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Abstract

This paper illustrates an alternative approach to modelling frictions.
Frictions are not assumed to exist, but are shown to arise endogenously as
a distinctive feature of the set of equilibria that correspond to a particular
range of parameter values. To avoid building frictions in the environment,
the information imperfections typically assumed in search-theoretic models
are eliminated. In addition, the model’s spacial structure and the agents’
moving decisions are explicitly spelled out, allowing the number of contacts
that occur to depend on the way agents choose to locate themselves. It is
shown that some heterogeneity among locations is necessary –although not
su¢cient– for the equilibria of the model to exhibit frictions. An aggre-
gate matching function is shown to exist, and its behavior with respect to
changes in parameters such as the distances between locations, the agents’
payo¤s and the sizes of the populations of searchers on each side of the
market is completely characterized. Finally, the model is used to quantify
the e¤ect of a recent change in taxicab fares on the process that rules the
meetings between passengers and taxicabs in New York City.
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1. Introduction

A distinctive feature of the search approach is that trades occur bilaterally between
agents rather than between an agent and “the market” as in the Walrasian model.
This feature makes the process that determines how agents meet a key building
block of any equilibrium model of search. The literature typically proceeds by
assuming agents possess limited information, so time and resources have to be
spent seeking trading partners. The information structure adopted prevents some
potential traders on one side of the market (say buyers) from contacting potential
traders on the other side (say sellers), not allowing the market to clear, in the
sense that there are both buyers who want to buy and sellers who want to sell
but were unable to meet. In other words, “frictions” are built in as a feature of
the environment1.

The “matching function approach” is another way of introducing frictions that
has been widely used in labor market applications2. This approach proceeds by
directly assuming the existence of an aggregate object –the matching function–
that gives the number of contacts that occur at any moment in time as a function
of the number of searchers on both sides of the market. The information imperfec-
tions and other features of the environment that must underlie such a function are
not made explicit; rather, it is assumed that “their interaction gives rise to a well-
behaved function of a small number of variables” (Pissarides (1990), pp. 3-4).
“Well-behaved” typically means continuous, di¤erentiable, strictly component-
wise increasing, less than the number of searchers on each side of the market, and
often also homogeneous of degree one.

Another common assumption –formally equivalent to assuming the existence
of a matching function, and used in virtually all monetary applications– is that
agents meet potential partners according to a Poisson process3. The fact that the

1At least since Beveridge (1945, p. 409), labor unemployment has been called “frictional”
when it coexists with “an unsatis…ed demand for labor somewhere”.

2Blanchard and Diamond (1989), Bowden (1980), Burdett and Smith (1995), Coles and
Smith (1995a, 1995b), Lagos (1995), Millard and Mortensen (1994), Mortensen (1992, 1994),
Mortensen and Pissarides (1991, 1992), Phelan and Trejos (1996), Pissarides (1990), Ramey and
Watson (1996), and Smith (1994) are some examples. For an early application of a job-matching
function, see Phelps (1968).

3Examples of papers that assume a Poisson meeting process are: Boldrin et al (1993), Burdett
and Coles (1994), Diamond (1981, 1982, 1984), Diamond and Yellin (1987, 1990), Kiyotaki and
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number of meetings in some interval of time is random and not generated by the
agents’ behavior is usually motivated by making references to an environment in
which the location of any potential trading partner is originally unknown, and can
be determined only by a random draw (i.e. by “ random search”) from the group
of possible locations. The thing to note, is that either by adopting a Poisson
process or a matching function, the bulk of the search and matching literature
assumes that meetings are ruled by some exogenous process.

Matching functions can be easily derived for environments with information
imperfections and agents who search randomly. In the labor literature, for in-
stance, a common story is that workers know where vacancies are, but don’t
know which particular vacancies other workers will visit, allowing for the possibil-
ity that some workers are unable to contact vacancies because they were “second
in line”. Hall (1979), Mortensen (1994) and Pissarides (1979) all derive the num-
ber of contacts that will take place in some time interval, as a function of the
numbers of vacancies and searching workers that is immediately implied by this
information structure.

However, since adopting a matching function amounts to assuming an exoge-
nous aggregate meeting process, it is unclear what kinds of individual search be-
havior are consistent with the aggregate structure adopted. In particular, could
the predictions of a model that uses a matching function characterize the out-
come resulting from the interaction of informed agents who are able to direct
their search? This question seems relevant since in most situations, people tend
to have at least some information that allows them to direct their search in ways
that may not be consistent with the random search assumption.

This paper investigates the microeconomic foundations of the matching func-
tion approach. Two features of the market for taxicab rides make it an appealing
setting to address this question. In …rst place, it is a market that exhibits meet-
ing frictions: passengers spend time waiting for taxicabs in some parts of the
city (typically “downtown”), while at the same time vacant taxicabs wait for pas-
sengers in others (notably the airport). Additionally, the price in this industry
is typically regulated, so the analysis highlights the role of meeting probabilities
and market tightness.

The treatment of frictions adopted here is in many ways di¤erent from that
followed by the equilibrium search literature. The main di¤erence is perhaps
that frictions are not assumed to exist, but are shown to arise endogenously as
a distinctive feature of the set of equilibria that correspond to a particular range

Wright (1991, 1993), Trejos and Wright (1995), and Wright (1994).
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of parameter values. To let agents direct their search and avoid building frictions
in the environment, no information imperfections are assumed. In particular,
this means that the common “nobody-knows-where-anything-is” assumption that
forces agents to search randomly and guarantees that some potential traders will
be unable to meet, is left out of the analysis. In addition, the model’s spacial
structure and the agents’ moving decisions are explicitly spelled out, allowing
the number of contacts that occur to depend on the way agents choose to locate
themselves.

It is shown that some heterogeneity among locations is necessary –although
not su¢cient– for the equilibria of the model to exhibit frictions. In fact, the
conditions under which frictions arise depend crucially on the total numbers of
searchers on each side of the market as well as on the heterogeneity among loca-
tions. From an aggregate perspective, the equilibria that exhibit frictions (in the
sense that not all possible bilateral meetings occur) look just like the outcomes ob-
tained from standard equilibrium search models in which meeting frictions result
from the fact that agents are assumed uninformed.

A function that expresses the total number of meetings in terms of the ag-
gregate stocks of searchers on both sides of the market is shown to exist. This
endogenous matching function is derived, and its behavior with respect to changes
in parameters such as distances between locations, the agents’ payo¤s, and the
sizes of the populations of searchers is completely characterized. Since agents can
direct their search, changes in parameters a¤ect their search strategies altering
the shape of the matching function. This suggests that the results of policy ex-
periments from models that assume and exogenous meeting process are likely to
be misleading if the random search assumption is not a good characterization of
the agents’ underlying search behavior. The reason being that if agents are able
to direct their search, then the matching function is an equilibrium object and
hence responds to policy changes. Finally, the model is used to quantify the e¤ect
of a recent change in taxicab fares on the process that rules the meetings between
passengers and taxicabs in New York City.

The rest of the paper is organized as follows. Section 2 describes the environ-
ment. Section 3 presents a cab driver’s decision problem. Section 4 introduces
the notion of equilibrium and presents a formal statement of the main theoretical
results. For a particular case, Section 5 characterizes the full set of equilibria,
derives the endogenously determined matching function for each relevant spacial
arrangement, discusses the nature of the frictions that arise in equilibrium, and
analyzes the main properties of the endogenous meeting technology. All the re-
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sults in Section 5 are generalized in Appendix A. Section 6 computes the complete
set of equilibria as well as the corresponding matching function for Manhattan’s
market for taxicab rides. This matching function is used to answer a particular
policy question in Section 7. Sections 6 and 7 are complemented by Appendix B,
which proves the main result in Section 6 and provides a map of the geographical
abstraction the application of the model is based upon. Section 8 concludes with
a summary of the main results.

2. Environment

Time is discrete and continues forever. A city consists of n ¸ 2 locations across
which the populations of people and taxicabs (hereafter “cabs”) may position
themselves4. There is a continuum of people with size normalized to unity, and
a continuum of cabs of measure v. The fractions of people and cabs in location i
are denoted pi and vi respectively.

People’s wishes to move between locations are taken to be exogenously given
by a Markov chain. Speci…cally, it is assumed that in each period an agent will
wish to remain at the current location with a probability that is constant across
locations and denoted by (1¡ u) 2 (0; 1). This means that there are u “movers”
in the whole city5. The probability that a passenger in i wishes to move to j is
given by uaij, with

Pn
j 6=i aij = 1 and aij 2 (0; 1). Therefore there are ui ´ upi

movers in location i, aijui of which want to go to location j.
People cannot walk to their desired destination: they have to get a cab ride.

Cabs cannot drive more than one passenger per trip, and when vacant, are free
to choose the location where they will try to …nd a passenger.

Cabs (passengers) are unable to meet passengers (cabs) in distant locations:
contacts only occur among cabs and passengers in the same location. And within
each location, the only way in which a cab (person) may not …nd a passenger (cab)

4It may help to think of the physical environment as a list
©©

li; ±ij

ªn

i=1

ªn

j 6=i
, with each

location li being a point on the plane: li =
¡
di
1; d

i
2

¢
2 <2; and ±ij =

r
P2

k=1

³
di

k ¡ dj
k

´2

the

distance between locations i and j. Notice that with n locations, there are
¡
n
2

¢
= n!

2(n¡2)! pairwise
distances.

5In equilibrium not everyone who wants to move is able to. The term “mover” refers to a
person who wants to move, regardless of the ability to do so. Assuming that the probability
of wishing to stay at the present location is the same acrosss locations guarantees that the
city-wide number of movers is independent of the distribution of agents across locations.
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is if there are not enough passengers (cabs) in that location. In other words, letting
mi be the number of cab-passenger meetings that occur in location i, we have6

mi = min fui; vig . (2.1)

Consequently, assuming the mi contacts are random and letting ½i ´ ui=vi, a cab
in location i will …nd a passenger with probability °i = min f½i; 1g, while a mover
in i will …nd a cab with probability °i½

¡1
i .

3. How to drive a cab

When moving from i to j, a cab incurs a moving cost cij, with

cij =
^
¼ ±ij;

±ij being the distance between i and j, and
^
¼¸ 0 the (per unit distance) cost of

moving. A cab that was unable to …nd a passenger in a given period can choose to
go to a new location where, in the following period, it will try to …nd a passenger.
Hence the value of being unmatched in location i at the end of a period7 is just
the discounted value of being at the best location at the beginning of the next
period, net of moving costs. Using modulo n arithmetic, this value can be written
as follows:

Ui = ¯max fVi; Vi+1 ¡ ci;i+1; :::; Vi+n¡1 ¡ ci;i+n¡1g ; for i = 1; :::; n: (3.1)

¯ 2 (0; 1) is the discount factor, and Vi the value of being in i before contacts
take place. When driving a passenger from i to j, cabs charge a “‡ag-drop” rate
b ¸ 0 and a rate ¼¤ >

^
¼ per unit distance8, and hence a cab’s pro…t from driving

6Notice that it is implicitly assumed that contacts only occur between cabs and movers. This
can be motivated by giving cabs the ability to identify movers (say because movers always raise
one arm until they have found a cab).

7The expression “beginning (end) of a period” means “before (after) the period’s contacts
have occurred”.

8Strictly speaking, fares are calculated as a ‡ag-drop charge and a charge (say $0.25) per
additional “unit”. A “unit” can be one of distance and/or of waiting time. In New York City, a
unit of distance is 1=5 of a mile, while a unit of waiting time is equal to 75 seconds. As the cab
moves at more than 9:6 mph, the meter clocks distance. When the cab is stopped or moving
at less than 9:6 mph, the meter clocks time. So for example, traveling 1=10 of a mile (moving
faster than 9:6 mph), then waiting at a stop light for 371

2 seconds generates one “unit” and
hence a $0.25 charge. The rate structure adopted in the model, ignores waiting time, and hence
a “unit” is just a unit of distance.
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somebody from i to j is
¼ij = b+ ¼±ij ; (3.2)

where ¼ ´ ¼¤¡ ^
¼. Then the value of giving a ride from i to j in any period is

given by the pro…t from the trip between i and j plus the value of being located
at j at the beginning of the next period:

Vij = ¼ij + ¯Vj: (3.3)

Finally, the value of being located in i (for i = 1; :::; n) before a period’s meetings
occur is given by:

Vi = °i

0
@

nX

j 6=i
aijmax fVij; Uig

1
A+ (1¡ °i)Ui: (3.4)

4. Steady state equilibrium

A steady state equilibrium is a time-invariant distribution of cabs and movers
across locations, such that given this distribution, cabs maximize pro…ts by opti-
mally choosing where to locate themselves. Before formally de…ning an equilib-
rium, it is convenient to understand how people (i.e. …lled cabs) and vacant cabs
move between locations.

4.1. Flows of …lled cabs

Since a person can only move when able to get a cab ride, the number of people
who are able to move to their desired destination depends on the number of cabs
available at their original location. That is, even though ui persons want to move
out of i, (only) °i½

¡1
i ui of them will be able to …nd a cab to do so. Notice that

when ½i · 1 there are at least as many cabs as movers in i, and all those who
want to leave location i are able to do so. However, when ½i > 1 there are less
cabs than movers, and some people wanting to move out of i will be unable to
…nd a cab. In this case, only a fraction °i½

¡1
i of the aijui people wanting to go

to from i to j is able to …nd a cab to go there. Letting Mij denote the ‡ow of
matches from i to j (for i; j = 1; :::; n and i 6= j), we have:

Mij = aijmi.
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Stationarity of the distribution of people across locations requires that for each
location, the in‡ow of matches equals the out‡ow of matches. This will be the
case if and only if the following n¡ 1 conditions are satis…ed:

nX

j 6=i
Mij =

nX

j 6=i
Mji, i = 1; :::; n¡ 1:

4.2. Allocation of empty cabs

The analysis will focus on equilibria in which a cab’s expected discounted payo¤
at the beginning of each period is equal across locations, namely equilibria for
which

V1 = V2 = ¢ ¢ ¢ = Vn: (4.1)

A feature of the class of equilibria under consideration, is that a cab will never
…nd it optimal to turn a passenger down, regardless of where the passenger wants
to go9. Equations (3.1), (3.3) and (4.1) can be combined with (3.4), to show that
the (‡ow) value of being in i (for i = 1; : : : ; n) at the beginning of a period is
given by:

(1¡ ¯)Vi = °i¼i
where

¼i ´
nX

j 6=i
aij¼ij (4.2)

is a cab’s expected pro…t conditional on having contacted a passenger in location
i.

4.3. De…nition of equilibrium

A steady state equilibrium is a distribution of movers and cabs across locations,
f(ui; vi)gni=1, such that:

(E1) cabs maximize expected pro…ts

°1¼1 = °i¼i, i = 2; :::; n

(E2) the distribution is invariant
Pn
j 6=iMij =

Pn
j 6=iMji, i = 1; :::; n¡ 1:

9To see why this is true, let V ´ Vi for all i, and notice that Vij = ¼ij +¯V is strictly greater
than Ui since in this class of equilibria Ui = Uj = ¯V for all i; j.
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(E3) the distribution is feasible
Pn
i=1 ui = u and

Pn
i=1 vi = v:

By ensuring that they have no pro…table way to reallocate at the beginning
of each period, condition (E1) guarantees that cabs are maximizing expected
discounted pro…ts. Condition (E2) assures that the distribution of cabs and people
across locations remains constant through time. Condition (E3) requires that the
equilibrium distribution is consistent with the total numbers of people and cabs
in the city.

4.4. The aggregate matching function

In the search literature “frictions” are certain features of the environment that
prevent some bilateral meetings from taking place. Within the present framework,
no feature of the environment rules out the possibility that all possible meetings
occur. In particular, (2.1) guarantees that if some cabs and passengers fail to
contact each other, it can only be as a result of the way in which cabs chose to
locate. Put di¤erently, in this context “frictions” are a property of the equilibrium
allocation, and are not necessarily implied by the type of environment assumed.
An equilibrium allocation will be said to exhibit frictions if it simultaneously
exhibits vacant cabs and unserved passengers. So letting m denote the aggregate
(i.e. city-wide) number of meetings, an equilibrium exhibits frictions if

m < min fu; vg ;

and is frictionless if all possible contacts take place, namely if

m = min fu; vg :

This is the operational de…nition of frictions that will be adopted hereafter.
Having introduced the notion of equilibrium and adopted a de…nition of fric-

tions, we can pose the two main questions addressed by the paper. The …rst, is
trying to understand what conditions cause frictions arise. The second, is asking
whether –as often assumed in the equilibrium search literature– it is possible to
write down the aggregate number of meetings as a “well-behaved” function of the
numbers searchers on both sides of the market. The following proposition answers
both questions.

9



Proposition 1. Let ¦ ´ max f¼1; : : : ; ¼ng ¡min f¼1; : : : ; ¼ng.
An equilibrium exists for any ¦. Furthermore,
(a) If ¦ = 0, then all equilibria are frictionless, for any aggregate degree of

market tightness v=u.
(b) If ¦ > 0, then the equilibrium allocations exhibit frictions if and only if

the market is “tight enough” (i.e. if and only if v=u is “small enough”).
(c) There always exists a unique aggregate matching function. Moreover, this

function is of the Leontief variety.
Proof. See Appendix A.

Proposition 1 gives a set of conditions that are necessary and su¢cient for
frictions to arise in equilibrium. It also establishes the existence of a function that
expresses the aggregate number of meetings in terms of the aggregate numbers
of agents on each side of the market. The purpose of the following section is to
convey the intuition behind these results.

5. Understanding the mechanics of the model

This section uses the 3-location as a leading example to illustrate the results stated
in the previous section.

5.1. Characterization of equilibria

As in Proposition 1, the problem of …nding the conditions under which frictions
arise will be split in two cases. In the …rst case, all locations look identical from a
cab’s perspective, while in the second, some location(s) is (are) better than others.
Since all the results in this section are particular cases of Proposition 1, they are
summarized in corollaries and their proofs omitted.

5.1.1. When all locations are identical

Suppose that people’s wishes to move and the distances between locations are
such that10

¼1 = ¼2 = ¼3: (5.1)

This means that a cab’s expected pro…t conditional on having contacted a passen-
ger is the same across locations. Since all possible trips in this city give the same

10Notice that having ¼12 = ¼13 = ¼23 is su¢cient but not necessary for (5.1) to hold.
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pro…t, cabs maximize expected pro…ts by maximizing the probability of picking
up a passenger, so that in equilibrium contact rates must be equalized across
locations. Indeed, if (5.1) holds, (E1) becomes:

min fu1=v1; 1g = min fu2=v2; 1g = min fu3=v3; 1g : (5.2)

Notice that (5.2) implies that in equilibrium, either all locations exhibit excess
supply of cabs or none of them do11. Hence there are three possible types of equi-
libria: one with excess supply in all locations, another in which there is market
clearing in all locations, and a third in which there is excess demand in at least
one location while none of the others exhibit excess supply. These three types of
equilibria are characterized in the following result:

Corollary 1. Assume (5.1) holds. If:
(a) v > u then there exists a unique equilibrium: all locations exhibit excess

supply of cabs.
(b) v = u then there exists a unique equilibrium: there is market clearing in

all locations.
(c) v < u then there is a continuum of equilibria in which at least one market

exhibits excess demand while none of the others exhibit excess supply.

Whenever there are at least as many cabs as movers in all locations, each
period all movers are able to reach their desired destinations. Put di¤erently,
in any equilibrium in which no location exhibits excess demand, the steady state
distribution of movers across locations is given by the unique invariant distribution
of the Markov matrix that rules passengers’ wishes to move12. In this 3-location
case this distribution is ¹u, with ¹ = (¹1; ¹2; ¹3) given by

¹1 = (1¡ a23a32) =¢
¹2 = (1¡ a13a31) =¢
¹3 = (1¡ a12a21) =¢;

and
¢ ´ (1¡ a12a21) + (1¡ a13a31) + (1¡ a23a32) :

Hence ¹iu is the (unconstrained) steady state number of movers in location i.
The equilibrium allocations for the equilibria in parts (a) and (b) of Corollary 1
are reported in Table 5.1.

11From now on, “excess supply (demand)” will mean “excess supply (demand) of cabs”
12For more on this, see Appendix A.
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i = 1 2 3
ui ¹1u ¹2u ¹3u
vi ¹1v ¹2v ¹3v
mi ¹1u ¹2u ¹3u

Table 5.1: Case with ¼1 = ¼2 = ¼3. Equilibrium with excess supply in all locations (or with
market clearing in all locations).

In an equilibrium with either excess supply or market clearing in all locations,
all movers reach their desired destinations every period and hence are distributed
across locations according to ¹u. Given this distribution, there is a unique way
for cabs to position themselves so that (5.2) holds. The equilibrium distribution
of cabs is such that the fraction of cabs in location i is the same as the fraction
of movers in that location. Notice that cabs’ contact rates are the same across
locations and equal to u=v.

The equilibrium allocations for the equilibria in part (c) of Corollary 1 are
reported in Table 5.2, where " = ("1; "2; "3) denotes a vector in the 3-dimensional
unit simplex13.

i = 1 2 3
ui ¹1v + "1 (u¡ v) ¹2v + "2 (u¡ v) ¹3v + "3 (u¡ v)
vi ¹1v ¹2v ¹3v
mi ¹1v ¹2v ¹3v

Table 5.2: Case with ¼1 = ¼2 = ¼3. Equilibria with excess demand in at least one location.

In an equilibrium with excess demand in all locations, a cab is indi¤erent
between looking for a passenger in any location because in any of them it gets a
passenger with certainty and all trips give the same pro…ts. However, with excess
demand everywhere the ‡ows between locations are ruled by the number of cabs
in each location (due to (2.1)). This means that the equilibrium distribution of
cabs is uniquely determined by (E2), and given by ¹v. The distribution of movers
on the other hand, is indeterminate, as can be seen in Table 5.2. In any case,
this indeterminacy has no e¤ect on the number of meetings, since the latter is not
a¤ected by the number of unserved passengers (this is obvious from the last row
of Table 5.2).

13That is,
P3

i=1 "i = 1, and "i ¸ 0, for i = 1; 2; 3.

12



Finally, notice how the pattern of excess supply changes as the degree of
aggregate market tightness v=u varies. As can be seen from Tables 5.1 and 5.2,
the distribution of cabs is ¹v in all equilibria. So suppose we start with some
v=u > 1. Initially, all markets have (the same) excess supply of cabs, namely
v ¡ u. Hence as v=u falls, the excess supply shrinks in all markets, until all
markets clear at the point when v=u = 1. As the number of movers comes to
exceed the number of cabs, we enter a parameter range with multiple equilibria,
in which all equilibria have the property that no market is in excess supply while
at least one exhibits excess demand. It is interesting to note how the number
of meetings varies continuously from u to v as the aggregate degree of market
tightness v=u moves continuously from above 1 to below 1 (see the last rows of
Tables 5.1 and 5.2 to verify this fact).

5.1.2. The case of heterogeneous locations

Now suppose some location is less attractive from a cab’s perspective, in the sense
that the conditional expected pro…t of a trip from that location is strictly less
than from the others. Labeling locations so that smaller subindexes correspond
to locations with larger conditional expected pro…ts, we now focus on a set of
parameters that satisfy either:

¼1 ¸ ¼2 > ¼3; or (5.3)

¼1 > ¼2 = ¼3: (5.4)

Notice that conditions (5.1), (5.3) and (5.4) partition the parameter space. If
(5.3) holds, then locations 1 and 2 are “better” than 3 from a cab’s perspective
because the expected pro…t of a trip from either 1 or 2 conditional on having
contacted a passenger is strictly greater than from 3. If a cab is to be indi¤erent
among locations, it must be that it is less likely to …nd a passenger in 1 and in 2
than in 3: In fact, under (5.3), (E1) becomes

min fu1=v1; 1g · min fu2=v2; 1g < min fu3=v3; 1g : (5.5)

According to (5.5), there can only be three types of equilibria: location 3 is
in excess supply in the …rst, exhibits market clearing in the second and excess
demand in the third. Locations 1 and 2 are in excess supply in all three types.
Similarly, if the parameters are such that (5.4) is the case, then (E1) implies

min fu1=v1; 1g < min fu2=v2; 1g = min fu3=v3; 1g : (5.6)
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The following corollary summarizes the full set of equilibria whenever either con-
dition (5.3) or condition (5.4) holds.

Corollary 2. Let Á ´ ¼3=
³P3

i=1 ¹i¼i
´
.

Assume (5.3) holds. If:
(a) Áv > u then there is a unique equilibrium: all locations exhibit excess

supply.
(b) Áv = u then there is a unique equilibrium: locations 1 and 2 exhibit excess

supply while the market clears in 3.
(c) Áv < u then there is a unique equilibrium: locations 1 and 2 exhibit excess

supply and there is excess demand in 3.
Alternatively, suppose (5.4) holds. If:
(d) Áv > u then there is a unique equilibrium: all locations exhibit excess

supply.
(e) Áv = u then there is a unique equilibrium: location 1 exhibits excess

supply while the market clears in 2 and 3.
(f) Áv < u then there is a continuum of equilibria with excess supply in loca-

tion 1 only, and excess demand in at least one of the other two locations.

We …rst comment on parts (a), (b), (d) and (e), whose equilibrium allocations
are reported in Table 5.3.

i = 1 2 3
ui ¹1u ¹2u ¹3u
vi

¹1¼1P3

i=1
¹i¼i
v ¹2¼2P3

i=1
¹i¼i
v ¹3Áv

mi ¹1u ¹2u ¹3u

Table 5.3: Equilibrium allocations corresponding to cases (a), (b), (d) or (e) in Corollary 2.

When all locations are identical, a cab gets the same pro…t from all trips. In
that case, the only reason why there may be more cabs in a location than in
another is that there are more passengers in the former than in the latter. In
general, there are two features of locations that cabs care about. The …rst, is the
number of potential passengers in each location. All else equal, a location with
more passengers will have more cabs. The second, is how pro…table rides from
each particular location “tend to be”. This is essentially the notion of conditional
(expected) pro…t introduced earlier. If ¼i > ¼j, then all else equal, there will be

14



more cabs in i than in j because rides originating in i tend to be longer, and
hence (by (3.2)) more pro…table than those originating in j. Notice that ¼i is just
a weighted average of the pro…ts from selling a trip from i to each one of the other
locations, with the weights given by the fraction of movers in i wishing to go to
each one of these locations (see (4.2)). When locations di¤er in their conditional
expected pro…t, the equilibrium distribution of cabs will re‡ect the attractiveness
of each location not only in terms of the number of movers, but also in terms
of how pro…table it is to pick up a random passenger in each one. A good way
to illustrate this point is to compare the middle row of Table 5.3 with that of
Table 5.2 (or 5.1). The allocation of cabs in Table 5.3 is obtained from the one
in Table 5.2 after multiplying the number of cabs in each location by a measure
of the relative attractiveness of that location in terms of its conditional expected
pro…t. This measure of the attractiveness of location i’s conditional expected
pro…t relative to other locations’ is given by

¼iP3
i=1 ¹i¼i

; for i = 1; 2; 3: (5.7)

In Corollary 2 the relative attractiveness of the worst location (i.e. of the one with
the lowest ¼i) was denoted Á. Since in the equilibria described in parts (a), (b),
(d) and (e) no location exhibits excess demand, the equilibrium distribution of
movers is the unconstrained steady state distribution ¹u. Finally, a cab’s contact
rate di¤ers among locations in a way that is consistent with the ranking of the
¼i’s, with cabs in more attractive locations facing lower probabilities of meeting
passengers14.

We now turn to analyze the equilibrium in part (c) of Corollary 2, whose allo-
cations are reported in Table 5.4. The distribution of cabs is the same as in Table
5.3: the fraction of cabs in location i is still equal to the unconstrained steady
state fraction of movers in location i (namely ¹i) times the relative attractiveness
of location i given in (5.7). However, location 3 is now in excess demand, so each
period some of the movers there are unable to …nd a cab to reach their desired
destinations. Consequently, the number of passengers ‡owing out of 3 is smaller
than in the unconstrained steady state, implying a steady state equilibrium dis-
tribution of movers with more movers in 3 and less in 1 and 2 relative to the
unconstrained steady state ¹u.

Finally, it should be noted that the fact that cabs are in excess demand in
location 3 does not necessarily mean that there are less cabs there than in the lo-

14Hereafter, location i will be said to be “more attractive” than j if ¼i > ¼j .
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i = 1 2 3
ui ¹1Áv ¹2Áv u¡ (1¡ ¹3)Áv
vi

¹1¼1P3

i=1
¹i¼i
v ¹2¼2P3

i=1
¹i¼i
v ¹3Áv

mi ¹1Áv ¹2Áv ¹3Áv

Table 5.4: Case with ¼1 ¸ ¼2 > ¼3. Equilibrium with excess supply in 1 and 2 and excess
demand in 3.

cations with excess supply. In particular, if 3 is “popular enough” as a destination
(in the sense that a13 and a23 are relatively big, implying a ¹3 close enough to 1),
there will be more cabs there than in 1 and 2, as can be seen from the middle row
in Table 5.4.

The set of equilibria of part (f) is reported in Table 5.5, where ² = (²2; ²3)
denotes a vector in the 2-dimensional unit simplex (i.e. ²2+ ²3 = 1 and ²i ¸ 0 for
i = 2; 3).

i = 1 2 3
ui ¹1Áv ¹2Áv + ²2 (u¡ Áv) ¹3Áv + ²3 (u¡ Áv)
vi

¹1¼1P3

i=1
¹i¼i
v ¹2Áv ¹3Áv

mi ¹1Áv ¹2Áv ¹3Áv

Table 5.5: Case with ¼1 > ¼2 = ¼3. Equilibria with excess supply in 1 and no excess supply
in 2 and 3.

The only di¤erence between the allocations in Table 5.5 and those in Table
5.4 is that since there are now two locations with excess demand, the distribution
of movers between them is indeterminate. Nevertheless, as can be seen in the last
row of Table 5.5, the equilibrium number of meetings in each location is uniquely
determined.

To conclude the section, notice how starting with an aggregate degree of mar-
ket tightness v=u that lies above Á¡1, the pattern of excess supply in all locations
changes as v=u falls below Á¡1. To …x ideas, suppose condition (5.3) holds. As
v=u decreases, the excess supply in all locations falls (see Figure 2 below). Under
(5.3), location 3 exhibits the smallest level of excess supply. In fact, notice that it
has excess supply if and only if v=u > Á¡1. So the excess supply in 3 goes to zero
as v=u approaches Á¡1, and the market in 3 clears when v=u = Á¡1. As v=u falls
below Á¡1, 3 moves in excess demand while 1 and 2 remain with excess supply.
As v=u falls continuously from above Á¡1 to below Á¡1, the number of meetings
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varies in a continuous manner from u to Áv (see the last rows of Tables 5.3, 5.4
and 5.5).

5.2. Derivation of the aggregate matching function

The …rst claim made in Proposition 1 is that if all locations are identical in the
conditional expected pro…t sense, then any equilibrium that may result has the
property that all possible bilateral trades occur: the system has no frictions. Part
(b) of Proposition 1 claims that although having identical locations is su¢cient
to guarantee no frictions, it is not necessary. By deriving the aggregate (i.e. city-
wide) matching function implied by each possible equilibrium of the model, this
section establishes the claims made in Proposition 1 for the 3-location case.

Given any geographic con…guration, any set of moving preferences (represented
by the aij’s) and any aggregate populations of cabs and movers, Tables 5.1-5.5
specify the distribution of cabs and movers implied by the equilibrium (or equilib-
ria) of the model. Furthermore, the last row of each table speci…es the equilibrium
number of meetings that will occur in each location. We show that by aggregat-
ing across locations (i.e. by adding up the entries in the last row of the relevant
table), an aggregate matching function can be constructed.

Given (5.1) holds, the equilibrium allocations when either v ¸ u or v < u
are given in Tables 5.1 and 5.2 respectively. From the information on their last
rows, it follows that when all locations are identical from a cab’s perspective, the
aggregate number of meetings is

m1 (u; v) =

(
u if v ¸ u
v if v < u;

which can be re-written as

m1 (u; v) = min fu; vg :

m1 (¢) stands for the aggregate number of meetings under condition (5.1). There-
fore there are no frictions in an equilateral city since all possible bilateral meetings
take place.

If condition (5.1) does not hold, then the equilibrium distribution will be one
of those reported in Tables 5.3-5.5. Notice that the aggregate number of meetings
is the same in all equilibria and only depends on the aggregate degree of market
tightness. Letting m (¢) denote the aggregate number of meetings under condition
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(5.3) or (5.4), we can write:

m (u; v; b; ¼; ±;A) =

(
u if Áv ¸ u
Áv if Áv < u

(5.8)

where b is the ‡ag-drop rate, ¼ the per-milage charge, ± ´ (±12; ±13; ±23) the set of
pair-wise distances between locations, and A the matrix of wishes to move which
is explicitly given in Appendix A. The number of meetings in (5.8) implies that
the aggregate matching function exists and is given by:

m (u; v; b; ¼; ±; A) = min fu; Ávg : (5.9)

Since

m (u; v; b; ¼; ±; A) < min fu; vg ; if and only if v=u < Á¡1;

an equilibrium exhibits friction if and only if the aggregate degree of market
tightness v=u is smaller than Á¡1.

Two facts about the nature of frictions in this model can be learned from the
matching functions just derived, and they are the keys to understanding what
exactly is preventing some contacts to occur in some regions of the parameter
space. For frictions to arise, …rst, it is necessary that locations are not all identical
(in the sense of having the same ¼i’s). And second, that the number of cabs be
“small enough” relative to the number of movers. Together, these two conditions
are equivalent to the notion of frictions within the present framework. The next
section explains why this is so.

5.3. Frictions: when and why they arise

The discussion in the previous two sections reveals that for any given degree of
heterogeneity among locations (as measured by Á, the relative attractiveness of
the worst location), there is a level of market tightness such that frictions arise if
and only if v=u is below that level. To provide a simple illustration of this fact,
suppose one half of the movers in each location wish to go to each one of the other
to locations. This amounts to setting aij = 1=2 for all i; j and i 6= j, which in turn
implies ¹ = (1=3; 1=3; 1=3). That is, if people’s wishes to move treat locations
identically, then each one ends up with 1=3 of the movers in an unconstrained
steady state. This symmetry assumption means that distances between locations
are the sole source of heterogeneity among them. Additionally assuming that
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±12 = ±13 implies that ¼1 is a cab’s pro…t from a trip between location 1 and any
other location, as well as that ¼2 = ¼3. It may be useful to picture locations as the
vertices of an isosceles triangle with location 1 being the vertex between the two
sides of equal length. De…ne x ´ ¼1=¼23; and notice that x is isomorphic to the
distance between location 1 and location 2 (or 3) relative to the distance between
locations 2 and 3. When x = 1 the city resembles and equilateral triangle, and
all locations are identical from a cab’s perspective. This is the case analyzed in
Corollary 1. When x < 1 the parameters satisfy (5.3) –subject to a re-labeling–,
while when x > 1, (5.4) holds. According to (5.7), the relative attractiveness of
location 1 is given by 3x= (2x+ 1), while the relative attractiveness of location 3
is the same as 2’s (because ¼2 = ¼3), namely 3 (x+ 1) =2 (2x+ 1). Since 1 is the
best location if and only if x > 1, we know that

Á =

( 3x
2x+1

if x · 1
3(x+1)
2(2x+1)

if x > 1
(5.10)

since, as before, Á is the relative attractiveness of the worst location.
By varying x, we can get all the possible patterns of heterogeneity among

locations. By combining x with aggregate tightness v=u, Figure 1 illustrates the
areas of the parameter space for which frictions arise in equilibrium.

Figure 1. All equilibria corresponding to parameter values below the line v=u = F (x) exhibit
frictions, except for the equilateral case (i.e. when x = 1) whose equilibria are always

frictionless.
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The two most important curves in Figure 1 are x = 1 and F (x). Since all
locations are identical when x = 1, we know (by Corollary 1), that the equilibria
that correspond to parameter values on this locus are frictionless. There are also
no frictions for all combinations of market tightness v=u and relative distance x
that lie on or above the “no-frictions frontier” given by

F (x) =

( 2x+1
3x

if x · 1
2(2x+1)
3(x+1)

if x > 1:
(5.11)

Frictions arise everywhere below the frontier, except in the case when the city is
equilateral (i.e. when x = 1). F (x) is immediate after putting (5.10) together with
the fact that all equilibria corresponding to levels of market tightness that exceed
the reciprocal of the relative attractiveness of the worst location are frictionless
(Corollary 2). Notice that the line v=u = 1 lies below the no-frictions frontier.
Thus even when there are the same number of movers and cabs, so that all agents
could potentially meet a partner, some meetings fail to occur in equilibrium,
provided all locations are not identical.

To see how frictions arise in equilibrium, we now turn to the general 3-location
case, only requiring from distances and wishes to move that they be such that
(5.3) holds. Conditional on having picked up a random passenger, a cab’s expected
pro…ts from a trip are ¼1 in location 1; ¼2 in 2 and ¼3 in 3. Under (5.3), a cab
weakly prefers to pick up a passenger in 1 than in 2; and strictly prefers to get a trip
originating in 2 rather than in 3. Since in equilibrium there can be no pro…table
re-allocation for a cab, (unconditional) expected pro…ts must be equalized across
locations and hence a cab’s contact rate must be (weakly) smaller in 1 than in 2,
and (strictly) smaller in 2 than in 3. Suppose that initially there are more than
Á¡1 cabs per mover in the city, where Á; the relative attractiveness of the worst
location is de…ned in Corollary 215. The equilibrium allocations for this case are
unique and given in Table 5.3. Under (5.3) cabs do not distribute themselves
“evenly” in equilibrium, in the sense that the fraction of cabs in each location
di¤ers from the fraction of movers in that location. However, when v=u > Á¡1,
the city-wide number of cabs is so large relative to the city-wide number of movers,
that the number of cabs that choose to look for a passenger in location 3 exceeds
the number of passengers in that location. To verify this, the excess supply
functions can be derived from Tables 5.3 and 5.4: letting

xsi ´ vi ¡ ui;
15Since 0 < ¼3 = min f¼1; ¼2; ¼3g, it is immediate that Á 2 (0; 1).
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we have:

xsi =

(
(Ái ¡ Á)¹iv if v=u < Á¡1

(Áiv ¡ u)¹i if v=u ¸ Á¡1

for i = 1; 2; and

xs3 =

(
Áv ¡ u if v=u < Á¡1

(Áv ¡ u)¹3 if v=u ¸ Á¡1:

As can be seen in Figure 2, even though only a fraction ¹3Á of the total number
of cabs are in 3, while the fraction of the total number of movers there is ¹3, there
are so many cabs in the city when v=u ¸ Á¡1, that even the worst location is in
excess supply.

Figure 2. Excess supply functions as a function of the total number of cabs when ¼1 ¸ ¼2 > ¼3.

Now consider what happens as v=u falls. In terms of the parameter space
in Figure 1, this experiment amounts to taking a point to the left of x = 1 and
above the no-frictions frontier and seeing how the set of equilibria and the implied
frictions change as the point is brought down along a vertical line. As can be seen
in Table 5.3, initially the distribution of movers remains unchanged as tightness
falls since as long as v=u > Á¡1 there is excess supply in all locations. On the
other hand, the number of cabs in all locations falls as v=u falls (see the middle
row of Table 5.3). Notice that as a fraction of the total number of cabs, the
number of cabs in each location remains constant (and given by ¹j¼j=

P3
i=1 ¹i¼i
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for j = 1; 2; 3). In other words each location’s share of the total number of cabs
remains constant for any level of aggregate market tightness16. Being the least
attractive of all, location 3 is the one with the smallest number of cabs per mover
(namely (v=u)Á, as opposed to (v=u) ¼j=

P3
i=1 ¹i¼i, in 1 and 2). Thus only in

location 3 does the excess supply of cabs vanish as v=u gets arbitrarily close to
Á¡1 (see Figure 2). Indeed, while locations 1 and 2 still exhibit excess supply,
market clearing obtains in 3 when Áv = u. In fact, notice that the expression for
the no-frictions frontier in (5.11) is just the market clearing condition for the least
attractive location.

As soon as v=u falls below Á¡1, location 3 starts having excess demand while
there is still excess supply in the other locations. Figure 2 con…rms that below
the no-frictions frontier the equilibrium exhibits excess supply of cabs in locations
1 and 2, and excess demand in 3. This equilibrium has cabs (in locations 1 and
2) which are unable to contact passengers, and passengers (in location 3) who are
unable to …nd cabs: the equilibrium exhibits frictions.

Figure 3. Behavior of a cab’s contact rates as the city-wide number of cabs per mover
increases.

Figure 3 shows the behavior of a cab’s contact rate in each of the three locations
as the city-wide number of cabs changes. While there is excess demand in location

16This is true both above and below the no-frictions frontier.
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3, the contact rates of a cab in locations 1 and 2 remain constant. This is because
in equilibrium, pro…t maximization (refer to equilibrium condition (E1)) requires
the ratios of cabs’ contact rates across locations to remain constant, and the
contact rate of a cab in 3 is constant and equal to one while there is excess demand
in that location. Once v=u reaches Á¡1, market clearing is attained in location 3
(in Figure 3, notice how u3=v3 equals one at that point) and thereafter, further
increases in v, cause a cab’s contact rate to deteriorate in each location, preserving
their relative sizes. The dotted line in Figure 3 shows how the excess demand in
location 3 is reduced and eventually disappears as v=u rises. The number of cabs
per mover in that location rises until the excess demand is eventually worked out
and the frictions disappear.

Given all potential meetings always take place within each location, the only
way a vacant cab and a mover may fail to contact each other is if they stand in
di¤erent locations. Hence an equilibrium with frictions must necessarily involve
some location(s) with excess supply and some location(s) with excess demand. By
increasing v=u, the location(s) with excess demand move toward market clearing,
so that if v=u gets to be high enough, all movers will be able to contact cabs, and
hence all possible bilateral meetings will take place.

5.4. Properties of the aggregate matching function

As mentioned in the Introduction, most equilibrium search models are built
around an exogenous aggregate matching function with some convenient proper-
ties. In particular, the matching function is often assumed to be strictly component-
wise increasing and homogeneous of degree one, and this properties usually play
an important role in the analyses. This section presents the properties of the
matching function implied by model to see how they compare with those that are
typically assumed in the literature.

5.4.1. Meetings and the stocks of searchers: why Leontief?

Recall the matching function derived earlier:

min fu; Ávg :

This function responds to changes in the stock of movers only above the no-
frictions frontier (i.e. for u < Áv). This is because in that region of the parameter
space, any equilibrium involves excess supply of cabs in all locations, so wherever
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they may end up located in the steady state equilibrium, any number of extra
movers generates the same number of extra meetings. Below the “no-frictions
frontier” (i.e. for u > Áv), increasing the city-wide number of movers just increases
the steady state number of movers in the location(s) with excess demand for cabs,
and hence has no e¤ect on the number of contacts (for example notice that only
u3 depends on u in Table 5.4).

Similarly, additional cabs increase the number of contacts only when the meet-
ing process exhibits frictions. When the number of cabs is too big relative to the
number of movers (i.e. when v > Á¡1u), the additional cabs just increase the
excess supply of cabs in each location, and hence don’t increase the number of
matches. On the other hand, below the no-frictions frontier, additional cabs gen-
erate additional meetings, but at a rate smaller than 1. If all the additional cabs
placed themselves in the location(s) with excess demand, then each additional cab
would generate and extra meeting. In equilibrium, however, the additional cabs
spread themselves across all three locations (again, the extra number of cabs that
go to each location is proportional to the location’s relative attractiveness given
in (5.7)), and since some end up in locations with excess supply, the increase in
the number of contacts is smaller than the increase in the number of cabs.

It is clear that each additional cab in the location(s) with excess demand gener-
ates an extra meeting. However, in an equilibrium with frictions –i.e. with excess
supply in some location(s) and excess demand in other(s)– it is not true that addi-
tional cabs in the location(s) with excess supply generate no extra meetings. This
is because the additional cabs in the location(s) with excess demand necessarily
mean more movers in the location(s) with excess supply17. With more cabs in the
location(s) with excess demand, some of the movers who were previously unable
to go to locations with excess supply, will now be able to do so. Thus although
the aggregate number of movers has not changed, their steady state distribution
across locations is changed by the increase in the number of cabs. Relative to the
previous one, the new steady state equilibrium will exhibit more movers in the
location(s) with excess supply, and less in (some of) the location(s) with excess
demand.

5.4.2. Policy experiments and the shape of the matching function

As it can be seen from (5.9), the matching function depends on the ‡ag drop rate
b; the per-milage charge ¼, the full set of pair-wise distances ±, and the matrix

17To illustrate this, go back to Table 5.5 and verify that u1 is increasing in v.
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A of wishes to move. In short, it depends on all the variables that determine
the pro…t a cab makes from each possible trip it may sell. Aiming at the policy
question addressed in Section 7, the analysis will focus on how changes in fares
(i.e. changes in b and/or ¼) a¤ect the endogenous meeting process.

Suppose there are n locations satisfying

¼n = min f¼1; : : : ; ¼ng < ¼1:

As shown in Appendix A, under these conditions the matching function is still
given by (5.9), but with Á given by

¼nPn
i=1 ¹i¼1

:

Notice that the matching function can be re-written as:

m (u; v;®) = min fu; Á (®) vg ;

with

Á (®) =
®+ ´

®+§

´ ´
n¡1X

j=1

anj±nj

§ ´
nX

i=1

¹i

0
@X

j 6=i
aij±ij

1
A ;

and ® ´ b=¼ being the relevant policy parameter. Di¤erentiating m (¢) with
respect to ®, we get:

@

@®
m (u; v;®) =

§¡ ´
(®+§)2

> 0;

provided Á (®) v < u. Thus, in an equilibrium with frictions, the number of
meetings increases with ®. An increase in the ‡ag-drop rate relative to the per
milage charge makes shorter trips relatively more attractive than before, inducing
some cabs in locations with excess supply to go and look for passengers in locations
with excess demand.

The mechanism that brings about this change in the number of meetings di¤ers
from the main e¤ects at work in most existing equilibrium search models. The
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latter typically rely either on changes in the stocks of searchers or in “search
intensity” for an explanation of changes in the aggregate number of meetings. For
example, in an equilibrium search model of the labor market with a free entry
condition for …rms, a decrease in …rm’s search costs will increase the equilibrium
number of …rms, which in turn causes (under the standard assumption that the
matching function is strictly increasing in both components) an increase in the
number of contacts. On the other hand, within the present framework, even
holding the number of cabs and movers …xed, a policy (for instance changing the
taxicab-meter rate so that ® rises) will change the equilibrium distribution of cabs
across locations, which will in turn a¤ect the shape of the matching function. In
other words, the number of contacts may react to a policy because cabs change the
way in which they look for passengers in response to the policy. When agents are
allowed to choose how to conduct their search, the meeting process is endogenous,
and hence using a model that assumes a meeting technology to predict the e¤ects
of a policy may be misleading in some cases. The application worked out in the
next section is one such case.

6. A matching function for New York City

New York City (NYC) is composed of 5 boroughs: Brooklyn, the Bronx, Queens,
Staten Island and Manhattan. This section uses the tools developed in the pre-
vious ones to compute an approximation to the matching process according to
which cabs and passengers meet in Manhattan, below 79th St.

6.1. Why NYC, why Manhattan and why below 79th St.

The main reason why it seems appealing to apply the analysis to NYC’s market
for taxicab rides is that the city is currently changing the market’s regulations.
Within the last few months, the New York City Taxi and Limousine Commission
(TLC), the regulating entity, has raised the fare, and is considering increasing the
number of medallions18 by 400 over the next 3 years. The remainder of the paper
will focus on the e¤ects this recent increase in the fare is likely to have had on
the market’s meeting process.

18NYC’s law currently limits the number of (yellow) taxicabs to 11,787. The term “medal-
lion” refers to the painted aluminum medallion that is a¢xed to the hood of every yellow cab
representing a taxi license.
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Choosing to focus on Manhattan, is natural because NYC’s taxi trips center
on Manhattan: only about 8% of NYC’s taxi trips serve the “outerboroughs” (i.e.
Brooklyn, the Bronx, Queens, Staten Island or northern Manhattan19) more than
half of which begin in Manhattan south of 96th St. Only 1% of all trips both begin
and end in the outerboroughs. Moreover, 70% of all trips transport Manhattan
residents. With 78% of its households not owning a car, public transportation is
a vital part of life in Manhattan. And transporting 34% of all fare-paying bus,
subway, taxi or for-hire vehicle passengers traveling within Manhattan, taxis are
a vital part of Manhattan’s transportation network.

Finally, the fact that at least 80% of all NYC’s trips begin and end in Manhat-
tan south of 79th St, suggests that the analysis should specialize in this particular
area20. In a slight abuse of terminology, the text will refer to this particular area
as “Manhattan”.

6.2. A simpli…ed map of Manhattan

We proceed to simplify the map of Manhattan by dividing it in 6 “locations”.
This means that in our geographical abstraction, there are only 6 places where
people and cabs may be located. All six locations have roughly the same size, and
are bounded by the Hudson River on the West and the East River on the East.
Table 6.1 reports the North-South boundaries of each location.

i Name
(Areas/well-known spots it includes)

North-South
(Boundary)

1 Upper
(Metropolitan Museum)

79th St.-59th St.

2 Midtown North
(Moma, Rockefeller Ctr.)

59th St.-39th St.

3 Midtown South
(Madison Sq. Garden, Penn Station)

39th St.-19th St.

4 Village
(Greenwhich Village, East Village, Union Sq.)

19th St.-Houston

5 SoHo
(SoHo, Chinatown, Little Italy, Lower East Side, Tribeca)

Houston-Chambers

6 Wall St.
(Financial District)

Chambers-Battery Park

Table 6.1: North and South boundaries of the six locations.

Distances between locations are measured from a particular point (the “central

19Northern Manhattan refers to Manhattan above 96th St.
20All facts quoted from The New York City Taxicab Fact Book (May 1994).
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point”) chosen roughly in the geographical center of each location. Table 6.2
reports the street corner chosen to be each location’s central point.

i Location i’s “Central Point”
1 69th St. & 3rd Av.
2 49th St. bet. 7th Av. & Av. of the Americas
3 29th St. bet. 7th Av. & Av. of the Americas
4 8th St. and University Pl.
5 Canal and Lafayette
6 Wall St. and Broadway

Table 6.2: Street corners chosen as locations’ central points.

Given that distances between locations are symmetric21, Table 6.3 reports the
distances between each pair of locations, measured in miles.

inj 1 2 3 4 5 6
P6
j=1 ±ij

1 0 1:7 3 4:3 5:5 6:6 21:1
2 1:7 0 1:3 2:6 3:8 4:9 14:3
3 3 1:3 0 1:3 2:5 3:6 11:7
4 4:3 2:6 1:3 0 1:2 2:3 11:7
5 5:5 3:8 2:5 1:2 0 1:1 14:1
6 6:6 4:9 3:6 2:3 1:1 0 18:5

Table 6.3: Pairwise distances between locations.

Having worked out a geographical model for the area of interest, the next
section will compute all equilibria and derive the corresponding matching function
for Manhattan’s market for cab rides.

6.3. Manhattan in equilibrium

The notation used in this section follows the one adopted for the case with 3
locations. Unfortunately, the information needed to make the Markov matrix of
people’s wishes to move consistent with the actual observed ‡ows of cabs between
locations is unavailable22. Given this limitation, the analysis will proceed under

21This assumption seems inocuous given the level of geographical abstraction.
22The information on what fractions of those who get cabs at each location want to go to any

other location (i.e. what fraction of those who hail a cab in SoHo go to the Village, to Wall St.,
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the assumption that people’s wishes to move are ruled by a “completely symmet-
ric” Markov chain. This is equivalent to making the following two assumptions on
peoples’ moving behavior: (a) when a cab driver spots a person in some location,
the probability this person wants a cab is the same (i.e. u) in any location, and (b)
a passenger in any location is equally likely to want to go to any one of the other
…ve locations. It should be noted that adopting this kind of moving behavior will
magnify the e¤ect distances have on the cabs’ locating decisions.

The de…nition of equilibrium for this application is obtained from the general
de…nition in Section 4.3 by letting n = 6 and aij = 1=5 for i = 1; : : : ; 6 and
i 6= j. The following section characterizes the set of all the possible equilibria for
Manhattan, as a function of the “‡ag-drop” charge (b), the per-mile pro…t rate
(¼), the city-wide number of cabs (v) and the fraction of people wishing to …nd a
cab (u).

6.3.1. Equilibrium allocations: on where cabs are when you need one

When the number of cabs is “very large” relative to the number of potential
passengers, there will be more cabs than people needing cabs in every location
throughout the city: everybody is able to …nd a cab within the …rst period. Con-
ditional on having found a passenger, the expected pro…t for a cab in Midtown
South (location 3) and the Village (location 4) is lower than elsewhere in the city,
and hence when the number of cabs is “small enough” relative to the number of
people wishing to …nd a cab, there will be a shortage of cabs in at least one of
those areas. The following proposition formalizes the notions of “very large” and
“small enough”.

Proposition 2. If
(a) v=u > 15b+45:7¼

15b+35:1¼
; then there exists a unique equilibrium, and it exhibits

excess supply of cabs in all locations.
(b) v=u = 15b+45:7¼

15b+35:1¼
, then there exists a unique equilibrium with market clear-

ing in Midtown South and the Village and excess supply elsewhere.
(c) v=u < 15b+45:7¼

15b+35:1¼
, then there is an equilibrium with excess demand in Mid-

town South, market clearing in the Village and excess supply elsewhere, another
one in which the market clears in Midtown South, exhibits excess demand in the
Village and excess supply elsewhere, and a continuum with excess demand in both

etc.) can be obtained from the “trip sheet” data collected periodically from cab drivers by the
New York City Taxi and Limousine Commission. I have been unable to access this data so far.
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Midtown South and the Village and excess supply elsewhere.
Proof. See the Appendix B.

Once the equilibria have been computed, the city-wide matching function can
be derived simply by adding up the number of contacts that occur in equilibrium
in each location, which are reported in the last row of Tables B.1-B.5. Letting
m (¢) denote Manhattan’s matching function, and ® be the ratio of the ‡ag-drop
charge to the per-mile pro…t rate (i.e. ® ´ b=¼), the model predicts that

m (u; v; ®) = min fu; Á (®) vg (6.1)

where
Á (®) ´ 15®+ 35:1

15®+ 45:7
:

Notice that
m (u; v; ®) < min fu; vg i¤ v=u < Á (®)¡1 ,

and hence the market exhibits frictions if and only if v=u < Á (®)¡1. Figure 4
shows a plot of v=u = Á (®)¡1, namely Manhattan’s “no-frictions frontier”.

Figure 4. Manhattan’s “no-frictions frontier”.
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7. The recent increase in taxicab fares: some predictions

Taxi fares in NYC where increased earlier this year. The following table reports
the old and the new fares23.

b ¼ ®
old fare
(1990-1996)

1:50 1:25 6
5

new fare 2 1:50 4
3

Table 7.1: Flag-drop and per mile charges: new and old.

The last column of Table 7.1 shows that the ‡ag-drop charge (b) was increased
proportionately more than the per-mile pro…t rate (¼), causing their ratio (®)
to rise. The e¤ect of this policy on the city-wide matching function (given in
(6.1)) depends on the value of the parameters v and u. To see this, notice that if
u=v ¸ Á (6=5)¡1 = 637

531
, then (given that v and u are unchanged by the policy) the

fare increase has no e¤ect on the matching function and consequently the number
of meetings between cabs and passengers in Manhattan remains unchanged. Con-
versely, if u=v < 637

531
, because this new rate structure increases the pro…ts from

short trips relatively more than it does for long ones, cabs …nd locations such
as Midtown South and the Village now more attractive than before the change
in fares. This reallocation24 increases the number of contacts by shifting25 the
matching function.

In order to assess the e¤ects of the fare increase, the values of v and u will be
chosen so that the model is consistent with two documented features of NYC’s
market for taxicab rides before the policy took place, namely the average waiting
times faced by a cab driver looking for a passenger and by a passenger looking for
a cab.

The length of a model period will be chosen so that the model reproduces the
average number of meetings observed in Manhattan in a typical weekday. There
are approximately 490; 000 trips on an average weekday in NYC. Given that 80%

23The …gures for ¼ ignore the per-mile cost of operation, namely the cost of gas. Being only
about 7 cents per mile, introducing this cost will have no signi…cant e¤ect on the conclusions.

24The policy also induces a reallocation of cabs when v=u ¸ 637
531 , but in that case the reallo-

cation has no e¤ect on the number of meetings because -since the total number of cabs in the
city was “large enough” relative to the total number of movers- there were already enough cabs
to serve all passengers in all locations before the policy took place.

25Recall that Á (®) increases with policies that raise ® (see Section 5.4.2).
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of the trips begin and end in Manhattan, this means that there are roughly 272
contacts per minute in Manhattan during an average weekday. Hence, for given
values of u, v, and ®, the length of a model period measured in minutes is denoted
¸ (¢) and given by

¸ (u; v; ®) =
1

272
m (u; v; ®) :

7.1. A cab’s average waiting time and the number of cabs

The expected number of model periods a cab in location i waits before meeting a
passenger is26

max f1; vi=uig :
The average (across locations) expected number of periods a cab waits for a pas-
senger is v=u for values of v and u such that v=u exceeds 637

531
; and 637

531
(»= 1:2) for

values of v=u that are smaller than or equal to 637
531

. This means that the average
expected waiting time for a cab trying to …nd a passenger in the model is

637

531
min fu; Á (6=5) vg 1

272
=
637

531
Á (6=5)

v

272

minutes when below or on the no-frictions frontier, and

v

u
min fu; Á (6=5) vg 1

272
=

v

272

minutes when above it. Notice that since Á (6=5) = 531
637

, it follows that the average
waiting time faced by a cab is v

272
regardless of whether v=u lies above or below

the no-frictions frontier.
According to The New York City Taxicab Fact Book (NYC Taxi and Limousine

Commission (1994b) p.33), on average, cab drivers spend 6:5 minutes waiting to

26While in location i, the probability a cab …nds a passenger is °i in any given period. Hence
the probability of …nding a passenger in the kth period is

gi (k) = (1 ¡ °i)
k¡1 °i,

and thus the expected number of periods until a cab …nds a passenger in location i is given by
X1

k=0
gi (k) k = °¡1

i = min f½i; 1g¡1 :
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…nd a fare27. Hence, for the model to be consistent with this fact, v must solve

v

272
= 6:5;

which implies that
v = 1768:

7.2. A passenger’s average waiting time and the number of movers

The expected number of model periods a passenger in location i spends waiting
for a cab is

max
½
1;
ui
vi

¾
:

If v=u > 637
531

, then the model predicts excess supply of cabs in all locations, and
hence a passenger’s waiting time is 1 model period in any location. Conversely,
if v=u · 637

531
, then the average (across locations) expected number of periods a

passenger waits for a cab is
637

531

u

v
:

Hence above the no-frictions frontier a passenger’s average expected waiting time
is

min fu; Á (6=5) vg 1

272
=

u

272

minutes, and below it, it is

637

531

u

v
min fu; Á (6=5) vg 1

272
=
637

531
Á (6=5)

u

272
=

u

272

minutes as well.
Then if z is the (observed) average number of minutes a passenger has to wait

for a cab in Manhattan it follows that the number of movers u has to be given by

u = 272 ¢ z (7.1)

for the model to be consistent with this observation. Notice that

v

u
=
1768

272 ¢ z >
637

531
i¤ z < 5:4; (7.2)

27This …gure excludes time spent waiting in airport hold areas and dead-heading after airport
drop-o¤s, as well as breaks of over 20 minutes taken by drivers.
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that is, v=u lies above the no frictions frontier if and only if on average, a passenger
has to wait for less than 5:4 minutes to …nd a cab in Manhattan.

In 1989, a study prepared for the City of New York (Parsons et al (1989),
pp. II14-II18 and B1-B38) estimated the average (across locations and time of
the day) waiting time for passengers trying to hail a cab in the relevant area of
Manhattan to be slightly above 1 minute. Unfortunately, the result of this study
can only be taken seriously as a lower bound to hailers’ waiting time28. However,
notice that according to (7.2), v=u would lie above the no-frictions frontier even if
the true average waiting time of a hailer was …ve times the one obtained from the
report by Parsons et al. Hence it seems safe to presume that Manhattan’s market
for taxicab rides was above the no-frictions frontier before the fare was increased.
Nevertheless, the following section predicts the e¤ects of the fare increase on
Manhattan’s meeting process without making any assumptions on the value of u.

7.3. E¤ects of the fare increase

The available evidence on the e¤ects that the last two fare increases (namely May
1987 and January 1990) had on u and v suggests that both variables would most
likely remain unchanged by the recent increase.

Two independent studies argue that the demand for taxicab rides in NYC is
perfectly inelastic. Parsons et al (1989) (p. VIII12) report that the 22% fare
increase of May 1987 “brought about nearly 22% in extra revenue”. Similarly,
according to The New York City Taxicab Fact Book (NYC Taxi and Limousine
Commission (1994b) p.16), the 12% fare increase of January 1990 induced no
ridership loss.

Since the number of medallions is …xed by law, the number of cabs cannot

28The study was carried out by a group of workers who, in several locations throughout NYC
tried to spot people hailing cabs and measured their hailing times. The timing of a hailer began
when the person started hailing and ended either when he/she entered a cab or walked away
from the observers’ range of view. There are at least two reasons why the hailing times measured
in this way will turn out to be biased downward. First, most hailers were probably identi…ed as
such only after they had been waiting for a cab for some time (there is no point in hailing if there
are no cabs coming down the street). Second, some of the people who “walked away from the
observers’ range of view” may have not given up the idea of …nding a cab altogether (as assumed
by the observers who just stopped timing people walking out of their sights), but most likely
moved on to try …nding a cab elsewhere, resulting in their waiting time being underestimated
as well. The results might have been more accurate using alternative data-collecting techniques
such as making the workers involved in the study hail cabs themselves or conducting an on-the-
cab survey of passengers’ hailing times.
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increase. Nevertheless, a fare increase could, in principle, induce the existing
number of licensed cabs to be operated more hours, with e¤ects similar to those
of an increase in the actual number of cabs. However, there are good reasons why
a signi…cant increase in the number of operating hours due to rising fares would
be an unlikely outcome. Of the 11; 787 outstanding licenses, 6; 818 are “corporate
licenses” which are required by TLC regulation to be run for two shifts of nine to
twelve hours’ duration each day. Furthermore, around 33% of the 4; 969 individual
taxis are double-shifted (Parsons et al (1989), p.VIII16). This means that 70%
of the existing cabs are already running practically full time. Additionally there
is also some evidence suggesting that drivers’ preferences would work against the
increase in operating hours: “according to taxi industry sources, some drivers
will work fewer hours if they make more per hour, preferring the leisure time”
(Parsons et al (1989), p.VIII13). Finally, the study by Parsons et al (1989) (pp.
VIII12-VIII16), concludes that most likely, “a fare increase of 23% would not
appreciably increase the number of taxis double-shifting, nor cause a change in
the basic operating pattern of the existing taxis”. In accordance with these facts
and arguments, the e¤ects of the recent fare increase should be analyzed keeping
v=u constant.

All that is needed to characterize the market for taxicab rides is a pair (v=u; ®).
Since due to lack of good information on the average waiting time of a passenger
(denoted z), we cannot come up with a number for v=u, all we can say (see Figure
4) is that the policy caused the point (v=u; 6=5) to shift to (v=u; 4=3). That is,
whatever v=u was initially, it was lying on the ® = 6=5 line before, and is lying
on ® = 4=3 locus after the fare increase. However, it turns out that even without
assigning a value to u, the e¤ects of the policy on the aggregate meeting process
can by bounded quite tightly, and in fact, shown to be very small.

Let’s …rst consider what the results look like if the hailers’ average waiting
time z is “very low”. Let bz ´ Á (6=5) 1768

272
, and assume that z · bz. Then (7.1)

implies that u · Á (6=5) ¢ 1768, and hence 1768
u

¸ Á (6=5)¡1, indicating that the
city was above the no-frictions frontier before the policy. Thus the city will remain
above the frontier after the policy (see Figure 4), and consequently (according to
(6.1)) the fare increase has no e¤ect on the matching function.

On the other hand, if the real waiting time z is “high enough”, it can be
immediately seen (from Figure 4 and (6.1)) that the market will start below the
frontier, and hence that the number of matches will rise as a result of the policy.
Let z ´ Á (4=3) 1768

272
, and assume z > z. Then the market starts and ends below

the frontier (again see Figure 4 and notice that z > z implies that 1768=u <
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Á (4=3)¡1), and hence the number of matches increases from Á (6=5) ¢ 1768 to
Á (4=3) ¢ 1768. Alternatively, if z 2 (bz; z], the market will start below the frontier
and end up above it as a result of the fare increase. The increase in the number
of meetings is given by

[Á (®¤)¡ Á (6=5)] ¢ 1768,
where ®¤ is characterized by

1768

272 ¢ z = Á (®
¤) .

Letting¢(z) denote the percentage change in the number of meetings induced
by the fare increase, and de…ning it as

¢(z) ´ [m (u; v; 4=3)¡m (u; v; 6=5)]m (u; v; 6=5)¡1 £ 100,

the above discussion implies that

¢(z) =

8
>>><
>>>:

0 if z · bz
Á( 272¢45:7¢z¡1768¢35:115¢(1768¡272¢z) )¡Á(6=5)

Á(6=5)
£ 100 if bz < z · z

Á(4=3)¡Á(6=5)
Á(6=5)

£ 100 »= 0:6% if z < z

:

The function ¢(z) is plotted in Figure 5.

Figure 5. Percentage change in the number of meetings induced by the fare increase as a

function of a passenger’s average waiting time.
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Notice that independently of the real value of z (and thus regardless of what
the implied value for u might be), the meeting process barely responds at all to
the fare increase: the 11% increase in ® will at most induce a 0:6% increase in
the number of meetings.

On a closing note, the fact that the e¤ect that a change in fares has on the
matching process depends on what happens to ®, and not on what happens to
the overall cost of a trip should be stressed. For example, if fares are increased by
raising ¼ proportionately more than b, then less matches will result in equilibrium
(provided we’re below Á (®)¡1). This result stands in contrast with what one
would …nd by attempting to predict the e¤ects of a rate change by using any model
that does not explicitly account for the endogeneity of cabs’ locating decisions. In
particular, a model that assumes a matching process and possibly allows cabs to
a¤ect it by letting them choose their “search intensity” will reach the conclusion
that the number of contacts will increase whenever the cost of a trip rises. The
answer di¤ers because the class of models that assume a matching process cannot
account for the fact that in environments in which agents can direct their search,
the shape of the matching function is a¤ected by the change in the rate structure.

8. Concluding remarks

The model constructed shows how, when distance and the choice of a location
are relevant for the agents (in the sense that they enter their payo¤s), and their
searching strategies are explicitly modeled, frictions may arise endogenously as
a feature of a set of equilibria, even though agents are perfectly informed (they
know the distribution of cabs and passengers across locations), and face no coor-
dination problems (i.e. in equilibrium no cab wishes to change locations under
the notion of equilibrium adopted). Within this framework, it was shown that
some heterogeneity among locations is a necessary condition for frictions to exist.

The environment laid out is such that locations are characterized by two fea-
tures: how far away they stand from each of the other two locations, and the
moving wishes of the people in it. For those combinations of these features that
deliver environments with identical locations (in the sense that conditional ex-
pected pro…ts are equal in all of them), frictions do not arise since cabs spread
themselves evenly in order to maximize the probability of contacting a passenger.

When at least one location is “better” (in the sense that the expected pro…t
of having contacted a passenger there is higher) than another, the possibility
that cabs may “overcrowd” that location leaving another location with less cabs
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than people needing a ride, arises. So although all possible contacts occur within
each location, cabs may distribute themselves in such a way that some of them are
unable to …nd passengers, while some passengers are unable to get a cab. From an
“aggregate” perspective (i.e. by looking at the total numbers of movers and cabs
disregarding their distribution across locations), this situation looks just like the
environments with meeting frictions typically assumed in search-theoretic models,
although the nature of these frictions is very di¤erent.

The models that assume an exogenously speci…ed matching function (i.e. one
that is not an equilibrium object, derived from the agents’ optimal search behav-
ior) that generates the number of meetings, are implicitly assuming that agents
can only engage in random search. That is, they do not choose how or where to
look for a partner, and hence they cannot a¤ect the meeting process. In other
words, assuming an exogenous matching function is equivalent to assuming that
“nobody knows where anything is”. This must be so, since in a model in which
agents choose how to search (for instance, they may choose where to go look for a
partner, as was the case above), the number of resulting meetings will necessarily
be an equilibrium outcome. Put di¤erently, doing policy experiments is meaning-
less in a model that assumes a matching function but in which agents supposedly
engage in something other than random search, because any results will ignore the
fact that the shape of the matching function is changing in some way in response
to the policy.

Sometimes, as in the taxicab model presented here, the “nobody knows where
anything is” assumption may not be appropriate, and hence tacitly adopting it by
studying the problem with an exogenous matching function may be misleading.
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A. Appendix

Before proceeding with the proof of Proposition 1, it is convenient to write down
the equilibrium conditions explicitly:

min
n
u1
v1
; 1

o
¼1 = min

n
ui
vi
; 1

o
¼i; i = 2; : : : ; n

min fui; vig =
Pn
j 6=i ajimin fuj ; vjg ; i = 1; : : : ; n¡ 1Pn

i=1 ui = u, and v =
Pn
i=1 vi = v:

9
>>=
>>;

(A.1)

Notice that these are 2n equations in the 2n unknowns f(ui; vi)gni=1. The …rst and
second sets of n ¡ 1 equations are the equal pro…t and steady state conditions
respectively. The last two equations are the “adding up” conditions.

Proof of Proposition 1.
(a). Suppose the parameters are such that ¦ = 0, or equivalently, such that

¼1 = ¼2 = ¢ ¢ ¢ = ¼n.

That is to say, all locations are identical from a cab’s perspective in the sense that
the conditional expected pro…t ¼i is the same in all of them. Under this condition
the …rst n¡ 1 equations in (A.1) become

min
½
u1
v1
; 1

¾
= min

½
u2
v2
; 1

¾
= ¢ ¢ ¢ = min

½
un
vn
; 1

¾
:

So in equilibrium, either all locations have excess supply of cabs, or no location
exhibits excess supply. Therefore there are three types of equilibria. In the …rst,
all locations exhibit excess supply of cabs. We deal with this case in Step 1a.
In the second type, which is analyzed in Step 2a, there is market clearing in all
locations. Finally, Step 3a characterizes the set of equilibria for the case in which
at least one location exhibits excess demand while none of the others exhibit
excess supply.

Step 1a. [Existence and uniqueness of an equilibrium with excess supply in all
locations]. If there is excess supply of cabs in all locations, then (A.1)
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becomes:
u1
v1
=
u2
v2
= ¢ ¢ ¢ = un

vn
(A.2)

v =
nX

i=1

vi (A.3)

ui =
nX

j 6=i
ajiuj, i = 1; : : : ; n¡ 1 (A.4)

u =
nX

i=1

ui: (A.5)

Notice that since there is excess supply of cabs in all locations, the ‡ows
of movers between locations are driven by the Markov process that rules
people’s wishes to move. In fact, u = (u1; : : : ; un) solves (A.5) and the n¡1
‡ow equations labeled (A.4) if and only if it solves

u ¢ A = u (A.6)

and un = u¡ Pn¡1
i=1 ui, where

A =

2
66664

1¡ u ua12 ¢ ¢ ¢ ua1n
ua21 1¡ u ¢ ¢ ¢ ua2n

...
...

. . .
...

uan1 uan2 ¢ ¢ ¢ 1¡ u

3
77775

is the Markov matrix of people’s wishes to move. Although there are n
equations in the system given by (A.6) and only n¡1 in (A.4), both systems
are identical since the …rst n ¡ 1 equations are the same, while the nth
equation in (A.6) is just a linear combination of the previous n¡ 1. To see
this, rearrange the …rst n¡ 1 equations in (A.4) or in (A.6) to get

an1un = u1 ¡ Pn¡1
i=2 ai1ui

an2un = u2 ¡ Pn¡1
i6=2 ai2ui

...
an;n¡1un = un¡1 ¡ Pn¡2

i=1 ai;n¡1ui:

Adding up these n¡ 1 conditions implies:

un
Xn¡1

i=1
ani =

Xn¡1
j=1

µ
1¡

Xn¡1
i6=j aji

¶
uj
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which is the same as the last equation in (A.6), namely

un =
Xn¡1

j=1
ajnuj;

since
Pn¡1
i=1 ani = 1 and 1 ¡ Pn¡1

i6=j aji = ajn. The matrix A is a strictly
positive Markov matrix, so it has a unique stationary distribution, namely
there is a unique vector ¹ =

³
¹1; ¹2; : : : ; 1¡ Pn¡1

i=1 ¹i
´

such that

¹A = ¹. (A.7)

Furthermore, ¹ > 0 because A > 029. Multiplying both sides of (A.7)
through by u, we see that u = ¹u is the unique solution to system of
equations given by (A.4) and (A.5). Since u can be divided out of (A.7), ¹
does not depend on u and hence u is linear in u. So we can write:

ui = ¹iu, for i = 1; : : : ; n; (A.8)

where ¹i > 0 is a function of the elements of the Markov matrix A only.
Having solved for u, the n equations given by (A.2) and (A.3) can be solved
for the equilibrium allocation of taxicabs (denoted vi):

vi = ºiv

where

º1 ´
³
1 + (1=¹1)

Xn

i=2
¹i

´¡1
, and

ºi ´ ¹iº1=¹1; i = 2; : : : ; n:

Since
Pn
i=1 ¹i = 1, it follows that

vi = ¹iv; for i = 1; : : : ; n: (A.9)

Finally, verify that
vi > ui, for i = 1; : : : ; n;

29If z is a vector, z > 0 means zi > 0 for all i, while z ¸ 0 means zi ¸ 0 for all i and
zi > for some i (i.e. z 6= 0). Similarly, if Q is a matrix, Q > 0 means qij > 0 for all i and j.
The fact that A is a Markov matrix, implies that 1 is an eigenvalue (hence we know that a ¹
satisfying (A.7) exists). Additionally, A > 0 implies that 1 is A’s largest eigenvalue. Since ¹
is the eigenvector associated with the largest non-negative eigenvalue of a non-negative matrix,
by Frobenius’ theorem we know that ¹ ¸ 0 (see Nikaido (1970) or Takayama (1985)). Finally,
since A > 0, it is obvious that (A.7) cannot hold if ¹i = 0 for some i, so ¹ > 0 must be the case.
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holds if and only if
v > u: (A.10)

Hence the unique equilibrium described in (A.8) and (A.9) exists if and only
if (A.10) holds.

Step 2a. [Existence and uniqueness of an equilibrium with market clearing in all
locations]. With market clearing in all locations the equilibrium is charac-
terized by (A.3)-(A.5) and:

vi = ui, for i = 1; : : : ; n: (A.11)

As in Step 1a, (A.4) and (A.5) can be solved for (A.8). The distribution of
cabs is then obtained from (A.11), and it is seen to satisfy (A.3) if and only
if

v = u: (A.12)

Thus the equilibrium with market clearing in all locations is unique and
exists if and only if (A.12) holds. The equilibrium allocations derived in
Step 1a and Step 2a are summarized in the following table.

i = 1; : : : ;n
ui ¹iu
vi ¹iv
mi ¹iu

Table A.1: ¦=0. Equilibrium of Step 1a (or 2a).

Step 3a. [Characterization of equilibria with excess demand in at least one lo-
cation]. Suppose there are k locations with excess demand and n ¡ k that
clear, with 1 · k · n. If k · n¡ 1, label locations so that, i = 1; : : : ; n¡ k
correspond to those with market clearing.

n¡kz }| {
1; : : : n¡ k| {z }
market clearing

;

kz }| {
n¡ k + 1; : : : ; n| {z }

excess demand

In this case, the equilibrium conditions are:

vi = ui, for i = 1; : : : ; n¡ k; and (A.13)

vi =
nX

j 6=i
ajivj, i = 1; : : : ; n¡ 1 (A.14)
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together with (A.3) and (A.5). If k = n, then the equilibrium is character-
ized by (A.14), (A.3) and (A.5) only. Notice that the system given by (A.14)
is the same as that in (A.4) but with the vi’s replacing the ui’s. Therefore
the equilibrium distribution of cabs is v = ¹v (as given in (A.9)), with ¹
de…ned by (A.7). So in this class of equilibria, the distribution of cabs across
locations is the same as in the equilibrium with excess supply of cabs in all
locations analyzed in Step 1a, and is given by (A.9). Having derived the
distribution of cabs, the distribution of movers across the location(s) with
market clearing follows immediately from (A.13). Since there are 2n¡k+1
independent equilibrium conditions and 2n unknowns, the system will be
under-determined if there is more than one market with excess demand (i.e.
if k ¸ 2). In this case the there will be a continuum of equilibria since the
distribution of movers across the locations with excess demand is indeter-
minate30. Any distribution fbui; bvigni=1 with bvi = vi for i = 1; : : : ; n; bui = bvi,
for i = 1; : : : ; n¡ k, and fbujgnj=n¡k+1 satisfying

buj > bvj, and (A.15)
nX

j=n¡k+1
buj = u¡ v

n¡kX

i=1

¹i (A.16)

constitutes and equilibrium. So equilibria of this kind exist if and only if31

v < u: (A.17)

If the equilibrium is not unique, then there is a continuum. Uniqueness
obtains if and only if k = 1. The following table summarizes the allocations
corresponding to the equilibria of Step 3a.

30This severe multiplicity is irrelevant for the purposes of characterizing the aggregate match-
ing function.

31To show ()), notice that (A.15) and (A.16) imply

Xn

i=n¡k+1
bvi < u ¡

Xn¡k

i=1
bvi,

so v < u is necessary for both conditions to hold. For ((), assume that v < u, and construct
equilibria as follows. Let bvi = ¹iv for i = 1; : : : ; n, and let bui = bvi, for i = 1; : : : ; n ¡ k. For
j = n ¡ k + 1; : : : ; n; let

buj = bvj + "j (u ¡ v)

with " = ("n¡k+1; : : : ; "n) being a vector in the k-dimensional unit simplex (i.e. "j ¸ 0 andPn
j=n¡k+1 "j = 1).
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i = 1; : : : ;n¡ k n¡ k+ 1; : : : ;n
ui ¹iv ¹iv + "j (u¡ v)
vi ¹iv ¹iv
mi ¹iv ¹iv

Table A.2: ¦=0. Equilibria of Step 3a.

This concludes Step 3a.

To show that all equilibria are always (i.e. for any u and v) frictionless when
¦ = 0, it is su¢cient to verify that the aggregate number of meetings m satis…es

m = min fu; vg

in all the equilibria characterized in Steps 1a, 2a and 3a. Let ma
1;2 and ma

3 denote
the aggregate number of meetings corresponding to any equilibrium characterized
in Steps 1a (or 2a) and 3a respectively. By virtue of (A.8), (A.9), (A.10) and
(A.12), in an equilibrium with either excess supply in all locations (Step 1a) or
market clearing in all locations (Step 2a), the aggregate number of meetings is

ma
1;2 =

nX

i=1

min fui; vig = u:

Notice that since the equilibria in Steps 1a and 2a exist if and only if v ¸ u, it
follows that

ma
1;2 = min fu; vg : (A.18)

Using (A.8), (A.9), (A.13), (A.15) and (A.17), it is immediate that in any of the
(possibly multiple) equilibria with excess demand in at least one location and
market clearing in the rest (Step 3a), the aggregate number of meetings is

ma
3 =

nX

i=1

min fbui; bvig = v:

Since the equilibria in Step 3a exist if and only if v < u (see (A.17)), we also have

ma
3 = min fu; vg : (A.19)

This concludes part (a).
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(b). Suppose the parameters are such that ¦ > 0. This means that the
conditional expected pro…ts (i.e. the ¼i’s) are not all the same across locations.
Label locations so that bigger subindexes correspond to locations with smaller
conditional expected pro…t. This labeling implies

¼1 ¸ ¢ ¢ ¢ ¸ ¼k¡1 > ¼k = ¢ ¢ ¢ = ¼n: (A.20)

Since there could be more than one location with the smallest level of conditional
expected pro…t in the city, (A.20) allows for n ¡ k + 1 such locations, with 2 ·
k · n. The ranking in (A.20) together with the …rst n ¡ 1 equations in (A.1)
imply

min
½
u1
v1
; 1

¾
· ¢ ¢ ¢ · min

(
uk¡1
vk¡1

; 1

)
< min

½
uk
vk
; 1

¾
= ¢ ¢ ¢ = min

½
un
vn
; 1

¾
:

These conditions mean there must be excess supply in locations 1 through k¡ 1,
while for locations k through n it must be the case that either they all have excess
supply, or none of them does. Hence there are three possible types of equilibria.
Once again, we proceed in three steps, one for each type.

Step 1b. [Existence and uniqueness of an equilibrium with excess supply in all
locations]. With excess supply in all locations, the equilibrium is character-
ized by 2n equations, namely

u1
v1
¼1 =

u2
v2
¼2 = ¢ ¢ ¢ = un

vn
¼n; (A.21)

(A.3), (A.4) and (A.5). As in Step 1a, the n equations labeled (A.4) and
(A.5) can be solved for the unique distribution of movers across locations
given in (A.8). Knowing the distribution of movers, the n equations labeled
(A.3) and (A.21) can be solved for the distribution of taxicabs, which is
given by

vi =
¹i¼iPn
i=1 ¹i¼i

v; (A.22)

for i = 1; : : : ; n. The distributions of movers and cabs (given in (A.8) and
(A.22) respectively) constitute an equilibrium if and only if

v=u > (1=¼i)
Xn

i=1
¹i¼i, for i = 1; : : : n: (A.23)

The set of conditions in (A.23) can be rewritten as

v=u > max f1=¼1; ¢ ¢ ¢ ; 1=¼ng
Xn

i=1
¹i¼i:
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Since ¼n = min f¼1; : : : ; ¼ng, the equilibrium with excess supply in all loca-
tions exists if and only if

v=u > Á¡1 (A.24)

where
Á ´ ¼nPn

i=1 ¹i¼i
: (A.25)

The following table summarizes the equilibrium allocations characterized in
Step 1b.

i = 1; : : : ;n
ui ¹iu
vi

¹i¼iPn

i=1
¹i¼i
v

mi ¹iu

Table A.3: ¦ > 0. Equilibrium of Step 1b.

Step 2b. [Existence and uniqueness of an equilibrium with excess supply in lo-
cations 1 through k ¡ 1 and market clearing in all others].

k¡1z }| {
1; : : : ; k ¡ 1| {z }

excess
supply

;

n¡k+1z }| {
k; : : : ; n| {z }

market
clearing

The conditions that characterize an equilibrium with excess supply in the
…rst k ¡ 1 locations and market clearing in the remaining n¡ k + 1 are:

u1
v1
¼1 =

u2
v2
¼2 = ¢ ¢ ¢ = uk¡1

vk¡1
¼k¡1 = ¼n (A.26)

vi = ui; for i = k; : : : ; n; (A.27)

together with (A.3), (A.4) and (A.5). As in Step 1b, (A.4) and (A.5) can
be solved for the unique distribution of movers across locations given in
(A.8). Then, the n equations labeled (A.26) and (A.27) can be solved for
the unique distribution of cabs:

vi = (1=¼n)¹i¼iu, for i = 1; : : : ; k ¡ 1 (A.28)

vj = ¹iu, for j = k; : : : ; n: (A.29)
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Finally, for the unique distributions of movers and cabs given in (A.8),
(A.28) and (A.29) to be an equilibrium, condition (A.3) must hold, so we
must verify that

k¡1X

i=1

(1=¼n)¹i¼iu+
nX

i=k

¹iu = v: (A.30)

Because ¼i = ¼n for i = k; : : : ; n, the left-hand side of (A.30) can be written
as

u (1=¼n)
Xn

i=1
¹i¼i;

and therefore this equilibrium exists if and only if

v=u = Á¡1: (A.31)

Step 3b. [Characterization of equilibria with excess supply only in locations 1
through k¡ 1, and excess demand in at least one of the remaining n¡k+1
locations]. We focus on an equilibrium with excess supply in locations 1
through k¡ 1 only, market clearing in the …rst h of the remaining n¡ k+1
locations (with 0 · h · n¡ k), and excess demand in the rest.

k¡1z }| {
1; : : : ; k ¡ 1| {z }
excess supply

;

hz }| {
k; : : : ; k + h¡ 1| {z }

market clearing

;

n¡h¡k+1z }| {
k + h; : : : ; n| {z }
excess demand

In this case, the equilibrium conditions are given by a set of n + k + h
equations; namely

ui¼i = vi¼n; for i = 1; : : : ; k ¡ 1 (A.32)

ui = vi; for i = k; : : : ; k + h¡ 1 (A.33)

ui =
k¡1X

j 6=i
ajiuj +

nX

j=k

ajivj, for i = 1; : : : ; k ¡ 1 (A.34)

vi =
k¡1X

j=1

ajiuj +
nX

j=k;j 6=i
ajivj, for i = k; : : : ; n¡ 1; (A.35)

together with (A.3) and (A.5). Let

¾ ´
k¡1X

i=1

ui +
nX

i=k

vi;
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and notice that the system of n¡1 equations labeled (A.34) and (A.35) can
be written as32

sA = s (A.36)

with s =
³
u1=¾; : : : ; uk¡1=¾; vk=¾; : : : ; 1¡ Pk¡1

i=1 ui=¾ ¡ Pn¡1
i=k vi=¾

´
. Notice

that (A.36), the system obtained by dividing fuigk¡1i=1 and fvjgnj=k by ¾, is

identical to (A.7), and hence s = ¹ =
³
¹1; : : : ; ¹n¡1; 1¡ Pn¡1

i=1 ¹i
´
. There-

fore the distributions of movers across the …rst k ¡ 1 locations, and of cabs
across locations k through n that satisfy (A.34) and (A.35) are

ui = ¹i¾, for i = 1; : : : ; k ¡ 1 (A.37)

vj = ¹j¾, for j = k; : : : ; n: (A.38)

(A.37) and (A.32) imply that

vi = (1=¼n)¹i¼i¾, for i = 1; : : : ; k ¡ 1: (A.39)

The distribution of cabs in (A.39) and (A.38) satis…es (A.3), if and only if

¾

Ã
k¡1X

i=1

(1=¼n)¹i¼i +
nX

i=k

¹i

!
= v;

or equivalently, since ¼k = ¢ ¢ ¢ = ¼n, if and only if

¾ = Áv:

This allows us to rewrite the distribution of movers in (A.37) and (A.33),
and the distribution of cabs in (A.39) and (A.38) as:

ui = ¹iÁv, for i = 1; : : : ; k + h¡ 1, (A.40)

vi =
¹i¼iPn
i=1 ¹i¼i

v, for i = 1; : : : ; k ¡ 1; and (A.41)

vj = ¹jÁv, for j = k; : : : ; n: (A.42)

Since there are n + k + h equilibrium conditions (namely n + k + h ¡ 2
equations in (A.32)-(A.35) plus the two “adding up” conditions) and 2n
unknowns, there are n¡ k¡ h undetermined variables. This indeterminacy
arises because the distribution of movers across the locations with excess

32The nth equation in (A.36) is implied by the n ¡ 1 equations in (A.34) and (A.35).
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demand is not pinned down by the equilibrium conditions. If h = n ¡ k;
then there is only one location in excess demand, and the system is exactly
determined. On the other hand, if h · n ¡ k ¡ 1, then there are at least
two locations with excess demand. In this case, the distribution described
in (A.40), (A.41) and (A.42) together with any distribution fujgnj=k+h sat-
isfying

uj > vj, and (A.43)
nX

j=k+h

uj = u¡ Áv
k+h¡1X

i=1

¹i (A.44)

constitutes an equilibrium. Consequently, an equilibrium of the type de-
scribed in this Step exists if and only if

v=u < Á¡1: (A.45)

To show (A.45) is necessary, notice that (A.43) and (A.44) imply

nX

j=k+h

vj < u¡ Áv
k+h¡1X

i=1

¹i

or equivalently (using (A.42))

Áv < u:

To show it is su¢cient for existence, assume (A.45) holds, and construct
equilibria as follows. Let vi, for i = 1; : : : ; n be given by (A.41) and (A.42),
and let ui, for i = 1; : : : ; k+ h¡ 1 be given by (A.40). For j = k+ h; : : : ; n;
let

uj = vj + ²j (u¡ Áv) (A.46)

with ² = (²k+h; : : : ; ²n) being a vector in the (n¡ h¡ k + 1)-dimensional
unit simplex (i.e. ²j ¸ 0 and

Pn
j=k+h ²j = 1).
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The following table reports the allocations for the equilibria characterized
in Step 3b.

i = 1; : : : ;k¡ 1 k; : : : ;k+ h¡ 1 k+ h; : : : ;n
ui ¹iÁv ¹iÁv ¹iÁv + ²j (u¡ Áv)
vi

¹i¼iPn

i=1
¹i¼i
v ¹iÁv ¹iÁv

mi ¹iÁv ¹iÁv ¹iÁv

Table A.4: ¦ > 0. Equilibria of Step 3b.

This concludes Step 3b.

To determine the conditions under which the equilibria described in the pre-
vious steps exhibit frictions, we characterize the aggregate number of meetings
implied by each possible type of equilibrium. Let mb

1;2 and mb
3 denote the aggre-

gate number of meetings corresponding to any equilibrium characterized in Steps
1b (or 2b) and 3b respectively. In an equilibrium with either excess supply in all
locations (Step 1b) as well as in one with market clearing in all locations that do
not exhibit excess supply (Step 2b), the number of meetings is

mb
1;2 =

nX

i=1

min fui; vig = u;

with fui; vigni=1 being the equilibrium allocation derived in Step 1b (or 2b). Since
the equilibria in Steps 1b and 2b exist if and only if either condition (A.24) or
(A.31) hold, it follows that

mb
1;2 = min fu; Ávg : (A.47)

In any of the (possibly multiple) equilibria with excess supply in some locations
and excess demand others (Step 3b), the aggregate number of meetings is

mb
3 =

nX

i=1

min fui; vig = Áv;

with fui; vigni=1 given by (A.40)-(A.42) and (A.46). Since this type of equilibria
exist if and only if (A.45) is satis…ed, we can write

mb
3 = min fu; Ávg : (A.48)
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Notice that since Á < 1, it follows that

min fu; Ávg · min fu; vg

if and only if
v=u ¸ Á¡1:

So when ¦ > 0, the model delivers no frictions if and only if the number of cabs
is large enough relative to the number of movers. In particular, notice that if
v = u (i.e. when everyone could potentially …nd a match), unserved passengers
and vacant cabs coexist in equilibrium. This concludes part (b).

(c). As shown in parts (a) and (b), there always exists at least one equilibrium
for any value of ¦. If ¦ = 0, the aggregate number of meetings is given by

min fu; vg

in any equilibrium, as can be seen from (A.18) and (A.19).
According to (A.47) and (A.48), the aggregate number of meetings is

min fu; Ávg

in any possible equilibrium when ¦ > 0.
This concludes the proof of Proposition 1.
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B. Appendix

This appendix provides a proof to Proposition 2, and describes all the possible
equilibrium allocations for Manhattan.

Proof of Proposition 2.
(a). Solving the system given by (E1)-(E3) for n = 6 and aij = 1=5 for i 6= j

under the assumption that ½i < 1 for i = 1; :::; 6, one obtains the unique solution
reported in Table B.1. It is then veri…ed that ½i < 1 for i = 1; :::; 6 holds if and
only if v=u satis…es the restriction stated in part (a) of the proposition. The last
row of Table B.1 shows the equilibrium number of matches that take place in each
location.

i = 1 2 3 4 5 6
ui

1
6
u 1

6
u 1

6
u 1

6
u 1

6
u 1

6
u

vi
1
6
15b+63:3¼
15b+45:7¼

v 1
6
15b+42:9¼
15b+45:7¼

v 1
6
15b+35:1¼
15b+45:7¼

v 1
6
15b+35:1¼
15b+45:7¼

v 1
6
15b+42:3¼
15b+45:7¼

v 1
6
15b+55:5¼
15b+45:7¼

v

mi
1
6
u 1

6
u 1

6
u 1

6
u 1

6
u 1

6
u

Table B.1: Equilibrium with excess supply in all locations.

(b). Solving the system given by (E1)-(E3) for n = 6 and aij = 1=5 for
i 6= j under the assumption that ½i < 1 for i = 1; 2; 5; 6 and ½3 = ½4 = 1, the
unique solution is the one reported in Table B.2. It is then veri…ed that ½i < 1
for i = 1; 2; 5; 6 holds if and only if v=u satis…es the restriction stated in part (b)
of the proposition. The last row of Table B.2 shows the equilibrium number of
matches that take place in each location.

i = 1 2 3 4 5 6
ui

1
6
u 1

6
u 1

6
u 1

6
u 1

6
u 1

6
u

vi
1
6
15b+63:3¼
15b+35:1¼

u 1
6
15b+42:9¼
15b+35:1¼

u 1
6
u 1

6
u 1

6
15b+42:3¼
15b+35:1¼

u 1
6
15b+55:5¼
15b+35:1¼

u

mi
1
6
u 1

6
u 1

6
u 1

6
u 1

6
u 1

6
u

Table B.2: Equilibrium with market clearing in locations 3 and 4 and excess supply elsewhere.

(c). The solutions to the system given by (E1)-(E3) (with n = 6 and aij = 1=5
for i 6= j) under the assumption that ½i < 1 for i = 1; 2; 5; 6, and ½j ¸ 1 for
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j = 3; 4, are reported in Tables B.3 and B.4. These allocations are veri…ed
to satisfy the equilibrium conditions and the pattern of excess supply/demand
imposed on the system if and only if the condition stated in part (c) of the
proposition holds. As always, e" ´ (e"3; e"4) denotes a vector in the 2-dimensional
unit simplex (i.e. e"3 + e"4 = 1 and e"i ¸ 0 for i = 3; 4).

i = 1 2 3

ui
1
6
15b+35:1¼
15b+45:7¼

v 1
6
15b+35:1¼
15b+45:7¼

v 1
6
15b+35:1¼
15b+45:7¼

v + e"3
³
u¡ 15b+35:1¼

15b+45:7¼
v
´

vi
1
6
15b+63:3¼
15b+45:7¼

v 1
6
15b+42:9¼
15b+45:7¼

v 1
6
15b+35:1¼
15b+45:7¼

v

mi
1
6
15b+35:1¼
15b+45:7¼

v 1
6
15b+35:1¼
15b+45:7¼

v 1
6
15b+35:1¼
15b+45:7¼

v

Table B.3: Equilibria for Proposition 2, part (c). (allocations for i=1,2,3).

i = 4 5 6

ui
1
6
15b+35:1¼
15b+45:7¼

v + e"4
³
u¡ 15b+35:1¼

15b+45:7¼
v
´

1
6
15b+35:1¼
15b+45:7¼

v 1
6
15b+35:1¼
15b+45:7¼

v

vi
1
6
15b+35:1¼
15b+45:7¼

v 1
6
15b+42:3¼
15b+45:7¼

v 1
6
15b+55:5¼
15b+35:1¼

u

mi
1
6
15b+35:1¼
15b+45:7¼

v 1
6
15b+35:1¼
15b+45:7¼

v 1
6
15b+35:1¼
15b+45:7¼

v

Table B.4: Equilibria for Proposition 2, part (c). (allocations for i=4,5,6).

This completes the proof of Proposition 2.
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