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Abstract

This paper studies infinite-horizon stochastic games in which players ob-

serve payoffs and noisy public information about a hidden state each period.

We find that, very generally, the feasible and individually rational payoff set

is invariant to the initial prior about the state in the limit as the discount fac-

tor goes to one. This result ensures that players can punish or reward the

opponents via continuation payoffs in a flexible way. Then we prove the

folk theorem, assuming that public randomization is available. The proof

is constructive, and uses the idea of random blocks to design an effective

punishment mechanism.
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1 Introduction

When agents have a long-run relationship, underlying economic conditions may

change over time. A leading example is a repeated Bertrand competition with

stochastic demand shocks. Rotemberg and Saloner (1986) explore optimal col-

lusive pricing when random demand shocks are i.i.d. each period. Haltiwanger

and Harrington (1991), Kandori (1991), and Bagwell and Staiger (1997) further

extend the analysis to the case in which demand fluctuations are cyclic or persis-

tent. A common assumption of these papers is that demand shocks are publicly

observablebeforefirms make their decisions in each period. This means that in

their model, firms can perfectly adjust their price contingent on the true demand

today. However, in the real world, firms often face uncertainty about the market

demand when they make decisions. Firms may be able to learn the current de-

mand shock through their salesafter they make decisions; but then in the next

period, a new demand shock arrives, and hence they still face uncertainty about

the true demand. When such uncertainty exists, equilibrium strategies considered

in the existing work are no longer equilibria, and players may want to “experi-

ment” to obtain better information about the hidden state. The goal of this paper

is to develop some tools which are useful to analyze such a situation.

Specifically, we consider a new class of stochastic games in which the state

of the world is hidden information. At the beginning of each periodt, a hidden

stateω t (booms or slumps in the Bertrand model) is given, and players have some

posterior beliefµ t about the state. Players simultaneously choose actions, and

then a public signaly and the next hidden stateω t+1 are randomly drawn. After

observing the signaly, players updates their posterior belief using Bayes’ rule,

and then go to the next period. The signaly can be informative about both the

current and next states, which ensures that our formulation accommodates a wide

range of economic applications, including games with delayed observations and a

combination of observed and unobserved states.

Since we assume that actions are perfectly observable, players have no private

information, and hence after every history, all players have the same posterior be-

lief µ t about the current stateω t . Hence this posterior beliefµ t can be regarded

as a common state variable, and our model reduces to a stochastic game with

observablestatesµ t . This is a great simplification, but still the model is not as
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tractable as one would like: Since there are infinitely many possible posterior be-

liefs, we need to consider a stochastic game withinfinite states. This is in a sharp

contrast with past work which assumesfinitestates (Dutta (1995), Fudenberg and

Yamamoto (2011b), and Ḧorner, Sugaya, Takahashi, and Vieille (2011)).1

In general, the analysis of stochastic games is different from that of repeated

games, because the action today influences the distribution of the future states,

which in turn influences the stage-game payoffs in the future. For the finite-state

case, past work shows that this effect vanishes for patient players, under a mild

condition. Formally, if states arecommunicatingin that players can move the

state from any state to any other state, then the feasible payoff set is invariant to

the initial state in the limit as the discount factor goes to one. This invariance

result ensures that even if someone deviates today and influences the distribution

of the state tomorrow, it does not change the feasible payoff set in the continuation

game from tomorrow; so continuation payoff can be chosen in a flexible way,

regardless of the action today. This property allows us to discipline players’ play

via intertemporal incentives as in repeated games.

Why are the feasible payoffs invariant for the finite-state case? To see this,

consider the welfare-maximizing payoff vector in the feasible payoff set, and sup-

pose that players play a strategy profile which achieves this payoff. Without loss

of generality, we can assume that it is a Markov strategy so that the state follows a

Markov process. When states are finite and states are communicating, this Markov

process isergodicso that the initial state cannot influence the state in a distant fu-

ture. This immediately implies that the welfare-maximizing payoff is invariant to

the initial state, since patient players care only about payoffs in a distant future. A

similar argument shows that the entire feasible payoff set is also invariant to the

initial prior.

On the other hand, when states are infinite, a Markov process is not ergodic

in many cases. This is essentially because states are notpositive recurrentin

the sense that the state may not return to the current state forever. While there

1For the infinite-state case, the existence of Markov perfect equilibria is extensively studied.
See recent work by Duggan (2012) and Levy (2013), and an excellent survey by Dutta and Sun-
daram (1998). In contrast to this literature, we consider general non-Markovian equilibria. Hörner,
Takahashi, and Vieille (2011) consider non-Markovian equilibria in infinite states, but they assume
that the limit equilibrium payoff set is invariant to the initial state. That is, they directly assume a
sort of ergodicity and do not investigate when it is the case.
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are some sufficient conditions for ergodicity of infinite-state Markov chains (e.g.

Doeblin condition, see Doob (1953)) , these conditions are not satisfied in our

setup.2

Despite such technical complications, we find that under thefull support as-

sumption, the belief evolution process has a sort of ergodicity, and accordingly

both the feasible payoff set and the minimax payoffs are invariant to the initial

prior, for patient players. The full support assumption requires that regardless of

the current state and the current action profile, any signal can be observed and any

state can occur tomorrow, with positive probability. Under this assumption, the

support of the posterior belief is always the whole state space, i.e., the posterior

belief assigns positive probability to every stateω. It turns out that this property

is useful to obtain the invariance result.

The proof of invariance of the feasible payoffs is not new, and it directly fol-

lows from the theory of partially observable Markov decision process (POMDP).

In our model, the feasible payoffs can be computed by solving a Bellman equa-

tion in which the state variable is a belief. Such a Bellman equation is known as

a POMDP problem, and Platzman (1980) shows that under the full support as-

sumption, a solution to a POMDP problem is invariant to the initial belief. This

immediately implies invariance of the feasible payoff set.

On the other hand, invariance of the minimax payoff is a new result. The

minimax payoff isnot a solution to a Bellman equation (and hence it is not a

POMDP solution), because there is a player who maximizes her own payoff while

the others minimize it. The interaction of these two forces complicates the belief

evolution, which makes our analysis more difficult than the POMDP problem.

To prove invariance of the minimax payoff, we begin with the observation that

the minimax payoff (as a function of the initial belief) is the upper envelope of

a series of convex curves. Then using the convexity, we derive a uniform bound

on the variability of these curves, and show that this bound is close to zero. This

in turn implies that the variability of the upper envelope (and hence the minimax

payoff) is close to zero.

Building on the invariance result above, in Section 4, we prove the folk the-

2This is essentially because our model is a multi-player version of the POMDP. The introduc-
tion of Rosenberg, Solan, and Vieille (2002) explains the difficulty of the analysis of the POMDP
model.
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orem. Formally, we show that if the feasible and individually rational payoff set

V∗ is invariant to the initial prior, then any payoff in the setV∗ can be achieved

by sequential equilibria for patient players. The main challenge in the proof is

to figure out an effective punishment mechanism. In the standard repeated-game

model, Fudenberg and Maskin (1986) consider a simple equilibrium in which a

deviator will be minimaxed forT periods and then those who minimaxed will

be rewarded. Promising a reward after the minimax play is important, because

the minimax profile itself is not an equilibrium and players would be reluctant to

minimax without such a reward. Unfortunately, this “T-period punishment mech-

anism” does not directly extend to our environment. To see this, suppose that we

fix δ first and then takeT large. Thenδ T approaches zero, which implies that

players do not care about payoffs after the minimax play. So even if we promise a

reward after the minimax play, players may not want to play the minimax strategy.

What if we take sufficiently largeT first and then takeδ → 1, as in Fudenberg and

Maskin (1986)? In this case, for any fixedT, the minimax play forT periods

may yield a payoff quite different from the minimax payoff in the infinite-horizon

game, due to the complex belief evolution. Hence it may not work as an effective

punishment.3

To solve this problem, we introduce the idea ofrandom blocks, whose lengths

are randomly determined by public randomization. Specifically, at the end of each

period, public randomization determines whether the current random block con-

tinues or terminates with probabilityp and 1− p. This random block is payoff-

equivalent tothe infinite-horizon game with the discount factor pδ , due to the

termination probability 1− p. Hence if players play the minimax strategy during

the random block, the expected payoff during the block is exactly the minimax

payoff with the discount factorpδ . When bothp and δ are close to one, this

block payoff approximates the limit minimax payoff, so this punishment can de-

ter a player’s deviation effectively. Independently of this paper, Hörner, Sugaya,

3 In the POMDP literature, it is well-known that the payoff in the discounted infinite-horizon
problem and the (time-average) payoff in theT-period problem are asymptotically the same if a
solution to the discounted problem is invariant to the initial prior in the limit asδ → 1, and if the
rate of convergence is at most of orderO(1−δ ). (See Hsu, Chuang, and Arapostathis (2006) and
the references therein.) Unfortunately, in out setup, the rate of convergence of the feasible payoffs
and the minimax payoffs can be slower than this bound for some cases, as can be seen in the proof
of Proposition A2.
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Takahashi, and Vieille (2011) also consider the idea of random blocks, but the

way it works in their model is quite different. See Section 4.1 for more details.4

As noted earlier, the full support assumption is useful because under this as-

sumption, invariance of the feasible payoffs directly follows from the POMDP

theory. However, this assumption is restrictive, and leaves out many economic

applications. For example, consider the following natural resource management

problem: The state is the number of fish living in the gulf. The state may increase

or decrease over time, due to natural increase or overfishing. Since the fishermen

(players) cannot directly count the number of fish in the gulf, this is one of the

examples in which the belief about the hidden state plays an important role in ap-

plications. This example does not satisfy the full support assumption, because the

state cannot be the highest one if the fishermen catch too much fish today. Also,

games with delayed observations, and even the standard stochastic games (with

observable states) do not satisfy the full support assumption.

To address this concern, in Section 5, we show that the invariance result (and

hence the folk theorem) still holds even if the full support assumption is replaced

with a weaker condition. Specifically, we show that if the game satisfies a new

property calleduniform connectedness, then the feasible payoff set is invariant to

the initial belief for patient players. This result strengthens the existing results

in the POMDP literature; uniform connectedness is more general than various

assumptions considered in the literature.5 We also show that the minimax payoff

for patient players is invariant to the initial belief under a similar assumption called

robust connectedness.

Our assumption, uniform connectedness, is a condition about how thesupport

of the belief evolves over time. Roughly, it requires that players can jointly drive

the support of the belief from any setΩ∗ to any other set̃Ω∗, except the case

in which the setΩ̃∗ is “transient” in the sense that the support cannot stay at

4Interestingly, some papers on macroeconomics (such as Arellano (2008)) assume that punish-
ment occurs in a random block; we thank Juan Pablo Xandri for pointing this out. Our analysis is
different from theirs because random blocks endogenously arise in equilibrium.

5Such assumptions include renewability of Ross (1968), reachability-detectability of Platzman
(1980), and Assumption 4 of Hsu, Chuang, and Arapostathis (2006). (There is a minor error in
Hsu, Chuang, and Arapostathis (2006); see Appendix E for more details.) The natural resource
management problem in this paper is an example which satisfies uniform connectedness but not the
assumptions in the literature. Similarly, Examples A1 and A2 in Appendix A satisfies asymptotic
uniform connectedness but not the assumptions in the literature.
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Ω̃∗ forever. (Here,Ω∗ andΩ̃∗ denote subsets of the whole state spaceΩ.) This

assumption can be regarded as an extension of communicating states of Dutta

(1995), which requires that players can move the state from anyω to any other

ω̃ ; but note that uniform connectedness isnot a condition on the evolution of the

belief itself, so it need not imply ergodicity of the belief. Nonetheless we find

that this condition implies invariance of the feasible payoff set. A key step in the

proof is to find a uniform bound on the variability of feasible payoffs over beliefs

with the same support. In turns out that this bound is close to zero, and thus the

feasible payoff set is almost determined by the support of the belief. Hence, what

is essential is how the support changes over time, which suggests that uniform

connectedness is useful to obtain the invariance result.

In addition to that, we show in Appendix A that uniform connectedness can

be relaxed further, that is, the invariance result holds under a weaker condition,

calledasymptotic uniform connectedness. Asymptotic uniform connectedness is

satisfied for generic games, as long as the underlying states are communicating.

This means that the invariance result almost always holds if the state transition

rule satisfies the standard assumption in the literature.

Shapley (1953) proposes the framework of stochastic games. Dutta (1995)

characterizes the feasible and individually rational payoffs for patient players,

and proves the folk theorem for the case of observable actions. Fudenberg and

Yamamoto (2011b) and Ḧorner, Sugaya, Takahashi, and Vieille (2011) extend his

result to games with public monitoring. All these papers assume that the state of

the world is publicly observable at the beginning of each period.6

Athey and Bagwell (2008), Escobar and Toikka (2013), and Hörner, Taka-

hashi, and Vieille (2015) consider repeated Bayesian games in which the state

changes as time goes and players have private information about the current state

each period. They look at equilibria in which players report their private informa-

tion truthfully, which means that the state is perfectly revealed before they choose

actions each period.7 In contrast, in this paper, players have only limited informa-

tion about the true state and the state is not perfectly revealed.

6Independently of this paper, Renault and Ziliotto (2014) also study stochastic games with
hidden states, but they focus only on an example in which multiple states are absorbing.

7An exception is Sections 4 and 5 of Hörner, Takahashi, and Vieille (2015); they consider
equilibria in which some players do not reveal information and the public belief is used as a state
variable. But their analysis relies on the independent private value assumption.
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Wiseman (2005), Fudenberg and Yamamoto (2010), Fudenberg and Yamamoto

(2011a), and Wiseman (2012) study repeated games with unknown states. They

all assume that the state of the world is fixed at the beginning of the game and does

not change over time. Since the state influences the distribution of a public signal

each period, players can (almost) perfectly learn the true state by aggregating all

the past public signals. In contrast, in our model, the state changes as time goes

and thus players never learn the true state perfectly.

2 Setup

2.1 Stochastic Games with Hidden States

Let I = {1, · · · ,N} be the set of players. At the beginning of the game, Nature

chooses the state of the worldω1 from a finite setΩ. The state may change as

time passes, and the state in periodt = 1,2, · · · is denoted byω t ∈ Ω. The state

ω t is not observable to players, and letµ ∈△Ω be the common prior aboutω1.

In each periodt, players move simultaneously, with playeri ∈ I choosing an

actionai from a finite setAi . Let A ≡ ×i∈IAi be the set of action profilesa =
(ai)i∈I . Actions are perfectly observable, and in addition players observe a public

signal y from a finite setY. Then players go to the next periodt + 1, with a

(hidden) stateω t+1. The distribution ofy andω t+1 depends on the current state

ω t and the current action profilea∈ A; let πω(y, ω̃|a) denote the probability that

players observe a signaly and the next state becomesω t+1 = ω̃, givenω t = ω
anda. In this setup, a public signaly can be informative about the current stateω
and the next statẽω , because the distribution ofy may depend onω andy may be

correlated withω̃ . Let πω
Y (y|a) denote the marginal probability ofy.

Playeri’s payoff in periodt is a function of the current action profilea and

the current public signaly, and is denoted byui(a,y). Then her expected stage-

game payoff conditional on the current stateω and the current action profilea

is gω
i (a) = ∑y∈Y πω

Y (y|a)ui(a,y). Here the hidden stateω influences a player’s

expected payoff through the distribution ofy. Letgω(a) = (gω
i (a))i∈I be the vector

of expected payoffs. Letgi = maxω,a |2gω
i (a)|, and letg = ∑i∈I gi . Also let π be

the minimum ofπω(y, ω̃|a) over all(ω , ω̃,a,y) such thatπω(y, ω̃|a) > 0.

Our formulation encompasses the following examples:
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• Stochastic games with observable states. Let Y = Ω×Ω and suppose that

πω(y, ω̃ |a) = 0 for y = (y1,y2) such thaty1 , ω or y2 , ω̃. That is, the first

component of the signaly reveals the current state and the second compo-

nent reveals the next state. Suppose also thatui(a,y) does not depend on the

second componenty2, so that stage-game payoffs are influenced by the cur-

rent state only. Since the signal in the previous period perfectly reveals the

current state, players know the stateω t beforethey move. This is exactly

the standard stochastic games studied in the literature.

• Stochastic games with delayed observations. Let Y = Ω and assume that

πω
Y (y|a) = 1 for y = ω. That is, assume that the current signalyt reveals the

current stateω t . So players observe the stateafter they move.

• Observable and unobservable states. Assume thatω consists of two com-

ponents,ωO andωU , and that the signalyt perfectly reveals the first com-

ponent of the next state,ω t+1
O . Then we can interpretωO as an observable

state andωU as an unobservable state. One of the examples which fits this

formulation is a duopoly market in which firms face uncertainty about the

demand, and their cost function depends on their knowledge, know-how, or

experience. The firms’ experience can be described as an observable state

variable as in Besanko, Doraszelski, Kryukov, and Satterthwaite (2010), and

the uncertainty about the market demand as an unobservable state.

In the infinite-horizon stochastic game, players have a common discount factor

δ ∈ (0,1). Let (ωτ ,aτ ,yτ) be the state, the action profile, and the public signal in

periodτ. Then the history up to periodt ≥ 1 is denoted byht = (aτ ,yτ)t
τ=1. Let

Ht denote the set of allht for t ≥ 1, and letH0 = { /0}. Let H =
∪∞

t=0Ht be the set

of all possible histories. A strategy for playeri is a mappingsi : H →△Ai Let Si

be the set of all strategies for playeri, and letS= ×i∈ISi . Given a strategysi and

historyht , let si |ht be the continuation strategy induced bysi after historyht .

Let vω
i (δ ,s) denote playeri’s average payoff in the stochastic game when

the initial prior puts probability one onω, the discount factor isδ , and players

play strategy profiles. That is, letvω
i (δ ,s) = E[(1− δ )∑∞

t=1δ t−1gωt

i (at)|ω ,s].
Similarly, let vµ

i (δ ,s) denote playeri’s average payoff when the initial prior is

µ. Note that for each initial priorµ, discount factorδ , ands−i , player i’s best

11



reply si exists; see Appendix D for the proof. Letvω(δ ,s) = (vω
i (δ ,s))i∈I and

vµ(δ ,s) = (vµ
i (δ ,s))i∈I .

2.2 Alternative Interpretation: Belief as a State Variable

In each periodt, each player forms a beliefµ t about the current hidden stateω t .

Since players have the same initial priorµ and the same informationht−1, they

have the same posterior beliefµ t . Then we can regard this beliefµ t as a common

state variable, and so our model reduces to a stochastic game withobservable

statesµ t .

With this interpretation, the model can be re-written as follows. In period one,

the belief is simply the initial prior;µ1 = µ. In periodt ≥ 2, players use Bayes’

rule to update the belief. Specifically, givenµ t−1, at−1, andyt−1, the posterior

belief µ t in periodt is computed as

µ t(ω̃) = ∑ω∈Ω µ t−1(ω)πω(yt−1, ω̃ |at−1)
∑ω∈Ω µ t−1(ω)πω

Y (yt−1|at−1)

for eachω̃ . Given this beliefµ t , players choose actionsat , and then observe a

signalyt according to the distributionπµt

Y (yt |at) = ∑ω∈Ω µ t(ω)πω
Y (yt |at). Player

i’s expected stage-game payoff givenµ t andat is gµt

i (at) = ∑ω∈Ω µ t(ω)gω
i (at).

Our solution concept is a sequential equilibrium. Letζ : H →△Ω be a belief

system; i.e.,ζ (ht) is the posterior aboutω t+1 after historyht . A belief systemζ is

consistent with the initial priorµ if there is a completely mixed strategy profiles

such thatζ (ht) is derived by Bayes’ rule in all on-path histories ofs. Since actions

are observable, given the initial priorµ, a consistent belief is unique at each infor-

mation set which is reachable by some strategy. (So essentially there is a unique

belief systemζ consistent withµ.) A strategy profiles is asequential equilibrium

in the stochastic game with the initial priorµ if s is sequentially rational given the

belief systemζ consistent withµ.

2.3 Full Support Assumption

As explained in the introduction, we are interested in a condition under which the

belief evolution process satisfies a sort of ergodicity. One of such conditions is the

full support assumption:

12



Definition 1. The state transition function has afull supportif πω(y, ω̃ |a) > 0 for

all ω, ω̃, a, andy.

In words, the full support assumption requires that any signaly and any state

ω̃ can happen tomorrow with positive probability, regardless of the current state

ω and the current action profilea. Under this assumption, we have the following

two properties. First, given any initial priorµ, any historyht can be reachable

with positive probability, using some strategys. Accordingly, after any history,

the posterior belief can be computed using a Bayes’ rule. Second, these posterior

beliefs are always in the interior of△Ω, that is, after every history, the posterior

beliefµ t assigns positive probability to each stateω. It turns out that this property

is very useful in order to obtain the invariance result.

However, the full support assumption is demanding, and leaves out many po-

tential economic applications. For example, this assumption is never satisfied if

the action and/or the signal today has a huge impact on the state evolution so that

some stateω̃ cannot happen tomorrow conditional on some(a,y). One of such

examples is the natural resource management problem in Section 5.3; in this ex-

ample, if the fishermen catch too much fish today, the state (the number of fish

in the gulf) cannot be the highest state tomorrow because natural increase is slow.

Also, it rules out even the standard stochastic games (in which the state is observ-

able to players) and the games with delayed observations. To fix this problem, in

Section 5, we will explain how to relax the full support assumption. We will show

that the same result holds even if the full support assumption is replaced with a

weaker condition, calledconnectedness.

3 Feasible and Individually Rational Payoffs

3.1 Invariance of the Feasible Payoff Set

Given the initial beliefµ and the discount factorδ , we define the feasible payoff

setVω(δ ) in the stochastic game as

Vµ(δ ) = co{vµ(δ ,s)|s∈ S}

where coB denotes the convex hull of the setB. In words, the feasible payoff set

Vω(δ ) is the convex hull of the set of all attainable payoffs in the stochastic game,

13



when we ignore players’ incentives. When the initial beliefµ puts probability one

on some stateω , we denote it byVω(δ ). Note that the discount factorδ influences

the feasible payoff set, as it influences the stochastic game payoffvµ(δ ,s)|.
Let Λ be the set of directionsλ ∈ RN with |λ | = 1. For each directionλ , we

compute the “score” using the following formula:8

max
v∈Vµ (δ )

λ ·v.

Roughly speaking, this score characterizes the boundary of the feasible payoff set

Vµ(δ ) toward directionλ . For example, whenλ is the coordinate vector with

λi = 1 andλ j = 0 for all j , i, we have maxv∈Vµ (δ ) λ · v = maxv∈Vµ (δ ) vi , so the

score is simply the highest possible payoff for playeri within the feasible payoff

set. Whenλ = ( 1√
2
, 1√

2
), the score is the (normalized) maximal social welfare

within the feasible payoff set.

Given a directionλ , let f (µ) be the score given the initial priorµ. The func-

tion f must solve the following Bellman equation:

f (µ) = max
a∈A

[
(1−δ )λ ·gµ(a)+δ ∑

y∈Y
πµ

Y (y|a) f (µ̃(y|µ,a))

]
, (1)

where µ̃(y|µ,a) is the belief in period two given that the initial prior isµ and

players playa and observey in period one. To interpret this equation, letλ =
( 1√

2
, 1√

2
), so that the scoref (µ) is the maximal social welfare. Suppose also

that there are only two players. Then (1) asserts that the maximal welfaref (µ)
is a sum of the (normalized) welfare todayλ ·gµ(a) = 1√

2
(gω

1 (a)+ gω
2 (a)) and

the expected continuation payoff∑y∈Y πµ
Y (y|a) f (µ̃(y|µ,a)), and that the action

profilea maximizes this sum.

(1) is known as a “POMDP problem,” in the sense that it is a Bellman equa-

tion in which the state variableµ is a belief about a hidden state. In the POMDP

theory, it is well-known that a solutionf is convex with respect to the state vari-

able µ, and that this convexity leads to various useful theorems. For example,

Platzman (1980) shows that under the full support assumption, a solutionf (µ) is

invariant to the initial beliefµ, when the discount factor is close to one. In our

context, this implies that when players are patient, the score is invariant to the

8Note that this maximization problem indeed has a solution; see Appendix D for the proof.
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initial prior µ, and so is the feasible payoff setVµ(δ ). Formally, we have the

following proposition.

Proposition 1. Under the full support assumption, for eachε > 0, there isδ ∈
(0,1) such that for anyλ ∈ Λ, δ ∈ (δ ,1), µ, andµ̃,∣∣∣∣ max

v∈Vµ (δ )
λ ·v− max

ṽ∈V µ̃ (δ )
λ · ṽ

∣∣∣∣ < ε.

In particular, this implies that the limitlimδ→1maxv∈Vµ (δ ) λ · v of the score is

independent ofµ.

Note that the limit limδ→1maxv∈Vµ (δ ) λ ·v of the score indeed exists, thanks to

Theorem 2 of Rosenberg, Solan, and Vieille (2002). Platzman (1980) also shows

that the score converges at the rate of 1− δ . So we can replaceε in the above

proposition withO(1−δ ).
The above proposition ensures that in the limit asδ → 1, the score is invariant

to the initial prior µ for all directions, and hence the feasible payoff set is also

invariant to the initial prior. LetV = {v∈ RN|λ ·v≤ limδ→1maxv∈Vµ (δ ) λ ·v} de-

note this limit feasible payoff set. From the proposition above, the feasible payoff

setVµ(δ ) approximates this setV for δ close to one, regardless of the initial prior

µ. Note that this setV is well-defined, because the term limδ→1maxv∈Vµ (δ ) λ · v
does not depend onµ.

3.2 Invariance of the Minimax Payoffs

Given the initial priorµ and the discount factorδ , playeri’s minimax payoffin

the stochastic game is defined to be

vµ
i (δ ) = min

s−i∈S−i
max
si∈Si

vµ
i (δ ,s).

In our setup, playeri’s sequential equilibrium payoff is at least this minimax pay-

off, as players do not have private information. The proof is standard and hence

omitted. Note also that the minimizers−i indeed exists; see Appendix D for more

details.

For stochastic games with observable states, if the game isirreducible in the

sense of Fudenberg and Yamamoto (2011b), the minimax payoff for patient play-

ers is invariant to the initial state. The following proposition shows that the same

result holds for the hidden-state case, under the full support assumption:
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Proposition 2. Under the full support assumption, for each i andε > 0, there is

δ ∈ (0,1) such that for anyδ ∈ (δ ,1), µ, andµ̃,∣∣∣vµ
i (δ )−vµ̃

i (δ )
∣∣∣ < ε.

This result may look similar to Proposition 1, but its proof is substantially

different. As noted earlier, Proposition 1 directly follows from the fact that the

score functionf is a solution to the POMDP problem (1). Unfortunately, the

minimax payoffvµ
i (δ ) is not a solution to a POMDP problem; this is so because

in the definition of the minimax payoff, playeri maximizes her payoff while the

opponents minimize it. Accordingly, POMDP techniques are not applicable, and

we need a new idea in order to obtain invariance of the minimax payoff. In the

next subsection, we will briefly explain our proof idea. The formal proof can be

found in Appendix B.

The next proposition shows that the limit of the minimax payoff exists. The

proof can be found in Appendix B.

Proposition 3. Under the full support assumption, the limitlimδ→1vµ
i (δ ) of the

minimax payoff exists.

From Proposition 2, this limit is independent of the initial priorµ, so we de-

note it by vi . Let V∗ denote the limit of the feasible and individually rational

payoff set, that is,V∗ is the set of all feasible payoffsv∈V such thatvi ≥ vi for

all i.

3.3 Proof Sketch of Proposition 2

In this subsection, we will briefly describe how to prove Proposition 2. The ar-

gument is a bit complex, so those who are not interested in technical details may

skip this subsection.

Pickδ close to one, and letsµ
−i denote the minimax strategy for the initial prior

µ. Let vµ̃
i (sµ

−i) = maxsi∈Si v
µ̃
i (si ,s

µ
−i), that is, letvµ̃

i (sµ
−i) denote playeri’s best

payoff against the minimax strategysµ
−i when the initial prior isµ̃. Whenµ̃ = µ,

it is simply the minimax payoff for the beliefµ. A standard argument shows that

for a givenµ, playeri’s payoffvµ̃
i (sµ

−i) is convex with respect to the beliefµ̃. That

is, once we fix the opponents’ strategysµ
−i , playeri’s best payoff is convex with
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respect to her belief̃µ. Note that different parametersµ induce different minimax

strategiessµ
−i , and hence different convex curvesvµ̃

i (sµ
−i). Figure 1 describes these

convex curves for the case with two states; thex-axes represents the belief space

[0,1], and they-axes represents the payoff. As one can see, different parameters

µ andµ ′ induce different convex curves. Unlike the score functionf in Section

3.1, for a fixed parameterµ, the induced convex curvevµ̃
i (sµ

−i) is not a solution to

a Bellman equation; this is so because the strategysµ
−i is fixed for all initial beliefs

µ̃. Accordingly, POMDP techniques are not applicable to the analysis of these

convex curves.

µ̃ = 1µ̃ = 0

Maximal Value
vµ̃

i (sµ
−i)

vµ̃
i (sµ ′

−i)

Figure 1: Convex curves induced bysµ
−i andsµ ′

−i

Let (µ∗, µ̃∗) be a maximizer ofvµ̃
i (sµ

−i), that is, take(µ∗, µ̃∗) so thatvµ̃∗

i (sµ∗

−i )≥
vµ̃

i (sµ
−i) for all µ andµ̃.9 Sincevµ̃

i (sµ∗

−i ) is convex, it is maximized wheñµ is an

extreme point of△Ω; so the beliefµ̃∗ must put probability one on some state

ω . Pick suchω. We will call the payoffvω
i (sµ∗

−i ) the maximal value, as it is the

maximal payoff achieved by the convex curvesvµ̃
i (sµ

−i), as shown in Figure 1.

3.3.1 Step 0: Preliminary Lemma

We first present a preliminary lemma, which gives a sufficient condition for the

convex curves to approximate the maximal value. To make our exposition as

simple as possible, here we state only an informal (and simple) version of the

lemma; the formal statement of the lemma is a bit complex, and given as Lemma

B1 in Appendix B.

9For simplicity, here we assume that the maximum indeed exists. In the formal proof, we will
explain how to extend the argument to the case in which the maximum does not exist.
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Lemma 1. Pick δ close to one, and pick someµ. Suppose that|vω
i (sµ∗

−i )−
vµ̃

i (sµ
−i)| ≈ 0 for some interior beliefµ̃ such thatµ̃(ω̃) ≥ π for all ω̃. Then

|vω
i (sµ∗

−i )−vµ̂
i (sµ

−i)| ≈ 0 for all beliefsµ̂.

In words, this lemma shows that if the convex curve induced by the minimax

strategysµ
−i approximates the maximal value forsomeinterior beliefµ̃, then this

curve is almost flat and approximates the maximal value forall beliefsµ̂. Recall

thatπ is the minimum ofπω(y, ω̃|a).
The intuition behind this lemma is as follows. Pick the minimax strategysµ

−i

for someµ. To simplify the argument, suppose that the induced convex curve

exactly achieves the maximal value for some interior beliefµ̃. That is, assume that

|vω
i (sµ∗

−i )−vµ̃
i (sµ

−i)| = 0, rather than|vω
i (sµ∗

−i )−vµ̃
i (sµ

−i)| ≈ 0. Then the convexity

of vµ̂
i (sµ

−i) requires that this curve must be flat andvω
i (sµ∗

−i ) = vµ̂
i (sµ

−i) for all µ̂.

Indeed, if the curve is not flat and there is a beliefµ̂ , µ̃ such thatvω
i (sµ∗

−i ) >

vµ̂
i (sµ

−i), then the convex curve must look like Figure 2 or Figure 3, so that it must

exceed the maximal value for some belief. This is a contradiction, and thus the

curve must be indeed flat.

µ = 1µ = 0

vω
i (δ ,sω)

µ̃µ̂

Figure 2: Case witĥµ < µ̃

µ = 1µ = 0

vω
i (δ ,sω)

µ̃ µ̂

Figure 3: Case witĥµ > µ̃

In what follows, we will show that all the convex curvesvµ̃
i (sµ

−i) are almost

flat and approximate the maximal value. This implies that the minimax payoff

approximates the maximal value for all beliefsµ, and thus Proposition 2 follows.

3.3.2 Step 1: Minimax Payoff for Some Beliefµ∗∗

As a first step, we show that there is an interior beliefµ∗∗ whose minimax payoff

approximates the maximal value and such thatµ∗∗(ω̃) ≥ 0 for all ω̃. The proof

idea is as follows. Suppose that the initial state isω and the opponents play

sµ∗

−i . Suppose that playeri takes a best reply, which is denoted bysi , so that she
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achieves the maximal valuevω
i (sµ∗

−i ). As usual, this payoff can be decomposed

into the payoff today and the expected continuation payoff:

vω
i (sµ∗

−i ) = (1−δ )gω
i (α∗)+δ ∑

a∈A

α∗(a) ∑
y∈Y

πω
Y (y|a)vµ(y|ω ,a)

i (sµ(y|µ∗,a)
−i ).

Here,α∗ denotes the action profile in period one induced by(si ,s
µ∗

−i ). µ(y|ω,a)
denotes the posterior belief in period two when the initial belief isµ̃∗ = ω and

players playa and observey in period one. µ(y|µ∗) denotes the posterior be-

lief when the initial belief isµ∗. Given an outcome(a,y) in period one, player

i’s continuation payoff isvµ(y|ω,a)
i (sµ(y|µ∗,a)

−i ), because her posterior isµ(y|ω,a)

while the opponent’s continuation strategy issµ(y|µ∗,a)
−i . (Note that the minimax

strategy is Markov.)

Pick(a,y) which gives the highest continuation payoff, i.e.,vµ(y|ω,a)
i (sµ(y|µ∗,a)

−i )≥
vµ(ỹ|ω,ã)

i (sµ(ỹ|µ∗,ã)
−i ) for all ỹ andã such thatα∗(ã) > 0. This highest continuation

payoff is at least the expected continuation payoff, so we have

vω
i (sµ∗

−i ) ≤ (1−δ )gω
i (α∗)+δvµ(y|ω,a)

i (sµ(y|µ∗,a)
−i ).

Arranging,∣∣∣vω
i (sµ∗

−i )−vµ(y|ω ,a)
i (sµ(y|µ∗,a)

−i )
∣∣∣ ≤ 1−δ

δ
(gω

i (α∗)−vω
i (sµ∗

−i )).

Sinceδ is close to one, the right-hand side is close to zero. So this inequality im-

plies that the payoffvµ(y|ω ,a)
i (sµ(y|µ∗,a)

−i ) approximates the maximal value, i.e., the

convex curve induced by the minimax strategysµ(y|µ∗,a)
−i approximates the maxi-

mal value for some belief̃µ = µ(y|ω,a). Under the full support assumption, this

belief µ̃ must assign at leastπ on each statẽω. Hence the preliminary lemma

ensures that the convex curvevµ̂
i (sµ(y|µ∗,a)

−i ) approximates the maximal value for

all beliefsµ̂. This in particular implies that the minimax payoffvµ∗∗

i (sµ∗∗

−i ) for the

belief µ∗∗ = µ(y|µ∗,a) approximates the maximal value, as desired.

3.3.3 Step 2: Minimax Payoff for Other Beliefs

As a second step of the proof, we show that the minimax payoff approximates the

maximal value for all beliefsµ, which implies invariance of the minimax payoff.
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Pick an arbitrary beliefµ. Suppose that the initial belief isµ∗∗ defined in the

first step, and that the opponents play the minimax strategysµ
−i for the beliefµ.

(Note thatµ is different fromµ∗∗ in general.) Suppose that playeri chooses a best

reply. Then her payoffvµ∗∗

i (sµ
−i) is at least the minimax payoffvµ∗∗

i (sµ∗∗

−i ) for the

beliefµ∗∗, as the opponents’ strategysµ
−i is not the minimax strategy for this belief

µ∗∗. On the other hand, her payoff cannot exceed the maximal value, because the

convex curve induced bysµ
−i must be always below the maximal value, by the

definition. Combining these observations, we have

vµ∗∗

i (sµ∗∗

−i ) ≤ vµ∗∗

i (sµ
−i) ≤ vω

i (sµ∗

−i ).

From the first step, we know that the minimax payoffvµ∗∗

i (sµ∗∗

−i ) for the beliefµ∗∗

approximates the maximal payoffvω
i (sµ∗

−i ). Hence from the above inequality, the

payoff vµ∗∗

i (sµ
−i) also approximates the maximal value. That is, the convex curve

vµ̃
i (sµ

−i) induced by the minimax strategysµ
−i approximates the maximal value

for some beliefµ̃ = µ∗∗. Then from the preliminary lemma, this convex curve

vµ̃
i (sµ

−i) is almost flat and approximates the maximal value forall beliefsµ̃. This

in particular implies that the minimax payoffvµ
i (sµ

−i) for the beliefµ approximates

the maximal value, as desired.

4 Folk Theorem

So far we have shown that under the full support assumption, the feasible and

individually rational payoff set is invariant to the initial belief. In this section,

we show that this invariance result implies the folk theorem. That is, we show

that any feasible and individually rational payoff can be achieved by a sequential

equilibrium, if players are patient enough. Throughout this section, we assume

that public randomizationz, which follows the uniform distributionU [0,1], is

available.

4.1 Punishment over Random Blocks

To prove the folk theorem, we consider an equilibrium in which a deviator will be

punished by the minimax strategy. Since the minimax strategy does not constitute
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an equilibrium, we cannot ask players to play the minimax strategy forever; play-

ers must stop playing the minimax strategy at some point, and after that we need

to reward those who played the minimax strategy.

In stochastic games, the minimax strategy is a strategy for the infinite-horizon

game, so we need to carefully think about when players should stop the mini-

max play. For stochastic games with observable states, Dutta (1995) and Hörner,

Sugaya, Takahashi, and Vieille (2011) consider equilibria in which a deviator will

be minimaxed forT periods, whereT is a large fixed number. Since the state

transition is ergodic, the average payoff during theseT periods is approximately

the same as the minimax payoff for the infinite-horizon game, so this punishment

mechanism can deter a player’s deviation. On the other hand, in our model, it is

not clear if such aT-period punishment mechanism works effectively. Indeed, we

do not know if the belief evolution induced by the minimax strategy is ergodic

(although invariance of the minimax payoff suggests a sort of ergodicity); accord-

ingly, the average payoff for theT-period block can be quite different from (in

particular, greater than) the minimax payoff in the infinite-horizon game. See the

discussion in footnote 3.

To fix this problem, we consider an equilibrium withrandom blocks. Unlike

theT-period block, the length of the random block is not fixed and is determined

by public randomizationz∈ [0,1]. Specifically, at the end of each periodt, play-

ers determine whether to continue the current block or not in the following way:

Given some parameterp ∈ (0,1), if zt ≤ p, the current block continues so that

periodt + 1 is still included in the current random block. Otherwise, the current

block terminates. So the random block terminates with probability 1− p each

period.

A key is that the random block is payoff-equivalent to the infinite-horizon

game with the discount factorpδ , due to the random termination probability 1−p.

Thus, given the current beliefµ, playeri’s average payoff during the block never

exceeds the minimax payoffvµ
i (pδ ) if the opponents use the minimax strategy for

the initial priorµ and the discount factorpδ (notδ ) during the block. This payoff

approximates the limit minimax payoffvi when bothp andδ are close to one.

(Note that takingp close to one implies that the expected duration of the block

is long.) In this sense, the opponents can indeed punish playeri by playing the

minimax strategy in the random block.
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In the proof of the folk theorem, we pickp close to one, and then takeδ → 1.

This implies that although the random block is long in expectation, players puts

a higher weight on the continuation payoff after the block than the payoff during

the current block. Hence a small variation in continuation payoffs is enough to

discipline players’ play during the random block. In particular, a small amount

of reward after the block is enough to provide incentives to play the minimax

strategy.

The idea of random blocks is useful in other parts of the proof of the folk

theorem, too. For example, it ensures that the payoff on the equilibrium path does

not change much after every history. See the proof in Section 4.3 for more details.

Independently of this paper, Hörner, Takahashi, and Vieille (2015) also pro-

pose the idea of random blocks, which they call “random switching.” However,

their model and motivation are quite different from ours. They study repeated

adverse-selection games in which players report their private information every

period. In their model, a player’s incentive to disclose her information depends

on the impact of her report on her flow payoffs until the effect of the initial state

vanishes. Measuring this impact is difficult in general, but it becomes tractable

when the equilibrium strategy has the random switching property. That is, they

use random blocks in order to measure payoffs by misreporting. In contrast, in

this paper, the random blocks ensure that playing the minimax strategy over the

block indeed approximate the minimax payoff. Another difference between the

two papers is the order of limits. They take the limits ofp andδ simultaneously,

while we fix p first and then takeδ large enough.

4.2 Folk Theorem under Payoff Invariance

Now we establish the folk theorem, assuming that the feasible and individually

rational payoff set is invariant to the initial prior in the limit asδ → 1. As shown

by Propositions 1 and 2, this payoff invariance holds under the full support as-

sumption. So the following proposition implies that the folk theorem holds under

the full support assumption. This proposition encompasses the folk theorem of

Dutta (1995) as a special case.

Proposition 4. Suppose that the feasible and individually rational payoff set is

invariant to the initial prior in the limit asδ → 1, and that the limit payoff set V∗
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is full dimensional. Assume also that public randomization is available. Then for

any interior point v∈V∗, there isδ ∈ (0,1) such that for anyδ ∈ (δ ,1) and for

any initial prior µ, there is a sequential equilibrium with the payoff v.

In addition to the payoff invariance, the proposition requires the full dimen-

sional assumption. This assumption allows us to construct a player-specific pun-

ishment mechanism; that is, it ensures that we can punish playeri (decrease player

i’s payoff) while not doing so to all other players. Note that this assumption is

common in the literature, for example, Fudenberg and Maskin (1986) use this as-

sumption to obtain the folk theorem for repeated games with observable actions.

Fudenberg and Maskin (1986) also show that the full dimensional assumption

is dispensable if there are only two players and the minimax strategies are pure

actions. The reason is that player-specific punishments are not necessary in such a

case; they consider an equilibrium in which players mutually minimax each other

over T periods after any deviation. Unfortunately, this result does not extend to

our setup, since a player’s incentive to deviate from the mutual minimax play can

be quite large in stochastic games; this is so especially because the payoff by the

mutual minimax play is not necessarily invariant to the initial prior. To avoid this

problem, we consider player-specific punishments even for the two-player case,

which requires the full dimensional assumption.

The proof of the proposition is constructive, and combines the idea of random

blocks with the player-specific punishments of Fudenberg and Maskin (1986). In

particular the proof resembles that of Dutta (1995), except that we use random

blocks (rather thanT-period blocks), which complicates the verification of incen-

tive compatibility. In the next subsection, we prove this proposition assuming that

the minimax strategies are pure strategies. Then we briefly discuss how to extend

the proof to the case with mixed minimax strategies. The formal proof for mixed

minimax strategies will be given in Appendix B.

4.3 Equilibrium with Pure Minimax Strategies

Take an interior pointv∈V∗. We will construct a sequential equilibrium with the

payoffv whenδ is close to one. To simplify the notation, we assume that there are

only two players. This assumption is not essential, and the proof easily extends to

the case with more than two players.
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Pick payoff vectorsw(1) andw(2) from the interior of the limit payoff setV∗

such that the following two conditions hold:

(i) w(i) is Pareto-dominated by the target payoffv, i.e.,wi(i) ≪ vi for eachi.

(ii) Each playeri prefersw( j) overw(i), i.e.,wi(i) < wi( j) for eachi and j , i.

The full dimensional condition ensures that suchw(1) andw(2) exist. See Figure

4 to see how to choose these payoffsw(i). In this figure, the payoffs are normal-

ized so that the limit minimax payoff vector isv = (v1,v2) = (0,0).

w(2)

w(1) v

v

V∗

Figure 4: Payoffsw(1) andw(2)

Looking ahead, the payoffsw(1) andw(2) can be interpreted as “punishment

payoffs.” That is, if playeri deviates and players start to punish her, the payoff in

the continuation game will be approximatelyw(i) in our equilibrium. Note that

we use player-specific punishments, so the payoff depends on the identity of the

deviator. Property (i) above implies that each playeri prefers the cooperative pay-

off v over the punishment payoff, so no one wants to stop cooperation. Property

(ii) implies that each playeri prefers the payoffwi( j) when she punishes the op-

ponent j to the payoffwi(i) when she is punished. This ensures that playeri is

indeed willing to punish the opponentj after j ’s deviation; if she does not, then

playeri will be punished instead ofj, and it lowers playeri’s payoff.

Pick p∈ (0,1) close to one so that the following conditions hold:

• The payoff vectorsv, w(1), andw(2) are in the interior of the feasible payoff

setVµ(p) for eachµ.

• supµ∈△Ω vµ
i (p) < wi(i) for eachi.
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By the continuity, if the discount factorδ is close to one, then the payoff vectors

v, w(1), andw(2) are all included in the interior of the feasible payoff setVµ(pδ )
with the discount factorpδ .

Our equilibrium consists of three phases:regular (cooperative) phase, pun-

ishment phase for player1, andpunishment phase for player2. In the regular

phase, the infinite horizon is regarded as a series of random blocks. In each ran-

dom block, players play a pure strategy profile which exactly achieves the target

payoffv as the average payoff during the block. To be precise, pick some random

block, and letµ be the belief and the beginning of the block. If there is a pure

strategy profileswhich achieves the payoffv given the discount factorpδ and the

belief µ, (that is,vµ(pδ ,s) = v), then use this strategy during the block. If such a

pure strategy profile does not exist, use public randomization to generatev. That

is, players choose one of the extreme points ofVµ(pδ ) via public randomization

at the beginning of the block, and then play the corresponding pure strategy until

the block ends. After the block, a new block starts and players will behave as

above again.

It is important that during the regular phase, after each periodt, players’ con-

tinuation payoffs are always close to the target payoffv. To see why, note first

that the average payoff in the current block can be very different fromv once the

public randomization (which chooses one of the extreme points) realizes. How-

ever, whenδ is close to one, players do not care much about the payoffs in the

current block, and what matters is the payoffs in later blocks, which are exactly

v. Hence even after public randomization realizes, the total payoff is still close to

v. This property is due to the random block structure, and will play an important

role when we check incentive conditions.

As long as no one deviates from the prescribed strategy above, players stay

at the regular phase. However, once someone (say, playeri) deviates, they will

switch to the punishment phase for playeri immediately. In the punishment phase

for playeri, the infinite horizon is regarded as a sequence of random blocks, just as

in the regular phase. In the firstK blocks, the opponent (playerj , i) minimaxes

playeri. Specifically, in each block, lettingµ be the belief at the beginning of the

block, the opponent plays the minimax strategy for the beliefµ and the discount

factorpδ . On the other hand, playeri maximizes her payoff during theseK blocks.

After theK blocks, players switch their play in order to achieve the post-minimax
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payoff w(i); that is, in each random block, players play a pure strategy profiles

which exactly achievesw(i) as the average payoff in the block (i.e.,vµ(pδ ,s) =
w(i) whereµ is the current belief). If suchs does not exist, players use public

randomization to generatew(i). The parameterK will be specified later.

If no one deviates from the above play, players stay at this punishment phase

forever. Also, even if playeri deviates in the firstK random blocks, it is ignored

and players continue the play. If playeri deviates after the firstK blocks (i.e.,

if she deviates from the post-minimax play) then players restart the punishment

phase for playeri immediately; from the next period, the opponent starts to min-

imax playeri. If the opponent (playerj , i) deviates, then players switch to the

punishment phase for playerj, in order to punish playerj. See Figure 5.

Payoffv

K blocks
Minimax 1

K blocks
Minimax 2

Payoffw(1)

Payoffw(2)

If 1 deviates

If 1 deviates

If 2 deviates

If 2 deviates

If 1 deviates

If 2 deviates

Figure 5: Equilibrium strategy

Now, chooseK such that

−g− 1
1− p

g+
K−1
1− p

wi(i) > g+
K

1− p
sup

µ∈△Ω
vµ

i (p) (2)

for eachi. Note that (2) indeed holds for sufficiently largeK, as supµ∈△Ω vµ
i (p) <

wi(i). To interpret (2), suppose that we are now in the punishment phase for player

i, in particular a period in which players play the strategy profile with the post-

minimax payoffw(i). (2) ensures that playeri’s deviation today is not profitable
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for δ close to one. To see why, suppose that playeri deviates today. Then her

stage-game payoff today is at mostg, and then she will be minimaxed for the next

K random blocks. Since the expected length of each block is1
1−p, the (unnormal-

ized) expected payoff during the minimax phase is at mostK
1−p supµ∈△Ω vµ

i (p)
whenδ → 1. So the right-hand side of (2) is an upper bound on playeri’s unnor-

malized payoff until the minimax play ends, when she deviates.

On the other hand, if she does not deviate, her payoff today is at least−g.

Also, for the nextK periods, she can earn at least− 1
1−pg+ K−1

1−pwi(i), because we

consider the post-minimax play. (Here the payoff during the first block can be

lower thanwi(i), as tomorrow may not be the first period of the block. So we use

− g
1−p as a lower bound on the payoff during this block.) In sum, by not deviating,

playeri can obtain at least the left-hand side of (2), which is indeed greater than

the payoff by deviating.

With this choice ofK, by inspection, we can show that the strategy profile

above is indeed an equilibrium for sufficiently largeδ . The argument is very

similar to the one by Dutta (1995) and hence omitted.

When the minimax strategies are mixed strategies, we need to modify the

above equilibrium construction and make playeri indifferent over all actions when

she minimaxes playerj , i. As shown by Fudenberg and Maskin (1986), we can

indeed satisfy this indifference condition by perturbing the post-minimax payoff

wi( j) appropriately. See Appendix B for the formal proof.

5 Relaxing the Full Support Assumption

We have shown that under the full support assumption, the feasible and individu-

ally rational payoff set is invariant to the initial prior, which enables us to prove the

folk theorem. However, as noted earlier, the full support assumption is demand-

ing, and rules out many possible applications. For example, a natural resource

management problem, which will be presented below, does not satisfy the full

support assumption. Also, games with delayed observations, and even the stan-

dard stochastic games, do not satisfy the full support assumption.

To address this concern, in this section, we show that the invariance result

still holds, even if the full support assumption is replaced with a new, weaker

condition. Specifically, we show that the feasible payoff set is invariant if the game
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is uniformly connected, and the minimax payoff is invariant if the game isrobustly

connected. Both uniform connectedness and robust connectedness are about how

thesupportof the posterior belief evolves over time, and they are satisfied in many

economic applications, including the examples mentioned above.

5.1 Uniform Connectedness

5.1.1 Brief Description of Uniform Connectedness

For the standard stochastic games with observable states, the feasible payoff set

is invariant to the initial state if states arecommunicatingin the sense that there

is a path from any state to any other state (Dutta (1995)). Formally, a stateω̃ is

accessible froma stateω if there is a natural numberT and an action sequence

(a1, · · · ,aT) such that

Pr(ωT+1 = ω̃|ω,a1, · · · ,aT) > 0, (3)

where Pr(ωT+1 = ω̃|ω,a1, · · · ,aT) denotes the probability of the state in period

T +1 beingω̃ given that the initial state isω and players play the action sequence

(a1, · · · ,aT) for the firstT periods.ω̃ is globally accessibleif it is accessible from

any stateω. States arecommunicatingif all statesω are globally accessible.

Since the state variable in our model is a beliefµ, a natural extension of the

above assumption is to assume that there be a path from any beliefµ to any other

belief µ̃. Unfortunately, this approach does not work, because such a condition

is too demanding and never satisfied. A problem is that there are infinitely many

possible beliefsµ, and thus there is no reason to expect recurrence; i.e., the pos-

terior belief may not return to the current belief in finite time.10

To avoid this problem, we will focus on the evolution of thesupportof the

belief, rather than the evolution of the belief itself. Now the recurrence problem

above is not an issue, since there are only finitely many supports. Of course, the

support of the belief is only coarse information about the belief, so imposing a

condition on the evolution of the support is much weaker than imposing a condi-

tion on the evolution of the belief. However, it turns out that this is precisely what

we need for invariance of the feasible payoff set.
10Formally, there always exists a beliefµ which is not globally accessible, because given an

initial belief, only countably many beliefs are reachable.
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In what follows, we will briefly describe the idea of our condition,uniform

connectedness. Suppose that there are three states (Ω = {ω1,ω2,ω3}) so that

there are seven possible supportsΩ1, · · · , Ω7. Figure 6 shows how the support

of the belief changes over time. For each arrow, there is an action profile which

lets the support move along the arrow with positive probability. For example,

there is an action profile which moves the support fromΩ1 to Ω2 with positive

probability. Each thick arrow is a move which must happen with positive prob-

ability regardless ofthe action profile. The thick forked arrow fromΩ6 means

that the support must move to eitherΩ2 or Ω3 with positive probability regardless

of the action profile, but its destination may depend on the action profile. Note

that the evolution of the support described in the picture is well-defined, because

if two initial priors µ andµ̃ have the same support, then after every historyht , the

corresponding posterior beliefsµ(ht) andµ̃(ht) have the same support.

Ω1 Ω2 Ω3 Ω4

Ω5 Ω6 Ω7

Figure 6: Connectedness

{ω2}

Ω

{ω1}

Figure 7: Full Support

In this example, the supportΩ1 is globally accessiblein the sense that there

is a path toΩ1 from any current support; for example, the support can move from

Ω7 to Ω1 throughΩ3 andΩ2. (Formally, global accessibility is more general than

this because it requires only that there be a path toΩ1 or a subset ofΩ1. Details

will be given later.) Likewise,Ω2, Ω3, andΩ4 are globally accessible. As one can

see from the figure, these four supportsΩ1, Ω2, Ω3, andΩ4 are “connected” in

the sense that the support can go back and forth within these supports.

The supportΩ5 is not globally accessible, because it is not accessible from

Ω1. However, this supportΩ5 is uniformly transientin the sense that if the current

support isΩ5, thenregardless of players’ play, the support cannot stay there for-

ever and must move to some globally accessible set (in this caseΩ1) with positive

probability, due to the thick arrow. Similarly, the supportsΩ6 andΩ7 are uni-

formly transient, as the support must move to globally accessible setsΩ2 or Ω3,
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depending on the chosen action profile. If we look at the long-run outcome of the

support evolution, these uniformly transient supports are not essential; indeed, we

can show that the time during which the support stay at uniformly transient sets is

almost negligible. See Appendix C for more details.

Our condition, uniform connectedness, requires each supportΩ∗ ⊆ Ω to be

globally accessible or uniformly transient. In other words, the support can go back

and forth over all supports, except the “non-essential” ones. The game described

in Figure 6 satisfies uniform connectedness.

Uniform connectedness is more general than the full support assumption. To

see this, suppose that there are two states,ω1 andω2, and that the full support

assumption holds. Figure 7 shows how the support changes in this situation. We

have two thick arrows to the whole state spaceΩ, because under the full support

assumption, the support of the posterior must beΩ regardless of the current sup-

port. The setΩ is globally accessible because there is a path from any support.

Also the sets{ω1} and{ω2} are uniformly transient, because the support must

move to the globally accessible setΩ regardless of players’ actions. The same

result holds even if there are more than two states; the whole state spaceΩ is

globally accessible, and all proper subsetsΩ∗ ⊂ Ω are uniformly transient. Hence

the full support assumption implies uniform connectedness.

5.1.2 Formal Definition and Result

Now we state the formal definitions of global accessibility, uniform transience,

and uniform connectedness.11 Let Pr(µT+1 = µ̃|µ,s) denote the probability of

the posterior belief in periodT + 1 beingµ̃ given that the initial prior isµ and

players play the strategy profiles. Similarly, let Pr(µT+1 = µ̃|µ,a1, · · · ,aT) de-

note the probability given that players play the action sequence(a1, · · · ,aT) in the

first T periods. Global accessibility ofΩ∗ requires that given any current belief

µ, players can move the support of the posterior belief toΩ∗ (or its subset), by

choosing some appropriate action sequence which may depend onµ.

Definition 2. A non-empty subsetΩ∗ ⊆ Ω is globally accessibleif there isπ∗ > 0

such that for any initial priorµ, there is a natural numberT ≤ 4|Ω|, an action
11Here, we define global accessibility and uniform transience using the posterior beliefµ t .

In Appendix C, we show that there are equivalent definitions based on primitives. Using these
definitions, one can check if a given game is uniformly connected in finitely many steps.
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sequence(a1, · · · ,aT), and a belief̃µ whose support is included inΩ∗ such that12

Pr(µT+1 = µ̃|µ,a1, · · · ,aT) ≥ π∗.

Global accessibility does not require the support of the posterior to be exactly

equal toΩ∗; it requires only that the support of the posterior to be a subset ofΩ∗.

So global accessibility is a weaker condition than what we discussed using Figure

6. Thanks to this property, the whole state spaceΩ∗ = Ω is globally accessible for

any game. Also if a setΩ∗ is globally accessible, then so is any supersetΩ̃∗ ⊇ Ω∗.

Global accessibility requires that there be a lower boundπ∗ > 0 on the prob-

ability, while the accessibility condition (3) does not. But this difference is not

essential; indeed, although it is not explicitly stated in (3), we can always find

such a lower boundπ∗ > 0 when states are finite. In contrast, we have to ex-

plicitly assume the existence ofπ∗ in Definition 2, since there are infinitely many

beliefs.13

Next, we give the definition of uniform transience ofΩ∗. It requires that if

the support of the current belief isΩ∗, then regardless of players’ play in the

continuation game, the support of the posterior belief must reach some globally

accessible set with positive probability at some point.

Definition 3. A subsetΩ∗⊆Ω is uniformly transientif it is not globally accessible

and for any pure strategy profiles and for anyµ whose support isΩ∗, there is a

natural numberT ≤ 2|Ω| and a beliefµ̃ whose support is globally accessible such

that Pr(µT+1 = µ̃|µ,s) > 0.14

As noted earlier, a superset of a globally accessible set is globally accessible.

Similarly, as the following proposition shows, a superset of a uniformly transient

12Replacing the action sequence(a1, · · · ,aT) in this definition with a strategy profilesdoes not
weaken the condition; that is, as long as there is a strategy profile which satisfies the condition
stated in the definition, we can find an action sequence which satisfies the same condition. Also,
the restrictionT ≤ 4|Ω| is without loss of generality. That is, if there isT̃ > 4|Ω| which satisfies the
condition stated above, then there isT ≤ 4|Ω| which satisfies the same condition. See Appendix C
for more details.

13Since there are only finitely many supports, there is a boundπ∗ which works for all globally
accessible setsΩ∗.

14As in the definition of global accessibility, the restrictionT ≤ 2|Ω| here is without loss of
generality. On the other hand, the strategy profiles in this definition cannot be replaced with an
action sequence(a1, · · · ,aT).
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set is globally accessible or uniformly transient. The proof of the proposition is

given in Appendix B.

Proposition 5. A superset of a globally accessible set is globally accessible. Also,

a superset of a uniformly transient set is globally accessible or uniformly tran-

sient.

This result implies that if each singleton set{ω} is globally accessible or uni-

formly transient, then any subsetΩ∗ ⊆ Ω is globally accessible or uniformly tran-

sient. Accordingly, we have two equivalent definitions of uniform connectedness;

the second definition is useful in applications, as it is simpler.

Definition 4. A stochastic game isuniformly connectedif each subsetΩ∗ ⊆ Ω
is globally accessible or uniformly transient. Equivalently, a stochastic game is

uniformly connected if each singleton set{ω} is globally accessible or uniformly

transient.

Now we state the main result of this subsection. It shows that uniform con-

nectedness implies invariance of the limit feasible payoff set.

Proposition 6. Under uniform connectedness, for eachε > 0, there isδ ∈ (0,1)
such that for anyλ ∈ Λ, δ ∈ (δ ,1), µ, andµ̃,∣∣∣∣ max

v∈Vµ (δ )
λ ·v− max

ṽ∈V µ̃ (δ )
λ · ṽ

∣∣∣∣ < ε.

This implies that the limitlimδ→1maxv∈Vµ (δ ) λ · v of the score is independent of

µ.

This proposition strengthens Proposition 1, as the full support assumption is

now replaced with a weaker condition, uniform connectedness. The proof of the

proposition is technical, and can be found in Appendix B.

5.1.3 Uniform Connectedness and State Transition

Uniform connectedness is a condition on the support of the posterior belief, which

is determined by a complex interaction between the transition rule of the stateω
and the distribution of the public signaly. This makes it difficult to figure out
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the economic meaning of uniform connectedness. To better understand, here we

provide a necessary condition for uniform connectedness.

A couple of definitions are in order. Recall that a stateω is globally accessible

if players can move the state toω from any other state. A stateω is uniformly

transient if for any pure strategy profiles, there is a natural numberT and a

globally accessible statẽω so that Pr(ωT+1 = ω̃ |ω,s) > 0. States areweakly

communicatingif each stateω is globally accessible or uniformly transient.

The following proposition shows that states must be weakly communicating

for the game to be uniformly connected. The proof can be found in Appendix B.

Proposition 7. The game is uniformly connected only if states are weakly com-

municating.

Note that this necessary condition is similar to (but a bit weaker than) commu-

nicating states of Dutta (1995). So roughly, this proposition asserts that if the state

transition rule does not satisfy the standard assumption for games with observable

states, then uniform connectedness does not hold. For example, if there are mul-

tiple absorbing states, then states arenot weakly communicating. So the above

proposition implies that such a game is never uniformly connected, regardless of

the signal structure.

For some class of games, the necessary condition above is “tight,” in the sense

that it is necessary and sufficient for uniform connectedness. Specifically, we have

the following proposition:

Proposition 8. In stochastic games with observable states, the game is uniformly

connected if and only if states are weakly communicating. Similarly, in stochastic

games with delayed observations, the game is uniformly connected if and only if

states are weakly communicating.

So in these class of games, if states are weakly communicating, then the fea-

sible payoff set is invariant to the initial prior. This result subsumes the invariance

result of Dutta (1995) as a special case.

Unfortunately, Proposition 8 does not extend when the stateω is not observ-

able. That is, there are examples in which states are weakly communicating but

nonetheless the game is not uniformly connected. To fix this problem, in Ap-

pendix A, we show that the invariance result holds even if uniform connectedness
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is replaced with a weaker condition,asymptotic uniform connectedness. Asymp-

totic uniform connectedness is satisfied in a broad class of games; for example,

as shown in Proposition A1, asymptotic uniform connectedness holds if states are

weakly communicating and if for each fixed action profilea, the signal distribu-

tions {(πω
Y (y|a))y∈Y|ω ∈ Ω} are linearly independent. This result is important,

because it implies that weakly communicating states are “almost sufficient” for

the invariance of the feasible payoffs. More precisely, if states are weakly com-

municating and the signal space is large enough (i.e.,|Y| ≥ |Ω|), then for generic

signal distributions, asymptotic uniform connectedness holds and hence the feasi-

ble payoffs are invariant in the limit. Note also that this condition is easy to check

in applications; we only need to check the state transition rule and the linear in-

dependence of the signal distributions. We do not need to inspect the evolution of

the support of the belief.

5.2 Robust Connectedness

5.2.1 Invariance of the Minimax Payoff

When states are observable, irreducibility of Fudenberg and Yamamoto (2011b)

is sufficient for the limit minimax payoff to be invariant to the initial stateω.

Irreducibility requires that players−i can move the state from any state to any

other stateregardless ofplayeri’s play. Formally,ω̃ is robustly accessible despite

i if for eachω , there is a (possibly mixed) action sequence(α1
−i , · · · ,α

|Ω|
−i ) such

that for any playeri’s strategysi , there is a natural numberT ≤ |Ω| such that

Pr(ωT+1 = ω̃ |ω,si ,α1
−i , · · · ,αT

−i) > 0. Irreducibility requires each stateω to be

robustly accessible despitei for eachi.

In what follows, we generalize this concept and introduce the notion ofrobust

connectedness. This new condition is weaker than the full support assumption

but still ensures invariance of the limit minimax payoffs in our model. Robust

connectedness consists of two conditions. First, it requires that players−i can

drive thesupportof the belief from any setΩ∗ to any other set̃Ω∗ regardless of

player i’s play, except the case in which̃Ω∗ is transient. Second, supports must

be “merging” in the sense that two different initial beliefs must induce posteriors

with the same support, after some history.

The formal definition is as follows:
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Definition 5. A non-empty subsetΩ∗ ⊆ Ω is robustly accessible despite player

i if there isπ∗ > 0 such that for any initial priorµ, there is an action sequence

(α1
−i , · · · ,α4|Ω|

−i ) such that for any strategysi , there is a natural numberT ≤ 4|Ω|

and a beliefµ̃ with supportΩ∗ such that15 16

Pr(µT+1 = µ̃|µ,si ,α1
−i , · · · ,αT

−i) ≥ π∗.

In the definition above, the support of the resulting beliefµ̃ must be precisely

equal toΩ∗. This is an important difference from global accessibility, which

allows the support to be a subset ofΩ∗.

Definition 6. A subsetΩ∗ ⊆ Ω is transient given player iif it is not robustly

accessible despitei and there isπ∗ > 0 such that for anyµ whose support isΩ∗,

there is playeri’s action sequence(α1
i , · · · ,α4|Ω|

i ) such that for any strategys−i of

the opponents, there is a natural numberT ≤ 4|Ω| and a beliefµ̃ whose support is

robustly accessible despitei such that

Pr(µT+1 = µ̃|µ,α1
i , · · · ,αT

i ,s−i) ≥ π∗.

Transience is different from uniform transience in the previous subsection, in

several aspects. First, the support of the posterior belief must eventually reach

a robustly accessible set, rather than a globally accessible set. Second, while

uniform transience requires that the support must reach a globally accessible set

regardless ofplayeri’s play, transience considers the case in which playeri plays

a particular action sequence(α1
i , · · · ,α4|Ω|

i ). Due to this property, transience ofΩ∗

need not imply uniform transience ofΩ∗, and accordingly robust connectedness

(which will be defined below) need not imply uniform connectedness. Third,

transience requires that there be a lower boundπ∗ on the probability of the support

reaching a robust accessible set.

Definition 7. Supports aremergingif for each stateω and for each pure strat-

egy profile s, there is a natural numberT ≤ 4|Ω| and a historyhT such that
15Like global accessibility, restricting attention toT ≤ 4|Ω| is without loss of generality. To see

this, note that there is an equivalent definition of robust accessibility, as discussed in the proof
of Lemma B9. Suppose that for some strategysi , there is noT ≤ 4|Ω| such that the condition
stated there is not satisfied; then we can find a strategy ˜si such that the condition stated there is not
satisfied for every natural numberT.

16Replacing the action sequence(α1
−i , · · · ,α4|Ω|

−i ) in the definition with a strategys−i does not
relax the condition at all.
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Pr(hT |ω ,s) > 0 and such that after the historyhT , the support of the posterior

belief induced by the initial stateω is the same as the one induced by the initial

prior µ = ( 1
|Ω| , · · · ,

1
|Ω|).

The merging support condition ensures that regardless of players’ play, two

different initial priorsω and µ = ( 1
|Ω| , · · · ,

1
|Ω|) induce posteriors with the same

support, after some history. Note that this condition is trivially satisfied in many

examples; for example, under the full support assumption, the support of the pos-

terior belief isΩ regardless of the initial belief, and hence the merging support

condition holds.

Definition 8. The game isrobustly connectedif supports are merging and if for

eachi, each non-empty subsetΩ∗ ⊆ Ω is robustly accessible despitei or transient

given i.

The following proposition shows that under robust connectedness, the min-

imax payoff is invariant to the initial priorµ. The proof is given in Appendix

B.

Proposition 9. Suppose that the game is robustly connected. Then for each i and

ε > 0, there isδ ∈ (0,1) such that|vµ
i (δ )−vµ̃

i (δ )| < ε for anyδ ∈ (δ ,1), µ, and

µ̃.

Also, the limit minimax payoff exists. The proof is very similar to that of

Proposition 3, and hence omitted.

5.2.2 Robust Connectedness and State Transition

As explained, for the game to be uniformly connected, the state transition rule

must satisfy the standard assumption in the literature on stochastic games with

observable states. In what follows, we will show that a similar result holds for

robust connectedness.

Recall that a stateω is robustly accessible despitei if the opponents can move

the state toω regardless of playeri’s play. A stateω is transient given player i

if there is playeri’s action sequence(α1
i , · · · ,α |Ω|

i ) such that if the initial state is

ω , with positive probability, the state reaches a state which is robustly accessible

despitei within |Ω| periods, regardless of the opponents’ strategys−i . The game
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is weakly irreducibleif for each i, each stateω is robustly accessible despitei

or transient giveni. The following proposition shows that weak irreducibility

is necessary for robust connectedness. Also, it shows that weak irreducibility is

necessary and sufficient for robust connectedness in the standard stochastic games.

The proof is very similar to that of Proposition 7 and hence omitted.

Proposition 10. The game is robustly connected only if the game is weakly irre-

ducible. In particular, for stochastic games with observable states, the game is

robustly connected if and only if the game is weakly irreducible.

Unfortunately, the second result in Proposition 8 does not extend, that is, for

stochastic games with delayed observations, weak irreducibility is not sufficient

for robust connectedness. For example, suppose that there are two players, and

there are three states,ωA, ωB, andωC. Each player has three actions,A, B, and

C. Assume that the state is observed with delay, soY = Ω and the signal today is

equal to the current state with probability one. Suppose that the state tomorrow is

determined by the action profile today, specifically, one of the player is randomly

selected and her action determines the state tomorrow. For example, if one player

choosesA and the opponent choosesB, thenωA andωB are equally likely. So

regardless of the opponent’s play, if a player choosesA, thenωA will appear with

probability at least12. This implies that each state is robustly accessible despite

i for eachi. Unfortunately, robust connectedness is not satisfied in this example.

Indeed, any setΩ∗ is neither robustly accessible nor transient. For example, any

setΩ∗ which does not include some stateω is not robustly accessible despite 1,

because if player 1 always chooses the action corresponding toω each period, the

posterior must put probability at least1
2 onω . Also the whole setΩ is not robustly

accessible, because in any period, the posterior puts probability zero on some state

ω . Since there is no robustly accessible set, any set cannot be transient either.

Note, however, that robust connectedness is just a sufficient condition for in-

variance of the limit minimax payoff. The following proposition shows that, for

stochastic games with delayed observations, weak irreducibility implies invari-

ance of the limit minimax payoff. The proof relies on the fact that there are only

finitely many possible posterior beliefs for games with observation delays; see

Appendix B.
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Proposition 11. Consider stochastic games with delayed observations, and sup-

pose that the game is weakly irreducible. Then for each i andε > 0, there is

δ ∈ (0,1) such that|vµ
i (δ )−vµ̃

i (δ )| < ε for anyδ ∈ (δ ,1), µ, andµ̃.

5.3 Example: Natural Resource Management

Now we will present an example of natural resource management. This is an ex-

ample which satisfies uniform connectedness and robust connectedness, but does

not satisfy the full support assumption.

Suppose that two fishermen live near a gulf. The state of the world is the num-

ber of fish in the gulf, and is denoted byω ∈ {0, · · · ,K} whereK is the maximal

capacity. The fishermen cannot directly observe the number of fish,ω, so they

have a belief aboutω.

Each period, each fisherman decides whether to “Fish” (F) or “Do Not Fish”

(N); so fishermani’s action set isAi = {F,N}. Let yi ∈Yi = {0,1,2} denote the

amount of fish caught by fishermani, and letπω
Y (y|a) denote the probability of

the outcomey = (y1,y2) given the current stateω and the current action profile

a. We assume that if fishermani choosesN, then he cannot catch anything and

henceyi = 0. That is,πω
Y (y|a) = 0 if there isi with ai = N andyi > 0. We also

assume that the fishermen cannot catch more than the number of fish in the gulf,

soπω
Y (y|a) = 0 for ω, a, andy such thatω < y1+y2. We assumeπω

Y (y|a) > 0 for

all other cases, so the signaly does not reveal the hidden stateω .

Fishermani’s utility in each stage game is 0 if he choosesN, and isyi −c if he

choosesF . Herec > 0 denotes the cost of choosingF , which involves effort cost,

fuel cost for a fishing vessel, and so on. We assume thatc < ∑y∈Y πω
Y (y|F,a−i)yi

for someω anda−i , that is, the cost is not too high and the fishermen can earn

positive profits by choosingF , at least for some stateω and the opponents’ action

a−i . If this assumption does not hold, no one fishes in any equilibrium.

Over time, the number of fish may increase or decrease due to natural increase

or overfishing. Specifically, we assume that the number of fish in periodt + 1 is

determined by the following formula:

ω t+1 = ω t − (yt
1 +yt

2)+ ε t . (4)

In words, the number of fish tomorrow is equal to the number of fish in the gulf to-

day minus the amount of fish caught today, plus a random variableε t ∈ {−1,0,1},
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which captures natural increase or decrease of fish. Intuitively,ε = 1 implies that

some fish had an offspring or new fish came to the gulf from the open sea. Sim-

ilarly, ε = −1 implies that some fish died out or left the gulf. Let Pr(·|ω,a,y)
denote the probability distribution ofε given the currentω, a, andy. We assume

that the stateω t+1 is always in the state spaceΩ = {0, · · · ,K}, that is, Pr(ε =
−1|ω ,a,y) = 0 if ω − y1− y2 = 0 and Pr(ε = 1|ω ,a,y) = 0 if ω − y1− y2 = K.

We assume Pr(ε|ω ,a,y) > 0 for all other cases.

This model can be interpreted as a dynamic version of “tragedy of commons.”

The fish in the gulf is public good, and overfishing may result in resource deple-

tion. Competition for natural resources like this is quite common in the real world,

due to growing populations, economic integration, and resource-intensive patterns

of consumption. For example, each year Russian and Japanese officials discuss

salmon fishing within 200 nautical miles of the Russian coast, and set Japan’s

salmon catch quota. Often times, it is argued that community-based institutions

are helpful to manage local environmental resource competition. Our goal here is

to provide its theoretical foundation.

This example does not satisfy the full support assumption, because the prob-

ability of ω t+1 = K is zero ify1 + y2 > 1. However, as we will explain, uniform

connectedness and robust connectedness hold so that the feasible and individ-

ually rational payoff set is invariant to the initial prior. Accordingly, the folk

theorem (Proposition 4) applies, and thus the welfare-maximizing fishing plan is

self-enforcing.

To see that this game is indeed uniformly connected, we first show thatΩ∗ =
Ω is globally accessible. Pick an arbitrary initial priorµ, and pick an arbitrary

strategy profiles. Suppose thaty= (0,0) is observed for the firstK periods. (This

history happens with probability at leastπK, regardless of(µ,s).) After such a

history, the support of the posterior must be the whole state spaceΩ, due to the

possibility of natural increase and decrease. This shows thatΩ∗ = Ω is indeed

globally accessible.

Also, any other setΩ∗ ,Ω is either globally accessible or uniformly transient.

To see this, pick an arbitrary initial priorµ with the supportΩ∗, and pick an

arbitrary strategy profiles. Suppose thaty = (0,0) is observed for the firstK

periods. Then as in the case above, the support of the posterior moves to the

whole state spaceΩ, which is globally accessible. HenceΩ∗ , Ω are uniformly
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transient (or globally accessible, if they satisfy the relevant condition.) This shows

that the game is indeed uniformly connected.

For the same reasoning,Ω∗ = Ω is robustly accessible despitei, and any other

setΩ∗ ,Ω is transient giveni. Also, the merging support condition holds; regard-

less of the initial prior and the strategy profile, ify= (0,0) is observed for the first

K periods, the support of the posterior becomesΩ. Hence the game is robustly

connected.

So far we have assumed that Pr(ε|ω,a,y) > 0, except the case in which the

state does not stay in the space{0, · · · ,K}. Now, modify the model and suppose

that Pr(ε = 1|ω,a,y) = 0 if ω −y1−y2 = 0 anda, (N,N). That is, if the resource

is exhausted (ω −y1−y2 = 0) and at least one player tries to catch (a, (N,N)),
there will be no natural increase. This captures the idea that there is a critical

biomass level below which the growth rate drops rapidly; so the fishermen need to

“wait” until the fish grows and the state exceeds this critical level. We still assume

that Pr(ε|ω ,a,y) > 0 for all other cases.

In this new example, players’ actions have a significant impact on the state

transition, that is, the statenever increases if the current state isω = 0 and

someone choosesF . This complicates the belief evolution process, but still we

can show that uniform connectedness holds. Unfortunately, robust connectedness

does nothold, as supports are not merging; however, it is not difficult to compute

the limit minimax payoff in this example, and it turns out that the limit minimax

payoff is zero regardless of the initial prior and thus invariant to the initial prior.

Accordingly, our folk theorem still applies.

To see that the limit minimax payoff is indeed 0, note first that a fisherman can

obtain at least a payoff of 0 by choosing “AlwaysN.” Hence the limit minimax

payoff is at least 0. On the other hand, if the opponent always choosesF , the state

eventually reachesω = 0 with probability one, and thus fishermani’s payoff is at

most 0 in the limit asδ → 1. Thus the limit minimax payoff is indeed 0.

The proof of uniform connectedness is more complicated than the previous

example. As a first step, we show that the setΩ∗ = {0} is globally accessible,

that is, we show that given any initial priorµ, players can move the support to

{0}. Pick an arbitrary initial priorµ. Suppose that the fishermen do not fish for

the firstK periods, so that the posterior beliefµK+1 assigns at least probabilityπK

on the highest stateω = K. (That is,µK+1(K) ≥ πK.) Suppose that in the next
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period, the fishermen fish and observe the signaly = (1,1). Then the posterior

belief µK+2 assigns probability zero on the highest state, as the fishermen caught

more fish than the natural increase. Similarly, if they observey= (1,1) in the next

period, then the posteriorµK+3 assigns probability zero on the highest and the

second highest states. In this way, after observingK−1 consecutive observations

of y = (1,1), we can eventually have the posterior which assigns probability one

on the lowest stateω = 0, as desired. Note also that the probability ofK − 1

consecutive observations ofy = (1,1) is at leastµK+1(K)πK−1 ≥ π2K−1, so there

is a lower bound on the probability of the support reaching{0}. HenceΩ∗ = {0}
is indeed globally accessible.

Also, any other setΩ∗ , {0} is either globally accessible or uniformly tran-

sient. To see this, pick an arbitrary subsetΩ∗ ⊆ Ω, and pick an arbitrary belief

µ with supportΩ∗. Since there is a possibility of natural decrease (ε = −1), af-

ter K −1 periods, the posterior beliefµK must put positive probability onω = 0

regardless of the history. The support of this posteriorµK is globally accessi-

ble, as Proposition 5 ensures that any superset of the globally accessible set{0}
is globally accessible. HenceΩ∗ is uniformly transient (or globally accessible,

if it satisfies the condition for global accessibility), and the game is uniformly

connected.

6 Concluding Remarks

This paper considers a new class of stochastic games in which the state is hidden

information. We find that, very generally, the feasible and individually rational

payoff set is invariant to the initial belief in the limit as the discount factor goes to

one. Then we introduce the idea of random blocks and prove the folk theorem.

Throughout this paper, we assume that actions are perfectly observable. In an

ongoing project, we consider how the equilibrium structure changes when actions

are not observable; in this new setup, each player has private information about

her actions, and thus different players may have different beliefs. This implies that

a player’s belief is not public information and cannot be regarded as a common

state variable. Accordingly, the analysis of the imperfect-monitoring case is very

different from that for the perfect-monitoring case.
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Appendix A: Extension of Uniform Connectedness

Proposition 6 shows that uniform connectedness ensures invariance of the feasible

payoff set. Here we show that the same result holds under a weaker condition,

calledasymptotic uniform connectedness.

Before we describe the idea of asymptotic uniform connectedness, it is use-

ful to understand when uniform connectedness is not satisfied and why we want to

relax it. We present two examples in which states are communicating but nonethe-

less uniform connectedness does not hold. These examples show that Proposition

8 does not extend to the hidden-state case; the game may not be uniformly con-

nected even if states are communicating.

Example A1. Suppose that there are only two states,Ω = {ω1,ω2}, and that the

state evolution is a deterministic cycle; i.e., the state goes toω2 for sure if the

current state isω1, and vice versa. Assume that the public signaly does not reveal

the stateω , that is,πω
Y (y|a) > 0 for all ω, a, andy. In this game, if the initial

prior is fully mixed so thatµ(ω1) > 0 andµ(ω2) > 0, then the posterior belief is

also mixed. Hence only the whole state spaceΩ∗ = Ω is globally accessible. On

the other hand, if the initial prior puts probability one on some stateω, then the

posterior belief puts probability one onω in all odd periods and oñω , ω in all

even periods. Hence the support of the posterior belief cannot reach the globally

accessible setΩ∗ = Ω, and thus each{ω} is not uniformly transient.

In the next example, the state evolution is not deterministic.

Example A2. Consider a machine with two states,ω1 andω2. ω1 is a “normal”

state andω2 is a “bad” state. Suppose that there is only one player and that she has

two actions, “operate” and “replace.” If the machine is operated and the current

state is normal, the next state will be normal with probabilityp1 and will be bad

with probability 1− p1, wherep1 ∈ (0,1). If the machine is operated and the

current state is bad, the next state will be bad for sure. If the machine is replaced,

regardless of the current state, the next state will be normal with probabilityp2 and

will be bad with probability 1− p2, wherep2 ∈ (0,1]. There are three signals,y1,

y2, andy3. When the machine is operated, both the “success”y1 and the “failure”

y2 can happen with positive probability; we assume that its distribution depends on

the current hidden state and is not correlated with the distribution of the next state.
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When the machine is replaced, the “null signal”y3 is observed regardless of the

hidden state. Uniform connectedness is not satisfied in this example, since{ω2}
is neither globally accessible nor uniformly transient. Indeed, when the support

of the current belief isΩ, it is impossible to reach the beliefµ with µ(ω2) = 1,

which shows that{ω2} is not globally accessible. Also{ω2} is not uniformly

transient, because if the current belief puts probability one onω2 and “operate” is

chosen forever, the support of the posterior belief is always{ω2}.

While uniform connectedness does not hold in these examples, the feasible

payoffs are still invariant to the initial prior. To see this, consider Example A1,

and suppose that the signal distribution is different at different states and does not

depend on the action profile, that is,πω1
Y (·|a) = π1 andπω2

Y (·|a) = π2 for all a,

whereπ1 , π2. Suppose that the initial state isω1. Then the true state must be

ω1 in all odd periods, and beω2 in all even periods. Hence if we consider the

empirical distribution of the public signals in odd periods, it should approximate

π1 with probability close to one, by the law of large numbers. Similarly, if the

initial state isω2, the empirical distribution of the public signals in odd periods

should approximateπ2. This implies that players can eventually learn the current

state by aggregating the past public signals, regardless of the initial priorµ. Hence

for δ close to one, the feasible payoff set must be invariant to the initial prior.

The point in this example is that, while the singleton set{ω1} is not glob-

ally accessible, it isasymptotically accessiblein the sense that at some point in

the future, the posterior belief puts a probability arbitrarily close to one onω1,

regardless of the initial prior. As will be explained, this property is enough to

establish invariance of the feasible payoff set. Formally, asymptotic accessibility

is defined as follows:

Definition A1. A non-empty subsetΩ∗ ⊆ Ω is asymptotically accessibleif for

anyε > 0, there is a natural numberT andπ∗ > 0 such that for any initial priorµ,

there is a natural numberT∗ ≤ T and an action sequence(a1, · · · ,aT∗
) such that

Pr(µT∗+1 = µ̃|µ,a1, · · · ,aT∗
) ≥ π∗ for someµ̃ with ∑ω∈Ω∗ µ̃(ω) ≥ 1− ε.

Asymptotic accessibility ofΩ∗ requires that given any initial priorµ, there

is an action sequence(a1, · · · ,aT∗
) so that the posterior belief can approximate a

belief whose support isΩ∗. Here the lengthT∗ of the action sequence may depend

on the initial prior, but it must be uniformly bounded by some natural numberT.
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As argued above, each singleton set{ω} is asymptotically accessible in Ex-

ample A1. In this example, the state changes over time, and thus if the initial prior

puts probability close to zero onω, then the posterior belief in the second period

will put probability close to one onω. This ensures that there is a uniform bound

T on the lengthT∗ of the action sequence.

Similarly, the set{ω2} in Example A2 is asymptotically accessible, although

it is not globally accessible. To see this, suppose that the machine is operated

every period. Thenω2 is the unique absorbing state, and hence there is someT

such that the posterior belief after periodT attaches a very high probability on

ω2 regardless of the initial prior (at least after some signal realizations). This is

precisely asymptotic accessibility of{ω2}.

Note thatΩ∗ is asymptotically accessible whenever it is globally accessible.

Hence the whole state spaceΩ∗ = Ω is always asymptotically accessible. Next,

we give the definition of asymptotic uniform transience, which extends uniform

transience.

Definition A2. A singleton set{ω} is asymptotically uniformly transientif it is

not asymptotically accessible and there isπ̃∗ > 0 such that for anyε > 0, there is

a natural numberT such that for each pure strategy profiles, there is an asymp-

totically accessible setΩ∗, a natural numberT∗ ≤ T, and a beliefµ̃ such that

Pr(µT∗+1 = µ̃|ω,s) > 0, ∑ω̃∈Ω∗ µ̃(ω̃) ≥ 1− ε, andµ̃(ω̃) ≥ π̃∗ for all ω̃ ∈ Ω∗.

In words, asymptotic uniform transience of{ω} requires that if the support of

the current belief is{ω}, then regardless of the future play, with positive prob-

ability, the posterior beliefµT∗+1 = µ̃ approximates a belief whose supportΩ∗

is globally accessible. Asymptotic uniform transience is weaker than uniform

transience in two respects. First, a global accessible setΩ∗ in the definition of

uniform transience is replaced with an asymptotically accessible setΩ∗. Second,

the support of the posterior̃µ is not necessarily identical withΩ∗; it is enough if

µ̃ assigns probability at least 1− ε on Ω∗.17

Definition A3. A stochastic game isasymptotically uniformly connectedif each

17Asymptotic uniform transience requiresµ̃(ω̃) ≥ π̃∗, that is, the posterior belief̃µ is not close
to the boundary of△Ω∗. We can show that this condition is automatically satisfied in the definition
of uniform transience, if{ω} is uniformly transient; so uniform transience implies asymptotic
uniform transience.
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singleton set{ω} is asymptotically accessible or asymptotically uniformly tran-

sient.

Asymptotic uniform connectedness is weaker than uniform connectedness. In-

deed, Examples A1 and A2 satisfy asymptotic uniform connectedness but do not

satisfy uniform connectedness.

Unfortunately, checking asymptotic uniform connectedness in a given exam-

ple is often a daunting task, because we need to compute the posterior belief in

a distant future. However, the following proposition provides a simple sufficient

condition for asymptotic uniform connectedness:

Proposition A1. The game is asymptotically uniformly connected if states are

weakly communicating, and for each action profile a and each proper subsetΩ∗ ⊂
Ω,

co{πω
Y (a)|ω ∈ Ω∗}∩co{πω

Y (a)|ω <Ω∗} = /0.

In words, the game is asymptotically uniformly connected if states are weakly

communicating and and if players can statistically distinguish whether the current

stateω is in the setΩ∗ or not through the public signaly. Loosely, the latter

condition ensures that players can eventually learn the current support after a long

time at least for some history, which implies asymptotic accessibility of some sets

Ω∗. See Appendix B for the formal proof.

Note that the second condition in the above proposition is satisfied if the signal

distributions{πω
Y (a)|ω ∈ Ω} are linearly independent for eacha. Note also that

linear independence is satisfied for generic signal structures as long as the signal

space is large enough so that|Y| ≥ |Ω|. So asymptotic uniform connectedness

generically holds as long as states are weakly communicating and the signal space

is large enough.

The following proposition shows that the feasible payoff set is indeed invariant

to the initial prior if the game is asymptotically uniformly connected.18 The proof

can be found in Appendix B.

18However, unlike Proposition 6, we do not know the rate of convergence, and in particular, we
do not know if we can replaceε in the proposition withO(1−δ ).
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Proposition A2. If the game is asymptotically uniformly connected, then for each

ε > 0, there isδ ∈ (0,1) such that for anyλ ∈ Λ, δ ∈ (δ ,1), µ, andµ̃,∣∣∣∣ max
v∈Vµ (δ )

λ ·v− max
ṽ∈V µ̃ (δ )

λ · ṽ
∣∣∣∣ < ε.

In the same spirit, we can show that the minimax payoff is invariant to the

initial prior under a condition weaker than robust connectedness. The idea is quite

similar to the one discussed above; we can relax robust accessibility, transience,

and the merging support condition, just as we did for global accessibility and

uniform transience. Details are omitted.

Appendix B: Proofs

B.1 Proof of Proposition 2: Invariance of the Minimax Payoffs

For a given strategys−i and a priorµ̃, let vµ̃
i (s−i) denote playeri’s best possible

payoff; that is, letvµ̃
i (s−i) = maxsi∈Si v

µ̃
i (δ ,si ,s−i). This payoffvµ̃

i (s−i) is convex

with respect toµ̃, as it is an upper envelope of linear functionsvµ̃
i (δ ,si ,s−i) over

all si .

Let sµ denote the minimax strategy profile given the initial priorµ. Pick an

arbitraryµ and pick the minimax strategysµ
−i . Then playeri’s best payoffvµ̃

i (sµ
−i)

againstsµ
−i is convex with respect to the initial prior̃µ. For each beliefµ, let

vi(s
µ
−i) = max

µ̃∈△(suppµ)
vµ̃

i (sµ
−i),

that is,vi(s
µ
−i) is the highest payoff achieved by the convex curve induced bysµ

−i .

Note that different initial priorsµ induce different minimax strategiessµ
−i , and

hence different convex functions and different highest payoffsvi(s
µ
−i). Chooseµ∗

so that the corresponding highest payoffvi(s
µ∗

−i ) approximates the supremum of

the highest payoffs over all beliefsµ; that is, chooseµ∗ such that∣∣∣∣∣vi(s
µ∗

−i )− sup
µ∈△Ω

vi(s
µ
−i)

∣∣∣∣∣ < 1−δ .

We call vi(s
µ∗

−i ) the maximal value, because it approximates the highest payoff

achieved by the convex curves. The definition ofµ∗ above is very similar to the
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one in Section 3.3, but here we allow the possibility that maxµ∈△Ω vi(s
µ
−i) does

not exist.

Sincevµ̃
i (sµ∗

−i ) is convex, it is maximized wheñµ is an extreme point. Let

ω ∈ suppµ∗ denote this extreme point, so thatvω
i (sµ∗

−i ) ≥ vµ̃
i (sµ∗

−i ) for all µ̃ ∈
△(suppµ∗). In general, the maximal valuevi(s

µ∗

−i ) = vω
i (sµ∗

−i ) is not the minimax

payoff for any initial prior, because the stateω can be different from the beliefµ∗.

B.1.1 Step 0: Preliminary Lemma

Lemma 1 in Section 3.3 gives a useful bound on the convex curves, but its state-

ment is somewhat informal. The following is the formal statement of the lemma:

Lemma B1. Take an arbitrary beliefµ, and an arbitrary interior beliefµ̃. Let

p = minω̃∈Ω µ̃(ω̃), which measures the distance from̃µ to the boundary of△Ω.

Then for eacĥµ ∈△Ω,∣∣∣vi(s
µ∗

−i )+(1−δ )−vµ̂
i (sµ

−i)
∣∣∣ ≤

∣∣∣vi(s
µ∗

−i )+(1−δ )−vµ̃
i (sµ

−i)
∣∣∣

p
.

To interpret this lemma, pick an interior beliefµ̃ such thatµ̃(ω̃) ≥ π for all

ω̃ , as in Lemma 1 in Section 3.3. Then we havep≥ π, so the proposition above

implies ∣∣∣vi(s
µ∗

−i )+(1−δ )−vµ̂
i (sµ

−i)
∣∣∣ ≤

∣∣∣vi(s
µ∗

−i )+(1−δ )−vµ̃
i (sµ

−i)
∣∣∣

π
.

This inequality implies that if the convex curvevµ̃
i (sµ

−i) approximates the maximal

valuevi(s
µ∗

−i ) for the beliefµ̃ above, then the convex curvevµ̂
i (sµ

−i) approximates

the maximal value forall beliefsµ̂.

In this discussion, it is important that the beliefµ̃ is not too close to the bound-

ary of△Ω. Indeed, ifµ̃ approaches the boundary of△Ω, thenp approaches zero

so that the right-hand side of the inequality in the lemma, which gives a bound

on the convex curve, becomes arbitrarily large. In Lemma 1 in Section 3.3, we

assumẽµ(ω̃) ≥ π in order to avoid such a case.

Proof. Pick µ, µ̃, andp as stated. Letsi be playeri’s best reply againstsµ
−i given

the initial prior µ̃. Pick an arbitraryω̃ ∈ Ω. Note that

vµ̃
i (sµ

−i) = ∑
ω̂∈Ω

µ̃(ω̂)vω̂
i (δ ,si ,s

µ
−i).
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Then usingvω̂
i (δ ,si ,s

µ
−i) ≤ vi(s

µ∗

−i )+(1−δ ) for eachω̂ , ω̃ , we obtain

vµ̃
i (sµ

−i) ≤ µ̃(ω̃)vω̃
i (δ ,si ,s

µ
−i)+(1− µ̃(ω̃)){vi(s

µ∗

−i )+(1−δ )}.

Arranging,

µ̃(ω̃)
{

vi(s
µ∗

−i )+(1−δ )−vω̃
i (δ ,si ,s

µ
−i)

}
≤ vi(s

µ∗

−i )+(1−δ )−vµ̃
i (sµ

−i).

Since the left-hand side is non-negative, taking the absolute values of both sides

and dividing them bỹµ(ω̃),

∣∣∣vi(s
µ∗

−i )+(1−δ )−vω̃
i (δ ,si ,s

µ
−i)

∣∣∣ ≤
∣∣∣vi(s

µ∗

−i )+(1−δ )−vµ̃
i (sµ

−i)
∣∣∣

µ̃(ω̃)
.

Sinceµ̃(ω̃) ≥ p, we have

∣∣∣vi(s
µ∗

−i )+(1−δ )−vω̃
i (δ ,si ,s

µ
−i)

∣∣∣ ≤
∣∣∣vi(s

µ∗

−i )+(1−δ )−vµ̃
i (sµ

−i)
∣∣∣

p
. (5)

Now, pick an arbitraryµ̂ ∈ △Ω. Note that (5) holds for each̃ω ∈ Ω. So

multiplying both sides of (5) bŷµ(ω̃) and summing over all̃ω ∈ Ω,

∑
ω̃∈Ω

µ̂(ω̃)
∣∣∣vi(s

µ∗

−i )+(1−δ )−vω̃
i (δ ,si ,s

µ
−i)

∣∣∣ ≤
∣∣∣vi(s

µ∗

−i )+(1−δ )−vµ̃
i (sµ

−i)
∣∣∣

p
.

(6)

Then we have∣∣∣vi(s
µ∗

−i )+(1−δ )−vµ̂
i (sµ

−i)
∣∣∣ ≤ ∣∣∣vi(s

µ∗

−i )+(1−δ )−vµ̂
i (δ ,si ,s

µ
−i)

∣∣∣
=

∣∣∣∣∣ ∑
ω̃∈Ω

µ̂(ω̃)
{

vi(s
µ∗

−i )+(1−δ )−vω̃
i (δ ,si ,s

µ
−i)

}∣∣∣∣∣
= ∑

ω̃∈Ω
µ̂(ω̃)

∣∣∣vi(s
µ∗

−i )+(1−δ )−vω̃
i (δ ,si ,s

µ
−i)

∣∣∣
≤

∣∣∣vi(s
µ∗

−i )+(1−δ )−vµ̃
i (sµ

−i)
∣∣∣

p
.

Here the first inequality follows from the fact thatsi is not a best reply given̂µ,

and the last inequality follows from (6). Q.E.D.
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B.1.2 Step 1: Minimax Payoff for Some Beliefµ∗∗

In this step, we will show that there is an interior beliefµ∗∗ such thatµ∗∗(ω̃) ≥ π
for eachω̃ and such that the minimax payoff for this beliefµ∗∗ approximates the

maximal score.

Suppose that the initial state isω , and that players play(si ,s
µ∗

−i ), wheresi is

a best reply tosµ∗

−i given the initial stateω. if the signaly is observed in period

one. Note that in this case, playeri’s payoff achieves the maximal value. Let

α∗ be the action profile in period one induced by(si ,s
µ∗

−i ). Let µ(y|ω ,a) be the

posterior belief in period two when the initial belief is̃µ∗ = ω and players play

a and observey in period one, Likewise, letµ(y|µ∗) be the posterior belief when

the initial belief isµ∗.

The following lemma shows that there is some outcome(a,y) such that player

i’s continuation payoffvµ(y|ω ,a)
i (sµ(y|µ∗,a)

−i ) approximates the maximal value.

Lemma B2. There is(a,y) such thatα∗(a) > 0 and such that∣∣∣vω
i (sµ∗

−i )+(1−δ )−vµ(y|ω,a)
i (sµ(y|µ∗,a)

−i )
∣∣∣ ≤ (1−δ )(2g+1)

δ
.

Proof. Pick (a,y) which maximizes the continuation payoffvµ(y|ω ,a)
i (sµ(y|µ∗,a)

−i )
over ally anda with α∗(a) > 0. Then as shown in Section 3.3, we have

vω
i (sµ∗

−i ) ≤ (1−δ )gω
i (α∗)+δvµ(y|ω,a)

i (sµ(y|µ∗,a)
−i ),

This implies

vω
i (sµ∗

−i )+(1−δ )−vµ(y|ω ,a)
i (sµ(y|µ∗,a)

−i ) ≤
(1−δ )(gω

i (α∗)−vω
i (sµ∗

−i +1)
δ

.

Sincegω
i (α∗)−vω

i (sµ∗

−i ) ≤ 2g, we obtain the desired inequality. Q.E.D.

Pick (a,y) as in the lemma above, and letµ∗∗ = µ(y|µ∗,a). Then the above

lemma implies that∣∣∣vω
i (sµ∗

−i )+(1−δ )−vµ(y|ω ,a)
i (sµ∗∗

−i )
∣∣∣ ≤ (1−δ )(2g+1)

δ
.

That is, the convex curvevµ̃
i (sµ∗∗

−i ) approximates the maximal score for some belief

µ̃ = µ(y|ω ,a). Note that under the full support assumption,µ(y|ω ,a)[ω̃ ] ≥ π for
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all ω̃. Hence Lemma B1 ensures that∣∣∣vω
i (sµ∗

−i )+(1−δ )−vµ̂
i (sµ∗∗

−i )
∣∣∣ ≤ (1−δ )(2g+1)

πδ

for all µ̂. That is, the convex curve induced bysµ∗∗

−i is almost flat and approximates

the maximal score for all beliefŝµ. In particular, by lettingµ̂ = µ∗∗, we can

conclude that the minimax payoff for the beliefµ∗∗ approximates the maximal

value. That is,∣∣∣vω
i (sµ∗

−i )+(1−δ )−vµ∗∗

i (sµ∗∗

−i )
∣∣∣ ≤ (1−δ )(2g+1)

πδ
.

B.1.3 Step 2: Minimax Payoffs for Other Beliefs

Now we will show that the minimax payoff approximates the maximal value for

any beliefµ, which implies invariance of the minimax payoff.

Pick an arbitrary beliefµ. Suppose that the initial prior isµ∗∗ and the oppo-

nents play the minimax strategysµ for the beliefµ. Suppose that playeri takes

a best reply. Her payoffvµ∗∗

i (sµ
−i) is at least the minimax payoff forµ∗∗, by the

definition of the minimax payoff. At the same time, her payoff cannot exceed the

maximal valuevω
i (sµ∗

−i )+(1−δ ). So we have

vµ∗∗

i (s∗∗−i) ≤ vµ∗∗

i (sµ
−i) ≤ vω

i (sµ∗

−i )+(1−δ ).

Then from the last inequality in the previous step, we have∣∣∣vω
i (sµ∗

−i )+(1−δ )−vµ∗∗

i (sµ
−i)

∣∣∣ ≤ (1−δ )(2g+1)
πδ

.

So the convex curvevµ̃
i (sµ

−i) approximates the maximal value for some belief

µ̃ = µ∗∗. Then from Lemma B1,∣∣∣vω
i (sµ∗

−i )+(1−δ )−vµ̂
i (sµ

−i)
∣∣∣ ≤ (1−δ )(2g+1)

π2δ

for all beliefs µ̂. This implies that the minimax payoff forµ approximates the

maximal value, as desired.
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B.2 Proof of Proposition 3: Existence of the Limit Minimax

Payoff

Takei, µ, andε > 0 arbitrarily. Letδ ∈ (0,1) be such that∣∣∣∣vµ
i (δ )− liminf

δ→1
vµ

i (δ )
∣∣∣∣ <

ε
2

(7)

and such that ∣∣∣vµ
i (δ )−vµ̃

i (δ )
∣∣∣ <

ε
2

(8)

for eachµ̃. Note that Proposition 9 guarantees that suchδ exists.

For eachµ̃, let sµ̃
−i be the minimax strategy giveñµ andδ . In what follows,

we show that

max
si∈Si

vµ
i (δ ,si ,s

µ
−i) < liminf

δ→1
vµ

i (δ )+ ε (9)

for eachδ ∈ (δ ,1). That is, we show that when the true discount factor isδ , player

i’s best payoff against the minimax strategy for the discount factorδ is worse

than the limit inferior of the minimax payoff. Since the minimax strategy for

the discount factorδ is not necessarily the minimax strategy forδ , the minimax

payoff forδ is less than maxsi∈Si v
µ
i (δ ,si ,s

µ
−i). Hence (9) ensures that the minimax

payoff for δ is worse than the limit inferior of the minimax payoff. Since this is

true for allδ ∈ (δ ,1), the limit inferior is the limit, as desired.

So pick an arbitraryδ ∈ (δ ,1), and compute maxsi∈Si v
µ
i (δ ,si ,s

µ
−i), playeri’s

best payoff against the minimax strategy for the discount factorδ . To evaluate

this payoff, we regard the infinite horizon as a series of random blocks, as in

Section 4. The termination probability is 1− p, wherep = δ
δ . Then, sincesµ

−i

is Markov, playingsµ
−i in the infinite-horizon game is the same as playing the

following strategy profile:

• During the first random block, playsµ
−i .

• During thekth random block, playsµk

−i whereµk is the belief in the initial

period of thekth block.
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Then the payoff maxsi∈Si v
µ
i (δ ,si ,s

µ
−i) is represented as the sum of the random

block payoffs, that is,

max
si∈Si

vµ
i (δ ,si ,s

µ
−i) = (1−δ )

∞

∑
k=1

(
δ (1− p)
1− pδ

)k−1

E

 vµk

i (pδ ,sµk

i ,sµk

−i)
1− pδ

∣∣∣∣∣∣µ,sµ1

i ,sµ
−i


wheresµk

i is the optimal (Markov) strategy in the continuation game from thekth

block with beliefµk. Note thatsµk

i may not maximize the payoff during thekth

block, because playeri needs to take into account the fact that her action during

the kth block influencesµk+1 and hence the payoffs after thekth block. But in

any case, we havevµk

i (pδ ,sµk

i ,sµk

−i) ≤ vµk

i (δ ) becausesµk

−i is the minimax strategy

with discount factorpδ = δ . Hence

max
si∈Si

vµ
i (δ ,si ,s

µ
−i) ≤ (1−δ )

∞

∑
k=1

(
δ (1− p)
1− pδ

)k−1

E

[
vµk

i (δ )
1− pδ

∣∣∣∣∣µ,sµ1

i ,sµ
−i

]
Using (8),

max
si∈Si

vµ
i (δ ,si ,s

µ
−i) < (1−δ )

∞

∑
k=1

(
δ (1− p)
1− pδ

)k−1
(

vµ
i (δ )

1− pδ
+

ε
2(1− pδ )

)
= vµ

i (δ )+
ε
2

Then using (7), we obtain (9).

Note that this proof does not assume public randomization. Indeed, random

blocks are useful for computing the payoff by the strategysµ
−i , but the strategysµ

−i

itself does not use public randomization.

B.3 Proof of Proposition 4 with Mixed Minimax Strategies

Here we explain how to extend the proof provided in Section 4.3 to the case in

which the minimax strategies are mixed strategies. As explained, the only thing

we need to do is to perturb the continuation payoffwi( j) so that playeri is indif-

ferent over all actions in each period during the minimax play.

We first explain how to perturb the payoff, and then explain why it makes

player i indifferent. For eachµ and a, take a real numberRi(µ,a) such that

gµ
i (a)+Ri(µ,a) = 0. Intuitively, in the one-shot game with the beliefµ, if player
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i receives the bonus paymentRi(µ,a) in addition to the stage-game payoff, she

will be indifferent over all action profiles and her payoff will be zero. Suppose

that we are now in the punishment phase for playerj , i, and that the minimax

play overK blocks is done. For eachk ∈ {1, · · · ,K}, let (µ(k),a(k)) denote the

belief and the action profile in the last period of thekth block of the minimax play.

Then the perturbed continuation payoff is defined as

wi( j)+(1−δ )
K

∑
k=1

(1− pδ )K−k

{δ (1− p)}K−k+1Ri(µ(k),a(k)).

That is, the continuation payoff is now the original valuewi( j) plus theK pertur-

bation termsRi(µ(1),a(1)), · · · , Ri(µ(K),a(K)), each of which is multiplied by the

coefficient(1−δ ) (1−pδ )K−k

{δ (1−p)}K−k+1 .

We now verify that playeri is indifferent over all actions during the minimax

play. First, consider playeri’s incentive in the last block of the minimax play.

We will ignore the termRi(µ(k),a(k)) for k < K, as it does not influence player

i’s incentive in this block. If we are now in theτth period of the block, playeri’s

unnormalized payoff in the continuation game from now on is

∞

∑
t=1

(pδ )t−1E[gµt

i (at)]+
∞

∑
t=1

(1− p)pt−1δ t 1
1−δ

(
wi( j)+

(1−δ )E[Ri(µ t ,at)]
δ (1− p)

)
.

Here,(µ t ,at) denote the belief and the action in thetth period of the continuation

game, so the first term of the above display is the expected payoff until the current

block ends. The second term is the continuation payoff from the next block;(1−
p)pt−1 is the probability of periodt being the last period of the block, in which

case playeri’s continuation payoff iswi( j)+ (1−δ )E[Ri(µt ,at)]
δ (1−p) where the expectation

is taken with respect toµ t andat , conditional on that the block does not terminate

until periodt. We have the termδ t due to discounting, and we have11−δ in order

to convert the average payoff to the unnormalized payoff. The above payoff can

be rewritten as
∞

∑
t=1

(pδ )t−1E[gµt

i (at)+Ri(µ t ,at)]+
δ (1− p)

(1−δ )(1− pδ )
wi( j).

Sincegµ
i (a)+ Ri(µ,a) = 0, the actions and the beliefs during the current block

cannot influence this payoff at all. Hence playeri is indifferent over all actions in

each period during the block.
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A similar argument applies to other minimax blocks. The only difference is

that if the current block is thekth block withk < K, the corresponding perturba-

tion payoff Ri(µ(k),a(k)) will not be paid at the end of the current block; it will

be paid after theKth block ends. To offset discounting, we have the coefficient
(1−pδ )K−k

{δ (1−p)}K−k+1 on Ri(µ(k),a(k)). To see how it works, suppose that we are now in

the second to the last block (i.e.,k = K −1). The “expected discount factor” due

to the next random block is

δ (1− p)+δ 2p(1− p)+δ 3p2(1− p)+ · · · = δ (1− p)
1− pδ

.

Here the first term on the left-hand side comes from the fact that the length of the

next block is one with probability 1− p, in which case discounting due to the next

block isδ . Similarly, the second term comes from the fact that the length of the

next block is two with probabilityp(1− p), in which case discounting due to the

next block isδ 2. This discount factorδ (1−p)
1−pδ cancels out, thanks to the coefficient

(1−pδ )
{δ (1−p)}2 onRi(µ(K−1),a(K−1)). Hence playeri is indifferent in all periods during

the this block.

So far we have explained that playeri is indifferent in all periods during the

minimax play. Note also that the perturbed payoff approximates the original pay-

off wi( j) for δ close to one, because the perturbation terms are of order 1− δ .

Hence for sufficiently largeδ , the perturbed payoff vector is in the feasible payoff

set, and all other incentive constraints are still satisfied.

B.4 Proof of Proposition 5: Properties of Supersets

It is obvious that any superset of a globally accessible set is globally accessible.

So it is sufficient to show that any superset of a uniformly transient set is globally

accessible or uniformly transient.

Let Ω∗ be a uniformly transient set, and take a supersetΩ̃∗. Suppose that̃Ω∗

is not globally accessible. In what follows, we show that it is uniformly transient.

Take a strategy profilesarbitrarily. SinceΩ∗ is uniformly transient, there isT and

(y1, · · · ,yT) such that if the support of the initial prior isΩ∗ and players plays,

the signal sequence(y1, · · · ,yT) appears with positive probability and the support

of the posterior beliefµT+1 is globally accessible. Pick suchT and(y1, · · · ,yT).
Now, suppose that the support of the initial prior isΩ̃∗ and players plays. Then
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sinceΩ̃∗ is a superset ofΩ∗, the signal sequence(y1, · · · ,yT) realizes with positive

probability and the support of the posterior beliefµ̃T+1 is a superset of the support

of µT+1. Since the support ofµT+1 is globally accessible, so is the superset. This

shows thatΩ̃∗ is uniformly transient, ass can be arbitrary.

B.5 Proof of Proposition 6: Score and Uniform Connectedness

We will show that the score is invariant to the initial prior if the game is uniformly

connected. Fixδ and the directionλ . For eachµ, let sµ be a pure-strategy profile

which solves maxs∈Sλ ·v(δ ,s). That is,sµ is the profile which achieves the score

given the initial priorµ. For each initial priorµ, the score is denoted byλ ·
vµ(δ ,sµ). Givenδ andλ , the scoreλ ·vµ(δ ,sµ) is convex with respect toµ, as it

is the upper envelope of the linear functionsλ ·vµ(δ ,s) over alls.

Since the scoreλ · vµ(δ ,sµ) is convex, it is maximized by some boundary

belief. That is, there isω such that

λ ·vω(δ ,sω) ≥ λ ·vµ(δ ,sµ) (10)

for all µ. Pick suchω. In what follows, the score for thisω is called themaximal

score.

B.5.1 Step 0: Preliminary Lemmas

We begin with providing two preliminary lemmas. The first lemma is very sim-

ilar to Lemma B1; it shows that if there is a beliefµ whose score approximates

the maximal score, then the score foreverybelief µ̃ with the same support asµ
approximates the maximal score.

Lemma B3. Pick an arbitrary beliefµ. Let Ω∗ denote its support, and let p=
minω̃∈Ω∗ µ(ω̃), which measures the distance fromµ to the boundary of△Ω∗.

Then for each̃µ ∈△Ω∗,∣∣∣λ ·vω(δ ,sω)−λ ·vµ̃(δ ,sµ̃)
∣∣∣ ≤ |λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ)|

p
.

To interpret this lemma, pick someΩ∗ ⊆ Ω, and pick a relative interior belief

µ ∈ △Ω∗ such thatµ(ω̃) ≥ π for all ω̃ ∈ Ω∗. Thenp≥ π, and thus the lemma
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above implies∣∣∣λ ·vω(δ ,sω)−λ ·vµ̃(δ ,sµ̃)
∣∣∣ ≤ |λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ)|

π
.

for all µ̃ ∈ △Ω∗. So if the scoreλ · vµ(δ ,sµ) for the beliefµ approximates the

maximal score, then for all beliefs̃µ with supportΩ∗, the score approximates the

maximal score.

The above lemma relies on the convexity of the score, and the proof idea is

essentially the same as the one presented in Section 3.3. For completeness, we

provide the formal proof below.

Proof. Pick an arbitrary beliefµ, and letΩ∗ be the support ofµ. Pick ω̃ ∈ Ω∗

arbitrarily. Then we have

λ ·vµ(δ ,sµ) = ∑
ω̂∈Ω∗

µ[ω̂]λ ·vω̂(δ ,sµ)

≤ µ(ω̃)λ ·vω̃(δ ,sµ)+ ∑
ω̂,ω̃

µ(ω̂)λ ·vω̂(δ ,sω̂).

Applying (10) to the above inequality, we obtain

λ ·vµ(δ ,sµ) ≤ µ(ω̃)λ ·vω̃(δ ,sµ)+(1−µ(ω̃))λ ·vω(δ ,sω).

Arranging,

µ(ω̃)(λ ·vω(δ ,sω)−λ ·vω̃(δ ,sµ)) ≤ λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ).

Dividing both sides byµ(ω̃),

λ ·vω(δ ,sω)−λ ·vω̃(δ ,sµ) ≤ λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ)
µ(ω̃)

.

Sinceλ ·vω(δ ,sω)−λ ·vµ(δ ,sµ) > 0 andµ(ω̃)≥ p= minω̃∈Ω∗ µ(ω̃), we obtain

λ ·vω(δ ,sω)−λ ·vω̃(δ ,sµ) ≤ λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ)
p

. (11)

Pick an arbitrary belief̃µ ∈ △Ω∗. Recall that (11) holds for each̃ω ∈ Ω∗.

Multiplying both sides of (11) bỹµ(ω̃) and summing over all̃ω ∈ Ω∗,

λ ·vω(δ ,sω)−λ ·vµ̃(δ ,sµ) ≤ λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ)
p

.
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Sinceλ ·vω(δ ,sω) ≥ λ ·vµ̃(δ ,sµ̃) ≥ λ ·vµ̃(δ ,sµ),

λ ·vω(δ ,sω)−λ ·vµ̃(δ ,sµ̃) ≤ λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ)
p

.

Taking the absolute values of both sides, we obtain the result. Q.E.D.

The next lemma is about global accessibility. In the definition of global acces-

sibility, the action sequence which moves the support to a globally accessible set

Ω∗ depends on the current belief. The following lemma shows that such a belief-

dependent action sequence can be replaced with a belief-independent sequence if

we allow mixed actions. That is, if players mix all actions equally each period,

then the support will reachΩ∗ regardless of the current belief. Note thatπ∗ in the

lemma can be different from the one in the definition of global accessibility.

Lemma B4. LetΩ∗ be a globally accessible set. Suppose that players randomize

all actions equally each period. Then there isπ∗ > 0 such that given any initial

prior µ, there is a natural number T≤ 4|Ω| such that the support of the posterior

belief at the beginning of period T+1 is a subset ofΩ∗ with probability at least

π∗.

Proof. Takeπ∗ > 0 as stated in the definition of global accessibility ofΩ∗. Take

an arbitrary initial priorµ, and take an action sequence(a1, · · · ,aT) as stated in

the definition of global accessibility ofΩ∗.

Suppose that players mix all actions each period. Then the action sequence

(a1, · · · ,aT) realizes with probability 1
|A|T , and it moves the support of the posterior

to a subset ofΩ∗ with probability at leastπ∗. Hence, in sum, playing mixed

actions each period moves the support to a subset ofΩ∗ with probability at least
1

|A|T ·π∗. This probability is bounded from zero for allµ, and hence the proof is

completed. Q.E.D.

B.5.2 Step 1: Scores for Beliefs with SupportΩ∗

As a first step of the proof, we will show that there is a globally accessible set

Ω∗ such that the score for any beliefµ ∈ △Ω∗ approximates the maximal score.

More precisely, we prove the following lemma:
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Lemma B5. There is a globally accessible setΩ∗ ⊆ Ω such that for allµ ∈△Ω∗,

|λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ)| ≤ (1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| .

The proof idea is as follows. Since the game is uniformly connected,{ω} is

globally accessible or uniformly transient. If it is globally accessible, letΩ∗ =
{ω}. This setΩ∗ satisfies the desired property, because the set△Ω∗ contains

only the beliefµ = ω, and the score for this belief is exactly equal to the maximal

score.

Now, consider the case in which{ω} is uniformly transient. Suppose that

the initial state isω and the optimal policysω is played. Since{ω} is uniformly

transient, there is a natural numberT ≤ 2|Ω| and a historyhT such that the history

hT appears with positive probability and the support of the posterior belief after

the historyhT is globally accessible. Take suchT and hT . Let µ∗ denote the

posterior belief after this historyhT and letΩ∗ denote its support. By the defi-

nition, Ω∗ is globally accessible. Using a technique similar to the one in Section

3.3, we can show that the continuation payoff after this historyhT approximates

the maximal score. This implies that the score for the beliefµ∗ approximates the

maximal score. Then Lemma B3 ensures that the score for any beliefµ ∈ △Ω∗

approximates the maximal score, as desired.

Proof. First, consider the case in which{ω} is globally accessible. LetΩ∗ = {ω}.

Then this setΩ∗ satisfies the desired property, because△Ω∗ contains only the

belief µ = ω , and the score for this belief is exactly equal to the maximal score.

Next, consider the case in which{ω} is uniformly transient. TakeT, hT , µ∗,

and Ω∗ as stated above. By the definition, the support ofµ∗ is Ω∗. Also, µ∗

assigns at leastπT to each statẽω ∈ Ω∗, i.e.,µ∗(ω̃) ≥ πT for eachω̃ ∈ Ω∗. This

is so because

µ∗(ω̃) =
Pr(ωT+1 = ω̃|ω,hT)

∑ω̂∈Ω Pr(ωT+1 = ω̂|ω ,hT)
≥ Pr(ωT+1 = ω̃|ω,hT) ≥ πT

where the last inequality follows from the fact thatπ is the minimum of the func-

tion π.

For each historỹhT , let µ(h̃T) denote the posterior belief given the initial state

ω and the historỹhT . We decompose the score into the payoffs in the firstT
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periods and the continuation payoff after that:

λ ·vω(δ ,sω) =(1−δ )
T

∑
t=1

δ t−1E[λ ·gωt
(at)|ω1 = ω ,sω ]

+δ T ∑
h̃T∈HT

Pr(h̃T |ω,sω)λ ·vµ(h̃T)(δ ,sµ(h̃T)).

Using (10),µ(hT) = µ∗, and(1− δ )∑T
t=1δ t−1E[λ ·gωt

(at)|ω1 = ω,sω ] ≤ (1−
δ T)g, we obtain

λ ·vω(δ ,sω) ≤(1−δ T)g+δ T Pr(hT |ω,sω)λ ·vµ∗
(δ ,sµ∗

)

+δ T(1−Pr(hT |ω ,sω))λ ·vω(δ ,sω).

Arranging, we have

λ ·vω(δ ,sω)−λ ·vµ∗
(δ ,sµ∗

) ≤ (1−δ T)(g−λ ·vω(δ ,sω))
δ T Pr(hT |ω,sω)

.

Note that Pr(hT |ω ,sω) ≥ πT , becausesω is a pure strategy. Hence we have

λ ·vω(δ ,sω)−λ ·vµ∗
(δ ,sµ∗

) ≤ (1−δ T)(g−λ ·vω(δ ,sω))
δ TπT .

Since (10) ensures that the left-hand side is non-negative, taking the absolute val-

ues of both sides and usingλ ·vω(δ ,sω) ≥−g,∣∣∣λ ·vω(δ ,sω)−λ ·vµ∗
(δ ,sµ∗

)
∣∣∣ ≤ (1−δ T)2g

δ TπT .

That is, the score for the beliefµ∗ approximates the maximal score ifδ is close to

one. As noted, we haveµ∗(ω̃) ≥ πT for eachω̃ ∈ Ω∗. Then applying Lemma B3

to the inequality above, we obtain

|λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ)| ≤ (1−δ T)2g

δ Tπ2T

for eachµ ∈△Ω∗. This implies the desired inequality, sinceT ≤ 2|Ω|. Q.E.D.

B.5.3 Step 2: Scores for All Beliefsµ

In the previous step, we have shown that the score approximates the maximal

score for any beliefµ with the supportΩ∗. Now we will show that the score

approximates the maximal score for all beliefsµ.
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Pick Ω∗ as in the previous step, so that it is globally accessible. Then pick

π∗ > 0 as stated in Lemma B4. So if players mix all actions each period, the

support will move toΩ∗ (or its subset) within 4|Ω| periods with probability at least

π∗, regardless of the initial prior.

Pick an initial priorµ, and suppose that players play the following strategy

profile s̃µ :

• Players randomize all actions equally likely, until the support of the poste-

rior belief becomes a subset ofΩ∗.

• Once the support of the posterior belief becomes a subset ofΩ∗ in some

periodt, players playsµt
in the rest of the game. (They do not change the

play after that.)

That is, players wait until the support of the belief reachesΩ∗, and once it happens,

they switch the play to the optimal policysµt
in the continuation game. Lemma

B5 guarantees that the continuation play after the switch tosµt
approximates the

maximal scoreλ ·vω(δ ,sω). Also, Lemma B4 ensures that this switch occurs with

probability one and waiting time is almost negligible for patient players. Hence

the payoff by this strategy profile ˜sµ approximates the maximal score. Formally,

we have the following lemma.

Lemma B6. For eachµ,

|λ ·vω(δ ,sω)−λ ·vµ(δ , s̃µ)| ≤ (1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| +
(1−δ 4|Ω|

)3g
π∗ .

Proof. Pick an arbitrary beliefµ. If (1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| ≥ g, then the result obviously

holds because we have|λ ·vω(δ ,sω)−λ ·vµ(δ , s̃µ)| ≤ g. So in what follows, we

assume that(1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| < g.

Suppose that the initial prior isµ and players play the strategy profile ˜sµ .

Let Pr(ht |µ, s̃µ) be the probability ofht given the initial priorµ and the strategy

profile s̃µ , and letµ t+1(ht |µ, s̃µ) denote the posterior belief in periodt +1 given

this historyht . Let H∗t be the set of historiesht such thatt +1 is the first period at

which the support of the posterior beliefµ t+1 is in the setΩ∗. Intuitively, H∗t is

the set of historiesht such that players will switch their play tosµt+1
from period

t +1 on, according to ˜sµ .
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Note that the payoffvµ(δ , s̃µ) by the strategy profile ˜sµ can be represented as

the sum of the two terms: The expected payoffs before the switch tosµt
occurs,

and the payoffs after the switch. That is, we have

λ ·vµ(δ , s̃µ) =
∞

∑
t=1

(
1−

t−1

∑̃
t=0

∑
ht̃∈H∗t̃

Pr(ht̃ |µ, s̃µ)

)
(1−δ )δ t−1E

[
λ ·gωt

(at)|µ, s̃µ
]

+
∞

∑
t=0

∑
ht∈H∗t

Pr(ht |µ, s̃µ)δ tλ ·vµt+1(ht |µ,s̃µ )(δ ,sµt+1(ht |µ,s̃µ ))

where the expectation operator is taken conditional on that the switch has not hap-

pened yet. Note that the term 1−∑t−1
t̃=0∑ht̃∈H∗t̃ Pr(ht̃ |µ, s̃µ) is the probability that

players still randomize all actions in periodt because the switch has not happened

by then. To simplify the notation, letρ t denote this probability. From Lemma B5,

we know that

λ ·vµt+1(ht |µ,s̃µ )(δ ,sµt+1(ht |µ,s̃µ )) ≥ v∗

for eachht ∈ H∗t , wherev∗ = λ · vω(δ ,sω)− (1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| . Applying this andλ ·

gωt
(at) ≥−2g to the above equation, we obtain

λ ·vµ(δ , s̃µ) ≥
∞

∑
t=1

ρ t(1−δ )δ t−1(−2g)+
∞

∑
t=0

∑
ht∈H∗t

Pr(ht |µ, s̃µ)δ tv∗.

Using∑∞
t=0∑ht∈H∗t Pr(ht |µ, s̃µ)δ t = ∑∞

t=1(1−δ )δ t−1∑t−1
t̃=0∑ht̃∈H∗t̃ Pr(ht̃ |µ, s̃µ) =

∑∞
t=1(1−δ )δ t−1(1−ρ t), we obtain

λ ·vµ(δ , s̃µ) ≥ (1−δ )
∞

∑
t=1

δ t−1{
ρ t(−2g)+(1−ρ t)v∗

}
. (12)

According to Lemma B4, the probability that the support reachesΩ∗ within

4|Ω| periods is at leastπ∗. This implies that the probability that players still ran-

domize all actions in period 4|Ω| +1 is at most 1−π∗. Similarly, for each natural

numbern, the probability that players still randomize all actions in periodn4|Ω|+1

is at most(1−π∗)n, that is,ρn4|Ω|+1 ≤ (1−π∗)n. Then sinceρ t is weakly decreas-

ing in t, we obtain

ρn4|Ω|+k ≤ (1−π∗)n

for eachn = 0,1, · · · andk ∈ {1, · · · ,4|Ω|}. This inequality, together with−2g≤
v∗, implies that

ρn4|Ω|+k(−2g)+(1−ρn4|Ω|+k)v∗ ≥ (1−π∗)n(−2g)+{1− (1−π∗)n}v∗
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for eachn = 0,1, · · · andk∈ {1, · · · ,4|Ω|}. Plugging this inequality into (12), we

obtain

λ ·vµ(δ , s̃µ) ≥ (1−δ )
∞

∑
n=1

4|Ω|

∑
k=1

δ (n−1)4|Ω|+k−1

[
−(1−π∗)n−12g

+{1− (1−π∗)n−1}v∗

]
.

Since∑4|Ω|
k=1δ (n−1)4|Ω|+k−1 = δ (n−1)4|Ω|

(1−δ 4|Ω|
)

1−δ ,

λ ·vµ(δ , s̃µ) ≥(1−δ 4|Ω|
)

∞

∑
n=1

δ (n−1)4|Ω|

[
−(1−π∗)n−12g

+{1− (1−π∗)n−1}v∗

]

=− (1−δ 4|Ω|
)

∞

∑
n=1

{(1−π∗)δ 4|Ω|
}n−12g

+(1−δ 4|Ω|
)

∞

∑
n=1

[(δ 4|Ω|
)n−1−{(1−π∗)δ 4|Ω|

}n−1]v∗.

Plugging∑∞
n=1{(1−π∗)δ 4|Ω|}n−1 = 1

1−(1−π∗)δ 4|Ω| and∑∞
n=1(δ 4|Ω|

)n−1 = 1

1−δ 4|Ω| ,

λ ·vµ(δ , s̃µ) ≥− (1−δ 4|Ω|
)2g

1− (1−π∗)δ 4|Ω| +
δ 4|Ω|π∗

1− (1−π∗)δ 4|Ω| v
∗.

Subtracting both sides fromλ ·vω(δ ,sω), we have

λ ·vω(δ ,sω)−λ ·vµ(δ , s̃µ)

≤ (1−δ 4|Ω|
)2g

1− (1−π∗)δ 4|Ω| +
δ 4|Ω|π∗(1−δ 2|Ω|

)2g

{1− (1−π∗)δ 4|Ω|}δ 2|Ω|π4|Ω| −
(1−δ 4|Ω|

)λ ·vω(δ ,sω)
1− (1−π∗)δ 4|Ω|

Sinceλ ·vω(δ ,sω) ≥−g,

λ ·vω(δ ,sω)−λ ·vµ(δ , s̃µ)

≤ (1−δ 4|Ω|
)2g

1− (1−π∗)δ 4|Ω| +
δ 4|Ω|π∗(1−δ 2|Ω|

)2g

{1− (1−π∗)δ 4|Ω|}δ 2|Ω|π4|Ω| +
(1−δ 4|Ω|

)g
1− (1−π∗)δ 4|Ω|

≤ (1−δ 4|Ω|
)3g

1− (1−π∗)
+

π∗(1−δ 2|Ω|
)2g

{1− (1−π∗)}δ 2|Ω|π4|Ω|

=
(1−δ 4|Ω|

)3g
π∗ +

(1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω|

Hence the result follows. Q.E.D.
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Note that

λ ·vω(δ ,sω) ≥ λ ·vµ(δ ,sµ) ≥ λ ·vµ(δ , s̃µ),

that is, the score forµ is at leastλ ·vµ(δ , s̃µ) (this is because ˜sµ is not the optimal

policy) and is at most the maximal score. Then from Lemma B6, we have

|λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ)| ≤ |λ ·vω(δ ,sω)−λ ·vµ(δ , s̃µ)|

≤ (1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| +
(1−δ 4|Ω|

)3g
π∗ ,

as desired.

B.6 Proof of Proposition 7: Necessary Condition for Uniform

Connectedness

For each stateω, let Ω(ω) denote the set of all states reachable from the state

ω . That is,Ω(ω) is the set of all states̃ω such that there is a natural number

T ≥ 1 and an action sequence(a1, · · · ,aT) such that the probability of the state in

periodT +1 beingω̃ is positive given the initial stateω and the action sequence

(a1, · · · ,aT).
The proof consists of three steps. In the first step, we show that the game is

uniformly connected only ifΩ(ω)∩Ω(ω̃) , /0 for all ω andω̃ . In the second step,

we show that the condition considered in the first step (i.e.,Ω(ω)∩Ω(ω̃) , /0 for

all ω andω̃) holds if and only if there is a globally accessible stateω. This and

the result in the first step imply that the game is uniformly connected only if there

is a globally accessible stateω. Then in the last step, we show that the game is

uniformly connected only if states are weakly communicating.

B.6.1 Step 1: Uniformly Connected Only IfΩ(ω)∩Ω(ω̃) , /0

Here we show that the game is uniformly connected only ifΩ(ω)∩Ω(ω̃) , /0 for

all ω andω̃ . It is equivalent to show that ifΩ(ω)∩Ω(ω̃) = /0 for someω andω̃,

then the game is not uniformly connected.

So suppose thatΩ(ω)∩Ω(ω̃) = /0 for ω andω̃. Take an arbitrary statêω ∈
Ω(ω). To prove that the game is not uniformly connected, it is sufficient to show

that the singleton set{ω̂} is not globally accessible or uniformly transient.
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We first show that the set{ω̂} is not globally accessible. More generally,

we show that any setΩ∗ ⊆ Ω(ω) is not globally accessible. PickΩ∗ ⊆ Ω(ω)
arbitrarily. ThenΩ∗ ∩Ω(ω̃) = /0, and hence there is no action sequence which

moves the state from̃ω to some state in the setΩ∗ with positive probability. This

means that if the initial prior puts probability one onω̃ , then regardless of the past

history, the posterior belief never puts positive probability on any state in the set

Ω∗, and thus the support of the posterior belief is never included in the setΩ∗.

Hence the setΩ∗ is not globally accessible, as desired.

Next, we show that the set{ω̂} is not uniformly transient. Note first that

ω̂ ∈ Ω(ω) implies Ω(ω̂) ⊆ Ω(ω). That is, if ω̂ is accessible fromω , then any

state accessible from̂ω is accessible fromω . So if the initial state isω̂ , then in

any future period, the state must be included in the setΩ(ω) regardless of players’

play. This implies that if the initial prior puts probability one onω̂, then regardless

of the players’ play, the support of the posterior belief is always included in the

set Ω(ω); this implies that the support never reaches a globally accessible set,

because we have seen in the previous paragraph that any setΩ∗ ⊆ Ω(ω) is not

globally accessible. Hence{ω} is not uniformly transient, as desired.

B.6.2 Step 2: Uniformly Connected Only If There is Globally Accessibleω

Here we show thatΩ(ω)∩Ω(ω̃) , /0 for all ω and ω̃ if and only if there is a

globally accessible stateω. This and the result in the previous step implies that

the game is uniformly connected only if there is a globally accessible stateω.

The if part simply follows from the fact that ifω is globally accessible, then

ω ∈ Ω(ω̃) for all ω̃. So we prove the only if part. That is, we show that if

Ω(ω)∩Ω(ω̃) , /0 for all ω andω̃, then there is a globally accessible stateω. So

assume thatΩ(ω)∩Ω(ω̃) , /0 for all ω andω̃.

Since the state space is finite, the states can be labeled asω1, ω2, · · · , ωK. Pick

ω∗ ∈ Ω(ω1)∩Ω(ω2) arbitrarily; possibly we haveω∗ = ω1 or ω∗ = ω2. By the

definition,ω∗ is accessible fromω1 andω2.

Now pickω∗∗ ∈ Ω(ω∗)∩Ω(ω3). By the definition, this stateω∗∗ is accessible

from ω3. Also, sinceω∗∗ is accessible fromω∗ which is accessible fromω1 and

ω2, ω∗∗ is accessible fromω1 andω2. So this stateω∗∗ is accessible fromω1, ω2,

andω3. Repeating this process, we can eventually find a state which is accessible
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from all statesω. This state is globally accessible, as desired.

B.6.3 Step 3: Uniformly Connected Only If States Are Weakly Communi-

cating

Now we prove that the game is uniformly connected only if states are weakly com-

municating. It is equivalent to show that if there is a stateω which is not globally

accessible or uniformly transient, then the game is not uniformly connected.

We prove this by contradiction, so suppose that the stateω∗ is not globally

accessible or uniformly transient, and that the game is uniformly connected. Since

ω∗ is not globally accessible or uniformly transient, there is a strategy profiles

such that if the initial state isω∗, the state never reaches a globally accessible

state. Pick such a strategy profiles, and letΩ∗ be the set of states accessible from

ω∗ with positive probability given the strategy profiles. That is,Ω∗ is the set of

states which can happen with positive probability in some periodt ≥ 2 if the initial

state isω and the strategy profile iss. (Note thatΩ∗ is different fromΩ(ω∗), as

the strategy profiles is given here.) By the definition ofs, any state inΩ∗ is not

globally accessible.

Since the game is uniformly connected, the singleton set{ω∗} must be either

globally accessible or uniformly transient. It cannot be globally accessible, be-

causeω∗ is not globally accessible and hence there is some stateω such thatω∗

is not accessible fromω ; if the initial prior puts probability one on suchω , then

regardless of the play, the posterior never puts positive probability onω∗. So the

singleton set{ω∗} must be uniformly transient. This requires that if the initial

prior puts probability one onω∗ and players play the profiles, then the support of

the posterior must eventually reach some globally accessible set. By the definition

of Ω∗, given the initial priorω∗ and the profiles, the support of the posterior must

be included inΩ∗. This implies that there is a globally accessible setΩ̃∗ ⊆ Ω∗.

However, this is a contradiction, because any setΩ̃∗ ⊆ Ω∗ cannot be globally

accessible. To see this, recall that the game is uniformly connected, and then

as shown in Step 2, there must be a globally accessible state, sayω∗∗. Then

Ω∗ ∩Ω(ω∗∗) = /0, that is, any state inΩ∗ is not accessible fromω∗∗. Indeed if

not and some stateω ∈ Ω∗ is accessible fromω∗∗, then the stateω is globally

accessible, which contradicts with the fact that any state inΩ∗ is not globally
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accessible. Now, if the initial prior puts probability one onω∗∗, then regardless

of the play, the posterior belief never puts positive probability on any state in the

setΩ∗, and hence the support of the posterior belief is never included in the set

Ω∗. This shows that any subsetΩ̃∗ ⊆ Ω∗ is not globally accessible, which is a

contradiction.

B.7 Proof of Proposition 8

Consider stochastic games with observable states. For the if part, it is obvious that

a singleton set{ω} with globally accessibleω is globally accessible, and other

setsΩ∗ are uniformly transient. The only if part follows from Proposition 7.

Next, consider stochastic games with delayed observations. Again the only if

part follows from Lemma 7, so we focus on the if part. We first prove that ifω
is uniformly transient, then the set{ω} is uniformly transient. To prove this, take

a uniformly transient stateω, and take an arbitrary pure strategy profiles. Since

ω is uniformly transient, there must be a historyht−1 such that if the initial state

is ω and players plays, the historyht−1 realizes with positive probability and the

posterior puts positive probability on some globally accessible stateω∗ Pick such

ht−1 andω∗. Let ht be the history such that the history until periodt −1 is ht−1,

and then players playeds(ht−1) and observedy= ω∗ in periodt. By the definition,

this historyht happens with positive probability given the initial stateω and the

strategy profiles. Now, let Ω∗ be the support of the posterior belief afterht . To

prove that{ω} is uniformly transient, it is sufficient to show that this setΩ∗ is

globally accessible, because it ensures that the support must move from{ω} to

a globally accessible set regardless of players’ plays. (For {ω} to be uniformly

transient, we also need to show that{ω} is not globally accessible, but it follows

from the fact thatω is not globally accessible.)

To prove thatΩ∗ is globally accessible. pick an arbitrary priorµ, and pickω̃
such thatµ(ω̃) ≥ 1

|Ω| . Sinceω∗ is globally accessible, there is an action sequence

(a1, · · · ,aT) which moves the state from̃ω to ω∗ with positive probability. Pick

such an action sequence, and pick a signal sequence(y1, · · · ,yT) which happens

when the state moves from̃ω to ω∗. Now, suppose that the initial prior isµ and

players play(a1, · · · ,aT ,s(ht−1)). Then by the definition, with positive probabil-

ity, players observe the signal sequence(y1, · · · ,yT) during the firstT periods and
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then the signalyT+1 = ω∗ in periodT +1. Obviously the support of the posterior

after such a history isΩ∗, so this shows that the support can move toΩ∗ from any

initial prior. Also the probability of this move is at leastµ(ω̃)πT+1 ≥ πT+1

|Ω| for all

initial prior µ. HenceΩ∗ is globally accessible, as desired.

So far we have shown that{ω} is uniformly transient ifω is uniformly tran-

sient. To complete the proof of the if part, we show that whenω is globally

accessible,{ω} is globally accessible or uniformly transient. So fix an arbitrary

{ω} such thatω is globally accessible yet{ω} is not globally accessible. It is

sufficient to show that{ω} is uniformly transient. To do so, fix arbitrarya∗ andy∗

such thatπω
Y (y∗|a∗) > 0, and letΩ∗ be the set of all̃ω such thatπω(y∗, ω̃|a∗) > 0.

Then just as in the previous previous paragraph, we can show thatΩ∗ is globally

accessible, which implies that{ω} is uniformly transient.

B.8 Proof of Proposition 9: Minimax and Robust Connected-

ness

Fix δ and i. In what follows, “robustly accessible” means “robustly accessible

despitei,” and “transient” means “transient giveni.”

For a given strategys−i and a priorµ̃, letvµ̃
i (s−i) denote playeri’s best possible

payoff; that is, letvµ̃
i (s−i) = maxsi∈Si v

µ̃
i (δ ,si ,s−i). This payoffvµ̃

i (s−i) is convex

with respect toµ̃, as it is the upper envelope of the linear functionsvµ̃
i (δ ,si ,s−i)

oversi .

Let sµ denote the minimax strategy profile given the initial priorµ. Pick an

arbitraryµ and pick the minimax strategysµ
−i . Then the payoffvµ̃

i (sµ
−i) is convex

with respect toµ̃. In what follows, when we saythe convex curve vµ̃
i (sµ

−i) or

the convex curve induced by sµ
−i , it refers to the convex functionvµ̃

i (sµ
−i) whose

domain is restricted tõµ ∈ △(suppµ). So when suppµ = Ω, the convex curve

represents playeri’s payoff vµ̃
i (sµ

−i) for each initial priorµ̃ ∈ △Ω. On the other

hand, when suppµ = {ω}, the convex curve is simply a scalarvω
i (sµ

−i). Note that

vµ̃
i (sµ

−i) denotes the minimax payoff wheñµ = µ, but whenµ̃ , µ, it is not the

minimax payoff for any initial prior.

For each beliefµ, let

vi(s
µ
−i) = max

µ̃∈△(suppµ)
vµ̃

i (sµ
−i),
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that is, vi(s
µ
−i) is the highest payoff achieved by the convex curve induced by

sµ
−i . Note that different initial priorsµ induce different minimax strategiessµ

−i ,

and hence different convex functions, and hence different highest payoffsvi(s
µ
−i).

Now, chooseµ∗ so that the corresponding highest payoffvi(s
µ∗

−i ) approximates the

supremum of the highest payoffs over all beliefsµ; that is, chooseµ∗ such that∣∣∣∣∣vi(s
µ∗

−i )− sup
µ∈△Ω

vi(s
µ
−i)

∣∣∣∣∣ < 1−δ .

We callvi(s
µ∗

−i ) the maximal value, because it approximates supµ∈△Ω vi(s
µ
−i), which

is greater than any payoff achieved by any convex curves. The way we chooseµ∗

is essentially the same as in Section 3.3, but here we allow the possibility that

supµ∈△Ω vi(s
µ
−i) is actually the supremum, not the max.

Sincevµ̃
i (sµ∗

−i ) is convex, it is maximized wheñµ is an extreme point. Let

ω ∈ suppµ∗ denote this extreme point, that is,vω
i (sµ∗

−i ) ≥ vµ̃
i (sµ∗

−i ) for all µ̃ ∈
△(suppµ∗). In general, the maximal valuevi(s

µ∗

−i ) = vω
i (sµ∗

−i ) is not the minimax

payoff for any initial prior, because the stateω can be different from the beliefµ∗.

B.8.1 Step 0: Preliminary Lemmas

We begin with presenting three preliminary lemmas. The first lemma is a gen-

eralization of Lemma B1. The statement is more complicated than Lemma B1,

because the convex curves are defined on subspaces of△Ω. But the implication

is the same; the lemma shows that if the convex curvevµ̃
i (sµ

−i) approximates the

maximal value for some relative interior beliefµ̃, then it approximates the maxi-

mal value for all beliefŝµ ∈△Ω∗. The proof of the lemma is very similar to that

of Lemma B1, and hence omitted.

Lemma B7. Pick an arbitrary beliefµ, and letΩ∗ denote its support. Let̃µ ∈
△Ω∗ be an relative interior belief (i.e.,̃µ(ω̃)> 0 for all ω̃), and let p= minω̃∈Ω∗ µ̃ω̃),
which measures the distance from̃µ to the boundary of△Ω∗. Then for each

µ̂ ∈△Ω∗,

∣∣∣vi(s
µ∗

−i )+(1−δ )−vµ̂
i (sµ

−i)
∣∣∣ ≤

∣∣∣vi(s
µ∗

−i )+(1−δ )−vµ̃
i (sµ

−i)
∣∣∣

p
.
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The next lemma is about the merging support condition. Recall that under the

merging support condition, given any pure strategy profiles, two posterior beliefs

induced by different initial priorsω and µ = ( 1
|Ω| , · · · ,

1
|Ω|) must have the same

support after some history. The lemma shows that the same result holds for any

µ with µ(ω) > 0 and for any mixed strategy profiles. Also it gives a minimum

bound on the probability of such a history.

Lemma B8. Suppose that the merging support condition holds. Then for eachω,

for eachµ with µ(ω) > 0, and for each (possibly mixed) strategy profile s, there

is a natural number T≤ 4|Ω| and a history hT such thatPr(hT |ω ,s) > ( |π||A|)
T and

such that the support of the posterior belief induced by the initial stateω and the

history hT is identical with the one induced by the initial priorµ and the history

hT .

Proof. Takeω, µ, andsas stated. Take a pure strategy profile ˜ssuch that for each

t andht , s̃(ht) chooses a pure action profile which is chosen with probability at

least 1
|A| by s(ht).

Since the merging support condition holds, there is a natural numberT ≤ 4|Ω|

and a historyhT such that Pr(hT |ω, s̃) > 0 and such that the support of the posterior

belief induced by the initial stateω and the historyhT is identical with the one

induced by the initial prior̃µ = ( 1
|Ω| , · · · ,

1
|Ω|) and the historyhT . We show thatT

andhT here satisfies the desired properties.

Note that Pr(hT |ω, s̃)≥ πT , asπ is a pure strategy. This implies that Pr(hT |ω,s)≥
( π
|A|)

4|Ω|
, since each period the action profile byscoincides with the one by ˜swith

probability at least1
|A| . Also, sinceµ(ω) > 0, the support of the belief induced

by (ω,hT) must be included in the support induced by(µ,hT), which must be in-

cluded in the support induced by(µ̃,hT). Since the first and last supports are the

same, all three must be the same, implying that the support of the belief induced

by (ω,hT) is identical with the support induced by(µ,hT), as desired. Q.E.D.

The last preliminary lemma is a counterpart to B4. Recall that ifΩ∗ is robustly

accessible, then for any initial priorµ, there is an action sequence(α1
−i , · · · ,αT

−i)
such that for any strategysi , the support reachesΩ∗ with positive probability.

The lemma ensures that we do not need to use such a belief-dependent action

sequence; it is sufficient to use the action sequence such that all pure actions are
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mixed equally each period. The lemma also shows that without loss of generality,

we can assume that the posterior belief when the support reachesΩ∗ is not too

close to the boundary of the belief space△Ω∗.

Lemma B9. Suppose thatΩ∗ is robustly accessible despite i. Then there isπ∗ > 0

such that if the opponents mix all actions equally likely each period, then for any

initial prior µ and for any strategy si , there is a natural number T≤ 4|Ω| and a

belief µ̃ ∈ △Ω∗ such that the posterior beliefµT+1 equalsµ̃ with probability at

leastπ∗ and such that̃µ(ω) ≥ 1
|Ω|π

4|Ω|
for all ω ∈ Ω∗.

Proof. We first show thatΩ∗ is robustly accessible only if the following condition

holds:19 For each stateω ∈ Ω and for anysi , there is a natural numberT ≤ 4|Ω|

and a pure action sequence(a1
−i , · · · ,aT

−i), and a signal sequence(y1, · · · ,yT) such

that the following properties are satisfied:

(i) If the initial state isω, playeri playssi , and the opponents play(a1
−i , · · · ,aT

−i),
then the sequence(y1, · · · ,yT) realizes with positive probability.

(ii) If player i plays si , the opponents play(a1
−i , · · · ,aT

−i), and the signal se-

quence(y1, · · · ,yT) realizes, then the state in periodT +1 must be in the set

Ω∗, regardless of the initial statêω (possiblyω̂ , ω).

(iii) If the initial state isω, playeri playssi , the opponents play(a1
−i , · · · ,aT

−i),
and the signal sequence(y1, · · · ,yT) realizes, then the support of the belief

in periodT +1 is the setΩ∗.

To see this, suppose not so that there isω andsi such that any action sequence

and any signal sequence cannot satisfy (i) through (iii) simultaneously. Pick such

ω andsi . We will show thatΩ∗ is not robustly accessible.

Pick a smallε > 0 and letµ be such thatµ(ω) > 1− ε and andµ(ω̃) > 0 for

all ω̃. That is, considerµ which puts probability at least 1− ε on ω . Then by the

definition ofω andsi , the probability that the support reachesΩ∗ given the initial

prior µ and the strategysi is less thanε. Since this is true for any smallε > 0, the

19We can also show that the converse is true, so thatΩ∗ is robustly accessible if and only if the
condition stated here is satisfied. Indeed, if the condition here is satisfied, then the condition stated
in the definition of robust accessibility is satisfied by the action sequence(α1

−i , · · · ,α4|Ω|
−i ) which

mix all pure actions equally each period.

70



probability of the support reachingΩ∗ must approach zero asε → 0, and hence

Ω∗ cannot be robustly accessible, as desired.

Now we prove the lemma. Fix an arbitrary priorµ, and pickω such that

µ(ω) ≥ 1
|Ω| . Then for eachsi , chooseT, (a1

−i , · · · ,aT
−i), and(y1, · · · ,yT) as stated

in the above condition. (i) ensures that if the initial prior isµ, playeri playssi , and

the opponents mix all actions equally, the action sequence(a1
−i , · · · ,aT

−i) and the

signal sequence(a1
−i , · · · ,aT

−i) are observed with probability at leastµ(ω)( π
|A|T )T ≥

1
|Ω|(

π
|A|T )4|Ω|

. Let µ̃ be the posterior belief in periodT +1 in this case. From (iii),

µ̃(ω) ≥ 1
|Ω|π

4|Ω|
for all ω ∈ Ω∗. From (ii), µ̃(ω) = 0 for otherω. Q.E.D.

B.8.2 Step 1: Minimax Payoff for µ∗∗

As a first step, we will show that there is some beliefµ∗∗ whose minimax payoff

approximates the maximal value. The proof idea is similar to Step 1 in the proof

of Proposition 2, but the argument is more complicated because now some signals

and states do not occur, due to the lack of the full support assumption. As will be

seen, we use the merging support condition in this step.

Suppose that the initial state isω and the opponents playsµ∗

−i . Suppose also

that playeri takes a best replys∗i . Note that this is the case in which playeri

achieves the maximal value,vω
i (sµ∗

−i ). For each historyhT , let µ(hT |ω) be the

posterior after historyhT , and letµ(hT |µ∗) be the posterior when the initial prior

wasµ∗ rather thanω. The following lemma shows that there is a historyhT such

that playeri’s continuation payoff after this historyhT approximates the maximal

value.

Lemma B10. There is T≤ 4|Ω| and hT such that the two posteriorsµ(hT |ω) and

µ(hT |µ∗) have the same support and such that

∣∣∣vω
i (sµ∗

−i )+(1−δ )−vµ(hT |ω)
i (sµ(hT |µ∗)

−i )
∣∣∣ ≤ (1−δ 4|Ω|

)2g|A|4|Ω|

δ 4|Ω|π4|Ω| +
(1−δ )|A|4|Ω|

π4|Ω| .

Proof. Sinceµ∗(ω) > 0, Lemma B8 ensures that there is a natural numberT ≤
4|Ω| and a historyhT such that Pr(hT |ω,s∗i ,s

µ
−i) > ( π

|A|)
T and such that the two

posterior beliefsµ(hT |ω) andµ(hT |µ∗) have the same support. Pick suchT and

hT .
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As noted, if the initial state isω and players play(s∗i ,s
µ∗

−i ), then playeri’s

payoff isvω
i (sµ∗

−i ), Hence we have

vω
i (sµ∗

−i ) =(1−δ )
T

∑
t=1

δ t−1E[gωt

i (at)|ω,s∗i ,s
µ∗

−i ]

+δ T ∑
h̃T∈HT

Pr(h̃T |ω,s∗i ,s
µ∗

−i )v
µ(h̃T |ω)
i (sµ(h̃T |µ∗)

−i ).

By the definition ofg, we have(1− δ )∑T
t=1δ t−1E[gωt

i (at)|ω,s] ≤ (1− δ T)g.

Also, sinceµ∗(ω) > 0, for eachh̃T , the support ofµ(h̃T |ω) is a subset of the

one of µ(h̃T |µ∗), which impliesvµ(h̃T |ω)
i (sµ(h̃T |µ∗)

−i ) ≤ vω
i (sµ∗

−i ) + (1− δ ). Plug-

ging them and Pr(hT |ω,s∗i ,s
µ∗

−i ) ≥ ( π
|A|)

T into the inequality above, we have

vω
i (sµ∗

−i ) ≤(1−δ T)g+δ T
(

π
|A|

)T

vµ(hT |ω)
i (sµ(hT |µ∗)

−i )

+δ T

{
1−

(
π
|A|

)T
}{

vω
i (sµ∗

−i )+(1−δ )
}

.

Subtracting{1−δ T( π
|A|)

T}vω
i (sµ∗

−i )−δ T( π
|A|)

T(1−δ )+δ T( π
|A|)

Tvµ(hT |ω)
i (sµ(hT |µ∗)

−i )
from both sides,

δ T
(

π
|A|

)T {
vω

i (sµ∗

−i )+(1−δ )−vµ(hT |ω)
i (sµ(hT |µ∗)

−i )
}

≤ (1−δ T)(g−vω
i (sµ∗

−i ))+δ T(1−δ ).

Dividing both sides byδ T( π
|A|)

T ,

vω
i (sµ∗

−i )+(1−δ )−vµ(hT |ω)
i (sµ(hT |µ∗)

−i )

≤
|A|T(1−δ T)(g−vω

i (sµ∗

−i ))

δ TπT +(1−δ )
(
|A|
π

)T

.

Since the left-hand side is positive, taking the absolute value of the left-hand side

and usingvω
i (sµ∗

−i ) ≥−g. we obtain∣∣∣vω
i (sµ∗

−i )+(1−δ )−vµ(hT |ω)
i (sµ(hT |µ∗)

−i )
∣∣∣ ≤ |A|T(1−δ T)2g

δ TπT +(1−δ )
(
|A|
π

)T

.

Then the result follows becauseT ≤ 4|Ω|. Q.E.D.
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Let µ∗∗ = µ(hT |µ∗). Then the above lemma implies that

∣∣∣vω
i (sµ∗

−i )+(1−δ )−vµ(hT |ω)
i (sµ∗∗

−i )
∣∣∣ ≤ (1−δ 4|Ω|

)2g|A|4|Ω|

δ 4|Ω|π4|Ω| +
(1−δ )|A|4|Ω|

π4|Ω| .

That is, the convex curvevµ̃
i (sµ∗∗

−i ) approximates the maximal score for some belief

µ̃ = µ(hT |ω).
From Lemma B10, the support of this beliefµ(hT |ω) is the same as the one

of µ∗∗. Also, this beliefµ(hT |ω) assigns at least probabilityπ4|Ω|
on each stateω

included in its support. Indeed, for such stateω , we have

µ(hT |ω)[ω̃] =
Pr(ωT+1 = ω̃|ω ,a1, · · · ,aT)

∑ω̂∈Ω Pr(ωT+1 = ω̂|ω ,a1, · · · ,aT)

≥ Pr(ωT+1 = ω̃|ω,a1, · · · ,aT) ≥ πT ≥ π4|Ω|
.

Accordingly, the distance from̃µ = µ(hT |ω) to the boundary of△(suppµ∗∗) is

at leastπ4|Ω|
, and thus Lemma B7 ensures that∣∣∣vω

i (sµ∗

−i )+(1−δ )−vµ̂
i (sµ∗∗

−i )
∣∣∣ ≤ (1−δ 4|Ω|

)2g|A|4|Ω|

δ 4|Ω|π(4|Ω|+4|Ω|)
+

(1−δ )|A|4|Ω|

π(4|Ω|+4|Ω|)

for all µ̂ ∈ △(suppµ∗∗). That is, the convex curve induced bysµ∗∗

−i is almost flat

and approximates the maximal score for all beliefsµ̂ ∈△(suppµ∗∗). In particular,

by letting µ̂ = µ∗∗, we have

∣∣∣vω
i (sµ∗

−i )+(1−δ )−vµ∗∗

i (sµ∗∗

−i )
∣∣∣ ≤ (1−δ 4|Ω|

)2g|A|4|Ω|

δ 4|Ω|π(4|Ω|+4|Ω|)
+

(1−δ )|A|4|Ω|

π(4|Ω|+4|Ω|)
, (13)

that is, the minimax payoff for the beliefµ∗∗ approximates the maximal value.

B.8.3 Step 2: Minimax Payoffs when the Support is Robustly Accessible

In this step, we show that the minimax payoff forµ approximates the maximal

value for any beliefµ whose support is robustly accessible. Again, the proof idea

is somewhat similar to Step 2 in the proof of Proposition 2. But the proof here is

more involved, because the support of the beliefµ∗∗ in Step 1 may be different

from the one ofµ, and thus the payoffvµ∗∗

i (sµ
−i) can be greater than the maximal

value.
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For a given beliefµ, let ∆µ denote the set of beliefs̃µ ∈△(suppµ) such that

µ̃(ω̃) ≥ 1
|Ω|π

4|Ω|
for all ω̃ ∈ suppµ. Intuitively, ∆µ is the set of all beliefs̃µ with

the same support asµ, except the ones which are too close to the boundary of

△(suppµ).
Now, assume that the initial prior isµ∗∗. Pick a beliefµ whose support is

robustly accessible, and suppose that the opponents play the following strategy

s̃µ
−i :

• The opponents mix all actions equally likely each period, until the posterior

belief becomes an element of∆µ .

• If the posterior belief becomes an element of∆µ in some period, then they

play the minimax strategysµ
−i in the rest of the game. (They do not change

the play after that.)

Intuitively, the opponents wait until the belief reaches∆µ , and once it happens,

they switch the play to the minimax strategysµ
−i for the fixed beliefµ. From

Lemma B9, this switch happens in finite time with probability one regardless

of player i’s play. So forδ close to one, payoffs before the switch is almost

negligible, that is, playeri’s payoff against the above strategy is approximated by

the expected continuation payoff after the switch. Since the beliefµ̃ at the time of

the switch is always in the set∆µ , this continuation payoff is at most

Kµ
i = max

µ̃∈∆µ
vµ̃

i (sµ
−i).

Hence playeri’s payoff against the above strategy ˜sµ
−i cannot exceedKµ

i by much.

Formally, we have the following lemma. Takeπ∗ > 0 such that it satisfies the

condition stated in Lemma B9 for all robustly accessible setsΩ∗. (Suchπ∗ exists,

as there are only finitely many setsΩ∗.)

Lemma B11. For each beliefµ whose support is robustly accessible,

vµ∗∗

i (s̃µ
−i) ≤ Kµ

i +
(1−δ 4|Ω|

)2g
π∗ .

Proof. The proof is very similar to that of Lemma B6. Pick a beliefµ whose

support is robustly accessible. Suppose that the initial prior isµ∗∗, the opponents
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play s̃µ
−i , and playeri plays a best reply. Letρ t denote the probability that players

−i still randomize actions in periodt. Then as in the proof of Lemma B6, we have

vµ∗∗

i (s̃µ
−i) ≤

∞

∑
t=1

δ t−1{
ρ tg+(1−ρ t)Kµ

i

}
,

because the stage-game payoff before the switch tosµ
−i is bounded from above by

g, and the continuation payoff after the switch is bounded from above byKµ
i =

maxµ̃∈∆µ vµ̃
i (sµ

−i).
As in the proof of Lemma B6, we have

ρn4|Ω|+k ≤ (1−π∗)n

for eachn = 0,1, · · · andk∈ {1, · · · ,4|Ω|}. This inequality, together withg≥ Kµ
i ,

implies that

ρn4|Ω|+kg+(1−ρn4|Ω|+k)v∗i ≤ (1−π∗)ng+{1− (1−π∗)n}Kµ
i

for eachn = 0,1, · · · andk ∈ {1, · · · ,4|Ω|}. Plugging this inequality into the first

one, we obtain

vµ∗∗

i (s̃µ
−i) ≤ (1−δ )

∞

∑
n=1

4|Ω|

∑
k=1

δ (n−1)4|Ω|+k−1

[
(1−π∗)n−1g

+{1− (1−π∗)n−1}Kµ
i

]
.

Then as in the proof of Lemma B6, the standard algebra shows

vµ∗∗

i (s̃µ
−i) ≤

(1−δ 4|Ω|
)g

1− (1−π∗)δ 4|Ω| +
δ 4|Ω|π∗Kµ

i

1− (1−π∗)δ 4|Ω| .

Since δ 4|Ω|π∗

1−(1−π∗)δ 4|Ω| = 1− 1−δ 4|Ω|

1−(1−π∗)δ 4|Ω| , we have

vµ∗∗

i (s̃µ
−i) ≤ Kµ

i +
(1−δ 4|Ω|

)(g−Kµ
i )

1− (1−π∗)δ 4|Ω| .

Since 1− (1− π∗)δ 4|Ω|
> 1− (1− π∗) = π∗ and Kµ

i ≥ −g, the result follows.

Q.E.D.
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Note that the payoffvµ∗∗

i (s̃µ
−i) is at least the minimax payoffvµ∗∗

i (sµ∗∗

−i ), as the

strategy ˜sµ
−i is not the minimax strategy. So we havevµ∗∗

i (sµ∗∗

−i ) ≤ vµ∗∗

i (s̃µ
−i). This

inequality and the lemma above imply that

vµ∗∗

i (sµ∗∗

−i )− (1−δ 4|Ω|
)2g

π∗ ≤ Kµ
i .

At the same time, by the definition of the maximal value,Kµ
i cannot exceed

vω
i (sµ∗

−i )+(1−δ ). Hence

vµ∗∗

i (sµ∗∗

−i )− (1−δ 4|Ω|
)2g

π∗ ≤ Kµ
i ≤ vω

i (sµ∗

−i )+(1−δ ).

From (13), we know thatvµ∗∗

i (sµ∗∗

−i ) approximatesvω
i (sµ∗

−i )+(1−δ ), so the above

inequality implies thatKµ
i approximatesvω

i (sµ∗

−i )+(1−δ ). Formally, we have

∣∣∣vω
i (sµ∗

−i )+(1−δ )−Kµ
i

∣∣∣ ≤ (1−δ 4|Ω|
)2g|A|4|Ω|

δ 4|Ω|π(4|Ω|+4|Ω|)
+

(1−δ )|A|4|Ω|

π(4|Ω|+4|Ω|)
+

(1−δ 4|Ω|
)2g

π∗ .

Equivalently,∣∣∣vω
i (sµ∗

−i )+(1−δ )−vµ̃
i (sµ

−i)
∣∣∣≤ (1−δ 4|Ω|

)2g|A|4|Ω|

δ 4|Ω|π(4|Ω|+4|Ω|)
+

(1−δ )|A|4|Ω|

π(4|Ω|+4|Ω|)
+

(1−δ 4|Ω|
)2g

π∗

whereµ̃ is the belief which achievesKµ
i . This inequality implies that the curve

vµ̃
i (sµ

−i) approximates the maximal value for some beliefµ̃. Sinceµ̃ ∈∆µ , Lemma

B7 ensure that this curve is almost flat and approximates the maximal value for

all beliefs, that is,∣∣∣vi(s
µ∗

−i )+(1−δ )−vµ̂
i (sµ

−i)
∣∣∣

≤ (1−δ 4|Ω|
)2g|Ω|

π∗π4|Ω| +
(1−δ 4|Ω|

)2g|A|4|Ω||Ω|
δ 4|Ω|π(4|Ω|+4|Ω|+4|Ω|)

+
(1−δ )|A|4|Ω||Ω|
π(4|Ω|+4|Ω|+4|Ω|)

.

for all µ̂ ∈ △(suppµ). This in particular implies that the minimax payoff forµ
approximates the maximal value.

B.8.4 Step 3: Minimax Payoffs when the Support is Transient

The previous step shows that the minimax payoff approximates the maximal value

for any beliefµ whose support is robustly accessible. Now we show that the
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minimax payoff approximates the maximal value for any beliefµ whose support

is transient.

So pick an arbitrary beliefµ whose support is transient. Suppose that the

initial prior is µ and the opponents use the minimax strategysµ
−i . Suppose that

playeri plays the following strategy ˜sµ
i :

• Playeri mixes all actions equally likely each period, until the support of the

posterior belief becomes robustly accessible.

• If the support of the posterior belief becomes robustly accessible, then play

a best reply in the rest of the game.

Intuitively, player i waits until the support of the posterior belief becomes ro-

bustly accessible, and once it happens, she plays a best reply to the opponents’

continuation strategysµt

−i , whereµ t is the belief when the switch happens. (Here

the opponents’ continuation strategy is the minimax strategysµt

−i , since the strat-

egysµ
−i is Markov and induces the minimax strategy in every continuation game.)

Note that playeri’s continuation payoff after the switch is exactly equal to the

minimax payoffvµt

i (sµt

−i). From the previous step, we know that this continuation

payoff approximates the maximal value, regardless of the beliefµ t at the time of

the switch. Then since the switch must happen in finite time with probability one,

playeri’s payoff by playing the above strategy ˜sµ
i also approximates the maximal

value. Formally, we have the following lemma:

Lemma B12. For anyµ whose support is transient,∣∣∣vi(s
µ∗

−i )+(1−δ )−vµ
i (δ , s̃µ

i ,sµ
−i)

∣∣∣
≤ (1−δ 4|Ω|

)4g|Ω|
π∗π4|Ω| +

(1−δ 4|Ω|
)2g|A|4|Ω||Ω|

δ 4|Ω|π(4|Ω|+4|Ω|+4|Ω|)
+

(1−δ )|A|4|Ω||Ω|
π(4|Ω|+4|Ω|+4|Ω|)

.

Proof. The proof is very similar to that of Lemma B11 and hence omitted.Q.E.D.

Note that the strategy ˜sµ
i is not a best reply againstsµ

−i , and hence we have∣∣∣vi(s
µ∗

−i )+(1−δ )−vµ
i (sµ

−i)
∣∣∣ ≤ ∣∣∣vi(s

µ∗

−i )+(1−δ )−vµ
i (δ , s̃µ

i ,sµ
−i)

∣∣∣ .
Then from the lemma above, we can conclude that the minimax payoff for any

belief µ whose support is transient approximates the maximal payoff, as desired.
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B.9 Proof of Proposition 11

The proof technique is quite similar to that of Proposition 9, so here we present

only the outline of the proof. Fixδ andi. Letvµ
i (s−i) denote playeri’s best payoff

againsts−i conditional on the initial priorµ, just as in the proof of Proposition 9.

Let vi be the supremum of the minimax payoffsvµ
i (δ ) over allµ. In what follows,

we call it themaximal valueand show that the minimax payoff for any beliefµ
approximates the maximal value. Pickµ∗ so that the minimax payoffvµ∗

i (δ ) for

this beliefµ∗ approximates the maximal value.

Let µ(ω,a) denote the posterior belief given that in the last period, the hid-

den state wasω and players chosea. Pick an arbitrary robustly accessible state

ω . Suppose that the initial prior isµ∗ and that the opponents use the following

strategy ˜sω
−i :

• Mix all actionsa−i equally, until they observey = ω.

• Once it happens (say in periodt), then from the next periodt +1, they play

the minimax strategysµt+1

−i = sµ(ω,at)
−i .

That is, the opponents wait until the signaly reveals that the state today wasω,

and once it happens, play the minimax strategy in the rest of the game. Suppose

that playeri takes a best reply. Sinceω is robustly accessible, the switch happens

in finite time with probability one, and thus playeri’s payoff is approximately her

expected continuation payoff after the switch. Since the opponents mix all actions

until the switch occurs, her expected continuation payoff is at most

Kω
i = max

ai∈Ai
∑

a−i∈A−i

1
|A−i |

vµ(ω,a)
i (δ ).

Hence her overall payoffvµ∗

i (s̃ω
−i) is approximately at mostKω

i ; the formal proof

is very similar to that of Lemma B11 and hence omitted.

Now, since ˜sω
−i is not the minimax strategysµ∗

−i , playeri’s payoffvµ∗

i (s̃ω
−i) must

be at least the minimax payoffvµ∗

i (δ ), which is approximated byvi . Hence the

above result ensures thatKω
i is approximately at leastvi . On the other hand, by the

definition, we haveKω
i ≤ vi . Taken together,Kω

i must approximate the maximal

valuevi .
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Let aω
i be the maximizer which achievesKω

i . Recall that in the definition of

Kω
i , we take the expected value with respect toa−i assuming thata−i is uniformly

distributed overA−i . We have shown that this expected valueKω
i approximates

the maximal valuevi . Now we claim that the same result holds even if we do not

take the expectation with respect toa−i , that is,v
µ(ω,aω

i ,a−i)
i (δ ) approximates the

maximal valuevi regardless ofa−i . The proof technique is quite similar to Lemma

B5 and hence omitted. Note that the result so far is true for all robustly accessible

statesω. Sov
µ(ω ,aω

i ,a−i)
i (δ ) approximates the maximal valuevi for any a−i and

any globally accessible stateω.

Now we show that the minimax payoff for any beliefµ approximates the max-

imal value. Pick an arbitrary beliefµ, and suppose that the opponents play the

minimax strategysµ
−i . Suppose that playeri plays the following strategysi :

• Mix all actionsai equally, until there is some globally accessible stateω
and timet such thatat

i = aω
i andyt = ω.

• Once it happens, then from the next periodt +1, she plays a best reply.

Since states are weakly communicating, the switch happens in finite time with

probability one. Also, playeri’s continuation payoff after the switch isv
µ(ω,aω

i ,a−i)
i (δ )

for somea−i and some robustly accessibleω , which approximates the maximal

value. Hence playeri’s overall payoff bysi approximates the maximal value,

which ensures that the minimax payoff approximates the maximal value.

B.10 Proof of Proposition A1

We begin with a preliminary lemma: It shows that for each initial stateω and pure

strategy profiles, there is a pure strategys∗ such that if the initial state isω and

players plays∗, the support which arises at any on-path history is the one which

arises in the first 2|Ω| +1 periods when players playeds. Let Ω(ω,ht) denote the

support of the posterior given the initial stateω and the historyht .

Lemma B13. For each stateω and each pure strategy profile s, there is a pure

strategy profile s∗ such that for any history ht with Pr(ht |ω ,s∗) > 0, there is a

natural number̃t ≤ 2|Ω| andh̃t̃ such thatPr(h̃t̃ |ω ,s) > 0 andΩ(ω,ht) = Ω(ω , h̃t̃).
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Proof. Pick ω ands as stated. We focus ons∗ such that players’ action today

depends only on the current support, that is,s∗(ht) = s∗(h̃t̃) if Ω(ω ,ht) = Ω(ω , h̃t̃).
So we denote the action given the supportΩ∗ by s∗(Ω∗). For each supportΩ∗, let

ht be the earliest on-path history withΩ(ω,ht) = Ω∗ when players plays. That is,

chooseht such that Pr(ht |ω ,s) > 0, Ω(ω,ht) = Ω∗, andΩ(ω, h̃t̃) , Ω∗ for all h̃t̃

with t̃ < t. (When suchht does not exist, letht = h0.) Then sets∗(Ω∗) = s(ht). It

is easy to check that this strategy profiles∗ satisfies the desired property.Q.E.D.

Now we prove Proposition A1. Pick an arbitrary singleton set{ω} which is

not asymptotically accessible. It is sufficient to show that this set{ω} is asymp-

totically uniformly transient. (Like Proposition 5, we can show that a superset of

an asymptotically accessible set is asymptotically accessible, and a superset of an

asymptotically uniformly transient set is asymptotically accessible or asymptoti-

cally uniformly transient.) In particular, it is sufficient to show that if the initial

state isω, given any pure strategy profile, the support reaches an asymptotically

accessible set within 2|Ω| +1 periods.

So pick an arbitrary pure strategy profiles. Chooses∗ as in the above lemma.

Let O be the set of supportsΩ∗ which arise with positive probability when the

initial state isω and players plays∗. In what follows, we show that there is an

asymptotically accessible supportΩ∗ ∈O; this implies that{ω} is asymptotically

uniformly transient, because such a supportΩ∗ realizes with positive probability

within 2|Ω| +1 periods when the initial state isω and players plays.

If Ω ∈ O, then the result immediately holds by settingΩ∗ = Ω. So in what

follows, we assumeΩ <O. We prove the existence of an asymptotically accessible

setΩ∗ ∈ O in two steps. In the first step, we show that there isq > 0 andΩ̃∗ ∈ O

such that given any initial priorµ, players can move the belief to the one which

puts probability at leastq on the setΩ̃∗. Then in the second step, we show that

from such a belief (i.e., a belief which puts probability at leastq on Ω∗), players

can move the belief to the one which puts probability at least 1− ε on someΩ∗ ∈
O. Taken together, it turns out that for any initial priorµ, players can move the

belief to the one which puts probability at least 1− ε on the setΩ∗ ∈ O, which

implies asymptotic accessibility ofΩ∗.

The following lemma corresponds to the first step of the proof. It shows that

from any initial belief, players can move the belief to the one which puts proba-
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bility at leastq on the setΩ̃∗.

Lemma B14. There is q> 0 and a setΩ̃∗ ∈ O such that for each initial prior

µ, there is a natural number T≤ |Ω|, an action sequence(a1, · · · ,aT), and a

history hT such thatPr(hT |µ,a1, · · · ,aT) ≥ π |Ω|

|Ω| and∑ω̃∈Ω∗ µ̃(ω̃) ≥ q, whereµ̃ is

the posterior given the initial priorµ and the history hT .

Proof. We first show that there is̃Ω∗ ∈ O which contains at least one globally

accessible statẽω. Suppose not so that all states in any setΩ∗ ∈ O are uniformly

transient. Suppose that the initial state isω∗ and players plays∗. Then the support

of the posterior is always an element ofO, and thus in each periodt, regardless of

the past historyht , the posterior puts probability zero on any globally accessible

stateω. This is a contradiction, because the standard argument shows that the

probability of the state in periodt being uniformly transient converges to zero as

t → ∞.

So there isΩ̃∗ ∈ O which contains at least one globally accessible stateω̃.

Pick suchΩ̃∗ andω̃. Global accessibility ofω̃ ensures that for each initial state

ω̂ ∈ Ω, there is a natural numberT ≤ |Ω|, an action sequence(a1, · · · ,aT), and a

signal sequence(y1, · · · ,yT) such that

Pr(y1, · · · ,yT ,ωT+1 = ω̃|ω̂,a1, · · · ,aT) ≥ πT .

That is, if the initial state isω̂ and players play(a1, · · · ,aT), then the state in

periodT + 1 can be in the setΩ∗ with positive probability. For eacĥω , choose

such(a1, · · · ,aT) and(y1, · · · ,yT), and let

q(ω̂) =
Pr(y1, · · · ,yT ,ωT+1 = ω̃ |ω̂,a1, · · · ,aT)

∑ω1∈Ω Pr(y1, · · · ,yT |ω1,a1, · · · ,aT)
.

By the definition,q(ω̂) > 0 for eachω̂. Let q = minω̂∈Ω q(ω̂) > 0.

In what follows, we show that thisq and the set̃Ω∗ above satisfy the prop-

erty stated in the lemma. Pickµ arbitrarily, and then pickω̂ with µ(ω̂) ≥ 1
|Ω|

arbitrarily. ChooseT, (a1, · · · ,aT), and(y1, · · · ,yT) as stated above. Letµ̃ be the

posterior belief after(a1, · · · ,aT) and(y1, · · · ,yT) given the initial priorµ. Then

µ̃(ω̃) = ∑ω1∈Ω µ(ω1)Pr(y1, · · · ,yT ,ωT+1 = ω̃|ω1,a1, · · · ,aT)
∑ω1∈Ω µ(ω1)Pr(y1, · · · ,yT |ω1,a1, · · · ,aT)

≥ µ(ω̂)Pr(y1, · · · ,yT ,ωT+1 = ω̃|ω̂ ,a1, · · · ,aT)
∑ω1∈Ω Pr(y1, · · · ,yT |ω1,a1, · · · ,aT)

≥ q(ω) ≥ q.
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This implies that the posterior̃µ puts probability at leastq on Ω̃∗, sinceω̃ ∈ Ω̃∗.

Also, the above belief̃µ realizes with probability

Pr(y1, · · · ,yT |µ,a1, · · · ,aT) ≥ µ(ω)Pr(y1, · · · ,yT |ω,a1, · · · ,aT) ≥ πT

|Ω|
≥ π |Ω|

|Ω|
,

as desired. Q.E.D.

ChooseΩ̃∗ ∈ O as in the above lemma. Let ˜s∗ be the continuation strategy of

s∗ given that the current support is̃Ω∗, that is, let ˜s∗ = s∗|ht whereht is chosen

such that Pr(ht |ω∗,s∗) > 0 andΩ(ω∗,ht) = Ω̃∗. (If suchht is not unique, pick one

arbitrarily.) By the definition, if the initial support is̃Ω∗ and players play ˜s∗, the

posterior is an element ofO after every history.

The following lemma corresponds to the second step of the proof. It shows

that if the initial prior puts probability at leastq on the set̃Ω∗ and players play ˜s∗,

then with some probabilityπ∗∗, players learn the support from the realized signals

and the posterior puts 1− ε on some setΩ∗ ∈ O.

Lemma B15. For eachε > 0and q> 0, there is a natural number T , a setΩ∗ ∈O,

and π∗∗ > 0 such that for each initial priorµ with ∑ω̃∈Ω̃∗ µ(ω̃) ≥ q, there is a

history hT such thatPr(hT |µ, s̃∗) > π∗∗ and the posterior̃µ given the initial prior

µ and the history hT satisfies∑ω̃∈Ω∗ µ̃(ω̃) ≥ 1− ε.

Proof. Recall thatΩ <O, so anyΩ∗ ∈ O is a proper subset ofΩ. By the assump-

tion, given anyΩ∗ ∈ O anda, the convex hull of{πω
Y (a)|ω ∈ Ω∗} and that of

{πω
Y (a)|ω <Ω∗} do not intersect. Letκ(Ω∗,a) > 0 be the distance between these

two convex hulls, i.e., ∥∥∥πµ
Y (a)−π

µ
Y (a)

∥∥∥ ≥ κ(Ω∗,a)

for eachµ ∈ △Ω̃∗ andµ ∈ △(Ω \ Ω̃∗). (Here∥ · ∥ denotes the sup norm.) Let

κ > 0 be the minimum ofκ(Ω∗,a) over allΩ∗ ∈ O anda∈ A.

Pick an initial priorµ as stated, that is,µ puts probability at leastq on Ω̃∗. Let

Ω1 = Ω̃∗, and letµ be the marginal distribution onΩ1, that is,µ(ω̃) = µ(ω̃)
∑ω̂∈Ω1 µ(ω̂)

for eachω̃ ∈ Ω1 and µ(ω̃) = 0 for otherω̃ . Likewise, letµ be the marginal

distribution onΩ\Ω1, that is,µ(ω̃) = µ(ω̃)
∑ω̂<Ω1 µ(ω̂) for eachω̃ <Ω1 andµ(ω̃) = 0
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for otherω̃. Let a denote the action profile chosen in period one by ˜s∗. Then by

the definition ofκ , there is a signaly such that

πµ
Y (y|a) ≥ π

µ
Y (y|a)+κ. (14)

Intuitively, (14) implies that the signaly is more likely if the initial state is in the

setΩ1. Hence the posterior belief must put higher weight on the event that the

initial state was inΩ1. To be more precise, letµ2 be the posterior belief in period

two given the initial priorµ, the action profilea, and the signaly. Also, let Ω2

be the support of the posterior in period two given the same history but the initial

prior wasµ rather thanµ. Intuitively, the state in period two must be inΩ2 if the

initial state was inΩ1. Then we have∑ω̃∈Ω2 µ2(ω̃) > ∑ω̃∈Ω1 µ(ω̃) because the

signaly indicates that the initial state was inΩ1.

Formally, this result can be verified as follows. By the definition, if the initial

state is in the set̃Ω∗ and players playa and observey, then the state in period two

must be in the setΩ2. That is, we must have

π ω̃(y, ω̂ |a) = 0 (15)

for all ω̃ ∈ Ω1 andω̂ <Ω2. Then we have

∑ω̃∈Ω2 µ2(ω̃)
∑ω̃<Ω2 µ2(ω̃)

= ∑ω̃∈Ω ∑ω̂∈Ω2 µ(ω̃)π ω̃(y, ω̂|a)
∑ω̃∈Ω ∑ω̂<Ω2 µ(ω̃)π ω̃(y, ω̂|a)

= ∑ω̃∈Ω ∑ω̂∈Ω µ(ω̃)π ω̃(y, ω̂ |a)
∑ω̃<Ω1 ∑ω̂<Ω2 µ(ω̃)π ω̃(y, ω̂ |a)

≥ ∑ω̃∈Ω1 ∑ω̂∈Ω µ(ω̃)π ω̃(y, ω̂|a)
∑ω̃<Ω1 ∑ω̂∈Ω µ(ω̃)π ω̃(y, ω̂|a)

=
πµ

Y (y|a)∑ω̃∈Ω1 µ(ω̃)

π
µ
Y (y|a)∑ω̃<Ω1 µ(ω̃)

≥ 1
1−κ

· ∑ω̃∈Ω1 µ(ω̃)
∑ω̃<Ω1 µ(ω̃)

.

Here, the second equality comes from (15), and the last inequality from (14).

Since 1
1−κ > 1, this implies that the likelihood ofΩ2 induced by the posterior

belief µ2 is greater than the likelihood ofΩ1 induced by the initial priorµ, as

desired. Note also that such a posterior beliefµ2 realizes with probability at least
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qκ , since (14) implies

πµ
Y (y|a) ≥ qπµ

Y (y|a) ≥ qκ.

We apply a similar argument to the posterior belief in period three: Assume

that period one is over and the outcome is as above, so the belief in period two is

µ2. Let µ2 be the marginal distribution ofµ2 on Ω2, and letµ2 be the marginal

distribution onΩ \Ω2. Let a2 be the action profile chosen in period two by ˜s∗

after the signaly in period one. Then choose a signaly2 so thatπµ2

Y (y2|a2) ≥

π
µ2

Y (y2|a2)+ κ , and letµ3 be the posterior belief in period three after observing

y2 in period two. Then as above, we can show that

∑ω̃∈Ω3 µ3(ω̃)
∑ω̃<Ω3 µ3(ω̃)

≥ 1
1−κ

· ∑ω̃∈Ω2 µ2(ω̃)
∑ω̃<Ω2 µ2(ω̃)

≥
(

1
1−κ

)2 ∑ω̃∈Ω µ(ω̃)
∑ω̃<Ω µ(ω̃)

whereΩ3 is the support of the posterior if the initial support wasΩ1 and players

play s̃∗ and observe the signaly and theny2. The probability of this signal is again

at leastqκ .

Iterating this argument, we can prove that for any natural numberT, there is

a signal sequence(y1, · · · ,yT) and a setΩT+1 such that if players play the profile

s̃∗, the signal sequence realizes with probability at leastπ∗∗ = (qκ)T , and the

posterior beliefµT+1 satisfies

∑ω̃∈ΩT+1 µT+1(ω̃)
∑ω̃<ΩT+1 µT+1(ω̃)

≥
(

1
1−κ

)T

· ∑ω̃∈Ω1 µ(ω̃)
∑ω̃<Ω1 µ(ω̃)

≥
(

1
1−κ

)T q
1−q

.

Note that the setΩT+1 is an element ofO, by the construction.

Now, chooseε > 0 andq > 0 arbitrarily, and then pickT large enough that

( 1
1−κ )T q

1−q ≥ 1−ε
ε . Then the above posterior beliefµT+1 puts probability at least

1− ε on ΩT+1 ∈ O. So by lettingΩ∗ = ΩT+1, the result holds. Q.E.D.

Fix ε > 0 arbitrarily. Chooseq and Ω̃∗ as stated in Lemma B14, and then

chooseΩ∗, T, andπ∗∗ as stated in Lemma B15. Then the above two lemmas

ensure that given any initial priorµ, there is an action sequence with lengthT∗ ≤
|Ω|+ T such that with probability at leastπ∗ = π |Ω|π∗∗

|Ω| , the posterior belief puts

probability at least 1− ε on Ω∗. Since the bounds|Ω|+T andπ∗∗ do not depend

on the initial priorµ, this shows thatΩ∗ is asymptotically accessible. Then{ω}
is asymptotically uniformly transient, asΩ∗ ∈ O.
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B.11 Proof of Proposition A2: Score and Asymptotic Connect-

edness

Fix δ andλ . Let sµ andω be as in the proof of Proposition 6. We begin with two

preliminary lemmas. The first lemma shows that the score is Lipschitz continuous

with respect toµ.

Lemma B16. For any ε ∈ (0, 1
|Ω|), µ, and µ̃ with |µ(ω̃)− µ̃(ω̃)| ≤ ε for each

ω̃ ∈ Ω, ∣∣∣λ ·vµ(δ ,sµ)−λ ·vµ̃(δ ,sµ̃)
∣∣∣ ≤ εg|Ω|.

Proof. Without loss of generality, assume thatλ ·vµ(δ ,sµ) ≥ λ ·vµ̃(δ ,sµ̃). Then∣∣∣λ ·vµ(δ ,sµ)−λ ·vµ̃(δ ,sµ̃)
∣∣∣ ≤ ∣∣∣λ ·vµ(δ ,sµ)−λ ·vµ̃(δ ,sµ)

∣∣∣
=

∣∣∣∣∣ ∑
ω̃∈Ω

µ(ω̃)λ ·vω̃(δ ,sµ)− ∑
ω̃∈Ω

µ̃(ω̃)λ ·vω̃(δ ,sµ)

∣∣∣∣∣
≤ ∑

ω̃∈Ω
λ ·vω̃(δ ,sω̃) |µ(ω̃)− µ̃(ω̃)| .

Sinceλ ·vω̃(δ ,sω̃) ≤ g and|µ(ω̃)− µ̃(ω̃)| ≤ ε, the result follows. Q.E.D.

The second preliminary lemma is a counterpart to Lemma B4; it shows that

the action sequence in the definition of asymptotic accessibility can be replaced

with fully mixed actions. The proof is similar to that of Lemma B4 and hence

omitted.

Lemma B17. Suppose that players randomize all actions equally each period.

Then for anyε > 0, there is a natural number T andπ∗ > 0 such that given any

initial prior µ and any asymptotically accessible setΩ∗, there is a natural number

T∗ ≤ T andµ̃ such that the probability ofµT∗+1 = µ̃ is at leastπ∗, and such that

∑ω∈Ω∗ µ̃(ω) ≥ 1− ε.

Since there are only finitely many subsetsΩ∗ ⊂Ω, there isπ̃∗ > 0 such that for

each asymptotically uniformly transientΩ∗, π̃∗ satisfies the condition stated in the

definition of asymptotic uniform transience. Pick suchπ̃∗ > 0. Pickε ∈ (0, 1
|Ω|)

arbitrarily. Then choose a natural numberT andπ∗ > 0 as in Lemma B17.

For each setΩ∗, let△Ω∗(ε) denote the set of beliefsµ such that∑ω̃∈Ω∗ µ(ω̃)≥
1− ε.
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B.11.1 Step 1: Scores for All Beliefs inΩ∗(ε)

In this step, we prove the following lemma, which shows that there is an asymp-

totically accessible setΩ∗ such that the score for any beliefµ ∈△Ω∗(ε) approx-

imates the maximal score.

Lemma B18. There is an asymptotically accessible setΩ∗ such that for anyµ ∈
△Ω∗, ∣∣∣λ ·vω(δ ,sω)−λ ·vω̃(δ ,s∗)

∣∣∣ ≤ (1−δ T)2g

δ TπT π̃∗ +
εg|Ω|

π̃∗ .

Then from Lemma B16, there is an asymptotically accessible setΩ∗ such that for

anyµ ∈△Ω∗(ε),

|λ ·vω(δ ,sω)−λ ·vµ(δ ,s∗)| ≤ (1−δ T)2g

δ TπT π̃∗ +
2εg|Ω|

π̃∗ .

Proof. Since the game is asymptotically uniformly connected,{ω} is either asymp-

totically accessible or asymptotically uniformly transient. We first consider the

case in which it is asymptotically accessible. LetΩ∗ = {ω}. Then thisΩ∗ sat-

isfies the desired property, as it contains only the beliefµ = ω , and the score for

this belief is exactly equal to the maximal score.

Next, consider the case in which{ω} is asymptotically uniformly transient. In

this case, there is an asymptotically accessible setΩ∗, a natural numberT∗ ≤ T,

and a signal sequence(y1, · · · ,yT∗
) such that if the initial state isω and players

play sω , then the signal sequence(y1, · · · ,yT∗
) appears with positive probability

and the resulting posterior beliefµ∗ satisfies∑ω̃∈Ω∗ µ∗[ω̃]≥ 1−ε andµ∗[ω̃]≥ π̃∗

for all ω̃ ∈ Ω∗. Take suchΩ∗, T∗, and(y1, · · · ,yT∗
). Then as in the proof of

Lemma B5, we can prove that∣∣∣λ ·vω(δ ,sω)−λ ·vµ∗
(δ ,sµ∗

)
∣∣∣ ≤ (1−δ T)2g

δ TπT . (16)

That is, the score with the initial priorµ∗ is close to the maximal score. The only

difference from Lemma B5 is to replace 2|Ω| with T.

Since∑ω̃∈Ω∗ µ∗[ω̃] ≥ 1− ε andµ∗[ω̃] ≥ π̃∗ for all ω̃ ∈ Ω∗, there is a belief

µ̃∗ whose support isΩ∗ such thatµ̃∗[ω̃] ≥ π̃∗ for all ω̃ ∈ Ω∗, and such that̃µ∗
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is ε-close toµ∗ in that max̃ω∈Ω |µ∗(ω̃)− µ̃∗(ω̃)| ≤ ε. Lemma B16 implies that

these two beliefsµ∗ andµ̃∗ induce similar scores, that is,∣∣∣λ ·vµ∗
(δ ,sµ∗

)−λ ·vµ̃∗
(δ ,sµ̃∗

)
∣∣∣ ≤ εg|Ω|.

Plugging this into (16), we obtain∣∣∣λ ·vω(δ ,sω)−λ ·vµ̃∗
(δ ,sµ̃∗

)
∣∣∣ ≤ (1−δ T)2g

δ TπT + εg|Ω|.

That is, the score for the belief̃µ∗ approximates the maximal score. Then using

Lemma B3, we can get the desired inequality. Q.E.D.

B.11.2 Step 2: Score for All Beliefs

Here we show that for any beliefµ, the score approximates the maximal score.

To do so, for each initial beliefµ, consider the following strategy profile ˜sµ :

• Players randomize all actions equally likely, until the posterior belief be-

comes an element of△Ω∗(ε).

• Once the posterior belief becomes an element of△Ω∗(ε) in some periodt,

then players playsµt
in the rest of the game. They do not change the play

after that.

Intuitively, players randomize all actions and wait until the belief reaches△Ω∗(ε);
and once it happens, they switch the play to the optimal policysµt

in the continu-

ation game. Lemma B18 guarantees that the continuation play after the switch to

sµt
approximates the maximal scoreλ ·vω(δ ,sω). Also, Lemma B17 ensures that

the waiting time until this switch occurs is finite with probability one. Hence for

δ close to one, the strategy profile ˜sµ approximates the maximal score when the

initial prior is µ. Formally, we have the following lemma.

Lemma B19. For eachµ,

|λ ·vω(δ ,sω)−λ ·vµ(δ , s̃µ)| ≤ (1−δ T)2g

δ TπT π̃∗ +
(1−δ T)3g

π∗ +
2εg|Ω|

π̃∗ .

Proof. The proof is essentially the same as that of Lemma B6; we simply replace

4|Ω| in the proof of Lemma B6 withT, and use Lemma B18 instead of Lemma

B5. Q.E.D.
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Note that

λ ·vω(δ ,sω) ≥ λ ·vµ(δ ,sµ) ≥ λ ·vµ(δ , s̃µ),

that is, the score forµ is at leastλ · vµ(δ , s̃µ) and is at most the maximal score.

Then from Lemma B19,

|λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ)| ≤ |λ ·vω(δ ,sω)−λ ·vµ(δ , s̃µ)|

≤ (1−δ T)2g

δ TπT π̃∗ +
(1−δ T)3g

π∗ +
2εg|Ω|

π̃∗ .

Recall thatT andπ∗ depend onε but not onδ or λ . Note also that̃π∗ does not

depend onε, δ , or λ . Hence the above inequality implies that the left-hand side

can be arbitrarily small for allλ , if we takeε close to zero and then takeδ close

to one. This proves the lemma.

Appendix C: Uniform Connectedness in Terms of Primitives

In Section 5.1, we have provided the definition of uniform connectedness. We give

an alternative definition of uniform connectedness, and some technical results. We

begin with global accessibility.

Definition C1. A subsetΩ∗ ⊆ Ω is globally accessibleif for each stateω ∈ Ω,

there is a natural numberT ≤ 4|Ω|, an action sequence(a1, · · · ,aT), and a signal

sequence(y1, · · · ,yT) such that the following properties are satisfied:20

(i) If the initial state isω and players play(a1, · · · ,aT), then the sequence

(y1, · · · ,yT) realizes with positive probability. That is, there is a state se-

quence(ω1, · · · ,ωT+1) such thatω1 = ω andπωt
(yt ,ω t+1|at) > 0 for all

t ≤ T.
20 As argued, restricting attention toT ≤ 4|Ω| is without loss of generality. To see this, pick a

subsetΩ∗ ⊆ Ω andω arbitrarily. Assume that there is a natural numberT > 4|Ω| so that we can
choose(a1, · · · ,aT) and(y1, · · · ,yT) which satisfy (i) and (ii) in Definition C1. For eacht ≤ T
and ω̃ ∈ Ω, let Ωt(ω̃) be the support of the posterior belief given the initial stateω̃, the action
sequence(a1, · · · ,at), and the signal sequence(y1, · · · ,yt). SinceT > 4|Ω|, there aret and t̃ > t
such thatΩt(ω̃) = Ωt̃(ω̃) for all ω̃. Now, consider the action sequence with lengthT − (t̃ − t),
which is constructed by deleting(at+1, · · · ,at̃) from the original sequence(a1, · · · ,aT). Similarly,
construct the signal sequence with lengthT − (t̃ − t). Then these new sequences satisfy (i) and
(ii) in Definition C1. We can repeat this procedure to show the existence of sequences with length
T ≤ 4|Ω| which satisfy (i) and (ii).
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(ii) If players play(a1, · · · ,aT) and observe(y1, · · · ,yT), then the state in period

T +1 must be in the setΩ∗, regardless of the initial statêω (possiblyω̂ ,ω).

That is, for eachω̂ ∈ Ω andω̃ < Ω∗, there is no sequence(ω1, · · · ,ωT+1)
such thatω1 = ω̂, ωT+1 = ω̃, andπωt

(yt ,ω t+1|at) > 0 for all t ≤ T.

As the following proposition shows, the definition of globally accessibility

here is indeed equivalent to the one stated using beliefs.

Proposition C1. Definitions 2 and C1 are equivalent.

Proof. We first show that global accessibility in Definition C1 implies the one in

Definition 2. Take a setΩ∗ which is globally accessible in the sense of Definition

C1, and fix an arbitrarily initial priorµ. Note that there is at least oneω such that

µ(ω) ≥ 1
|Ω| , so pick suchω, and then pick(a1, · · · ,aT) and(y1, · · · ,yT) as stated

in Definition C1. Suppose that the initial prior isµ and players play(a1, · · · ,aT).
Then clause (i) of Definition C1 guarantees that the signal sequence(y1, · · · ,yT)
appears with positive probability. Also, clause (ii) ensures that the support of the

posterior beliefµT+1 after observing this signal sequence is a subset ofΩ∗, i.e.,

µT+1(ω̃) = 0 for all ω̃ < Ω∗.21 Note that the probability of this signal sequence

(y1, · · · ,yT) is at least

µ(ω)Pr(y1, · · · ,yT |ω ,a1, · · · ,aT) ≥ 1
|Ω|

πT ≥ 1
|Ω|

π4|Ω|
> 0,

where Pr(y1, · · · ,yT |ω,a1, · · · ,aT) denotes the probability of the signal sequence

(y1, · · · ,yT) given the initial stateω and the action sequence(a1, · · · ,aT). This

implies that global accessibility in Definition C1 implies the one in Definition 2,

by lettingπ∗ ∈ (0, 1
|Ω|π

4|Ω|
).

Next, we show that the converse is true. LetΩ∗ be a globally accessible set

in the sense of Definition 2. Pickπ∗ > 0 as stated in Definition 2, and pickω
arbitrarily. Letµ be such thatµ(ω) = 1− π∗

2 andµ(ω̃) = π∗

2(|Ω|−1) for eachω̃ ,ω.

SinceΩ∗ is globally accessible, we can choose an action sequence(a1, · · · ,aT)
and a beliefµ̃ whose support is included inΩ∗ such that

Pr(µT+1 = µ̃|µ,a1, · · · ,aT) ≥ π∗. (17)

21The reason is as follows. From Bayes’ rule,µT+1(ω̃) > 0 only if Pr(y1, · · · ,yT ,ωT+1 =
ω̃ |ω̂ ,a1, · · · ,aT) > 0 for someω̂ with µ(ω̂) > 0. But clause (ii) asserts that the inequality does
not hold for allω̂ ∈ Ω andω̃ <Ω∗.
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Let (y1, · · · ,yT) be the signal sequence which induces the posterior beliefµ̃
given the initial priorµ and the action sequence(a1, · · · ,aT). Such a signal se-

quence may not be unique, so letŶt be the set of these signal sequences. Then

(17) implies that

∑
(y1,··· ,yT)∈ŶT

Pr(y1, · · · ,yT |µ,a1, · · · ,aT) ≥ π∗.

Arranging,

∑
(y1,··· ,yT)∈ŶT

∑
ω̃∈Ω

µ(ω̃)Pr(y1, · · · ,yT |ω̃ ,a1, · · · ,aT) ≥ π∗.

Pluggingµ(ω̃) = π∗

2(|Ω|−1) and∑(y1,··· ,yT)∈ŶT Pr(y1, · · · ,yT |ω̃,a1, · · · ,aT) ≤ 1 into

this inequality,

∑
(y1,··· ,yT)∈ŶT

µ(ω)Pr(y1, · · · ,yT |ω,a1, · · · ,aT)+
π∗

2
≥ π∗

so that

∑
(y1,··· ,yT)∈ŶT

µ(ω)Pr(y1, · · · ,yT |ω,a1, · · · ,aT) ≥ π∗

2
.

Hence there is some(y1, · · · ,yT)∈ ŶT which can happen with positive probability

given the initial stateω and the action sequence(a1, · · · ,aT). Obviously this se-

quence(y1, · · · ,yT) satisfies clause (i) in Definition C1. Also it satisfies clause (ii)

in Definition C1, since(y1, · · · ,yT) induces the posterior belief̃µ whose support

is Ω∗, given the initial priorµ whose support is the whole spaceΩ. Sinceω can

be arbitrarily chosen, the proof is completed. Q.E.D.

Next, we give the definition of uniform transience in terms of primitives. With

an abuse of notation, for each pure strategy profiles, let s(y1, · · · ,yt−1) denote

the pure action profile induced bys in periodt when the past signal sequence is

(y1, · · · ,yt−1).

Definition C2. A singleton set{ω} is uniformly transientif it is not globally

accessible and for any pure strategy profiles, there is a globally accessible setΩ∗,

a natural numberT ≤ 2|Ω|, and a signal sequence(y1, · · · ,yT) such that for each
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ω̃ ∈ Ω∗, there is a state sequence(ω1, · · · ,ωT+1) such thatω1 = ω, ωT+1 = ω̃,

andπωt
(yt ,ω t+1|s(y1, · · · ,yt−1)) > 0 for all t ≤ T.22

In words,{ω} is uniformly transient if the support of the belief cannot stay

there forever given any strategy profile; that is, the support of the belief must reach

some globally accessible setΩ∗ at some point in the future.23 It is obvious that

the definition of uniform transience above is equivalent to Definition 3, except that

here we consider only singleton sets{ω}.

Now we are ready to give the definition of uniform connectedness:

Definition C3. A stochastic game isuniformly connectedif each singleton set

{ω} is globally accessible or uniformly transient.

In this definition, we consider only singleton sets{ω}. However, as shown

by Proposition 5, if each singleton set{ω} is globally accessible or uniformly

transient, then any subsetΩ∗ ⊆ Ω is globally accessible or uniformly transient.

Hence the above definition is equivalent to the one stated using beliefs.

Before we conclude this appendix, we present two propositions, which hope-

fully help our understanding of uniformly transient sets. The first proposition

shows that if the game is uniformly connected, then the probability of the sup-

port moving from a uniformly transient set to a globally accessible set is bounded

away from zero uniformly in the current belief. (The proposition considers a spe-

cial class of uniformly transient sets; it considers a uniformly transient setΩ∗

such that any non-empty subset ofΩ∗ is also uniformly transient. However, this

is a mild restriction, and when the game is uniformly connected, any uniformly

transient setΩ∗ satisfies this condition. Indeed, uniform connectedness ensures

that any subset of a uniformly transient setΩ∗ is globally accessible or uniformly

transient, and Proposition 5 guarantees that they are all uniformly transient.)

22Restricting attention toT ≤ 2|Ω| is without loss of generality. To see this, suppose that there
is a strategy profiles and an initial priorµ whose support isΩ∗ such that the probability that the
support of the posterior belief reaches some globally accessible set within period 2|Ω| is zero. Then
as in the proof of Lemma B13, we can construct a strategy profiles∗ such that if the initial prior is
µ and players plays∗, the support of the posterior belief never reaches a globally accessible set.

23While we consider an arbitrary strategy profiles in the definition of uniform transience, in
order to check whether a set{ω} is uniformly transient or not, what matters is the belief evolution
in the first 2|Ω| periods only, and thus we can restrict attention to 2|Ω|-period pure strategy profiles,
Hence the verification of uniform transience of each set{ω} can be done in finite steps.
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Proposition C2. Let Ω∗ be a uniformly transient set such that any non-empty

subset ofΩ∗ is also uniformly transient. Then there isπ∗ > 0 such that for any

initial prior µ with supportΩ∗ and for any pure strategy profile s, there is a

natural number T≤ 2|Ω| and a beliefµ̃ whose support is globally accessible such

thatPr(µT+1 = µ̃|µ,s) > π∗.

Proof. Pick Ω∗ and µ as stated. Pick an arbitrary pure strategy profiles. It is

sufficient to show that given the initial priorµ and the profiles, the support of

the posterior belief will reach a globally accessible set with probability at least

π∗ = π2|Ω|

|Ω| .

Take a stateω such thatµ(ω) ≥ 1
|Ω| . By the definition ofΩ∗, the singleton set

{ω} is uniformly transient.

Consider the case in which the initial prior puts probability one onω , and

players plays. Since{ω} is uniformly transient, there is a natural numberT ≤ 2|Ω|

and a historyhT such that the historyhT appears with positive probability and the

support of the posterior belief after this historyhT is globally accessible. Take

such a historyhT , and letΩ̃∗ be the support of the posterior belief. Note that this

history appears with probability at leastπT given the initial stateω and the profile

s.

Now, consider the case in which the initial prior isµ (rather than the known

stateω) and players plays. Still the historyhT occurs with positive probability,

becauseµ puts positive probability onω. Note that its probability is at least

µ(ω)πT ≥ π2|Ω|

|Ω| = π∗. Note also that the support after the historyhT is globally

accessible, because it is a superset of the globally accessible setΩ̃∗. Hence if the

initial prior is µ and players plays, the support of the posterior belief will reach a

globally accessible set with probability at leastπ∗, as desired. Q.E.D.

The next proposition shows that if the support of the current belief is uniformly

transient, then the support cannot return to the current one forever with positive

probability.24 This in turn implies that the probability of the support being uni-

24Here is an example in which the support moves from a globally accessible set to a uniformly
transient set. Suppose that there are two states,ω1 andω2, and that the stateω2 is absorbing.
Specifically, the next state isω2 with probability 1

2 if the current state isω1, while the state tomor-
row is ω2 for sure if the current state isω1. There are three signals,y1, y2, andy3, and the signal
is correlated with the state tomorrow. If the state tomorrow isω1, the signalsy1 andy3 realize
with probability 1

2 each. Likewise, If the state tomorrow isω2, the signalsy2 andy3 realize with
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formly transient in periodT is approximately zero whenT is large enough. So

when we think about the long-run evolution of the support, the time during which

the support stays at uniformly transient sets is almost negligible. LetX(Ω∗|µ,s)
be the random variableX which represents the first time in which the support of

the posterior belief isΩ∗ given that the initial prior isµ and players plays. That

is, let

X(Ω∗|µ,s) = inf{T ≥ 2 with suppµT = Ω∗|µ,s}.

Let Pr(X(Ω∗|µ,s) < ∞) denote the probability that the random variable is finite;

i.e., it represents the probability that the support reachesΩ∗ in finite time.

Proposition C3. Let Ω∗ be a uniformly transient set such that any non-empty

subset ofΩ∗ is also uniformly transient. Then there isπ∗ > 0 such that for any

initial prior µ whose support isΩ∗, and any pure strategy profile s,

Pr(X(Ω∗|µ,s) < ∞) < 1−π∗.

Proof. Suppose not so that for anyε > 0, there is a pure strategy profiles and a

belief µ whose support isΩ∗ such that Pr(X(Ω∗|µ,s) < ∞) ≥ 1− ε.

Pick ε > 0 small so thatπ2|Ω|
> ε|Ω|

π2|Ω| , and chooses and µ as stated above.

Chooseω ∈ Ω∗ such thatµ(ω) ≥ 1
|Ω| . Suppose that the initial state isω and

players plays. Let X∗(Ω∗|ω,s) be the random variable which represents the

first time in which the support of the posterior belief isΩ∗ or its subset. Since

Pr(X(Ω∗|µ,s) < ∞) ≥ 1− ε, we must have

Pr(X∗(Ω∗|ω,s) < ∞) ≥ 1− ε
µ(ω)

≥ 1− ε |Ω|.

That is, given the initial stateω and the strategy profiles, the support must reach

Ω∗ or its subset in finite time with probability close to one.

By the definition ofΩ∗, the singleton set{ω} is uniformly transient. So

there isT ≤ 2|Ω| andµ̃ whose support is globally accessible such that Pr(µT+1 =
µ̃|ω ,s) > 0. Pick such a posterior beliefµ̃ and lets̃ be the continuation strategy

after that history. Let̃Ω∗ denote the support of̃µ. Sinceµ̃ is the posterior induced

probability 1
2 each. Soy1 andy2 reveal the state tomorrow. It is easy to check that{ω2} andΩ are

globally accessible, and{ω1} is uniformly transient. If the current belief isµ = (1
2, 1

2), then with
positive probability, the current signal reveals that the state tomorrow isω1, so the support of the
posterior belief moves to the uniformly transient set{ω1}.
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from the initial stateω , we have Pr(µT+1 = µ̃|ω ,s) ≥ π2|Ω|
andµ̃(ω̃) ≥ π2|Ω|

for

all ω̃ ∈ Ω̃∗.

Since Pr(µT+1 = µ̃|ω,s) ≥ π2|Ω|
and Pr(X∗(Ω∗|ω,s) < ∞) ≥ 1− ε|Ω|, we

must have

Pr(X∗(Ω∗|µ̃, s̃) < ∞) ≥ 1− ε|Ω|
π2|Ω| .

That is, given the initial belief̃µ and the strategy profile ˜s, the support must reach

Ω∗ or its subset in finite time with probability close to one. Then sinceµ̃(ω̃) ≥
π2|Ω|

> ε|Ω|
π2|Ω| for eachω̃ ∈ Ω̃∗, we can show that for each stateω̃ ∈ Ω̃∗, there is a

natural numberT ≤ 4|Ω|, an action sequence(a1, · · · ,aT), and a signal sequence

(y1, · · · ,yT) such that the following properties are satisfied:

(i) If the initial state isω̃ and players play(a1, · · · ,aT), then the sequence

(y1, · · · ,yT) realizes with positive probability.

(ii) If players play(a1, · · · ,aT) and observe(y1, · · · ,yT), then the state in period

T +1 must be in the setΩ∗, for any initial stateω̂ ∈ Ω̃∗ (possiblyω̂ , ω̃).

This result implies that for any initial belief̂µ ∈ △Ω̃∗ players can move the sup-

port toΩ∗ or its subset with positive probability, and this probability is bounded

away from zero uniformly in̂µ; the proof is very similar to that of Proposition C1

and hence omitted. This and global accessibility ofΩ̃∗ imply thatΩ∗ is globally

accessible, which is a contradiction. Q.E.D.

Appendix D: Existence of Maximizers

Lemma D1. For each initial prior µ, discount factorδ , and s−i , player i’s best

reply si exists.

Proof. The formal proof is as follows. Pickµ, δ , ands−i . Let l∞ be the set of all

functions (bounded sequences)f : H → R. For each functionf ∈ l∞, let T f be a

function such that

(T f)(ht)= max
ai∈Ai

[
(1−δ )gµ̃(ht)

i (ai ,s−i(ht))+δ ∑
a−i∈A−i

∑
y∈Y

s−i(ht)[a−i ]π
µ̃(ht)
Y (y|a) f (ht ,a,y)

]
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whereµ̃(ht) is the posterior belief ofω t+1 given the initial priorµ and the history

ht . Note thatT is a mapping froml∞ to itself, and thatl∞ with the sup norm is a

complete metric space. AlsoT is monotonic, since(T f)(µ) ≤ (T f̃ )(µ) for all µ
if f (µ)≤ f̃ (µ) for all µ. MoreoverT is discounting, because letting( f +c)(µ) =
f (µ)+ c, the standard argument shows thatT( f +c)(µ) ≤ (T f)(µ)+ δc for all

µ. Then from Blackwell’s theorem, the operatorT is a contraction mapping and

thus has a unique fixed pointf ∗. The corresponding action sequence is a best

reply tos−i . Q.E.D.

Lemma D2. maxv∈Vµ (δ ) λ ·v has a solution.

Proof. Identical with that of the previous lemma. Q.E.D.

Lemma D3. There is s−i which solvesmins−i∈S−i maxsi∈Si v
µ
i (δ ,s).

Proof. The formal proof is as follows. Pickµ andδ , and letht andl∞ be as in the

proof of Lemma D1. For each functionf ∈ l∞, let T f be a function such that

(T f)(ht)= min
α−i∈× j,i△A j

max
ai∈Ai

[
(1−δ )gµ̃(ht)

i (ai ,α−i)+δ ∑
a−i∈A−i

∑
y∈Y

α−i(a−i)π
µ̃(ht)
Y (y|a) f (ht ,a,y)

]

whereµ̃(ht) is the posterior belief ofω t+1 given the initial priorµ and the history

ht . Note thatT is a mapping froml∞ to itself, and thatl∞ with the sup norm is a

complete metric space. AlsoT is monotonic, because iff (ht) ≤ f̃ (ht) for all ht ,

then we have

(T f)(ht) ≤ max
ai∈Ai

[
(1−δ )gµ̃(ht)

i (ai ,α−i)+δ ∑
a−i∈A−i

∑
y∈Y

α−i(a−i)π
µ̃(ht)
Y (y|a) f (ht ,a,y)

]

≤ max
ai∈Ai

[
(1−δ )gµ̃(ht)

i (ai ,α−i)+δ ∑
a−i∈A−i

∑
y∈Y

α−i(a−i)π
µ̃(ht)
Y (y|a) f̃ (ht ,a,y)

]

for all α−i andht , which implies(T f)(ht) ≤ (T f̃ )(ht) for all ht . Moreover,T is

discounting as in the proof of Lemma D1. Then from Blackwell’s theorem, the

operatorT is a contraction mapping and thus has a unique fixed pointf ∗. The

corresponding action sequence is the minimizers−i . Q.E.D.
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Appendix E: Hsu, Chuang, and Arapostathis (2006)

Hsu, Chuang, and Arapostathis (2006) claims that their Assumption 4 implies

their Assumption 2. However it is incorrect, as the following example shows.

Suppose that there is one player, two states (ω1 andω2), two actions (a and

ã), and three signals (y1, y2, andy3). If the current state isω1 anda is chosen,

(y1,ω1) and(y2,ω2) occur with probability1
2-1

2. The same thing happens if the

current state isω2 and ã is chosen. Otherwise,(y3,ω1) and(y3,ω2) occur with

probability 1
2-1

2. Intuitively, y1 shows that the next state isω1 andy2 shows that

the next state isω2, while y3 is not informative about the next state. And as long

as the action matches the current state (i.e.,a for ω1 andã for ω2), the signaly3

never happens so that the state is revealed each period. A stage-game payoff is 0

if the current signal isy1 or y2, and−1 if y3.

Suppose that the initial prior puts probability one onω1. The optimal policy

asks to choosea in period one and any periodt with yt−1 = y1, and asks to choose

ã in any periodt with yt−1 = y2. If this optimal policy is used, then it is easy

to verify that the support of the posterior is always a singleton set and thus their

Assumption 2 fails. On the other hand, their Assumption 4 holds by lettingk0 = 2.

This shows that Assumption 4 does not imply Assumption 2.

To fix this problem, the minimum with respect to an action sequence in As-

sumption 4 should be replaced with the minimum with respect to a strategy. The

modified version of Assumption 4 is more demanding than uniform connectedness

in this paper.
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