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Abstract

This paper studies how persistence can be used to create incentives in a

continuous-time stochastic game in which a long-run player interacts with a se-

quence of short-run players. Observation of the long-run player’s actions are

distorted by a Brownian motion and the actions of both players impact future

payoffs through a state variable. For example, a firm or worker provides cus-

tomers with a product, and the quality of this product depends on both current

and past investment choices by the firm. I derive general conditions under which

a Markov equilibrium emerges as the unique perfect public equilibrium, and char-

acterize the equilibrium payoff and actions in this equilibrium, for any discount

rate. I develop an application of persistent product quality to illustrate how per-

sistence creates effective intertemporal incentives in a setting where traditional

channels fail, and explore how the structure of persistence impacts equilibrium

behavior. This demonstrates the power of the continuous-time setting to deliver

sharp insights and a tractable equilibrium characterization for a rich class of

dynamic games.
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1 Introduction

Past choices play a central role in determining current and future profitability. For

example, a worker’s rating on a platform depends on the quality of service she has

provided to previous customers. A firm’s ability to make high quality products is

a function not only of its effort today, but also its past investments in developing

technology and training its workforce. A government’s success in achieving an objective

depends on both past and current policy choices. When actions have a persistent

effect on key features of subsequent interactions, and in turn, these features impact

earnings, this strengthens incentives to earn and maintain a good rating, develop a

quality product or implement a certain policy.

This paper studies how persistence can be used to create incentives in a continuous-

time stochastic game in which a long-run player, such as a worker, firm or government,

interacts with a sequence of short-run players, such as customers or constituents, and

the long-run player’s action is imperfectly observed – it is distorted by Brownian mo-

tion. Persistence refers to the fact that actions noisily impact an observable state

variable, such as a worker’s rating, a firm’s product quality or a government’s policy

objective, and this state variable influences payoffs. It can capture either an endoge-

nous design choice at the beginning of the game, such as how a rating system aggregates

past signals and how a worker is rewarded for a good rating, or an exogenous feature of

the environment, such as how past investment influences quality or how past policies

map into current outcomes.

I establish general conditions under which a Markov equilibrium emerges as the

unique perfect public equilibrium (PPE) in this class of stochastic games, and char-

acterize the equilibrium payoffs and actions, for any discount rate. This is a powerful

result – in contrast to a folk theorem, it determines what type of equilibria one expects

to emerge in such settings and what type of behavior will generate a given payoff.

In earlier related work, Faingold and Sannikov (2011) establish a similar result when

short-run players have incomplete information about the long-run player’s type and the

state is the belief that the long-run player is committed to choosing a certain action.

The tractability of the continuous-time setting yields sharp insights into how incen-

tives and payoffs depend on the structure of persistence, such as the depreciation rate

of investment, and how the dynamics of behavior depend on observable outcomes, such

as the rating of a restaurant or the current level of a policy indicator. The equilibrium

characterization can be used to address important design questions, such as designing
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the optimal reward structure of a rating platform or determining the optimal durability

for a production technology, and how these design choices depend on the patience of

the long-run player. In Section 2, I provide a specific example of these insights in an

application where a firm’s quality depends on both current and past investments.

Recent results on repeated games between a long-run and short-run player (Faingold

and Sannikov 2011; Fudenberg and Levine 2007) show that the intersection of noise

in monitoring and instantaneous adjustment of actions create a genuine challenge in

providing intertemporal incentives.1 Surprisingly, in the analogue of this paper with

no persistence, the long-run player cannot earn an equilibrium payoff above the best

static Nash payoff. Skrzypacz and Sannikov (2007) show that this issue also arises

in games between multiple long-run players in which deviations between individual

players are indistinguishable. In contrast, the equilibrium characterization in this paper

demonstrates that persistence creates effective intertemporal incentives and enables

the long-run player to earn payoffs above the static Nash. This higher payoff stems

from both the incentive to invest in building the state and from non-myopic strategic

interaction with the short-run players.

The literature on reputation with behavioral types is another important and well-

understood mechanism of how to overcome moral hazard in similar settings (Faingold

and Sannikov 2011; Fudenberg and Levine 1989, 1992). If consumers believe that there

is a chance that the firm is committed to choosing high effort, then the firm will be able

to charge a higher price for its product and earn positive profit. A consumer is willing

to pay a higher purchase price to a firm with a high reputation (defined as the belief

that it is the commitment type), as she believes that there is a very high likelihood that

the firm is exogenously committed to providing high quality. Incomplete information

creates a form of persistence, as the short-run players’ beliefs depend on past action

choices. However, fixing a strategic firm’s patience, such reputation effects vanish in

the ex-ante probability of behavioral types, and so the effectiveness of this persistence

via reputation requires a non-trivial fraction of behavioral types.2

The connection with the reputational literature motivates several key insights.

1Abreu, Milgrom, and Pearce (1991) first examined incentives in repeated games with imperfect
monitoring and frequent actions and established that shortening the period between actions has a
crucial impact on the ability to structure effective incentives.

2Kreps, Milgrom, Roberts, and Wilson (1982); Kreps and Wilson (1982) and Milgrom and Roberts
(1982) first demonstrated that reputation, in the form of incomplete information about a player’s type,
has a dramatic effect on equilibrium behavior. Mailath and Samuelson (2001) show that reputational
incentives can also come from a firm’s desire to separate itself from an incompetent type.
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First, when the firm is known to be strategic, I show that auxiliary channels – anal-

ogous to beliefs in a reputational model – can also overcome moral hazard. Second,

in contrast to the temporary incentives in reputation models (Cripps, Mailath, and

Samuelson 2004; Faingold and Sannikov 2011), the incentives in a stochastic game per-

sist in the long-run.3 Finally, at a theoretical level, I explore the general properties of a

stochastic game that has powerful intertemporal incentives. The reputational game can

be viewed as a specific type of stochastic game. For instance, if instead of influencing

the uncertainty about whether it is a behavioral type, a strategic firm makes a costly

initial investment in a new production technology that benefits customers today and

in the future, we would see similar intertemporal incentives in the resulting stochastic

game.

This final point merits a closer comparison with Faingold and Sannikov (2011), who

characterize the unique MPE in the stochastic game that corresponds to a continuous

time reputation model. In their paper, payoffs and the evolution of the state take a

specific form due to Bayesian updating. My characterization builds on the techniques

in their paper to understand more generally what properties of stochastic games are

needed for uniqueness of MPE and non-degenerate intertemporal incentives. I analyze

a general class of stochastic games that places few restrictions on the process governing

the evolution of the state and the structure of payoffs. The key technical advancement

is for the case of an unbounded state space and payoff for the long-run player, as it

requires significantly different techniques to complete the analysis.

Beyond reputation models with behavioral types, a rich literature analyzes dynamic

games with a state variable. Persistence plays a prominent role in these models in that

effort is directly linked to future payoffs via the state. The literature can be loosely

divided based on the observability of the state variable.

When the state is observable, incentives stem from the direct influence of effort

on the transition of the state, as well as from any strategic interaction that is present

between players. Ericson and Pakes (1995) were the first to analyze hidden invest-

ment and stochastic capital accumulation (the state). They study firm and industry

dynamics and establish equilibrium existence when mixed entry/exit strategies are ad-

missable. Their model is similar in spirit to the quality example presented in Section

2. Recent work by Doraszelski and Satterthwaite (2010) modify Ericson and Pakes

(1995) to guarantee the existence of a pure strategy MPE in cutoff entry/exit strate-

3Long-run reputation effects are also possible in models with behavioral types when consumers
cannot observe all past signals (Ekmekci 2011) or the type of the firm is replaced over time.
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gies, which is computationally tractable. Neither paper establishes uniqueness, but

instead focus on the dynamics associated with a particular MPE. More broadly, MPE

is the workhorse solution concept across industrial organization and political economy.

Many additional papers study the existence, uniqueness and dynamics of MPE. A

comprehensive review of this literature is beyond the scope of this paper.4

Several folk theorems exist for discrete time stochastic games with observable states,

beginning with a perfect monitoring setting in Dutta (1995), and extending to imperfect

monitoring environments in Fudenberg and Yamamoto (2011) and Hörner, Sugaya,

Takahashi, and Vieille (2011). My setting differs in that there is a single long-run

player and information follows a diffusion process. It is already known that these two

changes significantly alter incentives in standard repeated games (compare the folk

theorem in Fudenberg, Levine, and Maskin (1994) with the equilibrium degeneracy in

Faingold and Sannikov (2011); Fudenberg and Levine (2007)). The intuition is similar

for the stochastic games folk theorems and the MPE uniqueness result in this paper.

When the state is unobservable, incentives stem from the long-run player’s ability

to manipulate the public belief about the state through her effort choice. Cisternas

(2016) analyzes a model with hidden states that is similar to the model in this paper. He

characterizes necessary conditions for the existence of Markov equilibria, and sufficient

conditions in two more restrictive classes of games (linear-quadratic flow payoffs or

bounded marginal flow payoffs for the long-run player). Hidden states significantly

complicate the model, and it is not possible to establish uniqueness results or a full

equilibrium characterization, as it is in this paper with an observable state.

Board and Meyer-ter vehn (2013) study a reputation model without behavioral

types by allowing a firm’s hidden quality to depend on past effort. In their model,

reputation is consumers’ belief that the firm has a high quality product. They char-

acterize reputational dynamics and show how incentives depend on the signal process.

My paper differs in focus in that the state is observable, there is strategic interaction

between the long-run and short-run players (in their paper, the consumers’ payoffs do

not directly depend on the firm’s effort), and the model encompasses different economic

settings, including games where payoffs are nonlinear or non-monotonic with respect

to the state.

The organization proceeds as follows. Section 2 presents an example. Section 3

4The paper also relates to a broad literature on stochastic games and existence of Markov equi-
libria, beginning with Shapley (1953) and Sobel (1973), who examines equilibrium existence in
continuous-time stochastic games with perfect monitoring.
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sets up the model and characterizes the structure of PPE. Section 4 presents the three

main results: existence of a Markov equilibrium, characterization of the PPE payoff

set and uniqueness of a Markov equilibrium in the class of all PPE. Finally, Section 5

presents a set of structural results on the shape of equilibrium payoffs. All proofs are

in the Appendix.

2 Example

This section presents two variations of the canonical product choice setting, in which

a monopolist firm provides a product to a continuum of short-run consumers and the

firm’s effort has a persistent effect on the quality of the product. These examples will

be used throughout the paper to illustrate the model.

Example 1. At each instant t, the firm chooses an unobservable effort level at ∈ [0, a],

where a > 0. Past effort influences quality through an observable state variable

Xt =

∫ t

0

e−θ(t−s)(asds+ dZs),

where (Zt)t≥0 is a standard Brownian motion and θ > 0 determines the decay rate of

past effort.5 A higher state Xt is indicative of higher past effort. The firm’s quality

depends on both current and past effort, q(a,X) = (1 − λ)a + λX, where λ ∈ [0, 1]

captures the relative importance of past effort. Consumers purchase a single unit of

the product, and are willing to pay their expected value for the product, b = q(a,X).6

The average discounted profit of the firm is the difference between revenue and the

cost of effort,

r

∫ ∞
0

e−rt(bt − a2t/2)dt,

where r > 0 is the discount rate.

In the unique perfect public equilibrium (PPE) with no persistence, λ = 0, the firm

exerts zero effort, a∗ = 0, and consumers’ willingness to pay is zero, b
∗

= 0 (application

5In a slight abuse of notation, the Lebesgue integral and the stochastic integral are placed under
the same integral sign.

6In this example, the willingness to pay can become unboundedly large or negative. While this is an
undesirable feature from an economic standpoint, the simple formulation allows for a clean illustration
of the equilibruim characterization. Example 2 adds non-negativity and budget constraints to this
set-up.
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of Theorem 3 in Faingold and Sannikov (2011)). Intertemporal incentives break down,

despite the fact that the firm would earn more if it could commit to higher effort.

In this paper, I show that persistence incentivizes the firm to choose a positive

level of effort and earn positive profits. Theorems 1-3 establish that there is a unique

perfect public equilibrium (PPE), which is Markov. Assume a > 1/θ to rule out the

case where the upper bound on effort is binding. The effort level and profit in this

unique equilibrium are characterized as a function of the level of persistence λ, the

decay rate of past effort θ and the discount rate r. The firm chooses effort level

a(X) =
λ

r + θ
,

which is increasing as past effort plays a larger role in determining current quality, effort

decays at a slower rate or the firm becomes more patient. Effort is strictly positive

for any positive level of persistence, λ > 0. At stock quality X, the firm’s equilibrium

continuation value is

U(X) =
(1− λ)λ

r + θ
+

λ2

2(r + θ)2
+

(
rλ

r + θ

)
X. (1)

This payoff has three components. The first term captures the component of revenue

that stems from the impact that current effort has on current quality. This arises

from the strategic interaction between the firm and consumers; if the consumer expects

higher effort today, she is willing to pay a higher price today. The second term captures

the firm’s future net return on current effort, which arises from the link between current

effort and future quality. It is the present value of the higher future prices received for

the impact that current effort has on future quality, minus the cost of this effort. In this

example, these first two effects are independent of the state, since equilibrium effort is

constant for all X. The third term captures the firm’s expected return from the current

stock quality. It is the expected present value of the revenue the firm would receive

from selling a product of quality q(0, X), absent any additional effort and allowing X

to decay at rate θ. As the firm becomes more patient, this third term converges to

zero, as the current stock quality has a negligible impact on long-run payoffs.

The tractable equilibrium characterization can be used to study the optimal struc-

ture of persistence. Intuitively, the firm always wants to reduce the rate of decay of

past investment, as U(X) is decreasing in θ. The optimal persistence λ∗ depends on

the decay rate θ and discount rate r. Suppose the firm starts with no stock, X0 = 0.
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If the firm is relatively patient and investment decays slowly, r + θ ≤ 1, then it is

optimal for quality to be fully determined by past investments, λ∗ = 1. If the firm is

less patient or investment decays quickly, r + θ > 1, then it is optimal for quality to

partially depend on current investment, λ∗ = r+θ
2r+2θ−1 . This is calculated directly from

maximizing (1).

Example 2. Maintain the same set-up as Example 1, but suppose that prices must

be non-negative and consumers have a budget constraint – they cannot pay more than

B. Customers are willing to pay b = min{max{0, q(a,X)}, B}. This example also has

a unique PPE, which is Markov. Although a closed form solution for the continuation

value and equilibrium effort is not possible, the equilibrium characterization demon-

strates that, for any λ > 0, the firm to chooses a positive level of effort at some states

and earns positive profits.

The characterization also yields insight into the shape of the continuation value.

Profits are convex in the state at low levels and concave at high levels. When the

state is high, consumers are paying close to their maximum, and further quality im-

provements have little value to the firm. Volatility lowers profits since negative quality

shocks reduce revenue more than positive quality shocks increase revenue. On the

other hand, when the stock quality is low, the firm faces the potential for substantial

gains if quality rises. Revenue is low, so the risk of loss from a negative quality shock

is small. For example, if quality is a measure of innovation and the product has value

only when X crosses a threshold such that q(a(X), X) is positive, then volatility raises

profits.

In both examples, persistence creates long-run incentives for a firm to build its quality.

This contrasts with models in which the incentive to produce high quality is derived

from consumers’ uncertainty over the firm’s payoffs, and reputation effects vanish in

the long-run (Cripps et al. 2004; Faingold and Sannikov 2011).7

7Mathematically, persistence creates a long-run effect when there is positive probability that the
state variable does not converge to an absorbing state. In this example, there are no absorbing states,
and the requirement is satisfied trivially.
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3 Model

3.1 Model Set-up

A long-run player and a continuum I = [0, 1] of identical short-run players, indexed

by i, play a stochastic game with imperfect monitoring in continuous time. At each

instant of time t ∈ [0,∞), a publicly observable state variable Xt in nonempty closed

interval X ⊂ R determines the information structure, action set and feasible flow

payoffs. Denote the initial state by X0 and the (possibly infinite) upper and lower

endpoints of X by X and X, respectively. At each t, long-run and short-run players

simultaneously choose actions at from A and bit from B(Xt), respectively, where A is

a nonempty compact subset of a Euclidean space and B(X) is a nonempty compact

subset of a closed Euclidean space B. Denote the set of feasible short-run player actions

and states as E = {(b,X) ∈ B × X|b ∈ B(X)}. Assume that the boundary of the

feasible set of actions for short-run players grows at most linearly with the state – that

is, there exists a Kb, cb > 0 such that for all (b,X) ∈ E, |b| ≤ Kb|X|+ cb.
8

Individual actions are privately observed. Players observe the aggregate distribution

of short-run players’ actions, bt ∈ ∆B(Xt), and a noisy public signal of the long-run

player’s action, (Yt)t≥0. Given X0, the public signal and state evolve stochastically

according to a system of stochastic differential equations,[
dYt

dXt

]
=

[
µy(at, bt, Xt)

µx(at, bt, Xt)

]
dt+

[
σy
(
bt, Xt

)
σx
(
bt, Xt

) ] · [ dZy
t

dZx
t

]
(2)

where (Zy
t , Z

x
t )t≥0 is a d-dimensional Brownian motion, µy : A×E → Rd−1 is the drift of

the public signal, µx : A× E → R is the drift of the state variable, σy : E → R(d−1)×d

is the volatility of the public signal and σx : E → Rd is the volatility of the state

variable. Assume µy, µx, σy and σx are Lipschitz continuous. The drift of the public

signal and state provide a signal of the long-run player’s action and can also depend on

the aggregate action of the short-run players and the state. Volatility is independent of

the long-run player’s action to maintain the assumption of imperfect monitoring. Each

function can be linearly extended to A × ∆E or ∆E, respectively, where (in a slight

abuse of notation), ∆E = {(b,X) ∈ ∆B × X| supp b ⊂ B(X)}. Let (Ft)t≥0 represent

the filtration generated by public information, (Yt, Xt)t≥0. Short-run players receive no

8I use | · | to denote the Euclidean norm for vectors.
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information about the long-run player’s action beyond what is contained in (Ft)t≥0.

Define a state X as an absorbing state if the drift and volatility are both zero,

µx(a, b,X) = 0 and σx(b,X) = 0 for all (a, b) ∈ A×B(X). I assume that the volatility

of the state variable is positive at all states in the interior of the state space, which

rules out interior absorbing states.9 This assumption ensures that the future path of

the state variable is stochastic, except possibly at the boundary of the state space.10

Assumption 1 (Positive Volatility). For any compact proper subset I ⊂ X , there

exists a cI > 0 with:

σI = inf
{(b,X)∈B×I|b∈B(X)}

|σx (b,X)|2 > cI .

Second, I assume that the rows of σyy are linearly independent, where σyy are the first

(d−1) columns of σy, and if σx is a linear combination of σy, then µx is the same linear

combination of µy. This maintains imperfect monitoring by ensuring that the long-run

player’s action cannot be inferred from the path of the public signal and state variable.

Assumption 2 (Imperfect Monitoring). 1. There exists a constant cy > 0 such

that |σyy (b,X) · y| ≥ cy |y| for all y ∈ Rd−1 and (b,X) ∈ E.

2. If there exists a (b,X) ∈ E and scalars (α1, ..., αd−1) such that σx (b,X) =∑
αiσ

i
y (b,X), then there exists an f : E → R such that for all a ∈ A,

µx(a, b,X) =
∑

αiµ
i
y (a, b,X) + f(b,X).

Payoffs. The payoff of the long-run player depends on her action, the distribution of

short-run players’ actions and the state. She seeks to maximize the expected value of

her discounted payoff,

r

∫ ∞
0

e−rtg(at, bt, Xt)dt

where r > 0 is the discount rate and g : A×E → R is a Lipschitz continuous function

representing the flow payoff, which is linearly extended to A×∆E. Short-run players

have identical preferences. The payoff of player i in period t depends on her action,

the distribution of short-run players’ actions, the action of the long-run player and the

9It is a straightforward extension to allow for a finite number of interior absorbing states.
10If the state space is bounded, then for all (a, b) ∈ A× B(X), σx(b,X) = 0 and µx

(
a, b,X

)
≤ 0,

and for all (a, b) ∈ A×B(X), σx(b,X) = 0 and µx

(
a, b,X

)
≥ 0.
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state, h(at, b
i
t, bt, Xt), where h : A × {(b, b,X) ∈ B2 × X|(b, b) ∈ B(X)2} → R is a

continuous function, which is linearly extended to A × {(b, b,X) ∈ B × ∆B × X|b ∈
B(X), supp b ⊂ B(X)}. The dependence of payoffs on the state variable creates a form

of action persistence, since the state variable depends on prior actions.

To ensure that the expected discounted payoff of the long-run player is well-behaved

requires a restriction on either the rate at which the state variable can grow or the flow

payoff of the long-run player. Either the drift of the state grows at a linear rate less

than the discount rate or the flow payoff is bounded with respect to X.

Assumption 3. At least one of the following conditions hold.

1. The flow payoff g is bounded.

2. The drift µx has linear growth at a rate less than r in that there exists a Kµ ∈ [0, r)

and cµ > 0 such that for all (a, b,X) ∈ A × E, if X ≥ 0 then µx(a, b,X) ≤
KµX + cµ and if X ≤ 0 then µx(a, b,X) ≥ KµX − cµ.

No lower bound is necessary on the slope of µx for X > 0, since a negatively sloped

drift pulls the state variable towards zero. Similarly, no upper bound is necessary for

X < 0. Assumption 3 is trivially satisfied when the state space is bounded.

Strategies and equilibrium. A public pure strategy for the long-run player is a

stochastic process (at)t≥0 with at ∈ A and progressively measurable with respect to

(Ft)t≥0. Likewise, a public pure strategy for a short-run player is an action bit ∈
B(Xt) progressively measurable with respect to (Ft)t≥0. Given that small players have

identical preferences, it is without loss of generality to work with aggregate strategies

(b̄t)t≥0. The long-run player’s expected discounted payoff at time t under strategy

S = (at, bt)t≥0 is given by

Vt(S) ≡ Et

[
r

∫ ∞
0

e−rsg(as, bs, Xs)ds

]
I restrict attention to pure strategy perfect public equilibria (PPE), as defined in San-

nikov (2007).

Definition 1. A public strategy profile S = (at, bt)t≥0 is a perfect public equilibrium if,

after all public histories,

Vt(S) ≥ Vt(S
′) a.s.
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for all public strategies S ′ = (a′t, b
′
t)t≥0 with (b

′
t)t≥0 = (bt)t≥0 almost everywhere, and

b ∈ arg max
b′∈B(Xt)

h(at, b
′, bt, Xt) ∀b ∈ supp b̄t.

Timing. At each instant t, players observe the current state Xt, choose actions, and

then nature stochastically determines payoffs, the public signal and next state given

the current state and action profile.

3.2 Equilibrium Structure

This section extends a recursive characterization of PPE to the current setting. Given

strategy profile S = (at, bt)t≥0, define the long-run player’s continuation value as the

expected value of the future discounted payoff at time t,

Wt(S) ≡ Et

[
r

∫ ∞
t

e−r(s−t)g(as, bs, Xs)ds

]
. (3)

The expected average discounted payoff at time t can be represented as

Vt(S) = r

∫ t

0

e−rsg(as, bs, Xs)ds+ e−rtWt(S). (4)

The following lemma establishes that (Vt(S))t≥0 is a martingale (therefore, E|Vt(S)| <
∞ for all t ≥ 0), and (Wt(S))t≥0 is bounded with respect to (Xt)t≥0.

Lemma 1. Assume Assumption 3. For any public strategy profile S = (at, bt)t≥0,

initial state X0 and path of the state variable (Xt)t≥0 that evolves according to (2)

given S,

1. Vt(S) is a martingale.

2. There exists a KW > 0 such that |Wt(S)| ≤ KW (1 + |Xt|) for all t ≥ 0.

The result follows from Assumption 3, which ensures that either the state grows at a

slow enough rate relative to the discount rate or large values of the state don’t allow

for unboundedly large flow payoffs. It is similar in spirit to Lemma 1 in Strulovici

and Szydlowski (2015), which establishes that the value function of an optimal control

problem is finite and satisfies a linear growth condition with respect to the state.

11



Establishing E|Vt(S)| < ∞ and characterizing the growth rate of (Wt(S))t≥0 is not

required for models that have a uniformly bounded continuation value.

The next lemma characterizes the evolution of the continuation value and the long-

run player’s incentive constraint in a PPE. It is the analogue of Theorem 2 in Faingold

and Sannikov (2011), allowing for an unbounded state space and flow payoff.

Lemma 2. Assume Assumptions 1, 2 and 3. A public strategy profile S = (at, bt)t≥0 is

a PPE with continuation values (Wt)t≥0 if and only if for some (Ft)-measurable process

(βt)t≥0 in L,

1. Given (βt)t≥0 = (βyt, βxt)t≥0, (Wt)t≥0 satisfies

dWt = r
(
Wt − g(at, bt, Xt)

)
dt+ rβyt(dYt − µy(at, bt, Xt)dt) (5)

+rβxt(dXt − µx(at, bt, Xt)dt).

2. There exists a K,M ≥ 0 such that |Wt| ≤ M + K|Xt| for all t ≥ 0, with K = 0

if g is bounded.

3. Strategies (at, bt)t≥0 are sequentially rational for almost all t ≥ 0,

at ∈ arg max
a′∈A

g(a′, bt, Xt) + βytµy(a
′, bt, Xt) + βxtµx(a

′, bt, Xt) a.s. (6)

b ∈ arg max
b′∈B(Xt)

h(at, b
′, bt, Xt) for all b ∈ supp b̄t a.s. (7)

The continuation value of the long-run player is a stochastic process that is measurable

with respect to public information, (Ft)t≥0. The drift (W − g) captures the difference

between the continuation value and the flow payoff; this is the expected change in the

continuation value. The volatility β determines the sensitivity of the continuation value

to the public signal and state; future payoffs are more sensitive when the respective

volatility is larger. Sequential rationality for the long-run player depends on the trade-

off between an action’s impact on flow payoffs today and its expected impact on future

payoffs through the drift of the public signal and state variable, weighted by β. This

condition is analogous to the one-shot deviation principle in discrete time. From the

Martingale Representation Theorem, the continuation value and incentive constraint

are linear with respect to (βt)t≥0, which lends significant tractability to the model.

Definition 2 uses the condition for sequential rationality to specify an auxiliary
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static game parameterized by the state variable and the volatility of the continuation

value.

Definition 2. Let S∗ : X × Rd ⇒ A ×∆B denote the correspondence of static Nash

equilibrium action profiles in the auxiliary game parameterized by (X, zy, zx),

S∗(X, zy, zx) =

(a, b) :

a ∈ arg maxa′∈A g(a′, b,X) + zyµy(a
′, b,X)

+ zxµx(a
′, b,X)

b ∈ arg maxb′∈B(X) h(a, b′, b,X) ∀b ∈ supp b̄

 . (8)

In any PPE strategy profile (at, bt)t≥0, given stochastic process (Xt, βt)t>0, the action

profile at time t must be a Nash equilibrium of the auxiliary static game, (at, bt) ∈
S∗(Xt, βyt, βxt).

The final assumption requires that this auxiliary game has a unique static Nash

equilibrium with an atomic distribution over small players’ actions.

Assumption 4. For all (X, zy, zx) ∈ X × Rd, S∗ is non-empty, single-valued and

returns b̄ = δb for some b ∈ B(X), where δb is the Dirac measure on action b. S∗ is

Lipschitz continuous on every bounded subset of X × Rd.

Under Assumption 4, the stage game must have a unique static Nash equilibrium.

This rules out coordination games and some games with strategic complementarities.

Similarly for the dynamic game, the assumption requires that for any weight z on future

payoffs, there is a unique optimal action profile. This rules out some games in which

the dynamic setting creates a strategic complementarity. Assumption 4 still allows for

a broad class of games, including games in which actions are strategic substitutes or

strategic complements with a unique fixed point. It is easy to verify, as it is stated in

terms of the primitives of the model. When it fails and S∗ is not single-valued, the

correspondence may not be lower hemicontinuous and different techniques are necessary

to characterize Markov equilibrium payoffs (Faingold and Sannikov 2011).

Assumption 4 does not trivially guarantee the equilibrium uniqueness result in the

dynamic game. A PPE is characterized by a path of incentive weights (zy,t, zx,t)t≥0

that satisfy the conditions from Lemma 2. Assuming that there is a unique optimal

action profile for every (X, zy, zx) does not preclude the existence of multiple paths

(zy,t, zx,t)t≥0 that satisfy these conditions, and hence, multiple PPE. In fact, in discrete

time, many games satisfy an analogous assumption and have multiple non-trivial equi-
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libria.11 The uniqueness result in this paper stems from showing that, in fact, there is

a unique path (zy,t, zx,t)t≥0 that characterizes a PPE, and this path is Markov in the

state.

We illustrate that the examples introduced in Section 2 satisfy the assumptions

outlined above.

Example 1, cont. In this example, µ(a, b,X) = a − θX, g(a, b,X) = b − a2/2,

B(X) = [−X, a + X], σx(b,X) = 1 and there is no public signal (d = 1). The

boundaries of the feasible action set for short-run players are linear in X, and µ and

g are Lipschitz continuous. The volatility is positive and constant, so Assumption 1 is

satisfied and there are no absorbing states. Assumption 2 is irrelevant, since there are

no public signals. The state variable has negative drift when X is high and positive

drift when X is low. Therefore, part (2) of Assumption 3 is satisfied. In the auxiliary

game parameterized by (X, zx) (suppressing zy since there is no public signal), the firm

maximizes b−a2/2+zx(a−θX), which yields a(X, zx) = zx. Therefore, consumers are

willing to pay q(a(X, zx), X) = (1− λ)zx + λX. Both the firm and consumers’ actions

are unique and Lipschitz continuous in (X, zx), satisfying Assumption 4.

Example 2, cont. The only difference from Example 1 is the set of actions for short-

run players is independent of X, B = [0, B]. Assumptions 1-4 are still satisfied. When

the consumers’ wtp is bounded, the firm’s flow payoff is also bounded. Therefore, part

(1) of Assumption 3 is also satisfied. Now, q(a(X, zx), X) = max{0,min{(1 − λ)zx +

λX,B}}.

3.3 Discussion of Model

It is well known that the public signal can be used to punish or reward the long-run

player by allowing future equilibrium play to depend on the realization of the public

signal. A stochastic game adds a second channel for intertemporal incentives – the long-

run player’s action impacts the evolution of the state, which in turn effects the future

11The analogous assumption in discrete time is more complex, as the incentive weights are functions
rather than scalars. The continuation value can change according to any function z : (Y,X ) → W ,
where Y is the signal space and W is the set of feasible payoffs. The simple scalar representation is
possible in continuous time because the continuation value changes linearly with respect to Brownian
information, a property that does not hold in discrete time.
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flow payoff and information structure. The process (βt)t≥0 characterized in Lemma 2

captures all channels for intertemporal incentives.

The linear structure of the continuation value with respect to βt precludes effective

intertemporal incentives in a repeated game with a short-run player (Faingold and

Sannikov 2011). On the boundary of the payoff set, it is not possible to tangentially

transfer continuation payoffs between players due to the short-run player, and non-

tangential transfers must be linear, which results in the continuation value exceeding

its boundary for any βt > 0. Thus, transfers must be zero, βt = 0 for all t. By analogous

reasoning, in a stochastic game, βt = 0 at the state that yields the maximum payoff

across all states (if such a state exists). However, in a stochastic game, βt can depend

on the state and it is possible to use non-zero linear transfers at other states without the

continuation value escaping its boundary. This can lead to non-trivial intertemporal

incentives that are not possible in a repeated game.12

The assumption that the volatility of the state is positive ensures that all states

can be reached from the current state in an arbitrarily small period of time. Therefore,

deviations alter the measure of the path of the state but not the support. This plays

a crucial role in the structure of incentives. Consider a deviation from at to ãt. Given

that the support of (Xs)s>t is the same under both strategies, the difference in the

continuation value depends on the difference in measure that each strategy induces

over (Xs)s>t, which in turn depends on the difference in the drift, µ(ãt, ·) − µ(at, ·).
Combined with linearity, this yields the tractable incentive constraint for the long-run

player characterized in (6).

4 Equilibrium Analysis

This section presents the main results of the paper. I establish the existence of Markov

equilibria, characterize the correspondence of PPE payoffs of the long-run player, and

derive conditions under which there is a unique PPE, which is Markov.

12Non-linear incentive structures, such as value-burning, are ineffective in both repeated and
stochastic games, because the expected losses from false punishment exceed the expected gains from
cooperating (Fudenberg and Levine 2007; Skrzypacz and Sannikov 2007).
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4.1 Existence of Markov Equilibria

First I construct the set of Markov equilibria, which establishes existence and character-

izes equilibrium behavior and payoffs. Given (X, z) ∈ X × R, let (a(X, z), b(X, z)) ≡
S∗(X,0, z/r) be the optimal action profile in the equilibrium of the auxiliary static

game with incentive weights zy = 0 on the public signal and zx = z/r on the state, and

let g∗(X, z) ≡ g(S∗(X,0, z/r), X), µ∗(X, z) ≡ µx(S
∗(X,0, z/r), X) and σ∗(X, z) ≡

σx(b(X, z), X) be the value of the flow payoff, drift and volatility, respectively, in this

equilibrium. By Assumption 4, g∗, µ∗ and σ∗ are Lipschitz continuous in (X, z). Note

that g∗(X, 0) corresponds to the static Nash equilibrium payoff of the original game at

state X.

In a Markov equilibrium, the continuation value and equilibrium actions depend

solely on the state variable and are independent of the public signal. Theorem 1 con-

structs the set of Markov equilibria, with continuation values specified as the solution(s)

U : X → R to an ordinary differential equation and actions as the equilibrium actions

of the auxiliary static game with zx = U ′/r and zy = 0.

Theorem 1. Suppose Assumptions 1, 2, 3 and 4 hold. Given any initial state X0, iff

U : X → R is a solution to the optimality equation,

rU(X) = rg∗(X,U ′(X)) + U ′(X)µ∗(X,U ′(X)) +
1

2
U ′′(X) |σ∗ (X,U ′(X))|2 , (9)

with linear growth (and bounded if g is bounded), then U characterizes a Markov equi-

librium with:

1. Equilibrium payoffs U(X0);

2. Continuation values (Wt)t≥0 = (U(Xt))t≥0;

3. Equilibrium actions uniquely specified by (at, bt) = S∗(Xt, 0, U
′(Xt)/r).

The optimality equation has at least one continuous solution that has linear growth (is

bounded) and lies in the range of feasible payoffs for the long-run player. Thus, there

exists at least one Markov equilibrium.

The continuation value is equal to the sum of the equilibrium flow payoff rg∗ and the

expected change in the continuation value U ′µ∗+ 1
2
U ′′ |σ∗|2 . This expected change has

two components: (i) the interaction between the drift of the state and the slope of
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the continuation value and (ii) the interaction between the volatility of the state and

the concavity of the continuation value. If the continuation value is increasing in the

state, then higher drift increases the expected change in the continuation value. If the

continuation value is concave (U ′′ < 0), it is more sensitive to negative shocks than

positive shocks. Positive and negative shocks are equally likely. Therefore, volatility

decreases the expected change in the continuation value.

The equilibrium incentive weight is proportional to the slope of the continuation

value, (βyt, βxt) = (0, U ′(Xt)/r). The impact of the current action on future payoffs

depends on how quickly the continuation value changes with respect to the state and

how the current action affects the drift of the state. When the state is at the value(s)

that yields the maximum equilibrium payoff across all states, U ′ = 0 and therefore

the continuation value is independent of the Brownian information, βx = 0. This

ensures that the continuation value does not escape the payoff set and in these periods,

the long-run player acts myopically. However, at other states, the continuation value

depends on Brownian information (βx 6= 0), which creates non-degenerate incentives.

Example 1, cont. From the auxiliary game, (a(X, z), b(X, z)) = (z/r, (1− λ)z/r +

λX). Therefore, g∗(X, z) = (1 − λ)z/r + λX − z2/2r2, µ∗(X, z) = z/r − θX and

trivially, σ∗(X, z) = 1. Given initial state X0, any solution to

rU(X) = (1− λ)U ′(X) + λrX + U ′(X)2/2r − U ′(X)θX +
1

2
U ′′(X), (10)

with linear growth characterizes a Markov equilibrium. It is easy to verify that the

continuation value (1) presented in Section 2 is a solution to (10), with slope U ′(X) =

rλ/(r+ θ). Therefore, (1) characterizes a Markov equilibrium with equilibrium actions

a(X,U ′) = λ/(r + θ) and b(X,U ′) = λ(1− λ)/(r + θ) + λX.

Example 2, cont. Substituting the constrained wtp b(X, z) = max{0,min{(1 −
λ)z/r + λX,B}} into (9) yields a similar expression to (10). However, a closed for

solution is no longer possible.

Outline of Proof. The first step is to show that if a Markov equilibrium (a∗t , b
∗
t )

exists, then continuation values must be characterized by the solution to the optimality

equation (9). In a Markov equilibrium, continuation values take the form of Wt =

U(Xt) for some function U . Using Ito’s formula to differentiate U with respect to Xt
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yields an expression for the law of motion of the continuation value in any Markov

equilibrium,

dU(Xt) = U ′(Xt)µx(a
∗
t , b
∗
t , Xt)dt+

1

2
U ′′(Xt)

∣∣∣σx(b∗t , Xt)
∣∣∣2 dt+ U ′(Xt)σx(b

∗
t , Xt)dZt

The continuation value must also follow the law of motion (5) from Lemma 2. Matching

the drifts of these two laws of motion yields the optimality equation, while matching

the volatilities yields the incentive weights (βyt, βxt) = (0, U ′(Xt)/r). The second step

is to show that the optimality equation has at least one solution that lies in the range

of feasible payoffs for the long-run player and has linear growth (is bounded when g is

bounded).

The innovative part of the proof lies in establishing existence of a solution to the

optimality equation when the state space is unbounded, particularly when g is also

unbounded. I show by construction that there exist lower and upper solutions to the

optimality equation, α : X → R and β : X → R, that have linear growth. This is

only possible when the maximum drift of the state has linear growth at rate less than

r (Assumption 3). The lower and upper solutions characterize bounds on the solution

to the optimality equation, α ≤ U ≤ β. Next I show that the bound on the optimal-

ity equation grows linearly with respect to U ′, and therefore the optimality equation

does not grow too quickly (technically speaking, it satisfies a growth condition on any

compact subset of the state space). These conditions establish that the optimality

equation has a twice continuously differentiable solution with linear growth. When g

is bounded, the lower and upper solutions are constant, which establishes existence of

a bounded solution.

The final step is to show that the continuation value and actions characterized above

constitute a Markov equilibrium. Given a solution U and an action profile uniquely

specified at state Xt by (a∗t , b
∗
t ) = S∗(Xt, 0, U

′(Xt)/r) (where uniqueness follows from

Assumption 4), the state variable evolves uniquely according to (2), the continuation

value (U(Xt))t≥0 satisfies the law of motion (5) and the action profile satisfies the con-

ditions for sequential rationality, (6) and (7). Therefore, (a∗t , b
∗
t , U(Xt)) constitute a

PPE. Since the state evolves uniquely and actions are uniquely specified as a function of

the state, each solution to the optimality equation characterizes a unique Markov equi-

librium. If there are multiple solutions, then there will be multiple Markov equilibria.

There are no Markov equilibria other than those characterized by these solutions.
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4.2 The PPE Payoff Set

Next, I show that in any PPE, the long-run player cannot achieve a payoff above the

highest or below the lowest Markov equilibrium payoff. Let ξ : X ⇒ R denote the

correspondence that maps a state onto the corresponding set of PPE payoffs of the

long-run player, and let Υ : X ⇒ R denote the analogous correspondence for Markov

equilibrium payoffs.

Theorem 2. Assume Assumptions 1, 2, 3 and 4. Then for any state X ∈ X , the set

of PPE payoffs of the long-run player at state X is equal to the convex hull of the set

of Markov equilibrium payoffs at state X, ξ(X) = co(Υ(X)).

The impossibility of the long-run player achieving a PPE payoff above the highest

Markov payoff yields insight into the role that persistent effect of actions play in gen-

erating intertemporal incentives. In a Markov equilibrium, the public signal is ignored.

When this Markov equilibrium yields the highest equilibrium payoff, it precludes the

existence of equilibria that use the public signal to build stronger incentives. Thus, the

ability to generate effective intertemporal incentives in stochastic games solely stems

from the link the state variable creates between the current action and future feasible

payoffs.

Outline of Proof. The proof uses an escape argument similar to other papers in

the literature, including Faingold and Sannikov (2011). Suppose a PPE (Wt)t≥0 yields

a payoff higher than the maximum Markov equilibrium payoff U at state X0 and let

Dt = Wt − U(Xt) be the difference between these two payoffs. The innovative parts

of the proof are to establish that indeed the volatility of Dt is bounded away from 0

on an unbounded state space and to show that the escape argument can be applied to

unbounded flow payoffs when the state does not grow too quickly. When the volatility

of Dt is positive, Dt will grow arbitrarily large with positive probability, independent

of Xt. By Lemma 1, |Wt(S)| is bounded with respect to Xt. Thus, Dt can only grow

arbitrarily large when Xt grows arbitrarily large, leading to a contradiction. Faingold

and Sannikov (2011) rely on the compactness of the state space to show that the

volatility of Dt achieves a minimum that is bounded away from 0 and rely on the

boundedness of the flow payoff to reach a contradiction when Dt grows arbitrarily

large, and thus their proofs do not immediately extend to an unbounded state space

or flow payoff.
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Equilibrium Degeneracy without Persistent Actions. If the state evolves in-

dependently of the long-run player’s action, then there is no link between the current

action and future feasible payoffs and it is not possible to generate effective intertem-

poral incentives. The unique PPE is one in which the long-run player acts myopically

and plays the Nash action profile of the static game at state X. This is the analogue of

the equilibrium degeneracy result for repeated games in Fudenberg and Levine (2007)

and Faingold and Sannikov (2011).

Corollary 1. Assume Assumptions 1, 2, 3 and 4 and suppose µx is independent of

action a for all X. Then in the unique PPE, (at, bt) = S∗(Xt, 0, 0) for all t ≥ 0 and the

continuation value U(Xt) = Et
[
r
∫∞
t
e−rsg∗(Xs, 0)dt

]
is characterized by the unique

solution to the optimality equation.

4.3 Equilibrium Uniqueness

This section establishes when there is a unique PPE, which is Markov. The main step

is to determine when the optimality equation has a unique feasible solution. When this

is the case, by Theorem 1, there is a unique Markov equilibrium and by Theorem 2,

PPE payoffs are uniquely specified as the payoffs in this unique Markov equilibrium.

Uniqueness of equilibrium actions follows almost immediately.

The limit behavior of U and U ′ as the state approaches its boundary, play a key

role in determining when the optimality equation has a unique feasible solution. Any

two feasible solutions that satisfy the same boundary conditions cannot differ on the

interior of the state space, due to the structure of the optimality equation, and are

therefore equivalent solutions. Thus, establishing that all feasible solutions satisfy the

same boundary conditions is necessary and sufficient to establish that the optimality

equation has a unique feasible solution.

Assumptions 5, 5′ and 5′′ outline three sets of sufficient conditions on g∗, µ∗ and σ∗ to

guarantee unique boundary conditions. The two key components of these assumptions

are to rule out oscillation and establish that there are unique incentive weights at the

boundary.

4.3.1 Unbounded Flow Payoff.

Assumption 5 establishes a set of sufficient conditions for a unique Markov equilibrium

when g is unbounded.
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Assumption 5. Suppose g is unbounded.

1. Additive separability: there exist Lipschitz continuous functions g1, µ1 : X → R
and g2, µ2 : R → R such that g∗(X, z) = g1(X) + g2(z) and µ∗(X, z) = µ1(X) +

µ2(z).

2. Monotonicity: there exists a δ > 0 such that for |X| > δ, g′1(·) + zµ′1(·)/r is

monotone for all z ∈ R.

3. Volatility: |σ∗|2 is Lipschitz continuous.

Monotonicity ensures that the slope of the continuation value U ′ has a well-defined

limit, while additive separability ensures that the limit of U ′ is uniquely determined.

The Lipschitz continuity of |σ∗|2 guarantees that two different solutions cannot have

the same limit slope.

Theorem 3 establishes uniqueness and characterizes the boundary conditions. Note

that (13) and (14) characterize the boundary slope and continuation value in terms of

the primitives of the model, and are simple to derive in applications.

Theorem 3. Assume Assumptions 1, 2, 3, 4 and 5. Then for each X0 ∈ X , there

exists a unique PPE, which is Markov. The unique solution U of (9) with linear growth

satisfies

lim
X→p

U(X)− y(X) = g2(zp) + zpµ2(zp)/r (11)

lim
X→p

U ′(X) = zp (12)

for p ∈ {−∞,∞}, where

zp = lim
X→p

rg1(X)

rX − µ1(X)
(13)

is the the asymptotic incentive weight and y denotes the continuation value that the

long-run player would earn from repeated play of the static Nash equilibrium profile,

y(X) ≡ −φ(X)

∫
rg1(X)

φ(X)µ1(X)
dX (14)

and φ(X) ≡ exp(
∫
r/µ1(X)dX).
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Boundary condition (11) establishes that the continuation value converges to the payoff

that the long-run player would earn by playing the static Nash equilibrium profile plus

a constant, g2(zp) + zpµ2(zp)/r. If this constant is positive, then as the state becomes

large (or small), the long-run player’s payoff is strictly higher than the payoff from

playing the static Nash profile. This constant has an important interpretation. The

first term, g2(zp), is the equilibrium strategic interaction between the long-run and

short-run players at the boundary of the state space. It is the portion of the equilibrium

flow payoff that arises from strategic interaction and captures the effect of the long-run

player’s action a on the short-run players’ aggregate action, net of the cost of a. The

second term, zpµ2(zp)/r is the investment effect, or the impact of the long-run player’s

action on the state. This is measured by the portion of the drift that arises from the

long-run player’s action, which captures how the state changes with respect to this

action, multiplied by the slope of the continuation value, which determines how the

continuation value changes with respect to the state.

Boundary condition (12) establishes that the slope U ′ converges to a unique limit

slope (13) that depends on the ratio of the growth rate of the flow payoff to the

growth rate of the drift. When this slope is positive, it is possible to sustain non-trivial

intertemporal incentives across the entire state space. This ability is an important

and novel insight of the paper. If it is possible to sustain non-trivial incentives at the

boundary of the state space, then incentives are permanent in the sense that they don’t

dissipate with time, regardless of the asymptotic behavior of {Xt}.

Example 1, cont. This example falls under Assumption 5, as the long-run player’s

flow payoff is unbounded. As shown above, g∗(X, z) = (1− λ)z/r + λX − z2/2r2 and

µ∗(X, z) = z/r − θX, which are linearly separable in (X, z). Define g1(X) = λX,

g2(z) = (1− λ)z/r − z2/2r2, µ1(X) = −θX and µ2(z) = z/r. Note that g′1 + zµ′1/r =

λ− zθ/r is monotone in z. Therefore, Assumption 5 is satisfied and there is a unique

PPE. Since I already verified that the continuation value (1) and actions presented in

Section 2 are a Markov equilibrium, this must constitute the unique PPE.

Next, use Theorem 3 to derive the boundary conditions as X → ∞. When the

continuation value is linear in X, as in this example, the boundary conditions as

X →∞ are sufficient to characterize the continuation value for all X. From (13), the
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limit slope as X grows large is

z∞ = lim
X→∞

rλX

rX + θX
=

rλ

r + θ
.

Note this is the slope of the continuation value (1) presented in the example; since

the solution is linear in X, the slope is constant across X. Plugging in µ1 = −θX,

φ(X) = exp(−
∫

(r/θX)dX) = X−r/θ, and from (14),

y(X) = −X−r/θ
∫

rλX

−X−r/θθX
dX =

rλ

r + θ
X (15)

Plugging z∞ = rλ
r+θ

into the right hand side of (11) yields

g2(z∞) + z∞µ2(z∞)/r =
(1− λ)λ

r + θ
+

λ2

2(r + θ)2
. (16)

Plugging (15) and (16) into boundary condition (11) yields the limit continuation value,

lim
X→∞

U(X)− rλ

r + θ
X =

(1− λ)λ

r + θ
+

λ2

2(r + θ)2
.

In fact, since the solution is linear, (11) is satisfied for all X and the continuation value

is equal to y(X) + g2(z∞) + z∞µ2(z∞)/r (it is straightforward to verify that this is

equal to (1)).

Outline of Proof. The innovative part of this proof is to establish the boundary

conditions for an unbounded flow payoff and state space. Let

ψ(X, z) ≡ g∗(X, z) +
z

r
µ∗(X, z)

be the value of the long-run player’s incentive constraint in the equilibrium of the

auxiliary static game with incentive weights zy = 0 on the public signal and zx = z/r

on the state. Given the monotonicity assumption and the Lipschitz continuity of µ∗

and g∗, the limits of ψ(X, z)/X and ψ′(X, z) exist and are equal as X → p ∈ {−∞,∞}.
Denote these limits by ψ∞(z). Let U be a linear growth solution to (9). For any z

such that U ′(X) = z infinitely often for all δ > 0, |X| > δ and U not affine, the shape

of (9) will alternate between convex and concave at slope z. Therefore, ψ(X, z) will

lie above U(X) when (9) is concave at slope z, and below U(X) when (9) is convex at
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slope z. This guarantees that limX→∞ U(X)/X = limX→∞ U
′(X) exist and are equal.

Denote these limits by z∞ ∈ R.

The linear growth of U and the Lipschitz continuity of |σ∗|2 guarantee that the

impact of the second derivative converges to zero, limX→∞ |σ∗(X,U ′(X))|2U ′′(X) =

0. Therefore, from (9), limX→∞(U(X) − ψ(X,U ′(X)))/X = 0, and from the above

derivation, limX→∞(U(X)−ψ(X,U ′(X)))/X = z∞−ψ∞(z∞). Combining these results

yields z∞ = ψ∞(z∞), and the limit slope z∞ must be a fixed point of ψ∞. Assumption

5 requires that g∗ and µ∗ are separable in (X, z), which is sufficient to ensure that ψ∞

has a unique fixed point. Thus, any linear growth solution U to (9) has the same limit

slope z∞.

From (9) and the uniqueness of the limit slope, there exists a c ∈ R such that any

linear growth solution U to (9) satisfies limX→∞ U(X) − U ′(X)µ1(X)/r − g1(X) = c.

Consider the linear first order differential equation

y(x)− y′(x)µ1(x)/r − g1(x)− c = 0. (17)

When the growth rate of µ1 is in [0, r), then there is a unique linear growth solution y

of (17), and when the growth rate of µ1 is less than zero, then any two linear growth

solutions y1 and y2 satisfy limx→∞ y1(x) − y2(x) = 0. Therefore, any linear growth

solution to (9) satisfies limX→∞ U(X) − y(X) = 0 for all linear growth solutions y to

(17).

Let U and V be two linear growth solutions to (9). Then by the above reasoning,

both solutions satisfy the same boundary conditions. Therefore, for p ∈ {−∞,∞},
limX→p U(X) − V (X) = 0 and limX→p U

′(X) = limX→p V
′(X) = zp, where zp is the

unique fixed point of ψp. Similar to Faingold and Sannikov (2011), if there exists an

X such that U(X) − V (X) > 0, the structure of (9) prevents these solutions from

satisfying the same boundary conditions for at least one boundary.

4.3.2 Bounded Flow Payoff.

Assumptions 5′ and 5′′ establish two sets of sufficient conditions for unique boundary

conditions when g is bounded, for an unbounded and bounded state space, respectively.

Assumption 5′. Suppose g is bounded and X = R. Then there exists a δ > 0 such

that for |X| > δ, g∗(·, 0) is monotone.
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Monotonicity ensures that the continuation value has a well-defined limit; this is not

necessary when X is bounded, since U has bounded variation.

Assumption 5′′. Suppose g is bounded and X is compact. Then {X,X} are absorbing

states.

Theorem 4 establishes uniqueness and characterizes the boundary conditions.

Theorem 4. Assume Assumptions 1, 2, 3 and 4, and either Assumption 5′ or 5′′.

Then for each X0 ∈ X , there exists a unique PPE, which is Markov. The unique

bounded solution U of (9) satisfies

lim
X→p

U(X)− g∗(X, 0) = 0 (18)

lim
X→p

µ∗(X,U ′(X))U ′(X) = 0 (19)

for p ∈ {X,X}.

Assumptions 5′ and 5′′ ensure that intertemporal incentives dissipate at the boundary

states. Monotonicity ensures that U ′ converges to 0 when X is unbounded, rather

than oscillating, while absorbing boundary states ensure that the equilibrium drift

converges to 0 when X is compact. If either the drift or the slope of the continuation

value approaches 0 at the boundary, then incentives dissipate, as either the impact of

the action on the state or the sensitivity of the continuation value to changes in the

state approach 0. Thus, µ∗(X,U ′)U ′ converges to zero in both cases, and the long

run player’s incentive constraint collapses to the static incentive constraint. When

incentives collapse at the boundary, the continuation value approaches the static Nash

payoff, as shown in (18).

Even if incentives dissipate at the boundary, the state may not converge to its

boundary and therefore, the boundary conditions in Theorem 4 do not preclude the

existence of permanent incentives. If the state space is unbounded and Assumption

5′ is violated, then the continuation value can perpetually oscillate and non-trivial

incentives are possible at the state grows large or small. If 5′′ is violated and the

continuation value is pulled away from the boundary quickly enough, then non-trivial

incentives are possible at the boundary. When these assumptions fail, uniqueness will

still obtain in some settings (a rigorous characterization of these settings is beyond the

scope of this paper).
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Example 2, cont. This example falls under Assumption 5′, as the long-run player’s

flow payoff is bounded but the state space is unbounded. With bounded wtp, g∗(X, z) =

max{0,min{(1 − λ)z/r + λX,B}} − z2/2r2 and µ∗(X, z) = z/r − θX. Therefore,

g∗(X, 0) = max{0,min{λX,B}} is monotone and Assumption 5′ is satisfied. By The-

orem 4, there is a unique PPE. From (19), the limit slope as X grows large is 0.

Plugging g∗(X, 0) into (18) yields the boundary conditions for the continuation value,

limX→∞ U(X) = B and limX→−∞ U(X) = 0. Although it is not possible to charac-

terize a closed-form expression for equilibrium effort, the boundary conditions and the

continuity of U establish that equilibrium effort will be non-zero at some states.

5 Properties of Equilibrium Payoffs

The optimality equation yields rich insights into how the correspondence of PPE payoffs

of the long-run player is tied to the underlying structure of the game. This section

characterizes properties of the shape of equilibrium payoffs when there is a unique

Markov equilibrium.

5.1 The Shape of Equilibrium Payoffs

The static Nash equilibrium payoff, g∗(·, 0), is a key determinant of the shape of U .

Note g∗(·, 0) is straightforward to derive from the primitives of the game (specifically,

g and h). Proposition 1 relates the monotonicity or single-peakedness of U to the

monotonicity or single-peakedness of g∗(·, 0).

Proposition 1. Assume Assumptions 1, 2, 3 and 4 and (9) has a unique solution.

1. If g∗(·, 0) is (strictly) monotonically increasing (decreasing) on X , then U is

(strictly) monotonically increasing (decreasing) on X .

2. If g∗(·, 0) is single-peaked with a maximum (minimum) and g∗(X, 0) = g∗
(
X, 0

)
,

then U is single-peaked with a maximum (minimum).

3. g∗(·, 0) constant on X ⇔ U constant on X .

Example 1, cont. As shown above, g∗(X, z) = (1 − λ)z/r + λX − z2/2r2. There-

fore, the static Nash payoff is g∗(X, 0) = λX, which is strictly increasing in X. By
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Proposition 1, U is strictly increasing in X. This is easily verified in the closed form

for the continuation value (1).

Example 2, cont. Similarly, g∗(X, 0) = max{0,min{λX,B}} is increasing in X,

and therefore, U is increasing in X.

If g∗(·, 0) is not monotonic or single-peaked, it is still possible to partially charac-

terize the shape of U . Proposition 2 gives a rich analytical description of the shape of

U , including showing that the number of extrema of g∗(·, 0), denoted ng, bounds the

number of PPE payoff extrema for the long-run player, nU , and the shape of g∗(·, 0)

on subsets of the state space partially determines the number and type of PPE payoff

extrema on this same subset.

Proposition 2. Assume Assumptions 1, 2, 3 and 4 and (9) has a unique solution.

Let I ⊂ X and nU(I) denote the number of strict interior extrema of U on I ⊂ X .

1. nU ≤ ng <∞.

2. If g∗(·, 0) is constant on I, then nU(I) ≤ 1.

3. If g∗(·, 0) is strictly monotonic on I, then nU(I) ≤ 2 and U is not constant on

I. If g∗(·, 0) is strictly increasing (decreasing) on I and nU(I) = 2, with X1 a

minimum and X2 a maximum, then X1 < X2 (X1 > X2).

4. Suppose I contains a boundary state, X ∈ I or X ∈ I. If g∗(·, 0) is monotonic

on I, then nU(I) ≤ 1 and if g∗(·, 0) is constant on I, then nU(I) = 0. If g∗(·, 0)

is strictly increasing (decreasing) on I and nU(I) = 1, then if X ∈ I, U has

an interior maximum (minimum) on I; and if X ∈ I, then U has an interior

minimum (maximum) on I.

The intuition for the proof stems from the behavior of U at interior extrema. If there

is an extremum at state X, then U ′(X) = 0 and the optimality equation simplifies to

rU(X) = rg∗(X, 0) + U ′′(X) |σ∗ (X, 0)|2 /2,

which depends on the static Nash payoff g∗(X, 0) and whether the extremum is a

maximum or minimum, determined by the sign of U ′′(X). Applying Proposition 2

to specific settings will yield structural empirical predictions about how equilibrium

behavior and actions change with the state.
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5.2 Equilibrium Payoff Bounds

If the flow payoff of the long-run player is bounded, then the correspondence of

PPE payoffs of the long-run player is also bounded. Let W ≡ supX∈X U(X) and

W ≡ infX∈X U(X) be the highest and lowest PPE payoffs of the long-run player

across all states, and let XH and XL denote the (possibly infinite) states that yield

these payoffs. Let g∗(XH , 0) and g∗(XL, 0) be the static Nash equilibrium payoffs

at XH and XL, where, with a slight abuse of notation, if XH ∈ {−∞,∞} then

g∗(XH , 0) = lim supX→XH
g∗(X, 0) and analogously for XL ∈ {−∞,∞}. Proposi-

tion 3 establishes that the correspondence of PPE payoffs of the long-run player, ξ, is

bounded by g∗(XH , 0) and g∗(XL, 0).

Proposition 3. Assume Assumptions 1, 2, 3 and 4 and g is bounded. Then the highest

(lowest) PPE payoff of the long-run player across all states is bounded above (below)

by the static Nash payoff of the long-run player at the corresponding state,

g∗(XL, 0) ≤ W ≤ W ≤ g∗(XH , 0).

This bound follows directly from the optimality equation. Suppose there is an interior

stateXH such thatW = U(XH). WhenXt = XH , Wt must have a weakly negative drift

and zero volatility so as not to exceed W . From Lemma 2, this implies g(at, bt, XH) ≥
W . From Theorem 1, U ′(XH) = 0, and therefore g(at, bt, XH) = g∗(XH , 0). Combining

these conditions yields W ≤ g∗(XH , 0). If the continuation value is sufficiently flat

around XH (i.e. U ′′(XH) = 0) or XH is an absorbing state, then W = g∗(XH , 0).

Otherwise, W < g∗(XH , 0), as either the continuation value or the state changes too

quickly at XH to maintain g∗(XH , 0). Note that when Wt ∈ (W,W ), Wt may lie above

or below the static Nash payoff at the corresponding state, g∗(Xt, 0).

Although in general it is not possible to characterize XH from the primitives of the

game (XH does not necessarily correspond to the state that maximizes g∗(·, 0)), and

therefore the payoff bounds in Proposition 3, a weaker bound that can be characterized

from the primitives of the model immediately follows. The correspondence of PPE

payoffs of the long-run player, ξ, is bounded above (below) by the highest (lowest)

static Nash payoff across all states.

Corollary 2. Assume Assumptions 1, 2, 3 and 4 and g is bounded. Then

inf
X∈X

g∗(X, 0) ≤ W ≤ W ≤ sup
X∈X

g∗(X, 0).
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6 Conclusion

This paper shows that persistence provides an important channel for intertemporal

incentives and develops a tractable method to characterize Markov equilibrium behav-

ior and payoffs. The tools developed in this paper will yield insights into equilibrium

behavior in a broad range of settings, from industrial organization to political economy

to macroeconomics. Once functional forms are specified for payoffs and the evolution

of the state, it is straightforward to use Theorem 1 to construct a Markov equilibrium.

This in turn can be used to derive empirically testable comparative statics and predic-

tions about the dynamics of equilibrium behavior based on observable features of the

environment. Future research can use this framework to address design questions in

specific applications, such as determining the optimal structure of persistence.

Furthermore, the equilibrium characterization can be used for structural estimation.

Markov equilibria have an intuitive appeal in empirical work, due to their simplicity

and dependence on payoff relevant variables to structure incentives. Players do not

need to condition on past behavior in a complex way, as actions and payoffs are fully

determined by the current value of the state. Establishing that a Markov equilibrium

exists and is unique provides a strong justification for focusing on this equilibrium

concept.
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A Appendix

A.1 Proofs from Section 3

Proof of Lemma 1. Suppose g is unbounded. By Assumption 3, there exists a k ∈ [0, r)

and c > 0 such that for all (a, b,X) ∈ A × E, if X ≥ 0 then µx(a, b,X) ≤ kX + c and

if X ≤ 0 then µx(a, b,X) ≥ kX − c. Lipschitz continuous functions have linear growth.

Therefore, by Lipschitz continuity of g and σx, the compactness of A and the assumption

that |b| ≤ Kb|X| + cb for all (b,X) ∈ E, there exists a Kg, Kσ, c > 0 such that for all

(a, b,X) ∈ A× E, |g(a, b,X)| ≤ Kg(
c
k

+ |X|) and |σx (b,X) | ≤ Kσ (1 + |X|).

Step 1: Derive a bound on Eτ
∣∣g(at, bt, Xt)

∣∣, the expected flow payoff at time t conditional

on available information at time τ ≤ t. This bound will be independent of the strategy

profile. Define f : X → R as

f(X) ≡


Kg(

c
k
−X) if X ≤ −1

−1
8
KgX

4 + 3
4
KgX

2 + 3
8
Kg +Kg

c
k

if X ∈ (−1, 1)

Kg(
c
k

+X) if X ≥ 1

Note f ∈ C2, f ≥ 0, |f ′| ≤ Kg and

f ′′(X) =

0 if |X| ≥ 1

3
2
Kg (1−X2) if |X| < 1

Ito’s Lemma holds for any C2 function. Given a strategy profile S =
(
at, bt

)
t≥0, initial state

Xτ <∞ and path of the state variable (Xt)t≥τ that evolves according to (2),

f(Xt) = f(Xτ ) +

∫ t

τ

(
f ′(Xs)µx(as, bs, Xs) +

1

2
f ′′(Xs)

∣∣σx (bs, Xs

)∣∣2) ds+

∫ t

τ

f ′(Xs)σx
(
bs, Xs

)
· dZs

≤ f(Xτ ) +

∫ t

τ

(
Kg (k |Xs|+ c) + 3KgK

2
σ

)
ds+KgKσ

∫ t

τ

(1 + |Xs|) dZs

≤ f(Xτ ) + k

∫ t

τ

f(Xs)ds+ 3KgK
2
σ (t− τ) +KgKσ

∫ t

τ

(1 + |Xs|) dZs

for all t ≥ τ , where the first inequality follows from f ′(X)µx(a, b,X) ≤ Kg (k|X|+ c),
1
2
f ′′(X)|σx (b,X) |2 ≤ 3KgK

2
σ and f ′(X)σx(b,X) · z ≤ KgKσ(1 + |X|)z for all z ∈ Rd and

for all (a, b,X) ∈ A × E, and the second inequality follows from the definition of f . The

addition of the absolute value sign in f ′(X)µx(a, b,X) ≤ Kg (k|X|+ c) follows from the sign
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of f ′ and the bound on 1
2
f ′′(X)|σx (b,X) |2 follows from f ′′(X)|σx (b,X) |2 = 0 if |X| ≥ 1

and if |X| < 1,

f ′′(X) |σx (b,X)|2 =
3

2
Kg

(
1−X2

)
|σx (b,X)|2

≤ 3

2
Kg

(
1−X2

)
K2
σ (1 + |X|)2

≤ 6KgK
2
σ.

Taking expectations and noting that (1 + |Xs|) is square-integrable on [τ, t], so the expecta-

tion of the stochastic integral is zero,

Eτ [f(Xt)] ≤ f(Xτ ) + 3KgK
2
σ (t− τ) + k

∫ t

τ

Eτ [f(Xs)] ds

≤
(
f(Xτ ) + 3KgK

2
σ (t− τ)

)
ek(t−τ)

where the last line follows from Gronwall’s inequality. Note that |g(a, b,X)| ≤ f(X) for all

(a, b,X) ∈ A× E. Therefore,

e−r(t−τ)Eτ
∣∣g(at, bt, Xt)

∣∣ ≤ e−r(t−τ)Eτ [f(Xt)] ≤
(
f(Xτ ) + 3KgK

2
σ (t− τ)

)
e−(r−k)(t−τ)

Step 2: Show that if Xt <∞, then Wt(S) <∞.

|Wt(S)| =

∣∣∣∣Et [r ∫ ∞
t

e−r(s−t)g(as, bs, Xs)ds

]∣∣∣∣
≤ rEt

[∫ ∞
t

e−r(s−t)
∣∣g(as, bs, Xs)

∣∣ ds]
≤ r

∫ ∞
t

e−r(s−t)Et
∣∣g(as, bs, Xs)

∣∣ ds
≤ r

∫ ∞
t

(
f(Xt) + 3KgK

2
σ (s− t)

)
e−(r−k)(s−t)ds

=

(
r

r − k

)
f(Xt) +

3rKgK
2
σ

(r − k)2

which is finite for any Xt <∞ and k < r. Also, given that f has linear growth, there exists

a K > 0 such that

|Wt(S)| ≤ K(1 + |Xt|).
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Step 3: Show E|Vt(S)| <∞ for any X0 <∞. By similar reasoning to Step 2,

E |Vt(S)| = E

∣∣∣∣Et [r ∫ ∞
0

e−rsg(as, bs, Xs)ds

]∣∣∣∣ ≤ E

[
r

∫ ∞
0

e−rs
∣∣g(as, bs, Xs)

∣∣ ds]
which is finite for any X0 <∞ and k < r.

Step 4: Show Et[Vt+k(S)] = Vt(S).

Et[Vt+k(S)] = Et

[
r

∫ t+k

0

e−rsg(as, bs, Xs)ds+ e−r(t+k)Wt+k(S)

]
= r

∫ t

0

e−rsg(as, bs, Xs)ds

+Et

[
r

∫ t+k

t

e−rsg(as, bs, Xs)ds+ e−r(t+k)Et+k

[
r

∫ ∞
t+k

e−r(s−(t+k))g(as, bs, Xs)ds

]]
= r

∫ t

0

e−rsg(as, bs, Xs)ds+ e−rtWt(S) = Vt(S).

By steps 3 and 4, Vt(S) is a martingale.

If g is bounded with respect to X, then, trivially, Vt(S) and Wt(S) are bounded for all

t ≥ 0 and X0 ∈ X , and showing Vt(S) is a martingale follows from step 4. Also note that if

X is bounded, then g is bounded. �

Proof of Lemma 2.

Evolution of the continuation value. From Lemma 1, Vt(S) is a martingale. Take the

derivative of Vt(S) wrt t:

dVt(S) = re−rtg(at, bt, Xt)dt− re−rtWt(S)dt+ e−rtdWt(S)

By the martingale representation theorem, there exists a progressively measurable process

(βt)t≥0 such that Vt can be represented as dVt(S) = re−rtβ>t σ
(
bt, Xt

)
dZt, where σ =

[σTy , σ
T
x ]T . Combining these two expressions for dVt(S) yields the law of motion for the

continuation value:

dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt+ rβ>t σ

(
bt, Xt

)
dZt

= r
(
Wt(S)− g(at, bt, Xt)

)
dt+ rβyt

[
dYt − µy(at, bt, Xt)dt

]
+rβxt

[
dXt − µx(at, bt, Xt)dt

]
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where βt = (βyt, βxt) is a vector of length d. The component βyt captures the sensitivity of

the continuation value to the public signal, while the component βxt captures the sensitivity

of the continuation value to the state variable. Lemma 1 establishes that any continuation

value has linear growth with respect to Xt and is bounded when g is bounded.

Sequential rationality. Consider strategy profile (at, bt)t≥0 played from period τ onwards

and alternative strategy (ãt, bt)t≥0 played up to time τ . Recall that all values of Xt are

possible under both strategies, but that each strategy induces a different measure over sample

paths (Xt)t≥0. At time τ , the state variable is equal to Xτ . Action aτ will induce[
dYτ

dXτ

]
=

[
µy(aτ , bτ , Xτ )

µx(aτ , bτ , Xτ )

]
dt+ σ(bτ , Xτ ) ·

[
dZy

τ

dZx
τ

]

whereas action ãτ will induce[
dYτ

dXτ

]
=

[
µy(ãτ , bτ , Xτ )

µx(ãτ , bτ , Xτ )

]
dt+ σ(bτ , Xτ ) ·

[
dZy

τ

dZx
τ

]

Let Ṽτ be the expected average payoff conditional on information at time τ when the long-

run player follows ã up to τ and a afterwards, and let Wτ be the continuation value when

the long-run player follows strategy (at)t≥0 starting at time τ .

Ṽτ = r

∫ τ

0

e−rsg(ãs, bs, Xs)ds+ e−rτWτ

Consider changing τ so that long-run player plays strategy (ãt, bt) for another instant: dṼτ

is the change in average expected payoffs when the long-run player switches to (at)t≥0 at

τ + dτ instead of τ . When long-run player switches strategies at time τ ,

dṼτ = re−rτ
[
g(ãτ , bτ , Xτ )−Wτ

]
dτ + e−rτdWτ

= re−rτ
[
g(ãτ , bτ , Xτ )− g(aτ , bτ , Xτ )

]
dτ + re−rτβyτ

[
dYτ − µy(aτ , bτ , Xτ )dτ

]
+re−rτβxt

[
dXt − µx(at, bt, Xt)dt

]
= re−rτ

[[
g(ãτ , bτ , Xτ )− g(aτ , bτ , Xτ )

]
dτ + βyτ

[
µy(ãτ , bτ , Xτ )− µy(aτ , bτ , Xτ )

]
dτ
]

+re−rτ
[
βxτ
[
µx(ãτ , bτ , Xτ )− µx(aτ , bτ , Xτ )

]
dτ + β>τ σ

(
bt, Xt

)
dZt
]

There are two components to this strategy change: how it affects the immediate flow payoff

and how it affects future public signal Yt and future state Xt, which impact the continuation
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value. The profile (ãt, bt)t≥0 yields the long-run player a payoff of:

W̃0 = E0

[
Ṽ∞

]
= E0

[
Ṽ0 +

∫ ∞
0

dṼt

]
= W0 + E0

[
r

∫ ∞
0

e−rt

{
g(ãt, bt, Xt) + βyτµy(ãτ , bτ , Xτ ) + βxτµx(ãτ , bτ , Xτ )

−g(at, bt, Xt)− βyτµy(aτ , bτ , Xτ )− βxτµx(aτ , bτ , Xτ )

}
dt

]

If

g(at, bt, Xt)+βytµy(at, bt, Xt)+βxtµx(at, bt, Xt) ≥ g(ãt, bt, Xt)+βytµy(ãt, bt, Xt)+βxtµx(ãt, bt, Xt)

holds for all t ≥ 0, then W0 ≥ W̃0 and deviating to S = (ãt, bt) is not a profitable deviation.

A strategy (at)t≥0 is sequentially rational for the long-run player if, given (βt)t≥0, for all t:

at ∈ arg max g(a′, bt, Xt) + βytµy(a
′, bt, Xt) + βxtµx(a

′, bt, Xt).

A.2 Proof of Theorem 1

Let ψ(X, z) ≡ g∗(X, z) + z
r
µ∗(X, z) be the value of the long-run player’s incentive constraint

in the equilibrium of the auxiliary static game with incentive weights zy = 0 on the public

signal and zx = z/r on the state.

Form of Optimality Equation. In a Markov equilibrium, the continuation value and

equilibrium actions are characterized as a function of the state variable as Wt = U(Xt),

a∗t = a(Xt) and b
∗
t = b(Xt). By Ito’s formula, if a Markov equilibrium exists, the continuation

value will evolve according to:

dU(Xt) = U ′(Xt)dXt +
1

2
U ′′(Xt)

∣∣∣σx (b∗t , Xt

)∣∣∣2 dt
= U ′(Xt)µx(a

∗
t , b
∗
t , Xt)dt+

1

2
U ′′(Xt)

∣∣∣σx (b∗t , Xt

)∣∣∣2 dt+ U ′(Xt)σx

(
b
∗
t , Xt

)
dZt

Matching the drift of this expression with the drift of the continuation value characterized

in Lemma 2 yields the optimality equation for strategy profile (a∗, b
∗
),

U ′′(X) =
2r
(
U(X)− g(a∗, b

∗
, X)

)
∣∣∣σx (b∗t , Xt

)∣∣∣2 − 2µx(a
∗, b
∗
, X)∣∣∣σx (b∗t , Xt

)∣∣∣2U ′(X) (20)

which is a second order non-homogenous differential equation.

34



Matching the volatility characterizes the process governing incentives, βy = 0 and βx =

U ′(X)/r. Intuitively, the continuation value and equilibrium actions are independent of the

public signal in a Markov equilibrium; this is born out mathematically by the condition

βy = 0. Plugging these into the condition for sequential rationality,

S∗(X, 0, U ′(X)/r) =

{
(a∗, b

∗
) :

a∗ = arg maxa∈A g(a, b
∗
, X) + U ′(X)µx(a, b

∗
, X)/r

b
∗

= arg maxb∈B(X) h(a∗, b, b
∗
, X)

}
.

which is unique by Assumption 4.

Existence of solution to optimality equation. Define f : X × R2 → R as:

f(X,U, U ′) ≡ 2r

|σ∗(X,U ′)|2
(U − ψ(X,U ′))

which is continuous on int(X ). I establish that the second order differential equation U ′′ =

f(X,U, U ′) has at least one solution U ∈ C2 that takes on values in the interval of feasible

payoffs for the long-run player, and therefore, is a solution to (20).

Case 1: Unbounded State Space. Theorem 5.6 from Coster and Habets (2006), which

is based on Schmitt (1969), gives sufficient conditions for the existence of a solution to a

second order differential equation defined on R3. The Theorem is reproduced below.

Theorem 5 (Coster Habets (2006)). Let α, β ∈ C2(R) be functions such that α ≤ β,

D = {(t, u, v) ∈ R3|α(t) ≤ u ≤ β(t)} and f : D → R be a continuous function. Assume that

α and β are such that for all t ∈ R,

f(t, α(t), α′(t)) ≤ α′′(t) and β′′(t) ≤ f(t, β(t), β′(t)).

Assume that for any bounded interval I, there exists a positive continuous function HI :

R+ → R that satisfies the Nagumo condition,13∫ ∞
0

sds

HI(s)
=∞, (21)

and for all t ∈ I, (u, v) ∈ R2 with α(t) ≤ u ≤ β(t), |f (t, u, v) | ≤ HI(|v|). Then the equation

u′′ = f (t, u, u′) has at least one solution u ∈ C2(R) such that for all t ∈ R, α(t) ≤ u(t) ≤ β(t).

13The Nagumo condition is a growth condition on the second order differential equation f(X,U,U ′) and
plays an important role in demonstrating the existence of solutions of the boundary value problem.
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Lemma 3. If X = R, then (9) has at least one solution U ∈ C2(R) that lies in the range of

feasible payoffs for the long-run player.

Proof. Suppose X = R. Then (9) is continuous on R3. Define α, β : R→ R as

α (X) : =


α1X − ca if X ≤ −1

1
8
α1X

4 − 3
4
α1X

2 − 3
8
α1 − ca if X ∈ (−1, 1)

−α1X − ca if X ≥ 1

β (X) : =


−β1X + cb if X ≤ −1

−1
8
β1X

4 + 3
4
β1X

2 + 3
8
β1 + cb if X ∈ (−1, 1)

β1X + cb if X ≥ 1

for some α1, β1, ca, cb ≥ 0. Note that α, β ∈ C2(R) and α ≤ β. Then α and β are lower and

upper solutions to (9) if there exist α1, β1, ca, cb ≥ 0 such that for all X ∈ R,

2r

|σ(X,α′(X))|2
(α(X)− ψ(X,α′(X))) ≤ α′′(X)

and

β′′(X) ≤ 2r

|σ(X, β′(X))|2
(β(X)− ψ(X, β′(X))) .

Step 1: By Assumption 3, ∃k ∈ [0, r) and c ≥ 0 such that µ∗(X, z) ≤ kX+ c for all X ≥ 0

and µ∗(X, z) ≥ kX − c for all X ≤ 0. Show that there exist α1, β1, ca, cb ≥ 0 such that α, β

are lower and upper solutions to (9). Note this step does not require g to be bounded.

Step 1a: Find a bound on ψ. By Lipschitz continuity and the fact that g∗ and µ∗ are

bounded in z, ∃kg, km ≥ 0 such that

|g∗(X, z)− g∗(0, z)| ≤ kg |X|

|µ∗(X, z)− µ∗(0, z)| ≤ km |X|

for all (X, z). Therefore, ∃g
1
, g

2
, g1, g2 ≥ 0, µ

1
, µ2 ∈ [0, r), µ

2
, µ1 > 0 and γ, γ,m,m ∈ R

such that:
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g1X + γ

−g
2
X + γ

≤ g∗(X, z) ≤

−g1X + γ if X < 0

g2X + γ if X ≥ 0µ1
X +m

−µ
2
X +m

≤ µ∗(X, z) ≤

−µ1X +m if X < 0

µ2X +m if X ≥ 0

and



(
g
1
− µ1

r
z
)
X + γ + m

r
z(

−g
2

+ µ2
r
z
)
X + γ + m

r
z(

g
1

+
µ
1

r
z
)
X + γ + m

r
z

−
(
g
2

+
µ
2

r
z
)
X + γ + m

r
z

≤ ψ(X, z) ≤



(
−g1 +

µ
1

r
z
)
X + γ + m

r
z if X < 0, z ≤ 0(

g2 −
µ
2

r
z
)
X + γ + m

r
z if X ≥ 0, z ≤ 0

−
(
g1 + µ1

r
z
)
X + γ + m

r
z if X < 0, z ≥ 0(

g2 + µ2
r
z
)
X + γ + m

r
z if X ≥ 0, z ≥ 0

Step 1b: Find conditions on (α1, β1, ca, cb) such that α, β are lower and upper solutions to

(9) when X ≤ −1. Note α′′ (X) = β′′ (X) = 0, so this corresponds to showing ψ(X,α1) ≥
α1X − ca and ψ(X,−β1) ≤ −β1X + cb. From the bound on ψ,

ψ(X,α1) ≥
(
g
1

+
µ
1

r
α1

)
X + γ +

m

r
α1

ψ(X,−β1) ≤ −
(
g1 +

µ
1

r
β1

)
X + γ − m

r
β1.

Therefore, showing α and β are lower and upper solutions requires

α1 ≥
rg

1

r − µ
1

ca ≥ −γ − m

r
α1 ≡ c1a

β1 ≥
rg1

r − µ
1

cb ≥ γ − m

r
β1 ≡ c1b .

Step 1c: Find conditions on (α1, β1, ca, cb) such that α, β are lower and upper solutions

to (9) when X ≥ 1. This corresponds to showing ψ(X,−α1) ≥ −α1X − ca and ψ(X, β1) ≤
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β1X + cb. From the bound on ψ,

ψ(X,−α1) ≥ −
(
g
2

+
µ2

r
α1

)
X + γ − m

r
α1

ψ(X, β1) ≤
(
g2 +

µ2

r
β1

)
X + γ +

m

r
β1.

Therefore, this requires

α1 ≥
rg

2

r − µ2

ca ≥ −γ +
m

r
α1 ≡ c2a

β1 ≥
rg2

r − µ2

cb ≥ γ +
m

r
β1 ≡ c1b .

Step 1d: Find conditions on (α1, β1, ca, cb) such that α, β are lower and upper solutions to

(9) when X ∈ (−1, 1). Note α′′ (X) = −3
2
α1 (1−X2) ≥ −3

2
α1 and α (X) ≤ −3

8
α1 − ca and

β′′ (X) = 3
2
β1 (1−X2) ≤ 3

2
β1 and β (X) ≥ 3

8
β1 + cb, so this is equivalent to showing

ca ≥
3

4

(
|σ∗ (X,α′)|2

r
− 1

2

)
β1 − ψ (X,α′)

cb ≥
3

4

(
|σ∗ (X,α′)|2

r
− 1

2

)
β1 + ψ (X, β′)

for X ∈ (−1, 1). Let σ = supX∈[0,1],z |σ∗ (X, z) |, which exists since σ∗ is Lipschitz continuous

in X and bounded in z. First consider X ∈ (−1, 0], which means that β′ = 1
2
β1X (3−X2) ∈

(−β1, 0] and a′ = −1
2
α1X (3−X2) ∈ [0, α1). From the bound on ψ,

ψ (X,α′) ≥
(
g
1

+
µ
1

r
α′
)
X + γ +

m

r
α′ ≥ −g

1
+ γ −

µ
1

r
α1 +

α1

r
min {m, 0}

ψ (X, β′) ≤
(
−g1 +

µ
1

r
β′
)
X + γ +

m

r
β′ ≤ g1 + γ +

µ
1

r
β1 −

β1
r

min {m, 0} .

Therefore, this requires

ca ≥
3

4

(
σ2

r
− 1

2

)
α1 + g

1
− γ +

µ
1

r
α1 −

α1

r
min {m, 0} ≡ c3a

cb ≥
3

4

(
σ2

r
− 1

2

)
β1 + g1 + γ +

µ
1

r
β1 −

β1
r

min {m, 0} ≡ c3b .
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Next consider X ∈ [0, 1), which means that β′ = 1
2
β1X (3−X2) ∈ [0, β1) and a′ =

−1
2
α1X (3−X2) ∈ (−α1, 0]. From the bound on ψ,

ψ (X,α′) ≥
(
−g

2
+
µ2

r
α′
)
X + γ +

m

r
α′ ≥ −g

2
+ γ − µ2

r
α1 −

α1

r
max {m, 0}

ψ (X, β′) ≤
(
g2 +

µ2

r
β′
)
X + γ +

m

r
β′ ≤ g2 + γ +

µ2

r
β1 +

β1
r

max {m, 0} .

This requires

ca ≥
3

4

(
σ2

r
− 1

2

)
α1 + g

2
− γ +

µ2

r
α1 +

α1

r
max {m, 0} ≡ c4a

cb ≥
3

4

(
σ2

r
− 1

2

)
β1 + g2 + γ +

µ2

r
β1 +

β1
r

max {m, 0} ≡ c4b .

Step 1e: Compiling these conditions and choosing

α1 = max

{
rg

1

r − µ
1

,
rg

2

r − µ2

}

β1 = max

{
rg1

r − µ
1

,
rg2

r − µ2

}

yields α1, β1 ≥ 0 that satisfy the slope conditions in steps 1b-1d, and choosing

ca = max
{

0, c1a, c
2
a, c

3
a, c

4
a

}
and cb = max

{
0, c1b , c

2
b , c

3
b , c

4
b

}
yields ca, cb that satisfy the intercept conditions in steps 1b-1d. Conclude that α and β are

lower and upper solutions to (9).

Step 2: Assume g is bounded. Show that there exist α1, β1, ca, cb ≥ 0 such that α, β

are lower and upper solutions to (9). Note this step places no restrictions on the rela-

tionship between the growth rate of µx and r. Define g ≡ sup(a,b,X)∈A×E g(a, b,X) and

g ≡ inf(a,b,X)∈A×E g(a, b,X), which exist since g is bounded. Let α1 = 0 and ca = −g. Then

ψ(X,α′(X)) = g∗(X, 0), so α − ψ(X,α′) = g − g∗(X, 0) ≤ 0 and α (X) = g is a lower

solution. Similarly, let β1 = 0 and cb = g. Then ψ(X, β′) = g∗(X, 0), so β − ψ(X, β′(X)) =

g − g∗(X, 0) ≥ 0 and β (X) = g is an upper solution.

Step 3: Show that the Nagumo condition (21), which is a growth condition on f(X,U, U ′)

that Theorem 5 uses to establish existence of a solution to the boundary value problem, is
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satisfied. Given a compact proper subset I ⊂ X , there exists a KI > 0 such that

|f(X,U, U ′)| =
∣∣∣∣ 2r

|σ∗ (X,U ′)|2

(
U − g∗ (X,U ′)− U ′

r
µ∗ (X,U ′)

)∣∣∣∣ ≤ KI (1 + |U ′|)

for all (X,U, U ′) ∈ {I × R2 s.t. α (X) ≤ U ≤ β (X)}. This follows directly from the fact

that X ∈ I, α (X) and β (X) are bounded on I, α (X) ≤ U ≤ β (X), g∗, µ∗ are bounded

on (X,U ′) ∈ I × R and the lower bound on σx. Define HI(z) = KI (1 + z). Therefore,∫∞
0

sds
HI(s)

=∞.

Conclude that f(X,U(X), U ′(X)) has at least one C2 solution U such that for all X ∈ R,

α (X) ≤ U(X) ≤ β (X). If α and β are bounded, then U is bounded. �

Case 2: Bounded State Space. I use standard existence results from Coster and Habets

(2006) and an extension in Faingold and Sannikov (2011), which is necessary because (9) is

undefined at {X,X}. The result applied to the current setting is reproduced below.

Lemma 4 (Faingold Sannikov (2011)). Let E =
{

(t, u, v) ∈ (t, t)× R2
}

and f : E → R
be continuous. Let α, β ∈ R such that α ≤ β and f(t, α, 0) ≤ 0 ≤ f(t, β, 0) for all t ∈
R. Assume also that for any closed interval I ⊂ (t, t), there exists a KI > 0 such that

|f(t, u, v)| ≤ KI(1 + |v|)) for all (t, u, v) ∈ I × [α, β] × R. Then the differential equation

U ′′ = f (t, U(t), U ′(t)) has at least one C2 solution U on (t, t) such that α ≤ U(t) ≤ β.

Proof. When X is compact, the feasible payoff set for the long-run player is bounded, since

g is Lipschitz continuous and A is compact. Define g ≡ inf(a,b,X)∈A×E g(a, b,X) and g ≡
sup(a,b,X)∈A×E g(a, b,X). �

Lemma 5. Suppose X is compact. Then (9) has at least one C2 solution U that lies in the

range of feasible payoffs for the long-run player, g ≤ U(X) ≤ g.

Proof. Suppose X is compact. Then (9) is continuous on the setD =
{

(X,U, U ′) ∈ (X,X)× R2
}

.

For any closed interval I ⊂ (X,X), there exists a KI > 0 such that∣∣∣∣ 2r

|σ∗(X,U ′)|2

(
U − g∗(X,U ′)− U ′

r
µ∗(X,U ′)

)∣∣∣∣ ≤ KI (1 + |U ′|)

for all (X,U, U ′) ∈ I ×
[
g, g
]
×R. This follows directly from the fact that X ∈ I, U ∈

[
g, g
]
,

g∗, µ∗ are bounded on X × R, and the lower bound on σx. Also note that

f(X, g, 0) =
2r

|σ∗(X, 0)|2
(
g − g∗(X, 0)

)
≤ 0 ≤ f(X, g, 0) =

2r

|σ∗(X, 0)|2
(g − g∗(X, 0))
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for all X ∈ X . By Lemma 4, (9) has at least one C2 solution U such that g ≤ U(X) ≤ g for

all X ∈ X . �

Construct a Markov equilibrium. Suppose the state variable initially starts at X0 and

U is a solution to (9). The action profile (a∗, b
∗
) = S∗(X, 0, U ′(X)/r) is unique and Lipschitz

continuous. Given X0, U and (a∗t , b
∗
t )t≥0, the state variable evolves according to the unique

strong solution (Xt)t≥0 to the stochastic differential equation

dXt = µ∗(Xt, U
′(Xt))dt+ σ∗ (Xt, U

′(Xt)) dZt

which exists since µ∗ and σ∗ are Lipschitz continuous. The continuation value evolves ac-

cording to:

dU(Xt) = U ′(Xt)µ
∗(Xt, U

′(Xt))dt+
1

2
U ′′(Xt) |σ∗ (Xt, U

′(Xt))|2 dt+ U ′(Xt)σ
∗ (Xt, U

′(Xt)) dZt

= r (U(Xt)− g∗ (Xt, U
′(Xt))) dt+ U ′(Xt)σ

∗ (Xt, U
′(Xt)) dZt.

This process satisfies (5). Additionally, (a∗t , b
∗
t )t≥0 satisfies (6) and (7) given process (βt)t≥0

with βt = (0, U ′(Xt)). Thus, the strategy profile (a∗t , b
∗
t )t≥0 is a PPE yielding equilibrium

payoff U(X0).

A.3 Proof of Theorem 2

Let X0 be the initial state, and let U be the upper envelope of the set of solutions to the

optimality equation (9). Suppose there is a PPE S = (at, bt)t≥0 that yields an equilibrium

payoff W0 > U(X0). The continuation value in this equilibrium must evolve according to

dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt+rβᵀyt

[
dYt − µy(at, bt, Xt)dt

]
+rβxt

[
dXt − µx(at, bt, Xt)dt

]
(22)

for some process (βt)t≥0. By sequential rationality, (at, bt) = S∗(Xt, βyt, βxt) for all t, and by

Assumption 4, these actions are unique for each (X, βy, βx). Define

ĝ(X, βy, βx) ≡ g(S∗(X, βy, βx), X)

µ̂(X, βy, βx) ≡ µ(S∗(X, βy, βx), X)

σ̂(X, βy, βx) ≡ σ(S∗(X, βy, βx), X)

which are Lipschitz continuous, given g, µ, σ and S∗ are Lipschitz. The state (Xt)t≥0 evolves

according to (2), given PPE action profile S = (at, bt)t≥0. By Ito’s formula, the process
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(U(Xt))t≥0 evolves according to

dU(Xt) = U
′
(Xt)µ̂x(Xt, βyt, βxt)dt+

1

2
U
′′
(Xt) |σ̂x (Xt, βyt, βxt)|2 dt+U

′
(Xt)σ̂x (Xt, βyt, βxt) dZt.

(23)

Define a process Dt ≡ Wt(S)−U(Xt) with initial condition D0 = W0(S)−U(X0) > 0. Then

Dt evolves according to dDt = dWt(S)− dU(Xt). Plugging in (22) and (23), the process has

drift rDt + d(Xt, βyt, βxt), where

d(X, βy, βx) ≡ r
(
U(X)− ĝ(X, βy, βx)

)
− U ′(X)µ̂x(X, βy, βx)−

1

2
U
′′
(X) |σ̂x (X, βy, βx)|2

= r
(
ĝ(X,0, U

′
(X)/r)− ĝ(X, βy, βx)

)
+ U

′
(X)

(
µ̂x(X,0, U

′
(X)/r)− µ̂x(X, βy, βx)

)
+

1

2
U
′′
(X)

(
|σ̂x(X,0, U ′(X)/r)|2 − |σ̂x(X, βy, βx)|2

)
,

where the second line follows from substituting (9) for U , and volatility

f(X, βy, βx) ≡ rβᵀy σ̂y (X, βy, βx) + (rβx − U
′
(X))σ̂x (X, βy, βx) .

Lemma 6. If |f(X, βy, βx)| = 0, then d(X, βy, βx) = 0.

Proof. Suppose |f(X, βy, βx)| = 0 for some (X, βy, βx). Then βy = 0 and rβx = U
′
(X). The

action profile associated with (X,0, U
′
(X)/r) corresponds to the actions played in a Markov

equilibrium at state X. Therefore, d(X, βy, βx) = 0. �

Lemma 7. For every ε > 0, there exists a η > 0 such that either d(X, βy, βx) > −ε or

|f(X, βy, βx)| > η.

Proof. Suppose the state space is unbounded, X = R. Fix ε > 0 and suppose d(X, βy, βx) ≤
−ε. Show that there exists a η > 0 such that |f(X, βy, βx)| > η for all (X, β) ∈ X × Rd.

Step 1. Show ∃M > 0 such that this is true for (X, β) ∈ Ωa ≡ {X × Rd : |β| > M}.
U
′

is bounded, by Assumption 1, σx is bounded away from 0 and by Assumption 2, there

exists a c > 0 such that |σyy · y| ≥ c|y| for all (b,X) ∈ E and y ∈ Rd−1, which bounds σyy

away from 0. Therefore, there exists an M > 0 and η1 > 0 such that |f(X, βy, βx)| > η1 for

all |β| > M , regardless of d.

Step 2. Show ∃X∗ > 0 such that this is true for (X, β) ∈ Ωb ≡ {X ×Rd : |β| ≤M, |X| >
X∗}.
Consider the set Φb ⊂ Ωb with d(X, βy, βx) ≤ −ε. It must be that (βx, βy) is bounded away

from (U
′
(X)/r, 0) on Φb. Suppose not. Then either (i) there exists some (X, β) ∈ Φb with
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βx = U
′
(X)/r and βy = 0, which implies |f(X, βy, βx)| = 0 and therefore d(X, βy, βx) =

0, a contradiction, or (ii) as X becomes large, the boundary of the set Φb approaches

(βx, βy) = (U
′
(X)/r,0), which implies that for any δ1 > 0, there exists an (X, β) ∈ Φb with

max{rβx − U
′
(X), βy} < δ1. Choose δ1 so that |ĝ(X, 0, U

′
(X)/r) − ĝ(X, βy, βx)| < ε/4r

and |µ̂(X, 0, U
′
(X)/r) − µ̂(X, βy, βx)| < ε/4k, where |U ′(X)| ≤ k is the bound on U

′
.

Then |d(X, βy, βx)| < ε/4 + ε/4 = ε/2 which is a contradiction. Therefore, there exists

a η2 such that |f(X, βy, βx)| > η2 on Φb. Then on the set Ωb, if d(X, βy, βx) ≤ −ε then

|f(X, βy, βx)| > η2.

Step 3. Show this is true for (X, β) ∈ Ωc ≡ {X × Rd : |β| ≤M and |X| ≤ X∗}.
Consider the set Φc ⊂ Ωc where d(X, βy, βx) ≤ −ε. The function d is continuous and Ωc

is compact, so Φc is compact. The function |f | is also continuous, and therefore achieves a

minimum η3 on Φc. If η3 = 0, then d = 0 by Lemma 6, a contradiction. Therefore, η3 > 0

and |f(X, βy, βx)| > η3 for all (X, β) ∈ Φc.

Take η = min {η1, η2, η3}. Then when d(X, βy, βx) ≤ −ε, |f(X, βy, βx)| > η. The proof for a

bounded state space is analogous, omitting step 2b. �

Lemma 8. Any PPE payoff W0 is such that U(X0) ≤ W0 ≤ U(X0) where U and U are the

upper and lower envelope of the set of solutions to (9).

Proof. Lemma 7 implies that whenever the drift of Dt is less than rDt − ε, the volatility is

greater than η. Take ε = rD0/4 and suppose Dt ≥ D0/2. Then whenever the drift is less

than rDt − ε > rD0/2 − rD0/4 = rD0/4 > 0, there exists a η such that |f(X, βy, βx)| > η.

Thus, whenever Dt ≥ D0/2 > 0, it has either positive drift or positive volatility, and grows

arbitrarily large with positive probability, irrespective of Xt. This is a contradiction, since by

Lemma 1, Dt is the difference of two processes that are bounded with respect to Xt. Thus,

it cannot be that D0 > 0 and it must be the case that W0 ≤ U(X0). Similarly, if U is the

lower envelope of the set of solutions to (9), it is not possible to have D0 < 0 and therefore

it must be the case that W0 ≥ U(X0). �

The proof of Theorem 2 follows directly from Lemma 8, and the fact that at any state

X ∈ X , it is possible for the long-run player to achieve any payoff in the convex hull of the

set of Markov equilibrium payoffs at state X by using randomization.

Proof of Corollary 1. Existence of a Markov equilibrium follows from Theorem 1. When

µx is independent of a, the sequential rationality condition (6) in a Markov equilibrium

collapses to maximizing the static flow payoff, and the long-run player plays the unique
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static Nash action profile S∗(X,0, 0) in each state. Therefore, the measure over the state is

independent of the solution to (9). Any solution to (9) must satisfy

U(Xt) = Et

[
r

∫ ∞
t

e−rsg∗(Xs, 0)dt

]
. (24)

Given the the RHS of (9) is independent of U , (9) must have a unique solution and there is

a unique Markov equilibrium. By Theorem 2, this is also the unique PPE. The solution to

(9) evaluated at the current state Xt analytically characterizes the RHS of (24).

A.4 Proof of Theorems 3 and 4

I prove Theorems 3 and 4 simultaneously. The proof proceeds in three steps:

1. Any solution to the optimality equation has the same boundary conditions.

2. If all solutions have the same boundary conditions, then there is a unique linear growth

(bounded) solution.

3. When there is a unique solution, then there is a unique PPE.

As before, let ψ(X, z) ≡ g∗(X, z) + zµ∗(X, z)/r. All intermediate theorems and lemmas

assume Assumptions 1-4 and Assumption 5 or 5′.

Step 1: Boundary Conditions. Theorems 6, 7 and 8 characterize the boundary condi-

tions for (i) unbounded X and g, (ii) unbounded X and bounded g and (iii) bounded X ,

respectively, to establish step 1.

Step 1a: Boundary Conditions for Unbounded X and g (Theorem 3).

Theorem 6. Suppose X = R and g is unbounded and assume Assumptions 1-5. Then any

solution U of (9) with linear growth satisfies

lim
X→p

U(X)− yL(X) = g2(zp) + zpµ2(zp)/r

lim
X→p

U ′(X) = zp

lim
X→p

XU ′′(X) = 0
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for p ∈ {−∞,∞}, where

yL(X) = −f(X)

∫
rg1(X)

f(X)µ1(X)
dX

f (X) = exp

(∫
r

µ1(X)
dX

)
zp = lim

X→p

rg1(X)/X

r − µ1(X)/X
.

The proof proceeds by a series of lemmas. Define ψ(X, z) ≡ ψ(X, z)/X, U(X) ≡ U(X)/X,

and ψ′ and ψ
′

refer to the partial derivative with respect to X where, given Assumption 5,

ψ′(X, z) = g′1(X) + zµ′1(X)/r.

Lemma 9. Given p ∈ {−∞,∞}, there exists a ψp : R → R such that for all z ∈ R,

ψp(z) ≡ limX→p ψ(X, z) = limX→p ψ
′(X, z) and ψ(·, z) is monotone for large |X|.

Proof. Let p ∈ {−∞,∞} and fix z ∈ R. Given that g∗ and µ∗ are Lipschitz continuous,

there exists M, δ > 0 such that |ψ(X, z)| ≤ M(1 + |z| + z2) for all |X| > δ. Therefore,

for fixed z, ψ(·, z) is bounded in |X| for |X| > δ. By Assumption 5, ψ′(·, z) is monotone

for large X, and therefore, ψ(·, z) is monotone for large X (Lemma 35). Therefore, by

Lemma 33, ψp(z) ≡ limX→p ψ(X, z) exists and limX→pXψ
′
(X, z) = 0. By Lemma 34,

limX→p ψ
′(X, z) = ψp(z). �

Lemma 10. Suppose U is a solution of (9) with linear growth. Then ∃δ > 0 such that

for |X| > δ, U ′ and U are monotone and either both increasing or both decreasing. For

p ∈ {−∞,∞}, there exists a U ′p ∈ R such that limX→p U(X) = limX→p U
′(X) = U ′p.

Proof. Let p ∈ {−∞,∞}. Suppose U ′ is not monotone for large |X|. Then by the continuity

of U ′, for any δ > 0, there exists a z and a |Xn|, |Xm| > δ such that U ′(Xn) = z and

U ′′(Xn) ≤ 0 and U ′(Xm) = z and U ′′(Xm) ≥ 0. From (9), this implies U(Xn) ≤ ψ(Xn, z)

and ψ(Xm, z) ≤ U(Xm). Thus, the oscillation of ψ′(·, z) is at least as large as the oscillation

of U ′. By Assumption 5, ψ′(·, z) is monotone for large X, so U ′ cannot be non-monotone for

large X. This is a contradiction; therefore, U ′ is monotone for large X.

By Lemma 35, if U ′ is monotone for large |X|, then U is monotone for large |X|. Given

that U has linear growth, U is bounded. Therefore, limX→p U(X) exists and by Lemma 33,

limX→pXU
′
(X) = 0. By Lemma 34, limX→p U

′(X) = limX→p U(X). Let U ′p denote this

limit. �

Lemma 11. Suppose U is a solution of (9) with linear growth. Then limX→p ψ(X,U ′(X)) =

ψp(U
′
p) for p ∈ {−∞,∞}, where U ′p ≡ limX→p U

′(X).
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Proof. Let p ∈ {−∞,∞} and U be a solution of (9) with linear growth. Given µ∗ and g∗

are Lipschitz continuous, there exists a δ,M1,M2,M3, c > 0 such that for |X| > δ,

|ψ(X, z1)− ψ(X, z2)| ≤M1|z1 − z2|+M2|z1||z1 − z2|+M3|z1 − z2|(|X|+ |z2|)

From Lemma 10, there exists a U ′p ∈ R such that limX→p U
′(X) = U ′p. Therefore, for |X| > δ,

lim
X→p
|ψ(X,U ′(X))− ψ(X,U ′p)|

= lim
X→p

|ψ(X,U ′(X))− ψ(X,U ′p)|
|X|

≤ lim
X→p

M1|U ′(X)− U ′p|+M2|U ′(X)||U ′(X)− U ′p|+M3|U ′(X)− U ′p|(|X|+ |U ′p|)
|X|

= 0

Therefore, limX→p ψ(X,U ′(X)) = limX→p ψ(X,U ′p). From Lemma 9, limX→p ψ(X,U ′p) =

ψp(U
′
p). Therefore, limX→p ψ(X,U ′(X)) = ψp(U

′
p). �

Lemma 12. Suppose f : R→ R has linear growth. Then any solution U of (9) with linear

growth satisfies

lim
X→p

inf |f(X)|U ′′(X) ≤ 0 ≤ lim
X→p

sup |f(X)|U ′′(X)

for p ∈ {−∞,∞}.

Proof. Let p ∈ {−∞,∞}. Suppose f has linear growth and limX→p inf |f(X)|U ′′(X) > 0.

There exists an δ1,M > 0 such that when |X| > δ1, |f(X)| ≤M |X| Given limX→p inf |f(X)|U ′′(X) >

0 , there exists a δ2, ε > 0 such that when |X| > δ2, |f(X)|U ′′(X) > ε. Take δ = max {δ1, δ2}.
Then for |X| > δ, U ′′(X) > ε

|f(X)| ≥
ε

M |X| . Then the antiderivative of ε
M |X| is ε

M
ln |X| which

converges to∞ as X → p. Therefore, U ′ must grow unboundedly large as X → p, which vio-

lates the linear growth of U . Therefore limX→p inf |f(X)|U ′′(X) ≤ 0. The proof is analogous

for limX→p sup |f(X)|U ′′(X) ≥ 0. �

Lemma 13. Suppose f : R→ R has linear growth. Then any solution U of (9) with linear

growth satisfies limX→p f(X)U ′′(X) = 0 for p ∈ {−∞,∞}.

Proof. Let p ∈ {−∞,∞}. Suppose that limX→p sup |X|U ′′(X) > 0. By Lemma 10, there

exists a δ > 0 such that for |X| > δ, U ′ is monotone. Then for |X| > δ, |X|U ′′(X) doesn’t

change sign. Therefore, if limX→p sup |X|U ′′(X) > 0, then limX→p inf |X|U ′′(X) > 0. This

is a contradiction, given Lemma 12. Thus, limX→p sup |X|U ′′(X) = 0. By similar reasoning,

limX→p inf |X|U ′′(X) = 0, and therefore limX→p |X|U ′′(X) = 0. Suppose f has linear growth.
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Then there exists an δ1,M > 0 such that when |X| > δ1, |f(X)| ≤M |X|. Thus, for |X| > δ1,

|f(X)U ′′(X)| ≤M |XU ′′(X)| → 0. Note this also implies that limX→p U
′′(X) = 0. �

Lemma 14. Suppose U is a solution of (9) with linear growth. Then U ′p is a fixed point of

ψp, U
′
p = ψp(U

′
p) for p ∈ {−∞,∞}.

Proof. Let p ∈ {−∞,∞} and U be a solution of (9) with linear growth. Given that σ∗ is

Lipschitz continuous, there exists an δ,M > 0 such that for |X| > δ,

|σ∗(X, z)|2/|X| ≤M |(X, z)|2/|X| = M(|X|+ z2/|X|).

Then

lim
X→p

|σ∗(X,U ′(X))|2

|X|
|U ′′(X)| ≤ lim

X→p
M |XU ′′(X)|+M |U ′(X)2|U ′′(X)/X| = 0.

where the equality follows from Lemmas 10 and 13. Plugging this into (9) yields limX→p U(X)−
ψ(X,U ′(X)) = 0 and therefore, by Lemma 10, limX→p ψ(X,U ′(X)) = U ′p. From Lemma 11,

limX→p ψ(X,U ′(X)) = ψp(U
′
p). Combining these equations, U ′p = ψp(U

′
p), and U ′p must be a

fixed point of ψp. �

Lemma 15. Suppose U is a solution of (9) with linear growth. Then for p ∈ {−∞,∞},
the unique fixed point of ψp is rgp/(r − µp), where gp ≡ limX→p g

∗(X, z)/X and µp ≡
limX→p µ

∗(X, z)/X for all z ∈ R, and µp < r. Therefore, U ′p = rgp/(r − µp).

Proof. Let p ∈ {−∞,∞}. Given ψ(·, z) is monotone for large |X| and µ∗ and g∗ are addi-

tively separable in (X, z), g∗(X, z)/X and µ∗(X, z)/X are monotone for large |X|. Since g∗

and µ∗ are Lipschitz continuous, g∗(X, z)/X and µ∗(X, z)/X are bounded. Therefore, the

limits gp ≡ limX→p g
∗(X, z)/X and µp ≡ limX→p µ

∗(X, z)/X exist. By additive separability,

these limits are independent of z. Therefore,

ψp(z) = lim
X→p

g∗(X, z) + zµ∗(X, z)/r

X
= gp + zµp/r.

At a fixed point z∗, ψp(z
∗) = z∗. The unique fixed point of ψp is z∗ =

rgp
r−µp

.

By Lemma 14, for any linear growth solution U of (9) and p ∈ {−∞,∞}, U ′p is a fixed

point of ψp. Thus, the final statement follows.

�

Lemma 16. Suppose y is a solution to the ODE

y′(x)− (r/µ1(x))y(x) = 0 (25)
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with linear growth. Then for p ∈ {−∞,∞}, limx→p y(x) = 0.

Proof. The general solution to (25) is

y(x) = c exp

(∫
r

µ1(x)
dx

)
(26)

where c ∈ R is a constant. Trivially, there always exists a solution with linear growth because

y(x) = 0 is a solution. Consider p = ∞. By Assumption 3, µ1 has linear growth with rate

slower than r. By Assumption 5, µ1 is monotone for large x. Therefore, there exists a δ > 0

such that for x > δ, either (i) there exists a k ∈ (0, r) such that µ1(x) ∈ (0, kx] or (ii) there

exists a k > 0 such that µ1(x) ∈ [−kx, 0).

Case (i): Suppose there exists a k ∈ (0, r) and δ > 0 such that for x > δ, µ1(x) ∈ (0, kx].

Then 1
µ1(x)

≥ 1
kx

. But exp
(∫

r
kx
dx
)

= exp
(
r
k

lnx
)

= xr/k is not in O(x) since r/k > 1.

Therefore, exp
(∫

r
µ1(x)

dx
)

is not in O(x). Therefore, any solution to (26) that has linear

growth must have c = 0. The unique solution with linear growth is y(x) = 0, which trivially

satisfies limx→∞ y(x) = 0.

Case (ii): Suppose there exists a k, δ > 0 such that for x > δ, µ1(x) ∈ [−kx, 0). Then
1

µ1(x)
≤ − 1

kx
. But exp

(∫
− r
kx
dx
)

= exp
(
− r
k

lnx
)

= x−r/k and limx→∞ x
−r/k → 0. Therefore,

limx→∞ exp
(∫

r
µ1(x)

dx
)

= 0. Therefore, for all c, limx→∞ y(x) = 0 and any solution to (26)

satisfies this property.

The case for p = −∞ is analogous. �

Lemma 17. Suppose U and V are solutions of (9) with linear growth. Then for p ∈
{−∞,∞}, limX→p U(X)− V (X) = 0.

Proof. Let p ∈ {−∞,∞}, U and V be solutions of (9) with linear growth. Then

⇒ lim
X→p

U(X)− g1(X)− U ′(X)µ1(X)/r − g2(U ′(X))− U ′(X)µ2(U
′(X))/r

−U ′′(X)|σ∗ (X,U ′(X)) |2/2r = 0

⇒ lim
X→p

U(X)− g1(X)− U ′(X)µ1(X)/r = g2(zp) + zpµ2(zp)/r (27)

where the first line follows from (9) and the additive separability of g∗ and µ∗, and the second

line follows from the Lipschitz continuity of |σ∗|2, limX→p U
′(X) = zp and the Lipschitz

continuity of g2 and µ2. By Lemma 15, limX→p U
′(X) = limX→p V

′(X) = zp.
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Define D = U − V . Then D′ = U ′ − V ′, D has linear growth since U and V have linear

growth and

lim
X→p

D(X)− µ1(X)D′(X)/r = 0

lim
X→p

D′(X) = 0

where the first line follows from (27). Therefore, there exists a solution y to (25) with linear

growth such that limX→pD(X)−y(X) = 0. By Lemma 16, limX→p y(X) = 0 for any solution

y with linear growth. Therefore, limX→pD(X) = 0 and any two solutions U and V with

linear growth have the same boundary conditions, limX→p U(X)− V (X) = 0. �

Lemma 18. Suppose y is a solution to the ODE

y(x)− g1(x)− µ1(x)y′(x)/r = 0 (28)

with linear growth. Then for p ∈ {−∞,∞}, limx→p y(x)− yL(x) = 0, where

yL(x) ≡ −φ(x)

∫ (
1

φ(x)

)
rg1(x)

µ1(x)
dx (29)

is a solution with linear growth and φ(x) ≡ exp
(∫

r/µ1(x)dx
)
.

Proof. The general solution to (28) is

y(x) = −φ(x)

∫ (
1

φ(x)

)
rg1(x)

µ1(x)
dx− φ(x)c (30)

where φ is as defined above and c ∈ R is a constant. Consider p = ∞. By Assumption 3,

µ1 has linear growth with rate slower than r. By Assumption 5, µ1 is monotone for large x.

Therefore, there exists a δ > 0 such that for x > δ, either (i) there exists a k ∈ (0, r) such

that µ1(x) ∈ (0, kx] or (ii) there exists a k > 0 such that µ1(x) ∈ [−kx, 0).

Case (i): Suppose there exists a k ∈ (0, r) and δ > 0 such that for x > δ, µ1(x) ∈ (0, kx].

Then 1
µ1(x)

≥ 1
kx

. But exp
(∫

r
kx
dx
)

= exp
(
r
k

lnx
)

= xr/k is not in O(x) since r/k > 1.

Therefore, exp
(∫

r
µ1(x)

dx
)

is not in O(x) and φ doesn’t have linear growth. Therefore, any

solution to (30) that has linear growth must have c = 0. The unique solution with linear

growth is (29), which trivially satisfies limx→∞ y(x)− yL(x) = 0.

Case (ii): Suppose there exists a k, δ > 0 such that for x > δ, µ1(x) ∈ [−kx, 0). Then
1

µ1(x)
≤ − 1

kx
. But exp

(∫
− r
kx
dx
)

= exp
(
− r
k

lnx
)

= x−r/k and limx→∞ x
−r/k = 0. Therefore,
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limx→∞ φ(x) = limx→∞ exp
(∫

r
µ1(x)

dx
)

= 0 and c does not affect the limit properties of a

solution y. Therefore, for all c, limx→∞ y(x) − yL(x) = 0 and any solution to (30) satisfies

this property.

The case for p = −∞ is analogous. �

Lemma 19. Suppose U is a solution of (9) with linear growth. Then for p ∈ {−∞,∞},
limX→p U(X)− yL(X) = g2(zp) + zpµ2(zp)/r, where yL is defined by (29).

Proof. Let p ∈ {−∞,∞} and U be a solution of (9) with linear growth. Then

lim
X→p

U(X)− g1(X)− U ′(X)µ1(X)/r − U ′′(X)|σ∗ (X,U ′(X)) |2/2r

−g2(U ′(X))− U ′(X)µ2(U
′(X))/r = 0

⇒ lim
X→p

U(X)− g1(X)− U ′(X)µ1(X)/r = g2(zp) + zpµ2(zp)/r

where the first line follows from (9) and the additive separability of g∗ and µ∗, and the second

line follows from the Lipschitz continuity of |σ∗|2, limX→p U
′(X) = zp and the Lipschitz

continuity of g2 and µ2. Therefore, there exists a solution y to (28) with linear growth such

that limX→p U(X)− y(X) = g2(zp) + zpµ2(zp)/r. By Lemma 18, limX→p y(X)− yL(X) = 0.

Therefore, limX→p U(X) − yL(X) = g2(zp) + zpµ2(zp)/r which establishes the boundary

condition for U . �

Step 1b: Boundary Conditions for Unbounded X and Bounded g (Theorem 4).

Theorem 7. Suppose X = R and g is bounded and assume Assumptions 1-4 and Assumption

5′. Then any bounded solution U of (9) satisfies

lim
X→p

U(X) = gp

lim
X→p

XU ′(X) = 0

lim
X→p

X2U ′′(X) = 0

for p ∈ {−∞,∞}, where gp ≡ limX→p g
∗(X, 0).

The proof proceeds by a series of lemmas. Note gp exists given g bounded and g∗(·, 0)

monotone for large |X|.

Lemma 20. If U is a bounded solution of (9), then there exists a δ > 0 such that for |X| > δ,

U is monotone and for p ∈ {−∞,∞}, there exists a Up ∈ R such that limX→p U(X) = Up.
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Proof. Let p ∈ {−∞,∞}. Suppose U is not monotone for large X. Then for all δ > 0, there

exists a |Xn| > δ that corresponds to a local maximum of U , so U ′(Xn) = 0 and U ′′(Xn) ≤ 0

and there exists a |Xm| > δ that corresponds to a local minimum of U , so U ′(Xm) = 0 and

U ′′(Xm) ≥ 0, by the continuity of U . Given the incentives for the long-run player, a static

Nash equilibrium is played at any X such that U ′(X) = 0, yielding flow payoff g∗(X, 0).

From (9), this implies g∗(Xn, 0) ≥ U(Xn) at the maximum and g∗(Xm, 0) ≤ U(Xm) at the

minimum. Thus, the oscillation of g∗(·, 0) is at least as large as the oscillation of U . This

is a contradiction, as g∗(·, 0) is monotone for large |X|. Thus, there exists a δ such that

for |X| > δ, U is monotone. The existence of limX→p U(X) follows from U is bounded and

monotone for large |X|. �

Lemma 21. Suppose f : R → R has linear growth. Then any bounded solution U of (9)

satisfies

lim
X→p

inf |f(X)|U ′(X) ≤ 0 ≤ lim
X→p

sup |f(X)|U ′(X)

lim
X→p

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→p

sup f(X)2U ′′(X)

for p ∈ {−∞,∞}.

Proof. Let p ∈ {−∞,∞}. Suppose f has linear growth and limX→p inf |f(X)|U ′(X) >

0. Then there exists an δ1,M > 0 such that when |X| > δ1, |f(X)| ≤ M |X|. Given

limX→p inf |f(X)|U ′(X) > 0 , there exists a δ2, ε > 0 such that when |X| > δ2, |f(X)|U ′(X) >

ε. Take δ = max {δ1, δ2}. Then for |X| > δ, |U ′(X)| > ε
|f(X)| ≥

ε
M |X| . Then the an-

tiderivative of ε
M |X| is ε

M
ln |X| which converges to ∞ as |X| → ∞. This violates the

boundedness of U . Therefore limX→p inf |f(X)|U ′(X) ≤ 0. The proof is analogous for

limX→p sup |f(X)|U ′(X) ≥ 0.

Suppose f has linear growth and limX→∞ inf f(X)2U ′′(X) > 0. Then there exists a

M, δ1 > 0 such that when |X| > δ1, |f(X)| ≤ M |X| and therefore, f(X)2 ≤ M2X2. There

also exists a δ2, ε > 0 such that when |X| > δ2, f(X)2U ′′(X) > ε. Take δ = max {δ1, δ2}.
Then for |X| > δ, |U ′′(X)| > ε

f(X)2
> ε

M2X2 . The antiderivative of ε
M2X2 is −ε

M2 ln |X|
which converges to −∞ as |X| → ∞. This violates the boundedness of U . Therefore

limX→p inf f(X)2U ′′(X) ≤ 0. The proof is analogous for limX→p sup f(X)2U ′′(X) ≥ 0. �

Lemma 22. Suppose f : R → R has linear growth. Then for p ∈ {−∞,∞}, any bounded

solution U of (9) satisfies limX→p f(X)U ′(X) = 0.

Proof. Let p ∈ {−∞,∞}. Suppose that limX→p sup |X|U ′(X) > 0. By Lemma 20, there ex-

ists a δ > 0 such that U is monotone for |X| > δ. Then for |X| > δ, XU ′(X) doesn’t change
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sign. Therefore, if limX→p sup |X|U ′(X) > 0, then limX→p inf |X|U ′(X) > 0. This is a con-

tradiction. Thus, limX→p sup |X|U ′(X) = 0. By similar reasoning, limX→p inf |X|U ′(X) = 0,

and therefore limX→p |X|U ′(X) = 0. Suppose f has linear growth. Then there exists an

M, δ1 > 0 such that when |X| > δ1, |f(X)| ≤ M |X|. Thus, for |X| > δ1, |f(X)U ′(X)| ≤
M |XU ′(X)| → 0. Therefore, limX→p f(X)U ′(X) = 0. This also implies that limX→p U

′(X) =

0. �

Lemma 23. Let U be a bounded solution of (9). Then for p ∈ {−∞,∞}, limX→p U(X) = gp.

Proof. Let p ∈ {−∞,∞}. Suppose Up < gp. Given µ∗ is Lipschitz continuous, there exists

a δ,M > 0 such that for |X| > δ,

|µ∗(x, z)| ≤M |(x, z)| ≤M(|x|+ |z|).

Therefore,

lim
X→∞

|U ′(X)µ∗(X,U ′(X))| ≤ lim
x→∞
|U ′(X)|M(|X|+ |U ′(X)|) = 0

where the equality follows from Lemma 22. Similarly,

lim
X→p

g∗(X,U ′(X)) = lim
X→p

g∗(X, 0) = gp.

since g∗ is Lipschitz continuous. Plugging these limits into (9),

lim sup
X→p

1

2
|σ∗(X,U ′(X))|2 U ′′(X) = lim sup

X→p
(rU(X)− rg∗(X,U ′(X))− µ∗(X,U ′(X))U ′(X))

= r(Up − gp) < 0.

But by Lemma 21, lim supX→p |σ∗(X,U ′(X))|2 U ′′(X) > 0 since σ∗ is Lipschitz continuous,

a contradiction. Thus, Up ≥ gp. A similar contradiction holds for Up > gp. Therefore,

Up = gp. �

Lemma 24. Any bounded solution U of (9) satisfies limX→p |σ∗(X,U ′(X))|2 U ′′(X) = 0 for

p ∈ {−∞,∞}.

Proof. Let p ∈ {−∞,∞}. By Lemmas 22 and 23 and the squeeze theorem,

lim
X→p

1

2

∣∣∣|σ∗(X,U ′(X))|2 U ′′(X)
∣∣∣ = lim

X→p
|rU(X)− rg∗(X,U ′(X))− µ∗(X,U ′(X))U ′(X)| = 0.

If limX→p |σ∗(X,U ′(X))|2 > 0, this implies that limX→p U
′′(X) = 0. �
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Step 1c: Boundary Conditions for Bounded X (Theorem 4).

Theorem 8. Suppose X is compact and assume Assumptions 1-4 and Assumption 5′. Then

any bounded solution U of (9) satisfies

lim
X→p

U(X) = g∗(p, 0)

lim
X→p

(X − p)U ′(X) = 0

lim
X→p

(X − p)2U ′′(X) = 0.

for p ∈ {−X,X}.

The proof proceeds by a series of lemmas.

Lemma 25. Any bounded solution U of (9) has bounded variation.

Proof. Suppose U has unbounded variation. Then there exists a sequence (Xn)n∈N that

correspond to local maxima of U , so U ′(Xn) = 0 and U ′′(Xn) ≤ 0. Given (6), a static Nash

equilibrium is played at any X such that U ′(X) = 0, yielding flow payoff g∗(X, 0). From (9),

this implies g∗(Xn, 0) ≥ U(Xn). Likewise, there exists a sequence (Xm)m∈N that correspond

to local minima of U , so U ′(Xm) = 0 and U ′′(Xm) ≥ 0. This implies g∗(Xm, 0) ≤ U(Xm).

Thus, g∗(·, 0) has unbounded variation. This is a contradiction, since g∗(·, 0) is Lipschitz

continuous. �

Lemma 26. Suppose f : X → R is Lipschitz continuous with f(X) = f(X) = 0. Then any

bounded solution U of (9) satisfies

lim
X→p

inf f(X)U ′(X) ≤ 0 ≤ lim
X→p

sup f(X)U ′(X)

lim
X→p

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→p

sup f(X)2U ′′(X)

for p ∈
{
X,X

}
.

Proof. Let p ∈ {−X,X} and f : X → R be Lipschitz continuous with f(p) = 0. Then f is

O (p−X), so there exists an M, δ1 > 0 such that when |p−X| < δ1, |f(X)| ≤M |p−X|.
Suppose limX→p inf |f(X)|U ′(X) > 0. Then there exists a δ2, ε > 0 such that when

|p − X| < δ2, |f(X)|U ′(X) > ε. Take δ = min {δ1, δ2}. Then for |p − X| < δ, U ′(X) >
ε

|f(X)| ≥
ε

M |p−X| . Then the antiderivative of ε
M |p−X| is ε

M
ln |p−X| which diverges to −∞ as

X → p. This violates the boundedness of U . Therefore limX→p inf |f(X)|U ′(X) ≤ 0. The

proof is analogous for limX→p sup |f(X)|U ′(X) ≥ 0.
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Suppose limX→p inf f(X)2U ′′(X) > 0. There exists a δ3, ε2 > 0 such that when |p−X| <
δ3, f(X)2U ′′(X) > ε2. Take δ = min {δ1, δ3}. Then for |p − X| < δ, U ′′(X) > ε2

f(X)2
>

ε2
M2(p−X)2

. The second antiderivative of ε2
M2(p−X)2

is −ε2
M2 ln |p−X| which converges to −∞ as

X → p. This violates the boundedness of U . Therefore limX→∞ inf f(X)2U ′′(X) ≤ 0. The

proof is analogous for limX→p sup f(X)2U ′′(X) ≥ 0. �

Lemma 27. Suppose f : X → R is Lipschitz continuous, with f(X) = f(X) = 0. Then any

bounded solution U of (9) satisfies limX→p f(X)U ′(X) = 0 for p ∈
{
X,X

}
.

Proof. Let p ∈ {−X,X}. Suppose that lim supX→p |p − X|U ′(X) > 0. By Lemma 26,

limX→p inf |p−X|U ′(X) ≤ 0. Then there exist constants k,K > 0 such that |p−X|U ′(X)

crosses the interval (k,K) infinitely many times as X approaches p. Additionally, there

exists an L > 0 such that

|U ′′(X)| =

∣∣∣∣2r [U(X)− g∗(X,U ′(X))]− 2µ∗(X,U ′(X))U ′(X)

|σ∗(X,U ′(X))|2

∣∣∣∣ ≤ ∣∣∣∣L1 − L2 |p−X|U ′(X)

(p−X)2

∣∣∣∣
≤

∣∣∣∣L1 − L2k

(p−X)2

∣∣∣∣ =
L

(p−X)2

This implies that

∣∣[(p−X)U ′(X)]
′∣∣ ≤ |U ′(X)|+ |(p−X)U ′′(X)| =

(
1 +

∣∣∣∣(p−X)
U ′′(X)

U ′(X)

∣∣∣∣) |U ′(X)|

≤
(

1 +
L

k

)
|U ′(X)|

where the first line follows from differentiating (p−X)U ′(X) and the subadditivity of the

absolute value function, the next line follows from rearranging terms, the third line follows

from the bound on |U ′′(X)| and (p−X)U ′(X) ∈ (k,K). Then

U ′(X) ≥
∣∣[(p−X)U ′(X)]′

∣∣(
1 + L

k

)
Therefore, the total variation of U is at least K−k

(1+L
k )

on the interval |p −X|U ′(X) ∈ (k,K),

which implies that U has unbounded variation near p. This is a contradiction. Thus,

limX→p sup(p−X)U ′(X) = 0. Likewise, limX→p inf(p−X)U ′(X) = 0. Therefore limX→p(p−
X)U ′(X) = 0.

Suppose f is O(p − X). Then there exists an M, δ > 0 such that for |p − X| < δ,

|f(X)| ≤ M | (p−X) | → 0. Thus for |p−X| < δ, |f(X)U ′(X)| ≤ M | (p−X)U ′(X)| → 0.

Therefore limX→p f(X)U ′(X) = 0. �
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Lemma 28. Let U be a bounded solution of (9). Then for p ∈ {X,X}, limX→p U(X) =

g∗(p, 0).

Proof. Let p ∈ {−X,X}. Given that U is continuous, bounded and has bounded variation,

Up ≡ limX→p U(X) exists. Suppose Up < g∗(p, 0). By Lemma 27, the Lipschitz continuity of

µ∗ and the assumption that µx(a, b, p) = 0 for all (a, b) ∈ A×B(p),

lim
X→p

µ∗(X,U ′(X))U ′(X) = 0.

If X is an absorbing state, then S∗(X, zy, zx) = S∗(X, 0, 0) for all (zy, zx) ∈ Rd. Therefore,

g∗(X, z) = g∗(X, 0) for all z ∈ R. By the Lipschitz continuity of g∗,

lim
X→p

g∗(X,U ′(X)) = g∗(p, 0).

Plugging these limits into (9),

lim sup
X→X

|σ∗(X,U ′(X))|2 U ′′(X)/2r = lim sup
X→p

[U(X)− g∗(X,U ′(X))− µ∗(X,U ′(X))U ′(X)/r]

= 2r (Up − g∗(p, 0)) < 0.

But by Lemma 26, lim supX→p |σ∗(X,U ′(X))|2 U ′′(X) > 0 since σ∗ is Lipschitz continuous

and |σ(b, p)| = 0 for all b ∈ B(p). This is a contradiction. Thus, Up ≥ g∗(p, 0). A similar

contradiction holds for Up > g∗(p, 0). Therefore, Up = g∗(p, 0). �

Lemma 29. Any bounded solution U of (9) satisfies

lim
X→p

∣∣∣|σ∗(X,U ′(X))|2 U ′′(X)
∣∣∣ = 0

for p ∈ {−X,X}.

Proof. Let p ∈ {−X,X}. Applying Lemmas 27 and 28 and the squeeze theorem,

lim
X→p

∣∣∣|σ∗(X,U ′(X))|2 U ′′(X)/2r
∣∣∣ = lim

X→p
|U(X)− g∗(X,U ′(X))− µ∗(X,U ′(X))U ′(X)/r| = 0.

�

Step 2: Uniqueness of Solution to Optimality Equation (Theorems 3 and 4).

Lemma 30. If U and V are two bounded solutions of (9) such that U(X0) ≤ V (X0) and

U ′(X0) ≤ V ′(X0), with at least one strict inequality, then U(X) < V (X) and U ′(X) < V ′(X)
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for all X > X0. Similarly if U(X0) ≤ V (X0) and U ′(X0) ≥ V ′(X0), with at least one strict

inequality, then U(X) < V (X) and U ′(X) > V ′(X) for all X < X0.

Proof. This follows directly from Lemma C.7 in Faingold and Sannikov (2011), defining

X1 = inf
{
X ∈ [X0, X) : U ′(X) ≥ V ′(X)

}
. �

Lemma 31. There exists a unique linear growth (bounded) solution U to (9).

Proof. Suppose U and V are both solutions to (9). Suppose V (X) > U(X) for some X ∈ X .

Let X∗ be the point where V (X) − U(X) is maximized, which is well-defined given U

and V are continuous functions and limX→p U(X) − V (X) = 0 for p ∈
{
X,X

}
. Then

U ′(X∗) = V ′(X∗) and V (X∗) > U(X∗). By Lemma 30, V ′(X) > U ′(X) for all X > X∗, and

V (X)− U(X) is strictly increasing, a contradiction since X∗ maximizes U(X)− V (X). �

Step 3: Uniqueness of PPE (Theorems 3 and 4).

Lemma 32. There exists a unique PPE.

Proof. By Lemma 31, there is a unique linear growth (bounded) solution to (9). It is obvious

to see that this implies that there is a unique Markov equilibrium, by Theorem 1. It remains

to show that there are no other PPE. When there is a unique Markov equilibrium, Theorem

2 implies that in any PPE with continuation values (Wt)t≥0, Wt = U(Xt) for all t. Therefore,

the volatility of the two continuation values are equal, otherwise they both cannot be equal

to U(Xt). Given equal volatilities, actions are uniquely specified by S∗(X, 0, U ′(X)/r). �

A.5 Proofs from Section 5

Proof of Proposition 3.

Proof. Suppose g is bounded. Then U is continuous and bounded on a closed set. Therefore,

U either attains its maximum on X , in which case W = U(XH) for some XH , or if X is

unbounded, W = lim supX→XH
U(X) for XH ∈ {−∞,∞}. Suppose U attains a maximum

at an interior state XH . Then U ′(XH) = 0 and U ′′(XH) ≤ 0. From (9),

U ′′(XH) =
2r
(
W − g∗(XH , 0)

)
|σ∗ (XH , 0)|2

≤ 0.

and therefore W ≤ g∗(XH , 0). Suppose X is unbounded and U doesn’t attain a maximum

at an interior state. By Lemma 21, the local minima and maxima of U are bounded by

the local minima and maxima of g∗(·, 0). Therefore, for any sequence of local maxima
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{Uk} converging to W , there exists a sequence of states {Xk} such that Uk = U(Xk) and

W ≤ limk→∞ g
∗(Xk, 0) = lim supX→∞ g

∗(X, 0). Suppose X is bounded and W = U(X). By

the definition of X, µ∗(X,U ′(X)) ≤ 0 and σ∗
(
X,U ′(X)

)
= 0. Also, U ′(X) ≥ 0. From (9),

W − g∗(X, 0) =
1

r
U ′(X)µ∗(X,U ′(X)) ≤ 0

The proof for W = U(X) and the lower bound W are analogous. �

Proof of Proposition 2.

Proof. Suppose X is bounded. At a state X corresponding to an interior extremum, U ′(X) =

0. From (9), if X is a minimum, U(X) ≥ g∗(X, 0), and if X is a maximum, U(X) ≤ g∗(X, 0).

Given an interval I ⊂ X , order the states that correspond to strict interior extrema of U as

X1 < X2 < ... < XnU (I).

Part 1: Follows directly from Lemma 21 and Lipschitz continuity of g∗.

Part 2: Suppose g∗(·, 0) is constant on an interval I ⊂ X and nU(I) > 1. If X1 is a

minimum and X2 is a maximum, then from (9), g∗(X1, 0) ≤ U(X1) < U(X2) ≤ g∗(X2, 0).

This is a contradiction, because g∗(·, 0) is constant on I. The same logic holds if X1 is a

maximum and X2 is a minimum. Therefore, nU(I) ≤ 1. If X ∈ I and X1 is a minimum,

then g∗(X1, 0) ≤ U(X1) < g∗(X, 0) = U(X). This is a contradiction, because g∗(X, 0) is

constant. Similarly, it’s not possible for X1 to be a maximum. Therefore, if I contains a

boundary point, nU(I) = 0.

Part 3: Suppose g∗(·, 0) is strictly increasing on an interval I ⊂ X and nU(I) > 2. If Xi

is a strict maximum and Xi+1 is a strict minimum, then from (9), g∗(Xi+1, 0) ≤ U(Xi+1) <

U(Xi) ≤ g∗(Xi, 0). This is a contradiction, because g∗(·, 0) is increasing on I. Therefore, it’s

not possible to have a maximum followed by a minimum. If X1 is a maximum, nU(I) = 1 and

if X1 is a minimum, nU(I) ≤ 2. Suppose X ∈ I. By the boundary conditions, g∗(X, 0) =

U(X). If X1 is a strict minimum then g∗(X1, 0) ≤ U(X1) < g∗(X, 0) = U(X). This is a

contradiction, because g∗(X, 0) is increasing. Therefore, nU(I) = 0 or nU(I) = 1 and X1 is

a maximum. Similarly, if X ∈ I, it’s not possible to have a maximum. Either nU(I) = 0 or

nU(I) = 1 and X1 is a minimum.

Suppose U is constant on an interval I ⊂ X . There exists a constant c such that U(X) = c

for all X ∈ I. Then U ′(X) = 0 and U ′′(X) = 0 for all X ∈ I. From (9), U(X) = g∗(X, 0) for
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all X ∈ I. Therefore, g∗(X, 0) = c for all X ∈ I and g∗(·, 0) is constant on I, a contradiction.

The proof for when g∗(X, 0) is decreasing is analogous.

For X unbounded, replace g∗(p, 0) with limX→p g
∗(X, 0) and U(p) with limX→p U(X) for

p ∈ {X,X}. �

Proof of Proposition 1.

Proof. Suppose X is bounded.

Part 3: Suppose g∗(·, 0) is constant on X . Then there exists a c ∈ R such that g∗(·, 0) = c

for all X and ng = 0. By Proposition 2.1, nU = 0. By the boundary conditions, U(X) = c

and U(X) = c, which implies U(X) = U(X). Combined with nU = 0, this implies that U is

constant on X .

I prove the contrapositive to establish that if U is constant on X , then g∗(·, 0) is constant

on X . Suppose g∗(·, 0) is not constant on X . Then there exists an interval I ⊂ X such that

g∗(·, 0) is strictly increasing or decreasing on I. By Proposition 2.3, U is not constant on I.

Therefore, U is not constant on X .

Part 1: Suppose g∗(·, 0) is monotonically increasing on X , but U is not monotonically

increasing. Then U ′(X) < 0 for some X ∈ X . By Proposition 2.1, nU(X ) = 0. Therefore,

it must be that U ′(X) ≤ 0 for all X ∈ X , and U(X) > U(X). By the boundary conditions,

U(X) = g∗(X, 0) and U(X) = g∗(X, 0), and by monotonicity, g∗(X, 0) ≤ g∗(X, 0), which

implies U(X) ≤ U(X), a contradiction. Therefore, U is monotonically increasing. If g∗(·, 0)

is strictly increasing on X , then by Proposition 2.3, U is not constant on any I ⊂ X , so U

is also strictly increasing. The proof for U monotonically decreasing is analogous.

Part 2: Suppose ng = 1, g∗(·, 0) has a unique interior maximum at X∗ and g∗(X, 0) =

g∗
(
X, 0

)
. Then g∗(X, 0) is monotonically increasing for X < X∗ and monotonically decreas-

ing for X > X∗. By Proposition 2.1, nU ≤ 1. By Proposition 2.3, if nU |[X,X∗] = 1, then the

extremum is a maximum and if nU |[X∗,X] = 1, then the extremum is a maximum. Therefore,

if nU = 1, the extremum is a maximum.

Suppose nU = 0. Since g∗(X, 0) = g∗
(
X, 0

)
, by the boundary conditions, U(X) = U

(
X
)

and U is constant on X . By Part 3, this implies that g∗(·, 0) is constant on X , a contradiction.

Therefore, it must be the case that nU = 1 and U is single-peaked with a maximum. The

proof for U single-peaked with a minimum is analogous.
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For X unbounded, replace g∗(p, 0) with limX→p g
∗(X, 0) and U(p) with limX→p U(X) for

p ∈ {X,X}. �

B Intermediate Results

Lemma 33. Suppose f : R→ R is bounded, differentiable and there exists a δ > 0 such that

for |x| > δ, f is monotone. Then for p ∈ {−∞,∞}, limx→p xf
′(x) = 0.

Proof. Suppose that limx→∞ inf |x|f ′(x) > 0. Then there exists a δ2, ε > 0 such that

when |x| > δ2, |x|f ′(x) > ε. Then for |x| > δ2, f
′(x) > ε

|x| . The antiderivative of ε
|x| is

ε ln |x| which converges to ∞ as |x| → p. This violates the boundedness of f . Therefore

limx→p inf |x|f ′(x) ≤ 0. Similarly, limx→p sup |x|f ′(x) ≥ 0.

Suppose that limx→p sup |x|f ′(x) > 0. For |x| > δ, f is monotone and therefore |x|f ′(x)

doesn’t change sign. Therefore, if limx→p sup |x|f ′(x) > 0, then limx→p inf |x|f ′(x) > 0. This

is a contradiction. Thus, limx→p sup |x|f ′(x) = 0. By similar reasoning, limx→p inf |x|f ′(x) =

0, and therefore limx→p |x|f ′(x) = 0. Note this result also implies that limx→p f
′(x) = 0. �

Lemma 34. Suppose f : R → R is differentiable and define f (x) = f (x) /x. For p ∈
{−∞,∞}, if limx→p f(x) = c and limx→p xf

′
(x) = 0, then limx→p f

′(x) = c.

Proof. Suppose limx→p f(x) = c and limx→p xf
′
(x) = 0. Given f

′
= (f ′ − f)/x, limx→p f

′ =

limx→p(xf
′
+ f) = c. �

Lemma 35. If f : R→ R ∈ C2 and there exists a δ > 0 such that for |x| > δ, f ′ is monotone

increasing (decreasing), then there exists a δ2 such that for |x| > δ2, f(x) ≡ f(x)/x is

monotone increasing (decreasing).

Proof. Note that f
′

= (1/x)(f ′ − f), f
′′

= (1/x)(f ′′ − 2f
′
) and if f ′ = f , then f

′
= 0 with

a maximum if f ′′ ≤ 0 and a minimum if f ′′ ≥ 0. Let f ′ be monotone increasing for |x| > δ

i.e. f ′′ ≥ 0 for all |x| > δ. From f
′′

= (1/x)(f ′′ − 2f
′
), if f

′
< 0 and f ′′ ≥ 0, then f

′′
> 0

and f
′
is increasing. Suppose there exists a δ2 > δ such that f

′
(δ2) ≥ 0. Then, by continuity

of f
′

and the fact that f
′
< 0 and f ′′ ≥ 0 ⇒ f

′′
> 0, it is not possible to have f

′
< 0 for

|x| > δ2. Therefore, f ′ ≥ 0 for all |x| > δ2 and f is monotonically increasing for all |x| > δ2.

Otherwise, f
′
< 0 for all |x| > δ, and therefore f is monotonically decreasing for all x > δ.

The proof is analogous when f ′ is monotone decreasing. �
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