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Abstract

We examine a general equilibrium model with asymetrically informed agents.
The presence of asymmetric information generally presents a con°ict between
incentive compatibility and Pareto e±ciency. We present a notion of infor-
mational size and show that the con°ict between incentive compatibility and
e±ciency can be made arbitrarily small if agents are su±ciently small informa-
tionally .
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Introduction

The incompatibility of Pareto e±ciency and incentive compatibility is a central theme
in economics and game theory. The issues associated with this incompatibility are
particularly important in the design of resource allocation mechanisms in the presence
of asymmetrically informed agents where the need to acquire information from agents
to compute e±cient outcomes and the incentives agents have to misrepresent that
information for personal gain come into con°ict. Despite a large literature that focuses
on these issues, there has been little work aimed at understanding when informational
asymmetries are quantitatively important.
Virtually every transaction is characterized by some asymmetry of information:

any investor who buys or sells a share of stock generally knows something relevant to
the value of the share that is not known to the person on the other side of the transac-
tion. In order to focus on more salient aspects of the problem, many models (rightly)
ignore the incentive problems associated with informational asymmetries in the be-
lief that, for the problem at hand, agents are \informationally small." However, few
researchers have investigated the circumstances under which an analysis that ignores
these incentive problems will yield results similar to those obtained when these prob-
lems are fully accounted for. In this paper, our goal is to formalize informational size
in a way that, when agents are informationally small, one can ignore the incentive
problems associated with the presence of asymmetric information without substan-
tially a®ecting the resulting analysis. We analyze an Arrow-Debreu pure exchange
economy in which the agents are asymmetrically informed. Speci¯cally, the agents'
utility functions will depend on an underlying but unobserved state of nature and
each agent will receive a private signal that is correlated with the state of nature.
Roughly speaking, this corresponds to a \common value" model in which signals do
not directly a®ect the underlying payo® functions but do a®ect expected utilities.
This model encompasses the typical \¯nance" problem in which agents' expected
utilities depend on their information only to the extent that it is correlated with the
value of some asset.
For this common value model, we will provide a plausible de¯nition of informa-

tional size and we will show that certain Pareto e±cient allocations can be approxi-
mated in utility by an incentive compatible allocation if agents have su±ciently small
informational size. We further show that there are at least two situations in which
agents will be informationally small in our sense, and to which our theorems apply.
The ¯rst is the case in which a given economy with private information is replicated,
and the second is the case in which agents' have largely redundant information.
In the next section, we provide a brief review of related literature. Section 3

provides a formal description of our model. In section 4, we present an example that
illustrates the ideas and logic of our results and we present the formal de¯nition of
informational size. In section 5, we present our main result: if agents are su±ciently
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informationally small and if the agents' information in the aggregate resolves nearly all
the uncertainty with respect to £; then there exists an incentive compatible allocation
that is ex post individually rational and approximately ex post e±cient. Our use of the
term \ex post" refers to events that occur after the realization of the agents' signals
but before the realization of the state µ. We then show how this theorem applies
to replica economies. In section 6, we extend these results to the case in which
nonnegligible residual uncertainty is present, even when all agents' information is
known. Section 7 concludes with a discussion of our results. All proofs are contained
in the appendix.

2 Related Literature

Gul and Postlewaite (1992) is the closest work to ours. They consider an economy
with asymmetric information that is replicated. Each replica is an independent draw
from the probability distribution over agents' types. A given agent's utility function
depends on his type and the types of the agents in his replica, but not on the types of
agents in other replicas. While that paper did not provide a formal de¯nition, it used
the following informal notion of informational size: an agent is informationally small
if the incremental impact of each agent's information (given the information of others)
on the demand for every good is small. In a replica economy, the fraction of agents
whose utility functions depend on a given agent's type goes to zero and, as a result,
agents are informationally small in the sense described above. Gul and Postlewaite
show that, when an economy is replicated su±ciently often in their framework, an
allocation that is approximately Walrasian for the replica economy will be incentive
compatible.
Our work di®ers from Gul-Postlewaite in several ways. In that paper, the (infor-

mal) notion of informational size was motivated by the particular replication process
considered there. In this paper, we provide a formal de¯nition of informational size
that is applicable to general asymmetric information economies with a common value
structure. Replication will be but one natural setting in which agents will be informa-
tionally small. Furthermore, this de¯nition depends only on the information structure
of the economy (i.e., the joint probability of states and signals) and is independent
of endowments and utility functions.
There are other important di®erences in addition to the di®erent notions of infor-

mational size. In the economies analyzed in Gul - Postlewaite, the agents' utilities
may have a common value component but an individual agent's utility cannot be
independent of his own type (i.e., his signal). This excludes from consideration the
case of pure common values in which there is an underlying value for any good with
agents' information being of use only in predicting that value. In this paper, we
treat this common value problem but it should be emphasized that we exclude any
private value component. The last relevant di®erence is that Gul and Postlewaite

3



demonstrate the existence of an incentive compatible, nearly Walrasian allocation
for su±ciently large replica economies. In this paper, we show that a large class of
allocations can be approximated by incentive compatible allocations when agents are
su±ciently informationally small.
Our measure of informational size is motivated in part by the concept of nonexclu-

sive information introduced in Postlewaite and Schmeidler (1986) which was shown
to be a su±cient condition for the implementation of social choice correspondences
satisfying Bayesian monotonicity. An economy with asymmetric information exhibits
nonexclusive information if we can exclude any single agent's information and use only
the information of the remaining agents to predict the economically relevant state of
nature. Loosely speaking, our measure of informational size will be the \degree"
to which an agent's information a®ects the prediction of the economically relevant
state of nature, given other agents' information. The case of nonexclusive information
roughly corresponds to the case in which agents' informational size is 0:

3 Private Information Economies:

Throughout the paper, Jq = f1; ::; qg for each positive integer q and jj¢jj will denote the
1-norm unless speci¯ed otherwise. Let N = f1; 2; :::; ng denote the set of economic
agents. Let £ = fµ1; ::; µmg denote the (¯nite) state space and let T1; T2; :::; Tn be
¯nite sets where Ti represents the set of possible signals that agent i might receive.
Let T ´ T1£¢ ¢ ¢£Tn and T¡i ´ £j 6=iTi: If t 2 T; then we will often write t = (t¡i; ti):
If X is a ¯nite set, de¯ne

¢X := f½ 2 <jXjj½(x) ¸ 0;
X

x2X
½(x) = 1g:

In our model, nature chooses an element µ 2 £: The state of nature is unobservable
but each agent i receives a \signal" ti that is correlated with nature's choice of µ:More
formally, let (eµ; et1; et2; :::; etn) be an (n+1)-dimensional random vector taking values in
££ T with associated distribution P 2 ¢££T where

P (µ; t1; ::; tn) = Probfeµ = µ; et1 = t1; :::; etn = tng:

Without loss of generality, we will make the following assumption regarding the
marginal distributions:

full support: supp(~µ) = £ i.e. for each µ 2 £;

P (µ) = Probfeµ = µg > 0

and for each i 2 N; supp(eti) = Ti i.e. for each ti 2 Ti;

P (ti) = Probfeti = tig > 0:
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Let T ¤ = supp(et1; et2; :::; etn) = ft 2 T jP (t) > 0g: We note that T ¤ need not be
equal to T: If t 2 T ¤; let P£(¢jt) 2 ¢£ denote the induced conditional probability
measure on £: Let Âµ 2 ¢£ denote the degenerate measure that puts probability one
on state µ:

The consumption set of each agent is <`
+ and wi 2 <`

+nf0g denotes the initial
endowment of agent i (an agent's initial endowment is independent of the state µ):
For each µ 2 £; let ui(¢; µ) : <`

+ ! < be the utility function of agent i in state µ: We
will assume that each ui(¢; µ) is continuous, ui(0; µ) = 0 and satis¯es the following
monotonicity assumption: if x; y 2 <`

+; x ¸ y and x 6= y; then ui(x; µ) > ui(y; µ):
Each µ 2 £ gives rise to a pure exchange economy and these economies will play

an important role in the analysis that follows. Formally, let e(µ) = fwi; ui(¢; µ)gi2N
denote the Complete Information Economy (CIE ) corresponding to state µ. For
each µ 2 £; a complete information economy (CIE) allocation for e(µ) is a
collection fxi(µ)gi2N satisfying xi(µ) 2 <`

+ for each i and
P
i2N(xi(µ)¡ wi) · 0: For

each µ 2 £; a CIE allocation fxi(µ)gi2N for the complete information economy e(µ)
is e±cient if there is no other CIE allocation fyi(µ)gi2N for e(µ) such that

ui(yi(µ); µ) > ui(xi(µ); µ)

for each i 2 N:
The collection (fe(µ)gµ2£; eµ; ~t; P ) will be called a private information economy

(PIE for short). An allocation z = (z1; z2; :::; zn) for the PIE is a collection of
functions zi: T ! <`

+ satisfying
P
i2N(zi(t) ¡ wi) · 0 for all t 2 T . We will not

distinguish between wi 2 <`
+ and the constant allocation that assigns the bundle wi

to agent i for all t 2 T:

If z = (z1; z2; :::; zn) is a PIE allocation, then de¯ne

Ui(zi; t
0
ijti) =

X

µ2£

X

t¡i2T¡i
ui(zi(t¡i; t

0
i); µ)P (µ; t¡i j ti)

= E[ui(zi(~t¡i; t
0
i);
~µ) j ~ti = ti]

for each t0i; ti 2 Ti and

Ui(zi j t) =
X

µ2£
ui(zi(t); µ)P (µ j t)

= E[ui(zi(~t); ~µ) j ~t = t]
for each t 2 T:
A PIE allocation z is said to be:

(incentive compatible) (IC) if

Ui(zi; tijti) ¸ Ui(zi; t
0
ijti)
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for all i 2 N; and all ti; t0i 2 Ti:
(ex post individually rational) (XIR) if

Ui(xi j t) ¸ Ui(wi j t)

for all i 2 N and for all t 2 T ¤:
(ex post "¡e±cient)(X"E) if there exists E µ T ¤ such that P (E) ¸ 1¡ " and for no
other PIE allocation y(¢) is it true that, for some t 2 E;

Ui(yi(t) j t) > Ui(zi(t) j t) + "

for all i 2 N:
Note that allocations can depend on agents' types (their information) but not

on µ, which is assumed to be unobservable. Hence, our use of the term \ex post"
refers to events that occur after the realization of the signal vector t but before the
realization of the state µ.

4 Informational Size

As we stated in the introduction, our goal is to provide a notion of \informational
size" having the property that, when agents are informationally small, one can ignore
the informational asymmetries and the analysis will be nearly the same as that which
would result if these asymmetries were fully accounted for. We will illustrate our
model and the notion of informational smallness with the following example.

4.1 An Example

The economy consists of three pairs of agents, each consisting of an agent A who
initially has money and an agent B who has one unit of a second good. All agents
have linear, separable utility functions. The utilities uA(m;x; µ) and uB(m;x; µ) for
each type of agent for m units of money and x units of the second good in each of
the two states, µ1 and µ2 are given in the following table.

state µ1 µ2
agent
A m+ 23x m+ 7x
B m+ 20x m+ 4x

Each type A agent has an initial endowment of m units of money and zero units
of the second good. Each type B agent has an initial endowment of 0 units of money
and one unit of the second good. E±ciency dictates that all of the second good be
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transferred from the B agents to the A agents; to be individually rational, each of
the B agents must receive an amount of money to compensate him for giving up the
second good and these payments will depend on the state. If trade takes place at
payments m1 and m2, the resulting utilities are

state µ1 µ2
agent
A m¡m1 + 23 m¡m2 + 7
B m1 m2

If 20 · m1 · 23 and 4 · m2 · 7; then the trades are e±cient and individually
rational.
We will next describe the information structure of the economy. Type B agents

receive a signal (® or ¯) correlated with the state of nature while type A agents receive
no signal. Each state is equally likely, the agents' signals are independent conditional
on the state and the matrix of conditional probabilities P (µjti) for µ 2 fµ1; µ2g and
ti 2 Ti = f®; ¯g is

signal ® ¯
state
µ1

1+r
2

1¡r
2

µ2
1¡r
2

1+r
2

where 0 · r · 1
If the goal is to e®ect a transaction that is individually rational and Pareto ef-

¯cient, we must induce the B agents to truthfully reveal their signals in order to
determine whether the payment should be relatively high (when µ1 is the likely state)
or relatively low (when µ2 is the likely state). An obvious incentive compatibility
problem arises since the informed type B agents have a clear interest in making µ1
seem the likely state.
Consider the following revelation mechanism. The type B agents announce their

signals and the true state of nature is \estimated" to be µ1 if a majority of the B's
announce ®; and µ2 if a majority of the B's announce ¯. Each B agent will then
transfer his one unit of the second good to an A agent in return for a payment that
depends on both the estimated state and his announcement as in the following table.

own
announcement(ti)

estimated
state(µ)

payment

® µ1 22
¯ µ1 21
® µ2 5
¯ µ2 6

For example, if t¡i = (®; ®); then the estimated state is µ1; independent of i's
announcement. In this case, i receives a payment of 22 if ti = ® and 21 if ti = ¯:
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Hence, one can think of the mechanism as specifying a payment that depends on the
estimated state, and then \punishes" an agent if his announcement di®ers from the
majority. We note several things about the mechanism. First, if r ¼ 1; then the
information of the three B agents is enough to predict the state nearly perfectly. In
particular, if r ¼ 1; then P (µ1jt) ¼ 1 if a majority of B's announce ® while P (µ2jt) ¼ 1
if a majority of B's announce ¯: Hence, the mechanism is XIR and (because of the
linear utilities) satis¯es X0E.
The mechanism is also incentive compatible when r ¼ 1. Suppose that a B

agent sees signal ®: Then a misreport of ¯ will change the estimated state or leave it
unchanged. The estimated state will change only when the other two B agents have
received di®erent signals. The probability that the other two B agents receive di®erent
signals, conditional on a B agent receiving signal ®; is close to zero when r ¼ 1. (In
fact, P (®; ®j®) ¼ 1 when r ¼ 1:) In our example, the maximum possible gain from
lying is bounded. Therefore, a misreport that changes the estimated state may be
pro¯table but the expected gain from misreporting approaches zero as r approaches 1.
While the expected gain from a misreport that changes the estimated state may be
negligible (for r ¼ 1), a type B agent must still be induced to report truthfully and
we accomplish this by \punishing" him when his misreport does not change the state,
i.e., when his announcement is not in the majority. In the example, it is very likely
that, conditional on having observed ®; the signals of the other two type B agents are
identical when r ¼ 1. A truthful report when he sees ® yields an expected payment
close to 22 while a misreport of ¯ yields an expected payment close to 21. Hence,
a misreport that does not change the estimated state results in an approximate loss
of 1. When the two e®ects are combined, we conclude that, for r ¼ 1; a misreport
results in an approximate decrease in expected utility equal to 1. The same argument
works for a B agent who observes ¯ but reports ® and the mechanism is incentive
compatible when r ¼ 1.
This example exhibits three essential features that will play an important role in

the general results that we prove later. First, the conditional distributions P£(¢jt)
on £ are nearly degenerate for each t if r ¼ 1. This property is a special case of
\negligible aggregate uncertainty" that we will introduce in the general model below.
The example exhibits a second crucial feature: informational smallness. If r ¼ 1;
then the probability that, conditional on his true signal, a misreport by a B agent
will change the estimated state is small. A third property of the distribution P is
also important but less obvious: the posterior distributions P£(¢j®) and P£(¢j¯) on £
are di®erent. When r ¼ 1; P (®; ®j®) ¼ P£(µ1j®) ¼ 1 and P (¯; ¯j¯) ¼ P£(µ2j¯) ¼ 1:
Each agent knows that the probability that he can change the estimated state is close
to zero and, therefore, focuses on avoiding the penalty for not announcing with the
majority. An agent who has received signal ® believes that state µ1 is more likely
than µ2, and is strictly better o® by announcing truthfully than by misreporting. If
P£(¢j®) = P£(¢j¯), the agent would be equally likely to be punished by a truthful
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announcement as by misreporting.
The linear utilities of the example make it possible to construct a mechanism

that is incentive compatible, individually rational and Pareto e±cient. In the case
of general (nonlinear) utilities, Pareto e±ciency will not be obtained. However, we
will demonstrate that, when appropriate versions of the three conditions above hold,
there will exist incentive compatible, individually rational allocations that are nearly
Pareto e±cient. The proof of this result will roughly parallel the construction of
the mechanism of the example. The agents' announcements will be used to estimate
the state of nature and, for each estimated state of nature, the outcome will be an
allocation that is e±cient for that state, modi¯ed so as to induce truthful revelation.

4.2 The De¯nition of Informational Size

In the mechanism of the example, agents reveal their types, and the announced types
are used to estimate the state of nature. The mechanism is incentive compatible
because agent i is informationally small in the following sense: i does not have a
\large" in°uence on the estimate of µ conditioned on agents' announcements when
other agents announce truthfully.
To investigate these issues in a more general framework, we need to formalize the

idea of informational size. If t 2 T ¤; recall that P£(¢jt) 2 ¢£ denotes the induced
conditional probability measure on £ and Âµ 2 ¢£ denotes the measure that puts
probability one on µ: Our example indicates that a natural notion of an agent's
informational size is the degree to which he can alter the best estimate of the state
µ when other agents are announcing truthfully. In our setup, that estimate is the
conditional probability distribution on £ given a vector of types t. Any vector of
agents' types t = (t¡i; ti) 2 T ¤ induces a conditional distribution on £ and, if agent
i unilaterally changes his announced type from ti to t

0
i, this conditional distribution

will (in general) change. We consider agent i to be informationally small if, for each
ti; there is a \small" probability that he can induce a \large" change in the induced
conditional distribution on £ by changing his announced type from ti to some other
t0i. We formalize this in the following de¯nition.

De¯nition: Let

Ii"(t
0
i; ti) = ft¡i 2 T¡ij(t¡i; ti) 2 T ¤; (t¡i; t0i) 2 T ¤ and jjP£(¢jt¡i; ti)¡P£(¢jt¡i; t0i)jj > "g

The informational size of agent i is de¯ned as

ºPi = max
ti2Ti

max
t0i2Ti

inff" > 0j Probf~t¡i 2 I i"(t0i; ti)j~ti = tig · "g

Loosely speaking, we will say that agent i is informationally small with respect to
P if his informational size ºPi is \small." If agent i receives signal ti but reports t

0
i 6= ti,
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then the e®ect of this misreport is a change in the conditional distribution on £ from
P£(¢jt¡i; ti) to P£(¢jt¡i; t0i): If t¡i 2 I"(t0i; ti); then this change is \large" in the sense
that jjP£(¢jt̂¡i; ti) ¡ P£(¢jt̂¡i; t0i)jj > ": Therefore, Probf~t¡i 2 I"(t0i; ti)j~ti = tig is the
probability that i can have a \large" in°uence on the conditional distribution on £
by reporting t0i instead of ti when his observed signal is ti: An agent is informationally
small if for each of his possible types ti, he assigns small probability to the event that
he can have a \large" in°uence on the distribution P£(¢jt¡i; ti); given his observed
type.
Informational smallness is not related to the \quality" of an agent's information.

In the example of section 4.1, P£(¢jti) is nearly degenerate for each ti when r is close
to 1. Hence, agents have good estimates of the true state conditional on their signals,
yet each agent is informationally small.

5 The Case of Negligible Aggregate Uncertainty

In this section, we will study a general problem (motivated by the example of section
4.1) in which the agents' aggregate information \almost" resolves the uncertainty
regarding the state µ and the agents have \small" but nonzero informational size.

5.1 An outline of the approach

In order to convey the underlying ideas, we will ¯rst isolate the role of informational
size by considering an example in which P£(¢jt) is a vertex of ¢£ for every t 2 T ¤:
Let (fe(µ)gµ2£; eµ; ~t; P ) be a PIE. Suppose that T = T ¤ and that T is partitioned into
nonempty sets fT (µ)gµ2£ with the property that P£(¢jt) = Âµ if and only if t 2 T (µ):
(Recall that Âµ 2 ¢£ is the measure that puts probability one on state µ:) We will refer
to this example as the case of \zero aggregate uncertainty": if agents truthfully reveal
their signals, then the state of nature is known with certainty. What is an agent's
informational size in this example? If " > 0; then jjP£(¢jt¡i; ti)¡ P£(¢jt¡i; t0i)jj > " if
and only if there exist µ and µ0 with µ 6= µ0 such that (t¡i; ti) 2 T (µ) and (t¡i; t0i) 2
T (µ0): Therefore,

inff" > 0j Probf~t¡i 2 I"(t0i; ti)j~ti = tig · "g
=

X

µ2£
Probf(~t¡i; ti) 2 T (µ) and (~t¡i; t0i) =2 T (µ)j~ti = tig

from which it follows that

ºPi = max
ti2Ti

max
t0i2Ti

X

µ2£
Probf(~t¡i; ti) 2 T (µ) and (~t¡i; t0i) =2 T (µ)j~ti = tig:

For each µ 2 £; let ³(µ) be an e±cient, strictly individually rational complete
information allocation for the CIE e(µ). First, consider a very simple mechanism
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z¤(¢) where z¤(t) = ³(µ) whenever t 2 T (µ). The e±ciency and strict individual
rationality of the CIE allocation ³(µ) in e(µ) for each µ will imply that z¤(¢) will be
ex-post e±cient and ex-post individually rational for the PIE. Incentive compatibility
is less obvious. From the de¯nitions, it follows that

X

µ2£

X

t¡i2T¡i
[ui(z

¤
i (t¡i; ti); µ)¡ ui(z¤i (t¡i; t0i); µ)]P (µ; t¡ijti)

=
X

µ2£

X

t¡i2T¡i
:(t¡i;ti)2T (µ)

X

µ̂2£

h
ui(z

¤
i (t¡i; ti); µ̂)¡ ui(z¤i (t¡i; t0i); µ̂)

i
P (µ̂jt)P (t¡i j ti)

=
X

µ2£

X

t¡i2T¡i
:(t¡i;ti)2T (µ)

[ui(z
¤
i (t¡i; ti); µ)¡ ui(z¤i (t¡i; t0i); µ)]P (t¡i j ti)

=
X

µ2£

X

t¡i2T¡i
:(t¡i;ti)2T (µ)
:(t¡i;t0i)=2T (µ)

[ui(z
¤
i (t¡i; ti); µ)¡ ui(z¤i (t¡i; t0i); µ)]P (t¡i j ti) (¤)

If ºPi = 0; then (*) is equal to zero and the simple mechanism z¤ (¢) will be incentive
compatible. However, the mechanism z¤ (¢) may not be incentive compatible if ºPi >
0: In this case, there exist µ and µ̂ with µ 6= µ̂ and a set A µ T¡i such that (i)
Prob(~t¡i 2 Aj~ti = ti) > 0 and (ii) (t¡i; ti) 2 T (µ) and (t¡i; t0i) 2 T (µ̂) whenever
t¡i 2 A: If ui(³i(µ); µ) < ui(³i(µ̂); µ); then i gains by lying whenever t¡i 2 A: In this
case, h

ui(³i(µ); µ)¡ ui(³i(µ̂); µ)
i
P (~t¡i 2 Aj~ti = ti)

is negative, (*) may be negative and incentive compatibility may be violated.
The construction of z¤(¢) above is intended to give agent i a bundle that depends

only on the \estimate" of the most likely state of nature. Now suppose that we con-
struct a new set of allocations by perturbing the members of the collection f³(µ)gµ2£
(the size of the perturbation depending on i's announced type, ti and the estimated
state, µ). Let zi(µ; ti) denote the perturbed bundle and suppose that the zi(µ; ti)

0s
satisfy two conditions: (i) (z1(µ; t1); ::; zn(µ; tn)) is a feasible allocation for the CIE
e(µ) and (ii) zi(µ; ti) ¼ ³i(µ):

1 Since the allocation ³(µ) is strictly individually rational
and e±cient in e(µ); it follows that (z1(µ; t1); ::; zn(µ; tn)) will be strictly individually
rational and approximately e±cient in e(µ): We can de¯ne a new mechanism where
i's bundle depends on the estimated state and i's announcement as follows: if t 2 T
is the announced vector of signals, then i receives ẑi(t) = zi(µ; ti) if t 2 T (µ). The
mechanism ẑ(¢) will be ex-post IR and approximately ex-post e±cient.

1In a more general approach, one would choose an allocation zi(µ; t) rather than zi(µ; ti): That is,
the perturbed allocation would depend on the estimated state µ and the entire vector of announced
types rather than only agent i's announced type. The advantages of this are outlined in the second
point of the discussion section at the end of the paper.
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Although this modi¯ed mechanism sacri¯ces some e±ciency, it may allow us to
attain incentive compatibility. To see this, note that zero aggregate uncertainty
implies that for each µ;

P£(µjti) =
X

µ̂2£

X

t¡i2T¡i
:(t¡i;ti)2T (µ̂)

P (µjt)P (t¡i j ti) =
X

t¡i2T¡i
:(t¡i;ti)2T (µ)

P (t¡i j ti)

Therefore,
X

µ2£

X

t¡i2T¡i
[ui(ẑi(t¡i; ti); µ)¡ ui(ẑi(t¡i; t0i); µ)]P (µ; t¡i j ti) = L1 + L2

where

L1 =
X

µ2£

X

t¡i2T¡i
:(t¡i;ti)2T (µ)

[ui(ẑi(t¡i; ti); µ)¡ ui(zi(µ; t0i); µ)]P (t¡i j ti)

=
X

µ

[ui(zi(µ; ti); µ)¡ ui(zi(µ; t0i); µ)]P£(µjti)

and
L2 =

X

µ2£

X

t¡i2T¡i
:(t¡i;ti)2T (µ)
(t¡i;t0i)=2T (µ)

[ui(zi(µ; t
0
i); µ)¡ ui(ẑi(t¡i; t0i); µ)]P (t¡i j ti)

In the simple mechanism z¤; the L1 term is equal to zero and does not appear in
equation (¤): If agent i is informationally small, then ºPi ¼ 0 and L2 ¼ 0: However,
as in the case of the simple mechanism z¤; we are not guaranteed that L2 ¸ 0: If the
zi(µ; ti) could be chosen so that L1 > 0; then we might be able to force the sum L1+L2
to be nonnegative, thereby obtaining incentive compatibility. This was exactly the
situation in our example of section 4.1 when r ¼ 1: When agent i receives signal ti
but contemplates a report of t0i; he must weigh two possible consequences of this lie:
the case in which (t¡i; ti) and (t¡i; t

0
i) belong to the same T (µ) and the case in which

(t¡i; ti) and (t¡i; t0i) belong to di®erent T (µ)
0s: The number L1 corresponds to the ¯rst

case while L2 corresponds to the second case. While we cannot rule out the existence
of t¡i for which (t¡i; ti) and (t¡i; t0i) belong to di®erent T (µ)

0s, we do know that these
values of t¡i are unlikely given ti when agent i is informationally small. Hence, a
deviation may be pro¯table when (t¡i; ti) and (t¡i; t0i) belong to di®erent T (µ)

0s and
L2 may be negative but L2 will be a small negative number as a consequence of
informational smallness. This means that we must make it su±ciently costly for i to
misreport in the event that (t¡i; ti) and (t¡i; t0i) belong to the same T (µ) so that the
total e®ect of a lie is a loss in utility, i.e., we must make L1 su±ciently large so that
L1 + L2 is nonnegative. Hence, we must identify conditions under which there exist
perturbed allocations (z1(µ; t1); ::; zn(µ; tn)) satisfying

X

µ

[ui(zi(µ; ti); µ)¡ ui(zi(µ; t0i); µ)]P£(µjti) > 0

12



The key to the existence of such perturbed allocations is a condition concerning the
variability in the conditional distributions P£(¢jti) as ti ranges over Ti and, in the
next section, we provide the appropriate quanti¯cation of this variability.
The discussion up to this point only covers the special case of zero aggregate

uncertainty but the extension to the case of \negligible aggregate uncertainty" uses
the same ideas. Suppose that aggregate uncertainty is small but not zero in the sense
that, conditional on ~ti = ti;the random variable P£(¢j~t) is \close" to a vertex of ¢£
with high probability. Then

P£(µjti) ¼
X

t¡i2T¡i
:(t¡i;ti)2T (µ)

P (t¡i j ti)

for each ti and a third \error term" L3 is added to the RHS of the incentive compatibil-
ity inequality. This error term will become smaller as aggregate uncertainty becomes
smaller. Hence, our strategy in the presence of negligible aggregate uncertainty may
be summarized as follows: identify conditions under which there exist perturbed al-
locations (z1(µ; t1); ::; zn(µ; tn)) that will ensure that L1 > 0 so that L1+L2+L3 ¸ 0
when agents are informationally small (so that L2 ¼ 0) and aggregate uncertainty is
small (so that L3 ¼ 0):
In summary, the construction of a mechanism satisfying XIR, X"E and IC will re-

quire a delicate balance between three quantities: informational size, aggregate uncer-
tainty and a measure of the variability in the conditional distributions fP£(¢jti)gti2Ti:
We have de¯ned informational smallness in section 4.2 and, in the next section, we
quantify the aggregate uncertainty and variability in the conditional distributions.

5.2 Negligible Aggregate Uncertainty

We will next quantify aggregate uncertainty.

De¯nition: Let

¹Pi = max
ti2Ti

inff" > 0jProbf~t 2 T ¤ and jjP£(¢j~t)¡ Âµjj > " for all µ 2 £j~ti = tig · "g

If ¹Pi is small for each i, then we will say that P exhibits negligible aggregate un-
certainty. In this case, each agent knows that, conditional on his own signal, the
aggregate information of all agents will, with high probability, provide a good predic-
tion of the true state.

5.3 Distributional Variability

In the presence of positive but small aggregate uncertainty, we will construct a mech-
anism z(¢) for the PIE satisfying XIR, IC and X"E: We have noted that the con-
struction of such a mechanism will require a delicate balance between informational

13



size, aggregate uncertainty and a measure of the variability in the conditional distri-
butions fP£(¢jti)gti2Ti: To de¯ne this measure of variability, let P 2 ¢££T and let
P£(¢jti) 2 ¢£ be the conditional distribution on £ given that i receives signal ti:
Next, de¯ne

¤Pi = min
ti2Ti

min
t0i2Tinti

jjP£(¢jti)jj2jjP£(¢jt0i)jj2 ¡ P
µ[P£(µjti)P£(µjt0i)]

jjP£(¢jt0i)jj2

where jj ¢ jj2 denotes the 2-norm. This is precisely a measure of the di®erence in the
distributions on P£(¢jti) and P£(¢jt0i): Let

¢¤££T = fP 2 ¢££T j for each i, P£(¢jti) 6= P£(¢jt0i) whenever ti 6= t0ig:

The set ¢¤££T is the collection of distributions on £ £ T for which the induced
conditionals are di®erent for di®erent types. Hence, ¤Pi > 0 for all i whenever P 2
¢¤££T :

5.4 The Main Result for the case of Negligible Aggregate
Uncertainty

The next theorem is the main result for problems exhibiting negligible aggregate
uncertainty. Recall that Jm = f1; ::;mg:
Theorem 1: Let £ = fµ1; ::; µmg: Let fe(µ)gµ2£ be a collection of CIE's and

suppose thatA = f³(µ)gµ2£ is a collection of associated CIE allocations with ³i(µ) 6= 0
for each i and µ. For every " > 0; there exists a ± > 0 such that, whenever P 2 ¢££T
and satis¯es

max
i
¹Pi · ±min

i
¤Pi

max
i
ºPi · ±min

i
¤Pi

there exists an incentive compatible PIE allocation z(¢) for the PIE (fe(µ)gµ2£; eµ; ~t; P )
and a collection A1; ::; Am of disjoint subsets of T

¤ such that Probf~t 2 [mk=1Akg ¸ 1¡"
and, for all k 2 Jm and all t 2 Ak;
(i) Probf~µ = µkj~t = tg ¸ 1¡ "
(ii) For all i 2 N;

ui(zi(t); µk) ¸ ui(³i(µk); µk)¡ ":

To understand Theorem 1, ¯rst note that ± depends on "; the collection fe(µ)gµ2£
and the collection A; but is independent of the distribution P . Furthermore, the
theorem requires that the measures of aggregate uncertainty (¹Pi ) and informational
size (ºPi ) be su±ciently small relative to the measure of variability (¤

P
i ): This is

the balance between informational size, aggregate uncertainty and the variability

14



in the conditional distributions fP£(¢jti)g to which we alluded above. Under these
conditions, we can ¯nd an incentive compatible PIE allocation z(¢) and sets A1; ::; Am
such that, whenever t 2 Ak; P£(µkjt) ¼ 1 and ui(zi(t); µk) ¸ ui(³i(µk); µk)¡" for each
i. If the collection A = f³(µ)gµ2£ is chosen so that each ³(µ) is a strictly individually
rational, Pareto e±cient allocation for e(µ); then z(¢) will satisfy XIR and X"E: Thus
we have the following result.

Corollary 1: Let fe(µ)gµ2£ be a collection of CIE's and suppose that for each
µ; there exists a Pareto e±cient, strictly individually rational CIE allocation for the
CIE e(µ). Then for every " > 0; there exists a ± > 0 such that, whenever P 2 ¢££T
and satis¯es

max
i
¹Pi · ±min

i
¤Pi

max
i
ºPi · ±min

i
¤Pi

there exists a PIE allocation z(¢) for the PIE (fe(µ)gµ2£; eµ; ~t; P ) satisfying XIR, XIC
and X"E:

While the details of the proof of Theorem 1 are somewhat complicated, we will
provide an informal presentation of the basic ideas. Suppose that A = f³(µ)gµ2£
is a collection of CIE allocations and suppose that " > 0: The ¯rst step is to show
that there exists a positive number k(";A) and a collection ffzi(µ; ti)g(ti;µ)2Ti££gi2N
satisfying:
(i) zi(µ; ti) 2 <`

+ and
P
i2N(zi(µ; ti)¡ wi) · 0 for all ti 2 Ti and all µ 2 £:

(ii) ui(zi(µ; ti); µ) ¼ ui(³i(µ); µ) for all ti 2 Ti and all µ 2 £
(iii) for each ti; t

0
i 2 Ti with ti 6= t0i;

X

µ

[ui(zi(µ; ti); µ)¡ ui(zi(µ; t0i); µ)]P (µjti) ¸ k(";A)min
i
¤Pi

We call a collection with these properties a quasi-mechanism and quasi-mechanisms
play a fundamental role in our approach. (For a formal de¯nition, see the appendix.)
In our model, the ¯nal allocation is a function of t (the vector of announced types)
but cannot depend on µ; if the allocation could depend on µ; the mechanism design
problem would be trivial. Suppose for a moment, though, that we could let allocations
depend on µ; and that ffzi(µ; ti)g(ti;µ)2Ti££gi2N satis¯es conditions (i)-(iii) of the
de¯nition. If agent i announces t0i 2 Ti; then he receives the bundle zi(µ; t

0
i): If i's

true type is ti; he (typically) does not know µ and, from his point of view, he faces a
lottery (i.e., a random variable) zi(~µ; t

0
i) with expected payo®

X

µ

ui(zi(µ; t
0
i); µ)P (µjti):

Condition (i) guarantees that, for each µ; the collection fzi(µ; ti)gi2N is a complete
information allocation for e(µ) irrespective of the announced vector of types. The
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inequality in Condition (ii) says that, for each µ and ti; ui(zi(µ; ti); µ) ¼ ui(³i(µ); µ)
so the complete information allocation fzi(µ; ti)gi2N cannot be \much worse" than
³i(µ): Finally, Condition (iii) is an incentive compatibility condition: when given a
choice of the lotteries fzi(~µ; t0i)gt0i2Ti; agent i will choose zi(~µ; ti) if he observes signal
ti: Furthermore, the expected loss associated with any announcement di®erent from
ti is at least k(";A)mini ¤Pi .
Since a mechanism for a PIE cannot, of course, prescribe allocations that depend

on µ, the second step uses the quasi-mechanism to construct a mechanism for the
PIE with the desired properties. To de¯ne this mechanism, let

Ak = ft 2 T ¤jjjP (¢jt)¡ Âµk jj · max
i
¹Pi g

and let A0 = Tn[[k¸1Ak]: If maxi ¹Pi is su±ciently small, the collection fA0;A1; ::; Amg
will be a partition of T . De¯ne a PIE allocation z(¢) as follows:

zi(t) = zi(µk; ti) if t 2 Ak and k ¸ 1

= wi if t 2 A0
and consider incentive compatibility. For each i 2 N and each ti 2 Ti, it can be
shown that

mX

k=1

X

t¡i

[ui(zi(t¡i; ti); µk)¡ui(zi(t¡i; t0i); µk)]P (µ; t¡ijti) ¸ k(";A)min
i
¤Pi ¡K1¹

P
i ¡K2º

P
i ]

where K1 and K2 are positive constants depending on fe(µ)gµ2£;A and " but not on
P . It follows that, given A and "; we can choose ± small enough so that we obtain
IC whenever P satis¯es the conditions of the theorem.
Two remarks are in order. First, the distribution P in the statement of Theorem

1 is not required to be in ¢¤££T so that k(";A)mini ¤Pi need not be positive. In the
replica theorem below, however, we will require that P 2¢¤££T . Second, this theorem
does not cover the case in which the random variable ~µ and the random vector ~t are
stochastically independent except in uninteresting cases. If ~µ and ~t are independent,
then each ¤Pi = 0: However, the distributions P£(¢jt) are all equal and unless this
common conditional distribution is degenerate, the theorem does not say anything
about the existence of a mechanism with the desired properties. In the independent
case, however, there is a simple mechanism satisfying XIR, IC and X0E: Let e denote
the CIE with endowments wi with utilities ui where

ui(xi) =
X

µ2£
ui(xi; µ)P (µ):

Choose an individually rational, Pareto e±cient allocation x for e and de¯ne a mech-
anism z(¢) as follows:
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zi(t) = xi for all t 2 T .

Then z(¢) satis¯es XIR, IC and X0E: Aesthetically, it is desirable to have a result
that would include the case of negligible aggregate uncertainty (Corollary 1) and the
independent case as special cases. This will be accomplished by the generalization to
nonnegligible aggregate uncertainty given in section 6 below.

5.5 Nearly Redundant Information

There are two natural economic problems to which the theorem above applies. The
¯rst is the case in which agents have nearly redundant information as in the example
of section 4.1. Suppose that there is a ¯nite number of agents, each of whom receives
a noisy signal of the true state of nature. When an agent's information is su±ciently
correlated with that of some subset of the other agents, he will be informationally
small. If, in addition, there is little aggregate uncertainty, the theorem applies.

5.6 The Replica Problem

In the presence of a large number of agents, we might expect any single agent to
be informationally small, and replica economies are a natural framework in which to
investigate this conjecture.

5.6.1 Notation and De¯nitions:

Let fe(µ)gµ2£ be a collection of complete information economies and recall that Jr =
f1; 2; :::rg. For each positive integer r and each µ; let er(µ) = fwis; uis(¢; µ)g(i;s)2N£Jr
denote the r replicated Complete Information Economy (r-CIE ) corresponding to
state µ satisfying:

(1) wis = wi for all s 2 Jr
(2) uis(z; µ) = ui(z; µ) for all z 2 <`

+; i 2 N and s 2 Jr.
For any positive integer r, let T r = T £ ¢ ¢ ¢ £ T denote the r-fold Cartesian

product and let tr = (tr¢1; ::; t
r
¢r) denote a generic element of T

r where tr¢s = (t
r
1s; ::; t

r
ns):

If P r 2 ¢££T r ; then er = (fer(µ)gµ2£; eµ; ~tr; P r) is a PIE with nr agents. If A =
f³(µ)gµ2£ is a collection of CIE allocations for fe(µ)gµ2£; let Ar = f³r(µ)gµ2£ be the
associated \replicated" collection where ³r(µ) is a CIE allocation for er(µ) satisfying

³ris(µ) = ³i(µ) for each (i; s) 2 N £ Jr
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5.7 Replica Economies and the Replica Theorem

De¯nition: A sequence of replica economies f(fer(µ)gµ2£; eµ; ~tr; P r)g1r=1 is a condi-
tionally independent sequence if there exists a P 2 ¢¤££T such that
(a) For each r, each s 2 Jr and each (µ; t1; ::; tn) 2 ££ T;

Probfeµ = µ; etr1s = t1; et
r
2s = t2; :::; et

r
ns = tng = P (µ; t1; t2; :::; tn)

(b) For each r and each µ, the random vectors

(etr11; et
r
21; :::; et

r
n1); ::; (~t

r
1r ; et

r
2r; :::; et

r
nr)

are independent given eµ = µ:
(c) For every µ; µ̂ with µ 6= µ̂; there exists a t 2 T such that P (tjµ) 6= P (tjµ̂):

Thus a conditionally independent sequence is a sequence of PIE's with nr agents
containing r \copies" of each agent i 2 N . Each copy of an agent i is identical, i.e., has
the same endowment and the same utility function. Furthermore, the realizations of
type pro¯les across cohorts are independent given the true value of eµ. As r increases
each agent is becoming \small" in the economy in terms of endowment, and we will
show that each agent is also becoming informationally small. Note that, for large r,
an agent may have a small amount of private information regarding the preferences
of everyone through his information about eµ.

Theorem 2: Let £ = fµ1; ::; µmg: Let fe(µ)gµ2£ be a collection of CIE's and
suppose thatA = f³(µ)gµ2£ is a collection of associated CIE allocations with ³i(µ) 6= 0
for each i and µ. For every " > 0; there exists a ± > 0 such for each r ¸ 1 and each
P r 2 ¢££T r satisfying

max
i
¹P

r

i · ±min
i
¤P

r

i

max
i
ºP

r

i · ±min
i
¤P

r

i ;

there exists an incentive compatible PIE allocation zr(¢) for the PIE er = (fer(µ)gµ2£; eµ; ~tr; P r)
and a collection Ar1; ::; A

r
m of disjoint subsets of (T

r)¤ such that Probf~tr 2 [mk=1Arkg ¸
1¡ " and, for all k 2 Jm and all t 2 Ark;
(i) Probf~µ = µkj~tr = trg ¸ 1¡ "
(ii) For all (i; s) 2 N £ Jr;

uis(z
r
is(t

r); µk) ¸ ui(³i(µk); µk)¡ ":

In the statement of Theorem 2 above, we have made no special assumptions
regarding P r: We now state an analogue of Corollary 1 for replica economies.

18



Corollary 2: Let fe(µ)gµ2£ be a collection of CIE's and suppose that for each
µ; there exists a Pareto e±cient, strictly individually rational CIE allocation for the
CIE e(µ). Let f(fer(µ)gµ2£; eµ; ~tr; P r)g1r=1 be a conditionally independent sequence
and suppose that each ui(¢; µ) is concave. Then for every " > 0; there exists an
integer r̂ > 0 such that for all r > r̂; there exists an allocation zr for the PIE
(fer(µ)gµ2£; eµ; ~tr; P r) which satis¯es IC;XIR and X"E:

We leave the proofs of Theorem 2 and Corollary 2 to the appendix but we can
present the ideas. The proof of Theorem 2 is identical to that of Theorem 1 after
showing that ± can be chosen to be independent of r. In fact, Theorem 1 is the
special case of Theorem 2 in which r = 1. To deduce Corollary 2, we ¯rst show that
ºP

r

i and ºP
r

i converge to zero as r ! 1 (this is a consequence of the law of large
numbers.) Hence, aggregate uncertainty and informational in°uence are small for
large r. Next, we observe that ¤P

r

i is independent of r in a conditionally independent
sequence and ¤P

r

i > 0 since P r 2 ¢¤££T r . Let A = f³(µ)gµ2£ be a collection and
suppose that for each µ; ³(µ) is a Pareto e±cient, strictly individually rational CIE
allocation for the CIE e(µ). Applying Theorem 2, we can ¯nd, for all su±ciently large
r, an incentive compatible mechanism satisfying conditions (i) and (ii) of Theorem
2 for the collection A = f³(µ)gµ2£. Ex post individual rationality follows from the
strict individual rationality of each ³(µ) in the CIE e(µ). Ex post "¡ E±ciency follows
from the concavity assumption and the Pareto e±ciency of ³(µ) in the CIE e(µ).

6 The General Theorem: Nonnegligible Aggregate

Uncertainty

In this section, we will extend our results for the case of negligible aggregate uncer-
tainty above to the case in which there may be nonnegligible aggregate uncertainty.
We will ¯rst review the logic of the result for negligible aggregate uncertainty so as
to identify the problems that may arise in the more general case. In the presence
of negligible aggregate uncertainty, we identi¯ed a particular set of probability dis-
tributions fÂµgµ2£ on £ with the property that, for most t 2 T , there exists a µ
such that P (¢jt) ¼ Âµ. When agent i is informationally small, there is high prob-
ability that for any two types ti and t

0
i of agent i, the conditional distributions on

£ given these types, P (¢jt¡i; ti) and P (¢jt¡i; t0i), are close. Given a distribution P
with these properties and given a set of individually rational, Pareto e±cient CIE
allocations f³(µ)gµ2£, we constructed an allocation z satisfying zi(t) ¼ ³i(µ) if P (¢jt)
is close to Âµ, and zi(t) = wi otherwise. The allocation z constructed in this way is
approximately ex post e±cient because of the assumed negligible aggregate uncer-
tainty and the e±ciency of f³(µ)gµ2£, while incentive compatibility for agent i will
follow from the individual rationality of f³(µ)gµ2£; negligible aggregate uncertainty
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and informational smallness.
When we drop the assumption of negligible aggregate uncertainty, the set of prob-

ability distributions fÂµg on £ will not have the properties that allowed us to con-
struct the desired allocation. However, other sets of distributions on £ may permit
an analogous construction. Consider the following example. There are two equally
likely states of the world, µ1 and µ2 and there are 3 agents, each of whom receives
one of two signals, a or b. Suppose that the signals are perfectly correlated. That
is, all agents receive the same signal, either a or b, and suppose that P (µ1ja) = :3
and P (µ1jb) = :7. Negligible aggregate uncertainty clearly fails, since given the two
possible signal vectors, (a; a; a) and (b; b; b), the conditional distributions on £ are
(:3; :7) and (:7; :3) respectively.
Nevertheless, we can construct an allocation that is nearly e±cient for each t 2 T ¤

and incentive compatible. Consider a set of distributions on £ de¯ned by P ´ f¼1; ¼2g
where ¼1 = (:3; :7) and ¼2 = (:7; :3): For each k, let e(¼k) denote the PIE in which
agent i has endowment wi and utility function vi(¢j¼k) de¯ned by

vi(xij¼k) =
X

µ2£
ui(xi; µ)¼k(µ):

Let ³(¼) and ³(¼) be allocations with ³(¼k) strictly individually rational and e±cient
in e(¼k). Now de¯ne zi(t) = ³i(¼k) if P£(¢jt) = ¼k for some ¼k 2 P and zi(t) = wi
otherwise. The allocation z will be individually rational and e±cient for each t
by construction, and z will be incentive compatible since any misrepresentation by
agent i will change the bundle he gets from one which is strictly better than his initial
endowment to his initial endowment.
In this construction, we are treating the probability distributions in P as some-

thing like quasi-states. Learning which of these distributions is the \true" conditional
distribution over £ is all that one can hope for given the information structure. This
example illustrates a condition that can serve as an analogue to negligible aggregate
uncertainty. Suppose for a given information structure, we can ¯nd a set of distri-
butions P = f¼1; ¼2; :::; ¼mg on £, with the property that (i) with high probability
P£(¢jt) is close to some ¼ 2 P and (ii) with high probability, the conditional distribu-
tion on £ does not change much when an individual agent's type changes. We could
then mimic the construction in the example above and we will formalize this next.

Let m be a positive integer, let Q 2 ¢Jm£T (recall that Jm = f1; ::mg and let Âk 2
¢Jm denote the measure that puts probability one on k. Next, let P = f¼1; ::; ¼mg
be a collection of measures in ¢£ and de¯ne a measure P ¤Q 2 ¢££T as

P (µ; t) =
mX

k=1

¼k(µ)Q(k; t):

Let

¤Qi = min
ti2Ti

min
t0i2Tinti

jjQJm(¢jti)jj2jjQJm(¢jt0i)jj2 ¡ P
k2Jm [QJm(kjti)QJm(kjt0i)]

jjQJm(¢jt0i)jj2
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where jj ¢ jj denotes the 2-norm. Abusing notation slightly, de¯ne

¹Qi = max
ti2Ti

inff" > 0jProbf~t 2 T ¤ and jjQJm(¢j~t)¡Âkjj > " for all k 2 Jmj~ti = tig · "g

Note that, since the marginals of P = P ¤ Q and Q on T are the same, the symbol
Probf¢g in the de¯nition of ¹Qi above refers to this common marginal.
For a collection P = f¼1; ::; ¼mg and a collection of CIE's fe(µ)gµ2£, let fe(¼k)gk2Jm

denote a new collection where e(¼k) is the PIE in which agent i has endowment wi
and utility function vi(¢j¼k) de¯ned by

vi(xij¼k) =
X

µ2£
ui(xi; µ)¼k(µ)

We can now state generalizations of Theorem 1 and Corollary 1.

Theorem 3 : Let fe(µ)gµ2£ be a collection of CIE's and let P = f¼1; ::; ¼mg
be a collection of measures in ¢£. Furthermore, suppose that A = f³(k)gk2Jm is a
collection where each ³(k) is a CIE allocation for the CIE e(¼k) satsfying ³i(¼k) 6= 0
for each i and k. For every " > 0; there exists a ± > 0 such that, whenever Q 2
¢Jm£T ; P = P ¤Q and satis¯es

max
i
¹̂Qi · ±min

i
¤Qi

max
i
º̂Pi · ±min

i
¤Qi ;

there exists an incentive compatible PIE allocation z(¢) for the PIE (fe(µ)gµ2£; eµ; ~t; P )
and a collection A1; ::; Am of disjoint subsets of T

¤ such that Probf~t 2 [mk=1Akg ¸ 1¡"
and for all k 2 Jm and all t 2 Ak;
(i) QJm(kjt) ¸ 1¡ "
(ii) For all i 2 N;

vi(zi(t);¼k) ¸ vi(³i(k); ¼k)¡ ":
When P = P ¤ Q; it is not di±cult to show that ¹̂Pi will be small when ¹̂Qi is

small. In fact, we could de¯ne a notion of informational size º̂Qi with respect to Q in
an obvious way and, according to this de¯nition, º̂Pi will be small when º̂

Q
i is small if

P = P ¤Q:We have chosen to work directly with º̂Pi (in condition (ii) above) since we
believe that informational size is most naturally de¯ned in term of the distribution
P rather than the \auxiliary" distribution Q.

Corollary 3: Let fe(µ)gµ2£ be a collection of CIE's and let P = f¼1; ::; ¼mg be
a collection of measures in ¢£. Furthermore, suppose that for each k 2 Jm; there
exists a Pareto e±cient, strictly individually rational CIE allocation for the CIE e(¼k).
Then for every " > 0; there exists a ± > 0 such that, whenever Q 2 ¢Jm£T ; P = P ¤Q
and satis¯es

max
i
¹̂Qi · ±min

i
¤Qi
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max
i
º̂Pi · ±min

i
¤Qi

there exists a PIE allocation z(¢) for the PIE (fe(µ)gµ2£; eµ; ~t; P ) satisfying XIR, XIC
and X"E:

If £ = fµ1; ::; µmg; then we obtain Theorem 1 from Theorem 3 and Corollary 1
from Corollary 3 by setting ¼k = Âµk and Q(k; t) = P (µk; t) for each k and t. We also
obtain the independent case as the special case in which m = 1. Note that m = 1
implies that º̂Pi = ¹̂

Q
i = ¤

Q
i = 0 for all i.

7 Discussion

1. The role played by the variability of the conditional distributions in the construc-
tion of quasi-mechanisms is reminiscent of the work on full surplus extraction (see,
e.g., Cremer and McLean (1985,1988) and McAfee and Reny (1992)). In a ¯nite type,
private values framework, Cremer and McLean (1985, 1988) demonstrate how one can
use correlation to obtain full extraction of surplus in certain mechanism design prob-
lems. The key ingredient there is the assumption that the collection of conditional
distributions fPT¡i(¢jti)gti2Ti is a linearly independent set for each i (where PT¡i(¢jti)
is the conditional distribution on T¡i given ti). Linear independence implies that the
elements of the collection fPT¡i(¢jti)gti2Ti must be di®erent, but they can be arbitrar-
ily \close" and full extraction will be possible. In the present work, the collection
fP£(¢jti)gti2Ti need not be linearly independent but the \closeness" of the members
of fP£(¢jti)gti2Ti is an important issue. Since Pareto e±ciency and full extraction
are in some sense related, it is reasonable to conjecture that full extraction might be
possible in a common value mechanism design framework satisfying assumptions like
(e.g.) those of Theorem 1. This is indeed the case and in McLean and Postlewaite
(1999), we address this question and provide a more precise comparison with the
results of Cremer and McLean.
There are other technical di®erences between the setup of Cremer and McLean and

that of this paper. First, Cremer and McLean assume, as does much of the mechanism
design literature, that agents have quasi-linear utilities. In addition, Cremer and
McLean ignore any \endowment" constraints and allow agents to make possibly large
payments. In this paper, we do not restrict attention to quasi-linear utilities and we
have assumed that all outcomes, both in and out of equilibrium, are feasible for the
given initial endowments.

2. When P£(¢jti) 6= P£(¢jt0i); we can ¯nd punishments depending on i0s announce-
ment and the estimated state that gave i a strict incentive to truthfully announce
his type. When P£(¢jti) = P£(¢jt0i); we may still be able to construct more elabo-
rate punishments that provide agents with a strict incentive to truthfully reveal their
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types and we will provide an example that demonstrates how this might be accom-
plished. In the example, every signal that an agent receives will generate a posterior
distribution on £ that is the same as the prior, yet there is no aggregate uncertainty.
Although by itself, each agent's information provides no information about the state
of nature, we will illustrate how punishments that depend on other agents' announce-
ments, in addition to his own announcement, can be constructed so as to induce a
strict incentive for truthful announcement.
There are four agents and two states of nature, µ1 and µ2: The probability that

state µk is the true state is 1=2 for k = 1; 2. Each agent will receive a signal in the
set fa; bg; that is Ti = fa; bg; i = 1; 2; 3; 4. The information structure is as follows.
Suppose that the true state of nature is µ1: With probability 1=3, all four agents
receive signal a and with probability 2=3, exactly one agent will receive signal a; with
each of the agents being equally likely to receive the signal a. Symmetrically, if the
state of nature is µ2, then with probability 1=3 all agents will receive signal b and
with probability 2=3 exactly one agent will receive signal b; with each of the agents
being equally likely to receive the signal b.
For any agent, P (ajµ1) = 1=2, and similarly P (ajµ2) = 1=2. Hence, P (µija) =

P (µijb) = 1=2, i = 1; 2: For this information structure, an individual agent's signal
provides no information. It is clear, however, that there is no aggregate uncertainty.
If all agents receive signal a or exactly one agent receives signal a, then µ = µ1: If all
agents receive signal b or exactly one agent receives signal b, then µ = µ2:
We will next construct punishments for agent i; depending on all agents' announce-

ments, that will provide a strict incentive for i to truthfully announce his information.
Consider a collection f¿i(t¡i; ti)g de¯ned as follows. Give agent i no punishment if
all agents announce the same signal and a small punishment otherwise. An agent
who truthfully reports his type will avoid punishment with probability 1=3, while
misreporting results in punishment with probability 1:
In this example, agents' posteriors on the state of nature are independent of their

signal, but their posteriors on the signals that other agents receive are not independent
of their own signal. We could generalize slightly our results if, instead of assuming
P£(¢jti) 6= P£(¢jt0i) for each i and ti; t

0
i, we assumed PT¡i(¢jti) 6= PT¡i(¢jt

0
i) for each i

and ti; t
0
i 2 Ti (where PT¡i(¢jti) is the conditional distribution on T¡i given ti). We

should note, however, that when the number of agents is large relative to the number
of states, the vectors of punishments that depend on t¡i are commensurately larger
than punishments depending on µ. In other words, the mechanisms constructed in
this way are somewhat more complicated than those constructed in this paper.
Agents in the example above are not informationally small. In fact, with probabil-

ity 1 any agent who misreports his signal will change the estimated state. However,
it is easy to see that the method of constructing punishments to induce truthful rev-
elation is unrelated to this and could be applied regardless of agents' informational
size.
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3. We were motivated in this paper by the question of how an agent's informational
size would a®ect the degree to which e±cient reallocation was possible. Our analysis
depends on the construction of incentive compatible mechanisms that generate nearly
ex post e±cient allocations. We should emphasize that, while this provides a relatively
clear understanding of the degree to which ine±ciency will stem from informational
asymmetries alone, it does not shed much light on how much ine±ciency will result
from asymmetric information within a speci¯c institutional setting. The fact that an
optimally designed mechanism will result in a nearly e±cient outcome for a particular
informational structure tells us little about how a speci¯c institution, for example an
anonymous market, will perform. We believe that it is important to identify those
institutions that will do well, relative to the theoretical bounds we establish, in the
face of uncertainty. In an interesting work along these lines, Krasa and Shafer (1998)
show that a variant of our notion of informational smallness is both necessary and
su±cient for a particular robustness test of Walrasian equilibria.

4. Suppose that (fe(µ)gµ2£; eµ; ~t; P ) is a PIE. If some agent is \informationally
large," then our Theorem 1 will not be useful in determining whether or not an allo-
cation satisfying the desired e±ciency, individual rationality and incentive properties
will exist for this PIE. However, the following example suggests a way to improve the
theorem to encompass certain problems with informationally large agents. Consider
the following simple replica example. There are two equally likely states of nature,
µ1 and µ2: In the nth economy, there are n agents, each of whom receives a noisy
signal of the state, that is, each agent will get a signal s1 or s2, with P (sijµi) = q
where :5 < q < 1. Agents' signals are i.i.d. conditional on the state. When n is
large, the economy will exhibit negligible aggregate uncertainty and agents will be
informationally small, both consequences of the law of large numbers. We could then
use the vector of announced types t to estimate the probability distribution over £,
and choose an allocation that is approximately optimal for that the most likely state;
this is exactly what we did in Theorem 2.
Suppose now that we alter this example by letting agent 1 receive a perfect signal

of the correct state, while all other agents continue to receive the noisy signal. In this
case, P£(¢jt) will be either (1; 0) or (0; 1), depending only on agent 1's signal, since his
is the only non-noisy signal. It is clear that with this modi¯cation, our Theorem 1 no
longer applies. Aggregate uncertainty will still be negligible but the assumption that
agents are informationally small no longer holds since agent 1's announcement alone
determines whether the conditional distribution on £ is (1; 0) or (0; 1): However, it
is important to note that this does not preclude our ¯nding an incentive compatible
allocation that is individually rational and ex post nearly e±cient. A mediator could
simply ignore agent 1's announcement and estimate the distribution on £ using only
the other agents' announcements. When this distribution puts probability close to 1
on some state µ; the allocation for that state would be assigned. In this way, we can
construct an incentive compatible allocation that is individually rational and nearly

24



ex post e±cient despite the fact that agent one is not informationally small.
This example suggests a way to extend our results. Our proof uses the Bayesian

posterior given the agents' announcements as an estimate of the state of nature. The
above example illustrates how one could ¯nd a mechanism with the desired properties
using a subset of the agents' announcements. More generally, one could estimate the
state of nature using a general function of the agents' announcements. This is a topic
for further research.

5. We assumed that both £ and T were ¯nite. In general, it should be possible
to extend the results to the case in which £ is a compact subset of Rl. If the utility
functions are uniformly continuous in µ, one could take a ¯nite partition of £ and
use agents' announcements to estimate the most likely cell in the partition. For each
estimated cell, one could prescribe a given allocation for that cell, with appropriate
punishments to induce truthful announcements. There would be an additional e±-
ciency loss in that the allocation so constructed would be constant across any cell
in the partition, but this utility loss can be made arbitrarily small by constructing
increasingly ¯ner partitions.
The situation with respect to T is much more delicate, however. In our con-

struction, the ability to give any agent an incentive to announce his type truthfully
depends on the variation in the distributions P£(¢jti) and P£(¢jt0i) on £; conditional
on di®erent types ti and t

0
i. If the Ti are intervals and the conditionals P£(¢jti) are con-

tinuous in ti; then P£(¢jti) and P£(¢jt0i) will be close when ti and t
0
i are close. Hence,

the required \balance" between informational smallness, aggregate uncertainty and
variability in the conditional distributions is more complicated. This is a problem for
further research.

6. There is a possible generalization of our results related to the previous point.
Consider a PIE allocation that satis¯es the assumptions of Theorem 1. Now alter the
PIE in the following way. Choose an agent i and some type ti for that agent, suppose
that instead of receiving ti, agent i receives one of two signals, t

0
i or t

00
i . Furthermore,

suppose that P£(¢jt0i) = P£(¢jt00i ) = P£(¢jti): That is, we have taken the original PIE
and altered it by separating one signal for agent i into two di®erent signals in a way
that has no e®ect on the information conveyed by those signals. One can think of this
as agent i °ipping a coin after he receives signal ti and labeling the outcomes t

0
i = (ti

and heads) and t00i = (ti and tails): For this altered PIE, the assumptions of Theorem
1 will generally not hold since mini ¤

P
i = 0: Clearly, however, this alteration should

not a®ect what outcomes can be approximated. We can, in fact, still approximate an
allocation by treating the two signals t0i and t

00
i as a single signal, ti:More generally, we

could partition agent's type set into subsets, treating each subset as an \approximate
type." With appropriate modi¯cations of the de¯nitions of informational size and
aggregate uncertainty, we would expect to be able to prove a result analogous to our
Theorem 1 when each agent's type set can be partitioned so that, within each element

25



of the partition, the types are su±ciently similar.2

2We thank Ichiro Obara for making this point.
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9 Appendix:

9.1 Preliminary De¯nitions and Lemmas:

Let ¢Jm denote the set of probability measures on the ¯nite set Jm = f1; ::;mg:

De¯nition: Let fe(µ)gµ2£ be a collection of CIE's. Suppose that P = f¼1; ::; ¼mg
is collection of measures in ¢£ and suppose that Q 2 ¢Jm£T with conditionals
QJm(¢jti) 2 ¢Jm for all i and ti 2 Ti: Furthermore, suppose that A = f³(k)gk2Jm is
a collection of CIE allocations such that, for each k 2 Jm; the allocation f³i(k)gi2N
is a CIE allocation for e(¼k) with ³i(k) 6= 0 for all k 2 Jm and for all i. If ´ ¸ 0 and
¸ ¸ 0; then a collection ffzi(k; ti)g(ti;µ)2Ti££gi2N is a (Q;P ; ´; ¸;A) quasi-mechanism
for fe(µ)gµ2£ if
(i) zi(k; ti) 2 <`

+ and
P
i2N(zi(k; ti)¡ wi) · 0 for all ti 2 Ti and all k 2 Jm:

(ii) vi(³i(k);¼k) ¸ vi(zi(k; ti); ¼k) ¸ vi(³i(k); ¼k)¡ ´ for all ti 2 Ti and all k 2 Jm
(iii) for each ti; t

0
i 2 Ti

X

k2Jm
[vi(zi(k; ti); ¼k)¡ vi(zi(k; t0i); ¼k)]QJm(kjti) ¸ ¸

De¯nition: If Q 2 ¢Jm£T is a measure with conditionals QJm(¢jti) 2 ¢Jm for all i
and ti 2 Ti; then de¯ne

¤Qi (t
0
ijti) =

jjQJm(¢jti)jj2jjQJm(¢jt0i)jj2 ¡ P
k2Jm [QJm(kjti)QJm(kjt0i)]

jjQJm(¢jt0i)jj2
and

¤Qi = minti
min
t0i 6=ti

¤Qi (t
0
ijti)

De¯nition: Suppose that P = f¼1; ::; ¼mg is a collection of measures in ¢£ and
suppose that A = f³(k)gk2Jm is a collection of CIE allocations such that, for each
k 2 Jm; the allocation f³i(k)gi2N is a CIE allocation for e(¼k) with ³i(k) 6= 0 for all
k 2 Jm and for all i. For each ´ ¸ 0; let

c(´;P;A) = min
i
min
k

fvi(³i(k); ¼k)¡ vi(¯i(k)³i(k); ¼k)g

where
¯i(k) = minf¯j1=2 · ¯ · 1; vi(³i(k);¼k)¡ vi(¯³i(k);¼k _) · ´g:
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Lemma A: Let (fe(µ)gµ2£; eµ; ~t; P ) be a PIE and suppose that Q 2 ¢Jm£T with
conditionals QJm(¢jti) 2 ¢Jm for all i and ti 2 Ti: Furthermore, suppose that P =
f¼1; ::; ¼mg is a collection of measures in ¢£ and suppose that A = f³(k)gk2Jm is a
collection of CIE allocations such that, for each k 2 Jm; the allocation f³i(k)gi2N is
a CIE allocation for e(¼k) with ³i(k) 6= 0 for all k 2 Jm and for all i. Then for all
´ ¸ 0; there exists a (Q;P ; ´; ¸;A) quasi-mechanism for fe(µ)gµ2£ with

¸ = c(´;P;A)min
i
¤Qi

Proof: Suppose that Q 2 ¢Jm£T with conditionals QJm(¢jti) 2 ¢Jm for all i and
ti 2 Ti: Next, de¯ne

®i(k; ti) =
QJm(kjti)

jjQJm(¢jti)jj2
for each k 2 Jm: Hence,

¤Qi (t
0
ijti) =

X

k2Jm
[QJm(kjti)®i(k; ti)]¡

X

k2Jm
[QJm(kjti)®i(k; t0i)] ¸ 0:

Let A = f³(k)gk2Jm be a collection of CIE allocations with ³i(k) 6= 0 for all
k 2 Jm and for all i. If ´ = 0; then c(´;A;P) = 0 and the result is trivial (let
zi(k; ti) = ³i(k) and ¸ = 0). So suppose that ´ > 0. From the continuity and
monotonicity assumptions, it follows that c(´;A;P) > 0: For each i, ti and k, there
exists a number ¿i(k; ti) ¸ 0 such that

vi((1 + ¿i(k; ti))¯i(k)³i(k); ¼k)¡ vi(¯i(k)³i(k);¼k) = c(´;A;P)®i(k; ti):

[This is possible because 0 · c(´;A;P)®i(k; ti) · c(´;A;P)]: Furthermore, (1 +
¿i(k; ti))¯i(k) · 1: [If (1 + ¿i(k; ti))¯i(k) > 1; then monotonicity implies that

vi((1 + ¿i(k; ti))¯i(k)³i(k); ¼k)¡ vi(¯i(k)³i(k); ¼k) > vi(³i(k); ¼k)¡ vi(¯i(k)³i(k);¼k)
¸ c(´;A;P)
¸ c(´;A;P)®i(k; ti)

a contradiction.] De¯ning

zi(k; ti) = (1 + ¿i(k; ti))¯i(k)³i(k)

it follows that the collections fzi(k; ti)gti;k satisfy

zi(k; ti) 2 <`
+ and

X

i2N
(zi(k; ti)¡ wi) · 0

and part (i) of the de¯nition is satis¯ed. Furthermore,
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vi(zi(k; ti);¼k)¡ vi(¯i(k)³i(k); ¼k) = c(´;A;P)®i(k; ti)

for all ti 2 Ti and all k 2 Jm: Therefore,

vi(³i(k);¼k) ¸ vi(zi(k; ti); ¼k) = vi(¯i(k)³i(k); ¼k)+c(´;A;P)®i(k; ti) ¸ vi(³i(k);¼k)¡´

and part (ii) is satis¯ed. Finally, part (iii) follows from the observation that

X

k2Jm
[vi(zi(k; ti); ¼k)¡ vi(zi(k; t0i);¼k)]QJm(kjti)

=
X

k2Jm
[c(´;A;P)®i(k; ti)¡ c(´;A;P)®i(k; t0i)]QJm(kjti)

= c(´;A;P)
X

k2Jm
[®i(k; ti)¡ ®i(k; t0i)]QJm(kjti)

= c(´;A;P)¤Qi (t0ijti)
¸ c(´;A;P)min

i
¤Qi

9.2 Conditioning Systems:

De¯nition: Let m be a positive integer. A conditioning system for T is a triple
S = (¦;P ; Q) where
(i) ¦ = fA0; A1; ::; Amg is a partition of T with ; 6= Ak µ T ¤ for each k ¸ 1. (We

allow for the possibility that A0 = ;:)
(ii) P = f¼1; ::; ¼mg a collection of measures in ¢£.
(iii) Q 2 ¢Jm£T with conditionals QJm(¢jti) 2 ¢Jm for all i and ti 2 Ti:

De¯nition: Let P 2 ¢££T and let S = (¦;P; Q) be a conditioning system. Let
Probf¢grefer to the measure P .
The P¡mesh of S is de¯ned as

°P (S) = max
1·k·m

max
t2Ak

jj¼k ¡ P£(¢jt)jj

The P¡coverage of agent i at ti in S is de¯ned as

¹Pi (Sjti) = Probf~t 2 A0j~ti = tig

The P¡in°uence of agent i at ti in S is de¯ned as

ºPi (Sjti) = max
t0i2Ti

mX

k=1

Probf(~t¡i; ti) 2 Ak and (~t¡i; t0i) =2 Ak [A0j~ti = tig
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The P¡accuracy of S is de¯ned as

¾P (S) = max
i2N

max
ti2Ti

mX

k=1

jPr obf~t 2 Akj~ti = tig ¡QJm(kjti)j

Proposition A: Suppose that
(i) (fe(µ)gµ2£; eµ; ~t; P ) is a PIE
(ii) (¦;P ; Q) is a conditioning system for T
(iii) A = f³(k)gk2Jm is a collection where each ³(k) is a CIE allocation for the

CIE e(¼k) satisfying ³i(¼k) 6= 0 for each i and k.
(iv) ffzi(k; ti)gti2Ti;k2Jmgni=1 is a (Q;P ; ´; ¸;A) quasi-mechanism for the PIE fe(µ)gµ2£.
Let z(¢) be an allocation for the PIE de¯ned by

zi(t) = zi(k; ti) if t 2 Ak and k ¸ 1

= wi if t 2 A0

and de¯ne

M = max
µ
max
i
ui(

nX

j=1

wj; µ):

Then for all i 2 N and all ti:t
0
i 2 Ti; z(¢) satis¯es the following approximate incentive

compatibility condition:

mX

k=1

X

t¡i

[ui(zi(t¡i; ti); µk)¡ui(zi(t¡i; t0i); µk)]P (µ; t¡ijti) ¸ ¸¡2M [°i(Sjti)+¹(S)+¾(S)+ºi(Sjti)]:

Proof: First, we show that for all t 2 T and all µ 2 £;

ui(zi(t); µ) · M:

Suppose that t 2 Ak: From the de¯nition of quasimechanism, it follows that

³i(k) ·
nX

j=1

wj

for each i and k. This observation, together with the monotonicity assumption implies
that

ui(zi(t); µ) = ui(zi(k; ti); µ) · ui(³i(k); µ) · M

for each i and k. If t 2 A0; then monotonicity implies that

ui(zi(t); µ) = ui(wi; µ) · M:
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To prove approximate incentive compatibility, note that

X

µ

X

t¡i

[ui(zi(t¡i; ti); µ)¡ ui(zi(t¡i; t0i); µ)]P (µ; t¡ijti)

=
X

t¡i
:(t¡i;ti)2A0

X

µ

[ui(zi(t¡i; ti); µ)¡ ui(zi(t¡i; t0i); µ)]P (µ; t¡ijti)

+
mX

k=1

X

t¡i
:(t¡i;ti)2Ak

X

µ

[ui(zi(k; ti); µ)¡ ui(zi(t¡i; t0i); µ)]P (µjt¡i; ti)P (t¡ijti)

¸ ¡2M¹i(Sjti) +
mX

k=1

X

t¡i
:(t¡i;ti)2Ak

X

µ

[ui(zi(k; ti); µ)¡ ui(zi(t¡i; t0i); µ)]P (µjt¡i; ti)P (t¡ijti)

¸ ¡2M [¹i(Sjti) + °(S)] +
mX

k=1

X

t¡i
:(t¡i;ti)2Ak

X

µ

[ui(zi(k; ti); µ)¡ ui(zi(t¡i; t0i); µ)]¼k(µ)P (t¡ijti)

= ¡2M [¹i(Sjti) + °(S)] +
mX

k=1

X

t¡i
:(t¡i;ti)2Ak

X

µ

[ui(zi(k; ti); µ)¡ ui(zi(k; t0i); µ)]¼k(µ)P (t¡ijti)

+
mX

k=1

X

t¡i
:(t¡i;ti)2Ak

X

µ

[ui(zi(k; t
0
i); µ)¡ ui(zi(t¡i; t0i); µ)]¼k(µ)P (t¡ijti)

¸ ¡2M [¹i(Sjti) + °(S) + ¾(S)] +
mX

k=1

[vi(zi(k; ti); ¼k)¡ vi(zi(k; t0i); ¼k)]QJm(kjti)

+
mX

k=1

X

t¡i
:(t¡i;ti)2Ak

(t¡i;t0i)=2Ak[A0

X

µ

[ui(zi(k; t
0
i); µ)¡ ui(zi(t¡i; t0i); µ)]¼k(µ)P (t¡ijti)

¸ ¸¡ 2M [¹i(Sjti) + °(S) + ¾(S) + ºi(Sjti)]

9.3 Proof of Theorem 3:

Let P = f¼1; ::; ¼mg be a collection of distinct measures in ¢£ and let fe(µ)gµ2£ be a
collection of CIE's. Furthermore, suppose that A = f³(k)gk2Jm is a collection of CIE
allocations such that, for each k 2 Jm; ³i(k) is an allocation for e(¼k) with ³i(k) 6= 0
for all i. Choose " > 0. Let

D(P) = min
k
min
`

: 6̀=k
jj¼` ¡ ¼kjj:
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and

M = max
µ
max
i
ui(

nX

j=1

wj; µ):

and choose ± so that

0 < ± < minfc(";A;P)
10M

; ";
D(P)
3

g

Suppose that Q 2 ¢Jm£T and P = P ¤Q , let ºPi be de¯ned as in section 5.1 and let
¹Qi and ¤

Q
i be de¯ned as in section 6. Finally, de¯ne ¹̂

Q = maxi ¹
Q
i ; º̂

P = maxi º
P
i and

¤Q = mini ¤
Q
i and suppose that,

º̂P · ±¤Q

¹̂Q · ±¤Q .

For each k 2 Jm; let

Ak = ft 2 T ¤jjjQJm(¢jt)¡ Âkjj · ¹̂Qg

and let
A0 = Tn[[k2JmAk]:

Since ¤Q · 1; it follows that

¹̂Q · ±¤Q <
D(P)
3

¤Q · D(P)
3

and the collection ¦ = fA0; A1; ::; Amg is a partition of T .
The partition ¦; together with P = f¼1; ::; ¼mg and Q , de¯ne a conditioning sys-

tem S = (¦;P ; Q). Applying Lemma 1, there exists a (Q;P ; "; ¸;A) quasimechanism
ffzi(k; ti)g(ti;µ)2Ti£Jmgi2N with

¸ = c(";A;P)¤Q

Finally, let z(¢) be the PIE allocation for (fe(µ)gµ2£; eµ; ~t; P ) de¯ned as

zi(t) = zi(k; ti) if t 2 Ak
= wi if t 2 A0

Since the marginals of P = P ¤Q and Q on T are equal, it follows that

¹Pi (Sjti) · ¹̂Q · ±¤Q

for all i and all ti 2 Ti: Next, we prove three claims.
Claim 1: For each i,

¾P (S) · 2±¤Q:
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Proof of Claim 1: First, note that

QJm(kjti) =
X

`2Jm

X

t¡i
:(t¡i;ti)2A`

Q(kjt¡i; ti)Q(t¡ijti) +
X

t¡i
:(t¡i;ti)2A0

Q(k; t¡ijti)

and
Probf~t 2 Akj~ti = tig =

X

t¡i
:(t¡i;ti)2Ak

P (t¡ijti) =
X

t¡i
:(t¡i;ti)2Ak

Q(t¡ijti):

Therefore,

jQJm(kjti)¡ Probf~t 2 Akj~ti = tigj
= j[

X

`2Jm

X

t¡i
:(t¡i;ti)2A`

Q(kjt¡i; ti)Q(t¡ijti)]¡ [
X

t¡i
:(t¡i;ti)2Ak

Q(t¡ijti)]

+[
X

t¡i
:(t¡i;ti)2A0

Q(kjt¡i; ti)]j

= j[
X

`2Jm

X

t¡i
:(t¡i;ti)2A`

Q(kjt¡i; ti)Q(t¡ijti)]¡ [
X

`2Jm
Âk(µ`)

X

t¡i
:(t¡i;ti)2A`

Q(t¡ijti)]

+[
X

t¡i
:(t¡i;ti)2A0

Q(kjt¡i; ti)]j

= j[
X

`2Jm

X

t¡i
:(t¡i;ti)2A`

[Q(kjt¡i; ti)¡ Â`(µk)]Q(t¡ijti)] + [
X

t¡i
:(t¡i;ti)2A0

Q(kjt¡i; ti)]j:

Hence,

X

k2Jm
jQJm(kjti)¡ Probf~t 2 Akj~ti = tigj

·
X

`2Jm

X

t¡i
:(t¡i;ti)2A`

X

k2Jm
jQ(kjt¡i; ti)¡ Â`(µk)jQ(t¡ijti) +

X

t¡i
:(t¡i;ti)2A0

Q(t¡ijti)

· ¹̂Q
X

`2Jm

X

t¡i
:(t¡i;ti)2A`

Q(t¡ijti) +
X

t¡i
:(t¡i;ti)2A0

Q(t¡ijti)

· ¹̂Q + ¹Qi
· 2¹̂Q

· 2±¤Q:

Claim 2: For each i and each ti;

ºPi (Sjti) · ±¤Q:
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Proof of Claim 2: De¯ne

ªi(t
0
i; ti) =

[

`2Jm
ft¡i 2 T¡ij(t¡i; ti) 2 A` and (t¡i; t0i) =2 A` [ A0g

and note that
ºPi (Sjti) = max

t0i2Ti
Pr obf~t 2 ªi(t0i; ti)j~ti = tig:

Also, recall that

Iiº̂P (t
0
i; ti) = ft¡i 2 T¡ij(t¡i; ti) 2 T ¤; (t¡i; t0i) 2 T ¤ and jjP£(¢jt¡i; ti)¡P£(¢jt¡i; t0i)jj > º̂Pg

We claim that ªi(t
0
i; ti) µ I iº̂P (t

0
i; ti): To see this, suppose that t¡i 2 ªi(t

0
i; ti) but

t¡i =2 I iº̂P (t
0
i; ti): Then there exist `; k 2 Jm with k 6= ` such that (t¡i; ti) 2 A` and

(t¡i; t0i) 2 Ak and jjP£(¢jt¡i; ti)¡ P£(¢jt¡i; t0i)jj · º̂P : Since ¤Q · 1; it follows that

¹̂Q · ±¤Q <
D(P)
3

¤Q · D(P)
3

and that

º̂P · ±¤Q <
D(P)
3

¤Q · D(P)
3

:

Therefore,

jj¼` ¡ ¼kjj · jjP£(¢jt¡i; ti)¡ ¼`jj+ jjP£(¢jt¡i; ti)¡ P£(¢jt¡i; t0i)jj+ jjP£(¢jt¡i; t0i)¡ ¼kjj
· ¹̂Q + º̂P + ¹̂Q

< 3
D(P)
3

= D(P)

an impossibility. Hence, we conclude that

ºPi (Sjti) = max
t0i2Ti

Probf~t¡i 2 ªi(t0i; ti)j~ti = tig

· max
t0i2Ti

Probf~t¡i 2 I iº̂P (t0i; ti)j~ti = tig

· º̂P

· ±¤Q:

Claim 3: For the conditioning system S,

°P (S) · ±¤Q
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Proof of Claim 3: From the de¯nition of P ¤Q; it follows that

jj¼k ¡ P£(¢jt)jj =
X

µ

j
X

`

¼`(µ)Âk(`)¡
X

`

¼`(µ)Q(`jt)j

·
X

µ

X

`

¼`(µ)jÂk(`)¡Q(`jt)j

=
X

`

jÂk(`)¡Q(`jt)j:

Therefore,

°P (S) = max
1·k·m

max
t2Ak

jj¼k ¡ P£(¢jt)jj · max
1·k·m

max
t2Ak

jjÂk ¡Q(¢jt)jj · ¹̂Q · ±¤Q:

Incentive compatibility now follows from Proposition A since

¸¡ 2M [¹i(Sjti) + °(S) + ¾(S) + ºi(Sjti)] ¸ c(";A;P)¤Q ¡ 10M±¤Q
= ¤Q[c(";A;P)¡ 10M±]
¸ 0

Now suppose that Probf~t 2 A0jtig · ¹̂Q for each i and ti: Hence,

X

ti2Ti
Probf~t 2 A0jtigP (ti) · ¹̂Q · ±¤Q · "¤Q · "

from which it follows that

Probf~t 2 [mk=1Akg = 1¡
X

ti2Ti
Probf~t 2 A0jtigP (ti) ¸ 1¡ ":

Finally, suppose that t 2 Ak: Then

[1¡QJm(kjt)] +
X

6̀=k
QJm(`jt) = jjQJm(¢jt)¡ Âkjj · ¹̂Q · ±¤Q · "¤Q · "

and we conclude that
1¡ " · QJm(kjt):

Furthermore, the de¯nition of (Q;P; "; ¸;A) quasi-mechanism and the construction
of z(¢) imply that for all i 2 N;

vi(zi(t);¼k) ¸ vi(³i(k); ¼k)¡ ":

This completes the proof of the the Theorem.
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9.4 Proof of Corollary 2:

Let fe(µ)gµ2£ be a collection of CIE's and let P = f¼1; ::; ¼mg be a collection of
measures in ¢£. Furthermore, suppose that A = f³(k)gk2Jm is a collection where,
for each k 2 Jm; ³(k) is a Pareto e±cient, strictly individually rational CIE allocation
for the CIE e(¼k). Let

K(A) = min
i
min
k
[vi(³i(k); ¼k)¡ vi(wi;¼k)]

and

M = max
µ
max
i
ui(

nX

j=1

wj; µ):

Since each ³(k) is strictly individually rational for the CIE e(¼k); it follows that
K(A) > 0: Choose " > 0 and choose "̂ so that

0 < "̂ < minf K(A)
4M + 1

;
"

4M + 1
g

Applying Theorem 3, there exists a ±̂ > 0 such that, whenever Q 2 ¢Jm£T ; P = P ¤Q
and satis¯es

max
i
¹̂Qi · ±̂min

i
¤Qi

max
i
º̂Pi · ±̂min

i
¤Qi ;

there exists an incentive compatible PIE allocation z(¢) for the PIE (fe(µ)gµ2£; eµ; ~t; P )
and a collection A1; ::; Am of disjoint subsets of T

¤ such that Probf~t 2 [mk=1Akg ¸ 1¡"̂
and for all k 2 Jm and all t 2 Ak;
(i) Q(kjt) ¸ 1¡ "̂
(ii) For all i 2 N;

vi(zi(t);¼k) ¸ vi(³i(k); ¼k)¡ "̂:
If t 2 Ak for some k ¸ 1, then Q(kjt) ¸ 1¡ "̂ implies that

jjQJm(¢jt)¡ Âkjj = [1¡QJm(kjt)] +
X

6̀=k
QJm(`jt) · 2"̂:

To prove XIR, suppose that t 2 Ak and note that
X

µ

[ui(zi(t); µ)¡ ui(wi; µ)]P (µjt) =
X

`

[vi(zi(t); ¼`)¡ vi(wi; ¼`)]Q(`jt)

¸ vi(zi(t);¼k)¡ vi(wi; ¼k)¡ (2M)(2"̂)
¸ vi(³i(k); ¼`)¡ vi(wi; ¼`)¡ "̂¡ 4M"̂
¸ K(A)¡ (4M + 1)"̂

> 0:
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Hence, z(¢) satis¯es XIR.
To show that z(¢) satis¯es X"E, let E = [mk=1Ak and note that

Probf~t 2 Eg = Probf~t 2 [mk=1Akg ¸ 1¡ "̂ ¸ 1¡ "

4M + 1
¸ 1¡ ":

Suppose that y(¢) is a feasible PIE allocation and that
X

µ

[ui(yi(t); µ)¡ ui(zi(t); µ)]P (µjt) > ":

For each i 2 N; it follows that

" <
X

µ

[ui(yi(t); µ)¡ ui(zi(t); µ)]P (µjt)

=
X

`

[vi(yi(t);¼`)¡ vi(zi(t); ¼`)]Q(`jt)

· (2M)(2"̂) + vi(yi(t);¼k)¡ vi(zi(t); ¼k)
= 4M"̂+ [vi(yi(t); ¼k)¡ vi(³i(k);¼k)] + [vi(³i(k);¼k)¡ vi(zi(t); ¼k)]
· 4M"̂+ [vi(yi(t); ¼k)¡ vi(³i(k);¼k)] + "̂:

Therefore,
0 < "¡ 4M"̂¡ "̂ < [vi(yi(t); ¼k)¡ vi(³i(k);¼k)]

for each i, contradicting the assumption that f³i(k)gi2N is Pareto optimal in e(¼k).
Therefore, t =2 E and z(¢) satis¯es X"E.

9.5 Proofs of Theorem 1 and Corollary 1:

These are immediate consequences of Theorem 3 and Corollary 2. If £ = fµ1; ::; µmg;
then let ¼k = Âµk and Q(k; t) = P (µk; t) for each k and t.

9.6 Proof of Theorem 2:

The proof is also essentially identical to that of Theorem 3. Suppose £ = fµ1; ::; µmg
and let ¼k = Âµk and Q(k; t) = P r(µk; t) for each k and t so that ¹̂

Q = ¹̂P
r
; º̂Q =

º̂P
r
and ¤Q = ¤P

r
: Suppose that A = f³(µ)gµ2£ is a collection of CIE allocations

for the collection fe(µ)gµ2£: Choose r ¸ 1 and let fer(µ)gµ2£ denote the associated
replica economy and let Ar = f³r(µ)gµ2£ denote the associated replica allocation. It
follows from the de¯nitions that

c(";A;P) = c(";Ar;P)

38



where c(";A;P) is de¯ned for fe(µ)gµ2£;A and P and c(";Ar;P) is de¯ned for
fer(µ)gµ2£;Ar and P. If

M = max
µ
max
i
ui(

nX

j=1

wj; µ);

then any (Q;P ; "; ¸;Ar) quasimechanism ffzris(µk; ti)g(ti;k)2Ti£Jmg(i;s)2N£Jr for the
PIE (fer(µ)gµ2£; eµ; ~tr; P r) has the property that

uis(z
r
is(µ`; ti); µk) · uis(³

r
is(µ`; ti); µk) = ui(³i(µ`; ti); µk) · M:

Hence, for each " > 0; we may choose ± to be independent of r. More precisely, choose
± so that

0 < ± < minfc(";A;P)
10M

;";
D(P)
3

g:
Now the remainder of the proof is a verbatim copy of the proof of Theorem 3.

9.7 Proof of Corollary 2:

Let f(fer(µ)gµ2£; eµ; ~tr; P r)g1r=1 be a conditionally independent sequence and suppose
that each ui(¢; µ) is concave.
Step 1:
For each tr 2 T r, let '(tr) denote the \empirical frequency distribution" that tr

induces on T . More formally, '(tr) is a probability measure on T de¯ned for each
¿ 2 T as follows:

'(tr)(¿) =
jfs 2 Jrjtr¢s = ¿gj

r

(We suppress the dependence of ' on r for notational convenience.)

Claim: For every ½ > 0; there exists an integer r̂ such that for all r > r̂,

ºP
r

i · ½ and ¹P
r

i < ½:

Proof of Claim: Choose ½ > 0: Applying the argument in the appendix to Gul-
Postlewaite(1992) (see the analysis of their equation (9)), together with the de¯nition
of ' and the law of large numbers, it follows that there exists ¸ > 0 and an integer r̂
such that for all r > r̂,

jj'(tr)¡ PT (¢jµk)jj < ¸) jjP r£(¢jtr)¡ Âµk jj < ½=2 for all trand k ¸ 1,

jj'(tr¡is; ti)¡ '(tr¡is; t0i)jj < ¸=2 for all ti; t0i 2 Ti and all trand all i,
and

Probfjj'(~tr)¡ PT (¢jµk)jj < ¸=2j~tris = ti; ~µ = µkg > 1¡ ½ for all ti; t0i 2 Ti and k ¸ 1:
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Choose ti; t
0
i 2 Ti; k ¸ 1 and r > r̂: Then

ProbfjjP r£(¢j~tr¡is; ti)¡ P r£(¢j~tr¡is; t0i)jj < ½j~tris = ti; ~µ = µkg

¸ Probfjj'(~tr¡is; ti)¡ PT (¢jµk)jj < ¸=2 and jj'(~tr¡is; t0i)¡ PT (¢jµk)jj < ¸j~tris = ti; ~µ = µkg
¸ Probfjj'(~tr¡is; ti)¡ PT (¢jµk)jj < ¸=2 and jj'(~tr¡is; ti)¡ '(~tr¡is; t0i)jj < ¸=2j~tris = ti; ~µ = µkg
= Probfjj'(~tr¡is; ti)¡ PT (¢jµk)jj < ¸=2 j~tris = ti; ~µ = µkg
¸ 1¡ ½

Hence,
ProbfjjP r£(¢j~tr¡is; ti)¡ P r£(¢j~tr¡is; t0i)jj < ½j~tris = tig ¸ 1¡ ½

and we conclude that ºP
r

i · ½: Since

jj'(~tr)¡PT (¢jµk)jj < ¸=2 ) jj'(tr)¡PT (¢jµk)jj < ¸ ) jjP r£(¢jtr)¡Âµk jj < ½=2 < ½ for all tr,

whenever r > r̂ and k ¸ 1, it follows that

ProbfjjP r£(¢j~tr)¡ Âµk jj < ½j~tris = ti; ~µ = µkg
¸ Probfjj'(~tr)¡ PT (¢jµk)jj < ¸=2j~tris = ti; ~µ = µkg
> 1¡ ½ .

Hence,
mX

k=1

ProbfjjP r£(¢j~tr)¡ Âµk jj < ½j~tris = tig ¸ 1¡ ½

and we conclude that ¹P
r

i · ½:

Step 2:
Let fe(µ)gµ2£ be a collection of CIE's and let P = fÂµ1; ::; Âµmg. Furthermore,

suppose that A = f³(µk)gk2Jm is a collection where, for each k 2 Jm; ³(µk) is a Pareto
e±cient, strictly individually rational CIE allocation for the CIE e(µk). Let

K(A) = min
i
min
k
[ui(³i(µk); µk)¡ ui(wi; µk)]

and

M = max
µ
max
i
ui(

nX

j=1

wj; µ):

Since each ³(µk) is strictly individually rational for the CIE e(µk); it follows that
K(A) > 0: Choose " > 0 and choose "̂ so that

0 < "̂ < minf K(A)
4M + 1

;
"

4M + 1
g:
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For a conditionally independent sequence,

¤P
r

i;s = ¤
P
i

for all r and s. In particular, ¤P
r

i;s is independent of r. Furthermore, ¤
P
i > 0 since

P 2 ¢¤££T : Applying Theorem 2 and the claim in step 1 above, we conclude that
there exists an r̂ > 0 such that, for all r > r̂; there exists an incentive compatible PIE
allocation zr(¢) for the PIE (fer(µ)gµ2£; eµ; ~tr; P ) and a collection Ar1; ::; Arm of disjoint
subsets of (T r)¤ such that Probf~tr 2 [mk=1Arkg ¸ 1 ¡ "̂ and, for all k 2 Jm and all
t 2 Ark;
(i) Probf~µ = µkj~tr = trg ¸ 1¡ "̂
(ii) For all i 2 N;

uis(z
r
is(t

r); µk) ¸ ui(³i(µk); µk)¡ "̂:
To show that zr(¢) satis¯es XIR, suppose that tt 2 Ark for some k ¸ 1: Then

X

`

[uis(z
r
is(t

r); µ`)¡ uis(wis; µ`)]P (µ`jtr) ¸ ui(z
r
is(t

r); µk)¡ ui(wi; µk)¡ (2M)(2"̂)

¸ ui(³i(µk); µk)¡ ui(wi; µk)¡ "̂¡ 4M"̂
¸ K(A)¡ (4M + 1)"̂

> 0:

To show that zr(¢) satis¯es X"E, let Er = [mk=1Ark and note that

Probf~tr 2 Erg = Probf~tr 2 [mk=1Arkg ¸ 1¡ "̂ ¸ 1¡ "

4M + 1
¸ 1¡ ":

To complete the proof, suppose tr 2 (T r)¤ and that yr(¢) is a PIE allocation for er
satisfying X

µ

[uis(y
r
is(t

r); µ)¡ uis(zris(tr); µ)]P (µjtr) > "

for each (i; s). For each i, let

yi =
1

r

rX

s=1

yris(t
r)

and therefore,
nX

i=1

yi =
1

r

nX

i=1

rX

s=1

yris(t
r) ·

nX

i=1

wi:

Since each ui(¢; µ) is concave and zris(tr) = zris0(tr), it follows that
X

µ

[ui(yi; µ)¡ ui(zris(tr); µ)]P (µjtr) > ":
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If tr 2 Ark for some k, then for each i 2 N;

" <
X

µ

[ui(yi; µ)¡ ui(zris(tr); µ)]P (µjtr)

· ui(yi; µk)¡ ui(zris(tr); µk) + (2M)(2"̂)
· 4M"̂+ ui(yi; µk) + "̂¡ ui(³i(µk); µk):

Therefore,
0 < "¡ (4M + 1)"̂ < [ui(yi; µk)¡ ui(³i(µk); µk)]

for each i and we conclude that f³i(µk)gi2N is not Pareto optimal in e(µk), a contra-
diction. Hence, tr =2 Er and the proof is complete.
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