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Abstract

Evolutionary game theory provides an answer to two of the central ques-
tions in economic modeling: When is it reasonable to assume that people
are rational? And, when is it reasonable to assume that behavior is part
of a Nash equilibrium (and if it is reasonable, which equilibrium)? The
traditional answers are not compelling, and much of evolutionary modeling
is motivated by the need for a better answer. Evolutionary game theory
suggests that, in a range of settings, agents do (eventually) play a Nash
equilibrium. Moreover, evolutionary modeling has shed light on the relative
plausibility of different Nash equilibria.

1. Introduction

At the same time that noncooperative game theory has become a standard tool
in economics, it has also come under increasingly critical scrutiny from theorists
and experimentalists. Noncooperative game theory, like neoclassical economics,
is built on two heroic assumptions: Maximization—every economic agent is a
rational decision maker with a clear understanding of the world. And Consis-
tency—the agent’s understanding, in particular, expectations of other agents’
behavior, is correct (i.e., the overall pattern of individual optimizing behavior
forms a Nash equilibrium). These assumptions are no less controversial in the
context of noncooperative game theory than they are in neoclassical economics.

“I thank Steven Matthews, Loretta Mester, John Pencavel, three referees, and especially
Larry Samuelson for their comments.



A major challenge facing noncooperative game theorists today is that of pro-
viding a compelling justification for these two assumptions. As I will argue here,
many of the traditional justifications are not compelling. But without such justi-
fication, the use of game theory in applications is problematic. The appropriate
use of game theory requires understanding when its assumptions make sense and
when they do not.

In some ways, the challenge of providing a compelling justification is not a
new one. A major complaint other social scientists (and some economists) have
about economic methodology is the central role of the maximization hypothesis.
A common informal argument is that any agent not optimizing, in particular,
any firm not maximizing profits, will be driven out by market forces. This is an
evolutionary argument, and as is well known, Charles Darwin was led to the idea
of natural selection from reading Thomas Malthus.! But does such a justification
work? Is Nash equilibrium (or some related concept) a good predictor of behavior?

While the parallel between noncooperative game theory and neoclassical eco-
nomics is close, it is not perfect. Certainly, the question of whether agents maxi-
mize is essentially the same in both. Moreover, the consistency assumption also
appears in neoclassical economics as the assumption that prices clear markets.
However, a fundamental distinction between neoclassical economics and noncoop-
erative game theory is that, while the many equilibria of a competitive economy
almost always share many of the same properties (such as efficiency or its lack),?
the many equilibria of games often have dramatically different properties. While
neoclassical economics does not address the question of equilibrium selection,
game theory must.

Much of the work in evolutionary game theory is motivated by two basic
questions:

1. Do agents play Nash equilibrium?
2. Given that agents play Nash equilibrium, which equilibrium do they play?

Evolutionary game theory formalizes and generalizes the evolutionary argu-
ment given above by assuming that more successful behavior tends to be more

1In Qctober 1838, that is, fifteen months after I had begun my systematic enquiry, I hap-
pened to read for amusement ‘Malthus on Population,” and being well prepared to appreciate the
struggle for existence which everywhere goes on from long-continued observation of the habits
of animals and plants, it at once struck me that under these circumstances favourable variations
would tend to be preserved, and unfavourable ones to be destroyed. The results of this would be
the formation of new species. Here, then I had at last got a theory by which to work;” Charles
Darwin (1887, p. 83).

20r perhaps economists have chosen to study only those properties that are shared by all
equilibria. For example, different competitive equilibria have different income distributions.



prevalent. The canonical model has a population of players interacting over time,
with their behavior adjusting over time in response to the payoffs (utilities, prof-
its) that various choices have historically received. These players could be work-
ers, consumers, firms, etc. The focus of study is the dynamic behavior of the
system. The crucial assumptions are that there is a population of players, these
players are interacting, and the behavior is naive (in two senses: players do not
believe—understand—that their own behavior potentially affects future play of
their opponents, and players typically do not take into account the possibility
that their opponents are similarly engaged in adjusting their own behavior). It is
important to note that successful behavior becomes more prevalent not just be-
cause market forces select against unsuccessful behavior, but also because agents
imitate successful behavior.

Since evolutionary game theory studies populations playing games, it is also
useful for studying social norms and conventions. Indeed, many of the motivating
ideas are the same.3 The evolution of conventions and social norms is an instance
of players learning to play an equilibrium. A convention can be thought of as a
symmetric equilibrium of a coordination game. Examples include a population
of consumers who must decide which type of good to purchase (in a world of
competing standards); a population of workers who must decide how much effort
to exert; a population of traders at a fair (market) who must decide how aggres-
sively to bargain; and a population of drivers randomly meeting at intersections
who must decide who gives way to whom.

Evolutionary game theory has provided a qualified affirmative answer to the
first question: In a range of settings, agents do (eventually) play Nash. There is
thus support for equilibrium analysis in environments where evolutionary argu-
ments make sense. Equilibrium is best viewed as the steady state of a community
whose members are myopically groping toward maximizing behavior. This is in
marked contrast to the earlier view (which, as I said, lacks satisfactory founda-
tion), according to which game theory and equilibrium analysis are the study
of the interaction of (ultra-) rational agents with a large amount of (common)
knowledge.4

The question of which equilibrium is played has received a lot of attention,
most explicitly in the refinements literature. The two most influential ideas in
that literature are backward and forward induction. Backward induction and its
extensions—subgame perfection and sequentiality—capture notions of credibility
and sequential rationality. Forward induction captures the idea that a player’s

3See, for example, Elster (1989), Skyrms (1996), Sugden (1989), and Young (1996).
“Even in environments where an evolutionary analysis would not be appropriate, equilibrium
analysis ts valuable in illuminating the strategic structure of the game.



choice of current action can be informative about his future play. The concerns
about adequate foundations extend to these refinement ideas. While evolutionary
game theory does discriminate between equilibria, backward induction receives
little support from evolutionary game theory. Forward induction receives more
support. One new important principle for selecting an equilibrium, based on
stochastic stability, does emerge from evolutionary game theory, and this prin-
ciple discriminates between strict equilibria (something backward and forward
induction cannot do).

The next section outlines the major justifications for Nash equilibrium, and
the difficulties with them. In that section, I identify learning as the best available
justification for Nash equilibrium. Section 3 introduces evolutionary game theory
from a learning perspective. The idea that Nash equilibrium can be usefully
thought of as an evolutionary stable state is described in Section 4. The question
of which Nash equilibrium is played is then discussed in Section 5. As much as
possible, T have used simple examples. Very few theorems are stated (and then
only informally). Recent surveys of evolutionary game theory include van Damme
(1987, Chapter 9), Kandori (1997), Mailath (1992), and Weibull {1995).

2. The Question

Economics and game theory typically assume that agents are “rational” in the
sense of pursuing their own welfare, as they see it. This hypothesis is tautological
without further structure, and it is usually further assumed that agents under-
stand the world as well as (if not better than) the researcher studying the world
inhabited by these agents. This often requires an implausible degree of computa-
tional and conceptual ability on the part of the agents. For example, while chess
is strategically trivial,® it is computationally impossible to solve (at least in the
foreseeable future).

Computational limitations, however, are in many ways less important than
conceptual limitations of agents. The typical agent is not like Gary Kasparov, the
world champion chess player who knows the rules of chess, but also knows that
he doesn’t know the winning strategy. In most situations, people do not know
they are playing a game. Rather, people have some (perhaps imprecise) notion of
the environment they are in, their possible opponents, the actions they and their
opponents have available, and the possible payoff implications of different actions.
These people use heuristics and rules of thumb (generated from experience) to

5Since chess is a finite game of perfect information, it has been known since 1912 that either
‘White can force a win, Black can force a win, or either player can force a draw (Zermelo (1912)).



guide behavior; sometimes these heuristics work well and sometimes they don’t.5
These heuristics can generate behavior that is inconsistent with straightforward
maximization. In some settings, the behavior can appear as if it was generated
by concerns of equity, fairness, or revenge.

I turn now to the question of consistency. It is useful to first consider situations
that have aspects of coordination, i.e., where an agent (firm, consumer, worker,
etc.) maximizes his welfare by choosing the same action as the majority. For
example, in choosing between computers, consumers have a choice between PCs
based on Microsoft’s operating systems and Apple-compatible computers. There
is significantly more software available for Microsoft-compatible computers, due
to the market share of the Microsoft computers, and this increases the value of
the Microsoft-compatible computers. Firms must often choose between different
possible standards.

The first example concerns a team of workers in a modern version of Rousseau
(1950)’s Stag Hunt.” In the example, each worker can put in low or high effort,
the team’s total output (and so each worker’s compensation) is determined by
the minimum effort of all the workers, and effort is privately costly. Suppose that
if all workers put in low effort, the team produces a per capita output of 3, while
if all workers put in high effort, per capita output is 7. Suppose, moreover, the
disutility of high effort is 2 (valued in the same units as output). We can thus
represent the possibilities as in Figure 1.8 It is worth emphasizing at this point
that the characteristics that make the stag hunt game interesting are pervasive.
In most organizations, the value of a worker’s effort is increasing in the effort
levels of the other workers.

What should we predict to be the outcome? Consider a typical worker, whom
I call Bruce for definiteness. If all the other workers are only putting in low effort,
then the best choice for Bruce is also low effort: high effort is costly, and choosing
high effort cannot increase output (since output is determined by the minimum
effort of all the workers). Thus, if Bruce expects the other workers to put in low
effort, then Bruce will also put in low effort. Since all workers find themselves

SBoth Andrew Postlewaite and Larry Samuelson have made the observation that in life there
are no one-shot games and no “last and final offers.” Thus, if an experimental subject is placed
in an artificial environment with these properties, the subject’s heuristic will not work well until
it has adjusted to this environment. I return to this in my discussion of the ultimatum game.

"Roussean’s (1950) stag hunt describes several hunters in the wilderness. Individually, each
hunter can catch rabbits and survive. Acting together, the hunters can catch a stag and have a
feast. However, in order to catch a stag, every hunter must cooperate in the stag hunt. If even
one hunter does not cooperate (by catching rabbits), the stag escapes.

8The stag hunt game is an example of a coordination game. A pure ecordination game differs
from the game in Figure 1 by having zeroes in the off-diagonal elements. The game in Figure
13 is a pure coordination game.



minimum of other workers’ efforts

high low
worker’s effort high | 5 0
low 3 3

Figure 1: A “stag-hunt” played by workers in a team.

in the same situation, we see that all workers choosing to put in low effort is
a Nash equilibrium: each worker is behaving in his own best interest, given the
behavior of the others. Now suppose the workers (other than Bruce) are putting
in high effort. In this case, the best choice for Bruce is now high effort. While
high effort is costly, Bruce’s choice of high rather than low effort now does affect
output (since Bruce’s choice is the minimum) and so the increase in output (+4)
is more than enough to justify the increase in effort. Thus, if Bruce expects all
the other workers to be putting in high effort, then Bruce will also put in high
effort. As for the low effort case, a description of behavior in which all workers
choose high effort constitutes a Nash equilibrium.

These two descriptions of worker behavior (all choose low effort and all choose
high effort) are internally consistent; they are also strict: Bruce strictly prefers
to choose the same effort level as the other workers.® This implies that even if
Bruce is somewhat unsure about the minimum effort choice (in particular, as long
as Bruce assigns a probability of no more than 0.4 to some worker choosing the
other effort choice), this does not affect his behavior.

But are these two descriptions good predictions of behavior? Should we, as
outside observers, be confident in a prediction that all the workers in Bruce’s team
will play one of the two Nash equilibrium? And if so, why and which one? Note
that this is not the same as asking if Bruce will choose an effort that is consistent
with equilibrium. After all, both choices (low and high effort) are consistent with
equilibrium, and so Bruce necessarily chooses an equilibrium effort.

Rather, the question concerns the behavior of the group as a whole. How do
we rule out Bruce choosing high effort because he believes everyone else will, while
Sheila (another worker on Bruce’s team) chooses low effort because she believes
everyone else will.}® This is, of course, ruled out by equilibrium considerations.
But what does that mean? The critical feature of the scenario just described is

9A strict Nash equilibrium is a Nash equilibrium in which, given the play of the opponents,
each player has a unique best reply.

10While the term “coordination failure” would seem to be an apt one to describe this scenario,
that term is commonly understood {particularly in macroeconomics) to refer to coordination on
an inefficient equilibrium (such as low effort chosen by all workers).

6



that the expectations of Bruce or Sheila about the behavior of the other members
of the team are éncorrect, something that Nash equilibrium by definition does not
allow.

As T said earlier, providing a compelling argument for Nash equilibrium is a
major challenge facing noncooperative game theory today.!’ The consistency in
Nash equilibrium seems to require that players know what the other players are
doing. But where does this knowledge come from? When or why is this a plausible
assumption? There are several justifications typically given for Nash equilibria:
preplay communication, self-fulfilling prophecies (consistent predictions), focal
points, and learning.'?

The idea underlying preplay communication is straightforward. Suppose the
workers in Bruce’s team meet before they must choose their effort levels and
discuss how much effort they each will exert. If the workers reach an agreement
that they all believe will be followed, it must be a Nash equilibrium (otherwise
at least one worker has an incentive to deviate). This justification certainly has
appeal and some range of applicability. However, it does not cover all possible
applications. It also assumes that an agreement is reached. While it seems clear
that an agreement will be reached (and which one) in our stag hunt example (at
least if the team is small!), this is not true in general. Suppose, for example,
the interaction has the characteristics of a battle-of-the-sexes game (Figure 2).
Such a game, which may describe a bargaining interaction, has several Pareto
noncomparable Nash equilibria: there are several profitable agreements that can
be reached, but the bargainers have opposed preferences over which agreement is
reached. In this case, it is not clear that an agreement will be reached. Moreover,
if the game does have multiple Pareto noncomparable Nash equilibria, then the

" The best introspective (i.e., knowledge or epistemic) foundations for Nash equilibrium as-
sume that each player’s conjectures about the behavior of other players is known by all the
players, see Aumann and Brandenburger (1995). This assumption does not appear to be a
significant improvement over the original assumption of Nash behavior.

More generally, there is no compelling introspective argument for any useful equilibrium no-
tion. The least controversial are those do not require the imposition of a consistency condition,
such as rationalizability (introduced by Bernheim (1984) and Pearce (1984), for two players it
is equivalent to the iterated deletion of strictly dominated strategies), the iterated deletion of
weakly dominated strategies, and backward induction. However, in most games, rationalizabil-
ity does little to constrain players’ behavior, and as we will see below, the iterated deletion of
weakly dominated strategies and backward induction are both controversial.

2What if there is only one equilibrium? Does this by itself give us a reason to believe that
the unigue equilibrium will be played? The answer is no. It is possible that the unique Nash
equilibrium yields each player their maximin values, while at the same time being riskier (in
the sense that the Nash equilibrium strategy does not guarantee the maximin value). This is
discussed by, for example, Harsanyi (1977, p. 125) and Aumann (1985). Kreps (1990b, p. 135)
describes a complicated game with a unique equilibrium that is also unlikely to be played.
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employer
high wage low wage
employee high wage 3,2 0,0
low wage 0,0 2,3

Figure 2: A “Battle-of-the-sexes” between an employer and a potential employee
bargaining over wages. Each simultaneously makes a wage demand or offer. The
worker is only hired if they agree.

preplay communication stage is itself a bargaining game and so perhaps should
be explicitly modelled (at which point, the equilibrium problem resurfaces).!?
Finally, there may be no possibility of preplay communication.

The second justification of self-fulfilling prophecy runs as follows: If a theory
uniquely predicting players’ behaviors is known by the players in the game, then
it must predict Nash equilibria (see Myerson (1991, pp. 105-108) for an extended
discussion of this argument). The difficulty, of course, is that the justification
requires a theory that uniquely predicts player behavior, and that is precisely
what is at issue.

The focal point justification, due to Schelling (1960), can be phrased as “if
there is an obvious way to play in a game (derived from either the structure of
the game itself or from the setting), then players will know what other players
are doing.” There are many different aspects of a game that can single out
an “obvious way to play.” For example, considerations of fairness may make
equal divisions of a surplus particularly salient in a bargaining game. Previous
experience suggests that stopping at red lights and going through green is a good
strategy, while another possible strategy (go at red and stop at green) is not
{(even though it is part of another equilibrium). It is sometimes argued that
efficiency is such an aspect: if an equilibrium gives a higher payoff to every
player than any other equilibrium, then players “should not have any trouble
coordinating their expectations at the commonly preferred equilibrium point”
(Harsanyi and Selten (1988, p. 81)). In our earlier stag hunt example, this
principle (called payoff dominance by Harsanyi and Selten (1988)) suggests that
the high effort equilibrium is the obvious way to play. On the other hand, the
low effort equilibrium is less risky, with Bruce receiving a payoff of 3, no matter
what the other members of his team do. In contrast, it is possible that a choice

13The preplay communication stage might also involve a correlating device, like a coin. For
example, the players might agree to flip a coin: if heads, then the worker receives a high wage,
while if tails, the worker receives a low wage.
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of high effort yields a payoff of only 0. As we will see, evolutionary game theory
has been particularly important in addressing this issue of riskiness and payoff
dominance. See Kreps (1990b) for an excellent extended discussion and further
examples of focal points.!4

Finally, agents may be able to learn to play an equilibrium. In order to learn
to play an equilibrium, players must be playing the same game repeatedly, or
at least, similar games that can provide valuable experience. Once all players
have learned how their opponents are playing, and if all players are maximizing,
then we must be at a Nash equilibrium. There are two elements to this learning
story. The first is that, given maximizing behavior of players, players can learn
the behavior of their opponents.!> The second is that players are maximizing.
This involves, as I discussed earlier, additional considerations of learning. Even
if a player knows how his or her opponents have played (for example, the player
may be the “last mover”), he may not know what the best action is. A player will
use his or her past experience, as well as the experience of other players (if that is
available and relevant), to make forecasts as to the current or future behavior of
opponents, as well as the payoff implications of different actions. Since learning
itself changes the environment that the agents are attempting to learn (as other
agents change their behavior in response to their own learning), the process of
learning is quite subtle. Note that theories of learning are focal point theories,
since histories (observed patterns of play of other agents) can serve as coordinating
devices that make certain patterns of play “the obvious way to play,” as in the
trafic example from the previous paragraph.

The discussion so far points out some of the problems with many of the
standard justifications for Nash equilibrium and its two assumptions {maximiza-
tion and consistency). Besides learning, another approach is to concede the lack
of a sound foundation for consistency, but maintain the hypothesis that agents
maximize. The question then is whether rationality and knowledge of the game
(including the rationality of opponents) is enough, at least in some interesting
cases, to yield usable predictions. The two (related) principles that people have
typically used in applications are backward induction and the iterated deletion
of weakly dominated strategies.!® In many games, these procedures identify a
unique outcome. The difficulty is that they require an implausible degree of ra-

YK reps (1990a, Chapter 12) is a formal version of Kreps (1990b).

'5Non-evolutionary game theory work on learning has focused on the question of when maxi-
mizing players can in fact learn the behavior of their opponents. Examples of this work include
Fudenberg and Kreps (1989), Fudenberg and Levine (1993), Gul (1996), and Kalai and Lehrer

1993).
( 18Backward induction is also the basic principle underlying the elimination of equilibria relying
on “incredible” threats.
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Figure 3: A short centipede game.
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tionality and knowledge of other players’ rationality. The two key examples here
are Rosenthal’s centipede game (so-called because of the appearance of its ex-
tensive form-—-Figure 3 is a short centipede) and the finitely-repeated Prisoner’s
dilemma. The centipede is conceptually simpler, since it is a game of perfect
information. The crucial feature of the game is that each player, when it is his
or her turn to move, strictly prefers to end the game immediately (i.e., choose
E,,), rather than have the opponent end the game on the next move by choosing
E,+1. Moreover, at each move each player strictly prefers to have play proceed
for a further two moves, rather than end immediately. For the game in Figure 3,
if play reaches the last possible move, player I surely ends the game by choosing
E5 rather than C3. Knowing this, player IT should choose E3;. The induction
argument then leads to the conclusion that player I necessarily ends the game on
the first move.!” I suspect everyone is comfortable with the prediction that in a
two move game, player I stops the game immediately. However, while this logic
is the same in longer versions, many researchers are no longer comfortable with
the same prediction.'® It only requires one player to think that there is some
-chance that the other player is willing to play C initially to support playing C in
early moves. Similarly, if we consider the repeated prisoner’s dilemma, the logic
of backward induction (together with the property that the unique one period
dominant strategy equilibrium yields each player their maximin payoff) implies
that even in early periods cooperation is not possible.

3. Evolutionary Game Theory and Learning

The previous section argued that, of the various justifications that have been ad-
vanced for equilibrium analysis, learning is the least problematic. Evolutionary
game theory is a particularly attractive approach to learning. In the typical evo-
lutionary game theoretic model, there is a population of agents, each of whose
payoff is a function of not only how they behave, but also how the agents they
interact with behave. At any point in time, behavior within the population is
distributed over the different possible strategies, or behaviors. If the population

17This argument is not special to the extensive form. If the centipede is represented as a
normal form game, this backward induction is mimicked by the iterated deletion of weakly
dominated strategies.

While this game has many Nash equilibria, they all involve the same behavior on the equi-
librium path: player I chooses E;. The equilibria only differ in the behavior of players off-the-
equilibrium-path.

¥Indeed, more general knowledge-based considerations have led some researchers to focus on
the procedure of one round of weak domination followed by iterated rounds of strict domination.
A nice (although technical) discussion is Dekel and Gul (1997).
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is finite, a state (of the population} is a description of which agents are choosing
which behavior. If the population is infinite, a state is a description of the frac-
tions of the population that are playing each strategy. If a player can maximize,
and knows the state, then he can choose a best reply. If he does not know the state
of the population, then he must draw inferences about the state from whatever
information he has. In addition, even given knowledge of the state, the player
may not be able to calculate a best reply. Calculating a best reply requires that
a player know all the strategies available and the payoff implications of all these
strategies. The observed history of play is now valuable for two reasons. First,
the history conveys information about how the opponents are expected to play.
Second, the observed success or failure of various choices helps players determine
what might be good strategies in the future. lmitation is often an important
part of learning; successful behavior tends to be imitated. In addition, successful
behavior will be taught. To the extent that players are imitating successful be-
havior and not explicitly calculating best replies, it is not necessary for players to
distinguish between knowledge of the game being played and knowledge of how
opponents are playing. Players need know only what was successful, not why it
was successful.

Evolutionary game theoretic models are either static or dynamic, and the
dynamics are either in discrete or continuous time. A discrete time dynamic is
a function that specifies the state of the population in period £ + 1 as a function
of the state in period ¢, i.e., given a distribution of behavior in the population,
the dynamic specifies next period’s distribution. A continuous time dynamic
specifies the relative rates of change of the fractions of the population playing each
strategy as a function of the current state. Evolutionary (also known as selection
or learning) dynamics specify that behavior that is successful this period will be
played by a larger fraction in the immediate future. Static models study concepts
that are intended to capture stability ideas motivated by dynamic stories without
explicitly analyzing dynamics.

An important point is that evolutionary dynamics do not build in any as-
sumptions on behavior or knowledge, other than the basic principle of differential
selection—apparently successful behavior increases its representation in the pop-
ulation, while unsuccessful behavior does not.

Evolutionary models are not structural models of learning or bounded ra-
tionality. While the motivation for the basic principle of differential selection
involves an appeal to learning and bounded rationality, individuals are not ex-
plicitly modelled. The feature that successful behavior last period is an attractive
choice this period does seem to require that agents are naive learners. They do
not believe, or understand, that their own behavior potentially affects future play

12



of their opponents, and they do not take into account the possibility that their
opponents are similarly engaged in adjusting their own behavior. Agents do not
look for patterns in historical data. They behave as if the world is stationary,
even though their own behavior should suggest to them it is not.!® Moreover,
agents behave as if they believe that other agents’ experience is relevant for them.
Imitation then seems reasonable. Note that the context here is important. This
style of modelling does not lend itself to small numbers of agents. If there is
only a small population, is it plausible to believe that the agents are not aware
of this? And if agents are aware, then imitation is not a good strategy. As we
will see, evolutionary dynamics have the property that, in large populations, if
they converge then they converge to a Nash equilibrium.?® This property is a
necessary condition for any reasonable model of social learning. For suppose we
had a model in which behavior converged to something that is not a Nash equi-
librium. Since the environment is eventually stationary and there is a behavior
(strategy) available to some agent that yields a higher payoff, then that agent
should eventually figure this out and so deviate.?!

One concern sometimes raised about evolutionary game theory is that its
agents are implausibly naive. This concern is misplaced. If an agent is boundedly
rational, then he does not understand the model as written. Typically, this
model is very simple (so that complex dynamic issues can be studied) and so the
bounds of the rationality of the agents are often quite extreme. For example,
agents are usually not able to detect any cycles generated by the dynamics. Why
then are the agents not able to figure out what the modeler can? As in most
of economic theory, the role of models is to improve our intuition and to deepen
our understanding of how particular economic or strategic forces interact. For
this literature to progress, we must analyze (certainly now, and perhaps forever)
simple and tractable games. The games are intended as examples, experiments,
and allegories. Modelers do not make assumptions of bounded rationality because
they believe players are stupid, but rather that players are not as sophisticated
as our models generally assume. In an ideal world, modelers would study very

191t is difficult to build models of boundedly rational agents who look for patterns. Aoyagi
(1996) and Sonsino (1997) are rare examples of models of boundedly rational agents who can
detect cycles.

2®More accurately, they converge to a Nash equilibrium of the game determined by the strate-
gies that are played along the dynamic path. It is possible that the limit point fails to be a Nash
equilibrium because a strategy that is not played along the path has a higher payoff than any
strategy played along the path.

Even if there is “drift” (see the ultimatum game below}), the limit point will be close to a Nash
equilibrium.

210f course, this assumes that this superior strategy is something the agent could have thought
of. If the strategy is never played, then the agent might never think of it.

13
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Bold Cautious
Bold 0 3
Cautious 1 2

Figure 4: Payoff to a trader following the row strategy against a trader following
the column strategy. The gains from trade are 4.

complicated games and understand how agents who are boundedly rational in
some way behave and interact. But the world is not ideal and these models are
intractable. In order to better understand these issues, we need to study models
that can be solved. Put differently, the bounds on rationality are to be understood
relative to the complexity of the environment.

4. Nash Equilibrium as an Evolutionary Stable State

Consider a population of traders that engage in randomly determined pairwise
meetings. As is usual, I will treat the large population as being infinite. Suppose
that when two traders meet, each can choose one of two strategies, “bold” and
“cautious.” If a trader has chosen to be “bold,” then he will bargain aggressively,
even to the point of losing a profitable trade; on the other hand, if a trader has
chosen to be “cautious,” then he will never lose a profitable trade. If a bold trader
bargains with a cautious trader, a bargain will be struck that leaves the majority
of gains from trade with the bold trader. If two cautious traders bargain, they
equally divide the gains from trade. If two bold traders bargain, no agreement is
reached. One meeting between two traders is depicted as the symmetric game in
Figure 4.22

Behaviors with higher payoffs are more likely to be followed in the future.
Suppose that the population originally consists only of cautious traders. If no
trader changes his behavior, the population will stay this way. Now suppose
there is a perturbation that results in the introduction of some bold traders into
the population. This perturbation may be the result of entry, perhaps traveling
traders from another community have arrived, or experimentation, perhaps some
of the traders are not sure that they are behaving optimally and try something
different.?® In a population of cautious traders, bold traders also consummate
their deals and receive a higher payoff than the cautious traders. So over time the

22This is the Hawk-Dove game traditionally used to introduce the concept of an evolutionary
stable strategy.
23In the biological context, this perturbation is referred to as a mutation or an invasion.
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fraction of cautious traders in the population will decrease and the fraction of bold
traders will increase. However, once there are enough bold traders in the popula-
tion, bold traders no longer have an advantage (on average) over cautious traders
(since two bold traders cannot reach an agreement), and so the fraction of bold
traders will always be strictly less than one. Moreover, if the population consists
entirely of bold traders, a cautious trader can successfully invade the population.
The only stable population is divided between bold and cautious traders, with
the precise fraction determined by payoffs. In our example, the stable population
is equally divided between bold and cautious traders. This is the distribution
with the property that bold and cautious traders have equal payoffs (and so also
describes a mixed strategy Nash equilibrium). At that distribution, if the popu-
lation is perturbed, so that, for example, slightly more than half the population
are now bold while slightly less than half are cautious, cautious traders have a
higher payoff and so learning will lead to an increase in the number of cautious
traders at the expense of bold traders, until balance is once again restored.

It is worth emphasizing that the final state is independent of the original
distribution of behavior in the population, and that this state corresponds to
the symmetric Nash equilibrium. Moreover, this Nash equilibrium is dynamically
stable: any perturbation from this state is always eliminated.

This parable illustrates the basics of an evolutionary game theory model,
in particular, the interest in the dynamic behavior of the population. The next
section describes the well-known notion of an evolutionary stable strategy, a static
notion that attempts to capture dynamic stability. Section 4.2 then describes
explicit dynamics, while Section 4.3 discusses asymmetric games.

4.1. Evolutionary stable strategies

In the biological setting, the idea that a stable pattern of behavior in a popula-
tion should be able to eliminate any invasion by a “mutant” motivated Maynard
Smith and Price (1973) to define an evolutionary stable strategy (ESS).?* If a
population pattern of behavior is to eliminate invading mutations, it must have a
higher fitness than the mutant in the population that results from the invasion. In
biology, animals are programmed (perhaps genetically) to play particular strate-
gies and the payoff is interpreted as “fitness,” with fitter strategies having higher
reproductive rates (reproduction is asexual).

It will be helpful to use some notation at this point. The collection of avail-
able behaviors (strategies) is S and the payoff to the agent choosing ¢ when his

%4Good references on biological dynamics and evolution are Maynard Smith (1982) and Hof-
bauer and Sigmund (1988).
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opponent chooses j is 7(Z, 7). We will follow most of the literature in assuming
that there is only a finite number of available strategies. Any behavior in S is
called pure. A mized strategy is a probability distribution over pure strategies.
While any pure strategy can be viewed as the mixed strategy that places prob-
ability one on that pure strategy, it will be useful to follow the convention that
the term “mixed strategy” always refers to a mixed strategy that places strictly
positive probability on at least two strategies. Mixed strategies have two leading
interpretations as a description of behavior in a population: either the population
is monomorphic, in which every member of the population plays the same mixed
strategy, or the population is polymorphic, in which each member plays a pure
strategy and the fraction of the population playing any particular pure strategy
equals the probability assigned to that pure strategy by the mixed strategy.?®
As will be clear, the notion of an evolutionary stable strategy is best understood
by assuming that each agent can choose a mixed strategy and the population is
originally monomorphic.

Definition 1. A (potentially mixed) strategy p is an Evolutionary Stable Strat-
egy (ESS) if:

1. the payoff from playing p against p is at least as large as the payoff from
playing any other strategy against p; and

2. for any other strategy q that has the same payoff as p against p, the payoff
from playing p against q is at least as large as the payoff from playing q
against q.%8

Thus, p is an evolutionary stable strategy if it is a symmetric Nash equilibrium,
and if, in addition, when q is also a best reply to p then p does better against ¢
than ¢ does. For example, a is an ESS in the game in Figure 5. ESS is a static
notion that attempts to capture dynamic stability.

There are two cases to consider: The first is that p is a strict Nash equilibrium
(see footnote 9). Then, p is the only best reply to itself (so p must be pure), and
any agent playing ¢ against a population whose members mostly play p receives
a lower payoff (on average) than a p player. As a result, the fraction of the
population playing ¢ shrinks.

25The crucial distinction is whether agents can play and inherit (learn) mixed strategies. If
not, then any mixed strategy state is necessarily the result of & polymorphic population. On the
other hand, even if agents can play mixed strategies, the population may be polymorphic with
different agents playing different strategies.

26The payoff to p against qis 7(p, q) = Zij (1, j)piq;. Formally, the strategy pis an ESS if, for
all ¢, m(p,p) > w(q,p), and if there exists ¢ # p such that n(p, p) = 7{g, p), then 7(p, ¢) > 7(q,¢).
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The other possibility is that p is not the only best reply to itself (if p is a
mixed strategy, then any other mixture with the same or smaller support is also
a best reply to p). Suppose g is a best reply to p. Then both an agent playing
p and an agent playing ¢ earn the same payoff against a population of p players.
After the perturbation of the population by the entry of ¢ players, however, the
population is not simply a population of p players. There is also a small fraction of
g players, and their presence will determine whether the g players are eliminated.
The second condition in the definition of ESS guarantees that in the perturbed
population, it is the p players who do better than the ¢ players when they play
against a g player.

4.2. The replicator and other more general dynamics

While plausible, the story underlying ESS suffers from its reliance on the assump-
tion that agents can learn (in the biological context, inherit) mixed strategies.
ESS is only useful to the extent that it appropriately captures some notion of dy-
namic stability. Suppose individuals now choose only pure strategies. Define p!
as the proportion of the population choosing strategy ¢ at time ¢. The state of the
population at time ¢ is then p* = (p!,...,p!,), where n is the number of strategies
(of course, p' is in the n — 1 dimensional simplex). The simplest evolutionary dy-
namic one could use to investigate the dynamic properties of ESS is the replicator
dynamic. In its simplest form, this dynamic specifies that the proportional rate of
growth in a strategy’s representation in the population, p%, is given by the extent
to which that strategy does better than the population average.?” The payoff to
strategy i when the state of the population is p is 7(¢,p") = 3, 7(4, /)pt, while
the population average payoff is 7(p%,p*) = X, 7(¢, 7)pip%. The continuous time
replicator dynamic is then:

dd—ig =} x (n(6,p") = 7(0', ")) - @

#TThe replicator dynamic can also be derived from more basic biological arguments.
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Thus, if strategy ¢ does better than average, its representation in the population
grows (dpt/dt > 0), and if another strategy 7’ is even better, then its growth rate
is also higher than that of strategy 7. Equation (1) is a differential equation that,
together with an initial condition, uniquely determines a path for the population
that describes, for any time ¢, the state of the population.

A state is a rest point of the dynamics if the dynamics leave the state un-
changed (i.e., dpt/dt = 0 for all £). A rest point is Liapunov stable if the dynamics
do not take states close to the rest point far away. A rest point is asymptotically
stable if, in addition, any path (implied by the dynamics) that starts sufficiently
close to the rest point converges to that rest point.

There are several features of the replicator dynamic to note. First, if a pure
strategy is extinct (i.e., no fraction of the population plays that pure strategy)
at any point of time, then it is never played. In particular, any state in which
the same pure strategy is played by every agent (and so every other strategy is
extinct) is a rest point of the replicator dynamic. So, being a rest point is not
a sufficient condition for Nash equilibrium. This is a natural feature that we
already saw in our discussion of the game in Figure 4—if everyone is bargaining
cautiously and if traders are not aware of the possibilities of bold play, then there
is no reason for traders to change their behavior (even though a rational agent
who understood the payoff implications of the different strategies available would
choose bold behavior rather than cautious).

Second, the replicator dynamic is not a best reply dynamic: strategies that are
not best replies to the current population will still increase their representation in
the population if they do better than average (this feature only becomes apparent
when there are at least three available strategies). This again is consistent with
the view that this is a model of boundedly rational learning, where agents do not
understand the full payoff implications of the different strategies.

Finally, the dynamics can have multiple asymptotically stable rest points.
The asymptotic distribution of behavior in the population can depend upon the
starting point. Returning to the stag hunt game of Figure 1, if a high fraction of
workers has chosen high effort historically, then those workers who had previously
chosen low effort would be expected to switch to high effort, and so the fraction
playing high effort would increase. On the other hand, if workers have observed
low effort, perhaps low effort will continue to be observed. Under the replicator
dynamic (or any deterministic dynamic that rewards actions with higher payoffs),
if pign > 3/5, then phyy — 1, while if pl,, < 3/5, then pf, — 0. The
equilibrium that players eventually learn is determined by the original distribution
of players across high and low effort. If the original distribution is random (e.g.,
pgigh is determined as a realization of a uniform random variable), then the low
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effort equilibrium is 3/5’s as likely to arise as the high effort equilibrium. This
notion of path dependence—that history matters—is important and attractive.

Zeeman (1980) and Taylor and Jonker (1978) have shown that if p is an
ESS, it is asymptotically stable under the continuous time replicator dynamic,
and that there are examples of asymptotically stable rest points of the replicator
dynamic that are not ESS. If dynamics are specified that allow for mixed strategy
inheritance, then p is an ESS if and only if it is asymptotically stable (see Hines
(1980), Robson (1992), and Zeeman (1981)). A point I will come back to is that
both asymptotic stability and ESS are concerned with the stability of the system
after a once and for all perturbation. They do not address the consequences of
continual perturbations. As we will see, depending upon how they are modelled,
continual perturbations can profoundly change the nature of learning.

While the results on the replicator dynamic are suggestive, the dynamics are
somewhat restrictive, and there has been some interest in extending the analysis
to more general dynamics.?® Interest has focused on two classes of dynamics.
The first, monotone dynamics, roughly requires that on average, players switch
from worse to better (not necessarily the best) pure strategies. The second,
more restrictive, class, aggregate monotone dynamics, requires that, in addition,
the switching of strategies have the property that the induced distribution over
strategies in the population have a higher average payoff. It is worth noting
that the extension to aggregate monotone dynamics is not that substantial: ag-
gregate monotone dynamics are essentially multiples of the replicator dynamic
(Samuelson and Zhang (1992)).

Since, by definition, a Nash equilibrium is a strategy profile with the property
that every player is playing a best reply to the behavior of the other players,
every Nash equilibrium is a rest point of any monotone dynamic. However, since
the dynamics may not introduce behavior that is not already present in the pop-
ulation, not all rest points are Nash equilibria. If a rest point is asymptotically
stable, then the learning dynamics, starting from a point close to the rest point
but with all strategies being played by a positive fraction of the population, con-
verge to the rest point. Thus, if the rest point is not a Nash equilibrium, some
agents are not optimizing and the dynamics will take the system away from that
rest point. This is the first major message from evolutionary game theory: if the

ZThere has also been recent work exploring the link between the replicator dynamic and ex-
plicit models of learning. Bérgers and Sarin (1995) consider a single boundedly rational decision
maker using a version of the Bush and Mosteller (1951, 1955) model of positive reinforcement
learning, and show that the equation describing individual behavior looks like the replicator
dynamic. Gale, Binmore and Samuelson {1995} derive the replicator dynamic from a behavioral
model of aspirations. Schlag (1994) derives the replicator dynamic in a bandit setting, where
agents learn from others.
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owrner Bold 0,0 3,1
Cautious | 1,3 2,2

Figure 6: Payoffs to two traders bargaining in the row trader’s establishment.
The first number is the owner’s payoff, the second is the visitor’s. The gains from
trade are 4.

state is asymptotically stable, then it describes a Nash equilibrium.

4.3. Asymmetric games and nonexistence of ESS

The assumption that the traders are drawn from a single population and that the
two traders in any bargaining encounter are symmetric is important. In order for
two traders in a trading encounter to be symmetric in this way, their encounter
must be on “neutral” ground, and not in one of their establishments.?® Another
possibility is that each encounter occurs in one of the traders’ establishments, and
the behavior of the traders depends upon whether he is the visitor or the owner
of the establishment. This is illustrated in Figure 6. This game has three Nash
equilibria: The stable profile of a fifty-fifty mixture between cautious and bold
behavior is still a mixed strategy equilibrium (in fact, it is the only symmetric
equilibrium). There are also two pure strategy asymmetric equilibria (the owner
is bold, while the visitor is cautious; and the owner is cautious, while the visitor
is bold). Moreover, these two pure strategy equilibria are strict.

Symmetric games, like that in Figure 6, have the property that the strategies
available to the players do not depend upon their role , i.e., row (owner) or column
(visitor). The assumption that in a symmetric game, agents cannot condition on
their role is called no role identification. In most games of interest, the strategies
available to a player also depend upon his role. Even if not, as in the example just
discussed, there is often some distinguishing feature that allows players to identify
their role (such as the row player being the incumbent and the column player being
an entrant in a contest for a location). Such games are called asymmetric.

The notion of an ESS can be applied to such games by either changing the
definition to allow for asymmetric mutants (as in Swinkels (1992)), or, equiva-
lently, by symmetrizing the game. The symmetrized game is the game obtained
by assuming that, ez ante, players do not know which role they will have, so that

?®More accurately, the traders’ behavior cannot depend on the location.
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Figure 7: The asymmetric version of the game in Figure 5. The strategy (a,«)
is not an ESS of the symmetrized game, since the payoff to (a, ) when playing
against (b, ) equals the payoff to (b, &) when playing against (b, @) (which equals
3m(a,a) + 3m(a,b) = 3).

players’ strategies specify behavior conditional on different roles, and first having
a move of nature that allocates each player to a role. (In the trader example, a
coin flip for each trader determines whether the trader stays “home” this period,
or visits another establishment.) However, every ESS in such a symmetrized game
is a strict equilibrium (Selten (1980)). This is an important negative result, since
most games (in particular, non-trivial extensive form games) do not have strict
equilibria and so ESSs do not exist for most asymmetric games.

The intuition for the nonexistence is helpful in what comes later, and is most
easily conveyed if we take the monomorphic interpretation of mixed strategies.
Fix a non-strict Nash equilibrium of an asymmetric game, and suppose it is the
row player that has available other best replies. Recall that a strategy specifies
behavior for the agent in his role as the row player and also in his role as the
column player. The mutant of interest is given by the strategy that specifies
one of these other best replies for the row role and the existing behavior for the
column role. This mutant is not selected against, since its expected payoff is the
same as that of the remainder of the population. First note that all agents in
their column role still behave the same as before the invasion. Then, in his row
role, the mutant is (by assumption) playing an alternative best reply, and in his
column role he receives the same payoff as every other column player (since he is
playing the same as them). See Figure 7. The idea that evolutionary (or selection)
pressures may not be effective against alternative best replies plays an important
role in subsequent work on cheap talk and forward and backward induction.

It is also helpful to consider the behavior of dynamics in a two-population
world playing the trader game. There are two populations, owners and visitors.
A state now consists of the pair (p,q), where p is the fraction of owners who
are bold, while g is the fraction of visitors who are bold.3® There is a separate
replicator dynamic for each population, with the payoff to a strategy followed

307This is equivalent to considering dynamics in the one-population model where the game is
symmetrized and p is the fraction of the population who are bold in the owner role.
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Figure 8: The phase diagram for the two population trader game.

by an owner depending only on ¢, and not p (this is the observation from the
previous paragraph that row players do not interact with row players). While
(p*,q*), where p* = ¢* = %, is still a rest point of the two dimensional dynamical
system describing the evolution of trader behavior, it is no longer asymptotically
stable. The phase diagram is illustrated in Figure 8. If there is a perturbation,
then owners and traders move toward one of the two strict pure equilibria. Both
of the asymmetric equilibria are asymptotically stable.

If the game is asymmetric, then we have already seen that the only ESS
are strict equilibria. There is a similar lack of power in considering asymptotic
stability for general dynamics in asymmetric games. In particular, asymptotic
stability in asymmetric games implies “almost” strict Nash equilibria, and if the
profile is pure, it is strict.3! For the special case of replicator dynamics, a Nash

8lSamuelson and Zhang (1992, p. 377) has the precise statement. See also Friedman (1991)
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Figure 9: Any state in which all agents in population 2’s play L is a stable rest
point.

equilibrium is asymptotically stable if and only if it is strict (Ritzberger and
Weibull (1995)).

5. Which Nash equilibrium?

Beyond excluding non-Nash behavior as stable outcomes, evolutionary game the-
ory has provided substantial insight into the types of behavior that are consistent
with evolutionary models, and the types of behavior that are not.

5.1. Domination

The strongest positive results concern the behavior of the dynamics with respect
to strict domination: If a strategy is strictly dominated by another (that is,
it yields a lower payoff than the other strategy for all possible choices of the
opponents), then over time that strictly dominated strategy will disappear (a
smaller fraction of the population will play that strategy). Once that strategy
has (effectively) disappeared, any strategy that is now strictly dominated (given
the deletion of the original dominated strategy) will also now disappear.

There is an important distinction here between strict and weak domination. It
is not true that weakly dominated strategies are similarly eliminated. Consider
the game taken from Samuelson and Zhang (1992, p. 382) in Figure 9. It is
worth noting that this is the normal form of the extensive form game with perfect
information given in Figure 10.

There are two populations, with agents in population 1 playing the role of
player 1 and agents in population 2 playing the role of player 2. Any state in
which all agents in population 2 play L is Liapunov stable: Suppose the state
starts with almost all agents in population 2 playing L. There is then very little
incentive for agents in the first population playing B to change behavior, since
T is only marginally better (moreover, if the game played is in fact the extensive

and Weibull (1995) for general results on continuous time dynamics.
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Figure 10: An extensive form game with the normal form in Figure 9.

form of Figure 10, then agents in population 1 only have a choice to make if
they are matched with one of the few agents choosing R). So, dynamics will
not move the state far from its starting point, if the starting point has mostly
L-playing agents in population 2. If we model the dynamics for this game as a

two-dimensional continuous time replicator dynamic, we have32
dp
——=p"x(1-p)(1-4"), and
dt
dg* t t
R — x (1 —
o =9 x(1-9),

where p is the fraction of population 1 playing T and ¢! is the fraction of pop-
ulation 2 playing L. The adjustment of the fraction of population 2 playing L
reflects the strict dominance of L over R: Since L always does better than R, if

32The two-population version of (1) is:

dp!/dt = p - (m1(i,q") — m1(p*,¢%)), and
dg;/dt = g} - (ma(p*, 5) — m2(p", q")),

where 7 (2, 7) is player k’s payoff from the strategy pair (z,5) and mx(p,q) =Y, ; mk(t,7)pig;-
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Figure 11: The phase diagram for the game with weak dominance.

q' is interior (that is, there are both agents playing L and R in the population)
the fraction playing L increases (dg'/dt > 0), independently of the fraction in
population 1 playing T, with the adjustment only disappearing as ¢' approaches
1. The adjustment of the fraction of population 1 playing T, on the other hand
depends on the fraction of population 2 playing R: if almost all of population 2 is
playing L (g* is close to 1), then the adjustment in p’ is small (in fact, arbitrarily
small for g arbitrarily close to 1), no matter what the value of p*. The phase
diagram is illustrated in Figure 11.

It is also important to note that no rest point is asymptotically stable. Even
the state with all agents in population 1 playing T" and all agents in population 2
playing L is not asymptotically stable, because a perturbation that increases the
fraction of population 2 playing R while leaving the entire population 1 playing
T will not disappear: the system has been perturbed towards another rest point.
Nothing prevents the system from “drifting” along the heavy lined horizontal
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segment in Figure 11. Moreover, each time the system is perturbed from a rest
point toward the interior of the state space (so that there is a positive fraction
of population 1 playing B and of population 2 playing R), it typically returns to
a different rest point (and for many perturbations, to a rest point with a higher
fraction of population 2 playing L). This logic is reminiscent of the intuition given
earlier on for the nonexistence of ESS in asymmetric games. It also suggests that
sets of states will have better stability properties than individual states.

Recall that if a single strategy profile is “evolutionarily stable” then behavior
within the population, once near that profile, converges to it and never leaves
it. A single strategy profile describes the aggregate pattern of behavior within
the population. A set of strategy profiles is a collection of such descriptions.
Loosely, we can think of a set of strategy profiles as being “evolutionarily stable”
if behavior within the population, once near any profile in the set, converges to
some profile within it and never leaves the set. The important feature is that
behavior within the population need not settle down to a steady state, rather it
can “drift” between the different patterns within the “evolutionarily stable” set.

5.2. The ultimatum game and backward induction

The ultimatum game is a simple game with multiple Nash equilibria and a unique
backward induction outcome. There is a $§1 to divide. The proposer proposes a
division to the responder. The responder either accepts the division, in which case
it is implemented, or rejects it, in which case both players receive nothing. If the
proposer can make any proposal, the only backward induction solution has the
receiver accepting the proposal in which the proposer receives the entire dollar. If
the dollar must be divided into whole pennies, there is another solution in which
the responder rejects the proposal in which he receives nothing and accepts the
proposal of 99 cents to the proposer and 1 cent to the responder. This prediction
is uniformly rejected in experiments!

How do Gale et al. (1995) explain this? The critical issue is the relative speeds
of convergence. Both proposers and responders are “learning.” The proposers
are learning which offers will be rejected (this is learning as we have been dis-
cussing it). In principle, if the environment (terms of the proposal) is sufficiently
complicated, responders may have difficulty evaluating offers. In experiments,
responders do reject as much as 30 cents. However, it is difficult to imagine that
responders do not understand that 30 cents is better than zero. There are at
least two possibilities that still allow the behavior of the responders to be viewed
as learning. The first is that responders do not believe the rules of the game
as described and take time to learn that the proposer really was making a take-
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it-or-leave-it offer, As mentioned in footnote 6, most people may not be used
to take-it-or-leave-it offers, and it may take time for the responders to properly
appreciate what this means. The second is that the monetary reward is only one
ingredient in responders’ utility functions, and that responders must learn what
the “fair” offer is.

If proposers learn sufficiently fast relative to responders, then there can be
convergence to a Nash equilibrium that is not the backward induction solution.
In the backward induction solution, the responder gets almost nothing, so that the
cost of making an error is low, while the proposer loses significantly if he misjudges
the acceptance threshold of the responder. In fact, in a simplified version of the
ultimatum game, Nash equilibria in which the responder gets a substantial share
are stable (although not asymptotically stable). In a non-backward induction
outcome, the proposer never learns that he could have offered less to the responder
(since he never observes such behavior). If he is sufficiently pessimistic about the
responder’s acceptance threshold, then he will not offer less, since a large share
is better than nothing. Consider a simplified ultimatum game that gives the
proposer and responder two choices: the proposer either offers even division or
a small positive payment, and the responder only responds to the small positive
payment (he must accept the equal division). Figure 12 is the phase diagram
for this simplified game. While this game has some similarities to that in Figure
9, there is also an important difference. All the rest points inconsistent with
the backward induction solution (with the crucial exception of the point labelled
A) are Liapunov stable (but not asymptotically so). Moreover, in response to
some infrequent perturbations, the system will effectively “move along” these
rest points toward A. But once at A (unlike the corresponding stable rest point
in Figure 11), the system will move far away. The rest point labelled A is not
stable: Perturbations near can move the system onto a trajectory that converges
to the backward induction solution.

While this seems to suggest that non-backward induction solutions are fragile,
such a conclusion is premature. Since any model is necessarily an approximation,
it is important to allow for drift. Binmore and Samuelson (1996) use the term
drift to refer to unmodelled small changes in behavior. One way of allowing for
drift would be to add to the learning dynamic an additional term reflecting a
deterministic flow from one strategy to another that was independent of payoffs.
In general, this drift would be small, and in the presence of strong incentives to
learn, irrelevant. However, if players (such as the responders above) have little
incentive to learn, then the drift term becomes more important. In fact, adding
an arbitrarily small uniform drift term to the replicator dynamic changes the
dynamic properties in a fundamental way. With no drift, the only asymptotically
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Figure 12: A suggestive phase diagram for a simplified version of the ultimatum
game.
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stable rest point is the backward induction solution. With drift, there can be
another asymptotically stable rest point near the non backward-induction Nash
equilibria.

The ultimatum game is special in its simplicity. Ideas of backward induc-
tion and sequential rationality have been influential in more complicated games
(like the centipede game, the repeated prisoner’s dilemma, and alternating offer
bargaining games). In general, backward induction has received little support

from evolutionary game theory for more complicated games (see, for example,
Cressman and Schlag (1995), Noldeke and Samuelson (1993), and Ponti (1996)).

5.3. Forward induction and efficiency

In addition to backward induction, the other major refinement idea is forward
induction. In general, forward induction receives more support from evolution-
ary arguments than does backward induction. The best examples of this are
in the context of cheap talk (starting with Matsui (1991)). Some recent papers
are Bhaskar (1995), Blume, Kim and Sobel (1993), Kim and Sobel (1995), and
Wiérneryd (1993)—see Sobel (1993) and Samuelson (1993) for a discussion.

Forward induction is the idea that actions can convey information about the
future intentions of players even off the equilibrium path. Cheap talk games
(signaling games in which the messages are costless) are ideal to illustrate these
ideas. Cheap talk games have both revealing equilibria (cheap talk can convey
information) and the so-called babbling equilibria (messages do not convey any
information because neither the sender nor the receiver expects them to), and
forward induction has been used to eliminate the babbling equilibria.

Consider the following cheap talk game: There are two states of the world,
rain and sun. The sender knows the state and announces a message, rain or sun.
On the basis of the message, the receiver chooses an action, picnic or movie. Both
players receive 1 if the receiver’s action agrees with the state of the world (i.e.,
picnic if sun, and movie if rain), and 0 otherwise. Thus, the sender’s message is
payoff irrelevant and so is “cheap talk”. The obvious pattern of behavior is for the
sender to signal the state by making a truthful announcement in each state and for
the receiver to then choose the action that agrees with the state. In fact, since the
receiver can infer the state from the announcement (if the announcement differs
across states), there are two separating equilibrium profiles (truthful announcing,
where the sender announces rain if rain and sun if sun; and false announcing,
where sender announces sun if rain and rain if sun).

A challenge for traditional non-cooperative theory, however, is that babbling
is also an equilibrium: The sender places equal probability on rain and sun, in-

29



dependent of the state. The receiver, learning nothing from the message, places
equal probability on rain and sun. Consider ESS in the symmetrized game
(where each player has equal probability of being the sender or receiver). It turns
out that only separating equilibria are ESS. The intuition is in two parts. First,
the babbling equilibrium is not an ESS: Consider the truthful entrant (who an-
nounces truthfully and responds to announcements by choosing the same action
as the announcement). The payoff to this entrant is strictly greater than that of
the babbling strategy against the perturbed population (both receive the same
payoff when matched with the babbling strategy, but the truthful strategy does
strictly better when matched with the truthful strategy). Moreover, the sepa-
rating equilibria are strict equilibria, and so, ESSs. Suppose, for example, all
players are playing the truthful strategy. Then any other strategy must yield
strictly lower payoffs: Either, as a sender, the strategy specifies an action condi-
tional on a state that does not correspond to that state, leading to an incorrect
action choice by the truthful receiver, or, as a responder, the strategy specifies
an incorrect action after a truthful announcement).

This simple example is driven by the crucial assumption that the number of
messages equals the number of states. If there are more messages than states,
then there are no strict equilibria, and so no ESSs. To obtain similar efficiency
results for a larger class of games, we need to use set-valued solution concepts,
such as cyclical stability {Gilboa and Matsui (1991)) used by Matsui (1991) and
equilibrium evolutionary stability (Swinkels (1992)) used by Blume et al. (1993).
Matsui (1991) and Kim and Sobel (1995) study coordination games with a pre-
play round of communication. In such games, communication can allow players
to coordinate their actions. However, as in the above example, there are also bab-
bling equilibria, so that communication appears not to guarantee coordination.
Evolutionary pressures, on the other hand, destabilize the babbling equilibria.
Blume et al. (1993) study cheap talk signaling games like that of the example.
Bhaskar (1995) obtains efficiency with noisy pre-play communication, and shows
that, in his context at least, the relative importance of noise and mutations is
irrelevant.

The results in this area strongly suggest that evolutionary pressures can desta-~
bilize inefficient outcomes. The key intuition is that suggested by the example
above. If an outcome is inefficient, then there is an entrant that is equally suc-
cessful against the current population, but that can achieve the efficient outcome
when playing against a suitable opponent. A crucial aspect is that the model
allow the entrant to have sufficient flexibility to achieve this, and that is the role
of cheap talk above.
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column player
H L
H | 100,100 | 0,0
row player L 0,0 1,1

Figure 13: (H, H) seems more likely than (L, L)

5.4. Multiple strict equilibria

Multiple best replies for a player raise the question of determining which of these
best replies are “plausible” or “sensible.” The refinements literature (of which
backward and forward induction are a part) attempted to answer this question,
and by so doing eliminate some equilibria as being uninteresting. Multiple strict
equilibria raise a completely new set of issues. It is also worth recalling that any
strict equilibrium is asymptotically stable under any monotonic dynamic. I ar-
gued earlier that this led to the desirable feature of history dependence. However,
even at an intuitive level, some strict equilibria are more likely. For example, in
the game described by Figure 13, (H, H) seems more likely than (L, L). There
are several ways this can be phrased. Certainly, (H, H) seems more “focal,” and
if asked to play this game, I would play H, as would (I suspect) most people.
Another way of phrasing this is to compare the basins of attraction of the two
equilibria under monotone dynamics (they will all agree in this case, since the
game is so simple),33 and observe that the basin of attraction of (H, H) is 100-
times the size of (L, L). If we imagine that the initial condition is chosen randomly,
then the H pattern of behavior is 100 times as likely to arise. I now describe a
more recent perspective that makes the last idea more precise by eliminating the
need to specify an initial condition.

The motivation for ESS and (asymptotic) stability was a desire for robustness
to a single episode of perturbation. It might seem that if learning operates at
a sufficiently higher rate than the rate at which new behavior is introduced into
the population, focusing on the dynamic implications of a single perturbation is
reasonable. Foster and Young (1990) have argued that the notions of an ESS
and attractor of the replicator dynamic do not adequately capture long-run sta-
bility when there are continual small stochastic shocks. Young and Foster (1991)
describe simulations and discuss this issue in the context of Axelrod (1984)’s
computer tournaments.

33 A state is in the basin of attraction of an equilibrium if, starting at that state and applying
the dynamic, eventually the system is taken to the state in which all players play the equilibrium
strategy.
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There is a difficulty that must be confronted when explicitly modelling ran-
domness. As I mentioned above, the standard replicator dynamic story is an
idealization for large populations (specifically, a continuum). If the mutations-
experimentation occurs at the individual level, there should be no aggregate im-
pact; the resulting evolution of the system is deterministic and there are no
“invasion events.” There are two ways to approach this. One is to consider ag-
gregate shocks (this is the approach of Foster and Young (1990) and Fudenberg
and Harris (1992)). The other is to consider a finite population and analyze the
impact of individual experimentation. Kandori, Mailath and Rob (1993) study
the implications of randomness on the individual level. In addition to empha-
sizing individual decision making, this paper analyzes the simplest model that
illustrates the role of perpetual randomness.

Consider again the stag hunt game, and suppose each work-team consists
of two workers. Suppose, moreover, that the firm has N workers. The relevant
state variable is z, the number of workers who choose high effort. Learning implies
that if high effort is a better strategy than low effort, then at least some workers
currently choosing low effort will switch to high effort, i.e., 287! > 2t if 2! < N. A
similar property holds if low effort is a better strategy than high. The learning or
selection dynamics describe, as before, a dynamic on the set of population states,
which is now the number of workers choosing high effort. Since we are dealing with
a finite set of workers, this can also be thought of as a Markov process on a finite
state space. The process is Markov, because, by assumption workers only learn
from last period’s experience. Moreover, both all workers choosing high effort
and all workers choosing low effort are absorbing states of this Markov process.3*
This is just a restatement of the observation that both states correspond to Nash
equilibria.

Perpetual randomness is incorporated by assuming that, in each period, each
worker independently switches his effort choice (i.e., experiments) with proba-
bility e, where € > 0 is to be thought of as small. In each period, there are
two phases: the learning phase and the experimentation phase. Note that af-
ter the experimentation phase (in contrast to the learning phase), with positive
probability, fewer workers may be choosing a best reply.

Attention now focuses on the behavior of the Markov chain with the perpetual
randomness. Because of the experimentation, every state is reached with posi-
tive probability from any other state (including the states in which all workers
choose high effort and all workers choose low effort). Thus, the Markov chain is
irreducible and aperiodic. It is a standard result that such a Markov chain has a
unique stationary distribution. Let p(e) denote the stationary distribution. The

34 An absorbing state is a state that the process, once in, never leaves.
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goal has been to characterize the limit of u(e) as € becomes small. This, if it
exists, is called the stochastically stable distribution (Foster and Young (1990))
or the limit distribution. States in the support of the limit distribution are some-
times called long-run equilibria (Kandori et al. (1993)). The limit distribution
is informative about the behavior of the system for positive but very small €.
Thus, for small degrees of experimentation, the system will spend almost all of
its time with all players choosing the same action. However, every so often (but
infrequently) enough players will switch action, which will then switch play of the
population to the other action, until again enough players switch.

It is straightforward to show that the stochastically stable distribution exists;
characterizing it is more difficult. Kandori et al. (1993) is mostly concerned with
the case of 2 x 2 symmetric games with two strict symmetric Nash equilibria. Any
monotone dynamic divides the state space into the same two basins of attraction
of the equilibria. The risk dominant equilibrium (Harsanyi and Selten (1988)) is
the equilibrium with the larger basin of attraction. The risk dominant equilibrium
is “less risky” and may be Pareto dominated by the other equilibrium (the risk
dominant equilibrium results when players choose best replies to beliefs that
assign equal probability to the two possible actions of the opponent). In the
stag hunt example, the risk dominant equilibrium is low effort and it is Pareto
dominated by high effort. In Figure 13, the risk dominant equilibrium is H and
it Pareto dominates L. Kandori et al. (1993) shows that the limit distribution
puts probability one on the risk dominant equilibrium. The non-risk dominant
equilibrium is upset because the probability of a sufficiently large number of
simultaneous mutations that leave society in the basin of attraction of the risk
dominant equilibrium is of higher order than that of a sufficiently large number
of simultaneous mutations that cause society to leave the basin of attraction.

This style of analysis allows us to formally describe strategic uncertainty. To
make this point, consider again the workers involved in team production as a
stag hunt game. For the payoffs as in Figure 1, risk dominance leads to the low
effort outcome even if each work team has only two workers. Suppose, though,
the payoffs are as in Figure 14, with V being the value of high effort (if recip-
rocated). For V > 6 and two-worker teams, the principles of risk dominance
and payoff dominance agree: high effort. But now suppose each team requires
n workers. While this is no longer a two player game, it is still true that (for
large populations) the size of the basin of attraction is the determining feature of
the example. For example if V = 8, high effort has a smaller basin of attraction
than low effort for all n > 3. As V increases, the size of the team for which high
effort becomes too risky increases.3® This attractively captures the idea that co-

35High effort has the larger basin of attraction if (1/2)" > 3/V.
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minimum of other workers’ efforts

high low
worker’s effort high | V 0
low 3 3

Figure 14: A new “stag-hunt” played by workers in a team.

operation in large groups can be harder than cooperation in small groups just
due to the uncertainty that everyone will cooperate. While a small possibility
of noncooperation by any one agent is not destabilizing in small groups (since
cooperation is a strict equilibrium), it is in large ones.

In contrast to both ESS and replicator dynamics, there is a unique outcome.
History does not matter. This is the result of taking two limits: first, time is
taken to infinity (which justifies looking at the stationary distribution), and then
the probability of mutation is taken to zero (looking at small rates). The rate
at which the stationary distribution is approached from an arbitrary starting
point is decreasing in population size (since the driving force is the probabil-
ity of a simultaneous mutation by a fraction of the population). Motivated by
this observation, Ellison (1993) studied a model with local interactions that has
substantially faster rates of convergence. The key idea is that, rather than play-
ing against a randomly drawn opponent from the entire population, each player
plays only against a small number of neighbors. The neighborhoods are overlap-
ping, however, so that a change of behavior in one neighborhood can (eventually)
influence the entire population.

Since it is only for the case of 2 X 2 symmetric games that the precise mod-
elling of the learning dynamic is irrelevant, extensions to larger games require
specific assumptions about the dynamics. Kandori and Rob (1995), Noldeke and
Samuelson (1993), and Young (1993) generalize the best reply dynamic in various
directions.

Kandori et al. (1993), Young (1993), and Kandori and Rob (1995) study
games with strict equilibria, and (as the example above illustrates) the relative
magnitudes of probabilities of simultaneous mutations are important. In con-
trast, Samuelson (1994) studies normal form games with nonstrict equilibria and
Noldeke and Samuelson (1993) studies extensive form games. In these cases, since
the equilibria are not strict, states that correspond to equilibria can be upset by a
single mutation. This leads to the limit distribution having nonsingleton support.
This is the reflection in the context of stochastic dynamics of the issues illustrated
by discussion of Figures 9, 10, and 12. In general, the support will contain “con-
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nected” components, in the sense that there is a sequence of single mutations
from one state to another state that will not leave the support. Moreover, each
such state will be a rest point of the selection dynamic. The results on extensive
forms are particularly suggestive, since a “connected” component of the support
corresponds to different specifications of off-the-equilibrium path behavior.

Stochastic dynamics does not, by itself, provide a general theory of equilibrium
selection. Bergin and Lipman (1996) show that the selection of the risk dominant
equilibrium in the 2x2 case is a result of a particular (plausible) assumption on the
limiting behavior of the mutation probabilities. Allowing the limiting behavior
of the mutation probabilities to depend on the state gives a general possibility
theorem: Any strict equilibrium can be selected by an appropriate choice of state-
dependent mutation probabilities. Binmore, Samuelson and Vaughan (1995), who
study the result of the selection process itself being the source of the randomness,
also obtain different selection results. Finally, the matching process itself can also
be an important source of randomness, see Young and Foster (1991) and Robson
and Vega-Redondo (1996).

6. Conclusion

The result that any asymptotically stable rest point of an evolutionary dynamic
is a Nash equilibrium is an important result. It shows that there are primitive
foundations for equilibrium analysis. However, for asymmetric games, asymptotic
stability is effectively equivalent to strict equilibria (which do not exist for many
games of interest). To a large extent, this is due to the focus on individual states.
If we instead consider sets of states (strategy profiles), as I discussed at the end
of Section 5.1, there is hope for more positive results.%6

The lack of support for the standard refinement of backward induction is in
some ways a success. Backward induction has always been a problematic princi-
ple, with some examples (like the centipede game) casting doubt on its universal
applicability. The reasons for the lack of support improve our understanding of
when backward induction is an appropriate principle to apply.

The ability to discriminate between different strict equilibria and provide a

38 Qets of strategy profiles that are asymptotically stable under plausible deterministic dynam-
ics turn out also to have strong Kohlberg and Mertens (1986) type stability properties (Swinkels
(1993)), in particular, the property of robustness to deletion of never weak best replies. This
latter property implies many of the refinements that have played an important role in the re-
finements literature and signaling games, such as the intuitive criterion, the test of equilibrium
domination, and D1 (Cho and Kreps (1987)). A similar result under different conditions was
subsequently proved by Ritzberger and Weibull (1995), who also characterize the sets of profiles
that can be asymptotically stable under certain conditions.
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formalization of the intuition of strategic uncertainty is also a major contribution
of the area.

I suspect that the current evolutionary modelling is still too stylized to be
used directly in applications. Rather, applied researchers need to be aware of
what they are implicitly assuming when they do equilibrium analysis.

In many ways, there is an important parallel with the refinements literature.
Originally, this literature was driven by the hope that theorists could identify
the unique “right” equilibrium. If that original hope had been met, applied
researchers need never worry about a multiplicity problem. Of course, that hope
was not met, and we now understand that that hope, in principle, could never
be met. The refinements literature still served the useful role of providing a
language to describe the properties of different equilibria. Applied researchers
find the refinements literature of value for this reason, even though they cannot
rely on it mechanically to eliminate “uninteresting” equilibria. The refinements
literature is currently out of fashion because there were too many papers in which
one example suggested a minor modification of an existing refinement and no
persuasive general refinement theory emerged.

There is a danger that evolutionary game theory could end up like refinements.
It is similar in that there was a lot of early hope and enthusiasm. And, again,
there have been many perturbations of models and dynamic processes, not always
well motivated. As yet, the overall picture is still somewhat unclear.

However, on the positive side, important insights are still emerging from evolu-
tionary game theory (for example, the improving understanding of when backward
induction is appropriate and the formalization of strategic uncertainty). Interest-
ing games have many equilibria, and evolutionary game theory is an important
tool in understanding which equilibria are particularly relevant in different envi-
ronments.

References

Aoyagi, Masaki, “Evolution of Beliefs and the Nash Equilibrium of Normal
Form Games,” Journal of Fconomic Theory, 1996, 70, 444-469.

Aumann, Robert J., “On the Non-Transferable Utility Value: A Comment on
the Roth-Shafer Examples,” Econometrica, 1985, 53, 667-677.

— and Adam Brandenburger, “Epistemic Conditions for Nash Equilib-
rium,” Eeconometrica, 1995, 63, 1161-1180.

Axelrod, Robert, The Evolution of Cooperation, New York: Basic Books, 1984.

36



Bergin, James and Barton L. Lipman, “Evolution with State-Dependent
Mutations,” Fconometrica, 1996, 64, 943-956.

Bernheim, B. Douglas, “Rationalizable Strategic Behavior,” Econometrica,
1984, 52, 1007-1028.

Bhaskar, V., “Noisy Communication and the Evolution of Cooperation,” 1995.
University of St. Andrews.

Binmore, Kenneth G. and Larry Samuelson, “Evolutionary Drift and Equi-
librium Selection,” 1996. Mimeo, University of Wisconsin.

R , and Richard Vaughan, “Musical Chairs: Modeling Noisy Evolu-
tion,” Games and Economic Behavior, 1995, 11, 1-35.

Blume, Andreas, Yong-Gwan Kim, and Joel Sobel, “Evolutionary Stabil-
ity in Games of Communication,” Games and Fconomic Behavior, 1993, 5,
547-575.

Borgers, Tilman and Rajiv Sarin, “Learning Through Reinforcement and
Replicator Dynamics,” Mimeo, University College London 1995.

Bush, Robert R. and Frederick Mosteller, “A Mathematical Model for
Simple Learning,” Psychological Review, 1951, 58, 313-323.

— and ____, Stochastic Models of Learning, New York: Wiley, 1955.

Cho, In-Koo and David Kreps, “Signaling Games and Stable Equilibria,”
Quarterly Journal of Economics, 1987, 102, 179-221.

Cressman, Ross and Karl H. Schlag, “The Dynamic (In)Stability of Back-
wards Induction,” Technical Report, Wilfred Laurier University and Bonn
University 1995.

Darwin, Charles, The Life and Letters of Charles Darwin, Including an Auto-
biographical Chapter. Edited by his Son, Francis Darwin, second ed., Vol. 1,
Albemarle Street, London: John Murray, 1887.

Dekel, Eddie and Faruk Gul, “Rationality and Knowledge in Game Theory,”
in David M. Kreps and Kenneth F. Wallis, eds., Advances in Economics and
Econometrics: Theory and Applications - Seventh World Congress of the
Econometric Society, Vol. 1, Cambridge University Press Cambridge 1997,
pp. 87-172.

37



Ellison, Glenn, “Learning, Local Interaction, and Coordination,” Econometrica,
1993, 61, 1047-1071.

Elster, Jon, “Social Norms and Economic Theory,” Journal of Economic Per-
spectives, 1989, 5, 99-117.

Foster, Dean and H. Peyton Young, “Stochastic evolutionary game dynam-
ics,” Theoretical Population Biology, 1990, 38, 219-232.

Friedman, Daniel, “Evolutionary Games in Economics,” Econometrica, 1991,
59, 637-666.

Fudenberg, Drew and Christopher Harris, “Evolutionary Dynamics with
Aggregate Shocks,” Journal of Economic Theory, 1992, §7, 420-441.

—— and David Kreps, “A Theory of Learning, Experimentation, and Equi-
librium,” Mimeo, MIT and Stanford 1989.

—— and David Levine, “Steady state learning and Nash equilibrium,” Econo-
metrica, 1993, 61, 547-573.

Gale, John, Kenneth G. Binmore, and Larry Samuelson, “Learning to be
Imperfect: The Ultimatum Game,” Games and Economic Behavior, 1995,
8, 56-90.

Gilboa, Itzhak and Akihiko Matsui, “Social stability and equilibrium,”
Econometrica, 1991, 59, 859-867.

Gul, Faruk, “Rationality and Coherent Theories of Strategic Behavior,” Journal
of Economic Theory, 1996, 70, 1-31.

Harsanyi, John C., Rational Behavior and Bargaining Equilibrium in Games
and Soctal Situations, Cambridge, UK: Cambridge University Press, 1977.

— and Reinhard Selten, A General Theory of Equilibrium in Games, Cam-
bridge: MIT Press, 1988.

Hines, W. G. 8., “Three characterizations of population strategy stability,”
Journal of Applied Probability, 1980, 17, 333-340.

Hofbauer, Josef and Karl Sigmund, The Theory of Evolution and Dynamical
Systems, Cambridge: Cambridge University Press, 1988.

Kalai, Ehud and Ehud Lehrer, “Rational Learning leads to Nash equilib-
rium,” Econometrica, 1993, 61, 1019-1045.

38



Kandori, Michihiro, “Evolutionary Game Theory in Economics,” in David M.
Kreps and Kenneth F. Wallis, eds., Advances in Economics and Economet-
rics: Theory and Applications - Seventh World Congress of the Econometric
Society, Vol. 1, Cambridge University Press Cambridge 1997, pp. 243-277.

—  and Rafael Rob, “Evolution of Equilibria in the Long Run: A General
Theory and Applications,” Journal of Economic Theory, 1995, 65, 383-414.

, George J. Mailath, and Rafael Rob, “Learning, Mutation, and Long
Run Equilibria in Games,” Fconometrica, 1993, 61, 29-56.

Kim, Yong-Gwan and Joel Sobel, “An Evolutionary Approach to Pre-Play
Communication,” Econometrica, 1995, 63, 1181-1193.

Kohlberg, Elon and Jean-Francois Mertens, “On the Strategic Stability of
Equilibria,” FEconometrica, 1986, 54, 1003-1037.

Kreps, David M., A Course in Microeconomic Theory, Princeton, NJ: Prince-
ton University Press, 1990.

——, Game Theory and Economic Modelling, Oxford: Clarendon Press, 1990.

Mailath, George J., “Introduction: Symposium on Evolutionary Game The-
ory,” Journal of Economic Theory, 1992, 57, 259-277.

Matsui, Akihiko, “Cheap-Talk and Cooperation in Society,” Journal of Eco-
nomic Theory, 1991, 54, 245-258.

Maynard Smith, John, Fvolution and the Theory of Games, Cambridge: Cam-
bridge Univ. Press, 1982.

— and G. R. Price, “The Logic of Animal Conflict,” Nature, 1973, 246,
15-18.

Myerson, Roger B., Game Theory: Analysis of Conflict, Cambridge, MA:
Harvard Univ. Press., 1991.

Noldeke, Georg and Larry Samuelson, “An Evolutionary Analysis of Back-
ward and Forward Induction,” Games and Fconomic Behavior, 1993, 5, 425-
454,

Pearce, David, “Rationalizable strategic behavior and the problem of perfec-
tion,” Feconometrica, 1984, 52, 1029-50.

39



Ponti, Giovanni, “Cycles of Learning in the Centipede Game,” Technical Re-
port, University College London 1996.

Ritzberger, Klaus and Jérgen W, Weibull, “Evolutionary Selection in
Normal-Form Games,” Econometrica, 1995, 63, 1371-1399.

Robson, Arthur J., “Evolutionary Game Theory,” in John Creedy, Jeff Bor-
land, and Jirgen Eichberger, eds., Recent developments in game theory,
Hants, England: Edward Elgar Publishing Limited, 1992.

— and Fernando Vega-Redondo, “Efficient Equilibrium Selection in Evolu-
tionary Games with Random Matching,” Journal of Economic Theory, 1996,
70, 65-92.

Rousseau, Jean-Jacques, “A Discourse on the Origin of Inequality,” in “The
Social Contract and Discourses,” New York: Dutton, 1950. Translated by
G.D.H. Cole.

Samuelson, Larry, “Recent Advances in Evolutionary Economics: Comments,”
Economics Letters, 1993, 42, 313-319.

—— , “Stochastic Stability in Games with Alternative Best Replies,” Journal of
Economic Theory, 1994, 64, 35-65.

— and Jianbo Zhang, “Evolutionary Stability in Asymmetric Games,” Jour-
nal of Economic Theory, 1992, 57, 363-391.

Schelling, Thomas, The Strategy of Conflict, Cambridge, MA: Harvard Univ.
Press, 1960.

Schlag, Karl H., “Why Imitate, and If So, How?,” Mimeo, University of Bonn
1994.

Selten, Reinhard, “A Note on Evolutionary Stable Strategies in Asymmetric
Animal Conflicts,” Journal of Theoretical Biology, 1980, 84, 93-101.

Skyrms, Brian, Evolution of the Social Contract, Cambridge: Cambridge Uni-
versity Press, 1996.

Sobel, Joel, “Evolutionary Stability and Efficiency,” Economics Letters, 1993,
42, 301-312.

Sonsino, Doron, “Learning to Learn, Pattern Recognition, and Nash Equilib-
rium,” Games and Economic Behavior, 1997, 18, 286-331.

40



Sugden, Robert, “Spontaneous Order,” Journal of Fconomic Perspectives,
1989, 3, 85-97.

Swinkels, Jeroen M., “Evolutionary Stability with Equilibrium Entrants,”
Journal of Economic Theory, 1992, 57, 306--332.

— , “Adjustment Dynamics and Rational Play in Games,” Games and Eco-
nomic Behavior, 1993, 5, 455-484.

Taylor, Peter D. and Leo B. Jonker, “Evolutionary stable strategies and
game dynamics,” Mathematical Biosciences, 1978, 40, 145-156.

van Damme, Eric, Stability and Perfection of Nash Equilibria, Berlin: Springer-
Verlag, 1987.

Wirneryd, Karl, “Cheap Talk, Coordination, and Evolutionary Stability,”
Games and Economic Behavior, 1993, 5, 532-546.

Weibull, Jorgen W., Fvolutionary Game Theory, Cambridge: MIT Press, 1995.

Young, H. Peyton, “The Evolution of Conventions,” Econometrica, 1993, 61,
57-84.

— , “The Economics of Conventions,” Journal of Economic Perspectives, 1996,
10, 105-122.

—— and Dean Foster, “Cooperation in the Short and in the Long Run,”
Games and Economic Behavior, 1991, 3, 145-156.

Zeeman, E., “Population Dynamics from Game Theory,” in Zbigniew Nitecki
and Clark Robinson, eds., Global Theory of Dynamical Systems, Vol. 819 of
Lecture Notes in Mathematics, Berlin: Springer-Verlag, 1980, pp. 471-497.

——, “Dynamics of the evolution of animal conflicts,” Journal of Theoretical
Biology, 1981, 89, 249-270.

Zermelo, Ernst, “Uber eine Anwendung der Mengenlehre auf die Theorie des
Schachspeils,” Proceedings of the Fifth International Congress of Mathemati-
cians, 1912, I, 501-504.

41



This is a list of recent CARESS Working Papers. A complete list (dating from
inception of the series) can be obtained by writing to:

Ms. Diana Smith

CARESS

3718 Locust Walk

McNeil Building
Philadelphia, PA 19104-6297

94-01 “Expected Utility and Case-Based Reasoning” by Akihiko Matsui

94-02 “Sequential Stratified Sampling” by Edward J. Green and Ruilin Zhou
94-03 “Bargaining, Boldness and Nash Outcomes” by Simon Grant and Atsushi
Kajii

94-04 “Learning and Strategic Pricing” by Dirk Bergemann and Juuso Valimaki
94-05 “Evolution in Mechanisms for Public Projects” by Roger D. Lagunoff and
Akihiko Matsui (previous version 93-14)

94-06 “Constrained Suboptimality in Incomplete Markets: A General Approach
and Two Applications” by Alessandro Citanna, Atsushi Kajii and Antonio Vil-
lanacci

94-07 “Pareto Improving Financial Innovation in Incomplete Markets” by David
Cass and Alex Citanna (previous version 93-27)

94-08 “Commodity Money Under Private Information” by Yiting Li

94-09 “Generic Local Uniqueness in the Walrasian Model: A Pedagogical Note”
by Marcos de Barros Lisboa

94-10 “Bargaining-Induced Transaction Demand for Fiat Money” by Merwan
Engineer and Shouyong Shi

94-11 “Politico-Economic Equilibrium and Economic Growth” by Per Krusell,
Vincenzo Quadrini and José- Victor Rios-Rull

94-12R “On the Evolution of Pareto Optimal Behavior in Repeated Coordination
Problems” by Roger D. Lagunoff

94-13 “Evolution and Endogenous Interactions” by George J. Mailath, Larry
Samuelson and Avner Shaked

94-14R “How Proper is Sequential Equilibrium?” by George J. Mailath, Larry
Samuelson and Jeroen M. Swinkels

94-15 “Common p-Belief: The General Case” by Atsushi Kajii and Stephen Mor-
ris

Revised and final version appears in Games and Economic Behavior 18, 73-82

94-16 “Impact of Public Announcements on Trade in Financial Markets” by
Stephen Morris and Hyun Song Shin



94-17 “Payoff Continuity in Incomplete Information Games and Almost Uniform
Convergence of Beliefs” by Atsushi Kajii and Stephen Morris

94-18 “Public Goods and the Oates Decentralisation Theorem” by Julian Man-
ning

94-19 “The Rationality and Efficacy of Decisions under Uncertainty and the Value
of an Experiment” by Stephen Morris and Hyun Song Shin

Revised and final version appears in Economic Theory 9, 309-324

94-20 “Does Rational Learning Lead to Nash Equilibrium inmely MRepea.ted
Games?” by Alvaro Sandroni

94-21 “On the Form of Transfers to Special Interests” by Stephen Coate and
Stephen Morris

Revised and final version appears in the Journal of Political Economy 103, 1210-

1235

94-22 “Specialization of Labor and the Distribution of Income” by Akihiko Matsui
and Andrew Postlewaite

95-01 “Financial Innovation and Expectations” by Alessandro Citanna and An-
tonio Villanacci

95-02 “An Economic Model of Representative Democracy” by Tim Besley and
Stephen Coate

95-03 “The Revelation of Information and Self-Fulfilling Beliefs” by Jayasri Dutta
and Stephen Morris

Revised version appears in Journal of Economic Theory 73, 231-244

95-04 “Justifying Rational Expectations” by Stephen Morris

95-05 “Co-operation and Timing” by Stephen Morris

95-06 “Statistical Discrimination, Affirmative Action, and Mismatch” by Jaewoo
Ryoo

95-07 “Sufficiently Specialized Economies have Nonempty Cores” by Roger D.
Lagunoff

95-08 “Necessary and Sufficient Conditions for Convergence to Nash Equilibrium:
The Almost Absolute Continuity Hypothesis” by Alvaro Sandroni

95-09 “Budget-constrained Search” by Richard Manning and Julian Manning
95-10 “Efficient Policy Choice in a Representative Democracy: A Dynamic Analy-
sis” by Timothy Besley and Stephen Coate

95-11 “The Sequential Regularity of Competitive Equilibria and Sunspots” by
Atsushi Kajii

95-12 “Generic Existence of Sunspot Equilibria: The Case of real Assets” by
Piero Gottardi and Atsushi Kajii

95-13 “Speculative Investor Behavior and Learning” by Stephen Morris



Revised and final version appears in Quarterly Journal of Economics 111, 1111~

1133.
95-14 “Incorporating Concern for Relative Wealth into Economic Models” by
Harold L. Cole, George J. Mailath and Andrew Postlewaite

95-15 “An ‘Anti-Folk Theorem’ for a Class of Asynchronously Repeated Games”
by Roger Lagunoff and Akihiko Matsui

95-16 “Correlated Equilibria and Local Interactions” by George J. Mailath, Larry
Samuelson and Avner Shaked

95-17 “A Rudimentary Model of Search with Divisible Money and Prices” by
Edward J. Green and Ruilin Zhou

95-18 “The Robustness of Equilibria to Incomplete Information*”by Atsushi Kajii
and Stephen Morris

Revised and final version forthcoming in Econometrica.

95-19 “Policy Persistence ” by Stephen Coate and Stephen Morris

95-20 “Underemployment of resources and self-confirming beliefs*” by Alessandro
Citanna , Herve Cres + and Antonio Villancci

96-01 “Multiplicity of Equilibria” by Christian Ghiglino and Mich Tvede

96-02 “Word-of-Mouth Communication and Community Enforcement” by Illtae
Ahn and Matti Suominen

96-03 “Dynamic Daily Returns Among Latin Americans and Other Major World
Stock Markets” by Yochanan Shachmurove

96-04 “Class Systems and the Enforcement of Social Norms” by Harold L. Cole,
George J. Mailath and Andrew Postlewaite

96-05 “Dynamic Liquidation, Adjustment of Capital Structure, and the Costs of
Financial Distress” by Matthias Kahl

96-06 “Approximate Common Knowledge Revisited” by Stephen Morris

96-07 “Approximate Common Knowledge and Co-ordination: Recent Lessons
from Game Theory” by Stephen Morris and Hyun Song Shin

Revised and final version appears in Journal of Logic, Language and Information

6, 171-190.

96-08 “Affirmative Action in a Competitive Economy” by Andrea Moro and Peter
Norman

96-09 “An Alternative Approach to Market Frictions: An Application to the
Market for Taxicab Rides” by Ricardo A. Lagos

96-10 “Asynchronous Choice in Repeated Coordination Games” by Roger La-
gunoff and Akihiko Matsui

97-01 “Contagion” by Stephen Morris



97-02 “Interaction Games: A Unified Analysis of Incomplete Information, Local
Interaction and Random Matching” by Stephen Morris

97-03 “The Premium in Black Dollar Markets” by Yochanan Shachmurove
97-04 “Using Vector Autoregression Models to Analyze the Behavior of the Euro-
pean Community Stock Markets” by Joseph Friedman and Yochanan Shachmurove
97-05“Democratic Choice of an Education System: Implications for Growth and
Income Distribution” by Mark Gradstein and Moshe Justman

97-06 “Formulating Optimal Portfolios in South American Stock Markets” by
Yochanan Shachmurove

97-07 “The Burglar as a Rational Economic Agent” by Yochanan Shachmurove,
Gideon Fishman and Simon Hakim

97-08 “Portfolio Analysis of Latin American Stock Markets” by Yochanan Shachmurove
97-09 “Cooperation, Corporate Culture and Incentive Intensity” by Rafael Rob
and Peter Zemsky

97-10 “The Dynamics of Technological Adoption in Hardware/Software Systems:
The Case of Compact Disc Players” by Neil Gandal, Michael Kende and Rafael
Rob

97-11 “Costly Coasian Contracts” by Luca Anderlini and Leonardo Felli

97-12 “Experimentation and Competition” by Arthur Fishman and Rafael Rob
97-13 “An Equilibrium Model of Firm Growth and Industry Dynamics” by Arthur
Fishman and Rafael Rob

97-14 “The Social Basis of Interdependent Preferences” by Andrew Postlewaite
97-15 “Cooperation and Computability in N-Player Games” by Luca Anderlini
and Hamid Sabourian

97-16 “The Impact of Capital-Based Regulation on Bank Risk-Taking: A Dy-
namic Model” by Paul Calem and Rafael Rob

97-17 “Technological Innovations: Slumps and Booms” by Leonardo Felli and
Francois Ortalo-Magne

98-01 “Do People Play Nash Equilibrium? Lessons From Evolutionary Game
Theory” by George J. Mailath

98-02 “Japan’s Enigmatic Coexistence of Strong Currency and Trade Surplus”
by Yochanan Shachmurove '



