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Abstract

We develop a model of ¯rm size in which ¯rms are unable to access as many consumers

as they want. Newly arrived consumers match randomly with ¯rms. Subsequently, consumers

must pay search costs to be able to switch ¯rms. This cost promotes an inertial tendency for

consumers to remain with the ¯rm they currently buy from. Consequently, established ¯rms

enjoy a proprietary relationship with respect to their old customers while new entrants only

have access to ¯rst time consumers, who are as yet unattached to any ¯rm. As time goes on,

¯rms acquire successive generations of new consumers, and their stock of loyal customers grows

gradually. Thus, more senior ¯rms command higher market shares.

We construct an industry model based on this hypothesis and show that the aggregate

implications of the model are consistent with empirical facts about industry dynamics (e.g.,

Dunne, Roberts and Samuelson, (1988, 1989) or Davis and Haltiwanger (1992)): Larger and

older ¯rms are less likely to exit than younger and smaller ¯rms. In our model this results

from the fact that the option value of remaining operative in the aftermath of a high cost-shock

is greater for an older ¯rm than for a younger ¯rm because the value of a cost turnaround is

greater for the former (which has already accumulated a large customer-base) than for the latter

(which has yet to do so). This enables older (and larger) ¯rms to survive adverse cost-shocks



which force the exit of younger (and smaller) ¯rms. For similar reasons, R&D expenditures are

larger for larger ¯rms, as per the empirical ¯ndings surveyed by Cohen and Lewis (1989).

1. Introduction

Firms, like people, are born small. Even a McDonalds or a Microsoft are very small at their

inception and require the passage of time to achieve their spectacular size. This paper develops an

equilibrium model of ¯rm growth, explores its aggregate implications and applies it to important

empirical and theoretical issues in industrial organization.

We consider markets in which it is costly for consumers who have previously purchased from

one ¯rm to switch to a competing ¯rm, even when the two ¯rms' products are functionally identical

(Klemperer, 1987). The \brand loyalty" that results from such switching costs gives ¯rms market

power over their repeat purchasers and implies that a ¯rm's current market share determines future

pro¯t. Obvious reasons for switching costs include the transaction cost of changing a supplier (as

in the case of closing an account with one bank and opening a new account with a competitor),

the cost of learning to use a new brand (as in the case of competing computer operating systems

or software), uncertainty about the quality of untested brands, psychological costs of breaking a

habit and information costs of learning the prices or existence of competing brands (see Klemperer

(1995) for additional reasons and examples).

Any of these examples of switching costs would drive the type of growth dynamics our model

describes. For concreteness, however, we focus on the latter, assuming that consumers must in-

cur search costs to learn about the prices of \new sellers" with which they have not previously

transacted. New consumers and ¯rms continuously enter the market. A newly arrived consumer is

randomly matched with a ¯rm. Subsequently, the cost of searching for a new ¯rm and the prices

that ¯rms charge (in equilibrium) lock the consumer in with her original ¯rm. Thus established

¯rms enjoy a proprietary relationship with repeat purchasers and compete with new entrants for

¯rst time consumers, who are as yet unattached to any ¯rm. As it acquires successive generations

of new consumers, a ¯rm's stock of repeat purchasers grows. Thus, the longer its tenure in the

market, the greater is the ¯rm's market share.
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We explore the aggregate implications of this model and, especially, its ability to account for

stylized facts about industry dynamics. An extensive and impressive empirical literature (e.g.,

Dunne, Roberts and Samuelson, (1988, 1989)) ¯nds the extent of ¯rm turnover to be quite striking

even in mature and narrowly-de¯ned industries. Firm size and age have been identi¯ed among the

determinants most strongly associated with this turnover: larger and older ¯rms are less likely to

exit than younger and smaller ¯rms. Our model of ¯rm growth accounts for these stylized facts in

a very natural way. In our setting, the e®ect of an idiosyncratic productivity shock on a ¯rm's exit

decision depends negatively on its age. The reason for this is that the value of remaining operative

in the wake of an adverse cost-shock is determined by the option value of a cost turnaround, which

is higher for older ¯rms (which have already accumulated a large customer base) than for younger

¯rms (which have yet to do so). Therefore, older (and larger) ¯rms can survive adverse cost-shocks

which force the exit of younger (and smaller) ¯rms.

Our model can also account for the existence and properties of price dispersion. Roberts and

Supina (1996) have recently documented the following facts: (i) The same product is sold at

di®erent prices by di®erent ¯rms. (ii) This price dispersion is persistent over time; low-priced ¯rms

tend to remain low-priced and vice versa.1 And, (iii) prices are contemporaneously correlated with

marginal costs, ¯rm sizes and pro¯tability; low-priced ¯rms tend to have lower marginal costs, a

larger volume of sales and higher pro¯ts. All these are features of the equilibrium we construct.

Finally, the model can shed light on the positive correlation between size and R&D expenditures,

as per the ¯ndings of Cohen and Lewis (1989).

We proceed as follows. To simplify exposition and assimilation, we ¯rst provide a simpli¯ed

version of the model in section 2. In this version, all ¯rms, irrespective of production cost or market

share, charge identical prices, and consumers do not actively search in equilibrium. This paves the

way for, and is followed by, the more comprehensive model of section 4 in which equilibrium prices

1This feature should be distinguished from the type of price dispersion documented by Villas-Boas (1995) for the

case of retail stores. In his study, the rank-order of ¯rms in the price dispersion are highly variable and are based

on the fact that retail stores run sales and the identity of the lowest-priced seller (as well as the value of the lowest

price) varies a great deal from period to period. The theoretical model which Villas-Boas ¯ndings con¯rm is Varian

(1980).
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and ¯rms' size-distribution are derived simultaneously.

2. A Model With Unit Demand

Time is discrete. There is a continuum of ¯rms producing an identical product. At each period, b

identical new consumers|or \newborns"|enter the market. At each period of her life, a consumer

demands one indivisible unit of the product if its price is less than or equal to p, and zero otherwise2.

A consumer is subject to a constant death probability of d at each period.

In the ¯rst period of her life, a consumer is costlessly and randomly matched with a ¯rm.

Subsequently, she can costlessly return to the ¯rm from which she bought in the previous period.

Switching to a new ¯rm, however, is costly. It is assumed that consumers know only the distribution

of prices in the market, but not individual prices. To learn the price of, and buy from, a new ¯rm

costs ¾ > 0. We call ¾ the \search cost". We assume ¾ is the same for all consumers. Within any

period, a consumer may sequentially sample the prices of an unlimited number of new ¯rms at the

constant cost of ¾ per ¯rm.

A ¯rm bears three types of costs. First, to enter the market, the ¯rm must pay K, which is

sunk subsequent to entry. Second, a ¯xed cost of F must be borne to be operative at any period.

This cost can be saved by exiting the market at the beginning of the period; re-entry, however,

requires paying K once more. Third, to produce, the ¯rm must pay a constant per-unit cost, c: c

is determined stochastically, and can assume one of three values: cL, cM and cH , cH > cM > cL,

where cH > p ¸ cM .

We assume that c varies from one period to the next in a Markovian fashion, and let °ij be the

probability that a ¯rm whose current cost is ci turns cj at the following period, i, j = L, M , H.

We assume that 0 < °Lj < 1, 0 < °Mj < 1, j = L, M , H, and °HH = 1. That is, a cL-¯rm may

turn cM or cH and, similarly, a cM -¯rm may turn cL or cH . But cH is an absorbing state; once the

cost escalates to cH it never goes down again.

The assumption that °HH = 1 and that cH > p ensures|in the simplest possible way|that

continual entry and exit persist in the steady state, the empirically relevant case. It is further

2In section 4 we develop a model with a strictly decreasing demand funtion, and consumers who buy variable

quantities, depending on the price.
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assumed that the distribution °M² stochastically dominates °L², i.e., that °LL > °ML and °LL +

°LM > °ML + °MM . This ensures that a cL-¯rm is more likely to have a lower cost in the next

period than a cM -¯rm. Therefore, a cL-¯rm has a greater discounted value than a cM -¯rm of the

same size.

There is an in¯nite pool of potential entrants and free entry. We assume that potential entrants

know their ¯rst-period marginal cost before entering (before paying K). Of course, future costs

(beyond the ¯rst period), being random, are unpredictable. Free entry and an in¯nite pool of

potential entrants assures that (i) an actual entrant's expected pro¯t is zero, and (ii) all actual

entrants are cL-¯rms.

Firms are distinguished by current marginal costs and age|the time elapsed since entry. We

refer to such pair as a ¯rm type. Firm age is perfectly correlated with ¯rm size (how many

customers the ¯rm has), as will become evident below. Therefore, ¯rm type is equivalently described

by cost and size.

We seek prices and °ows of entry and exit which give rise to a free-entry, steady-state

equilibrium. In such an equilibrium, there is a constant number of ¯rms of each type, and a

price associated with each type of ¯rm, such that ¯rms' individually optimal pricing and entry/exit

decisions reproduce the steady-state distribution upon which they are based.

3. Analysis

3.1. Preliminaries

As is well known, the assumption that all consumers have unit demands and positive search costs

ensures that the unique equilibrium price of each ¯rm is the monopoly price, p (Diamond, 1971).

This facilitates the analysis in two signi¯cant ways. First, it ¯xes the equilibrium price indepen-

dently of the distribution of ¯rm-types. Second, since switching is costly and p extracts all the

surplus, a customer stays with its original ¯rm (the ¯rm with which it was ¯rst matched) as long as

its price does not exceed p. Once the original ¯rm su®ers a cH cost-shock, it must exit the market

(by the assumption that cH is absorbing and that it exceeds p), at which point all its customers
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must also exit the market. Thus consumers are not actively searching in equilibrium3.

Since customers are \loyal" to their ¯rst ¯rm, new entrants can sell only to newborns, who

distribute randomly between all ¯rms (regardless of age). Let x be the number of new customers

that each ¯rm acquires in each period, and let n be the equilibrium number of ¯rms. Then x = b=n.

Let us ¯x an x (which we will eventually endogenize), and analyze the optimal entry/exit

behavior of ¯rms given this x. In each period a ¯rm acquires x new customers and loses a fraction

d of its old customers. Thus a ¯rm of age t has a total of

z = x + x(1 ¡ d) + ::: + x(1 ¡ d)t¡1 = x
1 ¡ (1 ¡ d)t

d
(3.1)

customers. Equation (3.1) re°ects the idea that a ¯rm accumulates customers gradually: The older

the ¯rm is the more customers it has. We call z the \customer stock", the \customer base" or the

\market share" of a ¯rm. Clearly, customer stock and ¯rm age are monotonically related. Hence,

¯rm is equivalently speci¯ed by its current cost and customer stock (rather than its age.)

The fact that a ¯rm accumulates customers only gradually implies that a ¯rm's value|its

discounted future pro¯t|depends not only on its current cost but also its customer stock, z. Let

RL(z) (RM(z)) be the discounted value of a low- (medium-) cost ¯rm with z customers. By exiting,

the ¯rm loses all its accumulated customers but saves the ¯xed cost, F , attaining a pro¯t of zero4.

If it does not exit, the ¯rm pays F and sells z units in the current period. In addition, it retains

(1 ¡ d)z customers to the next period (those who don't die), and acquires its share of newborns,

x. Therefore, its next-period value is RL(x + (1 ¡ d)z); RM(x + (1 ¡ d)z), or zero, depending on

whether its next-period cost is cL, cM , or cH . Consequently, the value of a ¯rm obeys the following

recursive relationships:

RL(z) = Max f0; ¡F + z(p ¡ cL) + ± [°LLRL(x + z(1 ¡ d)) + °LMRM(x + z(1 ¡ d))]g ; (3.2)

RM(z) = Max f0;¡F + z(p ¡ cM) + ± [°MLRL(x + z(1 ¡ d)) + °MMRM(x + z(1 ¡ d))]g : (3.3)

By dynamic programming techniques (Stokey, Lucas and Prescott (1993), ch. 4):

3In section 4 we extend the model, allowing for active consumer search in equilibrium.

4The ¯rm returns to the pool of potential entrants, whose value|in equilibrium|is zero.

6



(i) There exists a unique solution to equations (3.2) and (3.3).

(ii) The solution is continuous and increasing in z (the state variable), x and p (the parameters).

(iii) RL(z) > RM(z) (this follows from stochastic dominance of °M² over °L²).

Given property (ii) there exists a unique x¤ > 0 so that

RL(x¤) = K: (3.4)

x¤ is the number of customers that each ¯rm must receive per period so that low-cost entrants

break even on their initial investment, K.

3.2. Construction of a steady-state equilibrium

A steady-state equilibrium is constructed as follows. By free-entry all new entrants must earn zero

expected pro¯t. By equation (3.4), this is guaranteed as soon as the period °ow of consumers that

each ¯rm receives is x¤. We now show that there exists a y¤, so that when y¤ new ¯rms enter each

period, and when ¯rms exit according to the optimal exit-rule, a steady-state is induced at which

each ¯rm acquires exactly x¤ new consumers. Given this the market is in equilibrium: (i) Each ¯rm

is maximizing with respect to pricing and entry/exit decisions given the behavior of consumers and

other ¯rms. And, (ii) each consumer is minimizing his expenditures given the price distribution in

the market.

Let us determine ¯rst the optimal exit rule: Given x¤ there exists a z¤(z¤ > x¤) so that

RM(z¤) = 0: (3.5)

z¤ has the property that a cM -¯rm optimally exits if it has less than z¤ customers and remains

operative if it has more than z¤ customers.

Given z¤ there exists a critical age, call it t¤, so that only ¯rms of age t¤ or greater will have

accumulated at least z¤ customers. t¤ is the minimum t with the property that

x¤
1 ¡ (1 ¡ d)t+1

d
¸ z¤: (3.6)

Thus a ¯rm exits if and only if it becomes cM less than t¤ periods after entering the industry, or

if it becomes cH (at any date). (3.5) and (3.6) are alternative characterizations of optimal exit
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behavior. The next proposition shows how y¤ is chosen so that, at the steady-state it induces, each

active ¯rm gets a °ow of x¤ new customers.

Proposition 3.1. There exists an entry rate y¤ so that, at the steady-state it induces, all new

entrants earn zero pro¯ts, and all incumbent ¯rms exit optimally.

Proof. Consider a constant °ow of entry, y. If y new ¯rms enter each period, then the number of

cL-¯rms of age less than t¤, is:

nyL = y + y°LL + y°2LL + ::: + y°t
¤¡1
LL =

1 ¡ °t
¤
LL

1 ¡ °LL
y ´ ¯y: (3.7)

Let t be some date and let ni be the number of ¯rms with cost ci, i = L, M , at this date. Then,

the evolution of nL and nM between t and t + 1 are determined as follows:

n
0
L = °LLnL + °MLnM + y; (3.8)

n
0
M = °LM(nL ¡ nyL) + °MMnM ;

where n
0
i, for i = L, M , is period-t + 1 number of ci-¯rms. A steady-state is de¯ned by n

0
i = ni,

i.e., the number of ¯rms of each type remains constant. If we substitute this into the LHS of (3.8),

substitute from (3.7) for nyL and rearrange we obtain:

(1 ¡ °LL)nL ¡ °MLnM = y; (3.9)

¡°LMnL + (1 ¡ °MM)nM = ¡¯°LMy:

The unique solution of these linear equations is:

nL =
[1 ¡ °MM ¡ ¯°LM°ML]y

(1 ¡ °LL)(1 ¡ °MM) ¡ °LM°ML
; (3.10)

nM =
[°LM ¡ ¯°LM(1 ¡ °LL)]y

(1 ¡ °LL)(1 ¡ °MM) ¡ °LM°ML
;

n ´ nL + nM =
[1 ¡ °MM + °LM ¡ ¯°LM°ML ¡ ¯°LM(1 ¡ °LL)]y

(1 ¡ °LL)(1 ¡ °MM) ¡ °LM°ML
´ Ay:

This solution is well de¯ned since 1 ¡ °ii > °ij for i 6=j, which implies the denominator is positive.

Therefore, we have shown that for any y there is a unique steady-state number of ¯rms, n, and

that n is proportional to y: n = Ay, where A depends on x¤ only (A depends on ¯ (from 3.10),
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¯ depends on t¤ (from 3.7), t¤ depends on z¤ (from 3.6), and z¤ depends on x¤ (from 3.5).) Since

newborns are uniformly divided among ¯rms we have x = b=n = b=A(x¤)y. Free-entry requires

that x = x¤. Thus if we set y¤ = b=A(x¤)x¤ and if y¤ ¯rms enter each period, the steady state is

such that the ex-ante pro¯t of entrants is zero.

3.3. Firm Size and the Probability of Exit

Empirical studies of industry dynamics ¯nd that exit probabilities are decreasing in both size and

age (see Dunne, Roberts and Samuelson, 1988, 1989 or Davis and Haltiwanger 1992). Our model

is consistent with this ¯nding. On the basis of the preceding analysis, we may distinguish three

possible cases. At one extreme, suppose z¤ · (2 ¡ d)x¤. Then, since a ¯rm can only become cM

after its ¯rst period, cM -¯rms never exit. At the other extreme, suppose that z¤ > x¤=d, which

is the limit size of an in¯nitely-old ¯rm. Then all cM -¯rms exit, irrespective of age. In both

these cases, the exit probability is independent of size (equivalently age). When z¤ · (2 ¡ d)x¤,

only cH-¯rms exit. In that case, the exit probability of a cL-¯rm (cM -¯rm) is °LH (°MH), i.e.,

is independent of its size. When z¤ > x¤=d, both cM - and cH-¯rms exit. Then, a cL-¯rm's exit

probability, °LM + °LH , is again independent of size.

The third, and most interesting, possibility is that x¤=d > z¤ > (2 ¡ d)x¤. In this case, a cL-

¯rm's exit probability depends on its size. The probability that a cL-¯rm of size less than z¤ exits

at the following period is °LM + °LH , while the corresponding probability for a cL-¯rm of size

greater than or equal to z¤ is only °LH . On the other hand, the exit probability of cM -¯rms, all of

which are of size greater than z¤, is °MH and is thus independent of size. On average, considering

both cL- and cM -¯rms, the exit probability is decreasing in size. Equivalently, the hazard rate|the

probability of exit conditional on age|is decreasing, which is in accordance with the empirical

literature cited above.

This property results from the fact that in our model, a ¯rm's value increases with age. There

are two reasons for this. First, age increases current sales (by increasing the ¯rm's customer stock).

A more subtle reason concerns a cM -¯rm's option value derived from its prospect of turning cL in

the future. This value increases with age, because a cost turnaround will increase unit pro¯t on

a larger market share, the older is the ¯rm. This is seen most clearly when p = cM . Then the
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cost of staying in the market one more period is F for all cM -¯rms|regardless of size. However,

the bene¯t is increasing in size, because a larger ¯rm materializes a bigger pro¯t upon a cost

turnaround. Therefore, cM -¯rms of su±ciently large size stay in the market, while their smaller

counterparts do not.

It is instructive to compare this reasoning with the one in Jovanovic (1982) and Hopenhyn

(1992). In those models, the hazard rate is decreasing because large ¯rms have lower marginal-cost

than small ¯rms and, hence, are less likely to exit. Here, large ¯rms do not have lower marginal cost

than small ones (in fact|as we point out below|they have higher marginal cost.) However, their

competitive advantage is in having accumulated a large customer stock, which is a time-consuming

process, and which they are reluctant to \give up" by exiting the market. Put di®erently, in

Jovanovic (1982) and Hopenhyn (1992) ¯rm size is not an innate characteristic of a ¯rm, merely a

re°ection of its cost, whereas here ¯rms are distinguished by cost and size.

This accords well with the oft-mentioned notion that clientele is an asset of the ¯rm or, equiv-

alently, that the value of the ¯rm re°ects not just its capital assets or its technological know-how,

but also the number of clients it managed to lock in. Below we further explore the implications of

having size as a distinct ¯rm characteristic, showing that large ¯rms have a stronger incentive to

invest in R&D.

3.4. The Rate of Growth and Gibrat's Law

Our assumption that ¯rms grow by a ¯xed number of consumers each period implies that the

growth rate is inversely related to size. This is at variance with Gibrat's law, according to which the

growth rate is independent of size5. Our model could equally|and perhaps even more plausibly|

be reformulated to accommodate Gibrat's law by assuming that the number of new consumers a

¯rm attracts is proportional to its size, say because a ¯rst time buyer is more likely to hear of a large

¯rm than a small one. For example, if newborns locate a ¯rm by asking around, then large ¯rms

5It is worth stressing, however, that Gibrat's \Law" is a conveniet assumption, and not an empirical law. Several

studies have tried to verify the empirical validity of this law, resulting in mixed results; see Ijiri and Simon (1977).

One study which accords with the assumption of this paper, that the rate of growth is negtively related to size, is

Vining (1976).
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capture more newborns, due to the fact that large ¯rms are being \advertised' by more people.

Such a formulation would only reinforce the advantage that large ¯rms have over small ones and

hence that they are less likely to exit upon an adverse cost-shock.

3.5. Are small ¯rms leaner and meaner?

A popular conception is that small ¯rms are more cost e±cient than large ones. For example, re-

cently there had been numerous articles in the popular press (as well as policy proposals), suggesting

subsidies to small ¯rms as means of generating new jobs. One rationale that these articles suggest

is that small ¯rms are more \nimble" and \dynamic", and that they are bound to become the large

corporation of tomorrow|if they are given a chance to overcome \initial hurdles". The preceding

discussion implies one sense in which our model is consistent with such a view. In equilibrium, all

¯rms of size less than z¤ are cL (since cM -¯rms of this size exit), but ¯rms of size z¤ or larger are

both cL and cM . Thus smaller ¯rms have lower marginal costs on average. This cannot happen in

models where ¯rms can \access" as many consumers as they wish. For instance, in the competitive

models of Jovanovic (1982) or Hopenhyn (1992) large ¯rms always have lower marginal costs than

small ones; in fact, the marginal cost in those models is perfectly (and negatively) correlated with

size.

However, two caveats are in order. First, the average cost of small ¯rms in our model may be

larger|due to the ¯xed cost, F , which must be spread over a smaller customer base.

Second, we have assumed that all ¯rms are equally vulnerable to adverse cost-shocks, regardless

of size (in other words, °ij's are exogenously ¯xed in our model, independent of size). A large

empirical literature, surveyed by Cohen and Lewis (1989), suggests that absolute R&D expenditures

are positively correlated with size (though the case for a correlation between size and relative

expenditures is controversial). If so, large ¯rms might well be better insulated against adverse cost-

shocks as a result of greater investments in cost-reducing technologies. If this e®ect is accounted

for, the relationship between size and marginal cost becomes less clear cut. On the one hand, all

¯rms of size z¤ or less are low cost. On the other hand, in the class of ¯rms of size greater than

z¤, marginal costs are more likely to decrease with size because larger ¯rms invest more in cost

reduction measures. So the net result is indeterminate.
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Following up on this logic, the next subsection constructs a simple example to show that our

model provides theoretical support for the existence of a relationship between a ¯rm's size and its

investment in cost-reduction measures.

3.6. Investing in Cost Reduction

If in our model, ¯rms can invest in cost-reducing innovations, expenditures on such investment will

increase with ¯rm size. This is for the same reason that the hazard rate is monotonic. The larger

the current market share, the greater the future market share to which the cost saving is expected

to apply and hence the higher the return on its investment.

We illustrate this with a simple example. Suppose that at the end of each period a ¯rm invests

w, w ¸ 0, which determines the probability of becoming|or remaining|a cL-¯rm in the next

period. Let f(w) denote this probability. We assume that f(²) is concave, increasing, di®erentiable

and takes values in [0,1]. If the ¯rm is not successful in this endeavor it becomes cM or cH with

probabilities °M and °H , where 0 < °M , °H < 1 and °M + °H = 1. To simplify notation and

calculations, assume that f(w), °M and °H are the same for low- and medium-cost ¯rms6.

Let Pr(ci j cj ; w) be the probability that a ¯rm's next-period cost is ci, given an investment of

w and a cost of cj in the present period. In analogy to the basic model, assume Pr(cH j cH ; w) = 1;

once a ¯rm becomes cH , no reversal is possible, regardless of how much is invested in R&D. Then,

we have:

Pr(cL j cL; w) = Pr(cL j cM ; w) = f(w),

Pr(cM j cL; w) = Pr(cM j cM ; w) = °M(1 ¡ f(w)) and

Pr(cH j cL; w) = Pr(cH j cM ; w) = °H(1 ¡ f(w)).

So for low- and medium-cost ¯rms, the expected future cost is lower the more it invests. All other

assumptions are as before. Then the value of low- and medium-cost ¯rms are given by:

RL(z) = Maxf0;¡F + z(p ¡ cL) (3.11)

6This assumption focuses attention the the \pure" size e®ect. Another plausible story is that cL-¯rms have a

technological edge over cM -¯rms because they only have to maintain their cost at its current level rather than lower

it. This story is captured in our formulation by letting f depend on the current cost as well as the R&D expenditures.
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+ Max
w

f¡w + ± [f(w)RL(x + z(1 ¡ d)) + °M(1 ¡ f(w))RM(x + z(1 ¡ d))])g;

RM(z) = Maxf0; ¡F + z(p ¡ cM) (3.12)

+ Max
w

(¡w + ± [f(w)RL(x + z(1 ¡ d)) + °M(1 ¡ f(w))RM(x + z(1 ¡ d))])g:

Di®erentiating inside the braces, the ¯rst-order conditions for w are given by:

¡1 + ±[f 0(w)RL(x + z(1 ¡ d)) ¡ °Mf 0(w)RM(x + z(1 ¡ d))] = 0: (3.13)

Low- and medium-cost ¯rms of the same size invest identically7.

Proposition 3.2. dw=dz > 0.

Proof. By (3.13), the optimal w is determined by

f 0(w) = 1=±[RL(x + z(1 ¡ d)) ¡ °MRM(x + z(1 ¡ d))]:

Thus the optimal w is increasing in z if RL(z) ¡ °MRM(z) is increasing in z. Since low- and

medium-cost ¯rms of the same size choose identical w and since Ri's are increasing in z, we have

from (3.11) and (3.12) that RL(z) ¡ °MRM(z) = MaxfRL(z); z[(1 ¡ °M)p ¡ cL + °McM)] which is

increasing in z.

In our setting, a larger ¯rm invests more because it has more to gain from achieving (or main-

taining) a low cost at the next period. The cogency of this reasoning depends on the distinction

between costs and market share in our model. In a perfectly competitive market (e.g., Jovanovic

(1982) and Hopenhyn (1992)), or even in an oligopoly market (e.g., Pakes (1996)), in which costs

and market shares are perfectly correlated, there is no natural relationship between size and the

incentive to invest in cost reduction. Since a currently small, high-cost ¯rm can achieve as large

a market share by becoming low cost as that of a currently large, low-cost ¯rm, it should have no

less of an incentive to invest in lowering costs.

7This is due to the simplifying assumption that future costs depend only on R&D investment. More generally,

the optimal investment will depend on both the current cost and the amount invested.
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4. More general model

A problem with the model of section 2 is that, since ¯rms extract all of the consumers' surplus, there

also exists an equilibrium in which there is no trade (consumers have no incentive to participate in

the market). Even more seriously, if consumers incur even a small cost of matching with the ¯rst

¯rm, only the no-trade equilibrium would survive.

To overcome these problems, this section presents a more general model in which consumers gain

positive surplus from trade. While preserving the main features of the earlier model, it generates

a richer and more realistic set of predictions. In particular, under the more general model, market

equilibrium is characterized by price dispersion, with prices of medium-cost ¯rms exceeding those

of low-cost ¯rms by a markup which depends on the model's parameters. Correspondingly, low-

cost ¯rms produce greater output than medium-cost ¯rms of the same age (in the previous model

output depended on age only and not on cost). These predictions accord well with some recent

evidence on the correlations between prices, ¯rm sizes and marginal costs in homogenous-product

industries; see Roberts and Supina (1996).

In the more general model, consumers buy variable quantities. Speci¯cally, all consumers have

an identical downward sloping demand function, D(p). D(²) has a ¯nite intercept, p, on the price

axis, p ´ Inf fp j D(p) = 0g < 1, and is strictly decreasing for p < p. Let S(p) be a consumer's

surplus under D(p), S(p) ´
pR
p

D(p)dp. Let ¼i(p) ´ (p ¡ ci)D(p), i = cL, cM , be the pro¯t per

customer of a low- and medium-cost ¯rm, respectively. ¼i(p) are assumed to be concave. Let

pmL and pmM be the monopoly prices of a cL- and a cM -¯rm, respectively. By the concavity of ¼i,

pmM > pmL .

Since consumers realize a surplus over and above the price they pay, consumers whose ¯rm

exits may search for a new ¯rm. To ensure that this occurs in equilibrium we assume ¾ < S(pmM).

That is, we assume the search cost is less than the one-period surplus a consumer gets when all

medium-cost ¯rms charge the monopoly price, pmM . It will be shown below that a medium-cost ¯rm

never charges more than pmM and a low-cost ¯rm charges less than that; therefore, the minimum

payo® to search is S(pmM) which more than justi¯es incurring the one-time search cost ¾.8 We

8If ¾ is large consumers may not search and we're back to the previous (and simpler) formulation. In general, one
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continue to assume (as we did in the previous section) that cH > p and that Pr(cH jcH) = 1. These

assumptions ensure that cH-¯rms exit at once. It is convenient to assume that pmL ¸ cM . That

is, a low-cost ¯rm's monopoly price covers a medium-cost ¯rm's marginal cost. This assumption

focuses attention on the (more interesting) case in which some cM -¯rms survive. Otherwise, the

only steady-state might be one where only cL-¯rms are active in equilibrium.

The model is reformulated in continuous time9. There is a °ow (per-unit time) of new consumers,

b, and an exponential death rate, d, 0 < b, d < 1. Technological shocks occur at exponentially-

distributed times, the rate of arrival being 1. Hence, shocks occur at separated points in time but

they can take place at any date. When a shock occurs, the cost of production changes from ci to

cj with probability °ij .

Since ¯rms with di®erent costs have di®erent monopoly prices, the low-cost ¯rms charge a lower

price than the medium-cost ¯rms, and consumers search optimally given this price distribution, as

in Reinganum (1979). Since the search cost is positive for all consumers, Diamond's (1971) result

applies to the low-cost ¯rms which charge pmL (the monopoly price is independent of the number of

customers since marginal cost is independent of quantity produced). The price of the medium-cost

¯rms is denoted by p and is determined as part of the steady-state equilibrium.

We proceed as follows. First, we take p as given and characterize the steady-state distribution

of ¯rm types consistent with p. Then we characterize the properties which p must satisfy to be an

equilibrium price, given that distribution. Finally we use a ¯xed-point argument to demonstrate the

simultaneous existence of a steady-state distribution of ¯rm-types and p, such that p is individually

optimal, given the steady-state distribution and such that the choice of p by medium-cost ¯rms

reproduces the steady-state distribution.

Consider a ¯rm that starts with z0 customers, gets a °ow of x new customers and losses a °ow

dz of its customer stock, z. Then its customer stock evolves according to the di®erential equation,

z0(t) = x ¡ dz(t); z(0) = z0. The solution to this equation is z(t) = x
d ¡ ¡x

d ¡ z0
¢
e¡dt. Therefore,

has to determine endogenously whether consumers whose ¯rm exits decide to search for a new ¯rm or not.
9This is necessary since to establish the existence of an equilibrium we need to invoke a ¯xed-point argument

which relies on continuity, and continuity is not guaranteed unless the critical age of exit (t¤ in the previous section)

is allowed to vary continuously.

15



taking p as given, the value of the ¯rm satis¯es the following functional equations:

RL(z) = Maxf0;
Z 1

0
e¡t[(¼mL

x

d
¡ F )

1 ¡ e¡rt

r
¡ ¼mL (

x

d
¡ z)

1 ¡ e¡(r+d)t

r + d

+e¡rt (°LLRL(z(t)) + °LMRM(z(t)))]dtg;

RM(z) = Maxf0;

1Z

0

e¡t[¼(p)(
x

d
¡ F )

1 ¡ e¡rt

r
¡ ¼(p)(

x

d
¡ z)

1 ¡ e¡(r+d)t

r + d

+e¡rt (°MLRL(z(t)) + °MMRM(z(t)))]dtg:

In these equations, e¡t is the density of a technological shock at t, ¼mL ´ ¼L(pmL ) is a low-cost ¯rm's

monopoly pro¯t and ¼(p) = ¼M(p) is a medium-cost ¯rm's pro¯t when it charges p.

Again, dynamic programming arguments imply the existence of a unique, monotonic and con-

tinuous solution to these equations, which implies the existence of a unique x¤ so that:

RL(0;x¤; p) = K: (4.1)

x¤ is the °ow of entry so that new entrants face zero expected pro¯t.

Given this x¤ there exists a unique z¤ so that

RM(z¤;x¤; p) = 0: (4.2)

z¤ is the customer stock so that ¯rms which have accumulated z¤ are indi®erent between exiting

and staying.

Given z¤ there exists a unique t¤ so that a ¯rm will have accumulated z¤ customers by the time it

reaches age t¤. t¤ is the solution to the equation:

x¤

d
(1 ¡ e¡dt) = z¤ (If z¤ > x¤=d; set t¤ = 1) : (4.3)

As in the previous section, the optimal exit rule is that ¯rms of age t < t¤ exit as soon as they

become cM or cH , while ¯rms of age t > t¤ exit only if they become cH . For future reference we

record the following.

Lemma 4.1. t¤ is continuous in p.

Proof. This follows from the continuity of the functions in (4.2) and (4.3). .
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Call ¯rms with cost cL and age ¿ < t¤|c¿L -types. Firms with cost cL and above age t¤ are

called c1L -types and ¯rms with cost cM are called cM -types. The exit probability of ¯rms in the

last two categories is independent of age, hence there is no need to keep track of their ages.

The fraction of new entrants that reach age t before becoming cM or cH is e¡(1¡°LL)t =
1P
i=0

°iLLe¡t t
i

i! (the index i measures how many shocks a ¯rm experiences in the interval [0; t] and

all these shocks are required to take the cost from cL to cL, which occurs with probability °iLL).

Therefore, denoting the °ow of new entrants by y, the measure of ¯rms in the age-group [0; t¤] (the

group of ¯rms that exit upon receiving a cM -shock) is

nyL = y

t¤Z

0

e¡(1¡°LL)tdt = y
1 ¡ e¡(1¡°LL)t

¤

1 ¡ °LL
´ ¯y: (4.4)

The frequency a(¿) of c¿L-types relative to the measure of ¯rms in the age group [0; t¤] is

a(¿) =
(1 ¡ °LL)e¡(1¡°LL)¿

1 ¡ e¡(1¡°LL)t¤
=

e¡(1¡°LL)¿

¯
: (4.5)

Proposition 4.2. Fix a p and assume all cM -¯rms charge p. Assume also that all customers of

cM¡¯rms accept p without search. (i) Then there exists an entry rate y¤ so that, at the steady-

state it induces, all new entrants earn zero pro¯ts, and all incumbent ¯rms exit optimally. (ii) y¤

and the steady-state associated with it are continuous in p.

Proof. Let y denote a constant °ow of new entry. We show how y can be adjusted so that each

¯rm gets a °ow x¤ of new customers in the steady-state. This is analogous to the determination

of y in the previous section, except that the number of searching customers is endogenous (instead

of being equal to the number of newborns, b) and has to be determined along with the number of

¯rms in the steady-state, nL and nM .

Consider the evolution of the number of ¯rms, nL and nM . Let ¢ be a small time interval.

Then, given the assumption of exponential arrival, within this time interval a ¯rm experiences 1

shock with probability ¢, 0 shocks with probability 1¡¢, and more than 1 shock with probability

that is an order of magnitude less than ¢ (i.e., lim¢!0[Pr(more than one shock within ¢)/¢]= 0).

Therefore, starting with nL and nM ¯rms, the number of ¯rms after ¢ units of time is:

n0L = [1 ¡ ¢(1 ¡ °LL)]nL + ¢°MLnM + ¢y (4.6)

n0M = ¢°LM(nL ¡ nyL) + [1 ¡ ¢(1 ¡ °MM)]nM :
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A steady-state is de¯ned by n
0
L = nL and n0L = nM . Substituting this and (4.4) into (4.6) and

rearranging, we get

¢(1 ¡ °LL)nL ¡ ¢°MLnM = ¢y; (4.7)

¡¢°LMnL + ¢(1 ¡ °MM)nM = ¡¢¯°LMy:

Cancelling ¢ gives the system of equations (3.9). Therefore, the number of ¯rms in the steady-state

is the same as in the discrete case:

nL =
[1 ¡ °MM ¡ ¯°LM°ML]y

(1 ¡ °LL)(1 ¡ °MM) ¡ °LM°ML
; (4.8)

nM =
[°LM ¡ ¯°LM(1 ¡ °LL)]y

(1 ¡ °LL)(1 ¡ °MM) ¡ °LM°ML
;

n ´ nL + nM =
[1 ¡ °MM + °LM ¡ ¯°LM°ML ¡ ¯°LM(1 ¡ °LL)]y

(1 ¡ °LL)(1 ¡ °MM) ¡ °LM°ML
´ Ay:

De¯ne

¸ =
nL

nL + nM
=

1 ¡ °MM ¡ ¯°LM°ML
1 ¡ °MM + °LM ¡ ¯°LM°ML ¡ ¯°LM(1 ¡ °LL)

; (4.9)

® =
nL ¡ nyL

nL
=

1 ¡ ¯ ¡ °MM ¡ ¯°LM°ML
1 ¡ °MM ¡ ¯°LM°ML

:

¸ represents the fraction of low-cost ¯rms among all ¯rms; ® represents the fraction of large low-cost

¯rms among all low-cost ¯rms.

Let Dy
L be the number of customers attached to ¯rms in the age group [0; t¤]. Then,

Dy
L =

t¤Z

0

x

d
(1 ¡ e¡dt)ye¡(1¡°LL)tdt =

xy

d

t¤Z

0

[e¡(1¡°LL)t ¡ e¡(d+1¡°LL)t]dt (4.10)

=
xy

d
[
1 ¡ e¡(1¡°LL)t

¤

1 ¡ °LL
¡ 1 ¡ e¡(d+1¡°LL)t

¤

d + 1 ¡ °LL
]

=
xy

d

d ¡ (d + 1 ¡ °LL)e¡(1¡°LL)t
¤
+ (1 ¡ °LL)e¡(d+1¡°LL)t

¤

(1 ¡ °LL)(d + 1 ¡ °LL)
´ xy

d
B:

Let s be the °ow of searchers. Then, since searchers are divided uniformly across ¯rms, x = s=n =

s=Ay, where A is de¯ned in (4.8). Therefore we can write (4.10) as

Dy
L =

sB

dA
: (4.11)
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Let DL and DM be the number of customers attached to cL- and cM -¯rms. Consider a small time

interval, ¢. Then, after ¢ units of time, we have:

D
0
L = DL(1 ¡ d¢)[1 ¡ ¢(1 ¡ °LL)] + DM(1 ¡ d¢)¢°ML + ¢¸s;

D0
M = DM(1 ¡ d¢)[1 ¡ ¢(1 ¡ °MM)] + (DL ¡ Dy

L)(1 ¡ d¢)¢°LM + ¢(1 ¡ ¸)s:

In the steady state D0
L = DL and D0

M = DM . Substituting this condition, canceling ¢ and solving

for DL and DM , we have:

DL =
¸s(d + 1 ¡ °MM) + [(1 ¡ ¸)s ¡ sB

dA°LM ]°ML
(d + 1 ¡ °LL)(d + 1 ¡ °MM) ¡ °LM°ML

; (4.12)

DM =
(d + 1 ¡ °LL)[(1 ¡ ¸)s ¡ sB

dA°LM ] + °LM¸s

(d + 1 ¡ °LL)(d + 1 ¡ °MM) ¡ °LM°ML
;

where B is de¯ned in (4.10).

Since customers of cM -¯rms do not search, the only searchers are newborns, customers of cL-

and cM -¯rms whose cost escalated to cH and customers of c¿L-¯rms whose cost escalated to cM .

accordingly, the °ow of searchers with ¢ equals:

s¢ = b¢ + DL°LH¢ + DM°MH¢ + Dy
L°LM¢:

Canceling ¢, substituting for DL and DM from (4.12) and for Dy
L from (4.11), we obtain:

s = b +
¸s(d + 1 ¡ °MM) + [(1 ¡ ¸)s ¡ sB

dA°LM ]°ML
(d + 1 ¡ °LL)(d + 1 ¡ °MM) ¡ °LM°ML

°LH

+
(d + 1 ¡ °LL)[(1 ¡ ¸)s ¡ sB

dA°LM ] + °LM¸s

(d + 1 ¡ °LL)(d + 1 ¡ °MM) ¡ °LM°ML
°MH +

sB

dA
°LM :

This implies:

b = sf1 ¡ ¸(d + 1 ¡ °MM) + [1 ¡ ¸ ¡ B
dA°LM ]°ML

(d + 1 ¡ °LL)(d + 1 ¡ °MM) ¡ °LM°ML
°LH

+
(d + 1 ¡ °LL)[1 ¡ ¸ ¡ B

dA°LM ] + °LM¸

(d + 1 ¡ °LL)(d + 1 ¡ °MM) ¡ °LM°ML
°MH +

B

dA
°LMg:

And thus

x =
s

n
=

b

[1 ¡ ¸(d+1¡°MM )+[1¡¸¡ B
dA
°LM ]°ML

(d+1¡°LL)(d+1¡°MM )¡°LM°ML
°LH +

(d+1¡°LL)[1¡¸¡ B
dA
°LM ]+°LM¸

(d+1¡°LL)(d+1¡°MM )¡°LM°ML
°MH + B

dA°LM ]Ay
:
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So given x¤, as de¯ned by the zero pro¯t condition (4.1), we can choose:

y¤ =
b

[1 ¡ ¸(d+1¡°MM )+[1¡¸¡ B
dA
°LM ]°ML

(d+1¡°LL)(d+1¡°MM )¡°LM°ML
°LH +

(d+1¡°LL)[1¡¸¡ B
dA
°LM ]+°LM¸

(d+1¡°LL)(d+1¡°MM )¡°LM°ML
°MH + B

dA°LM ]Ax¤
;

ensuring that each ¯rm gets a °ow x¤ of new customers.

(ii) Since all variables on the RHS of the last expression are continuous in p (see also Lemma

4.1), y¤ is also continuous in p. For the same reason, ® and ¸, as de¯ned in (4.9), are continuous

in p.

Thus, corresponding to an arbitrary p, there exists a zero-pro¯t steady-state distribution over

¯rm-types in which the fraction of cL-types is ¸, the fraction of cL-types above age t¤ is ® (see

(4.9)), and the age distribution among the c¿L-types is a(¿) (see (4.5)).

Let us now ¯x a ¯rm-type distribution (¸, ®, t¤, a(¿)) and construct a p which is consistent with

the maximization of ¯rms' and consumers' problems. Consider a consumer's search problem. When

a consumer decides to stop searching and attach himself to a ¯rm, his future utility will depend on

changes in its price and the possibility that it will exit at some future date. Therefore, the data

relevant to the consumer's decision is the price distribution across ¯rms and the probabilities over

future prices and exit. More speci¯cally, the relevant data includes:

(i) The prices charged by ¯rms: pmL for low-cost ¯rms and (the yet to be determined) p for medium-

cost ¯rms. These prices determine the period surplus to the consumer until his ¯rm experiences

the next cost shock. They also indicate the current cost of his ¯rm and hence the evolution of costs

(and hence prices) in the future (given that costs are following Markovian transitions).

(ii) For low cost ¯rms, the age ¿ . This data is relevant since young (below t¤) low-cost ¯rms exit

when they become cM , necessitating costly future search.

Therefore, for the purpose of consumers' search decision, a ¯rm's type is appropriately de¯ned as

its current cost and, among cL-¯rms, its age ¿ .

We assume that consumers are able to observe the size of ¯rms they visit10. This enables them

10If consumers are unable to observe the size of the ¯rm from which a quote is obtained, they will take an expected

value over the equilibrium size distribution of ¯rms. This would result in more complex expressions, but without

changing the results.
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to determine the ¯rm's type and, thereby, the value of buying from it.11

Let Vs(p) be the value of searching once and then proceeding optimally when medium-cost ¯rms'

price is p. Then:

Vs(p) = ¡¾ + ¸®V1
L (p) + ¸(1 ¡ ®)

1Z

0

V ¿
L (p)a(¿)d¿ + (1 ¡ ¸)VM(p); (4.13)

where V 1
L (p) (V ¿

L (p)) is the value of being attached to a low-cost ¯rm of age>t¤ (of age ¿ < t¤), and

VM(p) is the value of being attached to a medium-cost ¯rm. Vi's satisfy the following functional

equations:

V1
L (p) =

1Z

0

e¡t
(

S(pmL )
1 ¡ e¡rt

r
+ e¡rt [°LLV1

L (p) + °LMVM(p) + °LHVs(p)]

)
dt; (4.14)

V ¿
L (p) =

t¤¡¿Z

0

e¡t
(

S(pmL )
1 ¡ e¡rt

r
+ e¡rt

h
°LLV t+¿

L (p) + (°LM + °LH)Vs(p)
i)

dt (4.15)

+

1Z

t¤¡¿
e¡t

(
S(pmL )

1 ¡ e¡rt

r
+ e¡rt [°LLV 1

L (p) + °LMVM(p) + °LHVs(p)]

)
dt;

and

VM(p) = MaxfVs(p);

1Z

0

e¡t
(

S(p)
1 ¡ e¡rt

r
+ e¡rt[°MLV1

L (p) + °MMVM(p) + °MHVs(p)]

)
dtg:

(4.16)

Since no ¯rm charges less than pmL , it is not optimal for a consumer attached to a low-cost ¯rm

(whose price is pmL ), whatever its size, to search. A consumer attached to a medium-cost ¯rm

optimally searches if and only if VM(p) < Vs(p). In what follows, the argument p is suppressed

from the Vi(²) functions whenever this leads to no ambiguity.

11When consumers observe the price of a ¯rm they are able to infer its cost since cost and price are 1-1 related

in equilibrium. Likewise, size and age are 1-1 related (see equation (4.3)). Therefore, by observing the price and

the size of a ¯rm, the consumer is able to infer the ¯rm's type. Furthermore, the consumer is assumed to know the

transition probabilities over costs. Therefore, once a consumer has observed the price and size of a ¯rm, he is able

to form a rational forecast over its future prices and the probabilities that it will exit at various future dates. This

enables him to determine the value of buying from this ¯rm.
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Proposition 4.3. Fix a ¯rm-type distribution, (¸;®; t¤; a(¿)): (i) Then for any p 2 [pmL ; pmM ] there

exists a unique solution, (VL; VM ; Vs), to equations (4.13)-(4.16). (ii) The solution is continuous in

p, Vs¡ VM is increasing in p and Vs(p
m
L )¡ VM(pmL ) < 0. (iii) If Vs(p

m
M)¡ VM(pmM) ¸ 0, there is a p0

so that Vs(p
0)¡VM(p0) = 0; otherwise, Vs(p)¡VM(p) < 0 for all p 2 [pmL ; pmM ]. In the ¯rst instance,

customers of cM -¯rms are indi®erent between buying at p0 and searching. In the second instance,

they prefer buying at pmM .

Proof. By dynamic programming, for a given p and (¸; ®; t¤; a(¿)), the system of equations (4.13)

- (4.16 ) has a unique solution, which is continuous in p. Vs ¡ VM is increasing in p because the

higher is the price at cM -¯rms, the more attractive is the search option. If p = pmL , all ¯rms charge

the same price, there is no incentive to search and Vs(p
m
L )¡VM(pmL ) < 0. If Vs(p

m
M)¡VM(pmM) < 0,

then Vs ¡ VM is negative throughout [pmL ; pmM ] (by the monotonicity of Vs ¡ VM). Otherwise, by

continuity, there must be a p0 so that Vs(p
0) ¡ VM(p0) = 0.

Proposition 4.2 established that, corresponding to an arbitrary p, there exists a steady-state

¯rm-type distribution (¸; ®; t¤; a(t)). Proposition 4.3 established that corresponding to an arbitrary

distribution, there exists a p with the property that p is accepted by consumers without search and

is pro¯t-maximizing for cM -¯rms. A steady-state equilibrium is a tuple (p¤; (¸;®; t¤; a(¿)))

which is consistent with both conditions: p¤ is individually optimal given (¸;®; t¤; a(¿)), and the

choice of p¤ by all medium cost ¯rms reproduces (¸;®; t¤; a(¿)). The next proposition establishes

the existence of such an equilibrium.

Theorem 4.4. There exists a steady-state equilibrium. In this equilibrium, the price of low-cost

¯rms is pmL and that of medium-cost ¯rms is p¤; p¤ > pmL , which consumers accept without search.

Proof. Fix a p 2 [pmL ; pmM ]. Assume all cM -¯rms charge p and that their customers accept p without

search (this will be shown to hold for the equilibrium p). Then, by proposition 4.2, there exists a

°ow of entry, y¤, and a distribution over ¯rm types, (¸; ®; t¤; a(¿ )), so that each ¯rm gets a constant

°ow of customers, x¤, for which the entry/exit conditions, (4.1) and (4.2), are satis¯ed.

Consider now consumers' search problem given p and (¸;®; t¤; a(¿)). If VM(p) < Vs(p), then,

by proposition 4.3, there exists a price, p00 2 (pmL ; p), so that under p00 and (¸;®; t¤; a(¿ )), we have
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VM(p00) = Vs(p
00). Let:

p0 =

(
minfp00; pmMg if VM(p) < Vs(p)

p otherwise
:

Then, p0 is such that VM(p0) ¸ Vs(p
0), i.e., consumers accept p0 without search.

This de¯nes a mapping, call it ª(p), so that when consumers face p0 = ª(p) and (¸;®; t¤; a(¿)),

we have VM(p0)¸ Vs(p
0). Since the mapping from p to (¸;®; t¤; a(¿)) is continuous (see proposition

4.2) and since consumers' and ¯rms' objectives are continuous, ª is continuous on the compact

interval [pmL ; pmM ]. Therefore, it has a ¯xed point, p¤.

Assume now that all cM -¯rms charge p¤. If p¤ < pmM then, by construction, VM(p¤) = Vs(p¤).

Assume some ¯rm deviates, raising its price above p¤. Then, given the monotonicity of Vs ¡ VM

in p, this will render VM < Vs, consumers will search and the deviating ¯rm will end up with

z = 0. Since RM is increasing in z, such deviation cannot be pro¯table. Consider a price decrease.

Then the deviating ¯rm does not get any more customers than it did before the price decrease

(¯rms are nonatomic), and by concavity of the period payo®-function, ¼(p), it losses pro¯ts on

existing customers. Therefore, a price decrease cannot be pro¯table, either. If p¤ = pmM , cM -¯rms

are already charging the monopoly price so certainly there is no incentive to deviate. So we have

shown that p¤ is a maximizing price for all cM -¯rms. p¤ > pmL because, by proposition 4.3 (ii),

Vs(pmL ) ¡ VM(pmL ) < 0, which contradicts the de¯nition of p¤.

Under p¤, consumers' search problem is such that VM(p¤) ¸Vs(p
¤) (by construction). Thus,

customers of medium-cost ¯rms are maximizing by choosing not to search. This con¯rms our

initial assumption, so each ¯rm gets indeed the same °ow of new customers which, according to

proposition 4.2, sustains the steady-state, (¸; ®; t¤; a(¿)). Furthermore, conditions (4.1) and (4.2)

are satis¯ed (again by construction), so ¯rms are indeed maximizing with respect to price and

entry/exit decisions.

The main di®erence between this version and the simpler model of section 2 is that there is more

than one price which clears the market, i.e., prices are dispersed in equilibrium. In particular, the

prices of medium-cost ¯rms exceed those of low-cost ¯rms by a markup which depends the model's

parameters. By the same token, the output of medium-cost ¯rms is less than that of low-cost

¯rms of the same age (because each consumer demands less at the higher price). That is, low- and
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medium-cost ¯rms of the same age have identical numbers of loyal customers but the low-cost ¯rms

have a larger share of output. Thus, in the richer version of the model, prices are correlated with

¯rm sizes and with marginal costs. This type of correlations match those found in Roberts and

Supina (1996).12

5. Conclusion

Since Gibrat, industrial economists have been aware of the need to explain size di®erences between

¯rms. We have presented a simple model in which ¯rms with identical characteristics nevertheless

achieve di®erent market shares, as a function of their tenure in the market. The main ingredient of

the model is the linkage between current and future market share deriving from consumer switching

costs. Thus in our formulation, a ¯rm's market size is something quite distinct from its technological

know-how. By contrast, in existing models of industry dynamics (Jovanovic (1982), Hopenhayn

(1992) or Lambson (1992)), which are set in perfectly competitive environments, market shares

depend only current production cost, so that cost and size are perfectly correlated variables.

12This cannot happen in competitive models, e.g., Jovanovic (1982) or Hopenhyn (1992). In those models a unique

price clers the market, so there is no scope for correlation between prices and ¯rm sizes or marginal costs.
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