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Abstract

A fad is something that is popular for a time, then unpopular. For example, in
the 1960s tailfins on cars were popular, in the 1970s they were not. I study a model
in which fads are driven through the channel of imperfect information. Some players
have better information about past actions of other players, and all players have pref-
erences for choosing the same actions as well-informed players. In equilibrium, better
informed (high-type) players initially pool on a single action choice. Over time, the
low-type players learn which action the high-type players are pooling on, and start
to mimic them. Once a tipping point is reached, the high-type players switch to a
different action, and the process repeats. I explicitly compute equilibria for a spe-
cific parameterization of the model. Low-type players display instrumental preferences
for conformity, choosing actions which appear more popular, while high-type players
sometimes coordinate on actions which appear unpopular. Improving the quality of
information to low-type players does not improve their payoffs, but increases the rate
at which high-type players switch between actions.
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1 Introduction

An important feature of consumer choice is that it is observed to shift over time, and in a

way so that choices are correlated among individuals. For example, in the United States

in the 1990s, consumers tended to choose loose-fitted clothing over tight-fitted clothing. In

the 2000s, consumers tended to choose tight-fitted clothing instead. This back and forth in

Western culture can be traced back centuries, to the tight and baggy breeches of Rennaissance

Europe.

As a positive model of this phenomenom, the standard economic model of consumer choice

is unsatisfactory because it requires us to accept time-varying and correlated preferences.

Such a model is both intractable, and can explain too much behavior. In this paper, I take a

different approach. I analyze a dynamic game between two types of short-lived players, high

and low, each choosing between two equally costly actions, and who differ from each other

in two ways. First, all of the players have preferences for matching the action of the high

type players, and not matching the actions of low type players. I take these preferences as

a primitive, but they might be generated by, for example, introducing a stage of the game

in which players match with other players who chose the same action and wish to match

with high type players. Second, the players differ in the quality of information they possess

about the actions of players in the past. I mainly consider the case in which high type

players have better information than low type players about the actions of past players, and

consider other cases in extensions. Players have no special ability to distinguish which types

of players choose which actions, rather, they only observe some information informative

about the relative fractions of players who choose each action in the past. More precisely,

once a player makes an action choice, their choice (but not their type) is visible for some

(stochastic) period of time to other players. Technically, this corresponds to assuming that

players observe a time-weighted average of past actions. High type players see an average of
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past actions which places more weight on more recent actions.

To fix an example, consider the high type players as being those who live in or near

major population centers, and low type players as being those who live in or near rural or

surburban regions, and consider the action choice as being between loose or baggy clothing.

The interpretation, then, is that players prefer to dress like those who live in the city, and

that those in the city have more up-to-date information about the sorts of clothing other

players are wearing. It is not difficult to invent other examples. High type players may be

those who have many friends on Facebook, low type players are those who do not have many

friends, and the choice set is possible news articles to share. Or, high types may be white,

low types may be Asian, and the choice set is possible extra-curricular activities to engage

in before applying to a college which wishes to covertly discriminate against Asians.

I focus on stationary equilibria of this game, and I show they may be classified into two

groups. In the first, players mix independently and identically between actions. No non-

trivial dynamics arise from this group of equilibria. Players may all coordinate on one action,

or another, or mix equally between both. In the second, players periodically switch between

action choices. These dynamics are driven by the following intuition. Initially, the high type

players coordinate on an action. Over time, the low type players learn which action the high

type players are coordinating on, and start to choose that action. At some endogenously

determined ‘tipping point’, the high type players switch to coordinate on a different action,

while the low type players continue to coordinate on the ‘old’ action. The high type players

are the first to switch because they are the first to percieve that the trend has ‘played itself

out’. The cycle then repeats, with high type players periodically switching between actions,

and low type players following.

Equilibria of the model have features, broadly consistent with stylized facts, that might

otherwise seem counter-intuitive. Less-informed players mimic the actions they see others

taking, even though they may be mimicking the actions of other less-informed players. In this
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sense, less-informed players display instrumental preferences for conforming to the majority

action, even though they do not have direct preferences for conformity. Well-informed players

sometimes mimic the actions they see others taking, and sometimes do not, so that well-

informed players sometimes appear to have preferences for conformity, and sometimes appear

to have preferences for anti-conformity. These distinctions are best illustrated by an example:

When I go to buy clothing, I tend to buy the sorts of clothing that I see others around

me wearing. An economist observing my choices might reasonably conclude that I have a

preference for conforming to what others are doing, i.e., I prefer to look like those around

me. However, if I go to buy clothing with a fashionable friend, who recommends I buy a

pair of pants that I haven’t seen anyone else wearing, I strictly prefer his recommendation

over any choice I would have made. An economist observing my choices in this case might

reasonably conclude the opposite, that I have preferences for anti-conformity, i.e., I prefer

not to look like those around me. In both cases, however, my choices are driven not by any

intrinsic preferences for conformity or anti-conformity, but rather the information available

to me about what certain classes of players are wearing. In this sense, the game considered

in this paper is related to Bernheim (1994), in providing a rationale for the dynamics of

conformist and anti-conformist behavior that is not directly grounded in direct preferences

for conformity. In general, we draw negative inferences about people who are perceived

to be conformist; the model suggests a rationale for why, since only less-informed players

consistently act as if conformist.

I show also that the rate at which players switch between actions is driven by the speed

of learning of less-informed players. If less-informed players only learn which action the

well-informed players are coordinating on slowly, then the well-informed players switch less

rapidly. The additional information available to well-informed players, however, has no

effect on the rate at which players switch between actions. It serves purely as a coordination

device. A broad stylized fact of the past few centuries is that the rate at which fads begin
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and end has increased. The shift from Renaissance-era baggy breeches to tight breeches

took centuries, the shift from loose fitting pants in the 2000s to tight fitting pants took a

decade. The model suggests that this phenomenon is driven by two factors. The first is the

increasing visibility of well-informed elites. In the 1600s, this might have been the nobility,

in 1980, it was popular musicians and actors. The second is the increasing democratization

of information. In the 1800s, it may have taken weeks for information to spread among elites.

In 1950, it still took weeks for information to spread among elites. But due to the invention

of widely available sources of information such as broadcast television or the radio, what

took decades to spread among non-elites in the 1800s might have only taken a few years in

1950. Accordingly, the model predicts that the length of fads in the 1800s should have been

on the order of decades, while the length of fads in 1950 should have been on the order of

years.

This democratization of information might have been expected to improve the welfare of

less-informed non-elites. I show that contrary to this intuition, it has no effect on welfare.

On one hand, the less-informed learn faster which action the well-informed are coordinating

on, but on other hand, the well-informed switch more rapidly between actions. Together,

these two effects exactly cancel out.

The model suggests that policies intended to help less-informed players have no effect on

welfare if broadly targeted. For example, some people know that it is customary to wear a

suit to a white-collar job interview. We do not wear suits to job interviews because we want

to signal we can afford a suit, we wear suits to job interviews to signal that we are the sort

of person who understands that the sort of thing one does to get a job at a job interview

is wear a suit, and that therefore, we are the sort of person who also understands the other

sorts of things that one does in an office environment to be successful. Telling one person,

who otherwise would have worn a t-shirt, to wear a suit to a job interview might improve

her payoff, telling everyone who might otherwise have worn a t-shirt to a job interview to
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wear a suit will have no effect, since the value of wearing a suit to a job interview came only

because it credibly signaled that some people are well-informed.

1.1 Previous literature

Previous literature on the switching dynamics considered in this paper (Karni and Schmei-

dler, 1990; Matsuyama, 1992; Frijters, 1998; Caulkins et al., 2007) focus on models in which

cyclical behavior is driven by differences in preferences, or technology (‘conformists vs. anti-

conformists’ or ‘predator / prey’ models).

The paper conceptually closest to this one is Corneo and Jeanne (1999). There, as in this

paper, one sort of player has access to better information than the other, such as the right

restaurant to eat at. Gradually, the βs learn which restaurant is cool, and the authors analyze

the dynamics of this learning process. However, they stop short of considering how players

might switch to other restaurants once everyone has learned where to eat, and how this might

impact the dynamics of the game; in the limit, players end up all pooling on one action.

The major difference to this paper is that in Corneo and Jeanne (1999), players private

information is about some exogenous state variable, here, the relevant private information of

players is about the actions of other players, which I show gives rise to equilibrium switching

dynamics.

The question of why we observe fashion and fashion trends is an old one in economics

(Foley, 1893). Previous literature on fashion cycles focuses on Veblen goods and conspicu-

ous consumption. In Pesendorfer (1995), a monopolist periodically releases new, expensive

clothing lines, giving the wealthy an opportunity to buy expensive clothing to signal their

wealth, then gradually lowers the price of the clothing to sell to more people, before even-

tually releasing a new line of expensive clothing and beginning the process again. Here, the

monopolist is a ‘norm entrepreneur’ (Sunstein, 1995), strategically manufacturing social as-
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sets for profit. It is true that there are examples of monopolist fashion brands at the high end

of the market—but fashion, and fashion cycles, are a much broader phenomenon, and not

limited to high-end clothing. For example, no norm entrepreneur decided that car tailfins,

which serve no aerodynamic purpose and are no more expensive than conventional styling,

should be popular in the 1950s, and Plutarch (187) describes Cato the Younger wearing a

subdued shade of purple, in reaction to what was then a trend among the Romans of wearing

a bright shade of red. Nobody profits from the recent trend towards using ‘Emma’ as a girl’s

name, and many fashion trends involve clothing which is deliberately inexpensive.

Other related papers include the literature on social learning (Bikhchandani et al., 1992),

and more specifically the literature on social learning with bounded memory, Kocer (2010).

There, players do not observe (or remember, if players are interpreted as being long-lived)

the full history of actions; here, players see only a summary statistic of past actions, and

furthermore, there is no underlying state of the world which players draw inferences about.

The idea behind this paper is the same one behind the literature on supporting correlated

equilibria in static games by modeling them as the result of a dynamic game in which players

condition in some way on the actions of players in the past (Aumann, 1987; Milgrom and

Roberts, 1991; Foster and Vohra, 1997). I apply the same concept, but require player’s

learning process to be Bayesian. For any dynamic (Nash) equilibrium in my model, in any

period, the resulting distribution over action profiles is a correlated equilibria of the static

game, however, the set of correlated static equilibria which can be supported by dynamic

equilibria in this way is much smaller than the set of all correlated equilibria in the static

stage game.

Although the empirical study of fads began much earlier, there is a recent interest in

applying modern econometric techniques to identifying fads (Yoganarasimhan, 2012a,b).

The ability to identify the ‘next big thing’ is of obvious interest to firms which sell consumer

products. An industry of ‘coolhunters’ revolves around identifying what will be in fashion
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and what will be out of fashion.

In Section 2, I illustrate the main idea with a simple example model. In Section 3, I

describe the stage game, and prove some basic results about equilibria in the static environ-

ment. In Section 4 I describe the full dynamic game, and I use analogous results to those in

the static environment to characterize equilibria in the dynamic game. I show that a feature

of all equilibria in the dynamic game is that β players show an instrumental preference for

conformity. In Section 5, I apply the results from Section 4 to a parameterization of the game

to explicitly compute equilibria and derive comparative statics results on the period length

of the game and the strategies played by α players. In Section 6 I consider a generalization

of the model in which α players are allowed to have access to older information about the

actions of other players, and players may prefer to mimic β players. In Section 7 I conclude.

2 Illustrative example

I begin with a simple discrete time example to illustrate the two major mechanisms driving

equilibrium dynamics in this paper: First, the preferences of players to match high type, but

not low type actions, and second, the better information of high type players. The game

analyzed in this section is simple, but not easily extendable, and so in the main body of the

paper, I consider a richer continuous time game.

Model

Consider a discrete time (t = 0, 1, 2, . . .) game. In each period, a continuum of players enters,

each makes a once-and-for-all binary action choice a ∈ {0, 1}, and then each exits.1 With

equal probability, each player is either a high or a low type, denoted θ ∈ {α, β}. Once each

player has chosen an action, a single player is sampled uniformly from the set of players, and

1 That there be a continuum of players is not here necessary, but instead convenient for formulating
payoffs, which depend on the action choices of other players in the same period.
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his action choice, denoted at, is made visible to future players. Before a player chooses an

action, he sees a truncated history of past sampled actions. Specifically, a low type player

in period t sees the past action, at−1. A high type player, on the other hand, sees the past

N > 1 actions, (at−1, at−2, . . . , at−N). (The initial players see no actions, and the second

through N − 1st players, if the high type, see the entire history.) Hence, the information

sets of a player of type θ in period t, H t
θ, are

H t
α = {(a0, a1, . . . , at−1)} ∀t < N

H t
α = {(at−N , . . . , at−1} ∀t ≥ N

H0
β = {}

H t
β = {at−1} ∀t ≥ 1.

elements of which are denoted htθ.

Player strategies are σθt : H t
θ → [0, 1], denoting the probability that player t, of type θ,

chooses action a = 1 in period t. Player beliefs are probability distributions over both the

type of the player whose action was selected to be visible, and the action chosen by that

player, denoted µ ∈ ∆(Θ∞ × {0, 1}∞).

Once each player has chosen an action, players randomly and uniformly match with the

other players who chose the same action. Players who choose an action which no other player

has chosen receive a payoff of 0. Players who match with a high type player receive a payoff

of 1. Players who match with a low type player receive a payoff of 0. Players therefore prefer

to choose actions which are more likely to be chosen by high type players, and less likely to

be chosen by low type players. Formally, a player’s payoff is 1 if and only if he is matched

with a high type player, and 0 otherwise. Note that a high type player who chooses an action
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expects, at some interim stage with t ≥ N , a payoff of

Ut(a, µ, h
t
α, h

)
β := Pµ(θt = α | at, at−1, at−2, . . . , at−N),

that is, a player’s interim expected payoff is the probability that a player randomly selected

from the group of players who choose the same action is a high type player. Low type

players have the same preferences as high type players, but do not see htα, and so must form

expectations over the type of previous players. A low type player’s interim expected payoff,

after choosing a, is therefore Eµ[Ut(a, µ, h̃
t
α, h̃

t
β) | htβ].

The definition of equilibrium is standard:

Definition 〈σθt , µ〉 is an equilibrium iff

1. Each player is best responding, so that σθt (h
t
θ) has support contained within

arg max
a∈{0,1}

Eµ[Ut(a, µ, h̃
t
α, h̃

t
β) | htθ],

2. and beliefs, µ, are consistent with σθt wherever possible.

Analysis

This simple model captures the two important components of the richer game. First, low

type players have worse information than high type players, in the strong sense that their

information is a coarsening of the high type player’s information: High type players see the

actions of the past N players, low type players see only the action of the past player. Second,

players have preferences for matching the action which would be taken by high type players,

and not matching the action which would be taken by low type players.

Consider the following two candidate strategy profiles and beliefs. The first, which we

might call a ‘pooling’ strategy profile, is one in which all players pool on the last action
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taken. The second, which we might call a ‘periodic’ strategy profile, is one in which players

pool on the last action taken—with the occasional exception of high type players, who will

choose a different action than the last action taken, as long as they percieve that the last

N players all pooled on the same action. There are many more equilibria in the discrete

time game which I do not consider here because they are not intuitively compelling. Both

of ‘pooling’ and ‘periodic’ strategy profiles have analogues in the continuous time version

of the game. In fact, it will happen that all equilibria in the continuous time game can be

classified into these two categories, unlike the discrete time game.

Example 1 (‘Pooling’ strategy profile). Under this strategy profile, players coordinate on

action 1. Formally,

σθt (h
t
θ) = 1 ∀θ, t, htθ,

and µ satisfies

Pµ(a0, θ0, a1, θ1, . . . , at, θt) =


0 ∃i | ai = 0(
1
2

)t
otherwise.

This pooling strategy profile is one in which players coordinate on action a = 1, and

deviators, unmmatched to any other player, believe that they will receive the lowest possible

payoff, 0. Perhaps unsurprisingly, it is also an equilibrium strategy profile.

Proposition 1. The pooling strategy profile described in Example 1 is an equilibrium strategy

profile.

Proof. Since in equilibrium all players choose a = 1, the probability that a player is an α
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t = 1 t = 3 t = 5 t = 7 t = 9 t = 11 t = 13

Figure 1: Two equilibrium path realizations of the pooling and periodic equilibria in the
example.

Note: On the top, all the players coordinate on one action (represented by black). On the bottom, with
N = 3, the players coordinate on an action until N ≥ 3, and a high type player comes along, at which
point they switch. (Here, at t = 3, t = 7, and t = 10.)

type, conditional on a = 1, is always 1/2, and so for all on-path histories htα, h
t
β,

Ut(1, µ, h
t
α, h

t
β) = 1

2

Ut(0, µ, h
t
α, h

t
β) = 0,

and so on-path, a = 1 is trivially a best-reply.

Figure 1 contains an illustration of the pooling strategy profile.

A more interesting strategy profile than the pooling equilibrium is the following:

Example 2 (‘Periodic’ strategy profile). Under this strategy profile, low type players mimic

the past action chosen, while high type players mimic the past action, unless all N observed

actions are the same, in which case, they choose a different action. Formally,

σβt (htβ) = at−1

σαt (htα) =


1− at−1 at−1 = · · · = at−N

at−1 otherwise.

It remains to specify the actions of the first N players. The first player uniformly chooses an
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action, independently of type. The next N − 1 players choose actions in the following way:

1. With probability

2

(
N − 1

N + 1

) 1
N

− 1

the tth player, 1 ≤ t < N − 1, mimics the previous action, at = at−1.

2. Otherwise, the tth player mixes uniformly between actions.

(The purpose of this somewhat artificial specification of the first N player’s actions is to

generate stationary beliefs. It is not strictly necessary, but assumed for tractability and

simplicity.)

Proposition 2. The periodic strategy profile described in Example 2 is an equilibrium strat-

egy profile when N ≥ 5.

Proof. First, since players t = 0, 1, . . . , N−1 choose actions with the same type-independent

frequency, the expected payoffs from choosing either action are the same, and so any strategy

is a best reply. Second, I state without proof that the players at t = N believe

Pµ(aN−1 = aN−2 = · · · = ai) =


2

N+1
i = 0

1
N+1

otherwise.

(1)

(In fact, the actions of the first N players were constructed specifically so that (1) holds!

Verifying this fact is a straightforward matter of algebra and is omitted.)

Consider first whether the high type players are best responding at t = N . In the event

that the past N players are observed to be choosing the same action, each high type player

knows that each other high type player will be choosing 1 − aN−1, and so optimally each

high type player prefers to choose 1 − aN−1, receiving an expected payoff of 1 (since only
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high type players choose 1− aN−1 at this history) instead of 0 (since only low type players

choose aN−1 at this history). In the event that the past N players are not observed to be

choosing the same action, each high type player expects that no other player will be choosing

a different action, and so optimally each high type player prefers to continue to mimic action

aN−1, knowing that if they choose 1 − aN−1, they will receive a payoff of zero, instead of 1
2

(the probability that a player choosing action aN−1 is a high type player.) High type players,

then, are trivially best responding at t = N , because choosing the same action as high type

players is a best response.

Now consider whether the low type players are best responding at t = N by mimicking

at−1. From (1), with probability 2
N+1

, the past N actions are the same, and by mimicking

at−1, a low type player receives a payoff of zero (since all the high type players are choosing

1 − aN−1), instead of 1. With probability 1 − 2
N+1

, at least one of the past N actions

differs, and by mimicking at−1, a low type player receives a payoff of 1
2

(since all players

are mimicking the past action) instead of 0. The low type player’s best reply condition is

satisfied, then, if and only if

2

N + 1
× 0 +

(
1− 2

N + 1

)
× 1

2
≥ 2

N + 1
× 1 +

(
1− 2

N + 1

)
× 0.

This condition is satisfied if and only if N ≥ 5.

Similar reasoning establishes that players are best replying in successive periods t =

N + 1, N + 2, . . ., if beliefs are stationary. In fact, they are. To see this, fix t, and let Pn

14



denote the probability that at−n = at−n+1 = at−1. Then by construction,

PN =

Probability that last N − 1 were the same︷ ︸︸ ︷
PN−1 +

Probability that last N were the same but low type was drawn︷︸︸︷
1

2
PN

Pn = Pn−1 ∀1 < n < N

P1 =
1

2
PN∑

n

Pn = 1.

The unique solution for these beliefs is

PN =
2

N + 1

Pn =
1

N + 1
∀n < N,

so that beliefs are stationary, and so the result follows for N ≥ 5.

This simple model illustrates the main channel driving periodic dynamics in the main

model of the paper. Low type player mimic past actions, absent a better idea of whether other

players are conforming to the previous action or not. High type players occasionally conform,

and occasionally anti-conform when they percieve that sufficiently many other players are

choosing the same action. In the remainder of the paper, I analyze a richer model, capable

of providing comparative statics results. The main channel, however, is similar.

3 Static stage game

In the previous section, we considered a simple discrete time game, intended to illustrate the

intuition driving the results of this paper. The presentation of the continuous time game is

split into two parts. In the first, this section, I describe the static stage game, and prove some
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illustrative results about equilibria in this environment. Here, the information structure is

taken to be exogenous. In the second, Section 4, I allow the private information of players

to vary over time, and investigate how this leads to cyclical behavior.

A continuum of players, some called αs and some called βs, play the following simultaneous-

move stage game. First, nature draws a state, #»ρ ∈ [0, 1]2, from a distribution µ ∈ ∆([0, 1]2).

Denote the realized state by (ρα, ρβ), and the random variable by (ρ̃α, ρ̃β). Players then

observe private information: The α players observe (ρα, ρβ), while the β players observe only

ρβ. Each player simultaneously chooses an action a ∈ {0, 1}. I focus on symmetric mixed

strategies, denoted Aα(ρα, ρβ) ∈ [0, 1] and Aβ(ρβ) ∈ [0, 1], mapping private information into

the probability of choosing a = 1.2

Once players have chosen actions, each player receives a payoff, which is a function of his

action, and the fraction of players of each type choosing his action. Formally, each player’s

payoff function is U(a, aα, aβ), where a is his action, and aα and aβ are the fractions of α

and β players choosing action 1. Note that α and β players have the same payoff function.

Since there are many players, by the law of large numbers we have, in state (ρα, ρβ),

aα(ρα, ρβ) = Aα(ρα, ρβ),

aβ(ρβ) = Aβ(ρβ).

I impose the following assumption on payoffs:

2 The analysis in the paper goes through if, instead of focusing on symmetric mixed strategies, we were
to focus on pure strategies in which players condition on their index in such a way so that the same fractions
of player types choose the same actions. By the law of large numbers, this can always be done. E.g., we
could have instead of the symmetric mixed strategy Aβ(ρβ), we could have

Aβi(ρβ) =

{
1 i ≤ Aβ(ρβ)

0 i > Aβ(ρβ),

where i is the index of the player. Under the appropriate assumptions on i (namely that it be uniformly
distributed on [0, 1]) the two approaches are equivalent.
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Assumption 1. U(1, aα, aβ) > U(0, aα, aβ) if and only if aα > aβ.

Assumption 1 formalizes the intuition that all players strictly prefer an action if more

α than β players are choosing that action. This may be because players have reputational

concerns for appearing to be α players, conditional on the action they take. Or, players may

have intrinsic preferences for choosing the same actions as αs (Akerlof and Kranton, 2000),

because they identify with αs but not with βs. Or, after the stage game, players may go on

to play a subgame, the payoffs to which depend on the action chosen in the stage game, as

illustrated in the following example.

Example 3 (Matching utility). Interpret the action as a location choice, a = 0 or a = 1,

and introduce a matching subgame in which players are randomly matched to another player

at the location they choose. They then receive a payoff of 1 if their partner is an α type, and

a payoff of 0 otherwise. The expected payoff of a player at location a the probability that a

randomly drawn player is an α, conditional on the action taken,

U(a, aα, aβ) =


aα

aα+aβ
a = 1

1−aα
1−aα+1−aβ

a = 0,

(2)

On the boundaries, when aα = aβ = 0 or aα = aβ = 1, assume U(a, aα, aβ) = 0∀a.3

The payoff specification in Example 3 will be maintained as an example for the remainder

of the paper.

3.1 Equilibria of the stage game

To fix ideas, I derive Bayesian equilibria of the static stage game. There are many such

equilibria.

3 It is only important that U(1, aα, aβ) = U(0, aα, aβ). On the boundaries, these payoffs technically
violate Assumption 1, since U is constant in aβ when aα = 0.
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The game has trivial equilibria, indexed by p ∈ [0, 1], in which both sorts of players

disregard their private information and mix independently between 0 and 1, each choosing

a = 1 with probability p. This follows from Assumption 1, which implies U(1, p, p) =

U(0, p, p)∀p ∈ [0, 1], and so mixing is trivially a best response when Aα(ρα, ρβ) = Aβ(ρβ) = p.

On the other hand, in no equilibria do α players coordinate on action 1 while β’s mix, i.e.,

Aα(ρα, ρβ) ≡ 1, Aβ(ρβ) ∈ (0, 1)∀ρβ. In this case, it is commonly known that Aα(ρα, ρβ) = 1,

and so aα > aβ, hence; by Assumption 1, U(1, 1, aβ) > U(0, 1, aβ), and so β players strictly

prefer to choose action 1.

Are there equilibria in which the α players condition on their additional private informa-

tion in a non-trivial way? More precisely, are there equilibria in which the α players, with

positive probability, choose a different action profile than the β players? The answer is yes.

To see this, first, we note that in any equilibrium, α players are always either all playing 0,

all playing 1, or mixing with the same frequency as β players:

Lemma 1. Let 〈Aα, Aβ〉 be an equilibrium strategy profile. Then Aα(ρα, ρβ) ∈ {0, Aβ(ρβ), 1}

for all (ρα, ρβ).

Proof. The result follows directly from Assumption 1. IfAα(ρα, ρβ) < Aβ(ρβ), then U(1, aα, aβ) <

U(0, aα, aβ), and so Aα(ρα, ρβ) = 0 is the unique best reply. Similarly, if Aα(ρα, ρβ) > Aβ(ρβ),

then Aα(ρα, ρβ) = 1 is the unique best reply. Finally, if Aα(ρα, ρβ) = Aβ(ρβ) the result

holds.

Second, we note that in any equilibrium, β players are indifferent between actions:

Lemma 2. Let 〈Aα, Aβ〉 be an equilibrium strategy profile. Then β players are always indif-

ferent between actions 0 and 1. That is, the following indifference condition is satisfied for
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all ρβ ∈ [0, 1]:

P(Aα(ρ̃α, ρ̃β) = 0 | ρβ)×
(
U(0, 0, Aβ(ρβ))− U(0, 1, Aβ(ρβ))

)
= P(Aα(ρ̃α, ρ̃β) = 1 | ρβ)×

(
U(1, 1, Aβ(ρβ))− U(0, 1, Aβ(ρβ))

)
(3)

Proof. Fix ρ̂β ∈ [0, 1]. Either Aβ(ρ̂β) = 0, or Aβ(ρ̂β) ∈ (0, 1), or Aβ(ρ̂β) = 1.

First, if Aβ(ρ̂β) ∈ (0, 1), the β players are mixing and so indifferent between actions.

Second, if Aβ(ρ̂β) = 0, then by Lemma 1, Aα(ρα, ρ̂β) ∈ {0, 1} for all {ρα | (ρα, ρ̂β) ∈

Supp(µ)}. Define p0, p1 by

pa := Pµ[Aβ(ρ̃α, ρ̃β) = a | ρ̃β = ρ̂β], a ∈ {0, 1}.

Then a β player’s expected payoff from a = 0 is weakly less than his expected payoff from

a = 1, since by Assumption 1

p0U(0, 0, 0) + p1U(0, 1, 0) = p0U(1, 0, 0) + p1U(0, 1, 0)

≤ p0U(1, 0, 0) + p1U(1, 1, 0),

with strict inequality if and only if p1 = 0. The best response condition then implies that

β’s are indifferent between a = 0 and a = 1.

The case in which Aβ(ρ̂β) = 1 is analogous. To write the indifference condition, a β

player’s expected payoffs from action a is

E[U(a,Aα(ρ̃α, ρ̃β), Aβ(ρ̃β)) | ρβ]

= p1U(a, 1, Aβ(ρβ)) + p0U(a, 0, Aβ(ρβ)) + (1− p0 − p1)U(a,Aβ(ρβ), Aβ(ρβ)),
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Equating the expected payoff from a = 1 to a = 0 and rewriting with Assumption 1 (which

implies U(1, Aβ(ρβ), Aβ(ρβ)) = U(0, Aβ(ρβ), Aβ(ρβ)) always) yields (3).

Combining Lemmas 1 and 2 together yields the following characterization of equilibria.

For ease of exposition, we now assume that µ has full support on [0, 1]2 and is absolutely

continuous with respect to Lebesgue measure on the unit square.4

Proposition 3. 〈Aα, Aβ〉 is an equilibrium of the static game if and only if, for all (ρα, ρβ) ∈

[0, 1]2,

1. Aα(ρα, ρβ) ∈ {0, Aβ(ρβ), 1} and

2. Aβ solves equation (3).

Proof. That these conditions are necessary follows directly from Lemmas 1 and 2 and the

fact that µ has full support on [0, 1]2.

To see that these conditions are also sufficient, note first that if all α players are choosing

action a = 1, then by Assumption 1, U(1, 1, aβ) ≥ U(0, 1, aβ)∀aβ ∈ [0, 1], so that choosing

a = 1 is a best reply. Similar reasoning suffices to show that when all α players choose

a = 0, it is a best reply for all α players to choose a = 0. Finally, when Aα(ρα, ρβ) = Aβ(ρβ),

by Assumption 1 α players are indifferent between actions, and so are best responding.

This establishes that Aα(ρα, ρβ) ∈ {0, 1} is a sufficient condition for α players to be best

responding. For β players, equation (3) is the indifference condition, and so every action is

a best reply.

For example, consider the special case in which utility is given by the matching subgame,

example 3. Let ρβ 7→ g(ρβ) be any mapping into [0, 1] satisfying

Fρβ(g(ρβ)) ∈ (1
3
, 2
3
)∀ρβ ∈ [0, 1], (4)

4 This assumption is mostly for notational convenience, the following statements continue to hold for
more general probability distributions, but only on the support of µ.
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where Fρβ is the cumulative distribution function of the marginal distribution of ρ̃α for

some fixed value of ρβ. Proposition 3 characterizes equilibria in which α players choose 1 if

ρα ≥ g(ρβ), and 0 otherwise.

Proposition 4. Say α’s play according to

Aα(ρα, ρβ) =


1 ρα ≥ g(ρβ)

0 ρα < g(ρβ),

(5)

and β’s play according to

Aβ(ρβ) = 2− 3Fρβ(g(ρβ)). (6)

Then under the matching specification of utility, (2), 〈Aα, Aβ〉 is an equilibrium.

Proof. The proof proceeds by showing that (6) solves the indifference condition (3). It then

follows from Proposition 3 that 〈Aα, Aβ〉 is an equilibrium, since by construction, Aα satisfies

Aα(ρα, ρβ) ∈ {0, Aβ(ρβ), 1}∀ρα, ρβ ∈ [0, 1]2.

To that end, note that by construction of the α player’s strategy, (5), we have

Pµ(Aα(ρ̃α, ρ̃β) = 0 | ρβ) = Fρβ(g(ρβ))

Pµ(Aα(ρ̃α, ρ̃β) = 1 | ρβ) = 1− Fρβ(g(ρβ)).

The indifference condition then becomes

Fρβ(g(ρβ))

(
1

2− Aβ(ρβ)

)
= (1− Fρβ(g(ρβ)))

(
1

1 + Aβ(ρβ)

)
,

solving yields (6), which is a well-defined strategy only when condition 4 is satisfied, which,

by assumption, it is. (When Fρβ(g(ρβ)) /∈ (1
3
, 2
3
), β players strictly prefer one or the other
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Figure 2: Graphical illustration of equilibria in the static stage game.

Note: On the left: α players coordinate using the (arbitrary) boundary (ρβ , g(ρβ)). On the right: In
equilibrium, β players are more likely to choose action 1 when they believe α players are more likely to
choose that action.

action, which, by Lemma 2, cannot be an equilibrium.)

This equilibrium is one in which the αs have exclusive access to some hidden ‘sunspot’,

which allows them to coordinate on an action, represented by the value of ρα. (Since ρβ

only ever takes one value, the β-type players have access to no private information.) For

example, imagine that ρβ represents broadcast television, while ρα represents cable television,

and people who can afford to watch cable television would like to choose the same action

as other people who can afford to watch cable television. The model suggests they can do

so by coordinating on the information they see through cable television. In equilibrium, β

players are aware that this coordination is taking place, and must draw inferences about

which action α players are coordinating on.

The function g(ρβ) determines how likely it is that α players will choose action a = 1.

The lower is g(ρβ), the greater the probability that, conditional on ρβ, the α players are

coordinating on action a = 1. The β players equilibrium strategy, (6), is also decreasing in

g(ρβ). In this sense, β players are mimicking α players, but the degree to which this occurs is
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driven by β players beliefs about the extent to which other β players are choosing an action.

What are the expected payoffs to players under the strategy profile described in Propo-

sition 4? Let Vα and Vβ denote the ex-ante expected payoffs to each type of player, i.e.,

Vα := Eµ[Aα(ρ̃α, ρ̃β)U(1, Aα(ρ̃α, ρ̃β), Aβ(ρ̃β)) + (1− Aα(ρ̃α, ρ̃β))U(0, Aα(ρ̃α, ρ̃β), Aβ(ρ̃β))]

Vβ := Eµ[Aβ(ρ̃β)U(1, Aα(ρ̃α, ρ̃β), Aβ(ρ̃β)) + (1− Aβ(ρ̃β))U(0, Aα(ρ̃α, ρ̃β), Aβ(ρ̃β))].

Then α players can do well, as summarized in the following result:

Proposition 5. Let 〈Aα, Aβ〉 be any equilibrium in which Aα is determined by (5) for some

boundary g. Then

Vα = 2Vβ,

and under the matching specification of utility, (2), Vα = 2
3

and Vβ = 1
3
.

Proof. The full proof is in Appendix A; here I present an intuitive proof. By construction, β

players are indifferent between strategies, by construction; hence, a β player who randomizes

50/50 between actions receives the same payoff ex-ante as in equilibrium. Half the time, such

a player chooses the same action as an α player and receives Vα, half the time he does not

and receives a payoff of zero, therefore,

Vβ = 1
2
Vα.

When payoffs are induced by the matching subgame, (2), the payoff to a player is the expected

probability that the player is an α, conditional on his action, so, the ex-ante probability that

a player is an α should equal the expected payoff of players, and since the probability that
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a player is an α player is 1
2
,

1

2
=

1

2
Vα +

1

2
Vβ = Vβ +

1

2
Vβ =

3

2
Vβ,

so Vβ = 1
3

and Vα = 2
3
.

Surprisingly, the payoff to an α player in equilibrium is independent of the strategy Aα,

as long as Aα(ρα, ρβ) ∈ {0, 1}.

In the static game presented, the information structure is taken to be exogenous. In the

next section, I augment the model so that state variable evolves and is allowed to depend on

past actions, in such a way so that over time β players can eventually learn which action α

players are coordinating on. Do the features of the static game carry over into the dynamic

environment? In sections 4 and 5 I show that they do: α players can still condition on their

private information, and can extract the same payoffs in the dynamic game that they do in

the static game. I show that this occurs when behavior is cyclical — in order to extract the

same payoffs, α players need to periodically switch between actions. Furthermore, I show

how the dynamic structure of the game induces particular forms for g(ρβ), µ, and the β’s

strategy; I give intepretations of these forms and analyze comparative statics.

4 Dynamic game

Now, time is continuous, t ∈ [0,∞). In each instant t, a continuum of short-lived players

play the static game. The state space is still the unit square, [0, 1]2, but elements of the state

space are now denoted #»ρ t = (ρtα, ρ
t
β), to represent the dependence on time. I maintain the

assumption that both αs and βs observe the value of ρtβ, but that only αs observe ρtα. Again,

imagine that ρtβ represents a source of information available to everyone in the game, such

broadcast television, while ρtα represents a source of information available only to a subset
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of the population, such as cable television.

The game proceeds as follows. First, an initial condition is drawn from µ0 ∈ ∆[0, 1]2.

I denote the random variable by ρ̃, and ρ0 is the realized initial condition. Given an ini-

tial condition ρ0, the game outcome path is action paths atα(ρ0), atβ(ρ0) and state paths

ρtα(ρ0), ρtβ(ρ0) for t ∈ [0,∞), where, analogously to the static game, atα and atβ are the

fractions of α and β players choosing action a = 1 at time t. For convenience, the de-

pendence on the (stochastic) initial conditions will be omitted where it is clear, so that

the (stochastic) value of the outcome path at time t is denoted (ãtα, ã
t
β, ρ̃

t
α, ρ̃

t
β) to represent

(atα(ρ̃0α, ρ̃
0
β), atβ(ρ̃0α, ρ̃

0
β), ρtα(ρ̃0α, ρ̃

0
β), ρtβ(ρ̃0α, ρ̃

0
β)).

It will be of interest to consider two special sorts of outcome paths. A point ρ∗ is a fixed

point under #»ρ t if

#»ρ t(ρ∗) = ρ∗ ∀t ∈ [0,∞).

A point ρ∗ is a periodic point if there exists P > 0 such that

ρP (ρ∗) = ρ∗,

and the minimum such P is called the period. The set of states traced out by the state path

is called the orbit. An orbit is called fixed if it consists of a single fixed point, and periodic

if it consists entirely of periodic points with some period P > 0.

Information structure

We would now like to impose a dynamic structure on players’ private information to capture

the idea that #»ρ t is somehow representative of actions taken in the past. To do so, I now

impose the following interpretation on the meaning of #»ρ t. When players make an action
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choice, I assume that the choice (but not the player’s type, or the time at which they chose

the action) is visible for some time afterward. Although a player’s type is not known, I

assume one type’s action choices may be more visible than others. Imagine, for example,

that once a player chooses which style of clothing to wear, they wear it for some exogenously

stochastic amount of time before replacing it, at which point their choice is no longer visible.5

The value of ρtα represents the fraction of players observed to be ‘wearing’ a = 1 at some

location where the replacement rate of old clothing is higher than at some other location,

represented by ρtβ. I assume that old action choices disappear at some exogenous Poisson

rate rα and rβ, respectively. Formally, the change in the fraction of players observed to have

been choosing a = 1, for small time increments, evolves approximately according to

ρt+εα ≈ (1− εrα)ρtα + εrα(λαa
t
α + λβr

t
β)

ρt+εβ ≈ (1− εrβ)ρtβ + εrβ(λαa
t
α + λβr

t
β).

Here, λαa
t
α + λβa

t
β is some average of the actions being taken by each player type. λα and

λβ are intratemporal weights, parameterizing how visible a particular player type’s action

choices are. Accordingly, we take λα + λβ = 1 and λα, λβ > 0. When λα is large, ρtα and

ρtβ mostly reflect the actions of high types, conversely, when λβ is large, ρtα and ρtβ mostly

reflect the actions of low types.

While λα and λβ are interpreted as intratemporal weights, rα and rβ are intertemporal

weights, adjusting how rapidly it is that old actions disappear. Consistent with the interpre-

tation above, I assume that rα > rβ > 0, so that ρtα represents a more ‘up-to-date’ average

of the actions being taken.

5 When the player replaces his clothing, we could imagine that he returns to the game and makes a new
purchase decision, but ‘forgets’ how long it has been since the prior purchase decision. This is consistent
with a focus on stationary equilibria in which a player’s beliefs are independent of calendar time.
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In the limit as ε→ 0, we derive

ρ̇tα = rα(λαa
t
α + λβa

t
β − ρtα) (7)

ρ̇tβ = rβ(λαa
t
α + λβa

t
β − ρtβ)., (8)

the laws of motion of #»ρ t.6 A solution to (7) and (8) is

ρtα = e−rαtρ0α + rα

∫ t

0

e−rα(τ−t)(λαa
τ
α + λβa

τ
β) dτ (9)

ρtβ = e−rβtρ0β + rβ

∫ t

0

e−rβ(τ−t)(λαa
τ
α + λβa

τ
β) dτ, (10)

which makes explicit the fact that we assume that #»ρ t is an exponentially-weighted moving

average of past actions, with weights rα and rβ, up to ρ0, the initial condition.78

This specification of #»ρ t captures the idea that players have some information about the

actions of other players, but that this information is delayed, and does not immediately

reflect changes in action choices. The assumption that rα > rβ captures the idea that the αs

have access to more up-to-date information than βs, since a higher value for rα places more

6 More generally, we might specify that (ρtα, ρ
t
β) evolve according to some law of motion which depends

on the action profile,

ṡtα = fα(ρtα, a
t
α, a

t
β)

ṡtβ = fβ(ρtβ , a
t
α, a

t
β),

in which case fα(ρα, aα, aβ) = rα(ρα−λαaα−λβaβ), fβ(ρβ , aα, aβ) = rβ(ρβ −λαaα−λβaβ) corresponds to
an exponentially weighted moving average; the assumption that ρα, ρβ are exponentially weighted moving
averages is tractable and has a simple interpretation compared to the general case.

7 There is some ambiguity as to the meaning of a solution to a discontinuous differential equation,
which (7), (8) may be. Here, I mean a Carathéodory solution, that is, the solution should satisfy

st =

∫ t

0

ṡτ dτ + s0.

8 An alternate way to have set up the model would been to have had time begin at −∞, which motivates
an interpretation of ρ0α, ρ

0
β as representing, in some reduced-form way, the state of the system at time 0.
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weight on more recent actions.9

Strategies

A strategy profile is now functions mapping calendar time and the observed state variable

into the probability of choosing action a = 1, denoted Atα(ρα, ρβ), Atβ(ρβ). A strategy is

stationary means it is independent of calendar time, Atα = Aα, A
t
β = Aβ∀t ∈ [0,∞).

A strategy profile 〈Atα, Atβ〉, induces an action path through—analogously to the static

setting—the conditions

atα = Atα(ρtα, ρ
t
β) (11)

atβ = Atβ(ρtβ)∀t ∈ [0,∞) (12)

from the law of large numbers; it induces a state path through the laws of motion (9), (10).10

Payoffs

For a fixed outcome path, the payoffs to a player in period t are the same as in the static

game, that is, if a player chooses action a at time t, his payoff is U(a, atα, a
t
β), satisfying

Assumption 1. A player who sees private information s updates his beliefs over initial

conditions, as previously noted, for every initial condition there is a unique outcome path,

9 An exponentially weighted moving average is, of course, simply one out of many which we could have
chosen.

10 Outcome paths satisfying (11), (12), (9), and (10) are neither guaranteed to exist, nor to be unique. In
the case where an outcome path does not exist, as may occur, for example, if Aα or Aβ are not measurable
functions, then payoffs may be assumed to be −∞, but we will not consider equilibria with this property.
In the case where the outcome path is not unique, one may be selected according to any arbitrary rule.
For example, we might select one consistent with a discrete-time approximation to the model. Since any
individual player’s deviations do not affect the outcome path, the precise rule selected is unimportant. For
the remainder of this paper, all strategies are implicitly taken to be measurable functions, so that (9), (10)
are well-defined, and each strategy profile is considered to induce to a unique outcome path. Lemma 7
characterizes the way in which there may be multiple outcome paths, briefly, an outcome path’s orbit may
contain both a fixed point and a periodic point, however, behavior on the outcome path is still consistent
with the equilibrium characterizations derived in this paper.
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hence, beliefs over initial conditions induce beliefs over the value of the outcome path at

every time t. I denote random variables with tildes and realizations without tildes.

Equilibrium

An equilibrium consists of a strategy profile and beliefs over the state variable at each time

t, denoted 〈Atα, Atβ, µt〉, such that players are best responding to their beliefs, and beliefs are

consistent with the outcome path induced by 〈Atα, Atβ〉.

Formally, players are best responding given beliefs when (note that the expectation op-

erator is omitted for α players, since their belief updating process is trivial)

Supp(Atα(ρtα, ρ
t
β)) ⊆ arg max

a∈{0,1}
U(a, atα, a

t
β) (13)

Supp(Atβ(ρtβ)) ⊆ arg max
a∈{0,1}

Eµt [U(a, ãtα, ã
t
β) | ρ̃tβ = ρβ]∀t ∈ [0,∞) (14)

and beliefs are consistent with equilibrium behavior when, for all measurable subsets S ⊂

[0, 1]2,

µ0(S) = µt(ρtα(S), ρtβ(S))∀t ∈ [0,∞). (15)

An equilibrium is stationary means the strategy profile and beliefs are stationary, so that

Atα = Aα, A
t
β = Aβ, and µt = µ∀t ∈ [0,∞). Stationarity does not imply stationarity of

the state path, just that players beliefs should be independent of the time they entered the

game.

4.1 Equilibria of the dynamic game

I formally state a characterization of stationary equilibria in this game and discuss its im-

plications. The full proof is in the appendix.
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Proposition 6. Let 〈Atα, Atβ, µt〉, be an equilibrium. Then, for all t,

1. Atα satisfies

Atα(ρ̃α, ρ̃β) ∈ {0, Atβ(ρ̃β), 1} and (16)

2. Atβ(ρβ) solves with probability 1

Pµt(Aα(ρ̃tα, ρ̃
t
β) = 0 | ρ̃tβ = ρβ)× (U(0, 0, Atβ(ρβ))− U(1, 0, Atβ(ρβ)))

= Pµt(Aα(ρ̃tα, ρ̃
t
β) = 1 | ρ̃tβ = ρβ)× (U(1, 1, Atβ(ρβ))− U(0, 1, Atβ(ρβ))) (17)

Furthermore, these conditions are sufficient for equilibria, in the following sense: Let 〈Atα, Atβ〉

be a strategy profile, and say µt are probability distributions over [0, 1]2 consistent with the

outcome path induced by 〈Atα, Atβ〉. If for all t ∈ [0,∞), ρα, ρβ ∈ Supp(µt), it is the case that

Aα(ρα, ρβ) satisfies (16) and Aβ(ρβ) satisfies (17), then 〈Atα, Atβ, µt〉, is an equilibrium.

Proposition 6 is simply a re-statement of Lemmas 1 and 2, from the static environment

in the dynamic environment. If we require equilibria to be stationary, we can derive stronger

results than Proposition 6:

Proposition 7. Let 〈Aα, Aβ〉, µ be a stationary equilibrium. Then, for all #»ρ ∈ Supp(µ), Aα

satisfies (16), Aβ solves

|λα + λβAβ(ρβ)− ρβ| ×
(
U(0, 0, Aβ(ρβ))− U(1, 0, Aβ(ρβ))

)
= |λβAβ(ρβ)− ρβ| ×

(
U(1, 1, Aβ(ρβ)) − U(0, 1, Aβ(ρβ))

)
(18)

almost surely, and λα + λβAβ(ρβ)− ρβ ≥ 0 and λβAβ(ρβ)− ρβ ≤ 0.

Furthermore, these conditions are sufficient for equilibria, in the following sense: Let
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〈Aα, Aβ〉 be a stationary strategy profile. If for all #»ρ ∈ [0, 1]2, it is the case that Aα(ρα, ρβ)

satisfies (16) and Aβ(ρβ) satisfies (18), then there exists a probability measure µ on [0, 1]2

such that 〈Aα, Aβ, µ〉, is a stationary equilibrium.

Propositions 6 and 7 look similar, and so it is worthwhile to consider their differences.

Proposition 6 is the dynamic version of Proposition 3, and the proof is similar. In Propo-

sition 3, µ was taken to be exogenous. Proposition 6 has nothing further to say about µt

beyond the equilibrium requirement that it be consistent with player’s behavior. For sta-

tionary equilibria, however, it is possible to say more about µ. Specifically, the marginal

distributions Pµt(Aα(ρ̃tα, ρ̃
t
β) = 0 | ρ̃tβ = ρβ) and Pµt(Aα(ρ̃tα, ρ̃

t
β) = 1 | ρ̃tβ = ρβ) may be char-

acterized, which yields (18), and furthermore, given strategy profiles 〈Aα, Aβ〉 satisfying (16)

and (18), Proposition 7 states that consistent equilibrium beliefs exist, while Proposition 6

has nothing to say about the existence of consistent beliefs for a given strategy profile.

A focus on stationary equilibria is often justified through an argument that they repre-

sent, in some way, the long-run of a non-stationary equilibrium of the game. Since I mainly

focus on stationary equilibria for the rest of the paper, in Appendix B I show via numer-

ical simulation that it is not unusual for non-stationary equilibrium behavior to result in

convergence to a stationary equilibrium.

4.2 Instrumental preferences for conformity

Under the matching specification of utility, it is possible to explicitly characterize equilibrium

strategy profiles in stationary equilibria for β players by applying (18) from Proposition 7:

Example 4 (Matching utility I cont.). Here,

U(a, aα, aβ) =


aα

aα+aβ
a = 1

1−aα
1−aα+1−aβ

a = 0,
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when aα 6= 0 or aβ 6= 0, and 0 if aα = aβ = 0. Then equation (18) becomes

rβ(ρβ − λβAβ(ρβ))× 1

1 + (1− Aβ(ρβ))
= rβ(ρβ − λα − λβAβ(ρβ))× 1

1 + Aβ(ρβ)
, (19)

Solving yields

Aβ(ρβ) = ρβ. (20)

That is, under the matching specification of utility, β players mimic the actions they see

have been taken in the past. It is not clear ex-ante that β players should display this behavior,

after all, they do not have direct preferences for conformity, in the sense that their payoffs

are not necessarily increasing in the number of other players choosing the same action. Is

this a general feature of the model, or is it specific to the matching specification of utility? In

this section, I argue that it is a general feature of the model, in the sense that β players are

more likely to take an action the more they see that other players have chosen that action in

the past, in every stationary equilibrium.

An interpretation of equation (20) is that the β players are ‘endogenously’ conformist.

Their strategy could be interpreted as the players sampling an action from the social network

represented by ρβ, and mimicking it. In fact, this induced preference for conformity is a

feature of the general model:

Proposition 8 (Instrumental preferences for conformity). Say 〈Aα, Aβ, µ〉 is a stationary

equilibrium. If ρβ, ρ
′
β are two draws from ρ̃β and ρ′β > ρβ, then with probability 1, Aβ(ρ′β) ≥

Aβ(ρβ).

Proof. Pick ρβ, ρ
′
β ∈ projβ(Supp(µ)). If ρ′β = ρβ, then Aβ(ρβ) = Aβ(ρ′β). So say ρ′β > ρβ,
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but Aβ(ρ′β) < Aβ(ρβ). Then, by Assumption 1, we have

U(1, 1, Aβ(ρβ)) < U(1, 1, Aβ(ρ′β))

U(0, 1, Aβ(ρβ)) > U(0, 1, Aβ(ρ′β))

U(0, 0, Aβ(ρβ)) > U(0, 0, Aβ(ρ′β))

U(1, 0, Aβ(ρβ)) < U(1, 0, Aβ(ρ′β)),

and so

U(0, 0, Aβ(ρβ))− U(1, 0, Aβ(ρβ)) > U(0, 0, Aβ(ρ′β))− U(1, 0, Aβ(ρ′β)) (21)

U(1, 1, Aβ(ρβ))− U(0, 1, Aβ(ρβ)) < U(1, 1, Aβ(ρ′β))− U(0, 1, Aβ(ρ′β)). (22)

On the other hand, (recall by Proposition 7 that λβAβ(ρβ)− ρβ ≤ 0, λβAβ(ρ′β)− ρβ ≤ 0):

|λα + λβAβ(ρβ)− ρβ| ≤
∣∣λα + λβAβ(ρ′β)− ρβ

∣∣ (23)

|λβAβ(ρβ)− ρβ| ≥
∣∣λβAβ(ρ′β)− ρβ)

∣∣ . (24)

Together, (21), (22), (23), and (24) contradict (18), which holds with probability 1, and so

it must be with probability 1 that Aβ(ρ′β) ≥ Aβ(ρβ), the desired result.

That is, with two independent draws from ρ̃β, it is almost certain that the β players will

be more likely to choose a = 1 when the draw is higher. Proposition 8 is of interest because,

as in Bernheim (1994), observed conformist behavior does not arise from a direct preference

for conformity, rather, it arises from strategic incentives on the part of players to appear to

have better information about the actions of other players. It provides a rational for why

we might observe aesthetic preferences for conformity, and furthermore, why preferences

for conformity might be viewed negatively by others, or associated with lower-class tastes
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(Bourdieu, 1984).

5 Matching game application

In this section, I apply Proposition 7 to explicitly compute equilibria in the case where

payoffs are determined by the matching subgame, as in example 3. Imagine that player’s

action choices are interpreted as a choice between locations (for example, a = 0 represents

a bar on the east side of town, and a = 1 represents a bar on the west side of town). Once

players have made the action choice, they travel to the location, and look for someone to

match with. Matching with an α results in a payoff of 1, and matching with a β results in

a payoff of 0. Say in addition that instead of unit masses of both sorts of players, there is a

mass Mα of α players and Mβ of β players. The payoff of a player who chooses action a is

therefore derived using Bayes’ rule as

U(a, aα, aβ) = P(Meeting an α | Choosing a)

=


Mαaα

Mαaα+Mβaβ
a = 1

Mα(1−aα)
Mα(1−aα)+Mβ(1−aβ)

a = 0.

(25)

When aα = aβ = 0, or aα = aβ = 1, (25) is not well-defined when a = 1 or a = 0, say in this

case that U(1, 0, 0) = U(0, 1, 1) = Mα

Mα+Mβ
, so that U satisfies Assumption 1.

There are many stationary equilibria of this game. By Lemma 7, in Appendix A, it

is sufficient to focus on stationary equilibria with beliefs whose support consists of a single

fixed point or a single periodic orbit. Furthermore, we seek equilibria which are geometrically
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symmetric, meaning

Aα(ρα, ρβ) = 1− Aα(1− ρα, ρβ)

Aβ(ρβ) = 1− Aβ(ρβ),

(or geometrically, that strategy profiles should be invariant to 180◦ rotations). The restriction

to geometrically symmetric equilibria is justified for two reasons: First, it is aesthetically

pleasing; analysis of geometrically asymmetric equilibria may be done and produces similar

results. Second, among strategy profiles in which α’s always coordinate on 0 or 1, there is a

unique geometrically symmetric strategy profile which produces the highest possible payoff

for α players. (See Proposition 12 for a characterization of payoffs in this equilibrium.)

Fixed points

First, we characterize all stationary equilibria with beliefs whose support contains a fixed

point. These are all equilibria 〈Aα, Aβ, δ(ρ∗α,ρ∗β)〉, where δ(ρ∗α,ρ∗β) is a fixed point and δ is the

Dirac measure which puts probability 1 on (ρ∗α, ρ
∗
β). The result is summarized in the following

proposition:

Proposition 9. 〈Aα, Aβ, δ(ρ∗α,ρ∗β)〉 is a stationary equilibrium if and only if

Aα(ρ∗α, ρ
∗
β) = Aβ(ρ∗β) = ρ∗α = ρ∗β.

Proof. To show necessity, pick s∗ ∈ [0, 1], and say 〈Aα, Aβ〉 is a strategy profile satisfying

Aα(s∗, s∗) = Aβ(s∗) = s∗.

I claim that 〈Aα, Aβ, δ(s∗,s∗)〉 is a stationary equilibrium. Under this strategy profile, the
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state path under the sole possible realization of the state variable is

(ρtα, ρ
t
β) = (s∗, s∗)∀t ≥ 0,

and by Proposition 7, 〈Aα, Aβ, µ〉 is a stationary equilibrium, since (16) is satisfied; when s∗ ∈

(0, 1) equation (18) is satisfied since, e.g., Pµ(Aα(ρ̃α, ρ̃β) = 1 | ρ̃β = s∗) = 0, and when s∗ ∈

{0, 1}, (18) is satisfied since, e.g., U(1, 1, Aβ(s∗))−U(0, 1, Aβ(s∗)) = 0, by Assumption 1, so

for all s∗ ∈ [0, 1], both sides of the indifference condition (18) are zero. Hence 〈Aα, Aβ, δ(s∗,s∗)〉

is a stationary equilibrium.

To show sufficiency, say 〈Aα, Aβ, δ(ρ∗α,ρ∗β)〉 is some stationary equilibrium. Note that in

equilibrium the state variable is commonly known, hence, for β players to be indifferent we

must have Aα(ρ∗α, ρ
∗
β) = Aβ(ρ∗β). And by the law of motion (9), for (ρ∗α, ρ

∗
β) to be a fixed

point, we must have

0 = rα(λαAα(ρ∗α, ρ
∗
β) + λβAβ(ρ∗β)− ρ∗β)

= rα(Aβ(ρ∗β)− ρ∗β)

=⇒ Aβ(ρ∗β) = ρ∗β.

Applying (10) and similar reasoning yields Aβ(ρ∗β) = ρ∗α, so Aα(ρ∗α, ρ
∗
β) = Aβ(ρ∗β) = ρ∗α = ρ∗β,

which is the desired result.
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Periodic orbits

Now, in the more interesting case, we characterize all stationary equilibria with periodic

orbits. To do so, we begin by solving condition (18), which when Aα(ρα, ρβ) ∈ {0, 1} becomes

(λα + λβAβ(ρβ)− ρβ)×Mα/(Mα +Mβ(1− aβ))

= −(λβAβ(ρβ) − ρβ) ×Mα/(Mα + MβAβ(ρβ)),

to obtain the functional form Aβ(ρβ) must satisfy at all possible ρβ in the support of µ. The

result is summarized in Lemma 3:

Lemma 3. Under the matching specification of utility, (25), if Aα(ρα, ρβ) ∈ {0, 1}, and

Aβ(ρβ) =
(2Mα

Mβ
+ 1)ρβ − Mα

Mβ
λα

2Mα

Mβ
λβ + 1

. (26)

for all (ρα, ρβ), then there exists a probability measure µ such that 〈Aα, Aβ, µ〉 is a stationary

equilibrium.

(26) may not result in a well-defined strategy profile on the entire state space (specifically,

it may specify that Aβ(ρβ) /∈ [0, 1] at some ρβ), hence, by Proposition 7, wherever this occurs

we must have Aα(ρα, ρβ) = Aβ(ρβ). Finding stationary equilibria with periodic orbits is then

a matter of choosing regions on which Aα = 1 and Aα = 0, solving (26) on the regions where

it implies Aβ(ρβ) ∈ [0, 1], and choosing Aα(ρα, ρβ) = Aβ(ρβ) on regions where (26) requires

Aβ(ρβ) /∈ [0, 1]. Together with (26) and the laws of motion (9), (10), this induces a dynamical

system on the state space. Solving for a time average then yields µ. More specifically,

1. Guess an initial starting point, (ρ0α, ρ
0
β), and begin with Aα = 1.

2. Solve forward the differential equation resulting from (26), the laws of motion (9), (10),
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and the assumption that Aα(ρα, ρβ) = 1,

ṡtα = rα

(
λα + λβ

(
(2Mα

Mβ
+ 1)ρtβ − Mα

Mβ
λα

2Mα

Mβ
λβ + 1

)
− ρtα

)
(27)

ṡtβ = rβ

(
λα + λβ

(
(2Mα

Mβ
+ 1)ρtβ − Mα

Mβ
λα

2Mα

Mβ
λβ + 1

)
− ρtβ

)
(28)

on some time interval, [0, P 0), to yield (ρtα, ρ
t
β) on t ∈ [0, P 0).

3. At t = P 0, take the point (ρP
0

α , ρP
0

β ) as an initial condition, and repeat the process,

but now with Aα = 0, to yield (ρtα, ρ
t
β) on [P 0, P 1).

4. Check whether the stationarity condition, (ρP
1

α , ρP
1

β ) = (ρ0α, ρ
0
β) is satisfied, if it is, then

a stationary equilibrium has been found, with period P 0 +P 1, in which α players play

a strategy satisfying

Aα(ρα, ρβ) =


1 (ρα, ρβ) ∈ {(ρtα, ρtβ) | t ∈ [0, P 0)}

0 (ρα, ρβ) ∈ {(ρtα, ρtβ) | t ∈ [P 0, P 1)},

and β players play according to (26).

For example, in the special case in which Mα = Mβ = λα = λβ = 1
2
, we might look

for a geometrically symmetric equilibrium by fixing an initial starting value ρ0β <
1
2
, and

guessing ρ0α as the corresponding value in the α dimension. The solution to the differential

equation (28) may be obtained using standard methods as

ρtβ = e
−

λαrβ
2λβ+1

t
(ρ0β − (1 + λβ)). (29)
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Substituting (29) into (27) yields an ordinary differential equation,

ṡtα = rα

λα + λβ

(2Mα

Mβ
+ 1)e

−
λαrβ
2λβ+1

t
(ρ0β − (1 + λβ))− Mα

Mβ
λα

2Mα

Mβ
λβ + 1

− ρtα
 (30)

which may also be solved using standard methods. We could proceed by taking (ρ
P/2
α , ρ

P/2
β )

as the initial conditions and repeating this process, but by our assumption of geometric

symmetry, this is equivalent to 1−ρ0β = ρ
P/2
β , and 1−ρ0α = ρ

P/2
α , which yields two stationarity

conditions from (29) and the solution to (30). Specifically, the stationarity condition resulting

from (29) is

1− ρ0β = e
−

λαrβ
2λβ+1

P
2 (ρ0β − (1 + λβ)),

which, solving for P , implies the period length is

P =
2(1 + 2λβ)

rβλα
log

(
1− ρ0β + λβ

λβ + ρ0β

)
.

Analogously, solving the stationarity condition 1 − ρ0α = ρ
P/2
α yields ρ0α as a function of ρ0β,

the point at which α players should switch from a = 0 to a = 1. The solution in this case

is plotted numerically in Figure 3. The solid curve, ρswitch
α (ρβ), denotes the explicit function

induced by the stationarity condition 1−ρ0α = ρ
P/2
α . It is the boundary at which stationarity

requires α players to switch from one action to another. By Proposition 7, any strategy at

which α players are choosing either 0 or 1 everywhere is a best reply for all α players. But
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the following strategy, in which α players switch at the switching boundary,

Aswitch
α (ρα, ρβ) =


1 ρα ≥ ρswitch

α (ρβ)

0 ρα < ρswitch
α (ρβ),

(31)

is special, since by construction, it is the only (up to zero probability events) strategy consis-

tent with all stationary beliefs. Combining this, together with Lemma 7 and Proposition 9,

yields the following characterization of stationary, geometrically symmetric equilibria:

Proposition 10. 〈Aα, Aβ, µ〉 is a stationary, geometrically symmetric equilibrium if and

only if

Aα(ρα, ρβ) ∈ {Aswitch
α (ρα, ρβ), Aβ(ρβ)}

almost surely, and Aβ satisfies (26).

Armed with Proposition 10, we now analyze some comparative statics of this equilibrium.

Of interest is periodic behavior in the game, and the main questions I ask are the following:

What affects the period length? What affects the payoffs to players? And, what affects the

switching strategy for α players, Aswitch
α ?

5.1 Comparative statics

5.1.1 Period length

As illustrated by Figure 3, there are many possible period lengths in equilibrium, depending

on the initial choice of ρ0β. The following result characterizes the set of possible period

lengths:
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Aα = 1

ρ
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α

(ρβ
)

ρα

ρβ

Figure 3: Left: Two possible outcome paths under the matching specification of utility.
The solid outer outcome path has equitemporally spaced arrows to indicate speed. The
inner dashed curve is another outcome path. When the invariant measure µ is ergodic
if and only if it has support only on one outcome path, and the convex hull of all ergodic
measures is the set of all nvariant measures. ρswitch

α (ρβ) represents the set of points at which α

players switch in stationary equilibria, derived from the stationarity condition 1−ρ0α = ρ
P/2
α ,

hence, the indicated strategy at which α players choose 1 when (ρα, ρβ) ≥ (ρswitch
α (ρβ), ρβ)

and 0 otherwise is the only geometrically symmetric α strategy profile consistent with all
geometrically symmetric invariant measures (up to zero-probability events on the boundary
of ρswitch

α .) Right: Two outcome paths, with λα = λβ = Mα = Mβ = 1
2
, but rβ = 1 in one

(light, green) and rβ = 1/4 in the other (dark, purple). Arrows are equitemporally spaced
to illustrate that when rβ = 1/4, the state path moves more slowly in both dimensions.
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Proposition 11. In every stationary equilibrium under the matching specification of utility,

the period satisfies

P ≤
(

2

rβλα

)(
1 +

Mα

Mβ

(1 + λβ − λα)

)
log

(
1 +

Mβ

Mα

)
. (32)

Furthermore, for any P satisfying (32), there is a stationary equilibrium which induces an

outcome path with that period length.

The proof follows from algebraic computation and is relegated to the appendix. Propo-

sition 11 has the following implications for comparative statics of the period length:

Corollary 1. The maximum possible period length in symmetric stationary equilibria, de-

noted P ∗, satisfies

1.
∂P ∗

∂rβ
< 0,

∂P ∗

∂rα
= 0,

2.
∂P ∗

∂λα
< 0,

∂P ∗

∂λβ
> 0,

Furthermore, there is a cutoff rβ such that

1.
∂P ∗

∂(Mα/Mβ)
< 0 when λβ < rβ and

2.
∂P ∗

∂(Mα/Mβ)
> 0 when λβ > rβ.

Corollary 1 has the following implications about how long fads last. A broad stylized fact

about the last century is that the pace of modern life is perceived to be faster today than it

was in 1900. Today, the lifespan of fashions is measured in years, a century ago, they might

be measured in decades. On Facebook or Twitter, topics trend and then are forgotten in the

span of a week. The model suggests that what drives the speed of fads is the up-to-dateness

of information available to β players, not that available to α players, as summarized in the

following two corollaries to Proposition 11:
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Corollary 1 is a statement about orderings of the set of possible period lengths. We could

also consider the following: Fix some value of ρ0β <
1
2
, and compare the periodic outcome

paths, for different parameters, but for which ρ0β is the smallest value achieved by ρtβ. (See

Figure 3 for an illustration of two state paths derived in this way.) The same comparative

statics hold, see Corollary 2 in Appendix A.

Corollary 1 implies that the channel which drives the lifespan of a fad is not the in-

formation available to the α players, but that available to the β players. An increase rβ

means the average available to β players places more weight on more recent actions, and an

increase in λα (which, since λα + λβ = 1, is a decrease in λβ) means the average available to

β players places more weight on actions taken by α players. Both reduce the lifespan of a

fad, for the reason that the faster β players learn the action α players are coordinating on,

the faster α players need to switch. This provides a rational for why fads are percieved to

begin more often and end more rapidly today, if in 1900 it took days for upper-classes to

learn about a new fashion, but months for lower-classes, the model predicts that fads should

have lasted months; today, it may still take days for high-classes, but weeks for lower-classes,

and accordingly fads last weeks.

5.1.2 Payoffs

The next result characterizes average payoffs in equilibrium. By average payoffs, I mean the

payoff expected by a player ex-ante, before entering the game,

Vα := Eµ[U(Aα(ρ̃α, ρ̃β)), Aα(ρ̃α, ρ̃β), Aβ(ρ̃β)]

Vβ := Eµ[U(Aβ(ρ̃β)), Aα(ρ̃α, ρ̃β), Aβ(ρ̃β)].

Proposition 12. In every symmetric, stationary equilibrium in which Aα(ρα, ρβ) ∈ {0, 1}
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and Aβ(ρβ) ∈ (0, 1) on the outcome path,

Vα =
Mα

Mα + 1
2
Mβ

Vβ =
1

2

Mα

Mα + 1
2
Mβ

.

Proof. β’s are by construction indifferent between actions, and so, a β player who deviates to

the strategy ‘mix 50/50 between actions’ receives the same payoff as one who mixes according

to Aβ(ρβ). Such a player, by chance, chooses the α-type player’s actions half the time, and

so

Vβ =
1

2
Vα. (33)

When α players are coordinating on a = 0 or a = 1, their payoff is the probability that a

randomly chosen player choosing that action is an α player in equilibrium. Since α players

always choose either a = 1 or a = 0, consistency of beliefs requires that the average (uncon-

ditional) payoff of any player in the game be equal to the probability that an average player

is an α, that is

Mα

Mα +Mβ

Vα +
Mβ

Mα +Mβ

Vβ =
Mα

Mα +Mβ

,

which, re-arranging, implies

Mβ

Mα

Vβ = 1− Vα. (34)

Combining (33) and (34) and solving for Vα, Vβ yields the desired result.

Proposition 12 implies that the payoffs to the different player types are independent of

44



all model parameters except for the relative mass of α and β players in the population.

In particular, it is independent of the timeliness of the β-type player’s information, rβ.

Intuitively, this occurs because improving the quality of β-type player’s information has two

effects: The first is that β players learn faster, and the second, from Corollary 1, is that

α players switch more rapidly between actions. Here, the two effects exactly cancel. This

result suggests that informing β players about what other players are doing may not have

the intended effect. Imagine for example advising a high school student to go to college in

order to maximize her earnings, and that going to college increases earnings only because

it communicates that the recipient of a diploma is the sort of person who understands that

the sort of thing one does to increase earnings is go to college.11 Then, advising one or two

high school students to go to college will benefit them, but making it commonly known that

one should attend college to maximize earnings will result in employers seeking some other

signal.

5.1.3 Strength of conformity

In Section 4.2 the concept of instrumental preferences for conformity in this model was

introduced. We proved that β players were more likely to choose an action the more they’d

seen that action chosen in the past. How much more likely they are to choose that action

depends on model parameters, I interpret this as the degree of β player’s conformity and call

it κ, i.e.

κ :=
∂

∂ρβ
Aβ(ρβ).

The following result summarizes the comparative statics of the strength of conformity:

11This is valuable to employers if, for example, understanding that one should go to college is indicative of
a high-class backround, or signals that an individual understands the other sorts of things that one should
do to be successful in a career, or will be a good cultural fit in a particular job.
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Proposition 13. β players are more conformist when there are more α’s, and when α’s are

more visible, i.e.,

1.
∂κ

∂(Mα/Mβ)
> 0,

2.
∂κ

∂λα
> 0.

Proof. The proof follows from straightforward calculation, since from (26),

κ =
2(Mα/Mβ) + 1

2(Mα/Mβ)λβ + 1
.

Conditional on observing, e.g., a high value of ρβ, a β player tends to think it is more

likely that many β players are choosing a = 1, since the periods of time in which lots of

both types of players are pooling on a single action last longer than the periods of time when

αs are choosing a different action than everyone else (see Figure 3 for an illustration). An

increase in the visibility of α players increases the degree to which β’s are conformist because

it reduces the length of the initial adoption period, in which α’s are mainly choosing one

action and β’s mainly choosing another, hence, when λα is larger, conditional on observing

a high value of ρβ, a β type player believes it more likely that everyone, α’s and β’s alike, is

pooling on a = 1, and so more β’s must in equilibrium choose a = 1.

5.1.4 α strategies and anti-conformity

What determines the switching boundary, ρswitch
α (ρβ)? In particular, we are interested in the

average slope of the switching boundary for some point (ρβ, ρ
switch
α (ρβ)) in the orbit of the

state path, as well as an interpretation of its slope. Specifically, consider the following linear
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strategy α’s might play for some fixed slope, γ > 0 (see Figure 4 for an illustration.)

Aα(ρα, ρβ) =


1 ρα − 1

2
≥ γ(ρβ − 1

2
)

0 ρα − 1
2
< γ(ρβ − 1

2
),

(35)

If we fix some value of ρβ < 1/2, then the linear strategy in which the switching boundary

passes through the points (ρswitch
α (ρβ), ρβ), (1 − ρswitch

α (ρβ), 1 − ρβ) supports an equilibrium

with a state path passing through those points, by Proposition 10, so that

γ =
1− 2ρβ

1− 2ρswitch
α (ρβ)

. (36)

How to interpret γ? In Figure 5 is plotted ρtα, ρ
t
β, for a fixed starting value, as a function

of time. The α’s strategy while playing a = 1, as a function of time, can be divided into three

periods. In the first, P 1, the α’s coordinate on the action which appears to be a minority

action, i.e., ρtα <
1
2

and ρtβ <
1
2
. During this initial, very few β players are choosing action

a = 1, and the payoff to the α players is high. In the second period, P2, the α’s coordinate on

an action which appears to be the majority action, since ρα >
1
2
, but which is still percieved

as the minority action by ρβ. Since Aβ(1
2
) = 1

2
in every geometrically symmetric equilibrium,

this is also a period of time during which the minority of β players are choosing the action.

In the final period, P3, majorities of both α and β players are coordinating on action a = 1.

The switching point is determined as the point where the ratio of ρβ to ρα is sufficiently

high, that is, a = 1 is percieved by α players to have ‘played out’ as a trend. ‘Sufficiently

high’ is measured by γ. So, γ may be interpreted as the degree to which α players are willing

to wait before choosing the minority action. We interpreted the slope of the β’s strategy, κ,

as measuring the degree to which they mimicked the actions being taken by others, that is,

the degree to which β players appeared to be conformist; analogously, we might interpret γ
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Figure 4: Left: Each outcome path in a geometrically symmetric equilibrium is supported
by a corresponding linear strategy. Right: Moving from high rβ (light, green) to low rβ
(dark, purple) decreases the slope of the linear switching boundary.
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as measuring the degree to which α players anti-conform, a higher value of γ corresponds

to α players appearing to be less willing to anti-conform. Under the interpretation of ρα, ρβ

as Facebook and Instagram, intuitively, an α player decides to anti-conform and choose

a = 0 when it appears that the number of people choosing a = 1 on Facebook is large and

sufficiently close to the number of people choosing a = 0 on Instagram, and γ measures the

threshold at which the switch occurs.

Proposition 14. In every equilibrium strategy of the form (35), γ < 1. Furthermore, γ

satisfying (36) is increasing in rα, and decreasing in rβ.

Proof. The proof follows by substituting the analytical expression for ρswitch
α (ρβ) derived

previously into the expression for γ, (36). It is then a straightforward comparative statics

exercise to establish the result.

Proposition 14 suggests that improving the information technology available to β players,

or increasing rβ, increases the degree to which α players are anti-conformist. Intuitively, when

β players learn what action players are coordinating on more quickly, α’s not only switch

more rapidly, as established in Proposition 1, but they also act as if more anti-conformist.

¿¿¿¿¿¿¿ fba381dca49f97033869a13fe7d5b25f8bf9118d

6 Extensions

So far, α players have differed from β players in three distinct ways: First, they observe

strictly more information than β players. Second, they have access to a more up-to-date

average of the actions of past players, since rα > rβ. And third, all players have preferences

for matching the actions of α players, and mismatching the actions of β players. In this

section, we consider the different cases, summarized in table ??.
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Figure 5: Top: One period of ρα, ρβ as functions of time when Aα = Aswitch
α . The α’s

strategy, as a function of time, can be divided into three periods. In the first, P 1, the α’s
coordinate on the action which appears to be a minority action, a = 1. During this initial,
very few β players are choosing action a = 1, and the payoff to these α players is high. In the
second period, P2, the α’s coordinate on an action which appears to be the majority action,
according to ρα, but which is still percieved as the minority action by ρβ. Since Aβ(1

2
) = 1

2

in every geometrically symmetric equilibrium, this is also a period of time during which the
minority of β players are choosing the action. In the final period, P3, majorities of both α
and β players are coordinating on action a = 1. The switching point is determined as the
point where the ratio of ρβ to ρα is sufficiently high, that is, a = 1 is percieved by α players
to have ‘played out’ as a trend. The cycle then repeats. Bottom: The case in which rα < rβ
is a case in which α’s anti-conform when they percieve everyone has been taking the newer
action, and they coordinate on the action which appears relatively older.
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rα > rβ rα < rβ

α’s valued Main paper ‘Hipsters’
β’s valued Only fixed points Only fixed points

Table 1: The three possible additional cases considered in Section 6.

In this section, I consider the following extensions to the model: First, I consider what

happens if β players are the type who are valued, that is, I relax the assumptions on the

utility function and allow U(1, aα, aβ) to instead be increasing in aβ and decreasing in aα.

I show that only fixed-point equilibria are possible in this setting. Second, I consider what

happens if rα < rβ, that is, α players have access to older information about the past

actions of players. I show that periodic equilibria may still be supported, but that α player’s

strategies now may be interpreted as choosing actions which seem relatively older.

6.1 β players are valued

The case in which β players are the ones who are valued corresponds to the following modi-

fication to Assumption 1:

Assumption 2. U(1, aα, aβ) < U(0, aα, aβ) if and only if aα > aβ.

Then the following result is straightforward:

Proposition 15. Under Assumption 2, in every stationary equilibrium, Aα(ρα, ρβ) = Aβ(ρβ).

Proof. Say there were some state (ρα, ρβ) ∈ Supp(µ) for which Aα(ρα, ρβ) > Aβ(ρβ). (The

case in which the inequality is flipped is analogous.) Then by Assumption 1, U(0, Aα(ρα, ρβ), Aβ(ρβ)) >

U(1, Aα(ρα, ρβ), Aβ(ρβ)), and so Aα(ρα, ρβ) = 0. But since Aβ(ρβ) ≥ 0, we have Aβ(ρβ) ≥

Aα(ρα, ρβ), a contradiction.

Proposition 15 implies that the sorts of dynamics which occurred under Assumption 1

cannot occur if β-type players are the valued players. Players may all pool on an action
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(Aα = Aβ = 0), or they may randomize independently of what other players are doing.

Intuitively, imagine an academic environment, in which appearing to be well-informed about

what other academics are wearing is a signal, perhaps, that one pays insufficient attention

to one’s research. The academics who do pay attention to what others are wearing are

always capable of mimicking the dress of those who do not, and so in equilibrium a wide

range of dress styles are acceptable and no inferences are drawn from one’s clothing. Or,

imagine an office environment, where a similar dynamic may be at play, and where all workers

coordinate on a uniform dress code, because standing out is frowned upon as a signal that

one is insufficiently serious about the job.

6.2 rα < rβ

The case in which α players have access to older information than β players about what other

players are choosing corresponds to the case in whcih rα < rβ. In this case, I assert without

proof that Proposition 7 continues to hold,12 and as before, we may construct the switching

boundary, ρswitch
α (ρβ). Now, however, the α’s switch the actions they play (compare to (31)):

Aswitch
α (ρα, ρβ) =


0 ρα ≥ ρswitch

α (ρβ)

1 ρα < ρswitch
α (ρβ).

(37)

As before, we can define the average slope of the switching boundary, γ, as in (36), and the

linear strategy, analogous to (35):

Aα(ρα, ρβ) =


1 ρα − 1

2
< γ(ρβ − 1

2
)

0 ρα − 1
2
≥ γ(ρβ − 1

2
).

(38)

12The proof is the same, with minor modifications.

52



How to interpret γ now, when rα < rβ? When rα > rβ, the α players coordinated on

actions which seemed recently more popular, until they saw that enough players had been

coordinating on that action recently, in which case they switched to choose the action which

appeared to be a minority action, but which also appeared to be relatively recently more

popular. When rα < rβ, the α’s have access to relatively older information than β players

about the actions of other players, and so they switch to the minority action, they choose

the action which appears to be relatively older in popularity (see Figure 5), and we have the

following modification of Proposition 14 with an analogous proof:

Proposition 16. In every equilibrium strategy of the form (35), γ > 1. Furthermore, γ

satisfying (36) is decreasing in rα, and increasing in rβ.

Since in this case α players coordinate on the actions which seem relatively older and less

popular, we might interpret this as the case of ‘hipsters’, while the case in which rα > rβ

was the case of ‘fashion leaders’.

7 Conclusion

I conclude with a discussion of future avenues for research, as well as miscellaneous topics

unsuitable for the main body of the paper.

In the United States, when high school students apply to prestigious colleges, admissions

committees generally discriminate between students, who may almost universally have per-

fect test scores, on the basis of ‘holistic’ factors. In practice, they tend to look at whether a

student engaged in particular extra-curricular activities. Several decades ago, those activities

might have included playing the violin, or belonging to a chess club. Today, those activities

might include belonging to a lacrosse team, or volunteering at a homeless shelter. Critics
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of holistic admissions factors charge that they provide a means for prestigious colleges to

discriminate against Asian applicants.13 The model suggests a channel through which this

discrimination may take place. An admissions committee, disallowed from directly exclud-

ing candidates based on their last name, might instead favor applicants who engage in a

traditionally non-Asian activity, such as playing the violin. Over time, Asian families learn

about this preference, and soon, whether an applicant plays the violin is non-informative

about his ethnicity, and the college admissions committee must switch to favoring playing

lacrosse. Importantly, a candidate who plays lacrosse signals only that he understands that

the sort of thing one does to get into a a prestigious college is play lacrosse. The model

therefore suggests that programs which educate people about the sorts of things one does

to get into a good college may be self-defeating. If a college cannot discriminate on the

basis of extra-curricular activities, it may either move to explicit discrimination, or stop

discriminating.

In ‘The Coolhunt’14, Malcolm Gladwell presents an axiomatic definition of the concept

of ‘cool’, which I re-phrase here:

1. Cool cannot be manufactured, only observed.

2. Cool can only be observed by those who are themselves cool.

3. The act of observing cool causes cool to take flight.

The result of these three rules, writes Gladwell, is a ‘closed loop, the hermeneutic circle of

coolhunting’, in which the cool are always chasing the next trend, and the adoption of that

trend is the thing which causes it to be uncool. In this paper, I present a model which I

argue formalizes these axioms.

13‘For Asian Americans, a changing landscape on college admissions’, Los Angeles Times, February 2015.
14‘The Coolhunt’, The New Yorker, March 1997.
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Generally speaking, an economist’s explanations for the existence of advertising tend to

radically differ from everyone else’s. One channel through which advertising is commonly

perceived to work is by somehow manipulating the perceptions consumers draw of the prod-

uct. Advertisers themselves see this as a crucial component of their craft.15 In this story,

someone who bought an Apple computer in the 1980s was not necessarily buying a better

computer as much as he was buying an identity as a non-conformist artistic type, a percep-

tion that Apple encouraged with their famous ‘1984’ and ‘Think Different’ campaigns. See

Akerlof and Kranton (2000) for a formal economic model of identity. This paper suggests

an alternate rationale for what it might mean to buy an identity, namely, that buying cer-

tain products might credibly signal to others something about oneself. Consumers of Apple

products, for example, could credibly signal that they were the sort of people who under-

stood that Apple products are cool. Apple’s ‘Think Different’ campaign hardly mentioned

the name of the company, instead featuring pictures of artists and inventors. In fact, a com-

mon feature of much modern advertising is that it is deliberately vague about the product

being advertised. This is explained within the context of the model, if we imagine that an

advertising firm is interested in designing an ad campaign for a product which people are

buying to signal that they are part of a high-status group, then there is a tradeoff: Too little

advertising, and the low-status group fails to buy the product, too much advertising, and

the worth of the product to the high-status group is less. This model provides a framework,

grounded in agents with standard preferences, in which to ask questions about the optimal

release of information by an advertising firm which controls the parameters of the model.

15See, e.g., Ogilvy on Advertising, by David Ogilvy: ‘These three brands have different images which
appeal to different kinds of people. It isn’t the whiskey they choose, it’s the image. The brand image is 90%
of what a distiller has to sell.’
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