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Abstract

This paper studies infinite-horizon stochastic games in which players ob-
serve payoffs and noisy public information about a hidden state each period.
We find that, very generally, the feasible and individually rational payoff set
is invariant to the initial prior about the state in the limit as the discount fac-
tor goes to one. This result ensures that players can punish or reward the
opponents via continuation payoffs in a flexible way. Then we prove the
folk theorem, assuming that public randomization is available. The proof
is constructive, and uses the idea of random blocks to design an effective
punishment mechanism.
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1 Introduction

When agents have a long-run relationship, underlying economic conditions may
change over time. A leading example is a repeated Bertrand competition with
stochastic demand shocks. Rotemberg and Saloner (1986) explore optimal col-
lusive pricing when random demand shocks are i.i.d. each period. Haltiwanger
and Harrington (1991), Kandori (1991), and Bagwell and Staiger (1997) further
extend the analysis to the case in which demand fluctuations are cyclic or persis-
tent. A common assumption of these papers is that demand shocks are publicly
observabldeforefirms make their decisions in each period. This means that in
their model, firms can perfectly adjust their price contingent on the true demand
today. However, in the real world, firms often face uncertainty about the market
demand when they make decisions. Firms may be able to learn the current de-
mand shock through their salefter they make decisions; but then in the next
period, a new demand shock arrives, and hence they still face uncertainty about
the true demand. When such uncertainty exists, equilibrium strategies considered
in the existing work are no longer equilibria, and players may want to “experi-
ment” to obtain better information about the hidden state. The goal of this paper
is to develop some tools which are useful to analyze such a situation.

Specifically, we consider a new class of stochastic games in which the state
of the world is hidden information. At the beginning of each petipd hidden
statew! (booms or slumps in the Bertrand model) is given, and players have some
posterior beliefu' about the state. Players simultaneously choose actions, and
then a public signay and the next hidden staté'*! are randomly drawn. After
observing the signaJ, players updates their posterior belief using Bayes’ rule,
and then go to the next period. The siggatan be informative about both the
current and next states, which ensures that our formulation accommodates a wide
range of economic applications, including games with delayed observations and a
combination of observed and unobserved states.

Since we assume that actions are perfectly observable, players have no private
information, and hence after every history, all players have the same posterior be-
lief ut about the current stat®'. Hence this posterior beligft can be regarded
as a common state variable, and our model reduces to a stochastic game with
observablestatesu!. This is a great simplification, but still the model is not as



tractable as one would like: Since there are infinitely many possible posterior be-
liefs, we need to consider a stochastic game wifimite states. This is in a sharp
contrast with past work which assunfeste states (Dutta (1995), Fudenberg and
Yamamoto (2011b), andiner, Sugaya, Takahashi, and Vieille (2011)).

In general, the analysis of stochastic games is different from that of repeated
games, because the action today influences the distribution of the future states,
which in turn influences the stage-game payoffs in the future. For the finite-state
case, past work shows that this effect vanishes for patient players, under a mild
condition. Formally, if states areommunicatingn that players can move the
state from any state to any other state, then the feasible payoff set is invariant to
the initial state in the limit as the discount factor goes to one. This invariance
result ensures that even if someone deviates today and influences the distribution
of the state tomorrow, it does not change the feasible payoff set in the continuation
game from tomorrow; so continuation payoff can be chosen in a flexible way,
regardless of the action today. This property allows us to discipline players’ play
via intertemporal incentives as in repeated games.

Why are the feasible payoffs invariant for the finite-state case? To see this,
consider the welfare-maximizing payoff vector in the feasible payoff set, and sup-
pose that players play a strategy profile which achieves this payoff. Without loss
of generality, we can assume that it is a Markov strategy so that the state follows a
Markov process. When states are finite and states are communicating, this Markov
process i®rgodicso that the initial state cannot influence the state in a distant fu-
ture. This immediately implies that the welfare-maximizing payoff is invariant to
the initial state, since patient players care only about payoffs in a distant future. A
similar argument shows that the entire feasible payoff set is also invariant to the
initial prior.

On the other hand, when states are infinite, a Markov process is not ergodic
in many cases. This is essentially because states arposdtve recurrentin
the sense that the state may not return to the current state forever. While there

IFor the infinite-state case, the existence of Markov perfect equilibria is extensively studied.
See recent work by Duggan (2012) and Levy (2013), and an excellent survey by Dutta and Sun-
daram (1998). In contrast to this literature, we consider general non-Markovian equilibrizer
Takahashi, and Vieille (2011) consider non-Markovian equilibria in infinite states, but they assume
that the limit equilibrium payoff set is invariant to the initial state. That is, they directly assume a
sort of ergodicity and do not investigate when it is the case.
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are some sufficient conditions for ergodicity of infinite-state Markov chains (e.g.
Doeblin condition see Doob (1953)) , these conditions are not satisfied in our
setup?

Despite such technical complications, we find that undefulesupport as-
sumption the belief evolution process has a sort of ergodicity, and accordingly
both the feasible payoff set and the minimax payoffs are invariant to the initial
prior, for patient players. The full support assumption requires that regardless of
the current state and the current action profile, any signal can be observed and any
state can occur tomorrow, with positive probability. Under this assumption, the
support of the posterior belief is always the whole state space, i.e., the posterior
belief assigns positive probability to every state It turns out that this property
is useful to obtain the invariance result.

The proof of invariance of the feasible payoffs is not new, and it directly fol-
lows from the theory of partially observable Markov decision process (POMDP).
In our model, the feasible payoffs can be computed by solving a Bellman equa-
tion in which the state variable is a belief. Such a Bellman equation is known as
a POMDP problem, and Platzman (1980) shows that under the full support as-
sumption, a solution to a POMDP problem is invariant to the initial belief. This
immediately implies invariance of the feasible payoff set.

On the other hand, invariance of the minimax payoff is a new result. The
minimax payoff isnot a solution to a Bellman equation (and hence it is not a
POMDP solution), because there is a player who maximizes her own payoff while
the others minimize it. The interaction of these two forces complicates the belief
evolution, which makes our analysis more difficult than the POMDP problem.
To prove invariance of the minimax payoff, we begin with the observation that
the minimax payoff (as a function of the initial belief) is the upper envelope of
a series of convex curves. Then using the convexity, we derive a uniform bound
on the variability of these curves, and show that this bound is close to zero. This
in turn implies that the variability of the upper envelope (and hence the minimax
payoff) is close to zero.

Building on the invariance result above, in Section 4, we prove the folk the-

°This is essentially because our model is a multi-player version of the POMDP. The introduc-
tion of Rosenberg, Solan, and Vieille (2002) explains the difficulty of the analysis of the POMDP
model.



orem. Formally, we show that if the feasible and individually rational payoff set
V* is invariant to the initial prior, then any payoff in the 8t can be achieved
by sequential equilibria for patient players. The main challenge in the proof is
to figure out an effective punishment mechanism. In the standard repeated-game
model, Fudenberg and Maskin (1986) consider a simple equilibrium in which a
deviator will be minimaxed fof periods and then those who minimaxed will
be rewarded. Promising a reward after the minimax play is important, because
the minimax profile itself is not an equilibrium and players would be reluctant to
minimax without such a reward. Unfortunately, this-period punishment mech-
anism” does not directly extend to our environment. To see this, suppose that we
fix o first and then takd large. Thend' approaches zero, which implies that
players do not care about payoffs after the minimax play. So even if we promise a
reward after the minimax play, players may not want to play the minimax strategy.
What if we take sufficiently largé first and then také — 1, as in Fudenberg and
Maskin (1986)? In this case, for any fixdd the minimax play forT periods
may Yyield a payoff quite different from the minimax payoff in the infinite-horizon
game, due to the complex belief evolution. Hence it may not work as an effective
punishment.

To solve this problem, we introduce the ideaafidom blockswhose lengths
are randomly determined by public randomization. Specifically, at the end of each
period, public randomization determines whether the current random block con-
tinues or terminates with probabilify and 1— p. This random block is payoff-
equivalent tothe infinite-horizon game with the discount factad, lue to the
termination probability - p. Hence if players play the minimax strategy during
the random block, the expected payoff during the block is exactly the minimax
payoff with the discount factopd. When bothp and é are close to one, this
block payoff approximates the limit minimax payoff, so this punishment can de-
ter a player’s deviation effectively. Independently of this papénrdr, Sugaya,

3 In the POMDRP literature, it is well-known that the payoff in the discounted infinite-horizon
problem and the (time-average) payoff in fhegeriod problem are asymptotically the same if a
solution to the discounted problem is invariant to the initial prior in the limidas 1, andif the
rate of convergence is at most of ord&fl — J). (See Hsu, Chuang, and Arapostathis (2006) and
the references therein.) Unfortunately, in out setup, the rate of convergence of the feasible payoffs
and the minimax payoffs can be slower than this bound for some cases, as can be seen in the proof
of Proposition A2.



Takahashi, and Vieille (2011) also consider the idea of random blocks, but the
way it works in their model is quite different. See Section 4.1 for more déetails.

As noted eatrlier, the full support assumption is useful because under this as-
sumption, invariance of the feasible payoffs directly follows from the POMDP
theory. However, this assumption is restrictive, and leaves out many economic
applications. For example, consider the following natural resource management
problem: The state is the number of fish living in the gulf. The state may increase
or decrease over time, due to natural increase or overfishing. Since the fishermen
(players) cannot directly count the number of fish in the gulf, this is one of the
examples in which the belief about the hidden state plays an important role in ap-
plications. This example does not satisfy the full support assumption, because the
state cannot be the highest one if the fishermen catch too much fish today. Also,
games with delayed observations, and even the standard stochastic games (with
observable states) do not satisfy the full support assumption.

To address this concern, in Section 5, we show that the invariance result (and
hence the folk theorem) still holds even if the full support assumption is replaced
with a weaker condition. Specifically, we show that if the game satisfies a new
property calleduniform connectednesthen the feasible payoff set is invariant to
the initial belief for patient players. This result strengthens the existing results
in the POMDP literature; uniform connectedness is more general than various
assumptions considered in the literatBiré/e also show that the minimax payoff
for patient players is invariant to the initial belief under a similar assumption called
robust connectedness

Our assumption, uniform connectedness, is a condition about hosupert
of the belief evolves over time. Roughly, it requires that players can jointly drive
the support of the belief from any s&* to any other sef)*, except the case
in which the setQ* is “transient” in the sense that the support cannot stay at

“4Interestingly, some papers on macroeconomics (such as Arellano (2008)) assume that punish-
ment occurs in a random block; we thank Juan Pablo Xandri for pointing this out. Our analysis is
different from theirs because random blocks endogenously arise in equilibrium.

SSuch assumptions include renewability of Ross (1968), reachability-detectability of Platzman
(1980), and Assumption 4 of Hsu, Chuang, and Arapostathis (2006). (There is a minor error in
Hsu, Chuang, and Arapostathis (2006); see Appendix E for more details.) The natural resource
management problem in this paper is an example which satisfies uniform connectedness but not the
assumptions in the literature. Similarly, Examples Al and A2 in Appendix A satisfies asymptotic
uniform connectedness but not the assumptions in the literature.
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Q* forever. (HereQ* andQ* denote subsets of the whole state sp@ce This
assumption can be regarded as an extension of communicating states of Dutta
(1995), which requires that players can move the state fromuatty any other

@; but note that uniform connectednessiat a condition on the evolution of the
belief itself, so it need not imply ergodicity of the belief. Nonetheless we find
that this condition implies invariance of the feasible payoff set. A key step in the
proof is to find a uniform bound on the variability of feasible payoffs over beliefs
with the same support. In turns out that this bound is close to zero, and thus the
feasible payoff set is almost determined by the support of the belief. Hence, what
is essential is how the support changes over time, which suggests that uniform
connectedness is useful to obtain the invariance result.

In addition to that, we show in Appendix A that uniform connectedness can
be relaxed further, that is, the invariance result holds under a weaker condition,
calledasymptotic uniform connectednegssymptotic uniform connectedness is
satisfied for generic games, as long as the underlying states are communicating.
This means that the invariance result almost always holds if the state transition
rule satisfies the standard assumption in the literature.

Shapley (1953) proposes the framework of stochastic games. Dutta (1995)
characterizes the feasible and individually rational payoffs for patient players,
and proves the folk theorem for the case of observable actions. Fudenberg and
Yamamoto (2011b) anddétner, Sugaya, Takahashi, and Vieille (2011) extend his
result to games with public monitoring. All these papers assume that the state of
the world is publicly observable at the beginning of each petiod.

Athey and Bagwell (2008), Escobar and Toikka (2013), aridnidr, Taka-
hashi, and Vieille (2015) consider repeated Bayesian games in which the state
changes as time goes and players have private information about the current state
each period. They look at equilibria in which players report their private informa-
tion truthfully, which means that the state is perfectly revealed before they choose
actions each perioflln contrast, in this paper, players have only limited informa-
tion about the true state and the state is not perfectly revealed.

SIndependently of this paper, Renault and Ziliotto (2014) also study stochastic games with
hidden states, but they focus only on an example in which multiple states are absorbing.

“An exception is Sections 4 and 5 o®kher, Takahashi, and Vieille (2015); they consider
equilibria in which some players do not reveal information and the public belief is used as a state
variable. But their analysis relies on the independent private value assumption.
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Wiseman (2005), Fudenberg and Yamamoto (2010), Fudenberg and Yamamoto
(2011a), and Wiseman (2012) study repeated games with unknown states. They
all assume that the state of the world is fixed at the beginning of the game and does
not change over time. Since the state influences the distribution of a public signal
each period, players can (almost) perfectly learn the true state by aggregating all
the past public signals. In contrast, in our model, the state changes as time goes
and thus players never learn the true state perfectly.

2 Setup

2.1 Stochastic Games with Hidden States

Let| = {1,---,N} be the set of players. At the beginning of the game, Nature
chooses the state of the word! from a finite setQ. The state may change as
time passes, and the state in pericd 1,2, --- is denoted byw! € Q. The state
w! is not observable to players, and JeE AQ be the common prior aboa#?.

In each period, players move simultaneously, with playier | choosing an
actiong; from a finite setA;. Let A= X A be the set of action profiles =
(& )ie1- Actions are perfectly observable, and in addition players observe a public
signaly from a finite setY. Then players go to the next period- 1, with a
(hidden) stateo'™1. The distribution ofy andw!™! depends on the current state
w' and the current action profilec A; let ®(y, @|a) denote the probability that
players observe a signgland the next state becomest! = @, given w! = w
anda. In this setup, a public signglcan be informative about the current state
andthe next stat@o, because the distribution gimay depend o andy may be
correlated withd. Let 7i¥’(y|a) denote the marginal probability gf

Playeri’s payoff in periodt is a function of the current action profieeand
the current public signaj, and is denoted by;(a,y). Then her expected stage-
game payoff conditional on the current stabeand the current action profile
is g’(a) = Yyey T8 (Y/@)ui(a,y). Here the hidden state influences a player’s
expected payoff through the distributionyflLetg®(a) = (g’(a))ici be the vector
of expected payoffs. L&, = max, a|29”(a)|, and letg = ¢, G;. Also letTt be
the minimum ofn®(y, @|a) over all (w, &, a,y) such thatt®(y, w|a) > 0.

Our formulation encompasses the following examples:
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¢ Stochastic games with observable statest Y = Q x Q and suppose that
®(y, &|a) = 0 fory = (y1,Y2) such thaty; # w ory, # ¢. That s, the first
component of the signalreveals the current state and the second compo-
nent reveals the next state. Suppose alsauliaty) does not depend on the
second componeng, so that stage-game payoffs are influenced by the cur-
rent state only. Since the signal in the previous period perfectly reveals the
current state, players know the state beforethey move. This is exactly
the standard stochastic games studied in the literature.

e Stochastic games with delayed observatiobst Y = Q and assume that
n¥(yla) = 1 fory = w. Thatis, assume that the current sigylakeveals the
current statew!. So players observe the staifter they move.

e Observable and unobservable statéssume thatv consists of two com-
ponentswp andwy, and that the signaft perfectly reveals the first com-
ponent of the next state)grl. Then we can interpratp as an observable
state andwy as an unobservable state. One of the examples which fits this
formulation is a duopoly market in which firms face uncertainty about the
demand, and their cost function depends on their knowledge, know-how, or
experience. The firms’ experience can be described as an observable state
variable as in Besanko, Doraszelski, Kryukov, and Satterthwaite (2010), and
the uncertainty about the market demand as an unobservable state.

In the infinite-horizon stochastic game, players have a common discount factor
0 €(0,1). Let(w",a’,y") be the state, the action profile, and the public signal in
period 7. Then the history up to periad> 1 is denoted byt = (a’,y")}_,. Let
H! denote the set of ali fort > 1, and letH® = {0}. LetH = (i o H! be the set
of all possible histories. A strategy for playies a mappings : H — AA Let §
be the set of all strategies for playieand letS= x| S. Given a strategg and
historyh', let s |t be the continuation strategy induceddpwfter historyh'.

Let v°(d,s) denote playei’s average payoff in the stochastic game when
the initial prior puts probability one ow, the discount factor i®, and players
play strategy profiles. That is, letv®(3,s) = E[(1—8) 3%, 8" Lg% (a!)|w,$].
Similarly, let vi“(é,s) denote player’s average payoff when the initial prior is
K. Note that for each initial priop, discount factod, ands_;, playeri’s best
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reply s exists; see Appendix D for the proof. Let(d,s) = (v*(9,s))icl and
VH(3,9) = (1 (8,9)iel-

2.2 Alternative Interpretation: Belief as a State Variable

In each period, each player forms a beligft about the current hidden stads.
Since players have the same initial priorand the same informatioi—2, they
have the same posterior beljgf. Then we can regard this beligf as a common
state variable, and so our model reduces to a stochastic gamebgédrvable
statesu!.

With this interpretation, the model can be re-written as follows. In period one,
the belief is simply the initial prioru® = . In periodt > 2, players use Bayes’
rule to update the belief. Specifically, givei~1, a1, andy' %, the posterior
belief ut in periodt is computed as

) = 2 weQ ut—l(w)nw(yt—l,a)’at—l)
2 weQ util(w)n?(ytiqatil)

for each@. Given this beliefut, players choose actiora, and then observe a
signaly! according to the distributiorrg‘(‘t (Yt|a') = > weq ()@ (yH|a'). Player
iI's expected stage-game payoff givehandal is gf' (&) = 5 ,co 1t (w)gP(@).

Our solution concept is a sequential equilibrium. £etH — AQ be a belief
system; i.e. (h') is the posterior aboub! ™ after historyh'. A belief systent is
consistent with the initial priow if there is a completely mixed strategy profde
such that (ht) is derived by Bayes’ rule in all on-path historiessofSince actions
are observable, given the initial prigr a consistent belief is unique at each infor-
mation set which is reachable by some strategy. (So essentially there is a unique
belief systent consistent withu.) A strategy profilesis asequential equilibrium
in the stochastic game with the initial prigrif sis sequentially rational given the
belief system{ consistent withu.

S

u'(

2.3 Full Support Assumption

As explained in the introduction, we are interested in a condition under which the
belief evolution process satisfies a sort of ergodicity. One of such conditions is the
full support assumption:

12



Definition 1. The state transition function hagwl supportif *(y, @|a) > 0O for
all w, @, a, andy.

In words, the full support assumption requires that any sigrmeld any state
@ can happen tomorrow with positive probability, regardless of the current state
w and the current action profiee Under this assumption, we have the following
two properties. First, given any initial prigr, any historyh' can be reachable
with positive probability, using some strategy Accordingly, after any history,
the posterior belief can be computed using a Bayes’ rule. Second, these posterior
beliefs are always in the interior gkQ, that is, after every history, the posterior
belief ut assigns positive probability to each statelt turns out that this property
is very useful in order to obtain the invariance result.

However, the full support assumption is demanding, and leaves out many po-
tential economic applications. For example, this assumption is never satisfied if
the action and/or the signal today has a huge impact on the state evolution so that
some staté&o cannot happen tomorrow conditional on sofagy). One of such
examples is the natural resource management problem in Section 5.3; in this ex-
ample, if the fishermen catch too much fish today, the state (the number of fish
in the gulf) cannot be the highest state tomorrow because natural increase is slow.
Also, it rules out even the standard stochastic games (in which the state is observ-
able to players) and the games with delayed observations. To fix this problem, in
Section 5, we will explain how to relax the full support assumption. We will show
that the same result holds even if the full support assumption is replaced with a
weaker condition, calledonnectedness

3 Feasible and Individually Rational Payoffs

3.1 Invariance of the Feasible Payoff Set

Given the initial beliefu and the discount facta¥, we define the feasible payoff
setV®(d) in the stochastic game as

VH(3) = co{VH(d,s)[se S}

where c® denotes the convex hull of the d&t In words, the feasible payoff set
V() is the convex hull of the set of all attainable payoffs in the stochastic game,

13



when we ignore players’ incentives. When the initial befigiuts probability one
on some state), we denote it by} “(d). Note that the discount factdrinfluences
the feasible payoff set, as it influences the stochastic game pay(dfs)|.

Let A be the set of directions € RN with |A| = 1. For each direction, we
compute the “score” using the following formuia:

max A -v.
veVH(0)

Roughly speaking, this score characterizes the boundary of the feasible payoff set
VH(d) toward directionA. For example, when is the coordinate vector with
Ai=1andAj =0 forall j #i, we have mayyu)A - V= maXyus) Vi, SO the
score is simply the highest possible payoff for playenthln the feasible payoff
set. Whemt = (ﬁ f) the score is the (normalized) maximal social welfare
within the feasible payoff set.

Given a directiom, let f(u) be the score given the initial prigr. The func-
tion f must solve the following Bellman equation:

f(u) = maX[<1 o)A -g"(a)+o Zni‘ () f(fx(ylu, a))] (1)

where [i(y|u,a) is the belief in period two given that the initial prior js and
players playa and observey in period one. To interpret this equation, ket=
(\[ f) so that the scord(u) is the maximal social welfare. Suppose also
that there are only two players. Then (1) asserts that the maximal wélfane

is a sum of the (normalized) welfare today gt (a) = %(g‘f(a) +05(a)) and
the expected continuation paydff,.y 1% (y|a) f(fi(y|u,a)), and that the action
profile a maximizes this sum.

(1) is known as a “POMDP problem,” in the sense that it is a Bellman equa-
tion in which the state variablg is a belief about a hidden state. In the POMDP
theory, it is well-known that a solutiof is convex with respect to the state vari-
able u, and that this convexity leads to various useful theorems. For example,
Platzman (1980) shows that under the full support assumption, a sofi{igris
invariant to the initial beliefu, when the discount factor is close to one. In our
context, this implies that when players are patient, the score is invariant to the

8Note that this maximization problem indeed has a solution; see Appendix D for the proof.
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initial prior i, and so is the feasible payoff 9ét'(d). Formally, we have the
following proposition.

Proposition 1. Under the full support assumption, for eagh> 0, there isd
(0,1) such that for any\ € A, 6 € (5,1), u, andfi,
max A-v— max A-V| <Ee.
veVH(9d) VeVH(d)
In particular, this implies that the limitims_; max,cyu (5 A - v of the score is
independent oft.

Note that the limit liny_.; max,cyu(s) A - v of the score indeed exists, thanks to
Theorem 2 of Rosenberg, Solan, and Vieille (2002). Platzman (1980) also shows
that the score converges at the rate ef &. So we can replace in the above
proposition withO(1— 9).

The above proposition ensures that in the limidas 1, the score is invariant
to the initial prior u for all directions, and hence the feasible payoff set is also
invariant to the initial prior. Le¥ = {ve RN|A -v<lims_; maX,eyu(s) A -V} de-
note this limit feasible payoff set. From the proposition above, the feasible payoff
setVH () approximates this sét for d close to one, regardless of the initial prior
p. Note that this se¥ is well-defined, because the term §my maxcyu(s)A - v
does not depend on.

3.2 Invariance of the Minimax Payoffs

Given the initial prioru and the discount factad, playeri’s minimax payoffin
the stochastic game is defined to be

v (8) = min maxv(8,s).

S €S, S€S

In our setup, player's sequential equilibrium payoff is at least this minimax pay-
off, as players do not have private information. The proof is standard and hence
omitted. Note also that the minimizer; indeed exists; see Appendix D for more
details.

For stochastic games with observable states, if the gamnediciblein the
sense of Fudenberg and Yamamoto (2011b), the minimax payoff for patient play-
ers is invariant to the initial state. The following proposition shows that the same
result holds for the hidden-state case, under the full support assumption:
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Proposition 2. Under the full support assumption, for each i and- O, there is
J € (0,1) such that for anys € (5,1), u, andfi,
VH(8) -V (8)| < €.

This result may look similar to Proposition 1, but its proof is substantially
different. As noted earlier, Proposition 1 directly follows from the fact that the
score functionf is a solution to the POMDP problem (1). Unfortunately, the
minimax payoffv!’ () is not a solution to a POMDP problem; this is so because
in the definition of the minimax payoff, playémaximizes her payoff while the
opponents minimize it. Accordingly, POMDP techniques are not applicable, and
we need a new idea in order to obtain invariance of the minimax payoff. In the
next subsection, we will briefly explain our proof idea. The formal proof can be
found in Appendix B.

The next proposition shows that the limit of the minimax payoff exists. The
proof can be found in Appendix B.

Proposition 3. Under the full support assumption, the Iirﬁma_,l\_/i“(é) of the
minimax payoff exists.

From Proposition 2, this limit is independent of the initial priorso we de-
note it byv,. LetV* denote the limit of the feasible and individually rational
payoff set, that isy* is the set of all feasible payoffsc V such that; > v; for
alli.

3.3 Proof Sketch of Proposition 2

In this subsection, we will briefly describe how to prove Proposition 2. The ar-
gument is a bit complex, so those who are not interested in technical details may
skip this subsection.

Pick o close to one, and Iesf’_i denote the minimax strategy for the initial prior
. Letvi(sh) = maxgeg V' (s,84)), that is, letv'(s.) denote playei’s best
payoff against the minimax strateg)’y'i when the initial prior isii. Wheni = u,
it is simply the minimax payoff for the beligi. A standard argument shows that
for a givenu, playeri’s payoffvi[’ (s‘_‘i) is convex with respect to the beligf That
is, once we fix the opponents’ stratedﬁ/i, playeri’s best payoff is convex with

16



respect to her beligl. Note that different parametersinduce different minimax
strategies';, and hence different convex curvé&s‘fi). Figure 1 describes these
convex curves for the case with two states; xkexes represents the belief space
[0,1], and they-axes represents the payoff. As one can see, different parameters
u andu’ induce different convex curves. Unlike the score functfoim Section

3.1, for a fixed parametgr, the induced convex cur\xé‘ (s,) is nota solution to

a Bellman equation; this is so because the straﬂég'ys fixed for all initial beliefs

[t. Accordingly, POMDP techniques are not applicable to the analysis of these
convex curves.

Maximal Value

=0 p=1
Figure 1: Convex curves induced B, ands",

Let (u*, fi*) be a maximizer o (s",), that s, take u*, fi*) so thatv/* (s)) >
vi[‘ (s)) for all y andf1.° Sincevf’(s‘ﬁ) is convex, it is maximized whefi is an
extreme point ofAQ; so the beliefii* must put probability one on some state
w. Pick suchw. We will call the payoffvi‘”(s‘ﬁ) the maximal valugas it is the
maximal payoff achieved by the convex curw€$s‘ii), as shown in Figure 1.

3.3.1 Step 0: Preliminary Lemma

We first present a preliminary lemma, which gives a sufficient condition for the
convex curves to approximate the maximal value. To make our exposition as
simple as possible, here we state only an informal (and simple) version of the
lemma; the formal statement of the lemma is a bit complex, and given as Lemma
B1 in Appendix B.

9For simplicity, here we assume that the maximum indeed exists. In the formal proof, we will
explain how to extend the argument to the case in which the maximum does not exist.
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Lemma 1. Pick o close to one, and pick some. Suppose thatvi‘*’(sﬁ’;) -
V“( )| ~ 0 for some interior beliefli such thatfi(®) > T for all &. Then
]v“’( ) ( " )| = Ofor all beliefs .

In words, this lemma shows that if the convex curve induced by the minimax
strategys‘ii approximates the maximal value feomeinterior belieffi, then this
curve is almost flat and approximates the maximal valualidoeliefs i. Recall
that7T is the minimum ofri®(y, é|a).

The intuition behind this lemma is as follows. Pick the minimax stragégy
for someu. To simplify the argument, suppose that the induced convex curve
exactly achleves the maximal value for some |nter|or belieThat is, assume that
|v‘*’( ) Vi (¢))| = 0, rather tharv®(s" ) V()| ~ 0. Then the convexity
of V! (s“ ) requires that this curve must be flat avfé(s“ = vF() for all fi.
Indeed, if the curve is not flat and there is a befie# [i such thalviw(s‘f?) >
vi’:' (s)), then the convex curve must look like Figure 2 or Figure 3, so that it must
exceed the maximal value for some belief. This is a contradiction, and thus the
curve must be indeed flat.

, RN

7’

V(8,50 K Pl ;

~ ~

p=0 [ f p=1 p=0 f ﬂuzl

Figure 2: Case withi < [i Figure 3: Case withi > [i
In what follows, we will show that all the convex curvvq‘é ) are almost

flat and approximate the maximal value. This implies that the minimax payoff
approximates the maximal value for all beligfsand thus Proposition 2 follows.

3.3.2 Step 1: Minimax Payoff for Some Beliefu**

As a first step, we show that there is an interior beli€f whose minimax payoff
approximates the maximal value and such flét(co) > 0 for all . The proof
idea is as follows. Suppose that the initial statevsand the opponents play
s‘i, Suppose that playertakes a best reply, which is denoted $yso that she
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achieves the maximal valu¢*’(s‘_’?). As usual, this payoff can be decomposed
into the payoff today and the expected continuation payoff:

V() = (1-8)g(a N+83 A ;Ynffwa (leod) (HOH" 2y

Here,a* denotes the action profile in period one mducec(@ys“ U(ylw,a)
denotes the posterior belief in period two when the initial beligliis= w and
players playa and observey in period one. u(y|u*) denotes the posterior be-
lief when the initial belief isu*. Given an outcoméa,y) in period one, player
i's continuation payoff is#“® (1Y) "hecause her posterior jgly|w, a)
while the opponent’s continuation strategyst&’* . (Note that the minimax
strategy is Markov.)

Pick (a,y) which gives the highest continuation payoff, iy (sH(
HOI08) (HTID) for a1l § andd 'such thatr* (&) > 0. This highest continuation
payoff is at least the expected continuation payoff, so we have

ylu*,a)) >

W(s) < (1= 8)gP (o) + ou VO (Y,

Arranging,

[ERN
1

vi‘"(s“ﬁf) _H0wa) (s‘j€y|’“‘*’a))

< ——(gP(a") — ().

Sinced is close to one, the right-hand side is close to zero. So this inequality im-
plies that the payofé* V' ®? ('3 approximates the maximal value, i.e., the
convex curve induced by the minimax stratesﬁW“*’a) approximates the maxi-
mal value for some beligh = u(y|w,a). Under the full support assumption, this
belief i must assign at leagt on each statév. Hence the preliminary lemma
ensures that the convex curvi(s"Y* @) approximates the maximal value for
all beliefsfi. This in particular implies that the minimax pawaf ) for the
belief u** = u(y|u*,a) approximates the maximal value, as de3|red.

3.3.3 Step 2: Minimax Payoff for Other Beliefs

As a second step of the proof, we show that the minimax payoff approximates the
maximal value for all beliefg:, which implies invariance of the minimax payoff.
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Pick an arbitrary beliefi. Suppose that the initial belief [s** defined in the
first step, and that the opponents play the minimax stra&égjor the beliefp.
(Note thatu is different fromu™* in general.) Suppose that playethooses a best
reply. Then her payofé* (s) is at least the minimax payo#' (s, ) for the
belief u**, as the opponents’ strategﬁ/i is not the minimax strategy for this belief
p**. On the other hand, her payoff cannot exceed the maximal value, because the
convex curve induced bsﬂ‘i must be always below the maximal value, by the

definition. Combining these observations, we have
v ) <V () <vs).

From the first step, we know that the minimax pawﬁﬁ* (s‘_‘?*) for the beliefu™*
approximates the maximal payoilfl"(s‘ﬁ). Hence from the above inequality, the
payoffvi“** (s‘ii) also approximates the maximal value. That is, the convex curve
vi’](s‘fi) induced by the minimax strategg‘[i approximates the maximal value
for some beliefii = u**. Then from the preliminary lemma, this convex curve
vi’] (s)) is almost flat and approximates the maximal valuealbbeliefsfi. This

in particular implies that the minimax payov{f (s‘_‘i) for the beliefu approximates

the maximal value, as desired.

4 Folk Theorem

So far we have shown that under the full support assumption, the feasible and
individually rational payoff set is invariant to the initial belief. In this section,
we show that this invariance result implies the folk theorem. That is, we show
that any feasible and individually rational payoff can be achieved by a sequential
equilibrium, if players are patient enough. Throughout this section, we assume
that public randomizatiorz, which follows the uniform distributiod [0,1], is
available.

4.1 Punishment over Random Blocks

To prove the folk theorem, we consider an equilibrium in which a deviator will be
punished by the minimax strategy. Since the minimax strategy does not constitute
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an equilibrium, we cannot ask players to play the minimax strategy forever; play-
ers must stop playing the minimax strategy at some point, and after that we need
to reward those who played the minimax strategy.

In stochastic games, the minimax strategy is a strategy for the infinite-horizon
game, so we need to carefully think about when players should stop the mini-
max play. For stochastic games with observable states, Dutta (1995)d&@ndrH
Sugaya, Takahashi, and Vieille (2011) consider equilibria in which a deviator will
be minimaxed fofT periods, whereTl is a large fixed number. Since the state
transition is ergodic, the average payoff during th&sgeriods is approximately
the same as the minimax payoff for the infinite-horizon game, so this punishment
mechanism can deter a player’s deviation. On the other hand, in our model, it is
not clear if such & -period punishment mechanism works effectively. Indeed, we
do not know if the belief evolution induced by the minimax strategy is ergodic
(although invariance of the minimax payoff suggests a sort of ergodicity); accord-
ingly, the average payoff for th€-period block can be quite different from (in
particular, greater than) the minimax payoff in the infinite-horizon game. See the
discussion in footnote 3.

To fix this problem, we consider an equilibrium witandom blocks Unlike
the T-period block, the length of the random block is not fixed and is determined
by public randomizatioz € [0,1]. Specifically, at the end of each perigcplay-
ers determine whether to continue the current block or not in the following way:
Given some parametgy € (0,1), if Z < p, the current block continues so that
periodt 4+ 1 is still included in the current random block. Otherwise, the current
block terminates. So the random block terminates with probabilitypleach
period.

A key is that the random block is payoff-equivalent to the infinite-horizon
game with the discount fact@d, due to the random termination probability-1.

Thus, given the current beligf, playeri’s average payoff during the block never
exceeds the minimax payo_fi’f’(pé) if the opponents use the minimax strategy for
the initial prior u and the discount fact@d (not d) during the block. This payoff
approximates the limit minimax payoff when bothp andd are close to one.
(Note that takingp close to one implies that the expected duration of the block
is long.) In this sense, the opponents can indeed punish pldyeplaying the
minimax strategy in the random block.
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In the proof of the folk theorem, we pigkclose to one, and then take— 1.

This implies that although the random block is long in expectation, players puts
a higher weight on the continuation payoff after the block than the payoff during
the current block. Hence a small variation in continuation payoffs is enough to
discipline players’ play during the random block. In particular, a small amount
of reward after the block is enough to provide incentives to play the minimax
strategy.

The idea of random blocks is useful in other parts of the proof of the folk
theorem, too. For example, it ensures that the payoff on the equilibrium path does
not change much after every history. See the proof in Section 4.3 for more details.

Independently of this paper,dtner, Takahashi, and Vieille (2015) also pro-
pose the idea of random blocks, which they call “random switching.” However,
their model and motivation are quite different from ours. They study repeated
adverse-selection games in which players report their private information every
period. In their model, a player’s incentive to disclose her information depends
on the impact of her report on her flow payoffs until the effect of the initial state
vanishes. Measuring this impact is difficult in general, but it becomes tractable
when the equilibrium strategy has the random switching property. That is, they
use random blocks in order to measure payoffs by misreporting. In contrast, in
this paper, the random blocks ensure that playing the minimax strategy over the
block indeed approximate the minimax payoff. Another difference between the
two papers is the order of limits. They take the limitspoindd simultaneously,
while we fix p first and then také large enough.

4.2 Folk Theorem under Payoff Invariance

Now we establish the folk theorem, assuming that the feasible and individually
rational payoff set is invariant to the initial prior in the limit &s— 1. As shown

by Propositions 1 and 2, this payoff invariance holds under the full support as-
sumption. So the following proposition implies that the folk theorem holds under

the full support assumption. This proposition encompasses the folk theorem of
Dutta (1995) as a special case.

Proposition 4. Suppose that the feasible and individually rational payoff set is
invariant to the initial prior in the limit asd — 1, and that the limit payoff setV
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is full dimensional. Assume also that public randomization is available. Then for
any interior point ve V*, there isd € (0,1) such that for anyd € (6,1) and for
any initial prior u, there is a sequential equilibrium with the payoff v.

In addition to the payoff invariance, the proposition requires the full dimen-
sional assumption. This assumption allows us to construct a player-specific pun-
ishment mechanism; that is, it ensures that we can punish plédecrease player
i's payoff) while not doing so to all other players. Note that this assumption is
common in the literature, for example, Fudenberg and Maskin (1986) use this as-
sumption to obtain the folk theorem for repeated games with observable actions.

Fudenberg and Maskin (1986) also show that the full dimensional assumption
is dispensable if there are only two players and the minimax strategies are pure
actions. The reason is that player-specific punishments are not necessary in such a
case; they consider an equilibrium in which players mutually minimax each other
over T periods after any deviation. Unfortunately, this result does not extend to
our setup, since a player’s incentive to deviate from the mutual minimax play can
be quite large in stochastic games; this is so especially because the payoff by the
mutual minimax play is not necessarily invariant to the initial prior. To avoid this
problem, we consider player-specific punishments even for the two-player case,
which requires the full dimensional assumption.

The proof of the proposition is constructive, and combines the idea of random
blocks with the player-specific punishments of Fudenberg and Maskin (1986). In
particular the proof resembles that of Dutta (1995), except that we use random
blocks (rather thait -period blocks), which complicates the verification of incen-
tive compatibility. In the next subsection, we prove this proposition assuming that
the minimax strategies are pure strategies. Then we briefly discuss how to extend
the proof to the case with mixed minimax strategies. The formal proof for mixed
minimax strategies will be given in Appendix B.

4.3 Equilibrium with Pure Minimax Strategies

Take an interior point € V*. We will construct a sequential equilibrium with the
payoffvwhend is close to one. To simplify the notation, we assume that there are
only two players. This assumption is not essential, and the proof easily extends to
the case with more than two players.
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Pick payoff vectorsv(1) andw(2) from the interior of the limit payoff se¥*
such that the following two conditions hold:

(i) w(i) is Pareto-dominated by the target payoff.e.,w;(i) < v; for eachi.
(i) Each playeri prefersw(j) overw(i), i.e.,wi(i) < wi(]) for eachi andj #1i.

The full dimensional condition ensures that swgli) andw(2) exist. See Figure
4 to see how to choose these payoifs). In this figure, the payoffs are normal-
ized so that the limit minimax payoff vectorvs= (v;,Vv,) = (0,0).

(1) %V

W

Figure 4: Payoffsv(1) andw(2)

Looking ahead, the payofts(1) andw(2) can be interpreted as “punishment
payoffs.” That is, if player deviates and players start to punish her, the payoff in
the continuation game will be approximatetyi) in our equilibrium. Note that
we use player-specific punishments, so the payoff depends on the identity of the
deviator. Property (i) above implies that each playaefers the cooperative pay-
off v over the punishment payoff, so no one wants to stop cooperation. Property
(if) implies that each playerprefers the payofiv;(j) when she punishes the op-
ponentj to the payoffw;(i) when she is punished. This ensures that playsr
indeed willing to punish the opponentafter j’s deviation; if she does not, then
playeri will be punished instead gf, and it lowers players payoff.

Pick p € (0,1) close to one so that the following conditions hold:

e The payoff vectors, w(1), andw(2) are in the interior of the feasible payoff
setVH(p) for eachp.

e sup,caqM () <wi(i) for eachi.
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By the continuity, if the discount facta¥ is close to one, then the payoff vectors
v, w(1), andw(2) are all included in the interior of the feasible payoff €t pJd)
with the discount factopd.

Our equilibrium consists of three phaseegular (cooperative) phasgun-
ishment phase for playet, andpunishment phase for play&:. In the regular
phase, the infinite horizon is regarded as a series of random blocks. In each ran-
dom block, players play a pure strategy profile which exactly achieves the target
payoffv as the average payoff during the block. To be precise, pick some random
block, and letu be the belief and the beginning of the block. If there is a pure
strategy profileswhich achieves the payoifgiven the discount factqed and the
belief u, (thatis,v¥(pd,s) = v), then use this strategy during the block. If such a
pure strategy profile does not exist, use public randomization to generakat
is, players choose one of the extreme point¥ 6fpd) via public randomization
at the beginning of the block, and then play the corresponding pure strategy until
the block ends. After the block, a new block starts and players will behave as
above again.

It is important that during the regular phase, after each peripthyers’ con-
tinuation payoffs are always close to the target payofffo see why, note first
that the average payoff in the current block can be very different framce the
public randomization (which chooses one of the extreme points) realizes. How-
ever, whend is close to one, players do not care much about the payoffs in the
current block, and what matters is the payoffs in later blocks, which are exactly
v. Hence even after public randomization realizes, the total payoff is still close to
v. This property is due to the random block structure, and will play an important
role when we check incentive conditions.

As long as no one deviates from the prescribed strategy above, players stay
at the regular phase. However, once someone (say, plpgeviates, they will
switch to the punishment phase for playeanmediately. In the punishment phase
for playeri, the infinite horizon is regarded as a sequence of random blocks, just as
in the regular phase. In the firstblocks, the opponent (playgr# i) minimaxes
playeri. Specifically, in each block, letting be the belief at the beginning of the
block, the opponent plays the minimax strategy for the beliehd the discount
factorpd. Onthe other hand, playemaximizes her payoff during theeblocks.

After theK blocks, players switch their play in order to achieve the post-minimax
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payoff w(i); that is, in each random block, players play a pure strategy pofile
which exactly achievew(i) as the average payoff in the block (i.&(pd,s) =
w(i) wherep is the current belief). If suck does not exist, players use public
randomization to generate(i). The parameteK will be specified later.

If no one deviates from the above play, players stay at this punishment phase
forever. Also, even if playerr deviates in the firsK random blocks, it is ignored
and players continue the play. If playedeviates after the fird blocks (i.e.,
if she deviates from the post-minimax play) then players restart the punishment
phase for player immediately; from the next period, the opponent starts to min-
imax playeri. If the opponent (playej # i) deviates, then players switch to the
punishment phase for playgrin order to punish playey. See Figure 5.

..................................................

If 1 deviates

If 2 deviates

If 1 deviates

If 2 deviates 5

If 2 deviates

..................................................

Figure 5: Equilibrium strategy

Now, chooseK such that

1 K-1
1- png
for eachi. Note that (2) indeed holds for sufficiently largeas suQEAQ\_/i“(p) <
w;(i). To interpret (2), suppose that we are now in the punishment phase for player
i, in particular a period in which players play the strategy profile with the post-
minimax payoffw(i). (2) ensures that play&s deviation today is not profitable

(i K [
1- pW|(|) >0+ puili%\_/i (p) 2)

_g_
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for d close to one. To see why, suppose that playdeviates today. Then her
stage-game payoff today is at mgstand then she will be minimaxed for the next
K random blocks. Since the expected length of each bIOth(—F;sthe (unnormal-
ized) expected payoff during the minimax phase is at mégtsup,c oV (P)
whend — 1. So the right-hand side of (2) is an upper bound on plégemnor-
malized payoff until the minimax play ends, when she deviates.

On the other hand, if she does not deviate, her payoff today is at-aast
Also, for the nexK periods, she can eam at least!;g+ £=wi(i), because we
consider the post-minimax play. (Here the payoff during the first block can be
lower thanw; (i), as tomorrow may not be the first period of the block. So we use
—% as a lower bound on the payoff during this block.) In sum, by not deviating,
playeri can obtain at least the left-hand side of (2), which is indeed greater than
the payoff by deviating.

With this choice ofK, by inspection, we can show that the strategy profile
above is indeed an equilibrium for sufficiently larde The argument is very
similar to the one by Dutta (1995) and hence omitted.

When the minimax strategies are mixed strategies, we need to modify the
above equilibrium construction and make playiedifferent over all actions when
she minimaxes playgr+ i. As shown by Fudenberg and Maskin (1986), we can
indeed satisfy this indifference condition by perturbing the post-minimax payoff
w; () appropriately. See Appendix B for the formal proof.

5 Relaxing the Full Support Assumption

We have shown that under the full support assumption, the feasible and individu-
ally rational payoff set is invariant to the initial prior, which enables us to prove the
folk theorem. However, as noted earlier, the full support assumption is demand-
ing, and rules out many possible applications. For example, a natural resource
management problem, which will be presented below, does not satisfy the full
support assumption. Also, games with delayed observations, and even the stan-
dard stochastic games, do not satisfy the full support assumption.

To address this concern, in this section, we show that the invariance result
still holds, even if the full support assumption is replaced with a new, weaker
condition. Specifically, we show that the feasible payoff set is invariant if the game
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is uniformly connectedand the minimax payoff is invariant if the gameabustly
connectedBoth uniform connectedness and robust connectedness are about how
thesupportof the posterior belief evolves over time, and they are satisfied in many
economic applications, including the examples mentioned above.

5.1 Uniform Connectedness
5.1.1 Brief Description of Uniform Connectedness

For the standard stochastic games with observable states, the feasible payoff set
is invariant to the initial state if states acemmunicatingn the sense that there

is a path from any state to any other state (Dutta (1995)). Formally, adtete
accessible frona statew if there is a natural numbér and an action sequence
(a,---,a’) such that

Prow' ! = dw,al,---,a") >0, (3)

where Pfw' 1 = @|w,al, - ,a") denotes the probability of the state in period
T + 1 beingd given that the initial state i@ and players play the action sequence
(al,---,al) for the firstT periods.@ is globally accessiblé it is accessible from
any statew. States areommunicatingf all statesw are globally accessible.

Since the state variable in our model is a beligfa natural extension of the
above assumption is to assume that there be a path from any petiefny other
belief fi. Unfortunately, this approach does not work, because such a condition
is too demanding and never satisfied. A problem is that there are infinitely many
possible beliefgt, and thus there is no reason to expect recurrence; i.e., the pos-
terior belief may not return to the current belief in finite tiffe.

To avoid this problem, we will focus on the evolution of thepportof the
belief, rather than the evolution of the belief itself. Now the recurrence problem
above is not an issue, since there are only finitely many supports. Of course, the
support of the belief is only coarse information about the belief, so imposing a
condition on the evolution of the support is much weaker than imposing a condi-
tion on the evolution of the belief. However, it turns out that this is precisely what
we need for invariance of the feasible payoff set.

OFormally, there always exists a beligfwhich is not globally accessible, because given an
initial belief, only countably many beliefs are reachable.
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In what follows, we will briefly describe the idea of our conditiamiform
connectednessSuppose that there are three sta@s=({wi, wp, ws}) so that
there are seven possible suppddg ---, Q7. Figure 6 shows how the support
of the belief changes over time. For each arrow, there is an action profile which
lets the support move along the arrow with positive probability. For example,
there is an action profile which moves the support framto Q, with positive
probability. Each thick arrow is a move which must happen with positive prob-
ability regardless ofthe action profile. The thick forked arrow fro@g means
that the support must move to eities or Q3 with positive probability regardless
of the action profile, but its destination may depend on the action profile. Note
that the evolution of the support described in the picture is well-defined, because
if two initial priors u andfi have the same support, then after every hishbryhe
corresponding posterior beligfg ht) andfi(ht) have the same support.

4_—’( Q) Q) (@ @

Figure 6: Connectedness Figure 7: Full Support

In this example, the suppofl; is globally accessiblen the sense that there
is a path taQ; from any current support; for example, the support can move from
Q7 to Q1 throughQs andQ-. (Formally, global accessibility is more general than
this because it requires only that there be a pafit@r a subset 0€;. Details
will be given later.) LikewiseQ,, Q3, andQ4 are globally accessible. As one can
see from the figure, these four suppditg, Q,, Q3, andQ4 are “connected” in
the sense that the support can go back and forth within these supports.

The supporiQs is not globally accessible, because it is not accessible from
Q1. However, this suppos is uniformly transienin the sense that if the current
support isQs, thenregardless of players’ plgythe support cannot stay there for-
ever and must move to some globally accessible set (in thiSzgseith positive
probability, due to the thick arrow. Similarly, the suppoflg and Q; are uni-
formly transient, as the support must move to globally accessibl€sets Q3,
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depending on the chosen action profile. If we look at the long-run outcome of the

support evolution, these uniformly transient supports are not essential; indeed, we
can show that the time during which the support stay at uniformly transient sets is

almost negligible. See Appendix C for more details.

Our condition, uniform connectedness, requires each sugpoft Q to be
globally accessible or uniformly transient. In other words, the support can go back
and forth over all supports, except the “non-essential” ones. The game described
in Figure 6 satisfies uniform connectedness.

Uniform connectedness is more general than the full support assumption. To
see this, suppose that there are two stai#sand w,, and that the full support
assumption holds. Figure 7 shows how the support changes in this situation. We
have two thick arrows to the whole state sp&xebecause under the full support
assumption, the support of the posterior musQbeegardless of the current sup-
port. The seQ is globally accessible because there is a path from any support.
Also the sets{w } and{wy} are uniformly transient, because the support must
move to the globally accessible f@tregardless of players’ actions. The same
result holds even if there are more than two states; the whole state @pace
globally accessible, and all proper subgetsc Q are uniformly transient. Hence
the full support assumption implies uniform connectedness.

5.1.2 Formal Definition and Result

Now we state the formal definitions of global accessibility, uniform transience,
and uniform connectedne$s.Let P(u"+1 = [i|u,s) denote the probability of
the posterior belief in perio@ + 1 beingji given that the initial prior iu and
players play the strategy profite Similarly, let PAu'+1 = fiju,al,---,a") de-
note the probability given that players play the action sequéaice. - ,a") in the

first T periods. Global accessibility d* requires that given any current belief
U, players can move the support of the posterior belie@to(or its subset), by
choosing some appropriate action sequence which may depgnd on

Definition 2. A non-empty subse®* C Q is globally accessiblé there isrt* > 0
such that for any initial priop, there is a natural numbdr < 4/€l, an action

HHere, we define global accessibility and uniform transience using the posterior pelief
In Appendix C, we show that there are equivalent definitions based on primitives. Using these
definitions, one can check if a given game is uniformly connected in finitely many steps.
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sequenceal,---,a’), and a beliefi whose support is included @* such that?
Pr(“T+l = I]“Jaala e 7aT) >

Global accessibility does not require the support of the posterior to be exactly
equal toQ*; it requires only that the support of the posterior to be a subs@t of
So global accessibility is a weaker condition than what we discussed using Figure
6. Thanks to this property, the whole state sp@te- Q is globally accessible for
any game. Also if a se®* is globally accessible, then so is any supe€sed Q*.

Global accessibility requires that there be a lower boaohd- 0 on the prob-
ability, while the accessibility condition (3) does not. But this difference is not
essential; indeed, although it is not explicitly stated in (3), we can always find
such a lower boundtr* > 0 when states are finite. In contrast, we have to ex-
plicitly assume the existence af in Definition 2, since there are infinitely many
beliefs!3

Next, we give the definition of uniform transience @f. It requires that if
the support of the current belief @*, thenregardless of players’ play in the
continuation gamgthe support of the posterior belief must reach some globally
accessible set with positive probability at some point.

Definition 3. A subseQ* C Q is uniformly transientf it is not globally accessible
and for any pure strategy profitkeand for anyu whose support i92*, there is a
natural numbeT < 212l and a beliefi whose support is globally accessible such
that PApu™+1 = fiju,s) > 0.14

As noted earlier, a superset of a globally accessible set is globally accessible.
Similarly, as the following proposition shows, a superset of a uniformly transient

1?Replacing the action sequen@, - -- ,a") in this definition with a strategy profiledoes not
weaken the condition; that is, as long as there is a strategy profile which satisfies the condition
stated in the definition, we can find an action sequence which satisfies the same condition. Also,
the restrictiorlT < 419l is without loss of generality. That is, if theres> 419! which satisfies the
condition stated above, then therdlis< 412/ which satisfies the same condition. See Appendix C
for more details.

13since there are only finitely many supports, there is a baunghich works for all globally
accessible se@*.

14As in the definition of global accessibility, the restricti@n< 2/l here is without loss of
generality. On the other hand, the strategy prdfiie this definition cannot be replaced with an
action sequencgal,---,a'").
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set is globally accessible or uniformly transient. The proof of the proposition is
given in Appendix B.

Proposition 5. A superset of a globally accessible set is globally accessible. Also,
a superset of a uniformly transient set is globally accessible or uniformly tran-
sient.

This result implies that if each singleton deb} is globally accessible or uni-
formly transient, then any subs@t C Q is globally accessible or uniformly tran-
sient. Accordingly, we have two equivalent definitions of uniform connectedness;
the second definition is useful in applications, as it is simpler.

Definition 4. A stochastic game igniformly connectedf each subse* C Q

is globally accessible or uniformly transient. Equivalently, a stochastic game is
uniformly connected if each singleton deb} is globally accessible or uniformly
transient.

Now we state the main result of this subsection. It shows that uniform con-
nectedness implies invariance of the limit feasible payoff set.

Proposition 6. Under uniform connectedness, for each 0, there isé € (0,1)
such that forany\ € A, 6 € (8,1), u, andfi,

max A-v— max A-V| < €.
veVH(9) VeVH(d)
This implies that the limiims_,; max,cyu(5)A - v of the score is independent of
.

This proposition strengthens Proposition 1, as the full support assumption is
now replaced with a weaker condition, uniform connectedness. The proof of the
proposition is technical, and can be found in Appendix B.

5.1.3 Uniform Connectedness and State Transition

Uniform connectedness is a condition on the support of the posterior belief, which
is determined by a complex interaction between the transition rule of thecstate
and the distribution of the public signgl This makes it difficult to figure out
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the economic meaning of uniform connectedness. To better understand, here we
provide a necessary condition for uniform connectedness.

A couple of definitions are in order. Recall that a statis globally accessible
if players can move the state to from any other state. A staw is uniformly
transientif for any pure strategy profile, there is a natural numbér and a
globally accessible staté® so that Pfw' ™! = @|w,s) > 0. States areveakly
communicatingf each statew is globally accessible or uniformly transient.

The following proposition shows that states must be weakly communicating
for the game to be uniformly connected. The proof can be found in Appendix B.

Proposition 7. The game is uniformly connected only if states are weakly com-
municating.

Note that this necessary condition is similar to (but a bit weaker than) commu-
nicating states of Dutta (1995). So roughly, this proposition asserts that if the state
transition rule does not satisfy the standard assumption for games with observable
states, then uniform connectedness does not hold. For example, if there are mul-
tiple absorbing states, then states ao¢ weakly communicating. So the above
proposition implies that such a game is never uniformly connected, regardless of
the signal structure.

For some class of games, the necessary condition above is “tight,” in the sense
that it is necessary and sufficient for uniform connectedness. Specifically, we have
the following proposition:

Proposition 8. In stochastic games with observable states, the game is uniformly
connected if and only if states are weakly communicating. Similarly, in stochastic
games with delayed observations, the game is uniformly connected if and only if
states are weakly communicating.

So in these class of games, if states are weakly communicating, then the fea-
sible payoff set is invariant to the initial prior. This result subsumes the invariance
result of Dutta (1995) as a special case.

Unfortunately, Proposition 8 does not extend when the statenot observ-
able. That is, there are examples in which states are weakly communicating but
nonetheless the game is not uniformly connected. To fix this problem, in Ap-
pendix A, we show that the invariance result holds even if uniform connectedness
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is replaced with a weaker conditioasymptotic uniform connectednegsymp-

totic uniform connectedness is satisfied in a broad class of games; for example,
as shown in Proposition A1, asymptotic uniform connectedness holds if states are
weakly communicating and if for each fixed action proilehe signal distribu-

tions {(1x°(y|a))yey|w € Q} are linearly independent. This result is important,
because it implies that weakly communicating states are “almost sufficient” for
the invariance of the feasible payoffs. More precisely, if states are weakly com-
municating and the signal space is large enough (¥é= |Q|), then for generic
signal distributions, asymptotic uniform connectedness holds and hence the feasi-
ble payoffs are invariant in the limit. Note also that this condition is easy to check
in applications; we only need to check the state transition rule and the linear in-
dependence of the signal distributions. We do not need to inspect the evolution of
the support of the belief.

5.2 Robust Connectedness
5.2.1 Invariance of the Minimax Payoff

When states are observable, irreducibility of Fudenberg and Yamamoto (2011b)
is sufficient for the limit minimax payoff to be invariant to the initial state
Irreducibility requires that playersi can move the state from any state to any
other stateegardless ofplayeri’s play. Formally,c is robustly accessible despite

i if for eachw, there is a (possibly mixed) action sequeriae;, - - - ,a‘_gf‘) such

that for any playeii’s strategys, there is a natural numbér < |Q| such that
Prlw™! = &|w,s,at;,---,aT,) > 0. Irreducibility requires each state to be
robustly accessible despitéor eachi.

In what follows, we generalize this concept and introduce the notiooboist
connectednessThis new condition is weaker than the full support assumption
but still ensures invariance of the limit minimax payoffs in our model. Robust
connectedness consists of two conditions. First, it requires that playeran
drive thesupportof the belief from any se®* to any other se©* regardless of
playeri’s play, except the case in whidd* is transient. Second, supports must
be “merging” in the sense that two different initial beliefs must induce posteriors
with the same support, after some history.

The formal definition is as follows:
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Definition 5. A non-empty subse®* C Q is robustly accessible despite player
i if there ismt* > 0 such that for any initial priou, there is an action sequence
(al;,---,a*’) such that for any strategy, there is a natural numbar < 4%
and a belieft with supportQ* such that> 16

Pr(IJT+1 - I]IIJ?SvaEi"“ 7aIi) > T[*

In the definition above, the support of the resulting beliehust be precisely
equal toQ*. This is an important difference from global accessibility, which
allows the support to be a subset@f.

Definition 6. A subsetQ* C Q is transient given player if it is not robustly
accessible despiieand there ist* > 0 such that for anyi whose support iQ*,
there is player’s action sequencénil, e ,ai‘"m) such that for any strategy; of
the opponents, there is a natural nunibes 49! and a beliefii whose support is
robustly accessible despitsuch that

Pr(IJT+1: ﬂ‘u’ailv"' 7aiTas*i) >

Transience is different from uniform transience in the previous subsection, in
several aspects. First, the support of the posterior belief must eventually reach
a robustly accessible set, rather than a globally accessible set. Second, while
uniform transience requires that the support must reach a globally accessible set
regardless ofplayeri’s play, transience considers the case in which plapéays
a particular action sequente, - -- ,ori“‘m). Due to this property, transience @f
need not imply uniform transience &, and accordingly robust connectedness
(which will be defined below) need not imply uniform connectedness. Third,
transience requires that there be a lower bowhdn the probability of the support
reaching a robust accessible set.

Definition 7. Supports arenergingif for each statew and for each pure strat-
egy profiles, there is a natural numbér < 49 and a historyh" such that

15 jke global accessibility, restricting attention To< 4/ is without loss of generality. To see
this, note that there is an equivalent definition of robust accessibility, as discussed in the proof
of Lemma B9. Suppose that for some strategythere is noT < 4/9l such that the condition
stated there is not satisfied; then we can find a stragegych that the condition stated there is not
satisfied for every natural numbér

16Replacing the action sequenge?; - a*") in the definition with a strategg_; does not
relax the condition at all.
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Pr(h"|w,s) > 0 and such that after the histohy, the support of the posterior
belief induced by the initial state is the same as the one induced by the initial

prior 4 = (G, 37

The merging support condition ensures that regardless of players’ play, two
different initial priorsw andu = (\ﬁl\"" ,ﬁ) induce posteriors with the same
support, after some history. Note that this condition is trivially satisfied in many
examples; for example, under the full support assumption, the support of the pos-
terior belief isQ regardless of the initial belief, and hence the merging support
condition holds.

Definition 8. The game igobustly connected supports are merging and if for
eachi, each non-empty subs@t C Q is robustly accessible despiter transient
giveni.

The following proposition shows that under robust connectedness, the min-
imax payoff is invariant to the initial priop. The proof is given in Appendix
B.

Proposition 9. Suppose that the game is rpbustly connected. Then for each i and
g > 0, there isd € (0,1) such thatv'(5) — v/ (5)| < € for anyd € (8,1), u, and
.

Also, the limit minimax payoff exists. The proof is very similar to that of
Proposition 3, and hence omitted.

5.2.2 Robust Connectedness and State Transition

As explained, for the game to be uniformly connected, the state transition rule
must satisfy the standard assumption in the literature on stochastic games with
observable states. In what follows, we will show that a similar result holds for
robust connectedness.

Recall that a state is robustly accessible despité the opponents can move
the state taw regardless of playdrfs play. A statew is transient given player i
if there is playeii’s action sequencgal, - ,ori|Q|) such that if the initial state is
w, with positive probability, the state reaches a state which is robustly accessible
despitel within |Q| periods, regardless of the opponents’ strategy The game
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is weakly irreducibleif for eachi, each statev is robustly accessible despite

or transient giveri. The following proposition shows that weak irreducibility

is necessary for robust connectedness. Also, it shows that weak irreducibility is
necessary and sufficient for robust connectedness in the standard stochastic games.
The proof is very similar to that of Proposition 7 and hence omitted.

Proposition 10. The game is robustly connected only if the game is weakly irre-
ducible. In particular, for stochastic games with observable states, the game is
robustly connected if and only if the game is weakly irreducible.

Unfortunately, the second result in Proposition 8 does not extend, that is, for
stochastic games with delayed observations, weak irreducibility is not sufficient
for robust connectedness. For example, suppose that there are two players, and
there are three statesp, ws, andwc. Each player has three actions, B, and
C. Assume that the state is observed with delayf s6Q and the signal today is
equal to the current state with probability one. Suppose that the state tomorrow is
determined by the action profile today, specifically, one of the player is randomly
selected and her action determines the state tomorrow. For example, if one player
choosesA and the opponent choosBs thenwa and wg are equally likely. So
regardless of the opponent’s play, if a player chodseabenwa will appear with
probability at Ieas%. This implies that each state is robustly accessible despite
i for eachi. Unfortunately, robust connectedness is not satisfied in this example.
Indeed, any se@* is neither robustly accessible nor transient. For example, any
setQ* which does not include some stateis not robustly accessible despite 1,
because if player 1 always chooses the action correspondm@ézh period, the
posterior must put probability at Iea%bn w. Also the whole sef is not robustly
accessible, because in any period, the posterior puts probability zero on some state
w. Since there is no robustly accessible set, any set cannot be transient either.

Note, however, that robust connectedness is just a sufficient condition for in-
variance of the limit minimax payoff. The following proposition shows that, for
stochastic games with delayed observations, weak irreducibility implies invari-
ance of the limit minimax payoff. The proof relies on the fact that there are only
finitely many possible posterior beliefs for games with observation delays; see
Appendix B.
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Proposition 11. Consider stochastic games with delayed observations, and sup-
pose that the game is weakly irreducible. Then for each i and0, there is
4 € (0,1) such thatv' (6) — v (8)| < e for anyé € (8,1), u, andfi.

5.3 Example: Natural Resource Management

Now we will present an example of natural resource management. This is an ex-
ample which satisfies uniform connectedness and robust connectedness, but does
not satisfy the full support assumption.

Suppose that two fishermen live near a gulf. The state of the world is the num-
ber of fish in the gulf, and is denoted by< {0,--- ,K} whereK is the maximal
capacity. The fishermen cannot directly observe the number ofdiskp they
have a belief aboub.

Each period, each fisherman decides whether to “Fish'dof “Do Not Fish”

(N); so fishermaii’s action set isA; = {F,N}. Lety; € Y; = {0,1,2} denote the
amount of fish caught by fishermanand letri’(y|a) denote the probability of

the outcomey = (y1,Y2) given the current statey and the current action profile

a. We assume that if fishermarchoosed\, then he cannot catch anything and
hencey; = 0. That is,7i’(y|a) = O if there isi with & = N andy; > 0. We also
assume that the fishermen cannot catch more than the number of fish in the gulf,
so78’(y|a) = O for w, a, andy such thatw < y; +Yy,. We assumex’(y|a) > O for

all other cases, so the signatloes not reveal the hidden stabe

Fisherman'’s utility in each stage game is O if he choo$¢sand isy; — c if he
choosed-. Herec > 0 denotes the cost of choosikg which involves effort cost,
fuel cost for a fishing vessel, and so on. We assumectkal ycy 78°(Y|F,a i)y
for somew anda_j, that is, the cost is not too high and the fishermen can earn
positive profits by choosing, at least for some state and the opponents’ action
a_j. If this assumption does not hold, no one fishes in any equilibrium.

Over time, the number of fish may increase or decrease due to natural increase
or overfishing. Specifically, we assume that the number of fish in perotis
determined by the following formula:

W =o' — (Y +yh) + €' (4)

In words, the number of fish tomorrow is equal to the number of fish in the gulf to-
day minus the amount of fish caught today, plus a random vargaldd —1,0,1},

38



which captures natural increase or decrease of fish. Intuitigetyl implies that
some fish had an offspring or new fish came to the gulf from the open sea. Sim-
ilarly, € = —1 implies that some fish died out or left the gulf. Le{Rb,a,y)
denote the probability distribution @fgiven the currentv, a, andy. We assume

that the statew'*! is always in the state spa& = {0,--- K}, that is, Pfte =
—1jw,ay) =0if w—y1—y> =0 and Pte = ljw,a,y) =0 if w—y; —y> = K.

We assume Fe|w, a,y) > 0 for all other cases.

This model can be interpreted as a dynamic version of “tragedy of commons.”
The fish in the gulf is public good, and overfishing may result in resource deple-
tion. Competition for natural resources like this is quite common in the real world,
due to growing populations, economic integration, and resource-intensive patterns
of consumption. For example, each year Russian and Japanese officials discuss
salmon fishing within 200 nautical miles of the Russian coast, and set Japan’s
salmon catch quota. Often times, it is argued that community-based institutions
are helpful to manage local environmental resource competition. Our goal here is
to provide its theoretical foundation.

This example does not satisfy the full support assumption, because the prob-
ability of w!™! = K is zero ify; +y» > 1. However, as we will explain, uniform
connectedness and robust connectedness hold so that the feasible and individ-
ually rational payoff set is invariant to the initial prior. Accordingly, the folk
theorem (Proposition 4) applies, and thus the welfare-maximizing fishing plan is
self-enforcing.

To see that this game is indeed uniformly connected, we first shovthat
Q is globally accessible. Pick an arbitrary initial prigr and pick an arbitrary
strategy profiles. Suppose that = (0,0) is observed for the fird periods. (This
history happens with probability at leasf, regardless ofu,s).) After such a
history, the support of the posterior must be the whole state dpadee to the
possibility of natural increase and decrease. This shows(hat Q is indeed
globally accessible.

Also, any other se®@* # Q is either globally accessible or uniformly transient.

To see this, pick an arbitrary initial priqu with the supportQ*, and pick an
arbitrary strategy profiles. Suppose thay = (0,0) is observed for the firsK
periods. Then as in the case above, the support of the posterior moves to the
whole state spac@, which is globally accessible. Hen€¥ # Q are uniformly
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transient (or globally accessible, if they satisfy the relevant condition.) This shows
that the game is indeed uniformly connected.

For the same reasoninQ;" = Q is robustly accessible despiteand any other
setQ* # Q is transient givem. Also, the merging support condition holds; regard-
less of the initial prior and the strategy profileyi= (0, 0) is observed for the first
K periods, the support of the posterior becorflesHence the game is robustly
connected.

So far we have assumed that &ro,a,y) > 0, except the case in which the
state does not stay in the spad®--- ,K}. Now, modify the model and suppose
that P(e = 1jw,a,y) =0if w—y; —y2 =0anda# (N,N). Thatis, if the resource
is exhaustedd) — y1 — y» = 0) and at least one player tries to catah((N,N)),
there will be no natural increase. This captures the idea that there is a critical
biomass level below which the growth rate drops rapidly; so the fishermen need to
“walit” until the fish grows and the state exceeds this critical level. We still assume
that Pfe|w,a,y) > O for all other cases.

In this new example, players’ actions have a significant impact on the state
transition, that is, the stateeverincreases if the current state és = 0 and
someone choosds. This complicates the belief evolution process, but still we
can show that uniform connectedness holds. Unfortunately, robust connectedness
does nohold, as supports are not merging; however, it is not difficult to compute
the limit minimax payoff in this example, and it turns out that the limit minimax
payoff is zero regardless of the initial prior and thus invariant to the initial prior.
Accordingly, our folk theorem still applies.

To see that the limit minimax payoff is indeed 0, note first that a fisherman can
obtain at least a payoff of 0 by choosing “Alwais’ Hence the limit minimax
payoff is at least 0. On the other hand, if the opponent always ch&qdbe state
eventually reaches = 0 with probability one, and thus fishermés payoff is at
most 0 in the limit a® — 1. Thus the limit minimax payoff is indeed 0.

The proof of uniform connectedness is more complicated than the previous
example. As a first step, we show that the Qét= {0} is globally accessible,
that is, we show that given any initial priqr, players can move the support to
{0}. Pick an arbitrary initial priopt. Suppose that the fishermen do not fish for
the firstk periods, so that the posterior beljgf+1 assigns at least probabilify
on the highest state = K. (That is,u**1(K) > 7€.) Suppose that in the next
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period, the fishermen fish and observe the signal(1,1). Then the posterior
belief uX+2 assigns probability zero on the highest state, as the fishermen caught
more fish than the natural increase. Similarly, if they obsgeed1,1) in the next
period, then the posteriqek*2 assigns probability zero on the highest and the
second highest states. In this way, after obserirgl consecutive observations
of y=(1,1), we can eventually have the posterior which assigns probability one
on the lowest statev = 0, as desired. Note also that the probabilitykof- 1
consecutive observations pt= (1,1) is at leaspuX *1(K)7#¢~1 > 7K1, so there
is a lower bound on the probability of the support reacHig HenceQ* = {0}
is indeed globally accessible.

Also, any other se®* # {0} is either globally accessible or uniformly tran-
sient. To see this, pick an arbitrary sub&stC Q, and pick an arbitrary belief
p with supportQ*. Since there is a possibility of natural decrease-(—1), af-
ter K — 1 periods, the posterior beligf¢ must put positive probability omw = 0
regardless of the history. The support of this postetibris globally accessi-
ble, as Proposition 5 ensures that any superset of the globally accessiflé set
is globally accessible. Hend®@* is uniformly transient (or globally accessible,
if it satisfies the condition for global accessibility), and the game is uniformly
connected.

6 Concluding Remarks

This paper considers a new class of stochastic games in which the state is hidden
information. We find that, very generally, the feasible and individually rational
payoff set is invariant to the initial belief in the limit as the discount factor goes to
one. Then we introduce the idea of random blocks and prove the folk theorem.

Throughout this paper, we assume that actions are perfectly observable. In an
ongoing project, we consider how the equilibrium structure changes when actions
are not observable; in this new setup, each player has private information about
her actions, and thus different players may have different beliefs. This implies that
a player’s belief is not public information and cannot be regarded as a common
state variable. Accordingly, the analysis of the imperfect-monitoring case is very
different from that for the perfect-monitoring case.
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Appendix A: Extension of Uniform Connectedness

Proposition 6 shows that uniform connectedness ensures invariance of the feasible
payoff set. Here we show that the same result holds under a weaker condition,
calledasymptotic uniform connectedness

Before we describe the idea of asymptotic uniform connectedness, it is use-
ful to understand when uniform connectedness is not satisfied and why we want to
relax it. We present two examples in which states are communicating but nonethe-
less uniform connectedness does not hold. These examples show that Proposition
8 does not extend to the hidden-state case; the game may not be uniformly con-
nected even if states are communicating.

Example Al. Suppose that there are only two statss {ws, w,}, and that the

state evolution is a deterministic cycle; i.e., the state goastéor sure if the
current state isu;, and vice versa. Assume that the public signdbes not reveal

the statew, that is, ©(y|a) > 0 for all w, a, andy. In this game, if the initial

prior is fully mixed so thag(cw;) > 0 andu(wy) > 0, then the posterior belief is
also mixed. Hence only the whole state sp&e= Q is globally accessible. On

the other hand, if the initial prior puts probability one on some siatéhen the
posterior belief puts probability one anin all odd periods and o # w in all

even periods. Hence the support of the posterior belief cannot reach the globally
accessible s€®* = Q, and thus eacliw} is not uniformly transient.

In the next example, the state evolution is not deterministic.

Example A2. Consider a machine with two states, andw,. w; is a “normal”

state andw, is a “bad” state. Suppose that there is only one player and that she has
two actions, “operate” and “replace.” If the machine is operated and the current
state is normal, the next state will be normal with probabiityand will be bad

with probability 1— p;, wherep; € (0,1). If the machine is operated and the
current state is bad, the next state will be bad for sure. If the machine is replaced,
regardless of the current state, the next state will be normal with probgtsilamd

will be bad with probability - p,, wherep, € (0,1]. There are three signalg,

y2, andys. When the machine is operated, both the “succgssihd the “failure”

y» can happen with positive probability; we assume that its distribution depends on
the current hidden state and is not correlated with the distribution of the next state.
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When the machine is replaced, the “null signgd”is observed regardless of the
hidden state. Uniform connectedness is not satisfied in this example {siate

is neither globally accessible nor uniformly transient. Indeed, when the support
of the current belief i€, it is impossible to reach the beligf with p(w,) =1,
which shows thaf w,} is not globally accessible. Alsfwy,} is not uniformly
transient, because if the current belief puts probability oneypoand “operate” is
chosen forever, the support of the posterior belief is alwjays .

While uniform connectedness does not hold in these examples, the feasible
payoffs are still invariant to the initial prior. To see this, consider Example A1,
and suppose that the signal distribution is different at different states and does not
depend on the action profile, that is;*(|a) = mm and 1%(-|a) = & for all a,
whererq # . Suppose that the initial state ég. Then the true state must be
w, in all odd periods, and bey, in all even periods. Hence if we consider the
empirical distribution of the public signals in odd periods, it should approximate
mm with probability close to one, by the law of large numbers. Similarly, if the
initial state iswy, the empirical distribution of the public signals in odd periods
should approximaten. This implies that players can eventually learn the current
state by aggregating the past public signals, regardless of the initiappridence
for o close to one, the feasible payoff set must be invariant to the initial prior.

The point in this example is that, while the singleton &ex} is not glob-
ally accessible, it imsymptotically accessibi@ the sense that at some point in
the future, the posterior belief puts a probability arbitrarily close to oneugn
regardless of the initial prior. As will be explained, this property is enough to
establish invariance of the feasible payoff set. Formally, asymptotic accessibility
is defined as follows:

Definition A1. A non-empty subse®* C Q is asymptotically accessiblié for
anye > 0, there is a natural numb&rand st > 0 such that for any initial priog,
there is a natural numbdr* < T and an action sequenc¢a?,---,a’ ) such that
Pr(u™ 1 = fi|u,a,--- ,aT") > m* for somefi with 5 cq- fi(w) > 1— €.

Asymptotic accessibility of2* requires that given any initial priqu, there
is an action sequendel,---,a" ) so that the posterior belief can approximate a
belief whose support ©*. Here the lengti * of the action sequence may depend
on the initial prior, but it must be uniformly bounded by some natural nurber
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As argued above, each singleton §et} is asymptotically accessible in Ex-
ample Al. In this example, the state changes over time, and thus if the initial prior
puts probability close to zero am, then the posterior belief in the second period
will put probability close to one ow. This ensures that there is a uniform bound
T on the lengthT * of the action sequence.

Similarly, the sef{ awy} in Example A2 is asymptotically accessible, although
it is not globally accessible. To see this, suppose that the machine is operated
every period. Thenw, is the unique absorbing state, and hence there is Jome
such that the posterior belief after periddattaches a very high probability on
wp regardless of the initial prior (at least after some signal realizations). This is
precisely asymptotic accessibility ¢to,}.

Note thatQ* is asymptotically accessible whenever it is globally accessible.
Hence the whole state spa® = Q is always asymptotically accessible. Next,
we give the definition of asymptotic uniform transience, which extends uniform
transience.

Definition A2. A singleton sef{ w} is asymptotically uniformly transiernt it is
not asymptotically accessible and theréris> 0 such that for ang > 0, there is
a natural numbef such that for each pure strategy proflehere is an asymp-
totically accessible se®*, a natural numbef* < T, and a belief{i such that
PriuT +1 = fi|w,s) > 0, T geo- (D) > 1— ¢, andfi(@) > 7 for all & € Q*.

In words, asymptotic uniform transience{ab} requires that if the support of
the current belief i w}, then regardless of the future play, with positive prob-
ability, the posterior beliefi™ *1 = [i approximates a belief whose supptt
is globally accessible. Asymptotic uniform transience is weaker than uniform
transience in two respects. First, a global accessibl®@seah the definition of
uniform transience is replaced with an asymptotically accessibl@'sefecond,
the support of the posterigr is not necessarily identical wit*; it is enough if
f1 assigns probability at leastds on Q*.17

Definition A3. A stochastic game iasymptotically uniformly connectetieach

17 Asymptotic uniform transience requir@gé) > it*, that is, the posterior beligf is not close
to the boundary ofAQ*. We can show that this condition is automatically satisfied in the definition
of uniform transience, if w} is uniformly transient; so uniform transience implies asymptotic
uniform transience.
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singleton sef w} is asymptotically accessible or asymptotically uniformly tran-
sient.

Asymptotic uniform connectedness is weaker than uniform connectedness. In-
deed, Examples Al and A2 satisfy asymptotic uniform connectedness but do not
satisfy uniform connectedness.

Unfortunately, checking asymptotic uniform connectedness in a given exam-
ple is often a daunting task, because we need to compute the posterior belief in
a distant future. However, the following proposition provides a simple sufficient
condition for asymptotic uniform connectedness:

Proposition A1l. The game is asymptotically uniformly connected if states are
weakly communicating, and for each action profile a and each proper s(jset
Q,

co{r§’(a)|w e Q*} Nco{r(a)|w ¢ Q*} = 0.

In words, the game is asymptotically uniformly connected if states are weakly
communicating and and if players can statistically distinguish whether the current
statew is in the setQ* or not through the public signal Loosely, the latter
condition ensures that players can eventually learn the current support after a long
time at least for some history, which implies asymptotic accessibility of some sets
Q*. See Appendix B for the formal proof.

Note that the second condition in the above proposition is satisfied if the signal
distributions{ i’’(a)|w € Q} are linearly independent for eaeh Note also that
linear independence is satisfied for generic signal structures as long as the signal
space is large enough so th#t > |Q|. So asymptotic uniform connectedness
generically holds as long as states are weakly communicating and the signal space
is large enough.

The following proposition shows that the feasible payoff set is indeed invariant
to the initial prior if the game is asymptotically uniformly connectéd he proof
can be found in Appendix B.

BHowever, unlike Proposition 6, we do not know the rate of convergence, and in particular, we
do not know if we can replacgin the proposition wittO(1— 9).
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Proposition A2. If the game is asymptotically uniformly connected, then for each
£ >0, there isd € (0,1) such that for any\ € A, 6 € (5,1), u, andfi,

max A-v— max A-V| <E€.
veVH(9) VeVH (D)

In the same spirit, we can show that the minimax payoff is invariant to the
initial prior under a condition weaker than robust connectedness. The idea is quite
similar to the one discussed above; we can relax robust accessibility, transience,
and the merging support condition, just as we did for global accessibility and
uniform transience. Details are omitted.

Appendix B: Proofs

B.1 Proof of Proposition 2: Invariance of the Minimax Payoffs

For a given strategg_; and a priorjt, let vi’:'(s,i) denote player’s best possible
payoff; that is, Ietviﬂ (S_i) = MaXses v{](é,s,s_i). This payoffvi’](s_i) is convex
with respect tqil, as it is an upper envelope of linear functimﬁ‘s{é,s,s_i) over
all s.

Let ¢ denote the minimax strategy profile given the initial priar Pick an
arbitraryu and pick the minimax strategg’ii. Then player’s best payoffvi’](s‘ii)
agains1s‘ii is convex with respect to the initial prigr. For each beliefu, let

w(sh) = max (s,
peA(supp)
that is,vi(s‘ii) is the highest payoff achieved by the convex curve induceeﬁpy
Note that different initial priorgu induce different minimax strategieséﬁi, and
hence different convex functions and different highest pay‘xp(%_‘i). Chooseu*
so that the corresponding highest pay?pfb‘_‘?) approximates the supremum of
the highest payoffs over all beliefs that is, choose!* such that

vi(s") - sup wi(sh)| <1-3.
peAQ

We call v (s‘j) the maximal valuebecause it approximates the highest payoff
achieved by the convex curves. The definitionudfabove is very similar to the
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one in Section 3.3, but here we allow the possibility that p&@gvi(s‘fi) does
not exist.
Slncev“(s“ ) is convex, it is maximized Whept |s an extreme point. Let
w € sup* denote this extreme point, so thzﬁ‘ ) >V (s‘_’,) for all 1 €
A(supgu*). In general, the maximal valug(s",) = vi‘”(s‘_’,) is not the minimax
payoff for any initial prior, because the stabecan be different from the beligf*.

B.1.1 Step 0: Preliminary Lemma

Lemma 1 in Section 3.3 gives a useful bound on the convex curves, but its state-
ment is somewhat informal. The following is the formal statement of the lemma:

Lemma B1. Take an arbitrary belieju, and an arbitrary interior beliefii. Let
p = Mingeq [1(&), which measures the distance frgnto the boundary o\ Q.
Then for eachi € AQ,

W)+ (1-8) v

Y

To interpret this lemma, pick an interior beligfsuch thatfi(é) > 7 for all
@, as in Lemma 1 in Section 3.3. Then we have T, so the proposition above
implies

w() +(1-8) ()| <

W)+ (1-8) - vi(s)

T

W)+ (1-8) - ()] <

This mequallty implies that if the convex curvﬁé approxmates the maximal
valuey, (s“ ) for the beliefii above, then the convex curv#- ;) approximates
the maximal value foall beliefsi.

In this discussion, it is important that the beljefs not too close to the bound-
ary of AQ. Indeed, iff1 approaches the boundary 61, thenp approaches zero
so that the right-hand side of the inequality in the lemma, which gives a bound
on the convex curve, becomes arbitrarily large. In Lemma 1 in Section 3.3, we
assumgli(@) > TTin order to avoid such a case.

Proof. Pick u, fi, andp as stated. Leg be playeri’s best reply agains&‘_’i given
the initial prior 1. Pick an arbitraryb € Q. Note that

= Y A@V(3.s.8).

weQ
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%
i

Then using®(3,s,s*,) <wi(s!;) + (1— &) for each® # &, we obtain

V() < i@NVE(8,s,8,) + (1— (@) {w(s)) + (1- 8)}.

Arranging,
(@) {w(s4) +(1-8) —(8,5,84) | <w() +(1-8) — ().
Since the left-hand side is non-negative, taking the absolute values of both sides
and dividing them byi( ),
W)+ (1-8) ()|

W)+ (1-8) V(58| < e

Sincefi(&) > p, we have

W)+ (1-8) ()|
- .

Now, pick an arbitraryi € AQ. Note that (5) holds for eacth € Q. So
multiplying both sides of (5) byi(®) and summing over ath € Q,

(5)

V() +(1-8) - vP(8.5.8)| <

w(s) +(1-8) -V ()
. :

*
i

W)+ (L-8) —v(3.5,8)| < |

%}u(w)

(6)

Then we have

W) +(1-8) (| < fa(e!

weQ
W) +(1-8) (<)
<
p
Here the first inequality follows from the fact thatis not a best reply giveq,
and the last inequality follows from (6). Q.E.D.
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B.1.2 Step 1: Minimax Payoff for Some Beliefu**

In this step, we will show that there is an interior beligf such thau** (&) > 7
for eachd and such that the minimax payoff for this beljgf* approximates the
maximal score.

Suppose that the initial state ¢, and that players pIaﬁ,s‘_‘T), wheres is
a best reply tos‘_‘T given the initial statew. if the signaly is observed in period
one. Note that in this case, playes payoff achieves the maximal value. Let
o* be the action profile in period one induced (rsy,s‘j). Let u(y|w,a) be the
posterior belief in period two when the initial belief is° = w and players play
a and observe in period one, Likewise, lgti(y|u*) be the posterior belief when
the initial belief isp*.

The following lemma shows that there is some outc@eg) such that player
i's continuation payoftY'*? (¢4 approximates the maximal value.

Lemma B2. There is(a,y) such thator*(a) > 0 and such that

V() + (1= §) — H01©@a) i a)) §(1—5)((520+1).

Proof. Pick (a,y) which maximizes the continuation payaff Y/ (VK2

over ally anda with a*(a) > 0. Then as shown in Section 3.3, we have

VO < (1= 8)gP(a™) + o IO (VI

This implies
V() + (1 - 8) — @ VI <1—5><9f°<a*§ Ve +1)
Sinceg®(a*) —v¥(s"}) < 2g, we obtain the desired inequality. Q.ED.

Pick (a,y) as in the lemma above, and let* = u(y|u*,a). Then the above
lemma implies that

V) (1 8) -V < BN

Thatis, the convex curvé‘ approxmates the maximal score for some belief
[ = u(y|w,a). Note that under the full support assumptiprty|cw, a)[w] > 7T for
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all ®. Hence Lemma B1 ensures that

_ (1-8)(2g+1)

- 7o

V) + (1= 3) V(&)

for all 1. That s, the convex curve induced ﬁfy, is almost flat and approximates
the maximal score for all beliefg. In particular, by lettingit = u**, we can
conclude that the minimax payoff for the beligf* approximates the maximal
value. Thatis,

VS 4 (1) ()| < 10N

- ()
B.1.3 Step 2: Minimax Payoffs for Other Beliefs

Now we will show that the minimax payoff approximates the maximal value for
any beliefu, which implies invariance of the minimax payoff.

Pick an arbitrary beliefz. Suppose that the initial prior |g** and the oppo-
nents play the minimax strate@ for the beliefu. Suppose that playérakes
a best reply. Her payoﬁi“** (s‘ii) is at least the minimax payoff fqu**, by the
definition of the minimax payoff. At the same time, her payoff cannot exceed the
maximal valuev®(s";) + (1— ). So we have
v (s () S v + (1 6).

|
Then from the last inequality in the previous step, we have

V() + (1 8) - ()| < (1- 53_T(§g+ 1)

So the convex curve/i[’(s‘ii) approximates the maximal value for some belief
[t = u**. Then from Lemma B1,

* ; (1-8)(2g+1)
V() + (1= 8) ()| < T

for all beliefs 1. This implies that the minimax payoff fqu approximates the
maximal value, as desired.
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B.2 Proof of Proposition 3: Existence of the Limit Minimax

Payoff
Takei, u, ande > 0 arbitrarily. Letd € (0,1) be such that
= €
v'(8) — liminf \_/i“(é)’ <3 (7)

and such that

(@) - (3)] <

(8)

NI ™

for eachji. Note that Proposition 9 guarantees that sd@xists.
For eachfi, Ietsf_‘i be the minimax strategy giveia andd. In what follows,
we show that
maxvt'(8,s,5",) < liminf v (8) + ¢ (9)
s€S 3—1
for eachd € (8,1). That is, we show that when the true discount factdy, iglayer
i's best payoff against the minimax strategy for the discount fagta worse
than the limit inferior of the minimax payoff. Since the minimax strategy for
the discount factod is not necessarily the minimax strategy firthe minimax
payoff ford is less than mayes vi"(é,s,s‘ii). Hence (9) ensures that the minimax
payoff for d is worse than the limit inferior of the minimax payoff. Since this is
true for all§ € (3,1), the limit inferior is the limit, as desired.

So pick an arbitrany € (8,1), and compute mayxs V' (8,s,5",), playeri's
best payoff against the minimax strategy for the discount fagtoffo evaluate
this payoff, we regard the infinite horizon as a series of random blocks, as in
Section 4. The termination probability is-1p, wherep = %. Then, sinces’’,
is Markov, playings’ii in the infinite-horizon game is the same as playing the
following strategy profile:

¢ During the first random block, pla‘j’;i.

e During thekth random block, pla)s‘_‘li( wherepX is the belief in the initial
period of thekth block.
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Then the payoff magsg vi“((S,s,s‘_‘i) is represented as the sum of the random
block payoffs, that is,

maxvi“(c‘i,s,s‘_‘i):(l—a)ki (5(1—p))k—1E [v,“ (po, s 78#0'“’5“1’5“1
=1

s€S 1-pd 1-pd

Where#Jk is the optimal (Markov) strategy in the continuation game fromkthe
block with beliefuk. Note thats|“k may not maximize the payoff during theh
block, because playemeeds to take into account the fact that her action during
the kth block influencesu¥*1 and hence the payoffs after tkéh block. But in

k k k k — k. ..
any case, we havé' (pd,s' ,s") <v' (8) becausa", is the minimax strategy
with discount factompd = 8. Hence

max(3,s,8;) < (1-9) g (5<1— p))k_lE [\_/a”_(g)

S€S k=1 1-pod 1-po
Using (8),
bor o sy s S 5(1—p>)“ W) e
manf'5.5.¢) <=0 5 (T58) (o5 2

Then using (7), we obtain (9).

Note that this proof does not assume public randomization. Indeed, random
blocks are useful for computing the payoff by the stratxégybut the strategg” i
itself does not use public randomization.

B.3 Proof of Proposition 4 with Mixed Minimax Strategies

Here we explain how to extend the proof provided in Section 4.3 to the case in
which the minimax strategies are mixed strategies. As explained, the only thing
we need to do is to perturb the continuation payaffj) so that player is indif-
ferent over all actions in each period during the minimax play.

We first explain how to perturb the payoff, and then explain why it makes
playeri indifferent. For eachu anda, take a real numbeR;(u,a) such that
gi“(a) +Ri(u,a) = 0. Intuitively, in the one-shot game with the beljefif player
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i receives the bonus paymeRt(u,a) in addition to the stage-game payoff, she
will be indifferent over all action profiles and her payoff will be zero. Suppose
that we are now in the punishment phase for playeri, and that the minimax
play overK blocks is done. For eadhe {1,---,K}, let (u®,a) denote the
belief and the action profile in the last period of #tle block of the minimax play.
Then the perturbed continuation payoff is defined as

: C  (1-pd)kk K) Ak

wi(j)+(1—9) k;{fS(l— p>}Kk+1Ri(u( ),a).

That is, the continuation payoff is now the original valuéj) plus theK pertur-
bation term&R; (uM,al), ..., R (u®), aK)), each of which is multiplied by the
coefficient(1 — 6){5((1%%.

We now verify that player is indifferent over all actions during the minimax
play. First, consider playdis incentive in the last block of the minimax play.
We will ignore the termR (u®),ak) for k < K, as it does not influence player
i's incentive in this block. If we are now in theth period of the block, playefs
unnormalized payoff in the continuation game from now on is

00 Y (1t At
3 (p0) el @)+ 3 (1 ppt 15 (i) + g N
Here,(ut,a") denote the belief and the action in tiie period of the continuation
game, so the first term of the above display is the expected payoff until the current
block ends. The second term is the continuation payoff from the next bltek;

p)p' 1 is the probability of period being the last period of the block, in which
case player's continuation payoffisvi(j) + %Fw where the expectation

is taken with respect tat anda!, conditional on that the block does not terminate
until periodt. We have the ternd' due to discounting, and we ha\fég in order

to convert the average payoff to the unnormalized payoff. The above payoff can

be rewritten as

c t—1p M (At (gt At 5(1-p) (i
2.(PO)Elar (@) + R &)+ (7577 — gy i)

Sinceg! (a) + Ri(1,a) = 0, the actions and the beliefs during the current block
cannot influence this payoff at all. Hence playes indifferent over all actions in
each period during the block.
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A similar argument applies to other minimax blocks. The only difference is
that if the current block is thkth block withk < K, the corresponding perturba-
tion payoff Ri(u®,a) will not be paid at the end of the current block; it will
be paid after th&th block ends. To offset discounting, we have the coefficient
w%%‘)m onR(u®, ak). To see how it works, suppose that we are now in
the second to the last block (i.&.= K — 1). The “expected discount factor” due
to the next random block is
6(1-p)

_ 20(1 — 302(1_p)p-r. —
O(1-p)+0°p(l—p)+3°p (1-p)+ 1-po

Here the first term on the left-hand side comes from the fact that the length of the
next block is one with probability 4 p, in which case discounting due to the next
block isd. Similarly, the second term comes from the fact that the length of the
next block is two with probabilityp(1 — p), in which case discounting due to the
next block isd2. This discount factof% cancels out, thanks to the coefficient
%2 onR (u®-Y alK-1) Hence playeris indifferent in all periods during

the this block.

So far we have explained that playigs indifferent in all periods during the
minimax play. Note also that the perturbed payoff approximates the original pay-
off wi(j) for & close to one, because the perturbation terms are of orded.1
Hence for sufficiently largé, the perturbed payoff vector is in the feasible payoff
set, and all other incentive constraints are still satisfied.

B.4 Proof of Proposition 5: Properties of Supersets

It is obvious that any superset of a globally accessible set is globally accessible.
So it is sufficient to show that any superset of a uniformly transient set is globally
accessible or uniformly transient.

Let Q* be a uniformly transient set, and take a supefEétSuppose tha®*
is not globally accessible. In what follows, we show that it is uniformly transient.
Take a strategy profilearbitrarily. SinceQ* is uniformly transient, there i€ and
(y},---,y") such that if the support of the initial prior @* and players play,
the signal sequendg?,---,y") appears with positive probability and the support
of the posterior beliefi™ 1 is globally accessible. Pick sudhand(y!,---,yT).
Now, suppose that the support of the initial prioi$ and players plag. Then
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sinceQ* is a superset d*, the signal sequendg’,-- - ,y") realizes with positive
probability and the support of the posterior befigf is a superset of the support
of uT*+1. Since the support gi" 1 is globally accessible, so is the superset. This
shows thaf* is uniformly transient, as can be arbitrary.

B.5 Proof of Proposition 6: Score and Uniform Connectedness

We will show that the score is invariant to the initial prior if the game is uniformly
connected. Fix and the directiord . For eachu, lets! be a pure-strategy profile
which solves maxsA -v(9,s). Thatis,s" is the profile which achieves the score
given the initial prioru. For each initial priory, the score is denoted by -
vH(d,d"). Givend andA, the scorel -vH(8,9") is convex with respect ta, as it
is the upper envelope of the linear functionsv (9, s) over alls.

Since the scord - vH(d,9") is convex, it is maximized by some boundary
belief. That is, there is such that

AVO(3,59) > A vH(3, ) (10)

for all u. Pick suchw. In what follows, the score for thi@ is called thenaximal
score

B.5.1 Step 0: Preliminary Lemmas

We begin with providing two preliminary lemmas. The first lemma is very sim-
ilar to Lemma B1; it shows that if there is a belipfwhose score approximates
the maximal score, then the score @erybelief {1 with the same support as
approximates the maximal score.

Lemma B3. Pick an arbitrary beliefu. Let Q* denote its support, and let
Mingeo+ K (@), which measures the distance frgmto the boundary ofAQ*.
Then for eachi € AQ*,
. . : —)-WH
A vP(5,58) — A V(5,9 < A vww,sw)p/\ (@9,
To interpret this lemma, pick sonfe* C Q, and pick a relative interior belief
pu € AQ* such thatu(@) > 7 for all & € Q*. Thenp > T, and thus the lemma

55



above implies

|A-v9(5,8%) — A -VH(S, )]

A V9(3,59) — A V(5| < =

for all i € AQ*. So if the score\ - vH(d,d) for the beliefu approximates the
maximal score, then for all beliefs with supportQ*, the score approximates the
maximal score.

The above lemma relies on the convexity of the score, and the proof idea is
essentially the same as the one presented in Section 3.3. For completeness, we
provide the formal proof below.

Proof. Pick an arbitrary belieft, and letQ* be the support ofi. Pick & € Q*
arbitrarily. Then we have

AV, = 5 p[@A -ve(3, M)
WeQ*
<p(@A VS, + 3 u(@AvI(3,5).
W+Q
Applying (10) to the above inequality, we obtain
AVH(8,9) < p(@)A VA(8, ) + (1— pu(@))A v2(8,5).
Arranging,
H(O)Y(A -VP(3,5°) = A -VP(3,84)) <A -v2(3,8%) — A -vH (3, 94).

Dividing both sides byu (),

A VP(8,8) — A A5, < AVI0ST) ZA V(0.
’ T H(®) '

SinceA -v?(9,s%) — A -vH(5,9") > 0 andu () > p= mingeq- U(W), we obtain

A-W(a,sw)—/\-v@(a,s“)gA'Vw(a’sw);’\"’“(a’gl). (11)

Pick an arbitrary beliefi € AQ*. Recall that (11) holds for eadfs € Q*.
Multiplying both sides of (11) byi(é) and summing over atb € Q*,

- VA RV
A VO(5,8%) — A V(5 ) < 2 (5’Sw)p)‘ V(0.9
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SinceA -v@(5,59) > A -vH(5,d1) > A -V (5, 51),
. . RV DUy
)\-v"’(é,s‘*’)—)\.v“(c‘i,s“)g)\ v (5’s‘u)p)‘ vi(e.9)

Taking the absolute values of both sides, we obtain the result. Q.E.D.

The next lemma is about global accessibility. In the definition of global acces-
sibility, the action sequence which moves the support to a globally accessible set
Q* depends on the current belief. The following lemma shows that such a belief-
dependent action sequence can be replaced with a belief-independent sequence if
we allow mixed actions. That is, if players mix all actions equally each period,
then the support will reac* regardless of the current belief. Note thEtin the
lemma can be different from the one in the definition of global accessibility.

Lemma B4. LetQ* be a globally accessible set. Suppose that players randomize
all actions equally each period. Then thereris > 0 such that given any initial
prior u, there is a natural number & 419l such that the support of the posterior
belief at the beginning of period F 1 is a subset o2* with probability at least

T,

Proof. Taker* > 0 as stated in the definition of global accessibilitybf. Take
an arbitrary initial priory, and take an action sequen@é,--- ,a' ) as stated in
the definition of global accessibility @*.

Suppose that players mix all actions each period. Then the action sequence
(al,---,al) realizes with probabilit;T'AL‘T, and it moves the support of the posterior
to a subset of2* with probability at leastt*. Hence, in sum, playing mixed
actions each period moves the support to a subs@t afith probability at least
ﬁr - 7T*. This probability is bounded from zero for all, and hence the proof is
completed. Q.E.D.

B.5.2 Step 1. Scores for Beliefs with Suppor®Q*

As a first step of the proof, we will show that there is a globally accessible set
Q* such that the score for any beligfe AQ* approximates the maximal score.
More precisely, we prove the following lemma:
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Lemma B5. There is a globally accessible €t C Q such that for allu € AQ*,

Q
IA-V?(0,8%) —A V(5 )| < m
52\Q|7__l4\9\

The proof idea is as follows. Since the game is uniformly connedi&d,is
globally accessible or uniformly transient. If it is globally accessibleQdet=
{w}. This setQ* satisfies the desired property, because the/d®t contains
only the beliefu = w, and the score for this belief is exactly equal to the maximal
score.

Now, consider the case in whicfw} is uniformly transient. Suppose that
the initial state isv and the optimal policg® is played. Sincq w} is uniformly
transient, there is a natural numfex 2/l and a histonh" such that the history
hT appears with positive probability and the support of the posterior belief after
the historyh' is globally accessible. Take sudhandh'. Let u* denote the
posterior belief after this historg” and letQ* denote its support. By the defi-
nition, Q* is globally accessible. Using a technique similar to the one in Section
3.3, we can show that the continuation payoff after this histdrapproximates
the maximal score. This implies that the score for the beliedpproximates the
maximal score. Then Lemma B3 ensures that the score for any |petief\ Q*
approximates the maximal score, as desired.

Proof. First, consider the case in whi¢k} is globally accessible. L&* = {w}.

Then this seQQ* satisfies the desired property, becads@* contains only the

belief u = w, and the score for this belief is exactly equal to the maximal score.
Next, consider the case in whidlw} is uniformly transient. Takd, h', u*,

and Q* as stated above. By the definition, the supporubfis Q*. Also, u*

assigns at least' to each staté) € Q*, i.e., u* (&) > 7' for each® € Q*. This

is so because

Pr(w" ! = @|w,h")
Y e P01 = @|w,hT)

p (@) = >Priw 1= @lw,h") > 7"
where the last inequality follows from the fact titats the minimum of the func-
tion 1t.

For each historfn”, Ietu(ﬁT) denote the posterior belief given the initial state
w and the historyh". We decompose the score into the payoffs in the first
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periods and the continuation payoff after that:

A -Vv2(3,5%) =(1—9) iét‘lE[/\ g¥ ()|t = w, Y
t=

+87 Y PrTjw,s?)A - v (5,¢401)),
hTeHT
Using (10),u(h") = p*, and(1-8) 5, 8 1E[A - g ()| = w, 7] < (1
47)g, we obtain
A -Vv2(5,8°) <(1—3"7)g+ 0" Pr(h"|w,s?)A -vH (3,8
+ 87 (1—Pr(h"|w,s®))A -v¥(5,5%).

Arranging, we have

(1-8T)(g— A v(3,5%)

' Wy _ A M '
AVP(5,8Y) —A-vH (6,d4) < ST Pr(hT |, s®)

Note that Pth' |w,s®) > 71", because® is a pure strategy. Hence we have
(1-8")(—A-v¥(3,s”))
ST’

Since (10) ensures that the left-hand side is non-negative, taking the absolute val-

ues of both sides and usig v¥(9,s*) > —0,

A V25,8 — A v (3,8 <

(1-3")2g

That is, the score for the beligf* approximates the maximal scoralifs close to
one. As noted, we have*(®) > 7' for each® € Q*. Then applying Lemma B3
to the inequality above, we obtain

AVe(5,8%) =AW (3,94 <

(1-0")2g
o
for eachy € AQ*. This implies the desired inequality, sinfe< 2%/,  Q.E.D.

A v?(5,8”) — A -VH (3,8 <

B.5.3 Step 2: Scores for All Beliefsu

In the previous step, we have shown that the score approximates the maximal
score for any belieft with the supportQ*. Now we will show that the score
approximates the maximal score for all beligfs
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Pick Q* as in the previous step, so that it is globally accessible. Then pick
T > 0 as stated in Lemma B4. So if players mix all actions each period, the
support will move taQ* (or its subset) within £/ periods with probability at least
", regardless of the initial prior.

Pick an initial prioru, and suppose that players play the following strategy
profile s*:

e Players randomize all actions equally likely, until the support of the poste-
rior belief becomes a subset Qf .

e Once the support of the posterior belief becomes a subs@t afi some
periodt, players plays/‘t in the rest of the game. (They do not change the
play after that.)

Thatis, players wait until the support of the belief reacésand once it happens,
they switch the play to the optimal polics,b‘I in the continuation game. Lemma
B5 guarantees that the continuation play after the switdﬁ‘ttapproximates the
maximal score\ -v¥(d,s”). Also, Lemma B4 ensures that this switch occurs with
probability one and waiting time is almost negligible for patient players. Hence
the payoff by this strategy profil# approximates the maximal score. Formally,
we have the following lemma.

Lemma B6. For eachy,
1-5*")29  (1-5*")3g
52\9\7—_[4IQ\ T T ’

2lQ|
1-5 )2‘9 > 7, then the result obviously

A VO3, — A v (5,8)] < |

Proof. Pick an arbitrary beliefu. If (

52\9\#‘9
holds because we hayg - v¥®(d,s*) — A -v#(5,8)| <g. So in what follows, we
o}
assume tha=%" )2 g
52\Q\ﬁ4|9\

Suppose that the initial prior ig and players play the strategy profa€.~
Let Pr(ht|u, &) be the probability oht given the initial prioru and the strategy
profile ¢, and letu™+1(ht|u,§) denote the posterior belief in perivd- 1 given
this historyht. LetH*! be the set of historids' such that + 1 is the first period at
which the support of the posterior beligf*! is in the sefQ*. Intuitively, H* is
the set of historiest such that players will switch their play &' from period
t+ 1 on, according ta*"
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Note that the payofé* (5,8") by the strategy profilg”"can be represented as
the sum of the two terms: The expected payoffs before the switsh toccurs,
and the payoffs after the switch. That is, we have

00 t—1 N "
)\-v“(5,§“)=t;<1—2 > Pr(ht|u,§“)) (1-8)8t1E [/\-g“’(at)|u,§“

+i) Z Pr(hf |, &) .Vu”l(htlu-ﬁ“)(&su”l(htluﬁu))
hteH*t

where the expectation operator is taken conditional on that the switch has not hap-
pened yet. Note that the terrmlz%;ézhfewf Pr(hf|u, ) is the probability that
players still randomize all actions in peribecause the switch has not happened
by then. To simplify the notation, lgi denote this probability. From Lemma B5,
we know that

Ay S (5 U E) S

A0l
for eachht € H*, wherev* = A -v¥(5,s%) — %’. Applying this andA -

g‘*’t (a') > —2gto the above equation, we obtain
A3 > pt(1—-0)d L(—20) + r(ht|u, &) 8tV
2; Z)h‘eH*t

USing 372 o Shien PrM i, 38" = 3721 (1— 8)8 L 5Lt S e Pr(hl &) =
S 1(1—-0)0t (1 p!), we obtain

A-VH(8,&) > (1-9) Zfst Lpt(—2g)+(1-pv'}. (12)

According to Lemma B4, the probability that the support readdesvithin
49 periods is at leastr*. This implies that the probability that players still ran-
domize all actions in period9 + 1 is at most - rt*. Similarly, for each natural
numbem, the probability that players still randomize all actions in perid® + 1
is at most(1— 17°)", thatis,p™“ +1 < (1— 1*)". Then sincep! is weakly decreas-
ing int, we obtain

pn4‘Q‘+k < (1_ n*)n
foreachn=0,1,--- andk € {1,---,4/91}. This inequality, together with-2g <
v*, implies that

pn4\9|+k(_zg) + (1_pn4\9\+k>\fk > (1— Tl)k)n(—ZQ) +{1-(1— T[*)n}\/*
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foreachn=0,1,--- andk € {1,---,4/°1}. Plugging this inequality into (12), we
obtain

o 49l 0 —(1— "1
AVH(5,8) > (1-9) nzlkzlcs(nlm l+k—1 +i1_ (1)_ n*z)?]_l}vk ] -

—1)41€ 40l
: 49 sn-1)4Q k-1 _ M-V (154
Sinceyjy_, 6" Y = =5 ,

A .VN(6,§“) 2(1_64&\) Z 5(n—1)4\9\
N

~(1-m)iog
+{1— (12— )1

8

——(1-8") ¥ {(1-m)3*" " 12g

>
[
[

8

+(1-8") 3 () (- m)a
n=1
Pluggings . 1{(1— )3+ }nt = 1_(1_—711*)54@ andyp_,(5*%)t = il
(1-5*")2g 4%

AVH(o, &) > —
w082 1—(1—71*)64‘9‘+1—(1—rrk)54“"

Subtracting both sides froh-v¥(d,s%), we have
A-v¥(8,8%) —A V(9,8

(1—5*")2g o m1-62"2g  (1-8"")r (3,8
T1-(1-m)0% (1o (- m)ed? e Y 1-(1-m)e”

SinceA -v¥(3,s%) > —qg,

v2(5,8Y) — A -vH(5,§)
(1 54\9\) >4 7Tk(1 52 )g (1_54 )g
T1-(1-m)8* {1 (1— )54 8297 T 1— (1— ) 54°
(1-6*")3g,  m@a-&")2
1-(1-m) {1-(1- n»k)}52\9|ﬁ4\9\
_(1-8*")3  (1-6")2g
I + 52\Q\ﬁ4\9\
Hence the result follows. Q.E.D.

o] 1| Q|

<
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Note that
AvO(8,8%) 2 A WH(3,8) 2 A vH(5,8),

that is, the score fou is at least - v¥(d,8") (this is becausg“is not the optimal
policy) and is at most the maximal score. Then from Lemma B6, we have

A V2(3,59) — A -VH(8,9)| < A -V9(8,59) — A -vH (8,8

_(1-0*")29 (1-5"")3g
62\Q\ﬁ4|9\ T ’

as desired.

B.6 Proof of Proposition 7: Necessary Condition for Uniform
Connectedness

For each state, let Q(w) denote the set of all states reachable from the state
w. That is,Q(w) is the set of all stateé& such that there is a natural number
T > 1 and an action sequen¢a', - -- ,a’ ) such that the probability of the state in
periodT + 1 being® is positive given the initial statey and the action sequence
(at,---.a").

The proof consists of three steps. In the first step, we show that the game is
uniformly connected only i€2(w) N Q () # 0 for all w and®. In the second step,
we show that the condition considered in the first step @éw) N Q(é) # O for
all w and®@) holds if and only if there is a globally accessible stateThis and
the result in the first step imply that the game is uniformly connected only if there
is a globally accessible state. Then in the last step, we show that the game is
uniformly connected only if states are weakly communicating.

B.6.1 Step 1: Uniformly Connected Only IfQ(w) N Q(é) # 0

Here we show that the game is uniformly connected onfy(ifo) N Q (@) # 0 for
all wand@. It is equivalent to show that @(w) N Q(é) = 0 for somew and®,
then the game is not uniformly connected.

So suppose thd®(w) NQ(&) = 0 for w and@. Take an arbitrary stat® €
Q(w). To prove that the game is not uniformly connected, it is sufficient to show
that the singleton s€tw} is not globally accessible or uniformly transient.
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We first show that the seftiw} is not globally accessible. More generally,
we show that any se@* C Q(w) is not globally accessible. PicR* C Q(w)
arbitrarily. ThenQ* N Q(é&) = 0, and hence there is no action sequence which
moves the state from to some state in the s&" with positive probability. This
means that if the initial prior puts probability one anthen regardless of the past
history, the posterior belief never puts positive probability on any state in the set
Q*, and thus the support of the posterior belief is never included in th@set
Hence the se®* is not globally accessible, as desired.

Next, we show that the sdtw} is not uniformly transient. Note first that
W € Q(w) impliesQ(&w) C Q(w). That is, if & is accessible fronw, then any
state accessible from is accessible fronw. So if the initial state igo, then in
any future period, the state must be included in th€xet) regardless of players’
play. This implies that if the initial prior puts probability one anthen regardless
of the players’ play, the support of the posterior belief is always included in the
setQ(w); this implies that the support never reaches a globally accessible set,
because we have seen in the previous paragraph that afy $ef)(w) is not
globally accessible. Hendev} is not uniformly transient, as desired.

B.6.2 Step 2: Uniformly Connected Only If There is Globally Accessibleo

Here we show tha@(w) N Q() # 0 for all w and @ if and only if there is a
globally accessible sta®. This and the result in the previous step implies that
the game is uniformly connected only if there is a globally accessible state

The if part simply follows from the fact that i is globally accessible, then
w € Q(w) for all @. So we prove the only if part. That is, we show that if
Q(w)NQ(w) # 0 for all w andd, then there is a globally accessible stateSo
assume tha®(w) NQ(w) # 0 for all w andd.

Since the state space is finite, the states can be labeted as, - - -, w¢. Pick
w* € Q(wr) NQ(wyp) arbitrarily; possibly we havev® = wy or w* = wp. By the
definition, w* is accessible fronow; andwy.

Now pick w™* € Q(w*) N Q(ws). By the definition, this state** is accessible
from wz. Also, sincew™ is accessible fronow* which is accessible froray and
wp, W is accessible fromy andwy. So this statev™ is accessible fromwy, wy,
andws. Repeating this process, we can eventually find a state which is accessible
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from all statesw. This state is globally accessible, as desired.

B.6.3 Step 3: Uniformly Connected Only If States Are Weakly Communi-
cating

Now we prove that the game is uniformly connected only if states are weakly com-
municating. It is equivalent to show that if there is a stat@hich is not globally
accessible or uniformly transient, then the game is not uniformly connected.

We prove this by contradiction, so suppose that the stétes not globally
accessible or uniformly transient, and that the game is uniformly connected. Since
w* is not globally accessible or uniformly transient, there is a strategy pofile
such that if the initial state ig*, the state never reaches a globally accessible
state. Pick such a strategy profeand letQ* be the set of states accessible from
w* with positive probability given the strategy profge That is,Q* is the set of
states which can happen with positive probability in some period if the initial
state isw and the strategy profile s (Note thatQ* is different fromQ(w*), as
the strategy profiles is given here.) By the definition & any state iQ* is not
globally accessible.

Since the game is uniformly connected, the singleto{ &} must be either
globally accessible or uniformly transient. It cannot be globally accessible, be-
causew®” is not globally accessible and hence there is some aiaiech thatw*
is not accessible frorw; if the initial prior puts probability one on sudi, then
regardless of the play, the posterior never puts positive probabiliby’orso the
singleton sef w*} must be uniformly transient. This requires that if the initial
prior puts probability one ow* and players play the profik then the support of
the posterior must eventually reach some globally accessible set. By the definition
of Q*, given the initial priorew* and the profiles, the support of the posterior must
be included inQ*. This implies that there is a globally accessible@etC Q*.

However, this is a contradiction, because anyﬁt:?—:‘r; Q* cannot be globally
accessible. To see this, recall that the game is uniformly connected, and then
as shown in Step 2, there must be a globally accessible stateySayThen
Q*NQ(w™) = 0, that is, any state iQ* is not accessible frorw**. Indeed if
not and some state® € Q* is accessible fronw*™*, then the statev is globally
accessible, which contradicts with the fact that any stat@‘ins not globally
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accessible. Now, if the initial prior puts probability one ari*, then regardless

of the play, the posterior belief never puts positive probability on any state in the
setQ*, and hence the support of the posterior belief is never included in the set
Q*. This shows that any subs& C Q* is not globally accessible, which is a
contradiction.

B.7 Proof of Proposition 8

Consider stochastic games with observable states. For the if part, it is obvious that
a singleton sefw} with globally accessiblev is globally accessible, and other
setsQ* are uniformly transient. The only if part follows from Proposition 7.

Next, consider stochastic games with delayed observations. Again the only if
part follows from Lemma 7, so we focus on the if part. We first prove thai if
is uniformly transient, then the séto} is uniformly transient. To prove this, take
a uniformly transient statey, and take an arbitrary pure strategy profileSince
w is uniformly transient, there must be a histéty! such that if the initial state
is w and players plag, the historyh'—?! realizes with positive probability and the
posterior puts positive probability on some globally accessible afatéick such
h'-1 andw*. Leth' be the history such that the history until period 1 is ht~,
and then players playeth!—!) and observegl= w* in periodt. By the definition,
this historyh' happens with positive probability given the initial stabeand the
strategy profiles. Now, letQ* be the support of the posterior belief aftér To
prove that{w} is uniformly transient, it is sufficient to show that this &t is
globally accessible, because it ensures that the support must move dsbro
a globally accessible set regardless of players’ glafFor {w} to be uniformly
transient, we also need to show that} is not globally accessible, but it follows
from the fact thatw is not globally accessible.)

To prove thatQ* is globally accessible. pick an arbitrary pripr and pické
such thatu () > ﬁ Sincew* is globally accessible, there is an action sequence
(al,---,a’) which moves the state fromd to w* with positive probability. Pick
such an action sequence, and pick a signal sequgtgce- ,y") which happens
when the state moves fro to w*. Now, suppose that the initial prior j$ and
players playal,---,a",s(h'"1)). Then by the definition, with positive probabil-
ity, players observe the signal sequefge- - - ,y") during the firsfT periods and
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then the signay" 1 = w* in periodT + 1. Obviously the support of the posterior
after such a history iQ*, so this shows that the support can mov&tarom any
initial prior. Also the probability of this move is at Ieaﬁtd))ﬁ”l > % for all
initial prior . HenceQ* is globally accessible, as desired.

So far we have shown thdto} is uniformly transient ifew is uniformly tran-
sient. To complete the proof of the if part, we show that wheis globally
accessible{w} is globally accessible or uniformly transient. So fix an arbitrary
{w} such thatw is globally accessible yeiw} is not globally accessible. It is
sufficient to show thafw} is uniformly transient. To do so, fix arbitragy andy*
such thatg’(y*|a*) > 0, and letQ* be the set of alfo such thatt®(y*, é|a*) > 0.
Then just as in the previous previous paragraph, we can shoWthatglobally
accessible, which implies thétv} is uniformly transient.

B.8 Proof of Proposition 9: Minimax and Robust Connected-
ness

Fix 6 andi. In what follows, “robustly accessible” means “robustly accessible
despitel,” and “transient” means “transient given

For a given strategy j and a prioffi, Ietviﬂ (s_i) denote player's best possible
payoff; that is, Ietvi’] (S_i) = MaXses viﬂ(é,s,s_i). This payoffviﬂ(s_i) is convex
with respect tqi, as it is the upper envelope of the linear functi&ﬁéé,s,&i)
overs.

Let ¢ denote the minimax strategy profile given the initial priar Pick an
arbitrary u and pick the minimax strategg’ii. Then the payoff/f’(s‘fi) is convex
with respect tofi. In what follows, when we sathe convex curvef\(s‘ii) or
the convex curve induced bY;sit refers to the convex functiovf‘(sﬁ ;) whose
domain is restricted tg: € A(supgu). So when supp = Q, the convex curve
represents playeis payoff vi’j (s‘ii) for each initial priorfi € AQ. On the other
hand, when sugp = {w}, the convex curve is simply a scalg?(s".). Note that
vf‘ (s‘_’i) denotes the minimax payoff whegn= u, but whenfi # u, it is not the
minimax payoff for any initial prior.

For each belief, let

Vi(sh) = max Viﬁ(sl—li%

pe(supm)
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that is, v (s‘ii) is the highest payoff achieved by the convex curve induced by
s‘ii. Note that different initial priorgu induce different minimax strategieﬁi,

and hence different convex functions, and hence different highest pay(its).
Now, chooseu* so that the corresponding highest payﬂp(ffs‘_‘?) approximates the
supremum of the highest payoffs over all beligfghat is, choosg:* such that

w(d)— supvi(st)| <1-a.
HEAQ

We callv; (s‘j) the maximal valugbecause it approximates sup.q Vi (s)), which
is greater than any payoff achieved by any convex curves. The way we chbose
is essentially the same as in Section 3.3, but here we allow the possibility that
SUR,enq Vi (s.) is actually the supremum, not the max.

Sincevf‘(s‘_’?) is convex, it is maximized whefi is an extreme point. Let
w € supgu* denote this extreme point, that wg(s";) > v(s") for all fi €
A(supu™). In general, the maximal vallrtp(s‘j) = vf”(s‘f{) is not the minimax
payoff for any initial prior, because the stabecan be different from the beligf*.

B.8.1 Step O: Preliminary Lemmas

We begin with presenting three preliminary lemmas. The first lemma is a gen-
eralization of Lemma B1. The statement is more complicated than Lemma B1,
because the convex curves are defined on subspace oBut the implication

is the same,; the lemma shows that if the convex Cuf\(e’ii) approximates the
maximal value for some relative interior beligf then it approximates the maxi-
mal value for all beliefgi € AQ*. The proof of the lemma is very similar to that

of Lemma B1, and hence omitted.

Lemma B7. Pick an arbitrary beliefu, and letQ* denote its support. Ldl
AQ* be an relative interior belief (i.efi (@) > 0for all &), and let p=mingq- 1),
which measures the distance frqinto the boundary ofAQ*. Then for each
[e AQ*,
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The next lemma is about the merging support condition. Recall that under the
merging support condition, given any pure strategy prefitevo posterior beliefs
induced by different initial priorsv and u = (@1‘,--- ,ﬁ) must have the same
support after some history. The lemma shows that the same result holds for any
p with p(w) > 0 and for any mixed strategy profige Also it gives a minimum

bound on the probability of such a history.

Lemma B8. Suppose that the merging support condition holds. Then for e@ach
for eachu with p(w) > 0, and for each (possibly mixed) strategy profile s, there
is a natural number T< 49 and a history A such thatPr(h'|w,s) > (%)T and
such that the support of the posterior belief induced by the initial stedéad the
history h' is identical with the one induced by the initial priprand the history

hT.

Proof. Takew, U, ands as stated. Take a pure strategy prddigiCh that for each
t andht, §(h') chooses a pure action profile which is chosen with probability at
Ieast‘—}\| by s(ht).

Since the merging support condition holds, there is a natural numked/®!
and a history™ such that Pih" |w, §) > 0 and such that the support of the posterior
belief induced by the initial state» and the historh" is identical with the one
induced by the initial priof = (ﬁ, . ,ﬁ) and the historfr’. We show thaf
andh' here satisfies the desired properties.

Note that PthT |w,8) > 77", asTtis a pure strategy. This implies that R |w,s) >
(%)4‘9', since each period the action profile §goincides with the one byWwith
probability at Ieas%‘. Also, sinceu(w) > 0, the support of the belief induced
by (w,h") must be included in the support induced(ipy h™), which must be in-
cluded in the support induced i, h"). Since the first and last supports are the
same, all three must be the same, implying that the support of the belief induced

by (w,hT) is identical with the support induced Ify,h"), as desired. Q.E.D.

The last preliminary lemma is a counterpart to B4. Recall th@tiis robustly
accessible, then for any initial prigr, there is an action sequeng@?;,---,aT,)
such that for any strategy, the support reacheQ* with positive probability.
The lemma ensures that we do not need to use such a belief-dependent action
sequence; it is sufficient to use the action sequence such that all pure actions are
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mixed equally each period. The lemma also shows that without loss of generality,
we can assume that the posterior belief when the support re&hissnot too
close to the boundary of the belief spat®*.

Lemma B9. Suppose tha®* is robustly accessible despite i. Then thergis> 0
such that if the opponents mix all actions equally likely each period, then for any
initial prior p and for any strategy;sthere is a natural number & 4€ and a
belief fi € AQ* such that the posterior beligf' *1 equalsfi with probability at

least7t* and such thafi(w) > |—é|ﬁ4‘m for all w € Q*.

Proof. We first show thaf2* is robustly accessible only if the following condition
holds® For each state» € Q and for anys, there is a natural numbar < 4/
and a pure action sequen@ ;,---,a';), and a signal sequen¢g', - ,y") such
that the following properties are satisfied:

(i) Ifthe initial state isw, playeri playss, and the opponents playfi,m 7aL),
then the sequendg?’, - -- ,y") realizes with positive probability.

(i) If player i playss, the opponents pIaYa{i,--- ,aL), and the signal se-
quencey?,---,y") realizes, then the state in peridd- 1 must be in the set
Q*, regardless of the initial state (possiblyd # w).

(i) If the initial state isw, playeri playss, the opponents pIa@a{i, e ,aL),
and the signal sequen¢g', --- ,y") realizes, then the support of the belief
in periodT + 1 is the seQ*.

To see this, suppose not so that ther@ snds such that any action sequence
and any signal sequence cannot satisfy (i) through (iii) simultaneously. Pick such
w ands. We will show thatQ* is not robustly accessible.

Pick a smalls > 0 and letu be such thai(w) > 1— & and andu(é) > 0 for
all &. That is, considen which puts probability at least- € on w. Then by the
definition of w ands;, the probability that the support reaclesgiven the initial
prior i and the strategsg is less thare. Since this is true for any smadl> 0, the

19We can also show that the converse is true, so@ias robustly accessible if and only if the
condition stated here is satisfied. Indeed, if the condition here is satisfied, then the condition stated

in the definition of robust accessibility is satisfied by the action sequgamte: -- ,af‘im) which
mix all pure actions equally each period.
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probability of the support reachin@* must approach zero as— 0, and hence
Q* cannot be robustly accessible, as desired.

Now we prove the lemma. Fix an arbitrary prigr and pickw such that
u(w) > ﬁ Then for eacls;, chooseT, (al;,---,a’;), and(y!,---,y") as stated
in the above condition. (i) ensures that if the initial priopisplayeri playss;, and
the opponents mix all actions equally, the action sequéate---,a';) and the
signal sequenc@?;,--- ,a’ ;) are observed with probability at Ieas((w)(ﬁ—)T >

|—1|(‘—’71-)4‘Q‘. Let f1 be the posterior belief in pericB+ 1 in this case. From (iii),

fi(w) > |_é|ﬁ4lm for all w € Q*. From (ii), fi(w) = O for otherc. Q.E.D.

B.8.2 Step 1. Minimax Payoff for u**

As a first step, we will show that there is some beliéf whose minimax payoff
approximates the maximal value. The proof idea is similar to Step 1 in the proof
of Proposition 2, but the argument is more complicated because now some signals
and states do not occur, due to the lack of the full support assumption. As will be
seen, we use the merging support condition in this step.

Suppose that the initial state é$ and the opponents plaq’i?. Suppose also
that playeri takes a best replg’. Note that this is the case in which playier
achieves the maximal value®(s”.). For each history", let u(h"|w) be the
posterior after history", and letu (h"|u*) be the posterior when the initial prior
wasu* rather tharw. The following lemma shows that there is a histbfysuch
that playeti’s continuation payoff after this histoty’ approximates the maximal

value.

Lemma B10. There is T< 49l and i such that the two posterioys(h' |w) and
u(h™|u*) have the same support and such that

Q| Q| Q|

(1-5*")2glA*"  (1-9)A"
54\Q\ﬁ4\9\ + ﬁ4\9\

Proof. Sinceu*(w) > 0, Lemma B8 ensures that there is a natural nuriber

4191 and a historyh" such that A" |w,s", ")) > (ja)" and such that the two

posterior beliefg(h™ |w) andu(h™|u*) have the same support. Pick sutland
hT.

VO + (1 &) — I M) |

71



As noted, if the initial state isv and players plays', s“ i), then playeri’s
payoff |sv‘*’(s“ ), Hence we have

V() =(1-9) iat—lE[gf“%atnw, s, ]
t=

+87 3 PrfTe,g, v M M),

ATeHT

By the definition ofg, we have(1— )5/ ;8 1E[g¢¥ (al)|w, g < (1—&")g.
Also, sinceu*(w) > 0, for eachh”, the support ofu(hT|w) is a subset of the
one of u(hT|u*), which |mpI|esv u(ht |‘“)(s“(h M)y <vo(d) + (1-8). Plug-
ging them and Rh'|w,s", o i) > (‘A‘)T into the inequality above, we have

LA P
+5T{1_ (W) }{vi (s‘_‘i)+(1—5)}.
Subtracting{1— 8" ()T (s =0T (3T (1—5)+6T(%)Tv“(hT|“’)(s‘thT|“*))
from both sides,
r(m\' V(0T 0) (T 4c)
() (e + a0
<(1-8")(@-v()) +8T(1-5).

T
V(;.)(SIi ) S(l 5T)g—|- 5T (’Z’) u(h'|w) (S[J (hT|p*) )

Dividing both sides by>™ (;)",

V() + (1= 8) - T

T(1_3T\(q M
SAQ 553(9 v () . 5)<IA\)

Since the left-hand side is positive, taking the absolute value of the left-hand side
and using/(s';) > —g. we obtain

V() + (1 8) - TI0 T|  IATA-01)29 5)(!A!>
B o m

T[

! ST
Then the result follows becaude< 4/</. Q.E.D.
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Let u** = u(hT |u*). Then the above lemma implies that

(1-6*")2gA*" | (1-)A*"
54\9\7—14\9\ 7—_[4|Q\ ’

Thatis, the convex curw{;' (s, ) approximates the maximal score for some belief
fi =p(h'w).

From Lemma B10, the support of this beligfh"|w) is the same as the one
of u**. Also, this beliefu(h' |w) assigns at least probabilﬂif"m on each statey
included in its support. Indeed, for such statewe have

V() 4 (1 8) — MOl <

Prlw' ! = @|w,al,---,a")
S oeq P’ = d|w,al, - ,aT)
> Pl ! = @lw,al,---,a) > >

p(h|w)[@] =

Accordingly, the distance frori = p(h"|w) to the boundary of\ (supgu**) is
Q]
atleast ", and thus Lemma B7 ensures that

(1—&*")2g A" (1-3)|A14"
54\Q\ﬁ(4\9\+4\ﬂl) ﬁ_(4\Q\+4\Q|)

VO +(1-0) V(s )| <
for all I € A(supgu™). That is, the convex curve induced Hj/l is almost flat
and approximates the maximal score for all beljefs A (supgu™*). In particular,

by letting I = u**, we have

(1-5*")2gA*" | (1-8)A*"

54\Q\ﬁ(4\9\+4\§2l) T[<4\Q|+4\Q\) ) (13)

V() +(1-9) - ()| <
that is, the minimax payoff for the beligf** approximates the maximal value.

B.8.3 Step 2: Minimax Payoffs when the Support is Robustly Accessible

In this step, we show that the minimax payoff ferapproximates the maximal
value for any beliejt whose support is robustly accessible. Again, the proof idea
is somewhat similar to Step 2 in the proof of Proposition 2. But the proof here is
more involved, because the support of the bglief in Step 1 may be different
from the one ofu, and thus the payoﬂ{“** (s‘_‘i) can be greater than the maximal
value.
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For a given beliefu, let A denote the set of beliefs € A (supgu) such that
(&) > |—é|ﬁ4‘m for all & € supgu. Intuitively, A¥ is the set of all beliefgl with
the same support gs, except the ones which are too close to the boundary of
A(sup).

Now, assume that the initial prior ig**. Pick a beliefu whose support is
robustly accessible, and suppose that the opponents play the following strategy

g

e The opponents mix all actions equally likely each period, until the posterior
belief becomes an elementAf.

e If the posterior belief becomes an elemenMfin some period, then they
play the minimax strategsﬂ’i in the rest of the game. (They do not change
the play after that.)

Intuitively, the opponents wait until the belief reach®$ and once it happens,
they switch the play to the minimax strategﬁ/i for the fixed beliefu. From
Lemma B9, this switch happens in finite time with probability one regardless
of playeri's play. So ford close to one, payoffs before the switch is almost
negligible, that is, players payoff against the above strategy is approximated by
the expected continuation payoff after the switch. Since the hglafthe time of
the switch is always in the s@#, this continuation payoff is at most
Kl = mavf(s4)).

HeAH
Hence playei’s payoff against the above strateéy cannot exceeb{i“ by much.
Formally, we have the following lemma. Takeé > 0 such that it satisfies the
condition stated in Lemma B9 for all robustly accessible 8sts(Suchrr* exists,
as there are only finitely many se®s.)

Lemma B11. For each beliefu whose support is robustly accessible,

W (E < KH L (1-5"")2g

Proof. The proof is very similar to that of Lemma B6. Pick a beljefwhose
support is robustly accessible. Suppose that the initial prigi‘isthe opponents
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play§’fi, and playei plays a best reply. Let! denote the probability that players
—i still randomize actions in peridd Then as in the proof of Lemma B6, we have

V() < ié“l{p‘gﬂl—pt)Ki“}?
t=

because the stage-game payoff before the switsﬁit'm; bounded from above by
g, and the continuation payoff after the switch is bounded from abovléi*byt
maxgean V' ().

As in the proof of Lemma B6, we have

pn4‘Q‘+k < (1_ n*)n

foreachn=0,1,--- andk € {1,---,49}. This inequality, together witg > K,
implies that

pn4\Q|+kg+ (1_pn4\9\+k)\fik < (1_ ﬂk)ng+{1— (l— Tfk)n}KiH

for eachn=0,1,--- andk € {1,---,4?}. Plugging this inequality into the first
one, we obtain

o 49l n—1
V@) <@ 92 2° H{1— (1—m)KHE |

Then as in the proof of Lemma B6, the standard algebra shows

e g (1-5%"yg 54 KM
vi (85) < 40] 400
1-1-m* 1-(1-m)5
Since‘yﬂi —1- S we have
1-(1-m)e*? T (1)l
" 1-3*")(g-K!

Since 1— (1— )" > 1— (1— ) = w andK* > —g, the result follows.
Q.E.D.
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Note that the payofé* (&) is at least the minimax payo#f' (s",), as the
strategys” is not the minimax strategy. So we hafé (s, ) <v*" (&,). This

inequality and the lemma above imply that

]
V() - % <KH.

At the same time, by the definition of the maximal vall; cannot exceed
V(") + (1— 8). Hence

Q)
v - % <KF <v(d')+(1-9).

From (13), we know that”  (s",") approxima*teyi‘”(sﬁ) +(1— ), so the above
i

inequality implies thak/ approximates®(s”,) 4 (1 6). Formally, we have

* (1-5""2g)A" (- SA  (1-5"")2g
‘Via)(sﬁi )+(1-0)— Ki“’ < 40 AT 4% SRV e
Equivalently,

: gy (L=0*)2g AT (-8 A (1-5*)2g
‘Vfﬁ(sﬂ ) + (1_ 5) B Vi“ (Slil)‘ < 54‘Q|_7_[(4‘Q‘+4|Q‘) ﬁ(4\9\+4\9|) TT*

where[l is the belief which achieveléi“. This inequality implies that the curve

vf‘ (s‘_’i) approximates the maximal value for some befieSSincefi € AH, Lemma

B7 ensure that this curve is almost flat and approximates the maximal value for
all beliefs, that is,

w()+(1-3) - v

_(1=0*"2gQ]  (1-&*"2gA | (1-8)A*" Q)
- n,kﬁA\QI 54|Q\ﬁ(4|9\+4\0\+4\9\) ﬁ(4|9\+4\0\+4\9\) ’

for all I € A(supgu). This in particular implies that the minimax payoff for
approximates the maximal value.

B.8.4 Step 3: Minimax Payoffs when the Support is Transient

The previous step shows that the minimax payoff approximates the maximal value
for any beliefu whose support is robustly accessible. Now we show that the
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minimax payoff approximates the maximal value for any beliefhose support
is transient.

So pick an arbitrary beliefr whose support is transient. Suppose that the
initial prior is u and the opponents use the minimax strate‘gy Suppose that
playeri plays the following strategg >

¢ Playeri mixes all actions equally likely each period, until the support of the
posterior belief becomes robustly accessible.

¢ If the support of the posterior belief becomes robustly accessible, then play
a best reply in the rest of the game.

Intuitively, playeri waits until the support of the posterior belief becomes ro-
bustly accessible, and once it happens, she plays a best reply to the opponents’
continuation strategy‘fi, wherep! is the belief when the switch happens. (Here
the opponents’ continuation strategy is the minimax straﬂgjg,ysince the strat-
egys‘ii is Markov and induces the minimax strategy in every continuation game.)
Note that playeii’s continuation payoff after the switch is exactly equal to the
minimax payoffvi“t (s‘fti). From the previous step, we know that this continuation
payoff approximates the maximal value, regardless of the beliat the time of

the switch. Then since the switch must happen in finite time with probability one,
playeri’s payoff by playing the above strategS/ also approximates the maximal
value. Formally, we have the following lemma:

Lemma B12. For any u whose support is transient,
w(s) +(1-8) - V(5,48

_(1=0*agal  (1-&*"2gAt |l (1-8)A*7 Q)
- n*ﬁA‘QI 54|Q\7—_[(4\Q\+4\Q\+4\9\) 7—_[(4\9\+4\Q\+4\Q\) ’

Proof. The proofis very similar to that of Lemma B11 and hence omitte@.E.D.
Note that the strategy' is not a best reply against,, and hence we have
W)+ (1-8) ~wi(eh)| < [we) + (1 8) (5,4

Then from the lemma above, we can conclude that the minimax payoff for any
belief u whose support is transient approximates the maximal payoff, as desired.
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B.9 Proof of Proposition 11

The proof technique is quite similar to that of Proposition 9, so here we present
only the outline of the proof. Fi® andi. Letvi“(s,i) denote players best payoff
againsts_; conditional on the initial prioy, just as in the proof of Proposition 9.
Letv; be the supremum of the minimax payojf’s(é) over allu. In what follows,
we call it themaximal valueand show that the minimax payoff for any beljef
approximates the maximal value. PigK so that the minimax payof_fi“*(é) for
this beliefu* approximates the maximal value.

Let u(w,a) denote the posterior belief given that in the last period, the hid-
den state wagv and players chosa. Pick an arbitrary robustly accessible state
w. Suppose that the initial prior ig* and that the opponents use the following

strategys®;:

e Mix all actionsa_; equally, until they observe= w.

e Once it happens (say in peridd then from the next perioth- 1, they play
i v (wa)
the minimax strategg’, ="’

That is, the opponents wait until the sigiyateveals that the state today was

and once it happens, play the minimax strategy in the rest of the game. Suppose
that playeri takes a best reply. Sineeis robustly accessible, the switch happens

in finite time with probability one, and thus playiés payoff is approximately her
expected continuation payoff after the switch. Since the opponents mix all actions
until the switch occurs, her expected continuation payoff is at most

1
K& = max Ly i)}
aich, Sn  |A-]

Hence her overall payoﬁi“*(§‘fi) is approximately at mos{”; the formal proof
is very similar to that of Lemma B11 and hence omitted.

Now, sinces®, is not the minimax strategy/';, playeri’s payoffv/' (§.) must
be at least the minimax payo_ff‘*((S), which is approximated by;. Hence the
above result ensures th&at’ is approximately at least. On the other hand, by the
definition, we haveK® <v;. Taken togethelK* must approximate the maximal
valuev,.
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Let a” be the maximizer which achievés”. Recall that in the definition of
K, we take the expected value with respea tpassuming thaa ; is uniformly
distributed overA_j. We have shown that this expected vakjf@ approximates
the maximal valu&;. Now we claim that the same result holds even if we do not
take the expectation with respectdo, that is, /'@ 2 (5) approximates the
maximal valuey; regardless o&_;. The proof technique is quite similar to Lemma
B5 and hence omitted. Note that the result so far is true for all robustly accessible
statesw. Sov*' 3?7 (5) approximates the maximal valwefor anya_; and
any globally accessible state

Now we show that the minimax payoff for any belgfipproximates the max-
imal value. Pick an arbitrary beligi, and suppose that the opponents play the
minimax strategy" .. Suppose that playeplays the following strategy:

e Mix all actionsa; equally, until there is some globally accessible state
and timet such thag! = a® andy' = w.

e Once it happens, then from the next perieel, she plays a best reply.

Since states are weakly communicating, the switch happens in finite time with
probability one. Also, playefs continuation payoff after the switchy’i’s‘(w’a’w’a") ()

for somea_; and some robustly accessilile which approximates the maximal
value. Hence players overall payoff bys approximates the maximal value,
which ensures that the minimax payoff approximates the maximal value.

B.10 Proof of Proposition Al

We begin with a preliminary lemma: It shows that for each initial statnd pure
strategy profiles, there is a pure strategy such that if the initial state i& and
players plays®, the support which arises at any on-path history is the one which
arises in the first 2! + 1 periods when players playadLet Q(w, h') denote the
support of the posterior given the initial stabeand the history!.

Lemma B13. For each stataw and each pure strategy profile s, there is a pure
strategy profile & such that for any historythwith Pr(ht|w,s*) > 0, there is a
natural numbef < 2% andhf such thaPr(hf|w,s) > 0andQ(w, ht) = Q(w, iY).
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Proof. Pick w ands as stated. We focus osf such that players’ action today
depends only on the current support, thasight) = s*(hf) if Q(w, ht) = Q (e, A).
So we denote the action given the supfoftby s*(Q*). For each suppo@*, let
h' be the earliest on-path history wifh(w, h') = Q* when players plag. That is,
chooseht such that Riht|w,s) > 0, Q(w, ht) = Q*, andQ(w, hY) = Q* for all hf
with f < t. (When suchht does not exist, leftt = h?.) Then sets"(Q*) = s(h"). It
is easy to check that this strategy proftesatisfies the desired propertyQ.E.D.

Now we prove Proposition Al. Pick an arbitrary singleton{e} which is
not asymptotically accessible. It is sufficient to show that thig agtis asymp-
totically uniformly transient. (Like Proposition 5, we can show that a superset of
an asymptotically accessible set is asymptotically accessible, and a superset of an
asymptotically uniformly transient set is asymptotically accessible or asymptoti-
cally uniformly transient.) In particular, it is sufficient to show that if the initial
state isw, given any pure strategy profile, the support reaches an asymptotically
accessible set within/2 + 1 periods.

So pick an arbitrary pure strategy profdeChooses* as in the above lemma.
Let & be the set of support@* which arise with positive probability when the
initial state isw and players plag'. In what follows, we show that there is an
asymptotically accessible supp@t € &; this implies thaf w} is asymptotically
uniformly transient, because such a supgoftrealizes with positive probability
within 29l + 1 periods when the initial state és and players play.

If Q € 0, then the result immediately holds by settiQg = Q. So in what
follows, we assum® ¢ &'. We prove the existence of an asymptotically accessible
setQ* € ¢ in two steps. In the first step, we show that therg is 0 andQ* € ¢
such that given any initial priog, players can move the belief to the one which
puts probability at leasq on the se*. Then in the second step, we show that
from such a belief (i.e., a belief which puts probability at leqsh Q*), players
can move the belief to the one which puts probability at leasebn someQ* €
0. Taken together, it turns out that for any initial pripr players can move the
belief to the one which puts probability at least £ on the seQ* € ¢, which
implies asymptotic accessibility ¢2*.

The following lemma corresponds to the first step of the proof. It shows that
from any initial belief, players can move the belief to the one which puts proba-
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bility at leastq on the sefd*.

Lemma B14. There is g> 0 and a setQ* € ¢ such that for each initial prior
u, there is a natural number K |Q|, an action sequencé’,---,a'), and a
history h' such thatPr(h™ |, al,--- ,a") > "ﬂQ“ ands geq: fI(®) > q, wherefl is

the posterior given the initial priopt and the history h.

Proof. We first show that there i©* € ¢ which contains at least one globally
accessible stat®. Suppose not so that all states in any@é& ¢ are uniformly
transient. Suppose that the initial statesisand players plag‘. Then the support

of the posterior is always an element®@f and thus in each peridgdregardless of

the past history', the posterior puts probability zero on any globally accessible
statew. This is a contradiction, because the standard argument shows that the
probability of the state in periodbeing uniformly transient converges to zero as

{ — oo,

So there i)* € ¢ which contains at least one globally accessible state
Pick suchQ* and . Global accessibility ofd ensures that for each initial state
& € Q, there is a natural numb@r < |Q|, an action sequenda?,---,a'), and a
signal sequencg/?,---,y") such that

Pr(ylv"' 7yT7wT+1 = (I)|(:),a1,"' 7aT) 27_TT

That is, if the initial state igo and players playal,---,a"), then the state in
periodT + 1 can be in the se®* with positive probability. For eacty, choose
such(al,---,a") and(y!,---,y"), and let
o(é) = Priyt, - yT, w' = @|@,at,--- ,a)

YwteqPriyh, -+ yT|wt al, - al)
By the definition,g(é) > 0 for eachd. Let g = mingcq q(w) > O.

In what follows, we show that thig and the sef* above satisfy the prop-
erty stated in the lemma. Pigk arbitrarily, and then piclc with p(@) > ‘Q‘
arbitrarily. Choosd, (al,---,a"), and(y!,---,y") as stated above. Lt be the
posterior belief aftefal,---,a’) and(y?,---,y") given the initial priory. Then

S oica H(@H) Pyt - yT o™l = @|wt,al, - ,aT)
S wica (@) Pr(yL, - yT|wh,al, -, al)
o 1 T-+1 1 T
L H@)Priy -y w - lw|lwa .2 ) > q(w) >q
ZwleQPrW ) 7y |OL) ,an, ,a )

fi(@) =
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This implies that the posterigr puts probability at leas on Q*, since® € Q.
Also, the above beliefii realizes with probability

T
Pr(yl7"'7yT“J>al>"'aaT)Zu(w)Pr<yla'”7yT|w7ala" )>@ W?
as desired. Q.E.D.

ChooseQ)* € ¢ as in the above lemma. Lst Be the continuation strategy of
s* given that the current support &, that is, lets™ = s*|nt whereh' is chosen
such that Rth'|w*,s*) > 0 andQ(w*, ht) = Q*. (If suchht is not unique, pick one
arbitrarily.) By the definition, if the initial support i€* and players plag; the
posterior is an element a@f after every history.

The following lemma corresponds to the second step of the proof. It shows
that if the initial prior puts probability at leagton the sefd* and players plag*;
then with some probabilityr**, players learn the support from the realized signals
and the posterior puts-1¢ on some se@* € 0.

Lemma B15. For eache > 0and g> 0, there is a natural number T, a s@t € 7,
and 7 > 0 such that for each initial prioq with 5 ~ . u(@) > q, there is a
history b such thatPr(hT |, §) > m** and the posteriofi given the initial prior
p and the history h satisfiesy gcq- [1(©) > 1— €.

Proof. Recall thatQ ¢ ¢/, so anyQ* € ¢ is a proper subset @. By the assump-
tion, given anyQ* € ¢ anda, the convex hull of{ 7§’ (a)|w € Q*} and that of
{n¥(a)|w ¢ Q*} do not intersect. Lex (Q*,a) > 0 be the distance between these
two convex hulls, i.e.,

|@-r@| =@ a

for eachli € AQ* andp € A(Q\ Q). (Here| - || denotes the sup norm.) Let
K > 0 be the minimum ok (Q*,a) over allQ* € &' anda € A.
Pick an initial prioru as stated, that ig; puts probability at leason Q*. Let

Q! = O*, and lefft be the marginal distribution of?!, that is, (&) = %
weQ

for each@ € Q' andi(®) = 0 for other@. Likewise, lety be the marginal

distribution onQ\ Q*, that is, (&) = % for each@ ¢ Q' andp (&) =0
wgQ
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for otheré. Let a denote the action profile chosen in period oneshyThen by
the definition ofk, there is a signaf such that

) (y]a) > 1 (yla) + K. (14)

Intuitively, (14) implies that the signalis more likely if the initial state is in the
setQ!. Hence the posterior belief must put higher weight on the event that the
initial state was i1, To be more precise, lgt? be the posterior belief in period
two given the initial prioru, the action profilea, and the signay. Also, let Q2
be the support of the posterior in period two given the same history but the initial
prior was[I rather tharu. Intuitively, the state in period two must be @7 if the
initial state was iMQ. Then we haves ;o2 U?(®) > T eqr H(®) because the
signaly indicates that the initial state was .

Formally, this result can be verified as follows. By the definition, if the initial
state is in the se®* and players plag and observg, then the state in period two
must be in the se®?. That is, we must have

n®(y, &la) = 0 (15)

for all & € Q1 and® ¢ Q2. Then we have

S oco? H(®) _ TacaYpca? H(®) | )
Yapa? HA(®)  Taea Y apa? H(D)
@)

_ 2 HeQ D eQ IJ(

8> 8>

:'e%%

oy,
2y,
°(y,

e>§>

%

oy,

°(y,
2y,

> ¢01 Y g2 H(D)
>Zd)tezd)eQU( )
B Xfoeolicbegu( W)

nf(y,a)Zwte ( )

(Y1) 3 e (D)
> 1 'Zwem“( )
T 1K Yoo (D)

Here, the second equality comes from (15), and the last inequality from (14).
Sinceﬁ > 1, this implies that the likelihood oR2? induced by the posterior
belief u? is greater than the likelihood @®?! induced by the initial priog, as
desired. Note also that such a posterior bgligfealizes with probability at least

\./

:é :é
<a> e>

\_/
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gk, since (14) implies

' (yla) > ard/ (yla) > k.

We apply a similar argument to the posterior belief in period three: Assume
that period one is over and the outcome is as above, so the belief in period two is
p2. Let i be the marginal distribution qi? on Q2, and letu? be the marginal
distribution onQ \ Q2. Let a? be the action profile chosen in period two &y ~
after the signal in period one. Then choose a signdlso thatrzfz(y2|a2) >

2
1% (y?a2) + K, and letu3 be the posterior belief in period three after observing
y2 in period two. Then as above, we can show that

Socoslo(@) 1 SacorHA(®D) < 1 )ZZGJGQH((D)
Y3 H3(@D) T 1K Faeaz (@) T \1-K/ oo M (@)

whereQ3 is the support of the posterior if the initial support v@sand players
play§* and observe the signgland theny?. The probability of this signal is again
at leastgk.

Iterating this argument, we can prove that for any natural nunibénere is
a signal sequendg?, ---,y") and a sef" ™! such that if players play the profile
&, the signal sequence realizes with probability at least= (gk)T, and the
posterior beliefu™ ™1 satisfies

SacariHTH®) ( 1 )T Soeot (@) ( 1 )T 1
Z(D¢QT+1 HT+1((A)) ~“\1l—kK Za)ng IJ(O)) ~—\1l—kK l—q
Note that the se® ™! is an element o#’, by the construction.
Now, chooses > 0 andq > 0 arbitrarily, and then pick large enough that
(ﬁ)Tﬁ1 > 1-£_Then the above posterior beligf 1 puts probability at least
1—-gonQ™1 e 0. So by lettingQ* = QT+, the result holds. Q.E.D.

Fix € > 0O arbitrarily. Choosey and Q* as stated in Lemma B14, and then
chooseQ*, T, and ™ as stated in Lemma B15. Then the above two lemmas
ensure that given any initial priqr, there is an action sequence with length<
|Q| 4+ T such that with probability at leagt" = ﬁT'TT the posterior belief puts
probability at least 1 € on Q*. Since the bound€)| + T andm** do not depend
on the initial priory, this shows tha®©* is asymptotically accessible. Thémw}

is asymptotically uniformly transient, &* € 0.
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B.11 Proof of Proposition A2: Score and Asymptotic Connect-
edness

Fix d andA. Lets* andw be as in the proof of Proposition 6. We begin with two
preliminary lemmas. The first lemma shows that the score is Lipschitz continuous
with respect tqu.

Lemma B16. For any € € (O,ﬁ), u, and i with |u(@) — f1(@)| < & for each
weQ,

)/\ VH(3,8) — A -v’:‘(é,sﬂ)‘ < £g/Q).
Proof. Without loss of generality, assume thatv4(5,s4) > A -vi(5,s%). Then

A-VH(3,8) — A -vﬂ(a,sﬂ)) < (/\ VH(8, ) — A -vﬂ(a,sﬂ)‘

zu@wwﬁw—zﬂ@wﬁ@w‘

we we

< 3 AVOBE) (@) - (@)

weQ

SinceA -v?(3,s%) < gand|u(®) — fi(®)| < &, the result follows. Q.E.D.

The second preliminary lemma is a counterpart to Lemma B4; it shows that
the action sequence in the definition of asymptotic accessibility can be replaced
with fully mixed actions. The proof is similar to that of Lemma B4 and hence
omitted.

Lemma B17. Suppose that players randomize all actions equally each period.
Then for anye > 0, there is a natural number T ara* > 0 such that given any
initial prior p and any asymptotically accessible €&t there is a natural number
T* < T andfi such that the probability ofi" +1 = i is at leastrt*, and such that

Sweor A(w) > 1-¢.

Since there are only finitely many subs@tsc Q, there isit* > 0 such that for
each asymptotically uniformly transie@t', 7t* satisfies the condition stated in the
definition of asymptotic uniform transience. Pick suth> 0. Picke € (0,|§1|)
arbitrarily. Then choose a natural num@deandr* > 0 as in Lemma B17.

For each se@*, let AQ*(&) denote the set of beliefssuch thaty gcq« 1 (@) >
1-¢.
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B.11.1 Step 1: Scores for All Beliefs ifQ*(¢)

In this step, we prove the following lemma, which shows that there is an asymp-
totically accessible s&* such that the score for any belipfc AQ*(¢) approx-
imates the maximal score.

Lemma B18. There is an asymptotically accessible &tsuch that for anyu €
AQ*,

1-57)2g  £gQ|

ST it o

Then from Lemma B16, there is an asymptotically accessib'setich that for
anyu € AQ*(¢g),

A V2(3,8°) = A VP(5,S") <!

(1-8T)2g | 2e9)Q

S
Proof. Since the game is asymptotically uniformly connected} is either asymp-
totically accessible or asymptotically uniformly transient. We first consider the
case in which it is asymptotically accessible. K¥t= {w}. Then thisQ* sat-
isfies the desired property, as it contains only the belief w, and the score for
this belief is exactly equal to the maximal score.

Next, consider the case in whi¢lw} is asymptotically uniformly transient. In
this case, there is an asymptotically accessibl€Xet natural number* <T,
and a signal sequendg?,---,y" ) such that if the initial state ie and players
play s®, then the signal sequenég',---,y" ") appears with positive probability
and the resulting posterior beligf satisfiesy gcq+ U*[@] > 1— € andp*[&] > 7T
for all @ e Q*. Take suchQ*, T*, and(y%,---,y" ). Then as in the proof of
Lemma B5, we can prove that

A -v?(9,8%) — A -VH(d,8")| <

(1-3")2g
o
That is, the score with the initial priqr* is close to the maximal score. The only
difference from Lemma B5 is to replacé®with T.
Sincey geo- U [@] > 1— € andp*[éo] > 7T for all € QF, there is a belief
[1* whose support i€2* such thatii*[@] > 7" for all @ € Q*, and such thafi*

A V23,82 — A v (8,9 < (16)
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is e-close tou* in that maxyeq |1* (&) — fi* (®)| < €. Lemma B16 implies that
these two beliefa* andi* induce similar scores, that is,

‘)\ (5, — A ~v'?‘*(5,sf‘*>] <£gQ).

Plugging this into (16), we obtain

- o 1-57)2g
‘)\ VO(5,89) — A v (5, 8)| < %+EQ|Q|.
That is, the score for the beli¢f* approximates the maximal score. Then using
Lemma B3, we can get the desired inequality. Q.E.D.

B.11.2 Step 2: Score for All Beliefs

Here we show that for any beligf, the score approximates the maximal score.
To do so, for each initial beliefi, consider the following strategy profit:™

e Players randomize all actions equally likely, until the posterior belief be-
comes an element adkQ*(¢).

e Once the posterior belief becomes an element & (&) in some period,
then players playsf‘t in the rest of the game. They do not change the play
after that.

Intuitively, players randomize all actions and wait until the belief reack@3(¢);

and once it happens, they switch the play to the optimal pcsHtcj,n the continu-

ation game. Lemma B18 guarantees that the continuation play after the switch to
¢ approximates the maximal scokev®(9,s”). Also, Lemma B17 ensures that

the waiting time until this switch occurs is finite with probability one. Hence for

O close to one, the strategy profiéé dpproximates the maximal score when the
initial prior is u. Formally, we have the following lemma.

Lemma B19. For eachy,
(1-8"T)29  (1-0T)3g, 2¢giQ
STH it U o
Proof. The proof is essentially the same as that of Lemma B6; we simply replace

4191 in the proof of Lemma B6 withl, and use Lemma B18 instead of Lemma
B5. Q.E.D.

A -v2(8,5%) —A-vH(0,8)| <
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Note that
A VP(8,8°) > A -vH(5, ) > A -vH(5,§),

that is, the score fou is at leastA - v (9,8) and is at most the maximal score.
Then from Lemma B19,

A -v?(9,8%) —A -V (3,8")| < |A-Vv?(9,8%) —A -V (5, &)

_ AT _ T
(1-a")2g  (1-3")3g , 2egQl

<
= T i m r

Recall thatT and r* depend ore but not ond or A. Note also thaft* does not
depend org, J, or A. Hence the above inequality implies that the left-hand side
can be arbitrarily small for alk, if we takee close to zero and then takeclose

to one. This proves the lemma.

Appendix C: Uniform Connectedness in Terms of Primitives

In Section 5.1, we have provided the definition of uniform connectedness. We give
an alternative definition of uniform connectedness, and some technical results. We
begin with global accessibility.

Definition C1. A subsetQ* C Q is globally accessibléf for each statew € Q,
there is a natural numbdr < 49, an action sequende?,---,a'), and a signal
sequencey’, ---,y") such that the following properties are satisfféd:

(i) If the initial state isw and players playal,---,a"), then the sequence
(y},---,y") realizes with positive probability. That is, there is a state se-
quence(w?,- -, ' 1) such thatw! = w and %' (y!, wi+1jat) > 0 for all
t<T.

20 As argued, restricting attention 1 < 4/ is without loss of generality. To see this, pick a
subsetQ* C Q andw arbitrarily. Assume that there is a natural numier 4/l so that we can
choose(al,---,a") and(y*,---,y") which satisfy (i) and (i) in Definition C1. For eadh< T
and® € Q, let Q'(®) be the support of the posterior belief given the initial si@ethe action
sequencéal, - ,a'), and the signal sequenég',--- ,y*). SinceT > 49, there are andf >t
such thatQ'(®) = Q'(®) for all &. Now, consider the action sequence with lengith (f—t),
which is constructed by deletin@!*?,-- - ,a') from the original sequend@’, --- ,a"). Similarly,
construct the signal sequence with length- (f —t). Then these new sequences satisfy (i) and
(ii) in Definition C1. We can repeat this procedure to show the existence of sequences with length
T < 419 which satisfy (i) and (ii).
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(i) Ifplayers play(al,---,a’) and observgy!,---,y"), then the state in period
T +1 must be in the s&*, regardless of the initial state (possiblyw # w).
That is, for eachd € Q and® ¢ Q*, there is no sequendev?,---,w'™ 1)
such thatw! = @, w' 1 = @, andn® (i, wi*1jal) > O forallt < T.

As the following proposition shows, the definition of globally accessibility
here is indeed equivalent to the one stated using beliefs.

Proposition C1. Definitions 2 and C1 are equivalent.

Proof. We first show that global accessibility in Definition C1 implies the one in
Definition 2. Take a se®* which is globally accessible in the sense of Definition
C1, and fix an arbitrarily initial prio. Note that there is at least ongsuch that
p(w) > ‘é‘, so pick suchw, and then pickal,---,a") and(y!,---,y") as stated

in Definition C1. Suppose that the initial priorjsand players playal,--- ,a").

Then clause (i) of Definition C1 guarantees that the signal sequghge- ,y")
appears with positive probability. Also, clause (ii) ensures that the support of the
posterior beliefu 1 after observing this signal sequence is a subs€r'ofi.e.,

puT (@) = 0 for all @ ¢ Q*.2 Note that the probability of this signal sequence

(y4,---,y") is at least

1 T 1 T 1 Q)
p(w)Pr(yt, - y'w,al,--,a") > @n @n“ >0,
where P(y!,--- yT|w,al,--- ,a") denotes the probability of the signal sequence
(y,---,y") given the initial statew and the action sequenc¢at,---,a"). This
implies that global accessibility in Definition C1 implies the one in Definition 2,
by letting 7" € (0, & ).

Next, we show that the converse is true. K¥tbe a globally accessible set
in the sense of Definition 2. Pick* > 0 as stated in Definition 2, and piak
arbitrarily. Letu be such thapi(w) =1— % andu (@) = |Q| 1 for each® # w.
SinceQ* is globally accessible, we can choose an action sequ@ice - ,a'")
and a beliefi whose support is included @* such that

Pr(“T+l:ﬂ|“7ala"'7aT)Zn*' (17)

21The reason is as follows. From Bayes’ ruje! *1(@) > 0 only if Pr(y%,--- ,y" @™t =
@|@,al,---,a") > 0 for somed with (&) > 0. But clause (i) asserts that the inequality does
not hold for allo e Q andd ¢ Q*.

89



Let (y%,---,y") be the signal sequence which induces the posterior bglief
given the initial priory and the action sequenca’,---,a"). Such a signal se-
quence may not be unique, so ¥tbe the set of these signal sequences. Then
(17) implies that

Z Pr(ylv"'7yT“J7a17"'7aT)2n*'

(Y, yT)evT
Arranging,
“(d)) Pr(yl7"' >yT|a)7ala"' ,aT) > .
(y17... ,yT)e\?T e
PIuggingH(®) = zrdi—gy and3 ... yr)egr PIYS, -y |@,at,---.aT) < 1into

this inequality,

g
> H@Pryh -y wal el + o >
(ylv"'ayT)E?T

so that

H(@PIY, -y wal - al) >

(y17...7yT)€QT

Hence there is som@*,---,y") € YT which can happen with positive probability
given the initial statev and the action sequenc¢a’,---,a"). Obviously this se-
quencely!, ---,y") satisfies clause (i) in Definition C1. Also it satisfies clause (ii)
in Definition C1, sincey?,---,y") induces the posterior beli¢f whose support
is Q*, given the initial prioru whose support is the whole spa@e Sincew can

be arbitrarily chosen, the proof is completed. Q.E.D.

Next, we give the definition of uniform transience in terms of primitives. With
an abuse of notation, for each pure strategy prafilet s(y,---,y'~1) denote
the pure action profile induced Isjin periodt when the past signal sequence is

(y17 T 7yt_l)'

Definition C2. A singleton set{w} is uniformly transientif it is not globally
accessible and for any pure strategy prddjltnere is a gIobaIIy accessible sgt,
a natural numbef < 2@ and a signal sequencg',---,y") such that for each
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@ € Q*, there is a state sequen@e?,--- ,w' 1) such thaiw! = w, w1 = @,
andn® (y, ot s(yL, - ,y*1)) > Oforallt < T.22

In words, {w} is uniformly transient if the support of the belief cannot stay
there forever given any strategy profile; that is, the support of the belief must reach
some globally accessible s@t at some point in the futuré It is obvious that
the definition of uniform transience above is equivalent to Definition 3, except that
here we consider only singleton s¢ts}.

Now we are ready to give the definition of uniform connectedness:

Definition C3. A stochastic game isniformly connectedf each singleton set
{w} is globally accessible or uniformly transient.

In this definition, we consider only singleton sdi®}. However, as shown
by Proposition 5, if each singleton sfd} is globally accessible or uniformly
transient, then any subs@t* C Q is globally accessible or uniformly transient.
Hence the above definition is equivalent to the one stated using beliefs.

Before we conclude this appendix, we present two propositions, which hope-
fully help our understanding of uniformly transient sets. The first proposition
shows that if the game is uniformly connected, then the probability of the sup-
port moving from a uniformly transient set to a globally accessible set is bounded
away from zero uniformly in the current belief. (The proposition considers a spe-
cial class of uniformly transient sets; it considers a uniformly transienf$et
such that any non-empty subset®f is also uniformly transient. However, this
is a mild restriction, and when the game is uniformly connected, any uniformly
transient sef* satisfies this condition. Indeed, uniform connectedness ensures
that any subset of a uniformly transient §Etis globally accessible or uniformly
transient, and Proposition 5 guarantees that they are all uniformly transient.)

22Restricting attention t& < 212 is without loss of generality. To see this, suppose that there
is a strategy profils and an initial prioru whose support i€* such that the probability that the
support of the posterior belief reaches some globally accessible set within p&fiaiz2ro. Then
as in the proof of Lemma B13, we can construct a strategy pisSfaeich that if the initial prior is
u and players plag*, the support of the posterior belief never reaches a globally accessible set.
23While we consider an arbitrary strategy profilén the definition of uniform transience, in
order to check whether a s} is uniformly transient or not, what matters is the belief evolution
in the first 22/ periods only, and thus we can restrict attention/f-period pure strategy profiles,
Hence the verification of uniform transience of each{gse} can be done in finite steps.
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Proposition C2. Let Q* be a uniformly transient set such that any non-empty
subset ofQ* is also uniformly transient. Then thereis > 0 such that for any
initial prior p with supportQ* and for any pure strategy profile s, there is a
natural number T< 29l and a beliefii whose support is globally accessible such
thatPr(u™ 1 = fi|u,s) > .

Proof. Pick Q* and u as stated. Pick an arbitrary pure strategy prddildt is

sufficient to show that given the initial prige and the profiles, the support of

the posterior belief will reach a globally accessible set with probability at least
ﬁz\Ql

-

Tal‘<e‘ a stateo such thaiu(w) > ﬁ By the definition ofQ*, the singleton set
{w} is uniformly transient.

Consider the case in which the initial prior puts probability onesgnand
players plays. Since{w} is uniformly transient, there is a natural numbex 29
and a histonh' such that the historlg” appears with positive probability and the
support of the posterior belief after this histdry is globally accessible. Take
such a histonh, and letQ* be the support of the posterior belief. Note that this
history appears with probability at least given the initial statev and the profile
S.

Now, consider the case in which the initial priorps(rather than the known
statew) and players plag. Still the historyh™ occurs with positive probability,
becauseu puts positive probability orw. Note that its probability is at least
p(w) > % = 1. Note also that the support after the histbryis globally
accessible, because it is a superset of the globally accessilfdé.sdence if the
initial prior is yu and players plag, the support of the posterior belief will reach a
globally accessible set with probability at least as desired. Q.E.D.

The next proposition shows that if the support of the current belief is uniformly
transient, then the support cannot return to the current one forever with positive
probability?* This in turn implies that the probability of the support being uni-

24Here is an example in which the support moves from a globally accessible set to a uniformly
transient set. Suppose that there are two stavesgnd w,, and that the statey, is absorbing.
Specifically, the next state s, with probability% if the current state isu;, while the state tomor-
row is wy for sure if the current state s,. There are three signalg, y2, andys, and the signal
is correlated with the state tomorrow. If the state tomorrowisthe signalsy; andys realize
with probability% each. Likewise, If the state tomorrowds, the signalg, andys realize with
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formly transient in periodl is approximately zero whenm is large enough. So
when we think about the long-run evolution of the support, the time during which
the support stays at uniformly transient sets is almost negligibleX(@t|u,s)
be the random variabl¥ which represents the first time in which the support of
the posterior belief i22* given that the initial prior igt and players plag. That
is, let

X(Q*|u,s) = inf{T > 2 with supu" = Q*|u,s}.

Let P(X(Q*|u,s) < ») denote the probability that the random variable is finite;
i.e., it represents the probability that the support rea€lies finite time.

Proposition C3. Let Q* be a uniformly transient set such that any non-empty
subset ofQ* is also uniformly transient. Then thereis > 0 such that for any
initial prior u whose support i*, and any pure strategy profile s,

Pr(X(Q*|u,s) <o) <1—11"

Proof. Suppose not so that for amy> 0, there is a pure strategy proféeand a
belief u whose support iQ* such that RiX(Q*|u,s) < ) > 1—¢.

Pick £ > 0 small so that?" > % and choose and u as stated above.

Choosew € Q* such thatu(w) > |—é| Suppose that the initial state éis and
players plays. Let X*(Q*|w,s) be the random variable which represents the
first time in which the support of the posterior belief(X or its subset. Since

Pr(X(Q*|u,s) < o) > 1— ¢, we must have

That is, given the initial state» and the strategy profilg the support must reach
Q* or its subset in finite time with probability close to one.

By the definition ofQ*, the singleton se{w} is uniformly transient. So
there isT < 219 and i whose support is globally accessible such thauPr! =
[t|e,s) > 0. Pick such a posterior beli¢f and letsbe the continuation strategy
after that history. Le©* denote the support gf. Sincefl is the posterior induced

probability% each. Sqg; andy, reveal the state tomorrow. It is easy to check that} andQ are

globally accessible, anfty } is uniformly transient. If the current belief js = (%7 %), then with
positive probability, the current signal reveals that the state tomorrow,iso the support of the
posterior belief moves to the uniformly transient et }.
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from the initial statew, we have PuT+% = fiw,s) > T2 andfi(®) > 72" for
all & e Q.

Since P(uT*! = filw,s) > 2" and PEX*(Q*|w,s) < o) > 1— £]Q|, we
must have

NP £|Q|
Pr(X*(Q*|[1,8) < ) > 1—w.

That is, given the initial beliefi and the strategy profilg the support must reach
Q* or its subset in finite time with probability close to one. Then sia¢&) >

R S 9 f5r eachi € OF, we can show that for each statec O, there is a
ﬁz\Q\

natural numbell < 419/, an action sequend@?,--- ,a"), and a signal sequence
(y},---,y") such that the following properties are satisfied:

(i) If the initial state isé® and players playal,---,a"), then the sequence
(y},---,y") realizes with positive probability.

(i) If players play(al,---,a") and observgy!,--- ,y"), then the state in period
T -+ 1 must be in the se®*, for any initial statetd € Q* (possibly® # &).

This result implies that for any initial beligi € AQ* players can move the sup-
port to Q* or its subset with positive probability, and this probability is bounded
away from zero uniformly iri; the proof is very similar to that of Proposition C1
and hence omitted. This and global accessibilitg26fimply thatQ* is globally
accessible, which is a contradiction. Q.E.D.

Appendix D: Existence of Maximizers

Lemma D1. For each initial prior u, discount factord, and s, player i's best
reply g exists.

Proof. The formal proof is as follows. Picl, d, ands_;. Let|® be the set of all
functions (bounded sequencds)H — R. For each functiorf € [®, letT f be a
function such that

(T £)() =max| (1 5)g"™ (@, 5.1 (h)) + 53 y;smht)[ai]n’?(“t)(y\a) f(nt,a,y)
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wherefi(ht) is the posterior belief ofo! ™ given the initial priory and the history

h'. Note thatT is a mapping from® to itself, and that® with the sup norm is a
complete metric space. Alsbis monotonic, sincéT f)(u) < (Tf)(u) for all y

if f(u) < f(u)forall u. MoreoverT is discounting, because lettifi§j+c) (1) =
f(u) + c, the standard argument shows thaf +c)(u) < (T f)(u) + oc for all

H. Then from Blackwell’'s theorem, the operaibris a contraction mapping and
thus has a unique fixed poirit'. The corresponding action sequence is a best
reply tos ;. Q.E.D.

Lemma D2. max,cyu(s)A - v has a solution.
Proof. Identical with that of the previous lemma. Q.E.D.
Lemma D3. There is sj which solvesnins cs , maxes V' (5,9).

Proof. The formal proof is as follows. Pick andd, and leth' andl® be as in the
proof of Lemma D1. For each functiohne |*, let T f be a function such that

T f)(ht min  max|(1— &)g"™ (a,0_i)+0 J(yla) f(t,a,y
(TH(h)= BRI [( )9 ‘L;\Iy; ja)f(h',a,y)

wherefi(ht) is the posterior belief ofo'+* given the initial prioru and the history
h'. Note thatT is a mapping from® to itself, and that® with the sup norm is a
complete metric space. AlSbis monotonic, because ff(h') < f(ht) for all h,
then we have

A(h)
(T f)(ht) < max (1-8)d" (&, a- +6a_.e;.y; " (yla)f(n',a,y)
garp&x_(l—é)g (R (&,0-i)+0 Z\ Z Y|a) {G§ 7Y)_

for all a_; andht, which implies(T f)(h') < (T f)(h') for all h. Moreover,T is
discounting as in the proof of Lemma D1. Then from Blackwell’s theorem, the
operatorT is a contraction mapping and thus has a unique fixed pintThe
corresponding action sequence is the minimger Q.E.D.
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Appendix E: Hsu, Chuang, and Arapostathis (2006)

Hsu, Chuang, and Arapostathis (2006) claims that their Assumption 4 implies
their Assumption 2. However it is incorrect, as the following example shows.

Suppose that there is one player, two statesgnd wy), two actions & and
d), and three signals/{, y», andys). If the current state isn; anda is chosen,
(y1, 1) and (y2, wp) occur with probability3-3. The same thing happens if the
current state isp andd’is chosen. Otherwisdys, w;) and(ys, wp) occur with
probability %% Intuitively, y; shows that the next state 4g andy, shows that
the next state iss, while ys is not informative about the next state. And as long
as the action matches the current state @déor w; anda’for wy), the signaly;
never happens so that the state is revealed each period. A stage-game payoff is O
if the current signal ig; ory,, and—1 if ys.

Suppose that the initial prior puts probability one@n The optimal policy
asks to choosein period one and any periddvith y*~1 = y4, and asks to choose
& in any periodt with y*~1 = y,. If this optimal policy is used, then it is easy
to verify that the support of the posterior is always a singleton set and thus their
Assumption 2 fails. On the other hand, their Assumption 4 holds by letgirg?2.

This shows that Assumption 4 does not imply Assumption 2.

To fix this problem, the minimum with respect to an action sequence in As-
sumption 4 should be replaced with the minimum with respect to a strategy. The
modified version of Assumption 4 is more demanding than uniform connectedness
in this paper.
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