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Abstract

Since the chance of swaying the outcome of an election by voting is usually very
small, it cannot be that voters vote solely for that purpose. So why do we vote? One
explanation is that smarter or more educated voters have access to better information
about the candidates, and are concerned with appearing to have better information
about the candidates through their choice of whether to vote or not. If voting behavior
is publicly observed then more educated voters may vote to signal their education, even
if the election itself is inconsequential and the cost of voting is the same across voters.
I explore this explanation with a model of voting where players are unsure about the
importance of swaying the election and high type players receive more precise signals.
I introduce a new information ordering, a weakening of Blackwell’s order, to formalize
the notion of information precision. Once voting has occurred, players visit a labor
market and are paid the expected value of their type, conditioning only on their voting
behavior. I find that in very large games, voter turnout and the signaling return to
voting remains high even though the chance of swaying the election disappears and the
cost of voting is the same for all types. I explore generalizations of this model, and
close by comparing the stylized features of voter turnout to the features of the model.
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1 Introduction

Why do voters vote in large elections? The natural answer, suggested by political scientists

such as Downs (1957), is that voters vote because they want to influence the outcome of the

election. But the chance of swaying a large election (the ‘pivot probability’) is so small1 that

it seems implausible that it plays any significant role. This is the ‘paradox of voting’.

In this paper, I consider the following resolution to the paradox: It may be that some

voters are better informed (perhaps because they are better educated) than others about

the quality of the two candidates; and further, it may be that voters have a preference for

choosing to vote if doing so leads others to believe that they are better informed about the

quality of the candidates, even though better informed and worse informed voters have the

same ex-post cost of voting and value from a candidate’s election. Imagine, for example,

that some voters are well-educated, and others are not. The well-educated voters read about

politics, and have a good idea of the relative worth of the various candidates. Hence, the

expected return to their vote is higher than to that of a uneducated voter, since they are

more likely to make the right decision. By itself, this would be insufficient to compel them

to vote, since the chance of swaying the election is relatively small. But they show up on

election day and vote, because they have preferences for appearing to be well-informed. The

uninformed voters are aware that, if they vote, they will be perceived as well-informed, but

they remain at home, because the gains from appearing to be well-informed do not quite

outweigh the reduced value they expect their vote will bring.2

This paper contributes to the literature on the paradox of voting in two ways. First, it

provides an alternate, informational channel through which voters may be motivated to vote,

1About 1 in 60 million in the US, as estimated by Gelman et al. (2009).
2That there is some signaling value to voting, regardless of whether it is driven through the described

channel, is difficult to dispute, see for example the well-established fact that self-reported voter participation
is always significantly higher than actual voter participation, suggesting that many individuals lie in an
attempt to ‘look good’ when the pollster calls.
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one which is consistent with the stylized facts of the voting literature, as well as the intuition

that people vote because they wish to signal that they are well-informed. Second, it resolves

a paradox from the literature on uncertain voters (Feddersen and Pesendorfer, 1996), which

is that such models predict large increases in voter participation as rates of education have

risen in the US. If anything, voter participation has fallen. This paper applies an insight

of the uncertain voter literature (that a better informed voter may receive, on average, a

higher payoff from voting) to a model with players who have concerns for signaling that they

are better informed. In the literature on uncertain voters, the gain from voting comes from

one’s absolute level of information, but when players wish to signal that they have better

informed, the gain from voting comes from one’s level of information relative to others, and

hence, voter participation rates in the model in this paper are driven not by the absolute

quality of information, but in the relative dispersion of heterogeneity in information across

the population.

1.1 Prior literature

A model of voter turnout was analyzed formally by Ledyard (1984), who found that while it

is possible to sustain high turnout equilibria in a voting game, such equilibria seem intuitively

implausible, depending on ‘knife-edge’ constructions. For example, it may be an equilibrium

for 1 million people to vote, 500,000 for either candidate, so that each voter’s vote is pivotal.

This intuition was formalized by Palfrey and Rosenthal (1985) and Myerson (2000), who

observed that high turnout equilibria do not survive the introduction of uncertainty about

game parameters, specifically, population. Some attempts have been made to salvage the

idea that high turnout can be sustained if voters care only about swaying the election by

considering correlated equilibria (Pogorelskiy, 2014). But any such explanation must rely on

large pivot probabilities, which empirically we do not observe (Gelman et al., 2009).
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Empirical observations do however motivate other explanations. One robust empirical

finding is that voters tend to be wealthier and better educated on average.3 Posner (1998)

proposes that wealthier voters have a lower cost of voting, and therefore voting serves as a

credible signal (in the sense of Spence (1973)) of their wealth. A related explanation is that

more educated voters are also more ‘civically minded’, meaning they are more likely to benefit

from cooperation with others, and that they vote to signal their civic mindedness. Funk (2005,

2010) was the first to analyze this explanation formally as well as empirically, showing that

Swiss cantons in which the cost of voting was lowered through the introduction of mail-in

voting paradoxically saw reductions in voter turnout. Other empirical studies4 reach similar

conclusions.

Aytimur et al. (2014) expands on the concept of ‘civic-mindedness’ by formally modeling

a second stage, after voting publicly occurs, in which players match with other members of

their community. High type voters place a higher value on such matches, and on swaying

the outcome of the election. Then even in games with a large population, high voter turnout

is supported even though the chance of swaying the election is minuscule.

It is unclear in these models what special role voting plays—beyond providing a costly

action that players can use as a signal. In particular, the same results would hold in this

setting if, instead of having the option to vote in an election, players had the option to wait

in line for an hour at the high school gym, walk into a booth, put checkmarks on a piece of

paper, then hand it to a volunteer, who would immediately throw it away. Why would we

use voting, which has important real world consequences, as a signaling device when so many

other signaling devices are available? One explanation (Posner, 1998) appeals to Schelling

(1980)’s concept of ‘focal points’ to argue that some actions fall naturally into the role

3All stylized facts about voting discussed here are taken from Wolfinger and Rosenstone (1980) and Leigh-
ley and Nagler (2013).

4Kousser and Mullin (2007), also see chapter 4 in Leighley and Nagler (2013) for a summary of the
empirical research on this question in the political science literature.
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of signaling device. Another explanation (Pesendorfer (1995), who applies the concept to

think about fashion trends) is that signaling devices do not arise by chance, rather, they are

strategically created by ‘norm entrepreneurs’ (Sunstein, 1995). Both stories, of focal points

and of norm entrepreneurs, are compelling explanations for why voting might serve as a

signaling device. For the former explanation, in a democracy voting is a regular, somewhat

costly occurance, and so a natural focal point; for the latter explanation, regular voting is

viewed as an important element of a well-functioning democracy, so that civic leaders may

wish to encourage its role as a signaling device.5

In this paper, I focus on a third channel through which voter may serve as a signaling

device, which is an informational channel. If some voters have better information about

the importance of voting, then their expected returns to voting are higher. The ‘uncertain

voter’ literature suggests that better educated voters may receive more accurate signals of

which candidate is the right one, and so derive a higher utility from voting (Feddersen and

Pesendorfer, 1996; Matsusaka, 1995). At the same time, perhaps voters simply intrinsically

care about voting for the ‘right’ candidate, or alternatively that some voters (‘rule utilitari-

ans’) care not only about their own well-being, but the well-being of the group to which they

belong (Coate and Conlin, 2004; Feddersen and Sandroni, 2006). Empirically, this model

is successful in fitting the stylized features and demographics of voter turnout (Degan and

Merlo, 2011). However, the model also make a strong prediction, which to my knowledge is

both undiscussed in the literature and falsified by available evidence, namely, that the rise

in average educational attainment across the US over the past century should have resulted

in a corresponding rise in voter turnout—something we have not observed.6

5Or even civically-minded private actors, such as when Facebook made available an ‘I Voted’ sticker to
users.

6For example, in the last US election, approximately 75% of those with bachelor’s degrees or higher
voted, 50% of those with a high school voted, and 40% of those with less than a high school education
voted. Since 1940, the percentage of the population with a bachelor’s degree has approximately quintupled,
from 5% to 25%, while the percentage with high school educations has nearly tripled, from 20% to 60%. A
back-of-the-envelope calculation suggests that if education had a causal impact on voting turnout then it
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Certainly it may be true that other factors were at play over the past century. Perhaps

voters became increasingly dissatisfied with the political process, or perhaps they perceive

candidates as closer ideologically, making voting less worthwhile. However, there is not much

evidence in the US that potential voters have become more dissatisfied with the political

process, or that potential voters perceive the ideologies of candidates to be converging.7

This paper presents a model of voting which connects the uncertain voter literature to the

signaling literature, and in the process provides an explanation for why voting might serve

as a signaling device. In the model, a group of players must choose between two candidates.

Players do not know their value of swinging the election, but each player observes some

private information. I show that even if we depart from the previous literature on signaling in

voting and assume that the cost and expected value of voting is homogeneous across players,

there is still a role for signaling if players differ in the strength of their private signals, and

if players with more precise signals are valued more highly—in the model, by firms who pay

a wage conditioned on their observed voting behavior and equilibrium strategies. But other

reasonable stories for these gains could include participating in a marriage market or forming

connections with other players as in Aytimur et al. (2014).

In such games, high turnout is supported even as the number of voters grows very large

and the pivot probability disappears. Furthermore, high-turnout equilibria are the only

equilibria for large games. Intuitively, this is because players with more informative signals

are ex-ante more likely to vote. This generates a positive signaling value to voting. Even as

the pivot probability disappears, the effective cost (net of the signaling value) becomes very

low, inducing large numbers of players to vote while still separating by type.

should have contributed to a 10 percentage point increase in voter turnout. The direct explanation for this
discrepancy is that the correlation between education and turnout has eroded over the past half century,
enough to outweigh the increase in education.

7Leighley and Nagler (2013) examines self-reported measures of the perceived importance of US elec-
tions. The trend is toward perceiving presidential candidates to be more opposed, rather than less,
while alienation shows no discernible trend. Other surveys (http://www.people-press.org/2014/06/12/
political-polarization-in-the-american-public) find that political polarization is increasing.
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In Section 2, I describe the model. In Section 3.2, I prove that high-turnout equilibria

are the only equilibria in large games using a measure of informativeness I call max-min

informativeness. In Section 3.3, I additionally assume that the quality of player’s information

can be ordered using a rotation order and use this to prove stronger results, including a

description of how to construct limiting equilibria. In Section 3.4, I relax the assumption

that costs are the same across players. I show that if the set of possible costs is discrete then

the results still hold, but that the results are not robust if costs are allowed to be a continuous

random variable. A rough numerical exercise, however, establishes that even when costs are

allowed to be continuous, for reasonable values of N the contribution of signaling to voter

turnout can still be significant. Section 4 concludes.

2 Model

A set of n players each have the option of participating in a majority rules election. n is not

known, rather, it is the realization of a random variable drawn from a Poisson distribution

with mean N . That is, this is a Poisson game (Myerson, 1998) of voting.

Once n is drawn, an unobserved state of the world ωn ∈ Ωn is drawn from a distribution

H(Ωn). The ith component of ωn belongs to the finite set Ω ⊂ R, and should be interpreted

as the value to player i of swaying the election, from her least favored candidate to her

most favored candidate. I assume without loss of generality that that the elements of ω are

ordered from least to most, ω = {ω1, . . . , ω|ω|}, that ω1 = 0, and that H(ωn) is symmetric

across players for all n ≥ 0.

Each player has a private type taking values in T = Y × S × C. Y is an interval [γ, γ],

while S = {s1, s2, . . . , s|S|}, and C are finite discrete sets. γ ∈ Y represents the precision of a

player’s information, s ∈ S represents a player’s private information, and C ∈ C represents
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her preferred candidate. Without loss of generality, assume C = {A,B}.8 9

Often in games of incomplete information, the player’s index i is implicitly assumed to

be part of her type. In a Poisson game we explicitly drop this assumption. A player does not

know her index, otherwise, she would have private information about the size of the game,

namely, that n ≥ i. A player’s type will be denoted (γ, s, C), and her private valuation ω.

γ and C are drawn identically and independently across players from a distribution

F (γ, C). I assume that γ and C are independent, so that signal precision and candidate

preferences are not correlated, and I assume that the support of F (γ) includes at least 2

elements, {γ, γ}. The signal s is drawn according to Pγ(s | ω). The set of signal distributions

{Pγ(· | ω)}γ defines the information structure of the game as well as a joint distribution

P(γ, s, ω). I assume that Pγ(s | ω) is continuous in γ and that it has full support on S.

Once a player observes her type, she has the option of voting, v = 1, or not voting,

v = 0. If she votes, she incurs some loss k > 0 and votes for her preferred candidate.10 The

candidate who receives the majority of the votes wins, and in the event of a tie a coin toss

decides the outcome.

If candidate C wins, then every player with valuation ω whose type specifies that she

prefers C receives a payoff of ω. The players who do not prefer C receive a payoff normalized

to zero.11

After the election has concluded, there is a second stage to the game. As in Spence

(1973)’s canonical paper on signaling, I think of this stage of the game as one in which players

8Allowing for more than two candidates complicates the expressions for the pivot probability, but not in
an interesting way.

9The Y dimension of the type space is continuous, but not the S dimension. For technical reasons, the
proof of the main result of the paper does not generalize to the case in which S is infinite.

10In a Poisson game, voting for one’s own candidate is a strictly dominant strategy, conditional on voting,
so for simplicity we focus strategically only on the decision to vote.

11This normalization is not without loss of generality, since ω is required to be non-negative. That is,
we rule out the case in which players are wrong about which candidate they prefer, and only consider the
case in which players are uncertain about the magnitude of their preference for one candidate over another.
Similar results may be obtained in the more general model, but in a less tractable way.
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are paid a wage in a competitive job market. (Some alternate, equally valid interpretations

include a stage where players form local connections in their community or enter the marriage

market, as in Aytimur et al. (2014). Further, it may simply be that players care about

how other players perceive them.) Since the market is competitive, players are paid their

expected marginal worth to the firm, which I assume is the expected value of the component

γ of the player’s type, conditioning only on equilibrium strategies and the player’s voting

choice.12 Imagine that an employee shows up for work with an ‘I Voted’ sticker, impressing

her coworkers. We need not interpret the reward as originating with a firm, however, imagine

that neighbors think highly of someone who is observed to be going to the polls, or a

prospective date is impressed by political activity.

A strategy profile of the game is denoted σ(γ, s, C). It takes values in [0, 1] and denotes

the probability that a voter of type γ, s, C votes. Strategy profiles are implicitly taken to be

symmetric across players. This is a consequence of the fact that a player does not learn her

own index.

A player’s ex-post payoff under strategy profile σ if her favored candidate wins is

UW (ω, σ, v) = ω + E[γ | σ, V ]− kv. (1)

If instead her favored candidate loses she receives

UL(ω, σ, v) = E[γ | σ, v]− kv. (2)

Note that, technically speaking, neither (1) nor (2) are proper payoffs of a game of incomplete

information, since both condition on strategies. This is instead an example of a psychological

12Note that since γ is an arbitrary index of the precision of the player’s private information, it may be
preserved under increasing transformations, hence, this assumption is a normalization and without loss of
generality.
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game (Geanakoplos et al., 1989). As in Spence (1973), however, this distinction is not a large

one, since the analysis of this game is equivalent to that of one in which we explicitly model

the stage where players are paid a wage conditioning on equilibrium strategies.

Consistent with prior literature, I call ω the electoral value from voting. It is the

direct reward a player receives from having her favored candidate win. I call E[γ | σ, v] the

signaling value from voting. It is the reward a player recieves from swaying the perceptions

of others about her type through her voting decision.

A voter is pivotal if she makes a tie or breaks a tie. In that event, she either sways the

election toward a 1
2

chance of her opponent winning the tie, or she sways the election from a 1
2

chance of her opponent winning the tie to her opponent winning for sure. In either case, the

expected difference is 1
2
E[ω | γ, s]. A standard result is that ex ante, a player only considers

her payoff in the event she is pivotal, since this is the only event in which her vote makes a

difference. The 1
2

term is a constant and so without loss of generality can be thought of as

included in ω. This observation allows us to write the best reply condition for a player of

type (γ, s, C) to vote as

E[ωP(piv | ω) | t]︸ ︷︷ ︸
Marginal electoral benefit of voting

+ E[γ | v = 1, σ]− E[γ | v = 0, σ]︸ ︷︷ ︸
Marginal signaling benefit of voting

− k︸︷︷︸
Cost of voting

≥ 0, (BR)

where P(piv | ω) denotes the probability that a player is pivotal in the game, conditional on

a valuation of ω. I denote the marginal electoral benefit of voting by UE(t), and the marginal

signaling benefit of voting by US. The voting condition then becomes

UE(t) + US − k ≥ 0, (3)

making it explicit that the electoral value from signaling depends on the player’s type, while

the signaling value from voting is independent of the player’s type.
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I rule out some trivial cases through the following assumptions:

Assumptions

A1 γ − E[γ] > k.

A2 ∃γ ∈ Y s.t. Eγ[ω | s] > k.

Assumption (A1) says that signaling is important enough to players so that if they could

convince the firm that they have the highest value of γ as opposed to the ex ante expectation

of γ, then that alone would be worth the cost of voting. It rules out equilibria where trivially

only the highest type votes.

Assumption (A2) says that there is at least one player type who, if she knew she could

decide the election, would vote. It rules out equilibria in which trivially no player votes

because costs are too high.

The definition of equilibrium is standard.

Definition A strategy profile σ is an equilibrium iff

1. The best response condition, (BR), holds for σ(t) = 1. It holds with equality for

σ(t) ∈ (0, 1). The reverse inequality holds when σ(t) = 0.

2. The marginal signaling benefit of voting and the marginal electoral benefit of voting

are consistent with Bayes rule wherever possible.

For a fixed type distribution, I consider games with a large population. Formally, fix a

type distribution, and denote the sequence of games obtained only by varying the parameter

N , which is the average number of players in the game, as {ΓN}∞N=1. Denote a corresponding

sequence of equilibria of these games by {σN}∞N=1. We will be interested in analyzing the

property of equilibria of such games in the limit as N grows large.
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2.1 Assumptions on the information structure

The parameter γ orders the quality of information of players. In this section, I discuss

formally the meaning of that statement.

For technical reasons, I assume |S| ≥ |ω|, that is, there are at least as many signals as

states, and I assume that there is at least one type γ ∈ [γ, γ) for which the information

matrix whose ijth component is given by P(ωj | si) has rank |ω|. I assume without loss of

generality that Eγ[ω | s] is increasing in s for all γ.

I assume that γ orders Pγ with an order I call max-min informativeness, which can be

thought of as a weakening of Blackwell’s ordering. (For a comparison of max-min informa-

tiveness to other information orderings, see Lemma 3, in the appendix.) Intuitively, max-min

informativeness captures the following idea: Imagine two Bayesians, Alice and Bob, forming

beliefs over some state ω based on some individual specific private information. Alice does

not know what Bob knows, but say Alice knows Bob will never believe that the value of the

state variable is larger than ω. Then if Bob has ‘better’ information about the value of the

state variable than Alice, I claim that Alice should never rationally believe that the value of

the state variable is larger than ω. That is, the maximum possible dispersion of conditional

expectations should be increasing in the informativeness of the signal. Stated differently, it

is the best-informed players who should have the potentially most extreme beliefs on the

value of the state variable.

Formally,

Definition If Pγ,Pγ′ satisfy the following conditions, then Pγ′ is max-min more infor-

mative than Pγ:

max
s

Eγ[g(ω) | s] ≤ (<) max
s

Eγ′ [g(ω) | s] (4)

min
s

Eγ[g(ω) | s] ≥ (>) min
s

Eγ′ [g(ω) | s], (5)
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for all g(ω) (for all g(ω) such that Eγ′ [g(ω) | s] is non-constant over s).

Max-min informativeness formalizes the intuition that more informed players potentially

have more extreme beliefs. It will play a crucial role in the proof of the main result. The

intuition behind its role suggests that it is an information ordering which may be useful

more generally in games in which players have reputational concerns for appearing to be

well informed. An objection is that, in actuality, we may tend to think of less informed

voters as being the ones likely to hold more extreme beliefs. The stereotype is that the less

informed tend to think of the world ‘in black and white’, while the well informed tend to see

the nuances. A discussion of this idea is beyond the scope of this paper. However, I present

the following two observations: First, max-min informativeness is a weakening of Blackwell’s

ordering, so that this criticism applies equally well to Blackwell’s ordering. Since Blackwell’s

ordering itself is relatively weak, this suggests that to the extent that this criticism holds,

the Bayesian framework is not well-suited to the analysis of environments in which there are

reputational returns to appearing to be well informed. Second, in general, if there is value

to appearing to be well informed, and the well informed are more likely to be certain in

their beliefs, then it is not hard to imagine that less informed players face a strong incentive

to exaggerate the strength of their convictions. This suggests, at least, that we should not

place too much stock in the observation that in reality it seems to be the less well informed

who are more certain of their beliefs, since reporting that one holds extreme beliefs is ‘cheap

talk’ and so unlikely to be informative about the actual strength of any convictions that one

may hold.

2.2 Firm beliefs

In the canonical signaling game, off-equilibrium actions and the beliefs of firms in response

to such actions are important in potentially enforcing equilibrium actions. For example,
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consider a game where γ ∼ U [0, 1], and c = 0.1. Consider a strategy profile which specifies

that all players vote. Say firms have pessimistic beliefs: upon seeing no voting, they assume

that the player is of type γ. Then in equilibrium US = E[γ | v] = 1
2
. Since US > k, voting

is a strictly dominant strategy. These sorts of equilibria exist, but are not the focus of this

paper. Therefore, I restrict attention to equilibria in which, if all or none of the players are

voting, US = 0, which suffices to eliminate them as equilibrium candidates.

3 Analysis

This section has five parts. In Section 3.1, I introduce some preliminary results and nota-

tion. In Section 3.2, I prove the basic result that voting percentages remain large (meaning,

bounded away from zero), even in games with large populations. In Section 3.3, I prove a

stronger result under the assumptions that γ orders Pγ with a rotation order and that valu-

ations are independently and identically distributed across players, and I explicitly compute

the limiting equilibrium. I exploit these assumptions to establish comparative statics results

about the game. In Section 3.4, I relax the assumption that costs are the same across players

and allow it to instead be an independently and identically distributed random variable. I

show that previous results hold when costs belong to a finite set, but not when costs are

allowed to be continuous. I perform some numerical calculations, however, to demonstrate

that the contribution of signaling concerns to voter turnout may still be significant even when

costs are continuously distributed (but that still, as population grows large, voter turnout

disappears.)

3.1 Useful facts and notation

Given a strategy profile σ, let V denote the expected percentage of players voting in equi-

librium. Let Vγ denote the expected percentage of players with type component γ voting in
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equilibrium. Formally,

Vγ :=
∑
s,C

Pγ(s, C)σ(γ, s, C) (6)

V :=

∫
γ

VγdF (γ). (7)

A useful fact about Poisson games which I will use in future propositions is that as N

grows large, if the expected percentage of players voting is bounded away from zero, then the

probability that a player will be pivotal disappears, independently of the strategy profile:

Lemma 1. Let {σN}∞N=1 be a series of strategy profiles on the corresponding sequence of

games, {ΓN}∞n=1. Let {V N}∞N=1 denote the corresponding expected percentage of players

voting, as defined by (7), such that the sequence {V N}∞N=1 is bounded from below by zero.

Then

lim
N→∞

PσN (piv) = 0. (8)

The proof is in the appendix. Lemma 1 rules out the intuitively implausible, high-turnout,

knife-edge equilibria of Palfrey and Rosenthal (1985), by showing that no strategy profile

(equilibrium, or otherwise) can support high pivot probabilities, and hence, in equilibrium,

voter turnout must vanish as N grows large.

Finally, I list some of the useful features of Poisson games derived in Myerson (1998)

and Myerson (2000):

1. Every player in a game with average population N believes that the number of other

players in the game is a Poisson random variable with mean N .

2. If the probability that an event occurs for any arbitrary player is p, then the total
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number of players for whom that event occurs is a Poisson random variable with mean

pN . For example, the number of players who prefer candidate A is a Poisson random

variable with mean F (A)N .

3. If players of type C vote with probability pC , then the pivot probability for players

who prefer candidate A may be explicitly written as

∞∑
k=0

e−ρApAN(ρApAN)k

k!

e−ρBpBN(ρBpBN)k

k!

(
1 +

ρBpBN

k + 1

)
.

Note that the pivot probability is always strictly positive.

3.2 Voter turnout in large games

The next proposition states the general result for this model, that in large games the voting

percentages must be bounded away from zero.

The bulk of the proof is concerned with the difficulty that player valuations may be

correlated. Intuitively, imagine a player who sees a signal which leads her to believe her

electoral value from swaying the election, ω, is very high. Should she therefore also infer

from that signal that she has a high marginal electoral value to voting? On one hand, she

believes ω to be very high. But on the other hand, if the player’s valuations are sufficiently

correlated, she also believes that other players believe ω to be high, and so perhaps she

believes that voter turnout will be high. Then P(piv | ω) is decreasing in ω, and ωP(piv | ω)

may be non-monotonic.

Working directly with P(piv), the unconditional probability that a player is pivotal,

is complicated, and ωP(piv | ω) promises to be even more so. (For completeness, the

full expression is contained in the appendix.) The proof of Proposition 1 instead exploits

the property of max-min informativeness to argue that, regardless of the specific shape of
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ωP(piv | ω), if voting turnout were to disappear, then eventually high γ type players would

be the only players voting, and so the signaling return would be very high, inducing all

players to vote.

Proposition 1. Let {σN}∞N=1 be a sequence of equilibria of games, each with expected popula-

tion N . Denote the corresponding voting percentages (7) and (6) in these games by V N , V N
γ ,

and the marginal electoral and signaling benefits by UN
S , U

N
E . Then

1. UN
S and UN

E converge to U∞S , U
∞
E , satisfying

U∞S = k

U∞E = 0.

The pivot probability PσN (piv) converges to 0.

2. Voting percentages are bounded away from zero,

lim inf
N→∞

V N > 0. (9)

The proof is contained in Appendix A. The intuition of the result is best seen by con-

sidering what would happen if voter turnout, as a percentage of the total population, were

to disappear as N grew large. In essence, the electoral return to voting is dependent on

the absolute number of voters, while the signaling return to voting is dependent on the

relative number of voters of each type voting. If the percentage of players voting vanishes,

eventually, the only voters voting are the very highest type voters, a consequence of the max-

min assumption. So, the signaling return to voting must become large as the percentage of

players voting vanishes. In the limit, eventually only the highest type of voter ever votes in

equilibrium—and so, voting is associated with a signaling value of γ. Assumption A1 then
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implies that every player in the game strictly prefers to vote regardless of their perception

of the electoral value of their vote, and so it cannot be that in equilibrium the percentage of

voters vanishes.

To further illustrate the intuition behind this result, I now prove a stronger result with

stronger assumptions.

3.3 Constructing equilibria

Assume that the player’s valuation of the importance of the election are independent and

identically distributed,

H(ωn) =
n∏
i=1

H(ω), (10)

and γ orders Pγ using a rotation order.

The importance of the rotation order and independence assumption is that it simplifies

the problem of finding the expected electoral value and the strategy profiles, as summarized

by the following lemma.

Lemma 2. Say that γ orders F with a rotation order, and say valuations are indepen-

dently and identically distributed. Then the probability a voter attaches to being pivotal is

independent of the value the voter attaches to swaying the election, i.e.,

Eγ[ωP(piv | t) | s] = Eγ[ω | s]P(piv | C). (11)
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ω

ω

0 1

s

Eγ0 [ω | s]P(piv)

Eγ1 [ω | s]P(piv)

Eγ2 [ω | s]P(piv)

s(γ0, C)s(γ1, C)

k − US

s

Figure 1: An example of the conditional distributions induced by a rotation order.

Note: Here, γ0 > γ1 > γ2. Ex-ante, at the given level of k − US , 1− s(γ0, C) percent of players of type
γ0, C are expected to vote, 1− s(γ1, C) percent of players of type γ1, C are expected to vote, and 0 percent

of players of type γ2 are expected to vote.
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Furthermore, strategy profiles in equilibrium are characterized by cutoffs s(γ, C), such that

σ(γ, s, C) ∈


{0} s < s(γ, C)

[0, 1] s = s(γ, C)

{1} s > s(γ, C)

, (12)

and these cutoffs have the feature that s(γ, C) is monotone in γ.

The proof is in the appendix. Lemma 2 is a great simplification of the problem, since

otherwise, the electoral value Eγ[ωP(piv | t) | s] may be very complicated. It establishes that

when signals are independent, the expected marginal electoral value is proportional to the

expected value of swaying the election and the pivot probability is independent of a player’s

private information.

Proposition 2. Again, let {σN}∞N=1 be a sequence of equilibria of games with expected pop-

ulation N . Denote the corresponding voting patterns in these games by V N , V N
γ , U

N
S , U

N
E . If

player’s valuations are independently and identically distributed, and γ orders F according

to a rotation order, then

1. σN , V N , V N
γ , U

N
S , U

N
E converge to σ∞, V ∞, V ∞γ , U∞S , U

∞
E . The pivot probability P(piv |

σN) converges to 0. (Convergence.)

2. V ∞ > 0, U∞S = k, and U∞E = 0. (Voter turnout remains high in large games.)

3. V ∞γ is non-decreasing in γ. (High types vote more.)

4. V ∞ and V ∞γ are decreasing in k, and U∞S is increasing in k. (A higher cost of voting

leads to less voting from all types. More low types than high types stop voting as costs

increase.)

20



5. There exist information structures F, F ′ such that EF [γ] > EF ′ [γ], but voting partic-

ipation is lower in equilibrium under F then F ′. (Even though voting is positively

correlated with γ, increasing average γ doesn’t necessarily increase voter turnout.)

The proof is in the appendix. Here, I discuss the intuition. Parts 1 and 2 are consequences

of Proposition 1. The monotonicity results, parts 3 and 4, are a straightforward consequences

of the assumption of a rotation order. (See Figure 1 for a graphical intuition.) The final

part of the proposition, 5, establishes that it is possible for the average level of informedness

to increase, and for voting participation to fall. The intuition for this result is analogous to

that in a Spence signaling model, in which, for example, increasing the prior probability of

the high type may reduce levels of education (the extreme example being the case in which

there is a prior probability of 1 that a player is the high type, and hence no education may

be supported in equilibrium).

Results 1, 2, and 3 of Proposition 2 are unsurprising. 4 states that, as costs increase, all

types are less likely to vote, but low types are proportionally even less likely to vote than

high types. This occurs because, in order to outweigh the increase in costs and maintain

voter participation, in equilibrium the signaling returns to voting must increase, and so the

relative proportion of high types voting must also increase.

Of particular interest is 5, which is a formalization of the claim that this model provides

a resolution to the paradox that, counter to what is suggested by models of uncertain voters,

voter participation in the United States has fallen over the past century even as education has

greatly increased. Informally, voter participation is driven by the dispersion of the quality of

information, not the absolute quality of information available to players, so that it is possible

to increase the quality of all the player’s information, but, by reducing the spread in quality,

reduce the signaling return to voting, and so, in turn, reduce voter participation.
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3.4 Heterogeneous costs

Here, we allow costs to be stochastically drawn across individuals. Importantly, costs are

not allowed to depend on the player’s type, otherwise, signaling is supported through stan-

dard channels as in Spence (1973). The interesting case is when costs are required to be

independently and identically distributed across agents. So, say that a player’s type now

includes their cost, that is, t = (γ, s, C, k), and k is drawn independently and identically

across players from some set K.

When K consists of a finite number of elements, we have the following result, analogous

to Proposition 1:

Proposition 3. Let {σN}∞N=1 be a sequence of equilibria of games, each with expected pop-

ulation N . Say K is a finite set. Then

1. UN
E converges to U∞E = 0. The limit points of {UN

S }
∞
N=1 is a subset of K, and the pivot

probability PσN (piv) converges to 0.

2. Voting percentages are bounded away from zero,

lim inf
N→∞

V N > 0. (13)

Proposition 3 differs from Proposition 1 in the behavior of UN
S , the marginal signaling

return to voting. In Proposition 1, the marginal signaling return to voting approached the

cost of voting. This was a necessary consequence of the fact that, in order to support

separation of types in voting behavior in equilibrium, the signaling return to voting (which

is common knowledge across types) had to approach the cost of voting, since the pivot

probability (and so the marginal electoral return to voting) vanishes as N grows large. In

Proposition 3, the possible equilibrium values for the marginal signaling return to voting must
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be close to the elements of K, and for the same reason. The proof is otherwise identical to

that of Proposition 1 and so omitted.

On the other hand, voter turnout disappears when costs are allowed to be drawn from a

continuous distribution. Assume that k is drawn according to some density function with full

support on [0,∞). A more general result holds for more general continuous distributions, but

requires a more careful treatment of the support of costs which is here omitted for simplicity.

Proposition 4. Let {σN}∞N=1 be a sequence of equilibria of games, each with expected popu-

lation N . Say K is drawn according to some CDF Fk with support on [0,∞). Then UN
E , U

N
S ,

and V N all converge to 0.

Proof. Again, via Lemma 1, as N grows large, the marginal electoral return to voting disap-

pears, UN
E

N→ 0, and the maximum possible spread in the distribution of the electoral return

to voting,

(
max
t
UN
E (t)

)
−
(

min
t
UN
E (t)

)
N→ 0, (14)

Define

κN1 := min
t
UN
E (t)

κN0 := max
t
UN
E (t).

Re-stating (14), we have κN1 − κN0
N→ 0. The best response condition, (BR), implies that,

by construction, every type with k < κN1 will vote, independently of the precision γ of

their private information, while every type with k > κN0 will not vote, again independently

of γ. With players whose cost falls in [κN1 , κ
N
0 ], the maximum signaling return to voting

is generated by the strategy in which only the highest types, γ, vote, and so the signaling
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return to voting is at most

UN
S ≤

Mass of players who vote conditional on γ, s︷ ︸︸ ︷(
Fk(κ

N
1 )− Fk(κN0 )

)
×

Maximum marginal signaling return︷ ︸︸ ︷(
γ − E[γ])

N→ 0,

That is, as κN1 → κN0 , the expected γ type of a voter eventually equals the expected

γ type of a non-voter, since, in the limit, players base their voting decision only on the

cost of voting, which is independent of γ, s, and so UN
S

N→ 0. But then, the optimality

condition (BR) implies that, as N → ∞, eventually the only players voting are those for

whom k = 0, which, since k is continuously distributed, is a measure zero set of voters, and

so V N N→ 0.

Proposition 4 states that when costs are continuously distributed, voter turnout disap-

pears in the limit, which runs counter to the message of Proposition 1. One interpretation

of Proposition 4 is that it demonstrates the extent to which Proposition 1 is a knife-edge

result, relying as it does on a single cost (or, as in Proposition 3, a discrete set of costs) for

all players. But Proposition 1 is a limiting result, intended to illustrate the intuition that

introducing signaling concerns about the quality of one’s information may increase voter

turnout significantly. The limiting result, that voter turnout does not disappear, may be

sensitive to the assumption that costs take at most a finite number of values. But I now

show via numerical example that, for reasonable finite values of N , the signaling return to

voting may be quite substantial, even when costs are allowed to be continuous.

3.5 Numerical example with continuous costs and finite N

To that end, assume either candidate is favored with equal probability, that ω = {0, 1}, each

valuation equally likely and independently distributed across players, and that there are two
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sorts of voters: Half learn nothing about the value of voting, and so attach an expected

worth to the value of swaying the election of 0, and the other half learn the value of swaying

the election perfectly, so that half learn that ω = 1, and the other half learn that ω = 0.

Let the first, uninformed group of voters be represented by γ = 0, and the second, informed

group of voters be represented by γ = 1. Costs, we assume, are uniformly distributed on

the interval (k, 1], with k > 0, so that a type which learns that ω = 0 will never vote. We

assume that, if players are indifferent between voting or not, they break the tie in favor of

not voting (this is without loss of generality, since indifference is a zero-probability event).

First, consider the case in which there is no signaling concern. Since player’s valuations

are independent, the probability any player attaches to being pivotal is independent of his

valuation, and hence, is the same across all players. An uninformed player has an expectation

on ω of 1
2
, and so votes if and only if

1

2
P(piv) ≥ k,

hence, the probability that an uninformed voter votes, is

Vγ =


0 1

2
P(piv) ≤ k(

1
2
P(piv)− k

)
/(1− k) 1

2
P(piv) > k.

Similarly, informed players who learn that ω = 1 vote with probability

Vγ,ω=1 =


0 P(piv) ≤ k

(P(piv)− k) /(1− k) P(piv) > k.

In equilibrium, at least one player type votes with positive probability, since otherwise,

every voter is pivotal with probability 1. Hence, the pivot probability must at least satisfy
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P(piv) > k, and the probability that an informed player who learns that ω = 1 is

Vγ,ω=1 = (P(piv)− k) /(1− k),

while for informed players who learn that ω = 0 never vote,

Vγ,ω=0 = 0.

The unconditional probability that a player votes, V , can therefore be written as

V =
(

1
2
P(piv)− k

)
/(1− k)︸ ︷︷ ︸

Uninformed voters

χP(piv)>k
+ 1

2
(P(piv)− k) /(1− k)︸ ︷︷ ︸
Informed voters with ω = 1

. (15)

The probability that an informed voter votes is higher than the probability that an unin-

formed voter votes (see Figure ??, it is important that F be convex for this to be true.)

Using the Poisson nature of the game, we can compute the pivot probability explicitly as a

function of the unconditional probability that another player votes as

P(piv) =
∞∑
j=0

(
e−V N/2(V N/2)j

j!

)2(
1 +

V N/2

j + 1

)
. (16)

Equations (15) and 16 may be jointly solved numerically. When, e.g., k = 0.1, then the

expected voter turnout when N = 100000 (as in Myerson (2000)) is 35 voters, and the pivot

probability is slightly higher than 0.1 (as it must be, in order to induce roughly 35 of the

informed players who believe ω = 1 to vote).

When there are signaling concerns, the marginal signaling return to voting, US, is given
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by

US =
γVγ

γVγ + γVγ
− γ(1− Vγ)
γ(1− Vγ) + γ(1− Vγ)

.

The unconditional probability that a player votes is then (note that informed players who

believe ω = 0 never vote, since if they vote then all players strictly prefer to vote, which

cannot be supported in equilibrium)

V =
(

1
2
P(piv) + US − k

)
/(1− k)︸ ︷︷ ︸

Uninformed voters

χ 1
2
P(piv)+US>k

+ 1
2

(P(piv) + US − k) /(1− k)︸ ︷︷ ︸
Informed voters with ω = 1

.

Again, when k = 0.1, N = 100000, and, now, γ = 0, γ = 100, we may solve this system

of equations numerically to yield an expected voter turnout of ≈ 29, 000, and a marginal

signaling return of ≈ 0.5. The pivot probability is now approximately 0.0001%. Different

specifications yield different results, this exercise is intended only to demonstrate that, even

with continuously distributed costs, very high levels of voter participation (around 1 in 3

voting with signaling concerns, versus 35 in 100,000) may be sustained even when the pivot

probability is very low.

4 Conclusion

The model presented here demonstrates that by introducing reputational concerns for ap-

pearing to be well-informed into a model of uncertain voters, high levels of voter turnout

may be sustained, even in large games when the chance of swaying the election is very small.

I conclude here by asking what sort of empirical evidence would support or refute the thesis

that voters rationally vote to signal their education to others.

In particular, how this behavior is empirically distinguished from, say, simply a taste
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for voting, or a model of voting as signaling in the sense of Spence (1973), is an interesting

question. Taking education to be a proxy for informedness, a novel prediction of the model

is that there should be a high degree of correlation between one’s own education, one’s own

voting behavior, and the education of one’s immediate neighbors. If, for example, one lives

in a neighborhood comprised entirely of well-educated neighbors, then one has no signaling

incentive to vote, and voting participation should be low. Similarly, neighborhoods comprised

entirely of uneducated neighbors would have low voting participation rates, it should be the

diverse neighborhoods with a mix of well educated and uneducated people with the highest

rates voting participation. This sort of phenomenon would identify this model from models

in which individuals, say, simply have a taste for voting, but to the extent that education

is correlated with wealth, and wealth correlated with the cost of voting, it makes the same

predictions as a model of voting as Spencian signaling. Instead, the model predicts that

neighborhoods diverse in wealth, but not education, should have low voting participation

rates, while neighborhoods diverse in education, but not wealth, should have high voter

participation rates.
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A Omitted proofs

Lemma 1. Let {σN}∞N=1 be a series of strategy profiles on the corresponding sequence of

games, {ΓN}∞n=1. Let {V N}∞N=1 denote the corresponding expected percentage of players

voting, as defined by (7), such that the sequence {V N}∞N=1 is bounded from below by zero.

Then

lim
N→∞

PσN (piv) = 0. (8)

Proof. Consider first the probability that the vote is tied, and denote this event T for ‘tie’.

Since G(N) is Poisson, the number of people who vote for candidate C is a Poisson random

variable with mean NVC , and so this can be written explicitly as

P(T | σN) =
∞∑
k=0

e−NVA(NVA)k

k!

e−NVB(NVB)k

k!
. (17)

Then re-arranging terms yields

∞∑
k=0

e−NVA(NVA)k

k!

e−NVB(NVB)k

k!
=
∞∑
k=0

e−N(VA+VB)(N2VAVB)k

k!2

= e−N(VA+VB)

∞∑
k=0

(N2VAVB)
k

k!2
.

The infinite series is a Bessel function of order one at N
√
VAVB, denoted I0(N

√
VAVB). For

large values of x, the following is an approximation to I0:

I0(x) ≈ ex√
2πx

.

Therefore, for N large and at least one of VA, VB positive, the probability of a tie is approx-
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imated by

P(T | σN) ≈ 1

2
√
πN
√
VAVB

e−N(VA+VB−2
√
VAVB). (18)

As N grows large V is bounded from below, so at least one of VA or VB must be bounded

from below, so that VA + VB − 2
√
VAVB ≥ B0 > 0 is bounded from below for all N . So

lim
N→∞

P(T | σN) ≤ lim
N→∞

1√
N
√
VAVB

e−NB0 = 0,

which establishes the result for the event T .

We also must consider the case in which the player’s preferred candidate is one vote

behind. Similar reasoning establishes that the probability of this event also vanishes. The

pivot probability is the sum of the probabilities for the event there is a tie and the event a

player’s preferred candidate is one vote behind, so the pivot probability vanishes as N grows

large.

Lemma 3. Let Pγ0 and Pγ1 be two information structures. Then, if Pγ1 is strictly more

informative than Pγ1 in the Blackwell sense, it is more informative in the max-min sense.

Proof. First, say that Pγ1 is strictly more informative than Pγ0 in the Blackwell sense. Black-

well’s theorem implies that the signal s under γ0 is a garbling of the signal s under γ1, which

we can write as

Pγ0(s | ω) =
∑
s′

h(s | s′)Pγ1(s
′ | ω). (19)
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Here h(s | s′) is some kernel mass function. Then we have for all signals s,

∑
ω

g(ω)Pγ0(ω | s) =
∑
ω

g(ω)
Pγ0(s | ω)Pγ0(ω)

Pγ0(s)

=
∑
ω

g(ω)Pγ0(ω)

Pγ0(s)

∑
s′

h(s | s′)Pγ1(s
′ | ω)

=
∑
s′

h(s | s′)Pγ1(s
′)

Pγ0(s)

∑
ω

g(ω)Pγ1(ω | s′)

=
∑
s′

h(s′ | s)
∑
ω

g(ω)Pγ1(ω | s′)

≤
∑
ω

g(ω)Pγ1(ω | sγ1), (20)

where here sγ1 denotes the signal which maximizes the expectation of g(ω) for type γ1. (20)

shows that the maximum expectation is at least weakly increasing in γ. Similar reasoning

shows that the minimum expectation is weakly decreasing.

Now say that Eγ1 [g(ω) | s] is non-constant. Then since h(s′ | s) has full support on s′,

the weak inequality in (20) becomes a strict inequality.

Proposition 1. Let {σN}∞N=1 be a sequence of equilibria of games, each with expected popula-

tion N . Denote the corresponding voting percentages (7) and (6) in these games by V N , V N
γ ,

and the marginal electoral and signaling benefits by UN
S , U

N
E . Then

1. UN
S and UN

E converge to U∞S , U
∞
E , satisfying

U∞S = k

U∞E = 0.

The pivot probability PσN (piv) converges to 0.
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2. Voting percentages are bounded away from zero,

lim inf
N→∞

V N > 0. (9)

Proof. First, we show (9) by contradiction. Fix a sequence of equilibria as described in the

proposition. Assume to the contrary there is an infinite increasing subsequence of N, denoted

{Ni}∞i=1, with the property that V Ni converges to zero. For simplicity, take Ni = i, that is,

assume that we have a sequence of equilibria with the property that V N
→
N0. (Analysis of

the more general case proceeds similarly.)

Pick a candidate, C, and let

gN(ω) := ωPσN (piv | ω,C)

RN := {γ | ∃s s.t. (BR) holds for (γ, s, C)}

γ
N

:= inf RN .

gN(ω) is the marginal electoral value of voting conditioning on the value of swaying the

election to a given voter. RN is the γ type components of players for whom some signal

exists for which they at least weakly prefer to vote. γ
N

is the lowest such type component.

(By continuity, γ
N
∈ RN .)

The following facts are useful and follow directly from the assumption of max-min infor-

mativeness. They state that if a player with some level of information precision, γ, prefers

to vote after seeing some signal, then a player with better information also must at prefer

to vote at some signal.

Lemma 4. RN is an interval, [γ
N
, γ].
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Proof. Say a player of type (γ, s, C) weakly prefers to vote. Then ∀γ′ > γ,

0 ≤ Eγ[g
N(ω) | s] + UN

S − k

≤ Eγ[g
N(ω) | s] + UN

S − k

≤ Eγ′ [g
N(ω) | s] + UN

S − k,

by max-min informativeness. If (γ, sγ) strictly prefers to vote, then the first inequality is

strict and the second result follows.

Now consider the limit points of {γ
N
}∞
N=1

. To derive a contradiction, we will consider

four possible sets in which the limit points may lay, and show that our assumption that

voting percentages disappear implies that the limit points lay in none of these sets, which

therefore implies that the set of limit points of {γ
N
}∞
N=1

is empty. However, {γ
N
}∞
N=1

lays in

a compact space, [γ, γ]∪∞, and so it does have limit points, which provides the contradiction

to our assumption. These four sets are {γ}, (γ, γ), {γ}, and {∞}.

1. First, consider the set (γ, γ). We show that {γ
N
}∞
N=1

has no limit points in this set

by contradiction. Say there were an infinite subsequence indexed by {Ni} such that

lim
i→∞

γ
Ni

= γ∞ ∈ (γ, γ). For simplicity and without loss of generality, take Ni = i.

Fix some N and consider a player with type component γ
N

. By construction, there is

a signal, sγ
N

, at which this player is indifferent between voting and not. By Lemma 4,

all players with type components (γ, sγ, C), where γ ≥ γ
N

must at least weakly prefer

to vote.

Can it be in addition that there are players who strictly prefer to vote with γ type

components bounded away from γ for large N? If so, in the notation of Lemma 4,

we must have γ
N
< γ, by continuity. Lemma 4 then implies that there is a positive

measure of γ types who strictly prefer to vote bounded away from 0 for large N . Call
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this bound B0. Then for large N , the ex-ante probability of voting occurring satisfies

V N ≥
∑
s∈S

P(s)B0 ds ≥ min
s

P(s)B0 > 0,

which contradicts the assumption that V N → 0.

So for large N , the measure of type components γ for which some player with that

type component strictly prefers to vote must approach zero. More precisely, for every

interval [γ
N
, γ − ε], ε > 0, there exists an N so that every player with type component

γ ∈ [γ
N
, γ − ε] weakly prefers not to vote. (It is an interval by Lemma 4.)

Pick ε small enough so that this is a positive measure set. All such players weakly

prefer not to vote:

Eγ[g
N(ω) | sγ] ≤ k − UN

S ∀γ ∈ [γ
N
, γ − ε], s.

In addition, by the construction of γ
N

, after seeing sγ the player of type (γ, sγ) is

indifferent:

Eγ[g
N(ω) | sγ] = k − UN

S ∀γ ∈ [γ
N
, γ − ε],

or, by the definition of sγ,

max
s

Eγ[g
N(ω) | s] = k − UN

S ∀γ ∈ [γ
N
, γ − ε].

That is, the upper bound on player’s conditional expectation of g(ω) is constant across

γ ∈ [γ
N
, γ − ε]. The definition of max-min informativeness then implies that for all

36



signals,

Eγ[g
N(ω) | s] = k − UN

S ∀γ ∈ [γ
N
, γ − ε], s ∈ S

and so

min
s

Eγ[g
N(ω) | s] = k − UN

S ∀γ ∈ [γ
N
, γ − ε]. (21)

Recall from the definition of max-min informativeness that mins Eγ[g
N(ω) | s] is weakly

decreasing in γ. So equation (21) implies that Eγ[g
N(ω) | s] is constant across s for all

types with γ ∈ [γ, γ − ε].

Intuitively, the maximum possible dispersion of beliefs for players with type component

less than γ
N

is ‘pinched shut’ by the dispersion of players with a higher type component.

More precisely, for γ < γ
N

and any ŝ, we have

Eγ[g
N(ω) | ŝ] ≥ min

s
Eγ[g

N(ω) | s]

≥ min
s

Eγ
N

[gN(ω) | s]

= max
s

Eγ
N

[gN(ω) | s]

= k − UN
S ,

so that all types below γ
N

at weakly prefer to vote. γ
N

was constructed so that there

could not be any such types, therefore, γ
N

= γ. This proves by contradiction that we

cannot have any limit points in (γ, γ).

2. Now consider whether there might be a limit point in {γ}. Assume there is an infinite

subsequence {Ni}∞i=1 of {γ
N
}∞N=1 so that limi→∞ γNi

= γ. For simplicity and without
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loss of generality, assume that Ni = i. Previous reasoning established that for large N ,

all types with γ ∈ [γ, γ− ε] and any signal were indifferent between voting and not, so

that

Eγ[g(ω) | s] = k − UN
S ∀γ, s.

Does such a function g(ω) exist? If it did, then it would solve the system of linear

equations

∑
ω∈ω

Pγ(ω | s)g(ω) = k − UN
S , ∀s, (22)

g(0) = 0. (23)

This is a system of |S|+ 1 equations in |ω| unknowns. Recall that |S| ≥ |ω|, and there

is at least one type component γ ∈ (γ, γ) whose information structure has rank |ω|.

This implies that no such solution exists. (See lemma 6 in the appendix for a proof.)

Therefore (22) has no solution and so by contradiction, γ
N

cannot have a limit point

at γ.

3. Now consider whether there might be a limit point in {γ}. Assume there is an infinite

subsequence {Ni}∞i=1 of {γ
N
}∞N=1 so that limi→∞ γNi

= γ. For simplicity and without

loss of generality, assume that Ni = i. Eventually, only high types vote, and they vote

with vanishing probability. This implies that the signaling return to voting approaches

lim
N→∞

UN
S = γ − E[γ] > k,

by assumption. But then eventually UN
S > k, and so every type strictly prefers to vote,

a contradiction.
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4. This leaves as our only remaining case the one in which limN→∞ γN = ∞. Since we

cannot have finite γ
N

which satisfy γ
N
> γ, this implies that γ

N
is infinite in finite

time, which by definition means that eventually all players strictly prefer not to vote.

But then P(piv) = 1 independently of type and US = 0. By assumption, there is a

type γ, s for whom Eγ[ω | s] > k, and so who strictly prefers to vote, so again we have

a contradiction.

Therefore γ
N

has no limit points. But as previously argued, this is not possible. So

by contradiction we’ve established that V N is bounded away from 0 and so established

equation (9).

Lemma 1 then implies that the pivot probabilities converge to zero, and so the expected

marginal electoral return to voting converges to zero.

To see that the expected marginal signaling return to voting converges to k, note that

UN
S ≤ k—otherwise, all players would strictly prefer to vote, and we would have UN

S = 0.

Can it be that UN
S ≤ k − ε < k? If so, as UN

E → 0, eventually the incentive constraints of

all types would satisfy

UN
E (t) + UN

S − k ≤ UN
E (t)− ε < 0,

so all types would strictly prefer not to vote, and as we have already seen that cannot be an

equilibrium.

Lemma 2. Say that γ orders F with a rotation order, and say valuations are indepen-

dently and identically distributed. Then the probability a voter attaches to being pivotal is

independent of the value the voter attaches to swaying the election, i.e.,

Eγ[ωP(piv | t) | s] = Eγ[ω | s]P(piv | C). (11)

39



Furthermore, strategy profiles in equilibrium are characterized by cutoffs s(γ, C), such that

σ(γ, s, C) ∈


{0} s < s(γ, C)

[0, 1] s = s(γ, C)

{1} s > s(γ, C)

, (12)

and these cutoffs have the feature that s(γ, C) is monotone in γ.

Proof. Equation (11) follows from the independence assumptions:

Eγ[ωP(piv | t) | s] = Eγ[ωP(piv | C) | t]

= Eγ[ω | s]P(piv | C),

since by assumption the valuations of other players are independent of s, γ, and the event

piv only depends on the valuations of the other players.

Then the left hand side of (BR) could be written

1

2
Eγ[ω | s]P(piv | C) + US − c,

which since Eγ[ω | s] is strictly increasing in s establishes the existence of cutoffs that

characterize the equilibrium strategy profile. Recall that there exists a signal s such that

Eγ[ω | s] is constant across γ. Then if k − US > Eγ[ω | s], and type (γ, s, C) votes, then

s > s and so type (γ′, s, C), where γ′ > γ, also prefers to vote because

k − US ≤ Eγ[ω | s]P(piv | C) < Eγ′ [ω | s]P(piv | C).

In this case, Vγ is increasing.
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Similarly, if k − US < Eγ[ω | s], type γ, s prefers not to vote, and γ′ < γ,

k − US ≥ Eγ[ω | s]P(piv | C) > Eγ′ [ω | s]P(piv | C).

In this case, Vγ is decreasing.

Finally, if k−US = Eγ[ω | s], then all types who see s > s strictly prefer to vote, and all

types who see s < s strictly prefer not to vote, independently of γ, so Vγ is constant.

Proposition 2. Again, let {σN}∞N=1 be a sequence of equilibria of games with expected pop-

ulation N . Denote the corresponding voting patterns in these games by V N , V N
γ , U

N
S , U

N
E . If

player’s valuations are independently and identically distributed, and γ orders F according

to a rotation order, then

1. σN , V N , V N
γ , U

N
S , U

N
E converge to σ∞, V ∞, V ∞γ , U∞S , U

∞
E . The pivot probability P(piv |

σN) converges to 0. (Convergence.)

2. V ∞ > 0, U∞S = k, and U∞E = 0. (Voter turnout remains high in large games.)

3. V ∞γ is non-decreasing in γ. (High types vote more.)

4. V ∞ and V ∞γ are decreasing in k, and U∞S is increasing in k. (A higher cost of voting

leads to less voting from all types. More low types than high types stop voting as costs

increase.)

5. There exist information structures F, F ′ such that EF [γ] > EF ′ [γ], but voting partic-

ipation is lower in equilibrium under F then F ′. (Even though voting is positively

correlated with γ, increasing average γ doesn’t necessarily increase voter turnout.)

Proof. For this proof, we construct limiting equilibria in a manner similar to Aytimur et al.

(2014). This construction is simpler if we re-imagine s to be a continuous signal distributed
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according to Fγ(s | ω) which is ex-ante distributed uniformly on [0, 1]. This is a more general

construction (Lehmann, 1988) if F is allowed to be constant. 13 But for simplicity I take

Fγ(s | ω) to be strictly increasing and continuous. A similar proof holds for the discrete

case, but requires the use of cumbersome correspondences to handle mixed strategies, and

so is omitted in favor of a proof which illustrates the key ideas.

For further simplicity, consider the case where preferences for the two candidates are

symmetric, so that ρA = ρB = 1
2
. This implies that the pivot probability is independent of

which candidate a player prefers. Accordingly I stop conditioning on the candidate for the

remainder of the proof.

A similar proof to the one for Proposition 1 establishes parts 1 and 2 of Proposition 2.

We are now interesting in constructing limiting strategies, that is, we are interested in

σ∞ := lim
N→∞

σN .

By Lemma 2, {σN}∞N=1 is a sequence of cutoff strategies; hence, σ∞, if it exists, is also

a cutoff strategies. To find the limiting cutoff strategies, we find cutoffs consistent with

equilibrium-type behavior which generate some signaling value. We know that the signaling

value must converge to k in the limit, therefore, σ∞ must be a strategy profile which delivers

a marginal signaling return of k. If it is the case that, for marginal signaling returns close to

k, the strategy profile which delivers that marginal signaling value is unique, then the limit

of {σN}∞N=1 must exist and σ∞ must be the unique strategy profile which delivers . Pick

some candidate signaling value U0
S, fix some pivot probability p, and let sp(γ) denote the

13We can construct a continuous signal from a discrete signal in the following way: First, num-
ber the signal space as S = {1, 2, . . . , |S|}. Second, split the interval [0, 1] into |S| distinct intervals,
[0, 1/|S|), [2/|S|, 3/|S|), . . . , [(|S| − 1)/|S|, 1]. Our transformed signal s′ will be constructed by first ob-
serving the realization of s, then drawing uniformly from [(s− 1)/|S|, s/|S|). s′ is equivalent to s but has a
continuous piecewise linear cumulative distribution function. Now, transform the signal again to s′′ so that
s′′ = F (s′ | ω).
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solutions to

Eγ[ω | sp(γ)]p− k + U0
S = 0. (24)

(If no such solution exists because (24) is strictly negative for all s, then let sp(γ) = 1.

If (24) is strictly positive for all s, then let sp(γ) = 0.) The cutoffs sp(γ) are the best

response strategies to the signaling value U0
S.

Using sp(γ) we can then construct the corresponding signaling return to voting, assuming

sp(γ) is the strategy profile played. It is a straightforward application of Bayes’ rule:

U1
S(U0

S) := E[γ | sp, v]− E[γ | sp,¬v]

=
1

P(v)

∫
γ

(1− sp(γ)) dF (γ)− 1

P(¬v)

∫
γ

sp(γ) dF (γ)

=
1

P(v)

∫
γ

1−
sp(γ)

P(¬v)
dF (γ).

We are now interested in the behavior of the inverse of U1
S near k:

Lemma 5. For all p, there exists a unique candidate signaling level U∗p so that U1
S(U∗p ) = k,

satisfying U∗p = (1− p)k + pU∗1 .

Proof. First, consider U0
S = U := k − pEγ[ω | s = 1] + ε, for some small ε. (ε is necessary

because the firm’s beliefs may be discontinuous for ε = 0 and so U0
S is set valued at k−pEγ[ω |

s = 1].)

Since γ orders Fγ via a rotation order, the player of type (γ, s = 1) has the highest

expectation of all the types of the marginal electoral value to voting. So (BR) for all types

(γ, s), γ < s, satisfies

pEγ[ω | s] + U − k = p (Eγ[ω | s]− Eγ[ω | s = 1]− ε) < 0︸︷︷︸
For ε small.
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That is, for ε small only types close to γ vote, and so

lim
ε→0

U1
S(U) = γ − E[γ] > k.

Similar reasoning for U0
S = U = k − pEγ[ω | s = 0]− ε establishes that

lim
ε→0

U1
S(U) = E[γ]− γ < −k.

U1
S is continuous on [U,U ] for ε > 0. This follows by Lemma 2 and the assumption that

F (s | ω) is continuous. The intermediate value theorem then implies that there is at least

one signaling level U∗p .

To see that it is also unique, I claim that U1
S(U0

S) is decreasing.

That U∗p = (1− p)k + pU∗1 follows because if s1(γ), U∗1 solves (24) for p = 1, then

Eγ[ω | s1(γ)]p− k + U∗p = Eγ[ω | s1(γ)]p− k +
(
(1− p)k + pU∗1

)
= p
(
Eγ[ω | s1(γ)]− k + U∗1

)
= 0.

Note that this also shows that sp(γ) is constant across p.

I claim that s1(γ) is the limiting strategy profile in equilibrium. This follows because

UN
S → k, and s1(γ) is the unique strategy profile which delivers US = k. By continuity it

must be the limiting strategy profile in equilibrium.

For example, say that the signal structure is given by a linear experiment, so that con-

ditional expectations are linear:

Eγ[ω | s] = γ

(
s− 1

2

)
+

1

2
, γ ∼ U [1/2, 1].

44



For fixed US, the corresponding cutoffs are given by solving

γ

(
s(γ)− 1

2

)
+

1

2
= k − US,

which implies s(γ) = 1
2

+
k−U− 1

2

γ
. This establishes the result.

Lemma 6. If type γ’s information matrix has rank |ω|, then no solution to the linear problem

given by (22) and (23) exists.

Proof. Denote a player with type γ’s information matrix as P = (Pγ(si | ωj))ij, and let

M = |S| and T = |ω|. If P has rank |ω|, then the matrix of conditional probabilities

A = (Pγ(ωj | si))ij also has rank |ω|, because

A =



1

Pγ(s1)
0 · · · 0

0 1

Pγ(s2)
0

...
. . . 0

0 0 · · · 1

Pγ(sM )


︸ ︷︷ ︸

Rank |S| > |ω|

P



P(ω1) 0 · · · 0

0 P(ω2) 0

...
. . . 0

0 0 · · · P(ωT )


︸ ︷︷ ︸

Rank |ω|

.

Consider the linear problem

T∑
i=1

P(ωi | s)g(ωi) = k − US ∀s.

Since A has rank |ω| any solution is unique, and since P is a probability measure that solution

is g(ωi) = k − US ∀i. But g(ωi) = k − US does not satisfy g(0) = 0, because if k − US = 0

then all players strictly prefer to vote.
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