negative coordinate directionλ with λi = −1, we need

to consider mixed strategies, as minimaxing playeri may require mixture by the

opponents. Since mixed actions may not have cross-state individual full rank even

under (IFR), the statement of the following lemma, which concerns enforceability

for the negative coordinate direction, is a bit more complicated than Lemma B17.

Lemma B18. Fix i. For eachη > 0, there is C> 0 such that for each p∈ (0,1),
for each public strategy profile s∈ SIFR(η) such that si is a pure strategy, there is

K > 0 such that for each v∈V, for eachδ , there is w such that

(i) (s,v) is stochastically ex-post enforceable with respect to(δ , p) by w,

(ii) For all t and ht ,

wi(ht) ≥ vi +
1−δ

(1− p)δ

(
vi −max

ω∈Ω
vω

i (pδ ,s)+Cv̂i(pδ ,s)+CG∗
i (pδ ,s)

)
,

(iii) For all t and ht ,

|v−w(ht)| < 1−δ
(1− p)δ

(K +CG∗
i (pδ ,s)) .
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The interpretation of the above lemma is very similar to the one for the pre-

vious lemma. Choosev as in Figure 17. That is, letv be a boundary point ofW

whose unit normal is the negative coordinate directionλ with λi = −1. Choose

s as in Lemma B11(iii), so playeri is minimaxed regardless of the initial state.

The above lemma asserts that this(s,v) is enforceable using continuation payoffs

in the shaded area in Figure 17, wherel∗ = vi −maxω∈Ω vω
i (pδ ,s)+Cv̂i(pδ ,s)+

CG∗
i (pδ ,s) andK∗ = K +CG∗

i (pδ ,s).

v

vµ(pδ ,s)

W

l

1−δ
(1−p)δ l∗

λ

w(ht)

1−δ
(1−p)δ K∗

Figure 17: Continuation Payoffs forλ with λi = −1

The proof of the above lemma is very similar to that of Lemma B17, and hence

omitted. In order to find bounds̃K andC̃ which work uniformly int andht , we

use the fact thats∈ SIFR(η) for someη > 0.

B.5.6 Step 6: Uniform Enforceability

Now we are ready to show thatW is uniformly ex-post decomposable.

Lemma B19. For any smooth subset W of the interior of V∗, there is p∈ (0,1)
such that W is uniformly ex-post decomposable with respect to p.

Proof. PickW as stated. Pickη as stated in Lemma B11, and then pickC > 0 as

in Lemmas B16 through B18. Fix̃ε, p∈ (0,1), andδ ∈ (0,1) as stated in Lemma

B11. (Here,ε̃ representsε in Lemma B11.) Applying Lemmas B16 through B18

to the strategy profiles specified in Lemma B11, it follows that for eachλ , there

is K̃λ > 0 such that for eachδ ∈ (δ ,1) andv∈W, there is a strategy profilesv,λ ,δ
and a functionwv,λ ,δ such that

(i) (sv,λ ,δ ,v) is enforced bywv,λ ,δ for (δ , p),
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(ii) λ ·wv,λ ,δ (ht) ≤ λ ·v− (1−δ )ε̃
(1−p)δ for eacht andht , and

(iii) |v−wv,λ ,δ (ht)| < (1−δ )
(1−p)δ K̃λ for eacht andht .

Setε = ε̃
2(1−p) , and for eachλ , let Kλ = K̃λ

(1−p)δ
. Then it follows from (ii) and

(iii) that wv,λ ,δ (ht) ∈ Gv,λ ,2ε,Kλ ,δ for all t andht . The rest of the proof is similar to

that of Fudenberg and Yamamoto (2011b). Q.E.D.

Appendix C: Dispensability of Public Randomization

In this appendix, we show that the folk theorem remains valid even without public

randomization. Since public randomization is not available, we cannot use ran-

dom blocks anymore. Instead, here we consider equilibria in which the infinite

horizon is divided into a series ofT-period blocks. The following lemma shows

that each extreme point of the limit feasible payoff setV can be approximated by

the average payoff in theT-period block, whenT is sufficiently large. Letvµ
i (T,s)

denote playeri’s average payoff in theT-period game with the initial priorµ and

the strategy profiles, that is, letvµ
i (T,s) = 1

T ∑T
t=1E[gωt

i (at)|µ,s]. (No discount-

ing here.) LetVµ(T) denote the feasible payoff set in theT-period game with the

initial prior µ, that is,Vµ(T) = co{vµ(T,s)|s∈ S}.

Proposition C1. Suppose that the full support assumption holds. Then there is

K > 0 such that for any T ,µ, andλ ,∣∣∣∣ max
v∈Vµ (T)

λ ·v−max
ṽ∈V

λ · ṽ
∣∣∣∣ ≤ K

T
.

This proposition implies that the feasible payoff setVµ(T) for the T-period

game converges toV as T goes to infinity. Hence any extreme point ofV is

approximated by aT-period game payoff with an appropriate strategy profile.

Proof. As shown in Yamamoto (2016),ε in Proposition 2 can be replaced with

(1−δ )K for someK > 0, that is, there isK > 0 such that for eachλ , µ, andδ ,∣∣∣∣ max
v∈Vµ (δ )

λ ·v− max
ṽ∈V µ̃ (δ )

λ · ṽ
∣∣∣∣ < (1−δ )K. (54)
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So the difference in the scores induced by different initial priors is of order 1−δ .

Pick suchK.

Fix λ . Let s(δ ,µ) be a pure-strategy profile which achieves the score toward

λ given the initial priorµ and the discount factorδ . Then for eachs,

λ ·vµ(δ ,s(δ ,µ)) ≥ λ ·vµ(δ ,s).

Since the right-hand side is decomposed into the payoffs in the firstT periods and

the continuation payoff from periodT +1 on,

λ ·vµ(δ ,s(δ ,µ)) ≥(1−δ )
T

∑
t=1

δ t−1E[λ ·gωt
(at)|µ,s]

+δ TE[λ ·vµT+1
(δ ,s(δ ,µT+1))|µ,s]

for eachs. Using (54), we have

λ ·vµ(δ ,s(δ ,µ)) ≥(1−δ )
T

∑
t=1

δ t−1E[λ ·gωt
(at)|µ,s]

+δ T {λ ·vµ(δ ,s(δ ,µ))− (1−δ )K}

for eachs. Subtractingδ T{λ · vµ(δ ,s(δ ,µ))− (1− δ )K} from both sides and

dividing them by 1−δ T ,

1−δ
1−δ T

T

∑
t=1

δ t−1E[λ ·gωt
(at)|µ,s] ≤ λ ·vµ(δ ,s(δ ,µ))+

1−δ
1−δ T δ TK.

Since this inequality holds for alls, taking the maximum of the left-hand side with

respect tos,

max
s∈S

1−δ
1−δ T

T

∑
t=1

δ t−1E[λ ·gωt
(at)|µ,s] ≤ λ ·vµ(δ ,s(δ ,µ))+

1−δ
1−δ T δ TK.

Takingδ → 1, we obtain

max
v∈Vµ (T)

λ ·v≤ max
v∈V

λ ·v+
K
T

. (55)

On the other hand, we know that

λ ·vµ(δ ,s(δ ,µ)) =(1−δ )
T

∑
t=1

δ t−1E[λ ·gωt
(at)|µ,s(δ ,µ)]

+δ TE[λ ·vµT+1
(s(δ ,µT+1))|µ,s(δ ,µ)].
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From (54),

λ ·vµ(δ ,s(δ ,µ)) ≤(1−δ )
T

∑
t=1

δ t−1E[λ ·gωt
(at)|µ,s(δ ,µ)]

+δ T {λ ·vµ(δ ,s(δ ,µ))+(1−δ )K} .

Subtractingδ T{λ ·vµ(δ ,s(δ ,µ))+(1−δ )K} from both sides and dividing them

by 1−δ T ,

1−δ
1−δ T

T

∑
t=1

δ t−1E[λ ·gωt
(at)|µ,s(δ ,µ)] ≥ λ ·vµ(δ ,s(δ ,µ))− 1−δ

1−δ T δ TK.

Sinces(δ ,µ) is not necessarily the maximizer of the left-hand side,

max
s∈S

1−δ
1−δ T

T

∑
t=1

δ t−1E[λ ·gωt
(at)|µ,s] ≥ λ ·vµ(δ ,s(δ ,µ))− 1−δ

1−δ T δ TK.

Takingδ → 1, we obtain

max
v∈Vµ (T)

λ ·v≥ max
v∈V

λ ·v− K
T

. (56)

Combining (55) and (56),

max
v∈V

λ ·v− K
T

≤ max
v∈Vµ (T)

λ ·v≤ max
v∈V

λ ·v+
K
T

.

Hence the result follows. Q.E.D.

The next proposition extends Proposition 3 and shows that in theT-period

block, the optimal policy for some dummy beliefµ̃ can approximate the score

regardless of the true beliefµ.

Proposition C2. Suppose that the full support assumption holds. Then there is

K > 0 such that for eachλ , for each T, for eachµ, for eachµ̃, for each pure

public strategy profile s̃µ ∈ argmaxs∈Sλ · vµ̃(T,s), for each t∈ {0, · · · ,T − 1},

and for each ht , ∣∣∣∣ max
v∈Vµ (T−t)

λ ·v−λ ·vµ(T − t,sµ̃ |ht )
∣∣∣∣ ≤ K

T − t
.
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Proof. Like Proposition 3, the proof consists of three steps. In the first step, we

show the inequality fort = 0 andµ̃ such thatµ̃(ω) ≥ π for all ω. In the second

step, we show that the result holds for an arbitrary beliefµ̃. In the third step, we

show that the result holds for anyt ≥ 1.

Proposition C1 ensures that there isK > 0 such that for anyT, µ, andλ ,∣∣∣∣ max
v∈Vµ (T)

λ ·v−max
ṽ∈V

λ · ṽ
∣∣∣∣ <

π(K−g)
T

.

Choose suchK > 0.

Pick λ arbitrarily, and for eachµ andT, let sµ(T) be the optimal policy for

theT-period game with the initial priorµ. Pick µ̃ such thatµ̃(ω) ≥ π for all ω.

Then, we can show that∣∣∣∣∣ max
µ̂∈△Ω

max
v∈V µ̂ (T)

λ ·v−λ ·vµ(T,sµ̃)

∣∣∣∣∣ <
K−g

T
. (57)

for eachµ andT. The proof is very similar to the derivation of (20) in Step 1

in the proof of Proposition 3; we only need to replaceπε − (1−δ )πg
δ , Vω(δ ), and

vµ(δ ,s) in the proof of Proposition 3 withπ(K−g)
T , Vω(T), andvµ(T,s), respec-

tively. So the first step is done. Similarly, the third step is exactly the same as that

of Proposition 3.

The second step is also very similar to that of Proposition 3. For anyµ̃,∣∣∣∣ max
v∈Vµ (T)

λ ·v−λ ·vµ(T,sµ̃)
∣∣∣∣

=
∣∣∣λ ·vµ(T,sµ)−λ ·vµ(T,sµ̃)

∣∣∣
≤ 1

T

∣∣∣λ ·gµ(sµ(h0))−λ ·gµ(sµ̃(h0)
∣∣∣+ T −1

T
· K−g
T −1

≤ 1
T

g+
K−g

T
=

K
T

.

Here the first inequality follows from (57), which ensures that the difference in

the continuation payoffs from period two is at mostK−g
T−1. Q.E.D.

Define playeri’s minimax payoff in theT-period game as

vµ
i (T) = min

s−i∈S−i
max
si∈Si

vµ
i (T,s).
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The following proposition shows that this minimax payoff for theT-period game

approximates the limit minimax payoffvi for the infinite-horizon game asT goes

to infinity.

Proposition C3. Suppose that the full support assumption holds. Then there is

K > 0 such that|vµ
i (T)−vi | ≤ K

T for each i, T , andµ.

Proof. For eachµ andδ , choosesδ ,µ
−i as in the proof of Proposition 4. (Here we

writesδ ,µ
−i instead ofsµ

−i to emphasize the dependence onδ .) Note that this strategy

sδ ,µ
−i approximates the minimax payoff for the initial priorµ and the discount

factorδ . Then as shown in the proof of Proposition 4, there isK̃ > 0 such that∣∣∣∣vµ̂
i (δ )−max

si∈Si

vµ
i (δ ,si ,s

δ ,µ̃
−i |ht )

∣∣∣∣ < (1− K̃)δ

for eachi, δ , µ, µ̃, µ̂, t, andht . Choose such̃K.

Pick someµ. By the definition ofK̃, we have

vµ
i (δ ) ≥ max

si∈Si

vµ
i (δ ,si ,s

δ ,µ
−i )− (1−δ )K̃.

Hence for eachsi ,

vµ
i (δ ) ≥vµ

i (δ ,si ,s
δ ,µ
−i )− (1−δ )K̃

≥(1−δ )
T

∑
t=1

δ t−1E[gωt

i (at)|µ,si ,s
δ ,µ
−i ]

+δ T{vµ
i (δ )− (1−δ )K̃}− (1−δ )K̃.

Here the second inequality follows from the definition ofK̃, which ensures that the

continuation payoff from periodT +1 on is at leastvµ
i (δ )−(1−δ )K̃. Subtracting

δ T{vµ
i (δ )− (1−δ )K̃}− (1−δ )K̃ from both sides and dividing them by 1−δ T ,

we have

1−δ
1−δ T

T

∑
t=1

δ t−1E[gωt

i (at)|µ,si ,s
δ ,µ
−i ] ≤ vµ

i (δ )+
1−δ
1−δ T (δ TK̃ + K̃).

Since this inequality holds for allsi , taking the maximum of the left-hand side

over allsi ,

max
si∈Si

1−δ
1−δ T

T

∑
t=1

δ t−1E[gωt

i (at)|µ,si ,s
δ ,µ
−i ] ≤ vµ

i (δ )+
1−δ
1−δ T (δ TK̃ + K̃).
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Sincesδ ,µ
−i does not necessarily minimize the left-hand side,

min
s−i∈Spub

−i

max
si∈Si

1−δ
1−δ T

T

∑
t=1

δ t−1E[gωt

i (at)|µ,s] ≤ vµ
i (δ )+

1−δ
1−δ T (δ TK̃ + K̃).

Takingδ → 1, we obtain

vµ
i (T) ≤ vi +

2K̃
T

.

Now, pickµ andδ , and pick a public strategys−i which differs fromsδ ,µ
−i only

in the play in the firstT periods; i.e., chooses−i such thats−i |hT = sµ
−i |hT for each

hT . (The play in the firstT periods can be arbitrarily chosen.) Then,

vµ
i (δ ) ≤max

si∈Si

vµ
i (δ ,s)

≤max
si∈Si

[
(1−δ )

T

∑
t=1

δ t−1E[gωt

i (at)|µ,s]+δ T{vµ
i (δ )+(1−δ )K̃}

]
.

Here the first inequality follows from the fact thats−i is not necessarily the min-

imax strategy, and the second follows from the definition ofK̃, which ensures

that the continuation payoff from periodT + 1 on is at mostvµ
i (δ )+ (1− δ )K̃.

Subtractingδ T{vµ
i (δ )+(1−δ )K̃} from both sides and dividing them by 1−δ T ,

max
si∈Si

1−δ
1−δ T

T

∑
t=1

δ t−1E[gωt

i (at)|µ,s] ≥ vµ
i (δ )− 1−δ

1−δ T δ TK̃.

Since this inequality holds for all public strategiess−i ,

min
s−i∈Spub

−i

max
si∈Si

1−δ
1−δ T

T

∑
t=1

δ t−1E[gωt

i (at)|µ,s] ≥ vµ
i (δ )− 1−δ

1−δ T δ TK̃.

Takingδ → 1, we obtain

vµ
i (T) ≥ vi −

K̃
T

.

Combining the above two inequalities,

vi −
K̃
T

≤ vµ
i (T) ≤ vi +

2K̃
T

.

So by settingK = 2K̃, we obtain the result. Q.E.D.
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The next proposition is a counterpart to Proposition 5. It shows that in the

T-period block, the minimax strategy for some dummy beliefµ̃ can approximate

the minimax payoff regardless of the true beliefµ.

Proposition C4. Suppose that the full support assumption holds. Then there is

K > 0 such that for any i, for any T , and for anỹµ, there is a public strategy s−i

such that for each pure strategy si ∈ argmax̃si∈Si v
µ̃
i (T, s̃i ,s

µ̃
−i),∣∣vµ

i (T,s)−vµ
i (T)

∣∣ ≤ K
T

and

max
s̃i∈Si

vµ
i (T − t, s̃i ,s−i |ht )−vµ

i (T − t,s|ht ) ≤ K
T − t

for eachµ, t ∈ {0, · · · ,T −1}, and ht .

Proof. Choosesδ ,µ
−i and K̃ as in the proof of Proposition C3 Pickµ, T, t ∈

{0, · · · ,T −1}, andht arbitrarily. Then by the definition of̃K, we have

vµ
i (δ )+(1−δ )K̃ ≥ max

si∈Si

vω
i (δ ,si ,s

δ ,µ
−i |ht )

for eachω . Then for eachω andsi , we have

vµ
i (δ )+(1−δ )K̃ ≥vω

i (δ ,si ,s
δ ,µ
−i |ht )

≥(1−δ )
T−t

∑̃
t=1

δ t̃−1E[gω t̃

i (at̃)|ω ,si ,s
δ ,µ
−i |ht ]

+δ T−t{vµ
i (δ )− (1−δ )K̃}.

Here the second inequality follows from the definition ofK̃, which ensures that

the continuation payoff from periodT − t + 1 on is at mostvi(δ )− (1− δ )K̃.

Subtractingδ T−tvµ
i (δ )+(1−δ )K̃ from both sides and dividing them by 1−δ T−t ,

we obtain

vµ
i (δ ) ≥ 1−δ

1−δ T−t

T−t

∑̃
t=1

δ t̃−1E[gω t̃

i (at̃)|ω ,si ,s
δ ,µ
−i |ht ]− 1−δ

1−δ T−t (δ
T−tK̃ + K̃).

Since this inequality holds for eachω , si , t ∈ {0, · · · ,T −1}, andht ,

vµ
i (δ ) ≥ max

t∈{0,··· ,T−1}
ht∈Ht

ω∈Ω
si∈Si


1−δ

1−δ T−t

T−t

∑̃
t=1

δ t̃−1E[gω t̃

i (at̃)|ω,si ,s
δ ,µ
−i |ht ]

− 1−δ
1−δ T−t (K̃ +1)

 .

97



Sincesδ ,µ
−i is not necessarily the minimizer of the right-hand side,

vµ
i (δ ) ≥ min

s−i∈S−i
max

t∈{0,··· ,T−1}
ht∈Ht

ω∈Ω
si∈Si


1−δ

1−δ T−t

T−t

∑̃
t=1

δ t̃−1E[gω t̃

i (at̃)|ω ,si ,s−i |ht ]

− 1−δ
1−δ T−t (K̃ +1)

 .

Takingδ → 1, we obtain

vi ≥ min
s−i∈S−i

max
t∈{0,··· ,T−1}

ht∈Ht

ω∈Ω
si∈Si

(
vω

i (T − t,si ,s−i |ht )− K̃ +1
T − t

)
.

Let s−i be a solution to the problem on the right-hand side of the above in-

equality. Then

vi +
K̃ +1
T − t

≥ max
si∈Si

vω
i (T − t,si ,s−i |ht ).

for eachω, t ∈ {0, · · · ,T−1}, andht . Since maxsi∈Si v
µ
i (T− t,si ,s−i |ht ) is convex

with respect toµ, it is maximized by some extreme belief. This and the fact that

the above inequality holds for allω imply that

vi +
K̃ +1
T − t

≥ max
si∈Si

vµ
i (T − t,si ,s−i |ht ) ≥ vµ

i (T − t).

for eachµ, t ∈ {0, · · · ,T −1}, andht , where the second inequality follows from

the fact thats−i |ht is not the minimax strategy for the(T − t)-period game with

the initial priorµ.

Proposition C3 ensures that there isK̃′ such that|vµ
i (T)−v| ≤ K̃′

T for eachT

andµ. Choose such̃K′. Then from the above inequality, we have

vµ
i (T − t)+

K̃ + K̃′ +1
T − t

≥ max
si∈Si

vµ
i (T − t,si ,s−i |ht ) ≥ vµ

i (T − t).

for eachµ, t ∈ {0, · · · ,T −1}, andht . Note thatK̃ andK̃′ do not depend onT.

The rest of the proof is exactly the same as the proof of Proposition 5.Q.E.D.

Using the above results, we can prove the folk theorem usingT-period block

strategies. The following is the self-generation theorem forT-period block strate-

gies:
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Definition C1. A pair (s,v) of a public strategy profile and a payoff vector isex-

post enforceable with respect to(δ ,T) if there is a functionw : HT → RN such

that

vi = (1−δ )
T

∑
t=1

δ t−1E[gωt

i (at)|ω,s]+δ TE[wi(hT)|ω ,s]

for all ω andi, and

vi ≥ (1−δ )
T

∑
t=1

δ t−1E[gωt

i (at)|ω, s̃i ,s−i ]+δ TE[wi(hT)|ω , s̃i ,s−i ]

for all ω, i, ands̃i .

Definition C2. A subsetW of RN×|Ω| is ex-post self-generating with respect to

(δ ,T) if for eachv∈W, there is a public strategy profiles andw : H →W such

that(s,v) is ex-post enforceable with respect to(δ ,T) usingw.

Proposition C5. Fix δ . If W is bounded and ex-post self-generating with respect

to (δ ,T) for some T, then for each payoff vector v∈W, there is a public ex-post

equilibrium which yields the payoff v regardless of the initial stateω .

So to prove the folk theorem, it is sufficient to show that any smooth subset of

the interior ofV∗ is ex-post self-generating. The rest of the proof is quite similar

to that of Proposition 6 and hence omitted.

Appendix D: Relaxing the Full Support Assumption

In this appendix, we will show that the full support assumption is stronger than

necessary for the folk theorem. More precisely, we will show that the folk the-

orem obtains as long as uniform and robust connectedness, the common support

condition, and the relative interior condition hold.

D.1 Uniform Connectedness and Feasible Payoff Set

Yamamoto (2016) introduces the idea ofuniform connectedness, which is a nat-

ural extension of the communicating state assumption for stochastic games with

observable states (Dutta (1995)). Uniform connectedness is about a condition on
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how thesupportof the belief evolves over time, and requires that players can

jointly drive the support from any setΩ∗ ⊆ Ω to any other set̃Ω∗ ⊂ Ω (except

the case in which the set̃Ω∗ is “transient” in the sense that the probability of the

support beingΩ̃∗ is negligible in a distant future.) Yamamoto (2016) shows that

if the game is uniformly connected, then the feasible payoff set is invariant to the

initial prior in the limit asδ → 1.

To give the formal definition of uniform connectedness, the following nota-

tion is useful. When the initial priorµ and a pure action sequence(a1, · · · ,aT) are

given, the posterior beliefµT+1 in periodT +1 can be regarded as a random vari-

able, becauseµT+1 is determined by a realized signal sequence(y1, · · · ,yT) which

is randomly drawn givenµ and(a1, · · · ,aT). (HereµT+1 is common for all play-

ers, because they play pure actions each period.) Let Pr(µT+1 = µ̃|µ,a1, · · · ,aT)
denote the probability that this posterior belief in periodT +1 is µ̃. Likewise, let

Pr(µT+1 = µ̃|µ,s) denote the probability that the posterior belief in periodT +1

is µ̃ given that the initial prior isµ and players play a pure strategy profiles until

periodT.

Definition D1. A non-empty subsetΩ∗ ⊆ Ω is globally accessibleif there isπ∗ >

0 such that for any initial priorµ, there is a natural numberT ≤ 4|Ω|, an action

sequence(a1, · · · ,aT), and a belief̃µ whose support is included inΩ∗ such that

Pr(µT+1 = µ̃|µ,a1, · · · ,aT) ≥ π∗.

In words, global accessibility ofΩ∗ requires that given any initial priorµ,

players can move the support of the posterior belief toΩ∗ or its subset with pos-

itive probability, and this probability is bounded away from zero uniformly inµ.

As explained in Yamamoto (2016), restricting attention toT ≤ 4|Ω| is without loss

of generality.

Definition D2. A subsetΩ∗ ⊆ Ω is uniformly transientif it is not globally acces-

sible and for any pure strategy profiles and for anyµ whose support isΩ∗, there

is a natural numberT ≤ 2|Ω| and a beliefµ̃ whose support is globally accessible

such that Pr(µT+1 = µ̃|µ,s) > 0.

In words, uniform transience ofΩ∗ implies that if the support of the current

belief is Ω∗, then regardless of future actions, the support of the posterior belief
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cannot stay there forever and must reach some globally accessible set with positive

probability at some point. As discussed in Yamamoto (2016), uniformly transient

sets are “not essential” in the sense that the probability of the support being in a

uniformly transient set is almost negligible in a distant future.

Our assumption, uniform connectedness, requires that each subsetΩ∗ be either

globally accessible or uniformly transient.

Definition D3. A stochastic game isuniformly connectedif each subsetΩ∗ is

globally accessible or uniformly transient.

Uniform connectedness is weaker than the full support assumption, and is

satisfied in a wide range of economic examples, including the ones discussed in

Section 2.1.

Our Proposition 2 is valid even if the full support assumption is replaced

with uniform connectedness; see Yamamoto (2016). Likewise, we can show that

Proposition 3 is valid without the full support assumption, as stated below. The

only difference from Proposition 3 is that the dummy beliefµ̃ must be an interior

belief here. The proof is very similar to Step 1 in the proof of Proposition 3 and

hence omitted.

Proposition D1. Suppose that the game is uniformly connected. Then for each

ε > 0, there isδ ∈ (0,1) such that for eachλ , for eachδ ∈ (δ ,1), for eachµ̃
with µ̃(ω) ∈ [π,1− π] for all ω, for each pure public strategy profile sµ̃ with

λ · vµ̃(δ ,sµ̃) = maxv∈V µ̃ (δ ) λ · v, for each t≥ 0, for each ht , and for eachµ ∈
△Ω(µ̃,s,ht) ∣∣∣∣ max

v∈Vµ (δ )
λ ·v−λ ·vµ(δ ,sµ̃ |ht )

∣∣∣∣ < ε

whereΩ(µ̃,s,ht) is the set of states which can happen with positive probability in

period t+1 given the initial priorµ̃, the strategy profile s, and the history ht .

D.2 Robust Connectedness and Minimax Payoffs

Proposition 4 shows that the limit minimax payoff is invariant to the initial prior,

under the full support assumption. Here we show that the full support assumption

can be replaced with a set of weaker conditions, called robust connectedness, the

common support condition, and the relative interior condition.

We begin with presenting the common support condition.
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Definition D4. Thecommon support conditionholds if for eachω, ω̃, a, ã, andy

such thatπω(y, ω̃ |a) > 0 andπω
Y (y|ã) > 0, we haveπω(y, ω̃ |ã) > 0.

In words, the common support condition requires that if the stateω̃ can hap-

pen tomorrow with positive probability given the current stateω , the current ac-

tion profile a, and the current signaly, then the same is true for any different

action profile ˜a which induce the signaly with positive probability. An important

consequence of this condition is that the support of each player’s posterior belief

does not depend on the past actions; that is, once the initial priorµ and the sig-

nal sequence(y1, · · · ,yt) are given, the support of each playeri’s posterior belief

µ t+1
i in periodt +1 is uniquely determined (although the belief itself may depend

on the past actions). Accordingly, as long as players have the same initial prior

µ, the support of the posterior belief is common across all players and is com-

mon knowledge. For eachµ andht , let Ω(µ,ht) ⊆ Ω denote this support. (Let

Ω(µ,h0) = suppµ. Also letΩ(µ,ht) = /0 if ht never happens given the initial prior

µ for any strategy profiles.)

Next, we present the relative interior condition:

Definition D5. Therelative interior conditionholds if for eachω, ω̃, ω̂ , a, andy

such thatπω(y, ω̃ |a) > 0 andπ ω̂
Y (y|a) > 0, we haveπ ω̂(y, ω̃ |a) > 0.

In words, the relative interior condition requires that (conditional on the cur-

rent action profilea and the current signaly), different statesω andω̂ induce the

same set of the next statesω̃. When this condition is satisfied, each playeri’s pos-

terior belief in periodt ≥ 2 is always in the relative interior. To be precise, take a

pure public strategysi , a public strategys−i , and an initial priorµ arbitrarily. Take

an arbitrary historyht which can happen with positive probability givenµ ands,

and letµi(ht |µ,s) ∈ △Ω be playeri’s posterior belief afterht . Then the relative

interior condition ensures thatµi(ht |µ,s)[ω ] ≥ π or µi(ht |µ,s)[ω] = 0 for all ω;

that is, the beliefµi(ht |µ,s) is in the relative interior of the set△Ω(µ,ht).
Lastly, we present the robust connectedness assumption, which is introduced

by Yamamoto (2016). Roughly speaking, it requires that the opponents can drive

the support of playeri’s belief from any set to any other set. The definition here is

a bit different from the one in Yamamoto (2016), because we assume that actions

are not observable. We first define robust accessibility and transience.
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Definition D6. A non-empty subsetΩ∗ ⊆Ω is robustly accessible despite player i

if there isπ∗ > 0 such that for any initial priorµ, for any pure strategysi , there is a

natural numberT ≤4|Ω| and a public historyhT such that Pr(hT |µ,si ,α1
−i , · · · ,αT

−i)≥
π∗ andΩ(µ,hT) = Ω∗, where(α1

−i , · · · ,αT
−i) is the action sequence which mixes

all actions equally each period.

Robust accessibility ofΩ∗ ensures that given any initial priorµ, the opponents

can move the support to the setΩ∗ regardless of playeri’s play, by mixing all

actions equally each period. When actions are observable (i.e., when the public

signaly reveals the action profile today), the above definition reduces to that of

Yamamoto (2016).

Definition D7. A subsetΩ∗ ⊆ Ω is transient given player iif it is not robustly

accessible and there isπ∗ > 0 such that for anyµ whose support isΩ∗, and for any

public strategys−i ∈ S∗−i , there is a natural numberT ≤ 4|Ω| and a beliefµ̃ whose

support is robustly accessible such that Pr(µT+1
i = µ̃|µ,α1

i , · · · ,αT
i ,s−i) ≥ π∗,

where(α1
i , · · · ,αT

i ) is the action sequence which mixes all actions equally each

period.

Transience ofΩ∗ requires that if the current support isΩ∗, playeri can force

the support to move to a different set at some point, regardless of the opponents’

play.

Now we are ready to state the definition of robust connectedness.

Definition D8. The game isrobustly connectedif for each i, each non-empty

subsetΩ∗ ⊆ Ω is either robustly accessible despite playeri or transient given

playeri.

The following proposition extends Proposition 4 and shows that when the

above conditions are satisfied andδ is sufficiently large, the minimax payoffs

are similar across all priorsµ. The proof is given in at the end of this appendix.

Proposition D2. Suppose that the common support condition and the relative

interior condition hold. Suppose also that the game is robustly connected. Then

for eachε > 0, there isδ ∈ (0,1) such that|vµ
i (δ )− vµ̃

i (δ )| < ε for each i,δ ∈
(δ ,1), µ, andµ̃.
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The next proposition extends Proposition 5 and shows that the minimax strat-

egy profilesµ̃ for some dummy belief̃µ approximates the minimax payoff regard-

less of the true beliefµ. The difference from Proposition 5 is that now the dummy

belief µ̃ must be an interior belief. The proof is very similar to that of Proposition

5 and hence omitted.

Proposition D3. Suppose that the common support condition and the relative

interior condition hold. Suppose also that the game is robustly connected. Then

for eachε > 0, there isδ ∈ (0,1) such that for any i, for anyδ ∈ (δ ,1), and for

any µ̃ with µ̃(ω) ∈ [π,1−π] for all ω, there is a public strategy sµ̃
−i such that for

each player i’s pure strategy sµ̃
i ∈ argmax̃si∈Si v

µ̃
i (δ , s̃i ,s

µ̃
−i),∣∣∣vµ

i (δ ,sµ̃ |ht )−vµ
i (δ )

∣∣∣ < ε

and

max
s̃i∈Si

vµ
i (δ , s̃i ,s

µ̃
−i |ht )−vµ

i (δ ,sµ̃ |ht ) < ε

for each t≥ 0, ht , andµ ∈△Ω(µ̃,ht).

D.3 Belief Convergence Theorem

In the last subsection, we have seen that the relative interior condition is useful

to derive invariance of the limit minimax payoffs. As we show in the following

proposition, it is also useful to obtain the belief convergence theorem.

Proposition D4. Suppose that the relative interior condition holds, and letβ =
1− π

|Ω| ∈ (0,1). Then for each i, pure public strategy si , public strategy s−i , µ, µ̃,

t ≥ 0, and ht such thatPr(ht |µ,s) > 0 andPr(ht |µ̃,s) > 0,∣∣µi(ht |µ,s)−µi(ht |µ̃,s)
∣∣ ≤ β t .

Once we obtain the belief convergence theorem, it is easy to extend Lemma

B9. The proof is omitted because it is almost identical with that of Lemma B9.

Lemma D1. Suppose that the relative interior condition holds. Then for each

δ , for eachµ, for eachµ̃, for each t≥ 1, for each public history ht−1 such that
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Pr(ht−1|µ,s) > 0 andPr(ht−1|µ̃,s) > 0, for each public strategy s−i , and for each

pure public strategy si ∈ argmax̃si∈Si v
µ̃
i (δ , s̃i ,s−i), we have

Gt
i(δ ,µ,s,ht−1) ≤ β t−1

π
max

µ̂∈△Ω(µ̃,ht−1)

(
max
s̃i∈Si

vµ̂
i (δ , s̃i ,s−i |ht−1)−vµ̂

i (δ ,s|ht−1)
)

,

and hence

G∗
i (δ ,s) ≤ 1

(1−β )π
sup

ht∈H∗
max

µ̂∈△Ω(µ̃,ht)

(
max
s̃i∈Si

vµ̂
i (δ , s̃i ,s−i |ht )−vµ̂

i (δ ,s|ht )
)

.

Here, we letmaxx∈X f (x) = −∞ if X is an empty set.

D.4 Folk Theorem

So far, we have seen that Propositions 2, 3, 4, and 5, and Lemma B9 are valid

even if the full support assumption does not hold. Accordingly, the following

folk theorem holds. The proof is very similar to that of Proposition 6 and hence

omitted. (We can show that Lemma B11, which is used in the proof of Proposition

6, remains valid even if the full support support assumption is not satisfied. The

proof idea is similar to Proposition D2 and hence omitted.)

Proposition D5. Suppose that the common support condition, the relative inte-

rior condition, uniform and robust connectedness, (IFR), and (PFR) are satisfied.

Suppose also that public randomization is available. Then, for any smooth subset

W of the interior of V∗, there isδ ∈ (0,1) such that for anyδ ∈ (δ ,1), the set W

is stochastically ex-post self-generating. Hence for each v∈W, there is a public

ex-post equilibrium which yields the payoff v regardless of the initial stateω.

The assumptions made in the above folk theorem (uniform and robust con-

nectedness, the common support condition, and the relative interior condition) are

satisfied in various economic examples. The following lemma shows that if the

state is observable (i.e.,Y = Ω×Ω×Y∗) and the state evolution is irreducible

in the sense of Fudenberg and Yamamoto (2011b), then these assumptions are

satisfied.

Lemma D2. Suppose that the state is observable and the state evolution is irre-

ducible. Then uniform and robust connectedness, the common support condition,

and the relative interior condition hold.
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Proof. Since the state is observable, given a signaly in period one, the stateω in

period two is common knowledge across players. This implies that clause (ii) in

the definition of robust connectedness, as well as the common support condition,

and the relative interior condition. Also, since the state evolution is irreducible, it

is each to check that clause (i) in the definition of robust connectedness is satisfied.

Q.E.D.

The next lemma shows that if the state is observable with delay (i.e.,Y =
Ω×Y∗) and the state evolution has a full support in the sense thatπω(y, ω̃ |a) > 0

for all ω, ω̃, a, andy such thatπω
y (y|a) > 0, then the assumptions are satisfied.

Lemma D3. Suppose that the state is observable with delay and the state evolu-

tion has a full support. Then robust connectedness, the common support condition,

and the relative interior condition hold.

D.5 Ex-Post Equilibria to Sequential Equilibria

When the full support assumption does not hold, some deviations can be observ-

able, and accordingly there can be a Nash equilibrium payoff which is not achiev-

able by any sequential equilibria. Here, we show that the sequential-equilibrium

folk theorem holds when some additional assumptions are satisfied.

For each(i, j) with i , j and for eachα, let Π̃i j (α) be a matrix with rows

πω
Y (ai ,a j ,α−i j ) for all ω ∈ Ω, ai ∈ Ai , anda j ∈ A j . In words, the matrixΠi(α)

is a collection of the marginal distributions of the public signaly induced by joint

deviations by playersi and j.

Definition D9. An action profileα hasstrong full rank for(i, j) if the matrix

Π̃i j (α) has rank equal to|Ω|×|Ai |×|A j |. An action profileα hasstrong full rank

if it has strong full rank for all(i, j) with i , j.

Strong full rank requires that any joint deviation by playersi and j must be

distinguished by a public signaly. Very roughly, this condition is used to ensure

that a modification of playerj ’s actions at off-path histories does not influence

playeri’s incentive. We have the following sequential-equilibrium folk theorem.

The proof can be found at the end of this appendix.
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Proposition D6. Suppose that the common support condition, the relative interior

condition, and uniform and robust connectedness are satisfied. Suppose also that

public randomization is available, and each pure action profile has strong full

rank. Then, for any interior point v of V∗, there isδ ∈ (0,1) such that for any

initial prior µ and δ ∈ (δ ,1), there is a sequential equilibrium which yields the

payoff of v.

Unfortunately, strong full rank is demanding, and it rules out many potential

applications. For example, suppose that a two-player games in which the action

set isAi = {C,D} for eachi. Suppose that the game is symmetric so that the signal

distribution induced by the profile(C,D) is the same as that by the profile(D,C).
Then the pure action profile(C,C) cannot have strong full rank, and hence the

assumption in Proposition D6 does not hold. (On the other hand, (PFR) can be

satisfied in this symmetric game, as a mixed action profileα may have pairwise

full rank.)

The next proposition shows that the sequential-equilibrium folk theorem is

still valid when players can communicate. Suppose that at the end of each period

t, each playeri can send a public messagemi ∈ Mi . Assume thatMi = Ai ; that, af-

ter each period, each playeri can reveal her own action. Since the communication

considered here is a cheap talk, each player may misreport to increase her con-

tinuation payoff; however, as the following proposition shows, we can construct a

sequential equilibrium in which everyone reports her information truthfully after

every history.

Proposition D7. Suppose that the common support condition, the relative inte-

rior condition, uniform and robust connectedness, (IFR), and (PFR) are satisfied.

Suppose also that public randomization is available and that players can commu-

nicate each period. Then, for any interior point v of V∗, there isδ ∈ (0,1) such

that for any initial prior µ andδ ∈ (δ ,1), there is a sequential equilibrium with

the payoff of v in which everyone reports truthfully after every history.

D.6 Proof of Proposition D2

Fix δ . Let vµ
i (s−i) be as in the proof of Proposition 4. Let∆(µ,ht) be the set of

all beliefsµ̃ such that̃µ(ω)≥ π for eachω ∈ Ω(µ,ht) andµ̃(ω) = 0 for otherω.
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Intuitively, any beliefµ in∆(µ,ht) is in the relative interior of the set△Ω(µ,ht),
and is not too close to the boundary. Under the common support condition and

the relative interior condition, given the initial priorµ and the public historyht ,

playeri’s posterior belief must be in the set∆(µ,ht) regardless of her past private

actions.

Assume for now that there is a public strategysµ
−i which exactly achieves the

minimax payoff forµ. Then after every historyht , the continuation strategysµ
−i |ht

should punish playeri sufficiently harshly compared to any other strategys−i ;

more precisely, for eachs−i , there must be some beliefµ̃ ∈ ∆(µ,ht) such that

vµ̃
i (sµ

−i |ht ) ≤ vµ̃
i (s−i). Indeed, if not and there iss−i such thatvµ̃

i (sµ
−i |ht ) > vµ̃

i (s−i)
for all µ̃ ∈ ∆(µ,ht), then the strategysµ

−i is not the minimax strategy because the

opponents can lower playeri’s payoff by replacing the continuation strategysµ
−i |ht

with s−i .

The following lemma shows that the same result holds even if there is no

strategy which exactly achieves the minimax payoff. The proof is very similar to

Lemma B3 and hence omitted.

Lemma D4. For eachµ, there is a public strategy sµ
−i such that∣∣vµ

i (δ )−vµ
i (sµ

−i)
∣∣ < 1−δ . (58)

and such that for any t≥ 1, for any ht , and for any public strategy s−i , there is

µ̃ ∈ ∆(µ,ht) satisfying

vµ̃
i (sµ

−i |ht ) < vµ̃
i (s−i)+1−δ . (59)

For eachµ, choosesµ
−i as in the above lemma. Pickµ andht , and consider the

corresponding strategysµ
−i |ht . Then the payoffvµ̃

i (sµ
−|ht ) is convex with respect to

the initial belief µ̃. In what follows, when we say theconvex curve vµ̃i (sµ
−|ht ) or

theconvex curveinduced bysµ
−|ht , it refers to the convex functionvµ̃

i (sµ
−|ht ) whose

domain is restricted tõµ ∈ △Ω(µ,ht). So whenΩ(µ,ht) = Ω, the convex curve

represents playeri’s payoffvµ̃
i (sµ

−|ht ) for each initial beliefµ̃ ∈△Ω. On the other

hand, whenΩ(µ,ht) = {ω}, the convex curve is simply a scalarvω
i (sµ

−|ht ).
For eachµ, t ≥ 0, andht ∈ Ht , let

vi(s
µ
−i |ht ) = max

µ̃∈△Ω(µ,ht)
vµ̃

i (sµ
−|ht ).
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That is,vi(s
µ
−i |h) is the highest payoff attained by the convex functionvµ̃

i (sµ
−i |ht ).

Note that different(µ,ht) induce different strategiessµ
−i |ht , and hence different

convex curves, and hence different highest payoffsvi(s
µ
−i |ht ). Take the supremum

of these highest payoffs, and choose(µ∗,h∗) to approximate the supremum, that

is, ∣∣∣∣∣ sup
µ∈△Ω

sup
h∈H

vi(s
µ
−i |h)−vi(s

µ∗

−i |h∗)

∣∣∣∣∣ < 1−δ . (60)

We callvi(s
µ∗

−i |h∗) themaximal value, because it approximates supµ∈△Ω suph∈H vi(s
µ
−i |h),

which is greater than any payoffs attained by any convex curves.

Sincevµ
i (sµ∗

−i |h∗) is convex, it is maximized whenµ is an extreme point; i.e.,

it is maximized when the initial prior puts probability one on some stateω ∈
Ω(µ∗,h∗). Let ω denote this state.

The rest of the proof consists of three steps. In the first step, we show that there

is a beliefµ∗∗ such that the minimax payoff for the initial priorµ∗∗ approximates

the maximal value. The proof is very similar to Steps 1 through 3 of the proof of

Proposition 4.

In the second step, we show that for any(µ,ht) such thatΩ(µ,ht) is robustly

accessible, the corresponding convex curvevµ̃
i (sµ

−|ht ) is almost flat and approxi-

mates the maximal value. The result in the first step plays an important role here.

Then in the third step, we show that for any(µ,ht) such thatΩ(µ,ht) is tran-

sient, the corresponding convex curvevµ̃
i (sµ

−|ht ) is almost flat and approximates

the maximal value. This and the result in the second step ensure that all the convex

curves are almost flat and approximate the maximal value, which implies that all

the minimax payoffs approximate the maximal value.

D.6.1 Step 1: Minimax Payoff for µ∗∗

The following lemma extends Lemma B5 to the case in which the full support

assumption does not hold; it shows that there is the opponents’ strategysµ
−i |ht such

that the corresponding convex curvevµ̃
i (sµ

−i |ht ) is almost flat and approximates the

maximal value uniformly inµ̃ ∈ △Ω(µ,ht). The lemma also shows that such a

strategy can be obtained by lettingµ = µ∗ andht = (h∗,y) for somey. LetC = 2g
π2

and letC̃ = 1
π2 . Let s∗i be playeri’s best reply when the initial state isω and the

opponents playsµ∗

−i |h∗.

109



Lemma D5. Pick y such thatπω
Y (y|s∗i (h0),sµ∗

−i (h
∗))> 0. Then for anỹµ ∈△Ω(µ∗,(h∗,y)),∣∣∣vi(s

µ∗

−i |h∗)+(1−δ )−vµ̃
i (sµ∗

−i |(h∗,y))
∣∣∣ ≤ 1−δ

δ
C+(1−δ )C̃.

To prove this lemma, it is sufficient to find a relative interior beliefµ̃ ∈△Ω(µ∗,(h∗,y))
such that the payoffvµ̃

i (sµ∗

−i |(h∗,y)) approximates the maximal value; indeed, if

there is such a relative interior belief, then Lemma B4 ensures that the convex

curve vµ̃
i (sµ∗

−i |(h∗,y)) is almost flat and approximates the maximal value for all

µ̃ ∈△Ω(µ∗,(h∗,y)).
To find such a relative interior belief̃µ, suppose that the current state isω and

that the opponents playsµ∗

−i |h∗ from now on. Suppose that playeri takes the best

reply strategys∗i . By the definition, playeri’s payoff achieves the maximal value.

Now, suppose that no one deviates today and the signaly is observed. Letting̃µ
be playeri’s posterior belief in period two, her continuation payoff from period

two is denoted byvµ̃
i (sµ∗

−i |(h∗,y)). Then we can show that this continuation payoff

approximates the maximal value; as in the proof of Lemma B4. Also, under the

common support condition and the relative interior condition, the support of the

posterior belief today is solely determined by the public signaly in the last period;

hence we haveΩ(ω ,y) = Ω(µ∗,(h∗,y)), and the belief̃µ is indeed in the relative

interior of△Ω(µ∗,(h∗,y)). (Indeed, we can show thatµ̃ ∈ ∆(µ∗,(h∗,y)).) Hence

this beliefµ̃ satisfies all the desired conditions. The formal proof of the lemma is

omitted, as it is very similar to that of Lemma B5.

The above lemma shows that the convex curve induced bysµ∗

−i |(h∗,y) is almost

flat and approximates the maximal value. The next lemma extends this result; it

shows that for any(µ,ht) such thatΩ(µ,ht) = Ω(µ∗,(h∗,y)), the corresponding

convex curve is almost flat and approximates the maximal value. The proof is

very similar to Lemma B6 and hence omitted. LetC′ = C
π andC̃′ = C̃+1

π .

Lemma D6. Pick y such thatπω
Y (y|s∗i (h0),sµ∗

−i (h
∗)) > 0, and then pick(µ,ht) such

that Ω(µ,ht) = Ω(µ∗,(h∗,y)). Then for each̃µ ∈△Ω(µ,ht),∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̃
i (sµ

−i |ht )
∣∣∣ ≤ 1−δ T

δ T C′ +(1−δ )C̃′.

Pick y as in the lemma, and pick an arbitrary beliefµ∗∗ ∈ △Ω(µ∗,(h∗,y)).
Letting µ = µ̃ = µ∗∗ andht = h0, the lemma ensures that the minimax payoff
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given the initial priorµ∗∗ approximates the maximal value. That is,∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ∗∗

i (sµ∗∗

−i )
∣∣∣ ≤ 1−δ T

δ T C′ +(1−δ )C̃′. (61)

D.6.2 Step 2: Convex Curves whenΩ(µ,ht) is Robustly Accessible

Chooseπ∗ > 0 so that the condition stated in the definition of robust accessibility

and transience is satisfied.

Pick a pair(µ,ht) such that the setΩ(µ,ht) is robustly accessible. Intuitively,

if the initial prior is µ and the past public history isht , playeri’s posterior belief

must be in the set△Ω(µ,ht) regardless of her private history. In particular, under

the common support condition and the relative interior condition, her posterior

belief must be a relative interior belief so that it must be in the set∆(µ,ht).
Suppose that the initial prior isµ∗∗ and that the opponents play the following

strategy ˜s−i(µ,ht):

• Randomize all actions equally likely until playeri’s posterior belief reaches

the set∆(µ,ht).

• Once it happens, then playsµ
−i |ht in the rest of the game.

Intuitively, s̃−i(µ,ht) asks the opponents to randomize all actions equally and wait

until playeri’s posterior belief reaches the set∆(µ,ht); and once it happens, they

switch the play tosµ
−i |ht in the rest of the game. This strategy is well-defined,

because the common support condition ensures that the support of playeri’s pos-

terior belief is common knowledge after every public history, and the relative in-

terior condition ensures that her posterior belief is always a relative interior belief.

Suppose that playeri takes a best reply. SinceΩ(µ,ht) is robustly accessible

and the relative interior condition holds, the switch tosµ
−i |ht must happen in finite

time with probability one. Hence forδ close to one, playeri’s expected payoff

is approximated by the expected continuation payoff after the switch. Since the

belief at the time of the switch is in the set∆(µ,ht), this continuation payoff is at

most

Ki(µ,ht) = max
µ̃∈∆(µ,ht)

vµ̃
i (sµ

−i |ht ).
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So playeri’s payoff against the above strategy ˜s−i(µ,ht) is approximately at most

Ki(µ,ht). Formally, we have the following lemma. The proof is very similar to

that of Yamamoto (2016) and hence omitted.

Lemma D7. For each(µ,ht) such thatΩ(µ,ht) is robustly accessible,

vµ∗∗

i (s̃−i(µ,ht)) ≤ Ki(µ,ht)+
(1−δ 4|Ω|

)2g
π∗ .

For now, ignore the term(1−δ 4|Ω|
)2g

π∗ because it is approximately zero when

δ is close to one. Then the above lemma ensures that the payoffKi(µ,ht) is

at leastvµ∗∗

i (s̃−i(µ,ht)), which must be at least the minimax payoffvµ∗∗

i (sµ∗∗

−i )
due to the fact that ˜s−i(µ,ht) is not necessarily the minimax strategy. On the

other hand, the payoffKi(µ,ht) cannot exceed the maximal value. Hence the

payoffKi(µ,ht) is between the minimax payoffvµ∗∗

i (sµ∗∗

−i ) and the maximal value.

Now, from Step 1, we know that these two bounds are close each other; hence the

payoff Ki(µ,ht) = maxµ̃∈∆(µ,ht) vµ̃
i (sµ

−i |ht ) approximates the maximal value. That

is, the convex curvevµ̃
i (sµ

−i |ht ) approximates the maximal value for some belief

µ̃ ∈ ∆(µ,ht). Then Lemma B4 ensures that the convex curve is almost flat over

the spacẽµ ∈△Ω(µ.ht) and that the payoffvµ̃
i (sµ

−i |ht ) approximates the maximal

value for all beliefsµ̃ ∈ △Ω(µ.ht). Formally, we obtain the following lemma.

Let C′′ = C′

π andC̃′′ = C̃′+1
π .

Lemma D8. For each(µ,ht) such thatΩ(µ,ht) is robustly accessible and for

eachµ̃ ∈△Ω(µ,ht),

∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̃
i (sµ

−i |ht )
∣∣∣ <

(1−δ 4|Ω|
)2g

π∗π
+

1−δ T

δ T C′′ +(1−δ )C̃′′.

Proof. From (58), we know that

vµ∗∗

i (sµ∗∗

−i )− (1−δ ) ≤ vµ∗∗

i (s̃−i(µ,ht)).

Combining it with Lemma D7, we have

vµ∗∗

i (sµ∗∗

−i )− (1−δ ) ≤ Ki(µ,ht)+
(1−δ 4|Ω|

)2g
π∗ .
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Using (61), we obtain

vi(s
µ∗

−i |h∗)−
(1−δ 4|Ω|

)2g
π∗ − 1−δ T

δ T C′− (1−δ )C̃′ ≤ Ki(µ,ht).

This andKi(µ,ht) ≤ vi(s
µ∗

−i |h∗)+(1−δ ) imply that∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−Ki(µ,ht)
∣∣∣ ≤ (1−δ 4|Ω|

)2g
π∗ +

1−δ T

δ T C′ +(1−δ )(C̃′ +1).

So the valueKi(µ,ht) is close to the maximal value, that is, the convex curve

vµ̃
i (sµ

−i |ht ) approximates the maximal value for some relative interior beliefµ̃ ∈
∆(µ,ht). Then Lemma B4 ensures the result. Q.E.D.

D.6.3 Step 3: Convex Curves whenΩ(µ,ht) is Transient

Pick a pair(µ,ht) such thatΩ(µ,ht) is transient. Suppose that the initial prior is

µ̃ ∈△Ω(µ,ht) and that the opponents playsµ
−i |ht . Suppose that playeri plays the

following strategy ˜si :

• Randomize all actions equally likely until the support of playeri’s posterior

belief reaches a globally accessible set.

• Once it happens, then play a best reply in the rest of the game.

That is, playeri switches her play to a best reply once the support of her belief

reaches a globally accessible set.

Since the game is robustly connected, the switch must happen in finite time

with probability one. Hence forδ close to one, playeri’s expected payoff is ap-

proximated by the expected continuation payoff after the switch. By the definition,

the opponents’ strategy at the time of the switch issµ̂
−i |ĥ for some(µ̂, ĥ) such that

Ω(µ̂, ĥ) is robustly accessible; then from Lemma D8, playeri’s continuation pay-

off after the switch approximates the maximal value, which in turn implies that her

overall payoff approximates the maximal value. Formally, we have the following

lemma. The proof is very similar to that of Yamamoto (2016) and hence omitted.

Lemma D9. For each(µ,ht) such thatΩ(µ,ht) is transient and for each̃µ ∈
△Ω(µ,ht),∣∣∣vi(s

µ∗

−i |h∗)+(1−δ )−vµ̃
i (δ , s̃i ,s

µ
−i |ht )

∣∣∣ <
(1−δ 4|Ω|

)4g
π∗π

+
1−δ T

δ T C′′ +(1−δ )C̃′′.
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Note that the strategy ˜si is not a best reply given the beliefµ̃ ∈ △Ω(µ,ht)
and the opponents’ strategysµ

−i |ht . When playeri chooses a best reply, her payoff

(weakly) increases and hence becomes closer to the maximal value. Hence we

have∣∣∣vi(s
µ∗

−i |h∗)+(1−δ )−vµ̃
i (sµ

−i |ht )
∣∣∣ <

(1−δ 4|Ω|
)4g

π∗π
+

1−δ T

δ T C′′ +(1−δ )C̃′′.

for each(µ,ht) such thatΩ(µ,ht) is transient and for each̃µ ∈ △Ω(µ,ht). This

result and the result in the previous step show that all the convex curvesvµ̃
i (sµ

−i |ht )
are almost flat and approximate the maximal value, and hence all the minimax

payoffs approximate the maximal value.

D.7 Proof of Proposition D6

In the proof of Lemma B17, the functionzt+1
j is chosen in such a way that playerj

is indifferent over all actions in periodt +1 regardless of the current hidden state

ω , given that the opponents play the prescribed actions− j(ht). With strong full

rank, we can modify thiszt+1
j so that the following condition holds:

δ (1− p) ∑
y∈Y

πω(y|ai ,a j ,s−i j (ht))zt+1
j (ht ,y)

=
1−δ

1− pδ

(
vω

j (pδ ,s|ht )−vω
j (pδ ,si |(ht ,ai),sj |(ht ,a j ),s−i j |ht )

)
for all ω, ai , anda j . With this modification, playerj is now indifferent over all

actions in periodt + 1 regardless of the current hidden stateω , even if playeri

deviates from the prescribed actionsi(ht).
Pick an arbitrary target payoffv from an interior point ofV∗, Then from Propo-

sition 6, for sufficiently largeδ , there is a public ex-post equilibriums which

achievesv regardless of the initial prior. Pick an arbitrary initial priorµ. In what

follows, we will modify this strategys and construct a sequential equilibrium for

this initial prior µ.

With an abuse of notation, letHt
i denote the set of all playeri’s private histo-

ries with lengtht which can be reached givenµ and some ˜s∈S. LetHt
i =∪∞

t=0Ht
i .

In general,Ht
i may not coincide with(Ai ×Y × [0,1])t , since some sequence
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(aτ
i ,y

τ ,zτ)t
τ=1 may not be reachable given the initial priorµ. But these are re-

dundant histories which should not show up in the game tree, so without loss of

generality, we ignore these histories.

Recall that our public ex-posts has the random block structure. For each

ε > 0, consider a perturbed strategy profilesε such that in each periodt, each

playeri uses the original equilibrium strategysi(ht−1) with probability 1− εNt−1
,

and mixes all actions equally likely with the remaining probability. So each action

is chosen with at least probabilityε
Nt−1

|Ai | in periodt. Intuitively, here we choose the

perturbation probability in such a way that the probability that someone makes a

single “mistake” in the current period is significantly smaller than the probability

that all the opponents make mistakes in all the past periods.14 This in turn implies

that the probability that someone makes a single “mistake” during the current

random block is significantly smaller than the probability that all the opponents

make mistakes in all periods before the current block.

For each playeri’s historyht
i , the perturbed strategy profilesε uniquely deter-

mines her beliefζ ε
i (ht

i) about the current stateω t+1 and the opponents’ history

ht
−i . Let ζi(ht

i) be the limit ofζ ε
i (ht

i) asε → 0.

Givens, let H̃t
i be the set of all historiesht

i = (aτ
i ,y

τ ,zτ)t
τ=1 that can happen

when no one deviates froms during the current random block (but we allow any

deviations in previous blocks). In other words,ht
i < H̃t

i if it happens only when

there have been deviations during the current random block. Then the belief sys-

temζ satisfies the following properties:

• For eachht
i ∈ H̃t

i , the corresponding beliefζi(ht
i) assigns probability one on

the event that nobody has deviated fromsduring the current random block.

• For eachht
i < H̃t

i , the corresponding beliefζi(ht
i) assigns probability one on

the event that someone has deviated fromsduring the current random block.

As one can see from the proof of Lemma B19, each random block is associated

with some target payoff, which in turn determines the corresponding directionλ .

For each public historyht , let λ (ht) denote the direction for the current random

block.
14To see this, suppose that we are in periodt now. The probability that all players excepti make

mistakes in all periods in the past isε(N−1)∑t−1
t̃=1 Nt̃−1

= εNt−1−1, which is significantly smaller than
the probability that someone makes a mistake in the current period,εNt−1

.
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Now, we modify the strategy profiles and construct a new strategy profiles∗

and a belief systemζ ∗ inductively. In each stept, we specify actionss∗(ht−1
i ) in

periodt and beliefsζ ∗(ht−1
i ) at the beginning of the next period.

• Step 1: We do not modify the play in period one, and lets∗i (h
0
i ) = s(h0

i ), and

let ζ ∗
i (h1

i ) = ζi(h1
i ) for eachh1.

• Stept: Note that the actions up to periodt −1 are already given, and the

beliefsζ ∗
i (ht−1

i ) at the beginning of periodt are also given for eachht−1.

Now we choose the actionss∗i (h
t−1
i ) in periodt as follows:

– If λ (ht−1
i ) is regular, then lets∗i (h

t−1
i ) = si(ht−1

i ).

– If λ (ht−1
i ) is a coordinate direction with|λ j | = 1 for somej , i, then

let s∗i (h
t−1
i ) = si(ht−1

i ).

– If λ (ht−1
i ) is a coordinate direction with|λi |= 1 andht−1

i ∈ H̃t−1
i , then

let s∗i (h
t−1
i ) = si(ht−1

i ).

– If λ (ht−1
i ) is a coordinate direction with|λi |= 1 andht−1

i < H̃t−1
i , then

lets∗i (h
t−1
i )= s̃i(h0) for some pure strategy ˜si ∈argmaxvµi

i (δ , s̃i ,s−i |ht−1)
whereµi = marg△Ωζ ∗

i (ht−1
i ).

Then we choose the beliefsζ ∗
i (ht

i) at the beginning of periodt + 1 as fol-

lows: Lets∗,t be the strategy profile for thet-period game we have defined

so far, and lets∗,t,ε be the perturbation of this profiles∗,t where the pertur-

bation probability is chosen as above. Then for each historyht
i with length

t, let ζ ∗,ε
i (ht

i) be the posterior belief induced by the perturbed strategys∗,t,ε ,

and then letζ ∗
i (ht

i) = limε→0ζ ∗,ε
i (ht

i).

Note thatζ ∗
i (ht

i) can be different from the original beliefζi(ht
i) only if λ (ht−1

i ) is

a coordinate direction with|λi | = 1 andht−1
i < H̃t−1

i .

We claim that the pair(s∗,ζ ∗) constitutes a sequential equilibrium for the

initial prior µ. Sinceζ ∗ is consistent withs∗, it is sufficient to show thats∗ is

sequentially rational.

Note first thats∗i differs from the original equilibriums only for the actions

s∗i (h
t−1) after historiesht−1

i < H̃t−1
i . This implies that, regardless of the past his-

tory, once the current block terminates and players go to the next block, the contin-
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uation strategy induced bys∗ and the one bysyield the same outcome distribution

and thus the same continuation payoffs.

Now we check playeri’s incentive. Suppose that the directionλ corresponding

to the current block is regular. By the construction, the strategy profiles∗ ands

induce the same actions during the current block. Then from the proof of Lemma

B16, playeri is indifferent over all actions regardless of the hidden stateω, after

every public history within the block. (Here, the continuation payoffw(ht) is

indeed achieved, ass∗ and s yield the same continuation payoff from the next

block.) So playeri’s play in this block is sequentially rational.

Suppose next thatλ corresponding to the current block is a coordinate direc-

tion with |λ j |= 1 for somej , i. In this case, playerj ’s play induced bys∗ can be

different from that ofs. However, as explained at the beginning of this proof, the

continuation payoffswi are chosen in such a way that after every public history

within the block, playeri is indifferent over all actions regardless of the hidden

stateω and regardless of playerj ’s action in the current period. Hence, again,

playeri’s play in this block is sequentially rational.

Finally, suppose thatλ corresponding to the current block is a coordinate di-

rection with |λi | = 1. By the construction, the strategys∗−i and s−i induce the

same actions during the current block, so playeri’s incentive problem is exactly

the same as the one in Lemmas B17 and B18. Suppose that playeri’s past history

is ht−1
i ∈ H̃t−1

i . In this case, the corresponding beliefζ ∗
i (ht−1

i ) assigns probability

one on the event that no one has deviated during the current block game. Then

player i’s incentive problem is exactly the same as the one studied in the proofs

of Lemma Lemmas B17 and B18, and hence playeri is willing to continue to

plays∗i (h
t−1) = si(ht−1) today, regardless of her belief at the beginning of the cur-

rent block game. Now suppose thatht−1
i < H̃t−1

i . Sinces−i |ht−1 = s∗−i |ht−1, by the

construction, choosings∗i (h
t−1
i ) is optimal.

D.8 Proof of Proposition D7

The proof is the same as that of Proposition D6, except the modification of the

paymentzt+1
j . In the proof of Proposition D6,zt+1

j is modified in such a way

that playerj is indifferent over all actions in periodt +1 regardless of playeri’s

current action, and this modification relies on the fact that each pure action profile
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has strong full rank. Here we show that a similar modification is possible without

strong full rank, as long as players can communicate.

Suppose that for eachj , i, the paymentzt+1
j depends on the public signals

ht+1 = (y1, · · · ,yt+1) and on playeri’s messagemi ∈ Ai in periodt +1. We con-

siderzt+1
j which satisfies the following condition:

δ (1− p) ∑
y∈Y

πω(y|ai ,a j ,s−i j (ht))zt+1
j (ht ,y,mi = ai)

=
1−δ

1− pδ

(
vω

j (pδ ,s|ht )−vω
j (pδ ,si |(ht ,ai),sj |(ht ,a j ),s−i j |ht )

)
for all ω, ai , anda j , This system of equations indeed has a solution, since each

pure action profile has cross-state individual full rank. Note that strong full rank

is not needed here, sincezt+1
j now depends onmi .

Intuitively, the above condition says that playerj is indifferent over all actions

in periodt + 1 regardless of the current hidden stateω, and of playeri’s current

action, as long as playeri reports her action truthfully. And playeri indeed reports

her action truthfully after every history, since her report does not influence her

own payoff. Hence playerj , i is indifferent over all actions after every history,

even if we modify playeri’s action at off-path histories.
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