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Efficient Non-Contractible Investments 

by 


Harold L. Cole, George J. Mailath, and Andrew Postlewaite 


Abstract 

This paper addresses the question of whether agents will invest efficiently 
in attributes that will increase their productivity in subsequent matches with 
other individuals. We present a two-sided matching model in which buyers and 
sellers make investment decisions prior to a matching stage. Once matched, the 
buyer and seller bargain over the transfer price. In contrast to most matching 
models, preferences over possible matches are affected by decisions taken before 
the matching process. We show that if bargaining respects the existence of outside 
options (in the sense that the resulting allocation is in the core of the assignment 
game), then efficient decisions can always be sustained in equilibrium. However, 
there may also be inefficient equilibria. Our analysis identifies a potential source 
of inefficiency not present in most matching models. 
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Efficient Non-Contractible Investments 

by 


Harold L. Cole, George J. Mailath, and Andrew Postlewaite 


1. Introduction 

Complementary investments are often made by different individuals; for example, 
a worker may invest in human capital while a firm invests in machinery that 
utilizes that human capital. Do investors making complementary investments face 
the correct incentives, especially when they cannot contract with each other prior 
to their decisions? The traditional answer is no (Williamson [17J and Grossman 
and Hart [8]). An agent's investment is a sunk cost by the time the agents bargain 
over the split of the surplus that results from the investment. Since bargaining 
typically allocates part of the surplus generated by an agent's investment to the 
other party, the failure of that agent to capture the full benefit of his investment 
leads to underinvestment. 

In the analysis of this holdup problem, the degree to which the benefits of an 
agent's investment cannot be captured by that agent is related to asset specificity. 
The share of the surplus that an agent gets in any plausible bargaining process will 
be constrained by his outside options. A worker whose skills are nearly as valuable 
on a machine other than that owned by the person he is currently bargaining 
with can play the two owners off against each other. In many circumstances, 
competition between potential partners provides protection against the holdup 
problem, and agents capture the bulk of the benefits of their investments, and, 
consequently, have incentives to invest efficiently. The polar extreme to this case 
is that an agent's investment is of value to a single individual, for example, a 
worker who becomes expert on a unique machine. The value of the asset he 
invests in is specific to the match with the owner of that machine. Intuitively, 
the lack of outside options for such an agent should lead him to expect a smaller 
share of the surplus generated by his investment than when there is potential 
competition for his services. 

While there is a large literature that analyzes the effect of asset specificity 
on investment, the degree to which investments are specific is typically taken to 
be exogenous. That analysis considers a single pair in isolation, taking as given 
other agents' investments, and the outside options inherent in those investments. 
The difficulty with analyzing investments of a single pair is that those invest
ments determine (at least in part) the outside options of other pairs. Consider a 
matching problem in which there are a number of people on each side who might 
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make investments in hopes of subsequently pairing with someone who has made a 
complementary investment. The return any individual can expect from investing 
will be the outcome of the bargaining with his future partner, which will depend 
on the outside options of both individuals. These outside options, of course, are 
determined precisely by the investment decisions of the agents involved. 

Our aim is to analyze the investment decisions of agents who, subsequent 
to investing, pair off, produce a surplus, and share that surplus through some 
bargaining process. We treat the agents' investment decisions as a noncoop
erative game, each agent's decision depending on the (equilibrium) investment 
choices of other agents like him and of the agents with whom he can potentially 
match. In this way the asset specificity of agents' investments is endogenously 
determined, rather than exogenously assumed. We are particularly interested in 
comparing the investments agents make when they can contract prior to investing 
and those they make when they cannot. If agents can contract over the invest
ment levels they make, investments will be efficient. We take those investments 
as a benchmark to which we compare investments when ex ante contracting is 
impossible. When ex ante contracting is impossible, there will always be an equi
librium in which agents invest efficiently, but there may be additional equilibria 
characterized by inefficient investments. The analysis also suggests that, in many 
situations, the efficient investment equilibrium is implausible. We further show 
that for some problems, regardless of the bargaining process, underinvestment 
may occur. On the other hand, we conjecture that there are bargaining processes 
for which overinvestment cannot occur. 

In order to focus on the efficiency of investment choices and bargaining over 
the resulting surplus, we label the two sides in the relationship "buyers" and 
"sellers." There is of course nothing important about this, and we could have 
used the terms "workers" and "firms." 

The outline of the paper is as follows. In the next section, we present a 
simple example that illustrates the investment and matching process. We then 
present the formal model for the case of a finite number of agents (Section 3) and 
characterize the bargaining outcomes (Section 4). Section 5 provides sufficient 
conditions for agents to receive the social value of their investments, and Section 
6 compares the cases in which agents can and cannot contract prior to investing. 
The simplest version of the sufficient conditions for agents to fully appropriate the 
value of their decisions (to use the language of Makowski and Ostroy [15]) involve 
binding outside options, so that all agents' payoffs are completely determined 
by the payoffs that any single agent receives. With a finite population, this 
requires that many agents are choosing the attributes that are also chosen by other 
agents. If each agent is idiosyncratic (for example, has different costs of acquiring 
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attributes), then efficient attribute choices will not imply binding outside options. 
Efficiency then results only if the bargaining between agents results in a particular 
outcome (see in particular the discussion after Proposition 5). On the other 
hand, the outside options do limit the agreements that agents can come to, and 
the richer the set of chosen attributes, the closer to binding the outside options 
become. A plausible (but incorrect) conjecture is that as the number of agents 
becomes large, outside options become binding and so in large economies, we have 
full appropriation. The reason the conjecture fails is that even when the set of 
agents is rich (in the sense that each agent has a close competitor in exogenous 
characteristics), since attributes are endogenous, agents may not have a close 
competitor in attributes. Moreover, even if all agents have close competitors, the 
outside options that need to bind to ensure full appropriation may not. 

A second reason for exploring a model with a large number of agents is that 
with a finite population, a change in a single agent's investment decision can affect 
the matching and payoffs to all other agents. While this may be plausible for some 
problems, it is not for others, particularly when there are many agents. In Section 
7, we present a model with a continuum of agents, which allows us to assume that 
a single agent's decisions do not affect the other agents. We obtain analogs of 
the results for the finite case: when agents cannot contract prior to investing, 
there is always an equilibrium in which they invest efficiently, but there may be 
inefficient equilibria as welL As in the finite case, the inefficient equilibria may 
well be more plausible than the efficient equilibria (Section 8). We further discuss 
our model and results in Section 9, while Section 10 closes with a discussion of 
related literature. 

2. A simple example 

As discussed in the introduction, we are interested in the interaction between the 
way in which the surplus is divided in matched pairs and the incentives individuals 
have to invest in attributes. We begin by illustrating several issues with a simple 
example. There are two buyers, {1,2}, and two sellers, {1,2}. For now, we fix 
the attributes of the buyers and sellers as in the following table. The surplus 
generated by a pair (b, s) is given by the product of their attributes, b· s. Figure 
2.1 displays one particular outcome for this environment with each of the two 
columns representing a matched pair and the split of the surplus for that pair. 
Total surplus is maximized by the indicated matching and the split of the surplus 
for the pairs is unique if the sharing rule is symmetric with respect to buyers and 
sellers. 

Suppose now that attributes are not fixed, but chosen from the set {2,3}. 
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buyer's share (Xi) 2 41 
2 

buyer's attribute (bi) 2 3 
buyer (i) 1 2 
seller (j) 1 2 

seller's attribute (s j) 2 3 
seller's share (pj) 2 41 

2 

Figure 2.1: An example with two buyers and sellers. 

3 
2 
1 
1 
3 
3 

Figure 2.2: Seller 1 with attribute s 3. 

We focus on the behavior of seller 1, with the attributes of the other agents 
unchanging.1 If the surplus is always divided equally and seller 1 chose instead 
s = 3, then the matching and surplus division are as in Figure 2.2. 

In this example, equal division violates equal treatment: The two sellers have 
the same attribute but receive different payoffs. As we will see in the next section, 
such a specification of payoffs is not "stable" since seller 1 could make buyer 2 a 
marginally better offer than he gets when matched with seller 2. 

Equal division may also prevent efficient attribute choices. If, for example 
the cost of attribute 2 to seller 1 is 0, while the cost of attribute 3 is ~, then the 
increase in surplus when seller 1 chooses attribute 3 rather than attribute 2 is 
2 while the increased cost to seller 1 of choosing the higher attribute is only ~. 
This is, of course, a simple consequence of having a sharing rule that gives part 
of the increase in output that results from seller l's investment to the buyer that 
is matched with seller 1. 

There are sharing rules that satisfy equal treatment (and so are stable); Figure 
2.3 gives one such. 

1 We can choose the cost functions for the two buyers and for seller 2 to ensure (assuming 
the bargaining is monotonic) that their optimal choice of attributes is as in the table above, 
Specifically, denote by 'l/J(b,i) the cost to buyer i of acquiring attribute b and by c(s,j) the cost 
of attribute s to seller j, and suppose 'l/J(2, 1) 'l/J(b,2) = c(s, 2) = 0, 'l/J(3, 1) 10. 
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Xi 11
2 41 

2 

bi 2 3 
i 1 2 

J 1 2 
Sj 

Pj 

3 
41 

2 

3 
41 

2 

Figure 2.3: Equal treatment and inefficiency. 

2 5 
2 3 
1 2 
1 2 

S' 3 3J 

Pj 4 4 

Figure 2.4: Equal treatment and efficiency. 

While we obtain equal treatment here, there are still incentives for inefficient 
choices. For example, if the cost of attribute 3 to seller 1 is 2t, then seller 1 
chooses S = 3, even though it is inefficient to do so. The problem now is that the 
payoff to the buyer who is matched with seller 1 falls in response to the higher 
attribute of the seller. 

There is, however, a specification of payoffs for this vector of buyers' and 
sellers' attribute choices that satisfies equal treatment, is stable, and implies 
efficient choices by seller 2 (given in Figure 2.4). 

In this case, the surplus division between buyer and seller 2 has changed, even 
though the characteristics of the match did not change. 

This simple example illustrates the issues we address in this paper and the 
approach we take. If agents must make complementary investments before con
tracting over outcomes, they may choose inefficiently. Further, the manner in 
which bargaining takes place after matching (that is, the sharing rule) will affect 
the efficiency of investments, even if the sharing rules are constrained by stability. 

3. Description of the investment problem 

An investment problem r is the collection {I, J, B, S, 'I/J, c, v}, where 
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• 	 I and J are disjoint finite sets of buyers and sellers; 

• 	Band S are respectively the set of possible attributes (income, wealth, or 
willingness to pay) buyers can choose from, and the set of possible attributes 
(quality of good) for sellers; 

• 	 7j; : B x I ~ !R+, where 7j;(b, i) is the cost to buyer i of attribute b; 

• 	 c: S x J ~ !R+, where c( s,.i) is the cost to seller .1 of attribute S; and 

• 	v : B x S ~ !R+, where v(b, s) is the surplus generated by a buyer with 
attribute b matching with a seller with attribute s. 

We assume Band S are compact subsets of !R+. We assume (without loss of 
generality) that there are equal populations of buyers and sellers.2 We assume 
that v(b,s) displays complementarities in attributes (v is supermodular): for 
b < b' and s < s', v(b',s) +v(b,s'):;; v(b,s) +v(b',s'). Equivalently, if v is C2 , 

fJ2v/8b8s ~ O. We will sometimes assume that the surplus function is strictly 
supermodular, i.e., v(b', s) + v(b, s') < v(b, s) + v(b', s') for all b < b' and s < s'. 
We also assume v is strictly increasing in b and in s. 

We model the bargaining and matching process that follows the attribute 
choices as a cooperative game. Given a fixed distribution of attributes of buyers 
and sellers, the resulting cooperative game is an assignment game: there are two 
populations of agents (here, buyers and sellers), with each pair of agents (one 
from each population) generating some value. To distinguish this assignment 
game from the assignment game we describe in Section 6, we call this assignment 
game the ex post assignment game (indicating that attribute choices are taken as 
fixed). An outcome in the assignment game is a matching (each buyer matching 
with no more than one seller and each seller matching with no more than one 
buyer) and a bargaining outcome or payoff (a division of the value generated by 
each matched pair between members of that pair). We denote the buyer's share 
of the surplus by x ~ 0 and the seller's share by p ~ 0, with x + p :;; v(b, s).3 

Definition 1. A matchingm is a function m: I -t Ju {0}, where m is one-ta
one on m -1 (J), and 0 is interpreted as no match. 

Definition 2. A bargaining outcome (x, p) E !R~ x !R:f is feasible for the 
matching m if Xi + Pm(i) :;; v(bi , Sm(i) whenever m(i) ::j:. 0, Xi = 0 whenever 

2The case of more buyers than sellers, for example, is handled by adding additional sellers 
with attribute 0 and setting v(b, 0) = 0 for all b. 

3Note that shares are amounts, not fractions. 
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m(i) = 0, and Pj = 0 whenever j fj. mel). A bargaining outcome is feasible if it 
is feasible for some matching. 

Definition 3. A bargaining outcome (x, p) is stable if it is feasible and for all 
i Eland j E J, 

(3.1) 


A matching associated with a stable bargaining outcome vector is a stable 
matching. 

It is clear that there are no transfers across matched pairs in a stable bargain
ing outcome. As usual in assignment games, stable bargaining outcomes are core 
allocations of the assignment game and conversely, where the characteristic func
tion of the assignment game has value V (A) at a coalition A c I UJ given by the 
maximum of the sum of surpluses of matched pairs (the maximum is taken over 
all matchings of buyers and sellers in A). Since buyer attributes are described 
by the vector b and seller attributes are described by the vector s, we sometimes 
write V(b, s) for V(l U J).4 

We are thus modelling the game facing buyers and sellers as one of simulta
neously choosing attributes, and subsequent to the choice of attributes, match
ing and sharing the surplus generated by the matches. We restrict attention to 
matches and payoffs that are stable given the choice of attributes. Since v is su
permordular, it is straightforward to show that there always exists a stable payoff 
for any vector of attribute choices. 

There is, however, one important issue in considering the attribute invest
ment decisions as a noncooperative game. Typically there is not a unique stable 
outcome associated with a vector of attributes; in fact, as we will see, there is 
usually a continuum of stable outcomes. In order to treat attribute choices as 
a noncooperative game, each agent must be able to compare the payoffs from 
two different attribute choices, given other agents' choices. This requires a well
defined (stable) payoff associated with every possible set of attribute investments. 
That is, there must be a bargaining outcome function 9 : BI X SJ -+ tR~ x tR~, 
with g(b, s) = (x, p) a stable outcome for each vector of attribute choices (b, s). 
We denote by xi(b, s) buyer i's share when the vector of attributes is (b, s) and 
pj(b, s) the j-th seller's share. Observe that given g, buyers and sellers are si
multaneously choosing attributes, with payoffs xi(b, s) 'l/J(bi , i) to buyer i and 

4 Assignment games have received considerable attention in the literature. The core of any 
assignment game is nonempty, and coincides with the set of Walrasian allocations (Kaneko 
{12] and Qninzii [16] for the finite population case and Gretsky, Ostroy, and Zame [7] for the 
continuum population case). Our case is particularly simple, since v is supermodular. 
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pj(b,s) - c(sj,j) to seller j. This is a standard strategic form game. The notion 
of weak ex post contracting equilibrium combines the requirement that every vec
tor of attribute choices lead to a stable payoff of the induced ex post assignment 
game with the requirement that attribute choices are a Nash equilibrium of the 
strategic form game. 

Definition 4. Given an investment problem r {I, J, B) S, t/J, c, v}, a weak ex 
post contracting equilibrium is a pair {g*, (b*, s*)} such that: 

1. 	 g* : BI X SJ -+ ~~ X ~~, where for any choice of characteristics (b, s), 
g*(b, s) = (x*(b,s),p*(b,s)) is a stable payoff for (b,s), and 

2. 	 for each i E I and b~ E B, xi(b":.-i,bi ,s*) -t/J(bi,i) 2: Xi(b":.-i,bi,s*) -t/J(bi,i) 
and for each j E J and sj E S, pj(b*, s":.-j' sj) - c(sj, j) 2: pj(b*, s":.-j, sj) 
c(sj,j). 

This equilibrium notion is a combination of a cooperative notion (stability) 
with two non-cooperative ones (Nash and perfection). Each individual is best 
replying to the actions of everyone else, the future consequences of any attribute 
choice are correctly foreseen, and any attribute choice must lead to a stable payoff. 

We think of the bargaining outcome function, g, as capturing the way bargain
ing transpires in an investment problem. Restricting the sharing of the surpluses 
arising from a given vector of attribute choices (b, s) to stable payoffs still leaves 
considerable indeterminacy since there is typically a multitude of stable alloca
tions for a given vector of attributes choices. For some investment problems, 
that indeterminacy might be resolved through bargaining that favors the buyers 
as much as possible, given the constraints imposed by stability. For other prob
lems, bargaining might resolve the indeterminacy in favor of the sellers, while in 
still others, bargaining might result in as equal a division as is consistent with 
stability. 

An alternative to including the bargaining outcome function in the definition 
of the equilibrium is to include it in the description of the investment problem. 
For example, if bargaining favors buyers, the bargaining outcome function captur
ing this could be included in the specification of the investment problem, leading 
to a "buyer-friendly" bargaining problem. There are two difficulties with this 
approach. First, the bargaining outcome function is endogenous. Second, for 
some bargaining outcome functions, there may be no pure strategy equilibrium. 
This nonexistence reflects an inconsistency between an exogenously specified bar
gaining outcome function and the given data of an investment problem, I, J, B, 
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s, '1/1, c, and v. The way in which bargaining resolves indeterminacy must be 
endogenously determined in concert with agents' investment choices. 

We impose further restrictions on weak ex post contracting equilibria, in an 
equilibrium selection spirit. As defined, for a given set of attribute investments, 
the outcome selected by the bargaining outcome function can depend on the 
identity of the individuals who have chosen particular attributes. We focus on 
the case in which bargaining is anonymous in the sense that it depends only on 
attributes, independent of the identities of the agents choosing those attributes. 

There is also nothing in the definition of ex post contracting equilibrium that 
prevents the bargaining outcome function from selecting the stable outcome that 
is most favorable to buyers as long as no buyers deviate, and selecting the stable 
outcome that is most favorable to sellers otherwise.5 This trigger specification of 
payoffs breaks any link between the marginal social return from an investment 
and its private return. We need some way of reducing the arbitrariness of the 
specification of stable payoffs. One simple way that is always consistent with 
stability is to pin the split at the bottom pair. 

Definition 5. An ex post contracting equilibrium (EPeE) is a weak ex 
post contracting equilibrium, {g*, (b*, s*)} that is anonymous and, if for any 
two attribute vectors (b' ,S') and (b", S"), there exists i E I such that b~ = 
minlEI{b~} = bf = mineEI{bt} and there exists j E J such that sj = mineEJ{s~} 

II . { "} thSj = mIlliE] se, en 

x;(b' ,s') x; (b", S") and 

Pj(b',s') = Pj(b",s"). 

If there is an imbalance between the number of buyers and sellers, then we 
(along the lines of footnote 2) add enough dummy agents to equalize the number 
of buyers and sellers. In this case, the bottom pair necessarily receives a payoff 
of zero, and so the stable outcome necessarily favors agents on the short side of 
the market. 

4. Characterization of stable allocations for a finite population 

We now characterize the stable allocations. The simple proposition below summa
rizes several characteristics: For any attribute vector (b, s), any stable outcome 

SIn our context, all buyers agree as to the ranking of stable payoff vectors (and all sellers have 
the reverse ranking). Moreover, with a finite set of buyers, even in an anonymous equilibrium 
any deviation is detected, since any deviation results in a different empirical distribution over 
attributes. 

9 




matches attributes positively assortatively; all buyers with equal attributes re
ceive equal payoffs, and similarly for sellers; and finally, in checking stability, one 
need not examine all unmatched pairs, but only those unmatched pairs for which 
the partners have attributes which are "close" to those of their matches. Before 
stating the proposition we make the following definition: 

Definition 6. A matching m is positively assortative ifm(I) = J and for any 
i,j E I,bi > bj =? Sm(i) ~ sm(j)· 

Proposition 1. Consider a vector of attributes (b, s), and a labeling of agents 
so that I, J = {I, ...,n}, and attributes are weakly increasing in index. Then 

1. 	 every stable matching is positively assortative on attributes; 

2. 	 every stable payoff exhibits equal treatment: bi = bil b =? Xi Xii == Xb 

and Bj Sjl = S =? Pj = Pjl Ps; and 

3. 	 a payoff (x, p) is stable if and only if for all i, 

Xi +Pi = v(bi , Si), 

Xi +Pi+I > v(bi , Si+1) , and 

Xi+1 + Pi > V(bi+I, Si). 

Proof. The first two statements are straightforward. Without loss of generality, 
the stable matching can be taken to be by index, yielding Xi +Pi = V(bil Si). The 
two inequalities are immediate implications of stability. 

In order to show sufficiency, we argue to a contradiction. Suppose there exists 
a k > 1 such that Xi + Pi+k < v(bi , Si+k)' Then 

Xi+1 +Pi+k < Xi+l + v(bi , Si+k) - Xi 

< Xi+1 + v(bi , Si+k) v(bi , Si+1) + Pi+I 

= V(bi+l' Si+1) + V(bi' Si+k) v(bi , Si+l) < V(bi+b Si+k) , 

where the last inequality holds because v is strictly supermodular. Induction then 
yields Xi+k-l +Pi+k < V(bi+k-l, Si+k), a contradiction. • 

The third part of this proposition is useful since it implies that in order to 
check the stability of a payoff vector, we need only check adjacent pairs in a 
positively assortative matching. If no buyer (or seller) can block when matched 
with a partner adjacent to his or her current partner, the payoff vector is stable. 
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x 2 2 4 4 4 7 7 7 15 
b 2 2 3 3 3 4 4 4 6 
s 2 2 2 3 3 3 4 4 4 

P 2 2 2 5 5 5 9 9 9 

Figure 4.1: Equal treatment can imply stability. 

Since stable payoffs exhibit equal treatment, we sometimes refer to the payoffs 
to an attribute rather than the payoffs to an individual, and we often will not 
distinguish between the two. 

Proposition 1 states that equal treatment is necessary for stability; in some 
cases, it is sufficient for stability as well. Consider the allocation in Figure 4.1 
with our usual v(b, s) = b· s. As before, matches should be read by columns. 

Once the bottom (left-most) pair's shares have been determined in this exam
ple, all other agents' payoffs are uniquely determined by equal treatment because 
of the "overlap" in the players' attributes. Moreover, when the attribute vec
tors have this overlap property, any division of the surplus for a specified pair is 
consistent with a stable payoff. 

The next proposition and corollary formalize the intuition illustrated by this 
example. If we order the values of chosen attributes of the buyers from low to 
high, we denote by b(K.} the K-th value, and similarly by S(K) the K-th value for 
the seller.6 

Definition 7. The pair of attribute vectors (b, s) is overlapping if, for a pos
itively assortative matching m, and any K, there exists i, if such that bi = b(K)' 

bi' = b(K.+l) , Sm(i) = sm(i/)' 

Overlapping attribute vectors have the following more transparent formula
tion. Suppose we index the buyers and sellers by the integers 1 through n so 
that attributes are weakly increasing in index. Matching by index (Le., i = m(i)) 
is then positively assortative on attributes. The attribute vectors are overlap
ping if bj - 1 f:. bj ::::} Sj-l = Sj. Note that the notion is symmetric, since 
bi-l f:. bi ::::} Si-l = Si implies Si-l f:. Si ::::} bi-l bi . 

Proposition 2. Suppose the attribute vectors are overlapping and (x,p) is a 
payoff vector for a positively assortative matching that satisfies: 

that we are not ordering the chosen attributes, so b(K-l) < b(K.) < b(K.+l) even if two 
buyers have attribute b(I<)' 
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1. equal treatment; 

2. and no waste: Xi +Pi = v(bi , 8i). 

Then (x,p) is stable. 

Proof. Since we have assumed no waste, we need only check to see that for 
adjacent pairs, if the matching is switched, neither of the new pairs can block. 
But since the vectors of attributes is overlapping, either both buyers have the 
same attribute or both sellers have the same attribute, and the assumption that 
Xi + Pi = V(bi' 8i) ensures that neither of the new pairs can block. • 

Corollary 1. Suppose (b, s) is overlapping and the pair (Xb(l) ' PS(l») satisfies 
Xb(l) 2: 0, PS(1) 2: 0, and Xb(l) + PS(1) = V(b(l)' 8(1»)' Denne (x,p) recursively 
as follows: 

Xb(l<+l) = Xb(K) + [V (b(X;+1) , s) - V (b(x;) ,s)], 

where s = Sm(i) Sm(i') and bi bex;), bil = bCX;+l) for some positive assortative 
matching m and i, i' E I, and similarly for the sellers.7 Then the payoffs (x,p) 
are stable, and every stable payoff can be constructed in this way. 

Proof. Since there is a unique positive assortative matching of attributes, there 
is a unique seller attribute that satisfies, for any positively assortative matching of 
agents, S = Sm(i) = Sm(i') and bi = b,x;» bil = bCx;+l) for some i,i' E I. Moreover, 
the hypothesis of overlapping attribute vectors ensures S exists and that for all 
matched attributes (b, s), Xb + Ps = v(b, s). Hence, we have equal treatment and 
no waste, and Proposition 2 applies. 

Equal treatment in stable payoffs guarantees that every stable payoff has this 
property. • 

Corollary 1 provides a complete characterization of stable outcomes when 
attribute vectors are overlapping. When attribute vectors don't overlap, there is 
a degree of indeterminacy in stable payoffs, even fixing the division of the value 
for the bottom pair. One can, however, construct stable payoffs for a vector of 
positively assortative, nonoverlapping attributes in a straightforward way: Fix 
the share for the bottom pair. If there is an overlapping subset of attributes 
containing this bottom pair of attributes, equal treatment determines the payoffs 
to those attributes. Where there is a gap between the attributes for this subset 
of agents and those higher, Proposition 1 puts constraints on how the surplus 

7This defines the payoffs to attributes. Every agent with the same attribute receives that 
payoff. 
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for the pair above the gap can be divided. Choose an arbitrary distribution of 
surplus for that pair, subject to those constraints. Allocate the surplus for the 
adjoining pairs so long as there is overlap, and each time a gap is encountered, 
proceed as above. 

We now formalize this idea and provide bounds on the indeterminacy of stable 
payoffs. Given an attribute vector (b, s), and a stable matching m, relabel the 
agents so that I, J = {1, ... , n}, attributes are weakly increasing in index and 
buyer i is matched with seller m(i) = i. (This is always possible, because every 
stable matching is positively assortative in attributes.) Let (bt , st) denote the 
vector of attributes for a population of agents (It, Jt), I C It and J C Jt, with 
overlap constructed as follows: if there exists i such that bi :/= bH1 and 8i f: 8i+!, 

then in the extended population, there is an additional buyer (with index i + ~) 
with attribute bi and an additional seller (also with index i + ~) with attribute 
Si+!. We refer to (bt ,st) as the buyer-first extension of (b, s) . Note that a stable 
matching for (bt,st) is given by mt(i) = i for all i. This maintains the original 
matching on I, and extends it to the new agents by matching any new buyer i + ~ 
with the new seller i + ~. Similarly, let (bt , st) denote the vector of attributes for 
the population (I+, J+) obtained from (b, s) by giving attribute bHl to buyer i + ~ 
and attribute Si to seller i + ~. We refer to (b1, sl) as the seller-first extension of 
(b,s). Note that (b+,sl) also has no gaps, and It = It and J+ = Jt. Note also 
that for any stable payoff for either extension, the restriction of the payoff to the 
original agents, I U J, is stable. 

The attribute vectors (bt,st) and (b+,s+) are minimal extensions of (b,s) 
that yield overlapping attribute vectors by adding just enough of the "right" 
attributes. Note that the bottom pair of matched attributes is unaffected by the 
extension, so that bl = bI = minbi == Q and st = sf = minsj == Ji. Since (bt,st) 
is overlapping, by Corollary 1, there is a unique stable payoff corresponding to 
each value of xL and similarly for (hI:, sl). 

The followi;;-g proposition shows that the vector (bt , st) uniformly favors buy
ers in the sense that it gives the maximal payoff to buyers over stable payoffs 
given xr Suppose that buyers and sellers are positively assortatively matched 
and there are adjacent pairs for which both the buyers' and sellers' attributes 
differ. The buyer-first extension maximizes the buyer's payoff by having a seller 
with the same attribute as his partner match with a buyer with a lower attribute, 
which minimizes the payoff to that attribute (by Proposition 1). The buyer then 
receives the remainder. Analogously, the seller-first extension (b+, s+) gives the 
maximum payoff to the seller subject to the bound. 

Proposition 3. Suppose (b,s) is a vector of attributes and (x,p) is a stable 
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payoff. Let (xt, pt) be the unique stable payoff for the buyer-first extension of 

(b, s) satisfying xt=xQ,l and (x1, pt) the unique stable payoff for the seller-first 

extension of (b, s)-satisfying xl = xQ• Then, 

(4.1) 

and 
p! ~ Ps ~ pI, "Is. (4.2) 

Moreover, for any attribute in (b, s), any share Xb satisfying (4.1) or Ps satisfying 
(4.2), there is a stable payoff for (b, s) giving shares Xb to b or P8 to 8. 

Proof. Since no new attributes are introduced in (bt , st) or (bt , st), and every 
pair of attributes in (b, s) matched in a stable matching remains matched when 
the attribute vector is (bt , st) or (b+, sf), it is enough to show that Xb ~ xt Vb to 
verify (4.1) and (4.2). 

Let b(",,) be the first buyer attribute at which there is no overlap, and note 

that b(",,) = b~",,). The attribute b(",,) 's stable payoff is at a maximum when the 
stable payoff of the sellers with attribute s"" is at a minimum, where s"" is the 
smallest seller attribute matched with the buyer attribute b(K,)' This occurs when 
Xb(K_l) +PSK V(b(",,_l),S""). Thus, 

Xb(K) ~ Xb(x:_l) + v(b(",,) , s"") V(b(K_l), SK) == Xi",,) (Xb(K_l)' 

with equality yielding a payoff that is consistent with stability. Moreover, xi",,) (Xb(K_l») 

is the payoff of attribute b(",,) when the population attribute vector is (bt , st), 

since attribute b(",,-l) receives a payoff of Xb(K_l)' Note also that xtK)(Xb(K_l) is 
increasing in Xb(K_l)' Proceeding recursively up buyer and seller attributes shows 
that buyer attribute b(K) 's maximum stable payoff is calculated as if there is the 
pattern of overlap of (bt , st). 

Now consider the sufficiency of (4.1) for a single buyer attribute's share to 
be stable. Fix some share satisfying (4.1) for an attribute b. We now proceed 
inductively to fill in shares to the other attributes above and below. For attributes 
above b, apply the procedure described just after Corollary 1. The same procedure 
can also be applied for attributes below b, starting at b and working down. The 
bounds (4.1) guarantee that each step will be feasible and result in the bottom 
pair receiving the split (xQyP§.). • 

Note that the proposition does not assert that any vector of shares that satis
fies (4.1) for all attributes can be achieved in a single stable payoff. Propositions 
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x 2 4 4 4 7 7 7 11 15 
b 2 3 3344456 
s 2 2* 2 3 3* 3 4 4* 4 
P 2 2 2 5 5 5 9 9 9 

Figure 5.1: The result of a buyer's change in attribute. 

2 and 3 characterize the stable outcomes associated with any attribute vector 
(b, s). These propositions provide the tools with which we analyze the incentives 
agents have in making investment decisions in the next section. 

5. Incentives for efficient investment 

We can use the example in Figure 4.1 to compare the private and social returns 
to an individual who changes his or her attribute. Suppose, for example, a buyer 
with attribute b = 2 changed his attribute to b = 5. If we leave unchanged the 
bottom pair's division, the unique payoffs consistent with equal treatment are as 
in Figure 5.1 (an asterisk indicates a seller for whom the matched buyer has a 
different attribute level as a result of the change). 

The share to the buyer whose attribute changed increased by 9. In principle, 
this need not be the change in the social value. The change in the buyer's attribute 
from 2 to 3 alters the matching of buyers and sellers; a buyer who increases his 
attribute will "leapfrog" other buyers, and match with a higher attribute seller. 
This will result in some of the other buyers being matched with lower attribute 
sellers than they had originally been matched with and some of the sellers being 
matched with higher attribute buyers than before. In other words, when this 
buyer (or other buyers or sellers) chooses an attribute, he imposes an externality 
on other players simply because the matching is changed. While an increase 
in a buyer's attribute causes some of the other players to be in matches with 
higher total surplus and others to be in matches with lower total surpluses, it is 
unambiguous that the aggregate surplus is increased. When a buyer increases his 
or her attribute, a number of the sellers are matched with higher attribute buyers 
following the increase while none is matched with a lower attribute buyer. Hence, 
the increase in the social value is the sum of the increases in the total surplus of 
those pairs with sellers matched with higher attribute buyers after the increase. 

These externalities may lead individuals to either overinvest or underinvest 
from a social perspective. While it is true that in general changes in attribute can 
result in changes to the individual's payoff that differ from the change in social 
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value, it is not the case in this example. The particular pattern of overlapping 
attributes for the vectors of attributes results in each of the players whose at
tribute is unchanged getting the same payoff after the specified player's change 
as before. Since no other agent's payoff is changed by the buyer increasing his 
attribute, it follows trivially that this buyer captures the full social value of the 
attribute change. The qualitative characteristics of this example are quite general 
as shown by the next proposition (which is proved in the appendix). 

Proposition 4. Let (b,s) and (b/,s) denote two vectors of attributes satisfying 
bi = b~, Vi =I- E. Let {(x,p),m} denote a stable payoff and matching for (b,s), 
and {(x', p'), m/} a stable payoff and matching for the attributes (b/,s). IfPm(l) 

P'm,(l) and Pm1(l) = P'm,/(l) , then 

Xe Xl + V(b', s) - V(b, s). 

Definition 8. The pair of attribute vectors (b, s) is doubly overlapping if 
(b, s) is overlapping and each matched pair of attributes appears at least twice. 

Corollary 2. Let (b, s) and (b' , s) denote two vectors of attributes satisfying 
bi = b~, Vi =I- E. Let {(x,p),m} denote a stable payoff and matching for (b,s), 
and {(x', pi), m'} a stable payoff and matching for the attributes (b' , s) satisfying 
x~ = xQ. If (b, s) is doubly overlapping, then 

xe=xl+V(b/,s) V(b,s). 

Proof. If (b, s) is doubly overlapping, then the vector of attributes following 
any single agent's change of attribute is overlapping. It is straightforward to 
see that if xi = x!L, the construction in corollaryl results in Pm(l) = P'm,(l) and 
Pm/(l) P'm,'(l)' and hence the proposition applies. • 

The proposition and corollary provide sufficient conditions that rule out one 
source of inefficiency in investments. If the attribute choice vector is doubly 
overlapping, each agent captures exactly the incremental aggregate surplus that 
results from his attribute choice. Competition among future potential partners 
eliminates any "holdup problem" that might arise due to the investment choice 
being made prior to matching and bargaining over the surplus. 

Double overlap is not necessary for agents to receive the correct incentives for 
efficient attribute choice; there are trivial examples for which double overlap may 
fail, yet Proposition 4 still holds. There are, however, trivial examples for which 
there are equilibria for which an agent will not capture the change in surplus that 
results from a change in his attribute when the conditions for Proposition 4 fail. 
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It is important to note that Proposition 4 does not say that when the hy
potheses of the proposition hold, the outcome is efficient. The proposition only 
guarantees that any inefficiency in the investment choices does not stem from 
a single person's decision. There remains the possibility of inefficiencies due to 
coordination failures resulting from the choices of multiple agents. For example, 
if we consider the surplus function that we have used in the examples above, 
v(b, s) = b . s, it is clearly an equilibrium for all buyers and sellers to choose at
tribute 0 if the cost of choosing this attribute is 0, regardless of the cost of higher 
investment levels. The problem, of course, is that unilateral deviations from no 
investment have no value. We will show in the next section, however, that for 
any investment problem, there is always one equilibrium for which each agent will 
capture precisely the change in surplus that results from a change in attribute, 
and further, that no pair of agents can jointly change their attributes in a way 
that increases their surplus, net of investment cost (or other set of agents for that 
matter). 

6. Ex ante contracting equilibrium 

We now compare the investments taken in an ex post contracting equilibrium 
with the investments agents would make if buyers and sellers could contract with 
each other over matches, the investments to be undertaken, and the sharing of the 
resulting surplus. If a buyer i and seller j agree to match and make investments b 
and s respectively, then the total surplus so generated is v(b,s)-'ljJ(b, i)-c(s,j). In 
a world of ex ante contracting, investments maximize this total surplus. Thus, if 
buyer i and seller j are considering matching, they are bargaining over the surplus 
<p(i,j) = maxb,s v(b, s) - 'ljJ(b, i) - c(s,j). The ex ante assignment game is the 
assignment game with the population I of buyers, J of sellers, and value function 
<po Just as we considered stable outcomes for the ex post assignment, we impose 
stability on outcomes of the ex ante assignment game. A stable outcome, together 
with the implied attribute investments, is an ex ante contracting equilibrium: 

Definition 9. The outcome ofthe ex ante assignment game {m*, (b*, s*), (x*, p*)} 
is an ex ante contracting equilibrium (EACE) if 

1. (bi, s:n*(i)) maximizes v(b, s) - 'ljJ(b, i) - c(s, m*(i)) if m*(i) E J; 

2. (x*, p*) is feasible for m*; and 

3. for all i E I and j E J, 

xi - 'ljJ(bi, i) +pj c(sj,j) ~ '(JCi,j). 
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Since the ex ante assignment game is a finite assignment game, ex ante con
tracting equilibria exist (see footnote 4). It is immediate that (x*, p*) is a sta
ble payoff of the ex post assignment game associated with the attribute vector 
(b*, s*). 

We pointed out in the previous section that investments could be inefficient. 
Given the bargaining outcome function in the equilibrium, some agents might 
not be able to capture the incremental surpluses that would result from altering 
their investments in attributes. FUrther, regardless of the bargaining outcome 
function, there may be coordination failures in which Pareto improvements are 
possible, but only if pairs of agents jointly change their attributes. 

We should not be surprised that an inability to contract over investment 
choices in the presence of complementarities can lead to inefficiency. Indeed, one 
might expect that in such an environment inefficiency is inevitable, but this is 
not the case. The following proposition states that any outcome achievable under 
ex ante contracting is part of an ex post contracting equilibrium. 

Proposition 5. Given an ex ante contracting equilibrium {m*, (b*, s*), (x*, p*)}, 
tbere exists 9* sucb tbat (9*, (b*, s*)) is an ex post contracting equilibrium. 

Proof. If necessary, relabel buyers and sellers so I = J = {I, ... ,n} and 
m*(i) = i. Define 9*(b*, s*) = (x*, p*). Since ex post contracting equilibria 
are Nash equilibria, we need only be concerned with unilateral deviations (any 
specification of 9* for multilateral deviations consistent with the definition of an 
ex post contracting equilibrium will work). Consider then an attribute vector 
(b~b bi, s*) for some bi E Band € E I (the extension of 9* to a deviation by a 
seller is identical). Denote the stable payoff we are defining by (x,p). 

Suppose bi < bi, and let if satisfy bi'-l < bi ~ bi, (where bo== -1); clearly 
if ~ R. Since stable matchings are positively assortative in attributes, m(i) i 
for i < ii, m(i) i + 1 for i ~ if, i f. £, and meR) i ' is a stable matching for 
(b~e,be,s*). Since m(i) = m*(i), we can set (Xi,Pi) = (xt,pi) for i < i'. Set 

(this is the most that seller if can receive consistent with stability and Pi'-l-~ 
Proposition 1),8 and then complete 9* as described above. Before considering 
bi > bi, we show that bi < bi is not a profitable choice with this specification. 
The difference in payoffs is 

xi -1.jJ(b;,R) - {v(bi,si,) - Pi' -1.jJ(bi,€)} 

8If i' = t, then there is no rematching as a result of the lower attribute choice, and p; may 
be feasible in a stable outcome. If it is, then setting Pi = pi also works. 
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function. The issue is the interpretation of bargaining outcome function. We 
suggested above that we could think of it as generally determining how surplus 
is shared subject to the constraints of competition implicit in stability. For some 
problems sellers might capture most of this and in others, it may be the buyers. 
But in Proposition 5, the bargaining outcome function responds to changes in the 
underlying investment problem (e.g., changes in the costs of investment 'l/J or c), 
since it depends upon (b*, s*). 

While the indeterminacy is eliminated if the ex ante contracting attribute 
choices are doubly overlapping, there is good reason not to expect double overlap. 
Typically, if each agent has different costs of acquiring attributes and attributes 
are continuous variables, then the efficient attribute choices (b*, s*) will not be 
doubly overlapping. Proposition 3, on the other hand, provides bounds that 
suggest that as the set of chosen attributes become sufficiently rich (in the sense 
that the set of attributes looks like an interval), the indeterminacy in stable 
payoffs disappears (in the limit, Lemma 1 would apply). However, attributes are 
endogenous and even if there are many agents, the set of chosen attributes may not 
be rich. The complementarity of attributes means that in general (in particular, 
when the complementarity is strong), in the limit the set of efficient attributes 
forms a disconnected set (footnote 9 in Section 7 contains an example). Consider 
an increasing sequence of finite populations of agents, with the space of their 
exogenous characteristics becoming increasingly rich (so that in the limit, every 
agent has close competitors, in the sense that the limit space of characteristics is 
an interval). The efficient attributes along the sequence must then eventually fail 
to be doubly overlapping, and so the failure of double overlapping is not a "small 
numbers" problem. 

6.1. Inefficient investment: underinvestment 

We mentioned at the end of Section 5 that ex post contracting equilibrium out
comes might easily be inefficient (the example of v(b, s) = b . s and all buyers 
and sellers choosing attribute 0). While having all agents choose attribute 0 is a 
particularly simple way to illustrate the possibility of inefficiency, it isn't difficult 
to construct examples in which all agents are choosing positive attributes. In 
fact, we can modify any investment problem to generate inefficiency; moreover, 
this inefficiency cannot eliminated by any restrictions on the bargaining outcome 
function. 

Fix an investment problem r = {I, J, B, S, t/J, c, v} and define B' == B U {b'} 
and S' 5 U {S/}, where b' > b == maxB and s' > s == max 5. Extend the 
definition of v to B' X 5' by setting v(b, s') = v(b, s) for all b E Band v(b', s) = 
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v(b, s) for all s E S, and v(b', s') = v(b, s) + maxi 'ljJ(b, i) + maxj c(s, j) + 2a + 1, 
where a > v(b,s). Extend the cost functions by setting 'ljJ(b', i) = 'ljJ(b, i) +a for 
all i E I and c(s',j) c(s,j) + a for all j E J. Note that, unless both the buyer 
and the seller in a pair choose the added elements b' and s', the new attributes 
are simply expensive substitutes for band s. 

The only efficient outcome in the investment problem r' = {I, J, B', S', 'ljJ, c, v} 
is for every buyer to choose b' and every seller S' (since v(b') Sf) -'ljJ(b', i) -c(Sf ,j) = 
V(b, s) +maxi 'ljJ(b, i) +maxj c(s, j) +2a +1 - 'ljJ(b, i) - a - c(S', j) c(s, j) - a 2:: 
v(b, s) + 1). 

Fix an ex post contracting equilibrium of r' and denote its bargaining outcome 
function by g. We claim that there is another ex post contracting equilibrium of 
r' with the same bargaining outcome function 9 that involves inefficient attribute 
choices. Consider the strategic form game implied by 9 on the attribute sets B 
and S. This has an equilibrium (perhaps in mixed strategies). Moreover, this 
will be an ex post contracting equilibrium of r': If all other agents are choosing 
attributes in Band S, then no matter how the bargaining outcome function 
divides the surplus, since a > v(b, s), there is insufficient total surplus to justify 
choosing the added attribute. 

6.2. Inefficient investment: overinvestment 

The previous subsection illustrated an ex post contracting equilibrium outcome 
with agents making inefficiently low investment in attributes. There is a similar 
possibility of overinvestment, but with an important difference. We first give a 
simple example with overinvestment 

There are two buyers, {1,2} and two sellers, {1, 2}; the possible characteristics 
for buyers and sellers are B = S = {4, 6}. The surplus function is v(b, s) = b· s. 
The cost functions are 'ljJ(4,i) = c(4,j) = 5, i,j = 1,2; 'ljJ(6,i) = c(6,j) = 16, 
i,j = 1,2. The efficient attribute choices are for all buyers and sellers to choose 
attribute level 4. These efficient choices can be part of an EPCE. Suppose that 
when all agents choose attribute 4, the surpluses are shared as in the left of Figure 
6.1, and as in the right of Figure 6.1 if a single agent (here, a buyer) deviates and 
chooses attribute 6. 

Since a single agent switching from attribute 4 to attribute 6 decreases his 
net payoff from 3 to 0, the efficient choice of attribute level 4 for all agents is 
an EPCE. However, there may be another EPCE in which all agents overinvest, 
that is, all agents choose the high attribute level 6. Suppose that the payoffs 
resulting from all agents choosing attribute level 6 and those following a single 
agent deviating and choosing level 4 are as given in Figure 6.2. 

21 



Xi 'I/; 3 3 Xi - 'I/; 3 0 

Xi 8 8 Xi 8 16 

bi 4 4 bi 4 6 

i 1 2 i 1 2 

j 1 2 j 1 2 

8j 4 4 5j 4 4 

Pj 8 8 Pj 8 8 


Pj -c 3 3 Pj c 3 3 


Figure 6.1: The efficient equilibrium. 

Xi 'I/; 2 2 Xi -'I/; 1 2 

Xi 18 18 Xi 6 18 

bi 6 6 bi 4 6 

i 1 2 i 1 2 

j 1 2 j 1 2 

8j 6 6 5j 6 6 

Pj 18 18 Pj 18 18 


Pj c 2 2 Pj - c 2 2 


Figure 6.2: The overinvestment equilibrium. 
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These make clear that it is an EPCE for all agents to choose the inefficient 
attribute level 6. Note that there is a common bargaining outcome function 9 
that supports (that is, is part of) both equilibria. 

This illustrates that we can get inefficient overinvestment as well as inefficient 
underinvestment, but as we stated above, there is a difference between the two 
cases. For the example in the previous section illustrating an equilibrium with 
underinvestment, we pointed out that the inefficiency would arise regardless of 
the bargaining rule 9 (that is, there was no 9 for which the underinvestment 
outcomes would not be an equilibrium. 

We conjecture that there are bargaining outcome functions 9 that will preclude 
overinvestment for many investment problems. For example, consider a finite 
symmetric investment problem. Suppose, moreover, that the net surplus function 
v(b, s) -1jJ(b, i) -c(s,j) is concave in attributes. It can be shown that every EPCE 
with the following 9 cannot involve overinvestment. If the vector of attributes 
(b, s) is such that b = s, 9 divides the surplus equally for each pair. For a vector 
(b, s) in which b i= s, let i be the first pair (under assortative matching) for 
which bi i= Si. The agent with the smaller attribute receives under 9 half the 
surplus that would have resulted had he been matched with an agent with the 
same attribute as his own, and his partner receives the residual. Define 9 for 
all buyers and sellers with smaller index to be equal division and for buyers and 
sellers with higher index, let 9 give the highest share to that side for which i has 
the smaller attribute consistent with this, and with stability. While we believe a 
similar bargaining outcome function will also work in the absence of concavity of 
the net surplus function, an investigation of this would take us too far afield. 

7. Characterization of stable allocations for a continuum of agents 

We now describe a model with a continuum of agents, analogous to that in the 
earlier sections with a finite set of agents, that allows us to analyze individual 
agents' behavior when they are negligible with respect to the aggregate, that is, 
when individual deviations leave other agents' payoffs unchanged. 

The populations of buyers and sellers are each described by Lebesgue measure 
on the unit interval, so that I J = [0,1]. We denote buyers' behavior by the 
function f3 : [0,1J -. ~+ and sellers' by the function (J' : [0,1J -. ~+. 

Stability is as before: (x,p) is stable if it is feasible and x(i) + p(j) 2: 
v(f3(i), (J'(j)) for all i and j (note that we have not defined feasibility for the 
continuum model as yet). Intuitively, stability should again require that match
ing be positively assortative in attributes. If f3 and (J' are strictly increasing, we 
could then specify that i matches with j = i. 
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If the attribute functions, {3 and a, are continuous and strictly increasing, and 
the matching is positively assortative in index, feasibility is adequately captured 
by the finite population pairwise feasibility requirement: x(i) +p(i) ::; v({3(i), a(i)) 
for all i. However, since the surplus function is supermodular, there is no reason 
to believe that endogenous attribute choices will be continuous functions of agent 
characteristics. In particular, efficient attribute choices need not be continuous.9 

We therefore need to describe feasible payoffs when the attribute functions are 
increasing, but not necessarily continuous. 

We begin by illustrating the issues through an example: Suppose first that 
v(b, s) = b·s, {3(i) = l+i for all i, a(j) = l+j for all j, and matching is positively 
assortative by index (equivalently, by attribute). Then the bottom pair generates 
a surplus of 1 and equal division of the payoff for each pair is feasible under 
the pairwise feasibility requirement and stable. Suppose now the bottom buyer's 
attribute is 0 rather than 1 (Le., {3(O) = 0). The pairwise feasibility requirement 
forces p(O) = O. However, the point of modelling the set of agents as a continuum 
is to eliminate the possibility that a single agent's actions affect the feasible payoffs 
available to other agents. 

Consider the sequence of matchings {1'nn}~2 where i matches with j = i, 
except that buyers 0 and *exchange partners. lO If payoffs under mn are deter
mined by equal division of the induced surpluses, then the payoffs for all agents, 
except buyer 0, converge to the payoffs they received under equal division when 
{3(O) = 1. This includes seller O. Thus, there is a sequence of matchings that 
yield payoffs that satisfy the pairwise feasibility requirement, and yet their limit 
does not. Note, moreover, that in the case {3(O) = 0, the pairwise feasibility re-

example, suppose the cost functions are given by 'IjJ{b, i) = b3ji, and c(s,j) s3 j(8j). 
The surplus function is 

b'B ifb.s<~, 
v(b,s) = (3~4.b.s).b'B+(4.b.s 2) (2. b· s - !!) if ! < b· s < 2 

{ 27' 2 - - 4' 
2.b.s-¥r, ifb.s>~. 

Aggregate net surplus is maximized by matching buyer i with seller j = i. The net surpltL'l 
maximizing choices of attribute are (fJ', u') where 

2i . 1 

fJ'(i) = { I' ~ < ¥, 
3' t;::: 2' 

and 

{ !i. j <~,u·(j) ii' 
3 ' j;::: ~. 

lOThat is, mn : 1-+ J is given by mn(O) = ~, mn(~) = 0, and mn(i) = i for all i # O,~. 
Note that fin is one-to-one and preserves measure. 
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quirement with stability forces p(j) -+ 0 as j ----+ O. At an intuitive level, we would 
like the bargaining outcome payoff (x* ,p*), where x*(O) = 0, x*(i) (1 + i)2/2 
for i > 0, and p*(j) = (1 + j)2 /2 for all j, to be feasible and stableY 

As mentioned above, our goal in moving to a continuum of agents is to elim
inate the effects that a single agent might have on the possible stable payoffs 
to other agents. We can accomplish this by altering the definition of feasible 
payoffs for a continuum of agents' attribute choices. Rather than giving a com
plete treatment of feasibility in assignment games with a continuum of agents 
and arbitrary attribute choice functions, we define feasibility in the simple case 
in which the attribute choice functions are strictly increasing, and positively as
sortative matching on index is effectively imposed.12 Almost everywhere positive 

;, ~ 	 assortative matching by attribute can be deduced from stability and the notion of 
feasibility used by Gretsky, Ostroy, and Zame [7J or used by Kamecke [11J. Our 
notion of feasibility is:13 

Definition 10. Suppose f3 and a- are strictly increasing. A bargaining outcome 
(x,p) is feasible if 

xCi') ~ max {liT-!i~P [v(f3(i') , a-(j)) p(j)] ,o} , 
11It is not critical to this example that the bottom buyer has chosen an isolated attribute. The 

same issue arises whenever there is a discontinuity in the attribute choice functions. Suppose 
for example that the buyer attribute choice function is discontinuous. We would like the set of 
sellers' feasible payoffs to be the same when the buyer attribute choice function only differs in 
whether it is continuous from the left or from the right. 

12We will need to extend the notion of feasibility in the next section to cover the case where, 
due to a single agent's choice of attribute, the attribute function is not strictly increasing. This 
extension is obvious and trivial. 

13This notion of feasibility differs from that in Gretsky, Ostroy, and Zame [7] and in Kamecke 
[l1J. As we indicated above, our definiton only applies to positively assortative matchings, so we 
have not described feasibility for "most" matchings. Our definition has the important advantage 
that when combined with stability, it uniquely determines a single agent's payoff as a function 
of the other agents' payoffs. This is necessary if an agent is to compare payoffs from different 
attribute choices. The measure-theoretic notion of feasibility in Gretsky, Ostroy, and Zame [7], 
when combined with feasibility, does not force isolated attributes to have unique payoffs (when 
other agents' payoffs are fixed). The notion offeasibility in Kamecke [11] effectively requires that 
the attribute functions be continuous. Kamecke defines a bargaining outcome to be feasible if it 
can be approximated, in the sense of uniform convergence, by payoffs that are pairwise feasible. 
In our example, (x·, p.) would not be feasible under this notion. Simply requiring pointwise 
convergence, on the other hand, is too weak, since under this notion of feasibility, there are 
feasible and stable payoffs that violate equal treatment: Consider again the example, but with 
{3(i) = u(j) = 1 for all i and j. Let mn be the matching described in footnote 10. The payoff 
(Xn,Pn) given by Xn(O) = ~,xn(i) = ~,Pn(~) = i, and Pn(j) = t is feasible for m n· Moreover, 
it converges pointwise to the stable payoffs (x,fj), where X(O) = 4' xCi) = ~, and fj(j) = ~. 
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and 

p(j') :5 max {lil!lSUP [v(j3(i),o-(j')) - xCi)] ,o}.
t~J' 

To motivate this definition, first note that if all the relevant functions (13, 0-, 
x, and p) are continuous and the nonnegativity constraints are not binding, this 
reduces to the pairwise feasibility definition for positively assortative matching 
by index. Second, the role of the nonnegativity constraint (which we show below 
cannot bind almost everywhere) is to describe agents like buyer °in the example 
above. Finally, as in the example, with a continuum of agents, an agent i may 
not be matching with precisely j = i. Rather, he may be matching with agents 
arbitrarily close to j i. Moreover, these matches may yield higher possible 
payoffs. Taking the lim sur captures these possibilities.14 

It is immediate that the definition of stability implies that the inequalities 
in the definition of feasibility hold as equalities for stable payoffs. In the finite 
case, equal treatment implies that if stable payoffs have been fixed for all but 
one buyer (similar statements hold for sellers), and if that buyer has the same 
attribute as a second buyer, then that buyer's payoff is determined by the second 
buyer's payoff. There is a similar result for the continuum agent case. Suppose 
that stable payoffs have been fixed for all but one buyer. Then that buyer's payoff 
is determined by that of any other buyers whose attributes are arbitrarily close: 

Lemma 1. Suppose v is strictly supermodular and C1 . Suppose 13 and 0- are 
strictly increasing. For any stable payoffs (x,p), x and p are strictly increasing 
(and so their left hand and right hand limits exist). Moreover, x and p inherit 
the continuity properties of13 and 0-, respectively (Le., if [3 is continuous from the 
left at i', then x is continuous from the left at i', etc.). 

Proof. See appendix. 

Let 0(13,0-) be the set of common continuity points of 13 and 0-. By Lemma 
1, for il E 0(13,0-), stable x and p are both continuous at iI, and so X(il) :5 
max{vC8(il),0-(il)) p(i'),O}. Hence, pen :5 max{v(j3(i'),o-(i')) - x(i/),O}, im
plying xCi'), p(i') :5 v([3(n,o-(i/)) and so xCi') +pen v([3(i/),o-(il)). We can 
thus assume that buyer i with attribute b = j3(i) is matching with precisely 
seller j = i with attribute s = 0-(i). This allows us to define the function 
s : 13(0(13,0-)) --+ S given by s(b) = 0-(13-1 (b)) and the function b:0-(0([3,0-)) --+ B 
given by b(s) = 13(0--1(s)). 

14We need to take the lim sup, rather than simply taking limits, because the limit does not 
exist when the attribute functions are discontinuous. 
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For b E f3(C(f3,u)), s(b) is the attribute of the seller that the buyer with 
attribute b matches with (and similarly for the buyer attribute b(8)). It is also 
helpful to have specific notation for the share of the surplus that a particular 
attribute receives in a stable payoff (x,p). Suppose f3 and u are strictly increasing. 
Define x(b) == x(f3-1(b)) and p(8) == p(U-1(8 )). Equivalently, (x,p) (xof3,pou). 
The payoffs (x,p) is stable if (x(f3),p(u)) is stable. 

To simplify notation and eliminate a special case that, while straightforward 
to analyze, does not add anything substantive, we rule out isolated attribute 
choices in the statement of the characterization result (isolated attribute choices 
are addressed in footnote 17). We first make the following definition: 

Definition 11. A function is well-behaved if it is strictly increasing, discon
tinuous at only a finite number of points, differentiable where continuous, and at 
every point, either continuous from the left or from the right. 

We now characterize the stable payoffs of the assignment game for a particular 
class of attribute choice functions. Kamecke [11] has previously shown that sta
bility implies (7.2) and (7.3) a.e. for general v when f3 and u are continuous. As 
usual, f(x+) denotes the right hand limit (f(x+) = limdof(x+e)) and f(x-) 
denotes the left hand limit (f(x-) = limeLo f(x - e)). 

Lemma 2. Suppose v is strictly supermodular and C1, and that f3 and u are 
both well behaved. Stable payoffs (x,p) exist. The payoffs (x,p) are stable if and 
only if the following hold: 

1. 	 No waste: 
x(i) +p(i) = v(f3(i),u(i)) 'Vi E C(f3,u), (7.1) 

2. 	 x and p are continuous at all i E C(f3,u), 

3. 	 x and p are differentiable on f3(C(f3,u)) and u(C(f3,u)) respectively, with 
derivatives 

" oV(b s(b))
x'(b) = Db for all b E f3(C(f3,u)), and (7.2) 

p'(s) = 8v(b(s),s) for all s E u(C(f3,u)), (7.3)
08 

and 
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4. at any point of discontinuity i, 

x(i+) +p(i+) = v(,B(i+),(J(i+»), 

x(i+) - x(i-) 2: v(,B(i+),(J(i-» v(,B(i-),(J(i-», and (7.4) 

p(i+) - p(i-) 2: v(,B(i-),(J(i+») - v(,B(i- ),(J(i-». 
Proof. See appendix. 

8. Ex post contracting equilibrium in the continuum 

In this section, we analyze ex ante and ex post contracting equilibria of the 
continuum agent model. As in the finite player case, in the ex post contracting 
game agents make simultaneous choices of attribute prior to matching, followed 
by a stable payoff in the assignment game resulting from those choices. The ex 
ante contracting game is the game in which buyers and sellers contract with each 
other over matches, the investments to be undertaken, and the sharing of the 
resulting surplus. 

As in the finite case, we need to determine the change in payoff to an agent 
who unilaterally changes his attribute. After such a deviation by buyer it, say, the 
attribute choice function ,B is no longer strictly increasing. However, it fails to be 
strictly increasing only because of a single agent's choice of attribute. Accordingly, 
we assume that all the agents' payoffs, except for buyer if, are determined as 
if f3 and 0' are strictly increasing. That is, we consider the attribute choice 
functions «(3,0'), where (3(i) = ,B(i) for all i i= it and (3(if) is any attribute b 
satisfying limijil ,Bii) :S b :S liII1i!il ,B(i). Note that if limiiif ,B(i) < liII1i!il ,B(i), the 
indeterminacy of ,B(if) can only be reflected in an indeterminacy in the payoff of 
seller if, and then only if 0' is both discontinuous from the right and from the left 
at il. Finally, the payoff of buyer if is determined from: 

x(i/) max {v(,B(it), (J(i'-) - p(i'-), v(,B(i') ,O'(if» - p(i'), v(,B(if), (J(i'+) - p(i'+)} . 
(8.1) 

We make some standard assumptions on the surplus and cost functions. 

Assumption 8.1. The surplus function v : lR~ -t lR+ is C2 with 8v(b, s)/8b > 0, 
8v(b,s)/8s > 0, 82v(b,s)/8b8s > 0, 82v(b,s)/8b2 < 0, and 82v(b,s)/8s2 < 0 for 
all (b, s) E lR~. 

There exists B : [0,1] -t lR++ such that the buyers' cost function 'ljJ : {(b, i) I 
bE [O,B(i»,i E [0,1]} -t lR+ is C2 and satisfies ¢(O,i) = 0, 8'ljJ(0,i)/8b = 0, for 
all i E [0,1], and 8¢(b, i)/8b > 0, 82'ljJ(b, i)/8b2 > °and 82'ljJ/8b8i < 0 for b > O. 
Moreover, limb_Rei) ¢(b, i) = 00. 
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There exists S : [0,1] -+ ~++ such that the sellers' cost function c : {(s,j) I 
s E [O,S(j)),j E [0,1]} -+~+ satisfies the same properties as 'lj;. 

Assumption 8.1 implies the problem 

max v(b, s) 'lj;(b, i) c(s, i) (8.2)
b,s 

has an interior solution for all i E [0,1]' and that any solution is strictly increasing 
in index. For the analysis that follows, it is convenient to make the following 
assumption: 

Assumption 8.2. There is a well-behaved pair of attribute choice functions, 
(;3*,u*), such that (;3*(i),u*(i)) solves (8.2) for all i. 

While this is a direct assumption on the efficient attribute choice functions, 
it is one that will be typically satisfied. Our first result is the counterpart of 
Proposition 5. 

Proposition 6. Under assumptions 8.1 and 8.2, there exists a bargaining out
come function g* such that (g*, (;3*, u*)) is an ex post contracting equilibrium. 

Proof. See appendix. 
There is an important difference between Propositions 5 and 6. First consider 

the case of doubly overlapping ex ante efficient attribute vectors, (b*, s*), for the 
finite population. Stable payoffs are determined completely by the division for 
the bottom pair of attributes and equal treatment. It is immediate that there is 
a bargaining function g* such that (g*, (b*, s*)) is an ex post contracting equilib
rium: Since a single agent (i say) changing attribute in the doubly overlapping 
attribute vector (b*, s*) does not remove any matched pair of attribute values,15 

the resulting attribute vector is still overlapping and so the original stable payoff 
is still stable (with, if necessary, the new attribute's payoff determined in the 
obvious way). Since no other agents's payoff is changed as a result of i's play, i 
captures the full value of any attribute change and so (g*, (b*, s*)) is an ex post 
contracting equilibrium. The difficulty in the finite case arises in dealing with the 
possibility that (b*, s*) may not be doubly overlapping. If a single agent's change 
in attribute results in a completely new attribute matching, the stable payoff 
to most attributes necessarily changes. Finally, the bargaining outcome func
tion used in Proposition 5 only depends on the cost functions through (b*, s*). 

15While the attributes of some the agents' partners will be different as a result of the re
matching, any pair of attribute values that was matched in the absence of the deviation will be 
matched when there is a deviation. 
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While this is somewhat misleading, since if the attributes are continuous vari
ables, changes in 'IjJ and c will necessarily affect (b*, s*), there is a sense in which, 
given (b*, s*), the cost functions do not affect the required bargaining outcome 
function. 

The continuum case is quite different. By construction, any change of at
tribute by a single agent leaves all other payoffs unchanged, and a single agent's 
attribute choice has no impact on social value. None the less, there is a similarity 
between the case of doubly overlapping attributes in a finite population and the 
case of continuous attribute choice functions, {3* and 0"*, in a continuum popu
lation. For the continuum population, stable payoffs are determined completely 
by the division for the bottom pair of attributes and (7.2) and (7.3). The two 
marginal conditions, (7.2) and (7.3), essentially assert that each attribute is paid 
its marginal social value, and so it is not surprising that Proposition 6 holds in 
this case. Moreover, the definition of g* is trivial, since it is given by the divi
sion for the bottom pair of attributes and (7.2) and (7.3), and (8.1) for deviating 
attributes outside the range of {3* and 0"*. 

The case of discontinuous attribute choice functions in a continuum population 
is more interesting. As we noted at the beginning of the previous paragraph, any 
change of attribute by a single agent leaves all other payoffs unchanged, and so 
there is no problem in determining stable payoffs for the other agents. Suppose 
{3* (and so 0"*) are discontinuous at i. From (7.4), at i, there is a range of possible 
divisions that is consistent with stability. However, only one division is consistent 
with ({3*, 0"*) being an ex post contracting equilibrium, namely the division that 
makes the buyer indifferent between the choices {3* (i-) and {3* (i+) and, at the 
same time, makes the seller indifferent between 0"* (i-) and O"* (i+): 

x(i+) 'IjJ({3*(i+), i) x(i-) 'IjJ({3*(i-),i) 

and 
p(i+) - c(0"* (i+), i) = p(i-) - c(0"* (i-), i). 

(This division is feasible because the total net surplus at i- equals that at i+). 
There is thus a sense in which the appropriate g* is "special." Moreover, unlike 
the bargaining outcome function for the finite population case, given ({3*, 0"*), the 
bargaining outcome function does depend on the cost functions directly, as well 
as through their determination of ({3*, 0"*). 

The following lemma captures the idea that the coordination failure exhibited 
by inefficient ex post contracting equilibria is not a failure of matching, but rather 
a failure of attribute choice. 

Lemma 3. Suppose ({3*, 0"*) are the attribute choice functions for an ex ante 
contracting equilibrium and ({J,O') are well-behaved attribute choice functions for 
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an ex post contracting equilibrium. Suppose for buyer i, 13(i) -=1= (3*(i); then there 
does not exist j such that o-(j) u*(i); similarly, if for seller j, o-(j) -=1= u*(j), 
then there does not exist i such that 13(i) {3*(j). 

Proof: Since marginal costs of attributes are decreasing in index, 13 and 0

are increasing in index. Since any stable matching is positively assortative in 
attributes, in any ex post contracting equilibrium, buyer i is matched with seller 
i. First note that for all i, 

13(i) E argmax v(b, 0-(i)) -1/J(b, i) - p(i) (8.3) 
b 

and 
o-(i) E argmaxv(13(i), s) - c(s, i) - xCi). (8.4) 

s 

(We prove the first. If it did not hold, then there exists b -=1= 13(i) such that 

v(b,o-(i» -1/J(b, i) - p(i) > v(13(i),o-(i)) -1/J(13(i), i) - p(i). 

Since (13,0-) is an ex post contracting equilibrium, 

v(13(i),o-(i) -1/J(13(i),i) p(i) ~ supv(b,o-(j) -1/J(b,i) - p(j), 
j 

which implies 
v(b,o-(i) - p(i) > v(b,o-(i» p(i), 

a contradiction.] 
Suppose that for some buyer i', 13(i') -=1= (3* (i'), while for some seller j', o-U') = 

u*(i'). Then j' -=1= i', since if j' = i', (8.3) and the efficiency of ((3*,u*) imply that 
13(i') and (3*(i') are maximizing the same strictly concave function, v(b,u*(i'))
1/J(b, i'), which is inconsistent with 13(i') -=1= (3*(i'). 

Suppose j' > i' (the other case is handled similarly). Since fP1/Jj8b8i < 0, the 
solution to the problem m~ v( b, u* (i')) 1/J(b, i) is increasing in i, and hence, 
13(j') > {3*(i'). Since f)2vj8bf)s > 0, the solution to maxs v(b, s) - c(s,j') is 
increasing in b, and consequently, o-(j') > argmaxs v({3*(i'),s) c(s,j'). Finally, 
82cjf)sf)j < 0 implies that argmax v({3*(i'),s) c(s,j) is increasing in j, so thats 
o-(j') > u*(i'), a contradiction. Hence, there cannot be a seller with index than 
j' > i' for which o-U') u*(i') .• 

In addition, ex post contracting equilibria are "constrained" efficient for the 
continuum case. This is in contrast to the finite case in which ex post contracting 
equilibrium outcomes need not be "constrained" efficient, as is illustrated by the 
example in section 2. 
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Lemma 4. Suppose (/3,0-) are attribute choice functions for an ex post contract
ing equilibrium that are not part of an ex ante contracting equilibrium. Then 
for any blocking coalition (1:, J) with attribute choices (b, s), there does not exist 
i'such that b= /3(i') , nor does there exist j' such that 8 = o-(j'). 

Proof: Suppose (i,J) is a blocking coalition with attribute choices (b,8) and 
shares (x,p). Then, 

x+p v(b, s), 
1/J(b, i) > x(/3(i» 1/J(/3(i) ,i), and 

C(8,]) > p(o-G» c(o-(]),]). 

The proof is by contradiction. Suppose there exists j' such that 8 = o-(j'). 
Since p _c~s,]) >_p(o-(}» c(o-G)']);:::: p(8) - c(s,]), we have p > pes), and 
so x -1/J(b, i) = v(b, s) - p 1/J(b, i) < v(b, s) - pes) -1/J(b, i). But stability, the 
hypothesis that stable payoffs to nondeviating players are unchanged, and the 
fact that (/3,0-) is are part of an ex post contracting equilibrium implies that 
v(b, s) - p(s) -1/J(b, i) is a lower bound on buyer i's payoff in equilibrium, and so 
we have a contradiction. An identical argument, mutatis mutandis, shows that 
there cannot exist an i' such that b= /3(i'). • 

9. Discussion 

We saw in the continuum case that when agents are choosing attribute choices 
efficiently, there may be a jump in the investments at some point. When the cost 
and surplus functions are well-behaved and there is a discontinuous increase in 
attribute for one side, there must also be a discontinuous increase in attribute 
for the other side as well. The gross payoff to agents must be discontinuous at 
the point of discontinuity as well: agents arbitrarily close will receive boundedly 
different payoffs in any efficient equilibrium. There is not, however, any discon
tinuity in utility; the increase in gross payoff is exactly offset by the increase in 
cost in acquiring the attribute necessary to attain that payoff. This is, of course, 
not surprising; when cost functions are continuous, if there was a discontinuous 
increase in payoff net of the cost of investment, agents just below the point of 
discontinuity would have an incentive to make the higher investment. This char
acteristic has the flavor of the argument that rents will be dissipated by agents' 
expending resources in competition for those rents. 

It is important to note that this is not inefficient here, but rather may be 
a property of efficient choice of attributes. The variance of income (that is, 
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gross payoffs) may be greater or less than the variance of utility (payoffs net of 
investment costs), depending on the cost functions. In the extreme case that 
all agents on one side of the market have nearly the same cost of acquiring any 
given attribute, there will be hardly any variance in utility while there may be 
large variance in income. Variance in utility is a direct consequence of differences 
across agents in acquiring given attributes. The degree to which such differences 
in cost translate into different gross payoffs depends on the shape of the surplus 
function, v. 

We treat in this paper the case in which the relevant groups for production 
are pairs. We could easily have extended the analysis to cover the case in which 
production necessitated a group of people, one of each of a number of different 
types. With analogous assumptions on the surplus and cost functions, we would 
have had similar results regarding positive assortative matching, equal treatment, 
etc. An interesting extension that is not so direct is to treat the case in which 
groups may or may not have one of each type of agent with the surplus they 
generate depending on the composition of the group. 

In our model matching is frictionless, that is, there is no cost in agents' search
ing out appropriate partners. It is clear that frictionless matching drives some of 
the qualitative results; for example, we would not expect to see perfectly assor
tative matching if matching is accomplished through costly search.16 For given 
vectors of attributes for the agents, the matching and sharing that we focus 

For many of the problems the model is meant to address-such as match
ing workers to firms--the process of matching and production is ongoing. That 
is, there is a sequence of periods in which matching may take place, and once 
matched, the pair may stay matched for several periods. A natural way to model 
such a problem would be with a new cohort of individuals on each side of the 
market entering each period, making investments in the first period of their lives 
and entering the matching market the next period. If the cost functions vary 
stochastically across cohorts, individuals who are looking for partners might find 
it profitable to defer matching until later periods in the hope of finding a better 
match. The static nature of our model clearly precludes an analysis of such be
havior; extending it to such an environment would be difficult, but potentially 
quite interesting. 

16See Burdett and Coles ([2]) for an analysis of such a model, although one in which attributes 
are given exogenously. 
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10. Related literature 

Our focus is on whether agents have the right incentives in terms of their invest
ment decisions, given that a core allocation of the induced assignment game will 
result. Since the core in this case coincides with the set of Walrasian allocations, 
a question related to ours is whether in a competitive equilibrium, agents have in
centives to make efficient ex ante investments. This question has been addressed 
by Hart [9, 10], Makowski [14], and Makowski and Ostroy [15J. In these papers, 
there is a set of exogenously specified possible commodities that can be produced 
(or in [15], occupations that can be chosen). Firms first decide which goods to 
produce, and then, given these decisions, a price-taking equilibrium results. Hart 
and Makowski ask whether firms choose to produce an efficient mix of commodi
ties. They both conclude that if firms are perfectly competitive, then the resulting 
equilibrium commodity choices are constrained efficient. Makowski and Ostroy 
[15] are interested in the role of full appropriation and noncomplementarities in 
leading to full efficiency. 

Our work is distinguished from this work in two ways: First, the production 
technology available to our agents is very different, due to the matching and 
complementarities in attributes. Second, the matching process allows to us to 
focus on the bargaining between the agents and the role of outside options in 
affecting efficiency. On the other hand, the qualitative properties exhibited by 
the equilibria in their models are similar to those in our model. 

Acemoglu [1] analyzes a model in which workers and firms are matched in 
which there may be inefficient underinvestment in human capital. The ineffi
ciency in his model stems from the fact that while a matched firm and worker 
can contract over how the incremental surplus that would result from additional 
investment would be shared, there is an exogenously specified probability of a 
negative productivity shock to the pair that would necessitate rematching. It is 
assumed that it is impossible for workers to contract with future employers over 
the sharing of surplus, leading to inefficient underinvestment. The inefficiency in 
that paper is due to assumed labor market imperfections, namely that following 
the dissolution of a match, there is a costly search process to rematching. The 
frictions in the matching process prevent a worker from capturing the entire social 
value of his investment, leading to underinvestment. The model presented here 
differs in that we assume frictionless matching. We demonstrate that for both 
the case in which there is a finite number of agents and the case in which there 
is a continuum of agents, inefficient investment can occur in equilibrium. 

Besides these papers, there are several other papers that are related, but less 
closely. Cole and Prescott [3] and Ellickson, Grodal, Scotchmer, and Zame [5], 
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[4] analyze general equilibrium models in which agents, in addition to exchang
ing goods, can belong to clubs, and care about the ch~racteristics of the other 
members of the clubs. Their models allow more general possible groupings of 
agents than we do, but take the agents' characteristics as given. Farrell and 
Scotchmer [6J study formation of coalitions when output is divided equally and 
show existence and (generic) uniqueness of the core. When agents differ in ability, 
coalitions are inefficiently small. The inefficiency in their model arises from the 
heterogeneity of agents, and would not arise if the there were sufficiently many 
agents of each ability. MacLeod and Malcomson [13J study the hold-up problem 
associated with investment decisions taken prior to contracting and provide, in a 
specific model, the idea that ex ante investments will be efficient, as long as the 
investments are general and there are outside options. That investments in their 
model are general leads to competition for the individual making the investment, 
assuring him of the incremental surplus that results from the investment; this 
is similar to the effect of "local competition" in our overlap case above. Their 
model, however, doesn't give rise to the coordination inefficiencies in our model. 
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A. Appendix 

Proof of Proposition 4. This will follow from the following 2 lemmata. 

Lemma A. Let (b, s) and (b' , s) denote two vectors of attributes satisfying bi = 
b~, 'Vi i=.e. Let {(x,p), m} denote a stable payoff and matching for (b, s), and 
{(x', p'), m'l a stable payoff and matching for the attributes (b/,s). If (b/, s) are 
overlapping and Pm(e) = P~(e), then 

x~ = Xe + V(b',s) V(b,s). 

(A similar result holds for the sellers.) 

Proof. Suppose b~ > be (the same argument applies, mutatis mutandis, to the 
case b~ < be). Let ",' denote the rank order of b~ in b/, i.e., ~ = belt')' and let ",If 

denote the rank order of min {bi : bi > be} in b/. Since (b/, s) has no gaps, 

(A.I) 

where, for each k, sk = Sm'(i) = Sm'(i') and b~ b(k)' b~, belt_I) for some positive 
assortative matching m' and i, i' E I. 

Since the only difference between the attribute vector (b, s) and (bl
, s) is that 

one worker has a higher attribute, the only attribute matchings that are different 
involve exactly one matching for each of the attributes {sk : k = ",If, ••• , ",I}. For 
each k = "," + 1, ... , ",I, one seller of attribute sk matches with a worker with 
attribute b(k-l) under (b,s), and matches with a worker with the next higher 

attribute b(k) under (b/,s). For k = ",If, one seller of attribute Slt" matches with 
a worker who has the same attribute (be) as worker.e under (b,s), and matches 
with a worker with attribute b(ltll) under (b/,s). Thus, 

V(b/, s) - V(b, s) = v(b(r.;Il) , Sltll) - v(b£, Sltll) + L
",' 

[V(b(k) , sk) - V(b(k_l)' sk)]. 
k=K"+l 

Now, using xb{,.p) +p~(£) = v(b(ltll) , SK") and p~(£) = Pm(£) , equation (A.l) can 

be rewritten as 

It' 

x~ = v(bCKIl) , SKll) - Pm(£) + L [v(b(k) , sk) V(bCk- 1)' sk)] 

k=K" 
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K-' 
II 

V(b(K-II),SI\;II) [v(be,sK- )-xe] + 'E [V(b(k),Sk)-v(b(k_l),Sk)] 
k=K-" 

= Xe + V(b/,s) - V(b,s). 

• 
Lemma B. Let (b,s) and (b/,s) denote two vectors of attributes satisfying 
bi = b~, Vi 1= £. Let {(x,p),m} denote a stable payoff and matching for (b,s), 
and {(x',p'),m/} and {(x",p"),m'} be two stable payoffs and matchings for the 
attributes (b/,s). IfPm(e) =P'm(e) and Pm' (e) = P'/n'ce) I then 

x~ - Xe ~ V(b',s) - V(b,s) ~ x1- Xe. 

(A similar result holds for the sellers.) 

Proof. The bound on Xl is immediate, given the bound on x~ (reverse band 
b/). If (b/,s) has no gaps, the value of x~ is determined uniquely once P~(e) is 
fixed, and by Lemma A, the bound holds with equality. 

Suppose now that (b/, s) has gaps and ~ > be (the same argument applies, 
mutatis mutandis, to the case b~ < be). 

Consider the impact of buyer £'s attribute change in a related collection of 
buyers and sellers that is a combination of the buyer and seller attributes that 
are rematched. Let I' = {i : be ~ bi ~ ~}, J' = m(I') and J" = m'(I'). 
Consider an economy (i, J, (b, s)) with Iii = IJI = 2 ·11'1 buyers and sellers, and 
b = «bi)iEI' , (bi)iEI') and s = «Sj)jEJI, (Sj)jEJII). (Note that {s : S = Sj, j E 
J'} = {s: S = Sj, j E JII}.) The attribute vector of buyers after buyer f changes 
attribute is bl = «bi)iEI', (bDiEI1). Observe that (b', s) has no gaps, and that 
(b', ill) is the buyer-first extension of (b', s), apart from the bottom matched pair 
(but the seller's attribute in that pair is the same as in (b', s») and some repeated 
matched pairs. By Lemmas A and , 

x~ ~ Xe +V(b', s) - V(b, s), 

which yields the desired upper bound, because V (b/,s) - V (b, s) = V (b/,s) 
V(b,s). • 

Proof of Lemma 1: We first argue that x and P are strictly increasing. Sup
pose there exists i' < i such that xCi') ~ xCi). For rJ > 0 small, let e = 
! {v(jJ(i),u(i' - rJ) - v(jJ(i'),u(il 

- 7]))}. Since jJ is strictly increasing, e > O. 
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Moreover I since 0' is also strictly increasing and v is strictly supermodular, v(f3(i) I O'(j))
v(f3(i'),O'(j)) > 2e for all j > if - 'rj. Feasibility implies that there exists j E 
(i' - 'rj, i' + 'rj) such that 

xCi') :s; v(f3(i'),O'(j)) - p(j) + e, 

and so 

x(i)+p(j) 	 :s; x(i')+p(j):S;v(f3(i'),O'(j»+e 
:s; V(f3(i), O'(j») e, 

contradicting the stability of (x,p), and so x is strictly increasing. A similar 
argument applies to p. 

Consider now the case of f3 continuous from the left at i'. Suppose x(i'l > 
liminfitil xCi). Let e = [x(i')-liminfijil x(i)]/4. Suppose limSUPj-ti,[V(f3(i'),O'(j))
p(j)J > O. (If the reverse weak inequality held, x(i') = 0, contradicting the as
sumption that x jumps up at if.) There exists j close to i' such that x(i') +p(j) < 
v(f3(i'),O'(j» + e. Moreover, for i close to (but less than) i', v(f3(i'),O'(j» :s; 
v(f3(i), O'(j)) + e and x(i) + 3e :s; x(i'). Thus, 

x(i) +p(j) 	 < x(i'l +p(j) - 3e 

< v(f3(i'), O'(j» 2e 

< v(f3(i),O'(j» - e < v(f3(i) ,O'(j». 

But this contradicts stability, and so x(i'l :s; lim infitil x(i). 
Now suppose x(i') < limsuPiiil xCi). Note that this implies that limSUPijil xCi) > 

O. Let e = [lim SUPiji' x(i) - x(il)] /4. Since v is uniformly continuous, there ex

ists i close to (but less than) i', such that Iv(f3(i), s) v(f3(i'), s) I < e for all s E S. 
Moreover, i can be chosen so that xCi') :s; xCi) 3e. There also exists j close to i 
such that xCi) +p(j) < v(f3(i), O'(j» +e. Thus, 

x(i'l +p(j) 	 < x(i) +p(j) 3e 

< v(f3(i),O'(j» 2c: 
< v(f3(i'),O'(j» - e < v(B(i'),O'(j». 

But this also contradicts stability, and hence, lim infiiil x(i) ~ x(i'l ~ lim SUPiii' x(i); 
Le., x is continuous from the right at f3(i' ). 

The other possibilities are covered similarly. • 

Proof of Lemma 2: Let {iI, i2, ... ,iT} be the discontinuity points of f3 and 0', 

and define It = (it,it+1) for t = 1, ... ,T -1,10 = [O,il), and Ir = (iT, 1]. Then, 
C (f3, 0') = uT=oft. 
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Existence of stable payoffs is addressed after the characterization. We have 
already argued that the no waste and continuity conditions must hold for any 
stable payoffs. These in turn imply at any point of discontinuity it, x(it-) + 
p(it -) = v«(3(it -),(1(it -)) and x(it +) + p(it +) = v«(3(it +),(1(it +)). The two 
inequalities in (704) are then equivalent to the local stability conditions: 

x(it +) +p(it -) > v«(3(it+),(1(it-)), and 

x(it -) +p(it +) > v«(3(it -),(1(it +)), 

which (from continuity) are clearly necessary. The local condition (7.3) follows 
from the observation that since the payoffs are stable, for b' E (3(C«(3,(/)) and all 
8 E (1(C«(3,(1)), 

v(b', s(b')) - p(s(b')) = x(b') 2?: v(b', 8) - p(s), (A.2) 

while (7.2) follows from fixing 8' E (/(C«(3,(/)) in the same inequality and consid
ering the value to the seller of matching with different buyers. 

Now we turn to sufficiency. Fix a pair of nonnegative payoffs (x(O),p(O)) that 
satisfy 

x(O) + p(O) = v«(3(O), (1(0)). 

Since any stable payoff must satisfy (7.2) and (7.3), we have 

xCi) = x(O) + [(;J(i) lJv(b,s(b)) db, for i E 10, (A.3) 
J(3(O) 8b 

l
and 

cr(j) 8v(b(s) 8)
p(j) = p(O) + 8 ' ds, for j E 10· (A.4) 

cr(O) 8 

Note that these equations determine x(i1 -) and p(i1 -). (We show below that 
(7.1), (A.3), and (Ao4) are consistent.) It remains to extend x and p to the rest 
of [0,1]. As on 1o, (7.2) and (7.3) determine x and p on It once the initial values, 
x(it +) and p(it +), have been determined. Let (x(it+)'p(i t +)) be any pair of 
payoffs satisfying (7.4). If, for example, (3 is continuous at it, then x(it +) = 
x(it -), and there is only one choice for (x(i t+ ),p(it+)). The payoff for buyer it 
is then determined by the continuity property of (3: if (3 is continuous from the 
left, then x(it) = (3(it -), while if (3 is continuous from the right, x(it) = (3(it+) 
(the same considerations apply for seller it )17 

17If both f3 and u are discontinuous from the left and the right at it, then any choice 
(x(it +), p(it +)) satisfying 

x(it+) = max {v{f3(it), u(it-) p(it-), v(f3(it},u(it )) p(it), v(f3(it),u(it+) -p(it +)} (A.5) 
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We next verify feasibility for i E C({3,a). Suppose i E It. By assumption, 
x(it +) +p(it+) = v({3(it+),a(it+», and for i E It, 

xCi) +p(i) = x(i +) + ((:J(i) 8v(b,s(b» db 
t J(3(it+) 8b 

' ) l<T(i) 8v(b(s),s)d
+p(~t+ + 8 S 

<T(it+) S 

= v({3(it+),a(it+» + r dV({3(~"a(i» di v({3(i),a(i»,k 'I, 

so each pair efficiently shares the surplus. 
We now verify stability. Lemma 3 implies 

x(it-) +p(iHk+);:::: v({3(it-),a(it+k+» for all k. 

If (x,p) is not stable, then there is a pair i and j satisfying xCi) + p(j) < 
v({3(i),aU». Suppose i E It and j E IHIe, k ;:::: 1 (the case of i and j in the 
same continuity interval is an obvious modification of the following, as is the case 
in which i and j are reversed). Then, 

x(it+!-) + p(j) < x(it+!- ) + v({3(i), a(j)) - x(i) 

= v({3(i),a(j» + ((:J(i 
H 1

-) 8v(b;;:(b» db 
J(:J(i) 

< v({3(i),a(j» + ({3(
i t 
+l-) 8v(b,a(j» db 

J(:J(i) 8b 
v({3(it+! - ), a(j», 

where the second inequality comes from the strict supermodularity of v. But 
then, 

x(it+! - ) +p(it+k+) < v({3(it+! - ), a(j» - p(j) +p( it+k+ ) 

= V({3(iHl ,aU» -l<T(j) 8v(b(s),s) ds 
<T(it+k+) 8s 

<T(j) 8v({3(it+! - ), s) ds
< v({3(it+! - ), a(j» 

l <T(it+k+) 8s 
= v({3(it+!-), a( it+k+», 

and 

p(it+) = max {v(J3(i t -), 0"(it» x(it-), v(J3(itl, O"(it» - x(it}, v(J3(i t +), 0"(it» - x(it+)} , 
(A.6) 

is stable and feasible. 
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a contradiction. Thus, (x,p) is stable. 

• 
Proof of Proposition 6: As in the proof of Lemma 2, it denotes the tth dis
continuity point of f3* and u*. Then 

v(f3*(it-),u*(it-») 	 -1f;(f3*(it -), it) - c(u*(it-), it) = 
v(f3*(it+), u*(it+) - 'ljJ(f3*(i t +), it) - c(u*(it+), it). 

(A.7) 
Equilibrium requires 

and 
p{it+) - c(u* (it+), it) = p(i t-) - c(u*( i t-), it), (A.9) 

where x(it+) (x(it -») is the share of a buyer with attribute f3*(it+) (f3*(it-)), 
and p(it+) (p(it -» is the share of a seller with attribute u*(it+) (u*(it - ). If 
the stable payoffs do not satisfy these equalities, then clearly buyers and sellers 
close to it (either just above or just below) have an incentive to deviate. 

It remains to show that the payoffs implied by (A.8) and (A.9) are consistent 
with stability. Now, 

x(it+) +p(i t -) 	 = x(it -) +p(it -) + 1f;(f3*(it+) , it) - 'ljJ(f3*(i t-), it) 


= v(f3* (it-), u*( i t -») + 'ljJ(f3* (it +), it) - 'ljJ(f3* (it -), it) 

> v(f3* (it+), u*( i t -»), 


since v(f3*(i t-), u*(i t -» -1f;(f3* (it-), it) - c(u*( i t -), it) 2: v(f3*(i t+), u*(i t -» 
'ljJ(f3*(i t+), it) - c(u*( i t -), it). 

We need to show that (A.8) and (A.9) are sufficient for equilibrium. Fix 
(x*(O),p*(O» such that x*(O) +p*(O) = v(f3*(O),u*(O». The payoffs (x*,p*) are 
now obtained from (A.3), (A.4), (A.8), and (A.9). From Lemma 2, these payoffs 
are stable. These determine the payoffs to a buyer (seller) choosing any attribute 
in the range of f3* (u*). Attributes outside the range are dealt with directly 
through feasibility: Let b; solve v(b,u*(i t+» - p(it +) = v(b,u*(it -» p(it -) 

and set b(j = 0 and bT+l = B(i) (and similarly for st). Then, f3*(it-) < 
b; < f3*(it+), v(f3*(it -),u*(it +» p(it+) < v(f3*(it -),u*(it-») - p(it -), and 
v(f3*(it+), u* (it+) )-p(it+) > v(f3* (it+), u* (it -» -pCit-). Then, for b E [f3* (it -), bTl, 
x(b) = v(b,u*(it-» - p(it -), and for b E [b;,f3*(it+)], x(b) = v(b,u*(it+» 
p(it+). Similar statements hold for the seller. 
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Consider now the buyer's problem (the argument for the seller is symmetric). 
We first argue that f3*(i) is a maximizing attribute choice for buyer i E [it, i t+1] 
from the attribute set [bt', bt+!1.18 The problem for buyer i is to choose b E 

x(b) -1f;(b, i). 

Consider first choices of b E (13* (it+), 13* (it+! - )). Since buyer i's payoff function 
is differentiable over that domain (by Lemma 2), any maximizing choice of b E 
(13* (it + ), 13* (it+1-» must satisfy the first order condition 

Af(b) = 81f;(b, i) 
x 8b' 

By construction, 

"-J(f3*( .» _ 8v(f3*(i),rr*(i)) _ 81f;(f3*(i), i) (. )\.I' . 
X 't - 8b - 8b v't E 'tt, 'tt+! . 

Suppose that x(b) = 81f;(b,i)/8b for some b =f f3*(i), bE (f3*(it+),f3*(it+!-)). 
Since b E (13* (it +), 13* (it+! - )), there exists z with 13* (z) = b and so 

81f;(b, i) = Af(b) = 81f;(b, z) 
8b x 8b' 

which is impossible, since 81f;/ 8b is a strictly decreasing function of i. Thus, the 
first order condition has a unique solution in b E (13* (it +),13* (iH1 - ). 

We now argue that f3*(i) a local maximizer for i. In what follows, partial 
derivatives are indicated by subscripts. It is enough to show that the second 
derivative of buyer i's payoff function is strictly negative. The second derivative 
is 

Vbb(f3* (i), rr*(i) +Vbs(f3* (i), rr*(i)) ddb
SI -1f;bb(f3*(i), i). (A.I0) 

b=f3*(i) 

Now, ~fl = (drr*(i)/di) (df3*(i)/di)-l and df3* /di > 0, so that (A.I0)
b=f3*(i) 

can be rewritten as 

Thus, f3*(i) is the unique optimal choice from (13* (it + ), 13* (it+1-». By continuity, 
f3*(i) is an optimal choice for i = it and it+1 from [f3*(it +},f3*(it+1-)J. 

18The same argument shows that for buyers in the bottom interval [O,i!), (3*(i) is optimal in 
the set [0, hi], and that for buyers in the top interval (iT, 1], (3*(i) is optimal in the set [hT' B(i)]. 
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We now turn to choices of b ~ (,6* (it+),,6* (it+1 - )). Since stable match
ings require positive assortative matching in attributes, if buyer i chooses b E 

[bi, ,6* (it +), then he is effectively matched with the seller with attribute u* (i t+), 
while a choice of b ~ ,6* (i t+l-) leads to a match with u*(it+1-)' Consider the 
first possibility. In the first case, x(b) = v(b,u*(it+» P(u*(it+), while in the 
second, x(b) = v(b,u*(it+1-») p(u*(it+1-))' 

We first consider b ::; ,6*(it +) and argue to a contradiction. Suppose there 
exists b ::; ,6* (it+) such that 

x(,6*(i» 'I/J(,6*(i),i) < v(b,u*(it +)) - p(u*(it+)) - 'I/J(b,i). 

Let € == v(b, 0"* (it +)) - p(O"*(it+)) - 'I/J(b,i) - [x(,6*(i») - 'I/J(,6* (i) , i)] > O. Since 
P is continuous, there exists an i < i (and close to it) such that IP(O"*(i)) 
p(O"*(it+»1 < €/2. For this i, 

v(,6* (i) , 0"* (i)) - v(b,O"*(i) ~ 'ljJ(,6*(i) , i) 'ljJ(b,i) > 'ljJ(,6*(i), i) 'I/J(b,i), 

where the first inequality follows from the optimality of (,6*,0"*) for i, and the 
second from EN /8b8i < O. Then, 

x(,6*(i)) - 'I/J(,6*(i), i) > x(,6*(i» 'ljJ(,6* (i) , i) 
v(,6*(i), O"*(i») - 'ljJ(;3*(i), i) p(u*(i) 

> v(b, 0"* (i» - 'ljJ(b, i) - p(O"*(i) 

> v(b, u*(it+) - 'ljJ(b, i) - p(O"*(it+)) - E/2 

= x(,6*(£») - 'ljJ(,6*(i), i) + E - E/2, 

which implies 0 ~ E, a contradiction. 
We now consider b ~ ,6*(it+l . Note first that it is obviously a best reply for 

buyer it+l to choose ,6*(it+1-)' Consider the difference between buyer i's payoff 
from following ,6* and choosing b: 

~(i; b) == x(j3*(i)) - 'I/J(,6*(i), i) - [v(b,u*(it+l-») - p(u*(it+1-» 'ljJ(b, i)]. 

Differentiating with respect to i yields: 

8~(i; b) 
= (X' (,6*(i» - 'ljJb(,6* (i), i)) d!* - 'ljJi (,6* (i), i) + 'l/Ji(b, i)ai 
= (8v(,6*~bO"*(i») -'ljJbC,6*(i),i») d!* -'l/Ji(j3*(i),i) + 'l/Ji(b, i) 

b 
= 'l/Ji(b, i) 'l/Ji (,6* (i), i) = r 'l/Jbi < 0, 

}(3*(i) 
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so that if ~(ijb) < °for some b > j3*(it+l-)' then ~(iHl,b) < 0, contradicting 
the optimality of 13* (it+l-) for buyer iHl' 

We now argue that 13* (i) is a maximizing attribute choice for buyer i E [it, iHIJ 
from the full attribute set [O,B(i)]. Fix i E [it,iHl]' t 2: 1, and consider an 
attribute b E [bt- 1, bt). Then 

xCi) -1jJ(j3*(i), i) 2: x(j3*(it+)) -1jJ(j3*(it+), i), 

and 
x(it-) -1jJ(j3*(it-), it) 2: x(b) -1jJ(b, it). 

Combining these two inequalities with 

gives 
xCi) -1jJ(j3*(i), i) 2: x(b) -1jJ(b, it), 

and so 
x(i) -1jJ(j3* (i), i) 2: x(b) -1jJ(b, i), 

that is, 13* (i) is a maximizing choice for i from [bt- 1 , bt+l]' An obvious induction 
completes the argument. 

• 
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